
Timo Tossavainen

Virtual Reality and Posturography
Applied to Postural Control

Research

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Information Sciences of the
University of Tampere, for public discussion in

the B1097 Auditorium of the University on February 3rd, 2006, at 12 noon.

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

A-2005-4

TAMPERE 2006

Supervisor: Prof. Martti Juhola
University of Tampere

Opponent: Prof. Jussi Parkkinen
University of Joensuu

Reviewers: Prof. Jari Hyttinen
Tampere University of Technology

Prof. Pekka Loula
Tampere University of Technology, Pori

Department of Computer Sciences
FIN-33014 UNIVERSITY OF TAMPERE
Finland

Electronic dissertation
Acta Electronica Universitatis 507
ISBN 951-44-6563-6
ISSN 1456-954X
http://acta.uta.fi

Abstract

This thesis describes the design and development and some applications of an in-
tegrated stimulation and measurement system for postural control research based
on virtual reality (VR) methods and force platform posturography. The system
exposes test subjects to visual stimulation with immersive computer-generated en-
vironments and measures their responses to the stimulation using a force platform.
Analysis is carried out on the measured stabilograms.

Our first experiments show that virtual environments affect balance and that
they can be designed to cause desired effects, such as leaning in different directions,
in test subjects. We investigated the efficacy of a head-mounted display and the
CAVE display for visual stimulation by exposing test subjects to the same vir-
tual environments using both displays. There were significant differences in the
responses between the two displays. Next, we constructed an integrated VR pos-
turography system in a laboratory at the Hearing Center of Tampere University
Central Hospital and tested it on control subjects and patients with diagnosed bal-
ance disorders. Responses of control subjects and patients with Ménière’s disease
differed significantly and provided good discrimination between the two groups.
Because the stabilograms are difficult to intepret, we applied pattern recognition
methods to summarize the differences in them between the two groups.

The applications described in this thesis show that VR is a versatile and effective
visual stimulation method for use in postural control research. Many of the exper-
imental setups used the same hardware to implement a sequence of balance tests.
The combination of VR visual stimulation and posturography provided an easy way
to quickly and comprehensively characterize a test subject’s postural stability.

Keywords: virtual reality, posturography, postural control, postural stability.

i

ii

Acknowledgements

I wish to thank my supervisor Professor Martti Juhola, Ph.D., for his guidance and
my other co-authors Professor Ilmari Pyykkö, M.D., Ph.D., Docent Esko Toppila,
Ph.D., Pia Forsman, Ph.Lic., Heikki Aalto, Ph.D., Pekka Honkavaara, M.D., Ph.D.,
and Professor Jukka Starck, Ph.D., for lending me their expertise.

This work was carried out at the Department of Computer Sciences of The
University of Tampere, headed, in turn, by Professors Seppo Visala, Ph.D., Pertti
Järvinen, Ph.D., and Jyrki Nummenmaa, Ph.D. My coworkers have made the de-
partment a pleasant working environment. In particular, I wish to thank Isto Aho,
Ph.D., Heikki Hyyrö, Ph.D., Kati Iltanen, Ph.D., Jorma Laurikkala, Ph.D., Jouni
Mykkänen, Ph.D., Tapio Niemi, Ph.D., Timo Poranen, Ph.D., and Markku Sier-
mala, Ph.D., for their friendship and support. Also, the department administration
has been immensely helpful during my stay there. Special thanks to Tuula Moisio,
Marja-Liisa Nurmi, and Minna Parviainen for their help and patience.

The laboratory staff, Minna Kokkonen, Eeva Korhonen, and Pia Lindberg, work-
ing at the Hearing Center of Tampere University Hospital collected part of the data
used in my work, and Kalevi Nieminen designed and built the portable tilting force
platform, a vital component in our studies. Their work is greatly appreciated.

I thank the Tampere Graduate School in Information Science and Engineering,
Oskar Öflund Foundation, Finnish Cultural Fund, Finnish Cultural Fund (Pohjois-
Savo regional fund), Emil Aaltonen Foundation, Foundation for Technology Pro-
motion, The Finnish Work Environment Fund, The University of Tampere, and
Alfred Kordelin Foundation for financial support of my work.

Last, but not least, I wish to thank Maija for her love and support throughout
this “project”.

iii

iv

Contents

1 Introduction 1

2 Postural control research 3
2.1 Postural control process . 3

2.1.1 Musculoskeletal system . 3
2.1.2 Sensory systems . 4
2.1.3 Central nervous system . 5
2.1.4 Balance disorders . 5

2.2 Balance measurements . 6

3 Posturography 8
3.1 Force platform . 8

3.1.1 Calibration . 10
3.2 Analysis of stabilograms . 11

3.2.1 Physical models . 12
3.2.2 Estimation of COM from COP 16
3.2.3 Parameterization of stabilograms 21
3.2.4 Data acquisition issues . 23

4 Computer graphics and virtual reality 25
4.1 Introduction . 25
4.2 Mathematical preliminaries . 27

4.2.1 Geometric primitives . 28
4.2.2 Intersections and distances 30
4.2.3 Perspective projection . 31

4.3 Object and scene specification . 32
4.4 A simple graphics pipeline . 34

4.4.1 Model, world, and view space 34
4.4.2 Screen space and clipping 35
4.4.3 Rasterization . 38
4.4.4 Summary . 40

4.5 Application level . 41
4.6 Animation . 41

4.6.1 Kinematics . 42
4.6.2 Animating position . 43
4.6.3 Animating orientation . 46

4.7 Virtual reality . 48

v

5 Implementation and applications 50
5.1 Implementation . 50
5.2 Applications . 52

5.2.1 Pilot study . 52
5.2.2 Affecting balance (I) . 55
5.2.3 Inducing different effects on balance (II) 55
5.2.4 Laboratory bus installation 56
5.2.5 CAVE experiments (III) . 56
5.2.6 Effects of solvent exposure on balance 57
5.2.7 Detecting balance disorders (IV, V) 57
5.2.8 Psychophysiological stimulation 60

6 Discussion 61

A Personal Contributions 63

Bibliography 64

vi

Publications

I. Tossavainen, T., Juhola, M., Pyykkö, I., Toppila, E., Aalto, H., & Honkavaara,
P. (2001), Towards Virtual Reality Stimulation in Force Platform Posturog-
raphy in Patel, V. L., Rogers, R. & Haux, R., eds., ‘Proceedings of the 10th
World Congress on Medical Informatics’, IOS Press, Amsterdam, pp. 854–
857.

II. Tossavainen, T., Juhola, M., Pyykkö, I., Aalto, H. & Toppila, E. (2003),
‘Development of Virtual Reality Stimuli for Force Platform Posturography’,
International Journal of Medical Informatics 70, 277–283.

III. Tossavainen, T. (2004), Comparison of CAVE and HMD for Visual Stim-
ulation in Postural Control Research, in Westwood, J. D., Haluck, R. S.,
Hoffman, H. M., Mogel, G. T., Phillips, R. & Robb, R. A., eds., ‘Medicine
Meets Virtual Reality 12’, IOS Press, Amsterdam, pp. 385–387.

IV. Tossavainen, T., Toppila, E., Pyykkö, I., Forsman, P., Juhola, M. & Starck, J.
(2005), ‘Virtual Reality in Posturography’, IEEE Transactions on Information
Technology in Biomedicine, accepted.

V. Tossavainen, T. (2005), Feature Subset Selection for a Diagnostic Test of
Human Balance, in Engelbrecht, R., Geissbuhler, A., Lovis, C. & Mihalas,
G., eds., ‘European Notes in Medical Informatics’, EFMI, pp. 1117–1122.

vii

viii

Chapter 1

Introduction

The ability to maintain upright stance is fundamental to many human activities.
The standing human body is inherently unstable and requires constant corrective
movements to stay upright. A complex control process integrates sensory input,
plans the response, and controls muscles to accomplish these movements. Some-
times this process is impaired, which increases the risk of falling over. These con-
ditions are generally known as balance disorders. Falling over is a common cause of
injury and even death. In the elderly, hip fractures are a cause for concern. There-
fore the early detection and treatment of balance disorders are of great importance.

A natural starting point for evaluation of postural stability is to visually observe
subjects performing different tasks. Techniques developed for measuring movement
or muscle activity are used in more objective studies; see (Winter 1990, ch. 2,4)
for review. Observations of a standing subject provide information on how the
postural control system handles disturbances emerging from heartbeats, breathing,
and other intrinsic factors. However, this approach can not assess the individual
contributions of components of the postural control system—external stimulation is
needed for this purpose. It can be a moving visual environment or a tilting platform,
for example. Comprehensive characterization of a subject’s postural control thus
requires a number of tests to be conducted under different conditions. From a
practical point of view it would be beneficial if many of these test could be carried
out using the same hardware.

This thesis describes the development of an integrated stimulation and mea-
surement system for postural control research, motivated specifically by balance
disorder research. The measurement and stimulation techniques used, force plat-
form posturography and virtual reality (VR), were specified by my colleagues and
my supervisor. The main design goal was versatility. The force platform is a simple
non-invasive measurement device that measures forces occurring under the feet of a
standing subject. The term virtual reality refers to computer-generated immersive
environments achieved with computer graphics, stereoscopic displays, and sensors
to track movements. VR offers a flexible way to implement and administer visual
stimulation, as the same equipment can generate a variety of environments that do
not even have to obey the laws of physics.

During the development of the VR posturography system, I worked as a part
of a multidisciplinary research group. My colleagues provided the expertise for the

1

2 INTRODUCTION

exceedingly complex application domain. Its treatment in this thesis is superficial
at best; I have had to treat these aspects mostly as a black box. As a computer
scientist, I focus on the technical aspects of the measurement system and the data
analysis and model-based interpretations of the measurements, and leave the phys-
iological and medical aspects and interpretations to other members of our group.

The introductory part of this thesis is structured as follows: Chapter 2 gives a
brief overview of postural control and its research. Chapters 3 and 4 discuss force
platform posturography and computer graphics, the two main components of the
measurement and stimulation system developed in this thesis. The implementa-
tion and applications are presented in Chapter 5. Finally, Chapter 6 contains the
concluding remarks.

We aim to show that virtual reality methods are a versatile stimulation tech-
nique for postural control research. The best argument one can give is to obtain
results by applying the method to different research problems in postural control.
These applications are detailed in Chapter 5. Minor contributions to analysis of
stabilograms are made in the process.

Chapter 2

Postural control research

2.1 Postural control process

Postural control is the process of maintaining upright stance. The body is unstable
and constantly perturbed by heartbeats and breathing. Balance requires active
corrections to posture. A fundamental requirement is that the center of gravity
(COG) of the body must remain above the base of support (BOS), the area under
and between the feet. The central nervous system (CNS) maintains equilibrium by
observing the body state using afferent sensory input and executing appropriate
motor control over muscles via efferent motor neurons. This task is difficult as
muscles are incapable of producing exactly constant force and sensory feedback is
noisy and delayed. The process can be divided into 4 components: the body to be
controlled, senses observing it, the controller (CNS) integrating sensory input and
issuing motor commands, and muscles executing the motor commands. The control
system is hierarchically organized: A central system controls specialized subsystems
(Nashner 1985). The postural control process is depicted in Figure 2.1.

2.1.1 Musculoskeletal system

The purpose of muscles in postural control is to move the skeleton supporting the
body. Several types of joints connecting bones enable movement. Tendons connect
muscles over joints to bones or cartilage. Muscle contraction causes the bones to
move around the joints. The degree of freedom in the movement depends on the
joint’s type; for example, the elbow joints rotate around a single axis, wrists rotate
around two axes, and shoulders rotate around three axes.

Muscle fibers (cells) are organized in bundles called fascicles. Inside muscle cells,
muscle filaments form contractile elements called sarcomeres. Muscle fibrils (myofib-
rils) contain sarcomeres connected in series. Muscles also contain parallel connective
and series elastic tissue (e.g. tendons) that affects their biomechanical properties.
The parallel tissue increases tension non-linearly when the muscle lengthens and
the series tissue lengthens slightly when the muscle contracts. (Winter 1990, ch. 7)

A motor unit is a set of muscle fibers activated by a single motor axon. Their
sizes vary depending on the fineness of control required by a motor task. Motor
units function according to the all-or-nothing -principle: they can only contract

3

4 POSTURAL CONTROL RESEARCH

Senses

CNS Perturbation

Muscles
Motor commands Force

StimulationObservation

Dynamics
Body

afferents

efferents

Figure 2.1. Postural control process

fully. Contractions consist of muscle twitches caused by neural impulses. A twitch
generated by an impulse approximately follows

F (t) = F0

t

T
e−t/T ,

where F (t) is the force as a function of time, T is the contraction time, and F0 is
a constant for the motor unit. The contraction time T varies between slow-twitch
and fast-twitch motor units. Each impulse triggers a twitch and the twitches are
summed. Tension can be increased by increasing the rate of stimulation or recruiting
more motor units. The number and size of activated motor units regulate the force
generated by muscles. In general, the motor units activate according to the size
principle: smaller units first. This way, movements that require less force have
finer control. A new motor unit is recruited after the previous units are functioning
near their maximum activation, resulting in smooth increase of tension. Force
generated by muscles also depends on their length and velocity. Muscles can only
pull (contract), they cannot push. Many muscles pulling in different directions are
needed to accomplish movement around a joint. (Winter 1990, ch. 7)

2.1.2 Sensory systems

In control theory, there are two basic types of control: open-loop and closed-loop.
Open-loop control does not observe the controlled system while controlling it. It
generally does not work as the controlling actions will eventually deviate from the
system state if there are any inaccuracies. Closed-loop control uses observations
of the system to guide the controlling actions. It is required in unpredictable en-
vironments. Sensory feedback is therefore essential for postural control. Human
senses are based on complex processing of input from receptors that convert energy
to neural impulses. The visual, vestibular, and proprioceptic systems are the most
important ones for postural control.

Vision is perhaps the most complex sense. Light travels through the adjustable
lens of the eye and hits the retina. On the retina cone and rod receptors convert
light to neural impulses. After some processing on the retina, the neural impulses
travel through the optic nerver fibers into the lateral geniculate nucleus of the

POSTURAL CONTROL PROCESS 5

brain and onto the visual receiving area, striate cortex. Processing in the brain
turns this stream of neural impulses into a sensation of a 3-dimensional world.
(Goldstein 2002, ch. 2–9)

Proprioception is the sense of body position and movement. It is based on
skin mechanoreceptors and muscle proprioceptors. The mechanoreceptors, Merkel
receptors, Meisner corpuscles, Ruffini cylinders, and Pacinian corpuscles, respond
to touch or pressure (Goldstein 2002, ch. 13). Golgi tendon organs (GTOs) and
muscle spindles respond to changes in muscle and tendon tension (Kalat 1984, pp.
183–184).

The vestibular system in the inner ear senses orientation and acceleration of
the head. The utricular and ventricular otoliths respond to linear acceleration, for
example gravity, and semicircular canals to angular acceleration caused by head ro-
tation. The otoliths comprise hair cells embedded in a jellylike membrane. The cells
sense acceleration via the movements of the jelly. Three circular ducts, each lying
on a different plane and filled with with endolymphatic fluid, form the semicircular
canals. When the head is moved the fluid will also start to move, but with a delay
due to inertia. Hair cells in the ducts sense this fluid movement with respect to
the head (Carola, Harley & Noback 1990, pp. 447–451). One function of the semi-
circular canals is to stabilize vision during head movement via the vestibulo-ocular
reflex.

2.1.3 Central nervous system

The CNS integrates sensory input to observe the body state. Senses are partially
overlapping and redundant for postural control. For example, vision is not essential
as we can remain upright and walk with our eyes closed. Information from different
senses can be contradictory. These conflicts have to be solved in the integration
process. Conceptually, the resolution gives different weights to different senses
(Brandt, Paulus & Straube 1986). The approximate frequency ranges of different
senses are given in (Redfern, Yardley & Bronstein 2001) as f < 0.1 Hz for vision,
f < 0.5 Hz for otoliths, 0.5 < f < 1.0 Hz for semicircular canals and f > 0.1 Hz
for proprioception.

Information of the body state is used in motor control over muscles. The motor
neurons receive signals from the pyramidal and the extrapyramidal system. The
pyramidal system controls fine movements; its long axons originate in the cerebral
cortex and descend through the corticospinal tract into the spinal cord; most of the
axons connect to spinal interneurons. The extrapyramidal system, defined as any-
thing in the CNS outside the pyramidal system affecting movement, is responsible
for coarse movements such as posture. (Kalat 1984, ch. 7)

2.1.4 Balance disorders

Balance disorders impair the functioning of the postural control system. A defi-
ciency in any component of the postural control loop or a combination of several
factors may be the cause. For example, Ménière’s disease affects the vestibular
system Inflammation of the acoustic or vestibular nerve (vestibular neuronitis) or a

6 POSTURAL CONTROL RESEARCH

tumor in their vicinity (acousticus neurinoma, for example) may impede neural sig-
nals from the vestibular organ into the brain. (Carola et al. 1990, pp. 469). Small
dislodged calcium carbonate crystals floating in the semicircular canals and occa-
sionally hitting the nerve cells cause benign positional vertigo (BPV). Lesions of the
sensory organs or the brain also cause problems with balance (Hufschmidt, Dich-
gans, Mauritz & Hufschmidt 1980). Neurodegenerative diseases, such as Parkin-
son’s, degrade transmission of neural signals and lead to motor problems (Mitchell,
Collins, Luca, Burrows & Lipsitz 1995). Aging related degeneration may also de-
crease postural stability.

2.2 Balance measurements

The basic research on postural control and diagnosis of balance problems is based
on observations of the postural control process. The simplest methods of diagno-
sis observe a patient during different tasks. For example, a physician conducting
Romberg’s1 test compares the patient’s stability in quiet standing with eyes open to
stability in quiet standing with eyes closed. The patient is said to exhibit Romberg’s
sign, or the test is said to be positive, if there is a marked difference in stability.

Modern quantitative approaches use measurements. Cameras, potentiometers,
accelerometers, measurements of electrical muscle activity (EMG), and force plat-
forms are common. Posturography measures movements using a force platform.
There are two basic subcategories: static and dynamic posturography. Static pos-
turography refers to measurements without external stimulation. Romberg’s test
is often implemented on the force platform by measuring a patient with eyes open
and eyes closed and comparing measures of postural stability in the two conditions.
However, the senses are operating beneath their thresholds in quiet standing making
it difficult to assess the contribution of different sensory systems.

Dynamic posturography uses external perturbations or altered sensory surround-
ings to stimulate the postural control process and measures the outcome. For exam-
ple, the subject may be asked to perform different tasks such as leaning into different
directions. Foam rubber placed on a platform causes pressoreceptors of the sole to
sense approximately constant pressure. Linearly moving or tilting platforms provide
mechanical perturbations (Nashner 1971). Moving mechanical surroundings (Bles
& Roos 1991), video (van Asten, Gielen & van der Gon 1988), and more recently
using virtual reality methods (Kramer, Roberts, Shelhamer & Zee 1998, Kim, Yoo
& Im 1999, Kuno, Kawakita, Kawakami, Miyake & Watanabe 1999, Keshner &
Kenyon 2000, Lee, Cherng & Lin 2004) have been used for visual stimulation. Gal-
vanic stimulation has been used to interfere with the vestibular system (Fransson,
Hafström, Karlberg, Magnusson, Tjäder & Johansson 2003).

Visual stimulation plays an important part in our research. Brandt et al. (1986)
review research concerning moving visual scenes, visual acuity, object distance,
light level and stroboscopic illumination. In general they found that lower quality
visual input worsens balance. Rotating visual scenes were found to cause leaning.
Another review of later research can be found in (Redfern et al. 2001). Two different

1Moritz von Romberg (1795–1873)

BALANCE MEASUREMENTS 7

computer-generated visual environments were used by van Asten et al. (1988) to
investigate how the different environments, motion in a tunnel and motion relative
to a wall, affect balance. The result was that both environments cause clear effects,
both peripheral and central vision contribute to balance, and that the amount of
texture present in the scene is an important factor. The last result is important
for the design of visual stimuli. The stimulus should contain easily perceivable
motion cues. Kramer et al. (1998) duplicate classic eye movement measurements
using virtual reality techniques and obtain comparable results. Jacobson, Redfern,
Furman, Whitney, Sparto, Wilson & Hodges (2001) present a mini CAVE, called
Balance NAVE, based on polarized light for balance investigations. In addition to
the publications in this thesis, only a few virtual reality experiments with movement
measurements can be found in the literature. Keshner & Kenyon (2000) apply the
CAVE to basic research. The system presented in (Lee et al. 2004) for balance
testing of children is fairly similar to our construction.

Chapter 3

Posturography

3.1 Force platform

Force platform posturography uses a platform equipped with force transducers. The
transducers measure forces supporting an object on the platform—in the case of
a test subject, the forces occurring under the feet during movements (Figure 3.1).
The device used in our research consists of a platform with three pressure-sensitive
sensors (Figure 3.2). The sensors at points a, b, and c form a triangle beneath the
platform. They are based on the strain-gauge principle, a part changes resistance
in response to pressure, and only register vertical forces. In this section, we discuss
the properties of this measurement device; there is no point in measuring anything
unless we understand what is being measured. First, let us set up a coordinate
system relative to a person on the platform: The x-axis is to the right, y-axis is
forward and the z-axis is up. We also assume that the platform lies in the xy-plane
and is massless, planar, and rigid.

The term center of pressure (COP), or the center point of force, ofter occurs in
conjunction with force platforms. It is an abstraction of the distribution of forces
acting on the platform: The forces can be combined to a single resultant force
acting through COP causing the same observed result. A stabilogram is the COP
as a function of time. The center of mass (COM) often refers to the horizontal
position of the actual COM.

The platform is held in equilibrium by forces Fa, Fb, and Fc acting on three
non-collinear points a, b, and c. Now, if a force F acts on the platform through
point p, then the conditions for translational and rotational equilibrium are

Fa + Fb + Fc + F = 0, (3.1)

a× Fa + b× Fb + c× Fc + p× F = 0. (3.2)

Expanding equation (3.2) to components gives

axFaz + bxFbz + cxFcz = −pxFz, (3.3)

ayFaz + byFbz + cyFcz = −pyFz, (3.4)
∣
∣
∣
∣

ax ay

Fax Fay

∣
∣
∣
∣
+

∣
∣
∣
∣

bx by
Fbx Fby

∣
∣
∣
∣
+

∣
∣
∣
∣

cx cy
Fcx Fcy

∣
∣
∣
∣
= −

∣
∣
∣
∣

px py

Fx Fy

∣
∣
∣
∣
. (3.5)

8

FORCE PLATFORM 9

Figure 3.1. A force platform measures the forces exerted by a standing subject
while maintaining balance.

10 POSTUROGRAPHY

c

ba

Fa

Fc

Fb

Figure 3.2. A force platform with 3 vertical force sensors measuring supporting
forces at points a, b, and c.

The vertical forces satisfy




ax bx cx
ay by cy
1 1 1









Faz

Fbz

Fcz



 = −Fz





px

py

1



 (3.6)

by (3.1), (3.3), and (3.4). Equation (3.6) has an unique solution for the supporting
vertical forces, because the points a, b, and c are non-collinear. It also gives p,
when the vertical forces are known. The horizontal components of Fa,Fb and Fc

can not be uniquely determined without additional assumptions. The measured
forces are usually transformed into a set of orthogonal components: the COP, seen
immediately from (3.6) to be p, and−Fz usually close to gravity acting on the object
on the platform. In summary, Faz, Fbz, and Fcz are the barycentric coordinates of
p with respect to the triangle abc scaled by −Fz.

3.1.1 Calibration

The force transducers measure forces as voltages between -5 and +5 V. Because of
the mass of the platform, we can assume that the relation between measurements
and vertical force is linear:

Fi = Gi(Vi − V0,i), i = a, b, c,

where Fi is the vertical force acting on sensor i, Gi is an unknown gain, Vi is the
measured voltage, and V0,i is an unknown DC-offset. Unfortunately, there is no
simple way to measure the forces on each sensor while the platform is mounted on
them, but their sum is known when a calibrated weight is placed on the platform.
We should then have

Fa + Fb + Fc = mg,

where g is gravitational acceleration and m is the mass of the weight, regardless
of the position of the weight on the platform. There is still one minor problem of
finding the DC-offsets. A simple solution is to measure the offset with an empty
platform and calibrate it to show zero force.

ANALYSIS OF STABILOGRAMS 11

Algorithm 1 Calibration of the force platform using a calibrated weight.

1: Measure DC-offsets V0 = (V0,a, V0,b, V0,c) with an empty platform.
2: Take a set of measurements

Vi = (Va,i, Vb,i, Vc,i), i = 1, 2, . . . , n,

with the weight of mass m at different positions on the platform.
3: Find G that minimizes ‖M−VG‖2, where

M =








mg
mg
...
mg







∈ R

n, V =








V1 −V0

V2 −V0

...
Vn −V0







∈ R

n×3, G =





Ga

Gb

Gc



 ∈ R
3.

The solution is G = V†M, where V† = (VTV)−1VT .

Now, using a calibrated mass and moving it on the platform we can obtain a
set of measurements with known total mass on the platform. In the ideal situation
any three non-collinear measurements are enough to calibrate the platform, but
in practice we need more measurements. Setting up an overdetermined system of
linear equations from the measurements and DC-offset and finding the minimum
squared error (MSE) solution solves the problem. The complete procedure is given
in Algorithm 1.

This approach virtually eliminates the possibility of systematic error caused by
human error in calibration. It is fast and can be automated so that it only requires
moving the weight. Naturally, we have assumed that the sensor positions are known.

3.2 Analysis of stabilograms

Stabilograms measured from test subjects are very irregular. Figures 3.3 and 3.4
show two standard ways to visualize them. Conceptually, the stabilogram summa-
rizes body movements into 3 signals: anteroposterior (AP) and mediolateral (ML)
position of COP and the instantaneous weight (or vertical force). This presents
some problems as there are, at least in theory, movements that are not visible in
the stabilogram. Thus, in most models, let alone in reality, it is impossible to in-
fer the state of the object on the platform from the measurements with certainty.
Baratto, Morasso, Re & Spada (2002) even state that there is no widespread con-
sensus on how to analyze the signals.

Force platforms are widely used, for example in rehabilitation, sports, and
medicine, and the wide range of application of these measurements is reflected
in the variety of methods developed to analyze them. It is a safe bet that most
common signal analysis methods have been tried on stabilograms. Stabilograms are
usually quantified by computing parameters from them. The choice of parameters
depends on the application, and the test setups and equipment vary, so it is often
difficult to compare results between research groups (Baratto et al. 2002, Schmid,

12 POSTUROGRAPHY

Conforto, Camomilla, Cappozzo & D’Alessio 2002).
The signals reflect both the postural control (forces) and the state (position).

Next, we look at interpreting the stabilograms in terms of simple physical models.

3.2.1 Physical models

In this section we consider a 2-dimensional force platform in the anteroposterior
direction for simplicity. As before, the platform is in equilibrium supported at two
points a and b with forces Fa and Fb, where we now place the origin at a and the
point b on the x-axis. Here, the platform is effectively approximated by a system
of 2 particles. Assuming central forces, forces act along lines connecting particles,
and a point mass approximation of the object on the platform, we can derive a
simple relationship for COP and COM. If a force F acts on a particle of mass m at
r through the platform, then the reaction from the platform must be −F so that

Fa + Fb − F = 0,

where the central forces assumption gives the directions of Fa and Fb. Solving for
Fbz gives

Fbz =
1

bx
(Fzrx − Fxrz).

The fundamental relation linking COP and COM in every model that reduces to a
point mass approximation with central forces is

p =
Fbz

Faz + Fbz

bx =
Fbz

Fz

bx = rx −
Fx

Fz

rz = rx −
r̈x

r̈z

rz. (3.7)

Here r̈ is the acceleration caused by forces occurring between the particle and the
platform. A geometric interpretation is shown in Figure 3.5. The situation changes
slightly when we include gravity as an external force. If the model is not equivalent
to a point mass, then the above relationship is not valid. We can then model the
standing subject as a system of particles, and the change of angular momentum has
to be taken into account (Shimba 1984).

In Gurfinkel’s (1973) classic inverted pendulum model, the torso is modeled as
a massless rigid rod with a weight on one end. The ankle joint connects the rod to
a triangular foot, and torque applied at the ankle controls the pendulum. Suppose
an inverted pendulum model of length l is placed on the platform with the ankle at
c and denote by φ the angle between the pendulum and vertical (Figure 3.6). Now,
φ, φ̇ and φ̈ are related to COM state by

r = c + l

[
− sinφ
cosφ

]

, r̈ = l

[
φ̇2 sinφ− φ̈ cosφ

−φ̇2 cosφ− φ̈ sinφ

]

.

Here φ̇ and φ̈ are the net angular velocity and acceleration, also affected by gravity
mg. The acceleration due to supporting forces on the platform is r̈− g so that

p = cx − l sinφ−
l(φ̇2 sinφ− φ̈ cosφ)

g − l(φ̇2 cosφ+ φ̈ sinφ)
(cz + l cosφ).

ANALYSIS OF STABILOGRAMS 13

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5
C

O
P

 M
−L

 (c
m

)

0 5 10 15 20 25 30
−0.5

0

0.5

1

C
O

P
 A

−P
 (c

m
)

0 5 10 15 20 25 30
80

80.2

80.4

80.6

80.8

81

W
ei

gh
t (

kg
)

Time (s)

Figure 3.3. Stabilogram measured from a test subject during 30 seconds of quiet
standing.

14 POSTUROGRAPHY

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

COP M−L position (cm)

C
O

P
 A

−P
 p

os
iti

on
 (c

m
)

Figure 3.4. Another view of the stabilogram.

by (3.7). Gurfinkel showed that the COP is not always directly below the COM,
which was a common misconception at the time. The displacement of COP from
under COM is

p− rx = l
cz(φ̈ cosφ− φ̇2 sinφ) + lφ̈− φ̈ sin2 φ− lφ̇2 sinφ cosφ

g − l(φ̇2 cosφ+ φ̈ sinφ)
.

Of course, equation (3.7) already shows this in simpler form. The pendulum model
is often linearized by considering small oscillations around the upright position. If
we take sinφ ≈ φ and cosφ ≈ 1, then

r = c + l

[
−φ
1

]

, r̈ = −l
[

φ̈
0

]

.

This is (3.7) with rz = cz + l, r̈x = −lφ, and r̈z = g. Thus, the pendulum model
linearized around the upright position is equivalent to a particle at constant height.

Gurfinkel used this model to describe how the stabilogram reflects movements
of the COM. Making the same assumption, that COM height h is constant, in (3.7)
gives the relation

P (ω) =

(

1 +
h

g
ω2

)

Rx(ω),

where ω is frequency, between the Fourier transforms of p(t) and rx(t). The relative
contribution of COM position to COP at frequency f is given by

(

1 +
4π2f 2h

g

)−1

.

ANALYSIS OF STABILOGRAMS 15

ba
p−Fa −Fb

r

F

Figure 3.5. Geometric relationship between COP p and COM r.

φ

l

c

mg

r

Figure 3.6. Gurfinkel’s inverted pendulum model.

16 POSTUROGRAPHY

0 0.5 1 1.5 2
0

20

40

60

80

100

Frequency (Hz)

A
m

pl
itu

de
 (x

 1
00

 %
)

COM
COM’’

Figure 3.7. Approximate proportions of COM position and acceleration in sta-
bilograms at different frequencies.

Gurfinkel took h = 1 m and g = 10 m/s2. Figure 3.7 shows how the proportions
change with movement frequency with these assumptions.

3.2.2 Estimation of COM from COP

The relationship between COM and COP is important from a functional point of
view: The COM must remain above the base of support, or a step must be taken
to avoid falling. Thus, COM position and velocity are the state of a system that
must be controlled, and COM accelerations represent the control. If the COM
movements can be recovered from stabilograms, then the situation can be analyzed
in these more intuitive terms. There are a number of algorithms for this purpose.
Here we simplify the notation by denoting the COM horizontal position by x, the
continuous signals by x(t) and p(t), and the discrete measured signals by x(n) and
p(n), n = 1, . . . , N .

Caron, Faure & Brenière (1997) suggest an FFT filtering approach. They derived
a relationship between the Fourier transforms of x(t) and p(t), given by

X(ω) =
ω2

0

ω2
0 + ω2

P (ω), (3.8)

where ω0 ranges from 2.8 to 3.2 rad/s. The algorithm uses (3.8) on amplitudes of
the discrete Fourier transform (DFT) of p(n) and then returns to the time domain
using the inverse DFT. This is bad from a signal processing perspective, as it results
in circular convolution. The error should be visible near the end points of the
estimated COM curve, if the end points of the COP signal in the analysis window
are at different levels. The values of ω0 correspond to COM heights 0.96–1.25 m
in the point mass approximation with g = 9.81 m/s2. The algorithm was most
accurate with ω0 = 3.2 rad/s that corresponds to an average person of height 1.7
m.1 We develop a time-domain version of this algorithm below.

1COM is about 55% of body height from the ground.

ANALYSIS OF STABILOGRAMS 17

Morasso, Spada & Capra (1999) use splines. They assume that the COM move-
ment path is a spline curve, form the corresponding observation from (3.7) assuming
constant height, and fit the observation to the stabilogram. The procedure fits the
spline to a sliding window over the stabilogram and evaluates it at the window
center to extract an estimate of COM position. We also improve this algorithm.

Some force platforms can measure horizontal forces. When the forces are avaible,
the position of COM can be recovered by double integration of the measured forces
with a guess of the initial state, in theory. Shimba (1984) uses least squares fitting
to (3.7) with unknown initial conditions and assuming COM height to be constant.
The zero-point-to-zero-point integration method (King & Zatsiorsky 1997, Zat-
siorsky & King 1998) also uses horizontal forces, but instead of a single integration
over the entire measurement, the algorithm assumes that the COP is directly below
COM when the horizontal forces are zero and integrates between these points. This
results in shorter numerical integrations. Levin & Mizrahi (1996) use two force
platforms and develop a COM motion estimation algorithm that takes the angular
momentum into account using a biomechanical model.

Lafond, Duarte & Prince (2004) compare the algorithmic approaches to a meth-
od based on 3D kinematic measurements. They find that the lowpass filtering
approach does not work as well as the zero-point-to-zero-point integration method.
However, in this paper the moments of inertia around the ankle joint in different
directions are taken from another paper as 0.0533mH2 and 0.0572mH2, where m
is the mass and H is the height of the test subject. These values are completely
unrealistic as this places the COM at about 1/4th of body height.2 It is also
apparent in the figures that the filter is not smoothing enough. Simulations with
a 4-segment model have been used to compare the performance of some of these
algorithms (Lenzi, Cappello & Chiari 2003).

Caron et al.’s (1997) algorithm can be implemented in the time-domain as fol-
lows. It follows from the assumption that COM height is constant, that r̈z = g in
(3.7). Now, the linear operator 1− (h/g)d2/dt2 relates x(t) to p(t), and finding its
inverse and applying it to p(t) gives x(t). This can be done using Laplace trans-
forms (Widder 1989, ch. 13,14), and we can use non-causal processing on measured
stabilograms after the measurement. Suppose that x(t) is twice continuously dif-
ferentiable and that its bilateral Laplace transform X(s) converges in some region
overlapping |<(s)| <

√

g/h. Transforming (3.7) gives

P (s) = X(s)− h

g
s2X(s) =

(

1− h

g
s2

)

X(s).

and

X(s) =
g/h

g/h− s2
P (s) =

√

g/h

2

(
1

s+
√

g/h
− 1

s−
√

g/h

)

P (s) (3.9)

using partial fractions. Inverting (3.9) in the region |<(s)| <
√

g/h gives the non-
causal stable inverse

x(t) =

√

g/h

2
e−|t|
√

g/h ∗ p(t), (3.10)

2The moment of inertia I = ml2 for a pendulum of length l.

18 POSTUROGRAPHY

Algorithm 2 Estimation of horizontal COM position x(n) given height h of COM
from platform and measured COP p(n) with sampling interval T .

1: a← exp(−T
√

g/h).
2: f(0)← p(1)/(1− a).
3: for i = 1, 2, . . . , N do . Filter forward.
4: f(i)← p(i) + af(i− 1).

5: b(N + 1)← p(N)/(1− a).
6: for i = N, N-1, . . . , 1 do . Filter backward.
7: b(i)← p(i) + ab(i+ 1).

8: for i = 1, 2, . . . , N do
9: x̂(i)← T

√

gh−1(f(i) + b(i)− p(i))/2.

where ’∗’ denotes convolution (Figure 3.8). Discretizing (3.10) using the impulse
invariance method (Proakis & Manolakis 1996, pp. 671–676) gives the discrete
convolution

x̂(n) =
T

√

g/h

2
e−|nT |

√
g/h ∗ p(n), (3.11)

where T is the sampling interval. The impulse invariance method gives a good
match of the continuous and discrete filter responses at low frequencies, provided
that the sampling rate is high enough and that the filter response decays rapidly
with increasing frequency. The sampling of the impulse response causes aliasing if
it is not bandlimited below the Nyquist frequency3. The bilinear transformation
can also be used to discretize the continuous filters on the right hand side of (3.9).
Figure 3.9 shows a comparison of the frequency response of this discretized filter
to the ideal one; the sampling frequency is 50 Hz as used in all experiments in this
thesis. The convolution (3.11) can be implemented efficiently with Algorithm 2.

Algorithm 2 decomposes the convolving double exponential into two exponen-
tials and computes (3.11) by forward and backward filtering. Subtraction of p(n)
removes a double accumulation at time lag 0, that results from the filterings. The
algorithm is given in this concrete form to make it easy to implement even without
knowledge of signal processing. The individual 1-pole IIR filters have the transfer
function

H(z) =
1

1− az−1
,

and the initial states f(0) and b(N+1) were set by assuming the signal to be constant
before and after the measurement. This extends p(n) to infinity by replicating the
first and last samples. The initial states represent the contribution of signal outside
the measurement. Compared to Caron et al.’s (1997) O(N logN) algorithm, this
is an O(N) algorithm; it is much faster in practice, and it corrects the circular
convolution defect. An example of the result is in Figure 3.10. The extension of
p(n) can also be done for the DFT-based algorithm by padding the beginning and
the end of p(n) for a duration of about 2 seconds with the first and last samples,
respectively, and then discarding the padding from x̂(n). Ideally, when using this

3The Nyquist frequency is half the sampling frequency. Continuous signals bandlimited below it
can be unambiguously reconstructed from their sampled representations by the sampling theorem.

ANALYSIS OF STABILOGRAMS 19

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Figure 3.8. Impulse response of the ideal filter to recover COM from COP.

0 5 10 15 20 25
−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (Hz)

G
ai

n
(d

B
)

realized
ideal

Figure 3.9. Frequency response of realized (discrete) and ideal filter for estimating
COM from COP. Higher frequencies differ because of aliasing from the impulse
invariant discretization.

20 POSTUROGRAPHY

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

A
/P

 P
os

iti
on

 (c
m

)

COP
COM

Figure 3.10. Result of COM estimation from stabilogram.

algorithm, we should discard, in addition, about 2 seconds of estimated COM from
both ends of the signal so that the estimate is based on measured data. The time-
domain version is less accurate than the DFT-based method when the signal is
long, but the difference can be made negligible with a suitable discretization of the
continous filters.

Morasso et al.’s (1999) algorithm uses (3.7) and solves the curve fitting problem

(

B− h

g
B̈

)

a ≈ p,

where B is a matrix of basis functions (B-splines in their case) evaluated at the
points to be fitted, B̈ is a matrix of the corresponding second derivatives, and a is
a vector of weights, for a sliding window p over the stabilogram. The result x̂ at
each window position is the spline evaluated at center of the window. The authors
state that in the solution

a = (ATA)−1ATp,

where A = B−hg−1B̈, the pseudoinverse (ATA)−1AT can be computed only once.
Nevertheless, this is still an O(bwN) algorithm, where b is the number of columns
in B, and w is the length of the signal window. If we place the values of the basis
functions at the window center in bT , then

x̂ = bT (ATA)−1ATp.

Now, bT (ATA)−1AT is a row vector, so the algorithm reduces to linear FIR fil-
tering, unless the knot positions change. This possibility was mentioned, but not
discussed in the paper. The time complexity improves to O(wN). In the case of
constant knot positions, the algorithm contains an unnecessary matrix multiplica-
tion when a simple dot product suffices. The authors suggest to use one B-spline

ANALYSIS OF STABILOGRAMS 21

knot every 100–150 ms for a time window of about 2 s. Cubic B-splines with 20
knots have 22 parameters; the reduction to FIR filtering is about 20 times faster
for the recommended settings. Also, the algorithm is revealed to be a simple linear
filter with a complex rationale. It can do no better than a directly designed one.

3.2.3 Parameterization of stabilograms

Researchers often simplify the analysis of stabilograms by computing parameters
to summarize their properties. Baratto et al. (2002) survey some of the parameters
and group them into two groups: global and structural. Global parameters quantify
the “size” of the stabilogram, and structural parameters consider the dynamics or
the structure of the process.

Classical analysis methods try to quantify the amount of swaying from the sta-
bilogram. Their rationale is roughly that more swaying means worse balance. The
parameters are heuristic in nature and measure the size of the stabilogram or the
level of activity in some sense. For example, Hufschmidt et al. (1980) use mean am-
plitude (MA), sway path (SP), and mean frequency (MF) to discriminate between
patients with cerebellar and labyrinthine lesions. MA is the average distance of
COP from its average position, SP is the length of the curve traced by COP, and
MF is the number of complete circles in a circular motion on a circle with radius
MA with a distance traveled SP. The parameters are defined

AMP =
1

N

N∑

n=1

p(n), MA =
1

N

N∑

n=1

d(p(n),AMP),

SP =
N∑

n=2

d(p(n),p(n− 1)), MF =
SP

2πMA
,

and the interpretation is that MA measures stability and SP and MF measure con-
trolling activity. The parameters are usually normalized by measurement duration.
The authors also consider MA, MF, and SP restricted to anteroposterior and medi-
olateral movements, quotients of parameters measured under different conditions,
and histograms of COP movement angles. Sway path is also called trace length and
mean velocity (MV), when normalized with the measurement duration.

Bräuer and Seidel have applied power spectral density estimation and paramet-
ric time series modelling to stabilograms, and have suggested their use to assess
biomechanical and interindividual differences, functional changes in controlling sys-
tems, efficiency of control, and sensitivity of otoliths. They used autoregressive
models to explain about 60–94% of the variance of suitably highpass filtered sta-
bilograms (Bräuer & Seidel 1978), interpreted model order as complexity of control
(Seidel, Bräuer, Bastek & Issel 1978), linked the frequency ranges 0.025 < f < 0.2
Hz, f > 1 Hz, 0.025 < f < 0.1 Hz to COM movements, COM accelerations, and
otolith functionality, respectively (Bräuer & Seidel 1979), and demonstrated signif-
icant differences in autoregressive models of stabilograms measured under varying
conditions: different foot positions, after of fatiguing load, and consciously control-
ling sway (Bräuer & Seidel 1980). Kuczyński (1999) modeled COM accelerations,

22 POSTUROGRAPHY

that were estimated by filtering, using a second order autoregressive model and
converted the parameters to stability margin and peak frequency for analysis.

Roy, Ladin & De Luca (1987) criticize the standard analysis methods of stabilo-
grams for neglecting the dynamics of the process. They suggest a two-dimensional
bounded Brownian motion model for stabilograms, and introduce diffusion plots
and angle histograms to analyze the movements. A diffusion plot shows the mean
squared distance between COP positions as a function of time difference, that is
mean d2(p(t),p(t + ∆t))) against ∆t. Collins & De Luca (1993) refine these ideas
and present stabilogram diffusion analysis. They model the stabilogram as normal
and fractional Brownian motion (fBm). In standard Brownian motion, displace-
ments obey

E(∆x)2 = 2D∆t,

where D is the diffusion coefficient and E denotes mathematical expectation, and
in fractional Brownian motions, they obey

E(∆x)2 = (∆t)2H ,

where H is the scaling exponent. The displacements are uncorrelated for H = 1/2
(classical random walk), negatively correlated for H < 1/2 (tend to be in opposite
directions), and positively correlated for H > 1/2 (tend to continue in the same
direction). The second behavior is anti-persistent, and the third behavior is persis-
tent. Collins and De Luca use slopes of lines fitted to linear and log-log diffusion
plots as estimates of diffusion coefficients and scaling exponents, respectively. Dif-
fusion plots computed from measurements show two scaling regions: First the COP
displacement increases quickly and then its increase slows down. COP movement
can be considered persistent in the short term and antipersistent in the long term.
Collins and De Luca speculate that the scaling regions correspond to short term
open-loop and long term closed-loop control. The parameters from the analysis
are diffusion coefficients and scaling exponents for both scaling regions and critical
point coordinates. The critical point coordinates are the squared distance and time
when the scaling region changes.

Collins & De Luca (1994) consider the possibility that stabilograms are chaotic
but deterministic. They are unable to distinguish phase-randomized surrogates
from the original data using the analyses, however, and conclude that stabilograms
should be modeled as bounded random walks as done in their previous studies.
More elaboration on the stabilogram diffusion analysis can be found in (Collins &
De Luca 1995c). The pinned polymer model of posture control has been proposed
to explain the observed diffusion plots (Chow & Collins 1995), and a simple PID
controller with a time delay and disturbing noise also produces similar observations
(Peterka 2000). Stabilogram diffusion analysis has become quite popular. It has
been applied in research of Parkinson’s disease (Mitchell et al. 1995), contribution
of vision to postural control (Collins & De Luca 1995b), and effects of spaceflight on
postural control (Collins & De Luca 1995a), for example. Chiari, Cappello, Lenzi &
Croce (2000) parameterize the diffusion plots differently: They replace the critical
point coordinates with constant factors of lines fitted to log-log diffusion plots.

More exotic methods to analyze stabilograms include correlation dimension
and Lyapunov exponents (Yamada 1995), recurrence quantification analysis (Riley,

ANALYSIS OF STABILOGRAMS 23

Balasubramaniam & Turvey 1999), time-frequency analysis (Schumann, Redfern,
Furman, El-Jaroudi & Chaparro 1995, Ferdjallah, Harris & Wertsch 1999), sway-
density (Baratto et al. 2002) and statistics of COP displacements of local averages
(Grzegorzewski & Kowalczyk 2001). Önell (2000) analyzes peaks in vertical force.

System identification builds models of input-output-relationships in systems
from known inputs and observed outputs. It requires an observable perturbation
to be applied to the unknown system and observing the response, and is therefore
mostly applicable to dynamic posturography. The resulting models can predict
responses to perturbations, and their parameters parameterize the stabilograms.
Maki (1986) discusses selection of suitable perturbations, and applies system iden-
tification model effects of linear displacements of a moving platform with moving
surroundings (Maki & Fernie 1988). Johansson, Magnusson & Åkesson (1988) per-
turb test subjects with vibrators placed on calf muscles, model the subject as an
inverted pendulum under PID control with disturbances, and identify the controller
parameters called swiftness, stiffness, and damping to describe the postural control
process. There are also system identification methods to analyze simultaneous ap-
plication of multiple stimuli to evaluate contributions of individual sensory systems
(Johansson, Magnusson, Fransson & Karlberg 2001).

Given the number of different parameters, there is reason to suspect that they
are at least partially redundant. For example, the standard deviation of horizontal
ground reaction force, the standard deviation of COP, and MV are significantly
correlated, but they are not significantly correlated with a movement strategy score
and the standard deviation of vertical ground reaction force (Karlsson & Frykberg
2000). Rocchi, Chiari & Cappello (2004) use principal components analysis to select
10 parameters from a set of 37 parameters to characterize the stabilograms. Some
of the parameters were computed separately in AP and ML directions and including
both directions. The selected parameters were COP RMS (combined, AP, ML), low
frequency interval containing 95 % of signal power (combined, AP), mean velocity
(AP, ML), frequency dispersion (combined, AP), and angular deviation from AP
sway.

3.2.4 Data acquisition issues

Factors such as sampling rate, sampling duration, filtering prior to analysis, subject
antrophometry, and fitness affect parameters computed from stabilograms, which
has to be taken into account when designing experiments. There may be transients
in the beginning of a measurement, and variability may be high in short measure-
ments; fatigue is an issue in longer measurements. Recommended trial durations
range from 20–30 seconds (Le Clair & Riach 1996) to 60 seconds (Carpenter, Frank,
Winter & Peysar 2001).

Filtering removes noise, but it also has an effect on the parameters. Schmid et al.
(2002) treat it in detail and recommend a cutoff frequency of 10 Hz. However, they
use forward-backward filtering to ensure a linear phase response with an FIR filter.
This is unnecessary, as FIR filters can be designed to have a linear phase response,
which is the usual reason for their use. A filter that has a linear phase response only
affects the amplitudes of sinusoids making up the input signal and delays the output.

24 POSTUROGRAPHY

Simply shifting the output signal can compensate for the delay. Forward-backward
filtering is typically used to ensure that IIR (not FIR) filters have a zero-phase
response, and it has the effect of squaring the magnitude response. These facts
cast some doubt on whether the recommended cutoff frequency really is 10 Hz or
somewhat lower.

Chiari, Rocchi & Cappello (2002) consider the effects of 17 biomechanical pa-
rameters on 55 different stabilometric parameters. They find that height, weight,
foot width, area of base of support, and angle of feet affect the results the most,
and can explain up to 50% of variation in some parameters.

Chapter 4

Computer graphics and virtual
reality

4.1 Introduction

Computer graphics is probably one of the most researched fields in computer science.
The aim of this chapter is to give a short conceptual introduction to modern realtime
rendering and to showcase some of the problem-solving methods. Specifically we
will develop a simplified abstract model of how a graphics pipeline works, deal with
speeding up rendering with certain higher level optimizations, and briefly discuss
motion specification for animation.

The goal of computer graphics is to take a specification of an environment and
turn it into an image. Eyes detect the influx of light from the surroundings. For
a picture of a scene to be perceived on some surface, for example a painting or
on a monitor screen, it has to emit or reflect light as the scene to be displayed
would. Most displays are reasonably planar and rectangular, so we take the surface
to be a rectangle. The plane containing the rectangle is called the view plane and
the rectangle is called the view plane window. Practical displays are not infinitely
accurate, but use a regular grid, raster grid, of picture elements, pixels, that emit
light. Compared to an ideal continuous image, this discretization causes some
artifacts as fast variations can not be captured accurately.

We assume that i) the world consists of objects (medium) delineated by surfaces,
ii) light travels between and inside objects in straight lines, iii) the direction of light
may only change by hitting surfaces of objects and iv) light may enter and leave
an object only by passing through its surface. It follows that light reaches the eye
directly from some point on some surface and there is a one-to-one correspondence
between rays of light entering the eye and points on visible surfaces. If we consider
the eye as a point at the origin looking down the z-axis through the view plane
at z = 1 then light arriving to the eye from a point (x, y, z) passes through the
point (x/z, y/z, 1) on the view plane. The mapping from points to the view plane
is called perspective projection (Figure 4.1). Sending from each point of the view
plane window a ray of light similar to that which would reach the eye through that
point gives a perfect picture of the scenery. Of course, taking the eye to be a point
is a simplification and neglects some of the properties of the visual system. For

25

26 COMPUTER GRAPHICS AND VIRTUAL REALITY

Eye

View Plane

1 z

x/z

x

Figure 4.1. Perspective projection maps points on lines originating from the eye
to the view plane.

Figure 4.2. Visibility.

example, the resulting picture will be in perfect focus for all distances.

It follows from the assumptions that light reaches the eye only from surface
points closest to it along each ray through the view plane. Determination of these
points and the corresponding surfaces given the viewpoint is known as the visibility
problem in computer graphics. One simple solution is ray casting. The closest
surface point along a ray cast from the eye is visible (Figure 4.2). If (x, y, 1) is a
point on the view plane, then all points that can reflect light from that direction
lie on the ray α(x, y, 1), α > 0. For each point (x, y, 1) in the view plane window,
we want to find the smallest α > 0 such that the point α(x, y, 1) is on some surface
and the corresponding surface if such a point and surface exists.

Computation of the aforementioned intersections requires a suitable represen-
tation of surfaces. This representation should be able to approximate the objects
to be displayed and the resulting computations should be efficient. Of course, it
is preferable to use few primitives. Triangles are most common. They are inef-
ficient for representing curved surfaces, but this is made up by the simplicity of
the resulting algorithms. There are also methods to simulate the appearance of
curved surfaces using triangles. Under the most common transformations—scaling,
rotation, translation, and perspective projection—the images of triangles are still
triangles, and only the images of vertices are needed in the mapping.

Color and intensity of light reflected from a surface gives the surface its appear-
ance. Properties of surfaces as light transmitters is the topic of local reflection mod-
els, we might also use the term material modelling. In reality each surface receives
light from the surroundings as light travels from one surface to another. Thus, the
whole scene has to be considered to make a realistic image; the approach is called
global illumination. The archetypal global illumination algorithms are ray tracing
(Whitted 1980) and radiosity (Goral, Torrance, Greenberg & Battaile 1984). Re-

MATHEMATICAL PRELIMINARIES 27

altime rendering usually only considers local illumination, where light reaches each
surface directly from light sources. Rest of the scene, for example intervening sur-
faces that might cast shadows, are not considered in these models, but their effect
can be simulated in other ways.

4.2 Mathematical preliminaries

A suitable mathematical formalism is needed to describe the relationships of objects
in space and perform computations such as determining visibility. Mathematics in
computer graphics is a mixture of different fields with seemingly little standardiza-
tion. Most authors of standard textbooks, for example Foley, van Dam, Feiner &
Hughes (1989) and Watt (2000), prefer an informal approach. Without question,
calculus, elementary linear algebra, and geometry are the foundation of computer
graphics, but results and formalisms from a variety of other fields of mathematics
are frequently used. Rigorous development of a suitable formalism would take us
too far afield. Hence, the reader is assumed to have at least some familiarity with
linear algebra and calculus.

An abstract axiomatic approach develops a formalism based on algebraic proper-
ties of objects. Goldman (2002) compares a few possible approaches and introduces
Grassman spaces as a suitable model. Quite often the formalism contains a clean
separation of points and vectors, e.g. in affine spaces (Godement 1968, ch. 25)
a vector space of translations acts on a set of points. Goldman (1985) discusses
interpretations of these expressions in computer graphics. A grand unified theory
will not be pursued here; instead, our approach will be concrete. The subject mat-
ter, a model of the graphics pipeline, is so simple that the added abstraction is not
really worth it. More mathematical sophistication will be needed to discuss anima-
tion. Computations will be in Euclidean space and employing Cartesian coordinates
where it simplifies the discussion.

A brief review of linear algebra and Euclidean spaces is in order to introduce
notation. We denote vectors by u,v,w, · · · ∈ R

n, scalars by α, β, γ, · · · ∈ R and
linear mappings R

n → R
m and their corresponding matrices by A,B,C, We

use column vectors as is customary. The components of a vector u are u1, . . . , un.
We write u · v for the standard inner (or dot) product. The Euclidean norm is
denoted by ‖u‖ and the Euclidean distance by d(u,v). Two vectors u and v are
orthogonal if u ·v = 0, we then write u ⊥ v. A set of vectors is orthogonal, if all its
members are pairwise orthogonal, and orthonormal, if, in addition, they have unit
norm. The inner product, the norm, and the metric are related by

‖u‖2 = u · u, (4.1)

d(u,v) = ‖u− v‖. (4.2)

Euclidean n-space is the linear space R
n together with the standard inner product

and the norm and metric the product induces by (4.1) and (4.2). We shall also use
the cross-product u × v, which is usually not considered in linear algebra, but is
useful for many computations in R

3.
The form αu + βv is called a linear combination of u and v. The combination

is affine, if α + β = 1, and convex, if, in addition, α, β ≥ 0. Combinations of more

28 COMPUTER GRAPHICS AND VIRTUAL REALITY

than two vectors are defined as iterated combinations of two vectors. A subset of R
n

is a linear space, an affine space, or a convex set if it is closed under corresponding
finite combinations. A set’s linear span, affine span, and convex hull are the smallest
linear, affine, and convex sets containing it, respectively. A set of nonzero vectors
is linearly independent if none of its vectors is the linear combination of the others.
Similarly, we define affine and convex independence. A linearly independent set is
called a basis for its linear span. The dimension of a linear space is the number of
vectors in its basis. The vectors ei, whose ith element = 1 and the rest are zero,
form the standard basis for R

n. Sets of the form X + u = {u + v : v ∈ X} are
called translates of X. If X is an affine subspace and u ∈ X then X − u is a linear
subspace. Conversely, if X is linear then X+u is affine for any u. Affine subspaces
are translates of linear subspaces.

Homogeneous coordinates have to be mentioned as they are frequently used in
computer graphics, even though we shall not use them. Linear transformations,
translations, and projective transformations in R

3 can be expressed as linear trans-
formations of R

4 by identifying (u1, u2, u3, u4) ∈ R
4, u4 6= 0, with u−1

4 (u1, u2, u3) ∈
R

3. The resulting structure is a representation of a projective plane, that has some
topological oddities to be observed particularly in clipping. The coordinates can be
given extra meaning. For example, free vectors can be represented in homogeneous
coordinates by u4 = 0 so that translations have no effect on them (Goldman 1985).

4.2.1 Geometric primitives

To perform the essential geometric computations in computer graphics, we need
clear definitions of geometric objects and results on their properties. After this,
most problems can be solved by straightforward calculations. Objects are usually
given in two basic forms: parametric or implicit. Here we briefly discuss the most
common objects, lines, segments, planes, and triangles, and mention some others
in passing.

The affine span of u and v is a line through u and v and their convex hull uv
a line segment with end points u and v, if u 6= v. Points on the line are given by

(1− α)u + αv, (α ∈ R),

and points on the segment similarly with 0 ≤ α ≤ 1. Rays from u through v
are similar objects with the restriction α ≥ 0. Lines, rays, and line segments are
images of the real line and its intervals; their properties follow almost directly from
properties of real numbers. Requirements like u 6= v above are often violated
in computer graphics resulting in degenerate objects. For example, a point is a
degenerate line segment.

The affine span of any three affinely independent points u,v,w is called a plane
and their convex hull uvw is a triangle. All points x on the plane are given by

x = α1u + α2v + α3w, (4.3)

for some α1 + α2 + α3 = 1. The coefficients α1, α2, and α3 in (4.3) are called the
barycentric coordinates of x with respect to uvw. The points u, v, and w are the
vertices and the line segments uv, vw, and wu are the edges of the triangle uvw. A

MATHEMATICAL PRELIMINARIES 29

triangle consists of the points that have non-negative barycentric coordinates with
respect to it; edges have, in addition, one barycentric coordinate = 0 and vertices
have one coordinate = 1. Barycentric coordinates are useful in certain calculations
involving triangles.

The implicit or normal form of a plane is actually used more than the parametric
form (4.3). This form is quite easy to derive. Suppose that x ∈ R

3 is on the plane.
Then x satisfies

x− u = α2(v − u) + α3(w − u). (4.4)

for some α2, α3. To determine if a given point x actually satisfies (4.4) we need to
solve the corresponding linear equation (4.4), which is underdetermined in R

3. It
can be completed into an equation that is always solvable using the cross product
as the set {v − u,w − u, (v − u)× (w − u)} is a basis for R

3. Thus, if β = 0 in

x− u = α2(v − u) + α3(w − u) + β(v − u)× (w − u),

then we know that x is on the plane. This occurs precisely when

(x− u) ⊥ (v − u)× (w − u)

because (v−u)× (w−u) is orthogonal to v−u and w−u. Thus, all points x on
the plane, and only those, satisfy an equation of the form

x · n = α, (4.5)

where n is a vector called the normal of the plane. Another sometimes useful form
is based on the metric. The points x that satistfy d(x,u) = d(x,v) lie on the plane
that goes through the midpoint between u and v with normal parallel to v − u.

Convexity of planes can be easily seen from (4.5). Halfspaces are obtained from
(4.5) by replacing equality by >,<,≤, or ≥. They are extensively used in clipping
and bounding volumes are often formed from their intersections. A discrete oriented
polytope with k faces (kDOP) is the intersection of k halfspaces. The region bounded
by two planes with the same normal is given by α1 ≤ x · n ≤ α2. These so-called
slabs are also used in bounding volumes.

It is often useful to orient planes so that they have a front and a back side. We
say that a point u is in front of the plane, if u · n ≥ α, and behind the plane, if
u ·n ≤ α. The normal n points towards the front of the plane. The same notion of
orientation applies to triangles. The orientation of a triangle uvw is given by the
direction of the normal vector (v − u)× (w − u). Triangles uvw, vwu, and wuv
then have the same orientation, which is opposite to the orientation of uwv, wvu,
and vuw. When looking at the triangle from the front, the vertices are specified in
counter-clockwise order. Orientation is useful, for example when objects are formed
from closed triangle meshes where the triangles are oriented so that forward points
outside. Then a triangle facing away from the viewer can not be visible, if the
viewer is outside the object.

Polygons are quite difficult to tackle formally, so we only mention them in pass-
ing. A polygon is a planar region bounded by a simple closed curve consisting of a
finite number of line segments. The segment end points are vertices of the polygon.
Every polygon has a triangulation: A polygon of n vertices is the union of n − 2
triangles with vertices from the polygon and that only intersect at edges.

30 COMPUTER GRAPHICS AND VIRTUAL REALITY

4.2.2 Intersections and distances

Most typical computations in computer graphics are distances and intersections
between simple geometric objects or objects formed from them. Here we illustrate
some of the computations, but this merely scrapes the surface. Möller & Haines
(1999) and Eberly (2001) give this topic a more comprehensive treatment. Most of
these calculations are straightforward applications of elementary linear algebra and
calculus.

First, we find the distance between a point u and the line through the origin
and v. The point αv closest to u minimizes

d2(u, αv) = ‖u‖2 − 2α(u · v) + α2‖v‖2.

This happens when α = (u · v)‖v‖−2, and (‖u‖2 − ‖v‖−2(u · v))1/2 is the shortest
distance. In linear algebra the point

u′ =
u · v
‖v‖2v

is the orthogonal projection of u to the linear subspace spanned by v. The remainder
u − u′ is the orthogonal projection to the orthogonal complement v⊥ of v. It
minimizes the distance from u to the plane x · v = 0. These operations are linear
and have the matrix representations ‖v‖−2vvT and I − ‖v‖−2vvT . If v is one of
the standard basis vectors, then the projections simply zero one or two coordinates
of u. Orthogonal projections to lines and planes are important building blocks for
many algorithms. The analogous problems with planes and lines in general position
can be solved by adding appropriate translations.

Next, consider finding the intersection of a line and a plane in normal form.
Suppose that the line is through u0 and u1 and the plane is given in implicit form
by π : v · n = α. Substituting the line’s parametric form into the normal form of π
we get

(u0 + β(u1 − u0)) · n = α,

so that

β =
α− u0 · n

(u1 − u0) · n
,

with β undefined when u1−u0 is parallel to the plane. The same result also applies
to a segment u0u1, which intersects π at a single point if and only if 0 ≤ β ≤ 1.
This only occurs when u0 and u1 are on different sides of π. In that case, the point
of intersection is

u0 +
α− u0 · n

(u1 − u0) · n
(u1 − u0).

Blinn and Newell (1978) deal with computations in homogeneous coordinates.
There difficulties may arise from misconceptions as the right representation of a line
segment is not a linearly interpolated segment between the homogeneous points
when the last coordinates differ in sign, but has to go through infinity. Correct
computations result from returning to first to regular coordinates and then moving
the result back to homogeneous ones.

MATHEMATICAL PRELIMINARIES 31

u′
0

u′
1

u0

u(α)

u′(β)

u1

Figure 4.3. Relationship between parametric representations under perspective
projection.

4.2.3 Perspective projection

One good point about triangles is that their images are still triangles under per-
spective projection. The correspondence of parameters in the standard parametric
form is nonlinear, however. To see these facts, consider the line segment from
u0 = (x0, z0) to u1 = (x1, z1), in parametric form

u(α) = u0 + α(u1 − u0) (0 ≤ α ≤ 1),

and its projected image on z = 1, given by

u′(α) = (x′(α), 1) = (x(α)/z(α), 1).

It suffices to show that there is a one-to-one correspondence between the parameter
β of the parametric form of u′

0u
′
1 and α (Figure 4.3). We have

x′(α) =
x0 + α(x1 − x0)

z0 + α(z1 − z0)
=
x0

z0

+

(
αz1

z0 + α(z1 − z0)

)(
x1

z1

− x0

z0

)

= x′0 + f(α; z0, z1)(x
′
1 − x′0),

where f is the required correspondence. Evidently f maps [0, 1] to itself for any
z0, z1 > 0; the image of segment uv is the segment u′v′. The inverse of f with is
useful when mapping back from the view plane. The parameter α corresponding to
the parameter β of the image line segment is given by

f−1(β; z0, z1) =
βz0

z1 + β(z0 − z1)
. (4.6)

The inverse mapping can also be expressed as a ratio of two linear interpolations

x(β) =

x0

z0

+ β

(
x1

z1

− x0

z0

)

1

z0

+ β

(
1

z1

− 1

z0

) . (4.7)

32 COMPUTER GRAPHICS AND VIRTUAL REALITY

Figure 4.4. A cube and one possible triangle mesh for its representation

This result was established in (Heckbert & Moreton 1991) with a more complex
derivation. It is also discussed in (Blinn 1996, ch. 17). The above correspondence
is also valid for view planes at different distances. This result will be useful in
rasterization.

4.3 Object and scene specification

To generate a picture of a scene, the objects in the scene must first be described.
There are many possible choices for representations, but real-time computer graph-
ics mostly deals with objects that are made out of polygons or triangles. An object’s
geometry is specified by giving its surface as a collection of triangles (Figure 4.4).
Reasonable curved surfaces can be approximated arbitrarily well with enough tri-
angles, so this restriction is not as severe as it may appear to be. Objects can also
be logically represented as curved surfaces, such as Bézier patches, and converted
to triangles before rendering. The invisible interior structures of objects are usually
omitted and the appearance is specified on the surface.

The surface geometry is only part of the appearance. An object’s appearance
comes from the light emitted or reflected from its surfaces. Let us model this light
reflection with a shader function f that given some parameters, possibly different
at each point of a surface, can compute the light reflected from the surface in any
given direction. In general, f would require the incoming light from each direction
and some surface properties. Kajiya (1986) gives a general form of the required
function in the form of an integral equation, known as the rendering equation. In
his notation

I(x, x′) = g(x, x′)

[

ε(x, x′) +

∫

S

ρ(x, x′, x′′)I(x′, x′′) dx′′
]

, (4.8)

where I(x, x′) is the intensity of light from x′ to x, g is a geometry term, ε is
emitted light and ρ is light scattered from x′′ to x via x′. The integration is over all
surface points in the scene. The rendering equation (4.8) has been mostly applied to
describe global illumination algorithms as different approximations to its solution.

Using the rendering equation is infeasible in practice, so we limit the shader f to
a small number of parameters. Furthermore, we require that these parameters are

OBJECT AND SCENE SPECIFICATION 33

specified at triangle vertices and extended by linear interpolation to other points
of the triangle. If parameter values at the vertices of u1u2u3 are x1,x2, and x3,
respectively, then at point

αu1 + βu2 + γu3

of the triangle, the color is given by

f(αx1 + βx2 + γx3).

Before about the year 2000, hardware implementations mostly had a few alter-
native shaders with fixed functions to choose from, but now the shaders are pro-
grammable using a special purpose shading language. Practical implementations
place limitations on the shader function. For example, the number of parameters
is limited and the shader has to be formed from a given set of functions.

Here we illustrate some possible shaders. The simplest shader sets f constant
to get constant color. Generalizations of Phong’s (1975) empirical model of light
reflection are commonly used in realtime rendering. The model divides light re-
flected from a surface into ambient, diffuse, and specular components. The ambient
component models the overall light level in the environment, the diffuse component
light reflected evenly in all directions according to Lambert’s law (matte surfaces)
and the specular component imperfect mirror reflection. Material properties are de-
fined as a mixture of these components with coefficients ma, md, ms, and specular
exponent mα (shininess). The material approaches a perfect mirror as mα →∞.

Suppose that the unit direction vector of incoming light is l and n is the unit
normal of the surface. The mirror reflection direction is then r = l − 2(l · n)n.
According to Phong’s model, the fractions fd and fs of specular and diffuse light
reflected in direction e are

fd = (−n · l)md, fs = (r · e)mαms,

where it is assumed that both the viewer and the light are in front of the surface.
Thus, the observed intensity at e is

Iama + I(fd + fs)

where Ia is the scene ambient light intensity and I is the intensity of the light
source. A shader for Phong’s model would take as parameters the position vector
of the surface, the light, surface normals, and the view point, and the material
properties as constants. The viewpoint is often set to the origin. The surface
normal specified at triangle vertices for Phong shading is not the triangle’s normal,
but the normal of a surface the triangle is approximating. The surface normals
given at triangle vertices will be linearly interpolated and have to be normalized
before use. This also causes some artifacts because the normal is only approximated
inside the triangle. Gouraud’s lighting model is basically the same as Phong’s,
but without the specular component. Phong shading refers to the shader based
on interpolating normals, as described above, and Gouraud shading evaluates the
lighting model only at the triangle vertices and interpolates the intensity over the
triangle. The two general approaches are called per-pixel lighting and vertex-based

34 COMPUTER GRAPHICS AND VIRTUAL REALITY

lighting. Generalizations of Phong’s model to colored, spot, and directional lights
and inclusion of distance attenuation are straightforward. There are also more
advanced light reflection models, such as that of Cook & Torrance (1982), but they
are rarely used realtime graphics as other aspects are considered more important.

A simple computed function can not describe the complex textures of surfaces.
Complex functions on triangles can be specified using lookup tables of the desired
function or its parts in shaders. For example, texture mapping (Blinn & Newell
1976) uses an image as the table and bump mapping uses a table of surface normal
directions in the lighting calculations.

4.4 A simple graphics pipeline

We now have a method to describe the geometry of objects and how they should
look. The remaining task, rendering, is to draw an image of the scene on some
display. Modern realtime rendering is hardware accelerated and based on a pipelined
architecture. We will develop a simple model of the pipeline. Our treatment will
be quite terse, but it differs from the norm in that more emphasis is placed on
motivating the algorithms. For a more verbose discussion, see Möller & Haines
(1999).

The goal is to take a scene specification in terms of triangles with the specifi-
cation of viewing parameters and to produce an image defined by the shaders on
a display device. Image in this context is a set of point samples evaluated on rays
starting from the view point and through a regular grid (raster) on the view plane
window. The grid on the view plane window corresponds to picture elements on
a display device. Thus the viewing specification basically forms a correspondence
between pixels and rays from the viewpoint through the view plane window (Figure
4.5). Raycasting is a straightforward solution, but it requires that the whole scene
is known. The usual solution processes a triangle at a time and draws on top of
previous triangles if they are behind the present one.

4.4.1 Model, world, and view space

In the following we use x, y, and z to refer to coordinates and indicate different
coordinate systems with a subscript. First, the individual objects have to be speci-
fied. It is often convenient to arrange things so that every object has its own model
space. The position of the object in its model space is chosen to be convenient. For
example, a coordinate axis may be set to coincide with a symmetric object’s axis
of symmetry.

The entire scene consist of the individual objects and their spatial relationships.
These relationships are described by placing the objects in the same space, called
the world (or the universe). The modelling transformation takes the model from
the modeling coordinates to world coordinates. The same model can be replicated
in different places with different modelling transformations.

Next, the viewer’s and view plane’s position in the world have to be specified. A
simple way to do this is to specify the viewer’s position u, forward and up directions
v and w and the distance of the view plane in the forward direction, n. We are

A SIMPLE GRAPHICS PIPELINE 35

viewpoint

view plane window

view plane

Figure 4.5. The rendering problem: point sampling through a regular grid on the
view plane window.

ultimately interested in finding the surface points that fall in the viewer’s field of
view. This problem is easier to describe in a canonical coordinate system called
view space. Let x = (xw, yw, zw)T and

R =
[
(w ×−v) w −v

]
,

then the transformation
x′ = RT (x− u), (4.9)

where x′ = (xv, yv, zv)
T , takes points from world coordinates to view coordinates.

Backward is mapped to z, right to x, and up to y. The sign of v was chosen negative
to obtain the customary relation of x and y on the view plane after the mapping
along with a right-handed1 coordinate system. Quite often the model to world and
world to view transformations are composed to a single transformation called the
model to view transformation.

4.4.2 Screen space and clipping

Now we have the model defined in a canonical way in relation to the viewer. The
next step is to find out which surface points are visible through the view plane
window. Everything outside the infinite pyramid from the viewpoint through the
view plane window is not. These triangles or their parts are removed in a process

1A coordinate frame in R
3 is right-handed if the basis vectors satisfy b1 × b2 = b3 and left-

handed if b1 × b2 = −b3. This is just a convention; usually whether a transformation preserves
handedness is important.

36 COMPUTER GRAPHICS AND VIRTUAL REALITY

called clipping. Suppose that the view plane window is 2w wide, 2h tall, at distance
n in front of the viewer, and centered on the z-axis. A point is in the visible region,
if its projection is inside the view plane window. That is, if

−w ≤ n
xv

−zv

≤ w, −h ≤ n
yv

−zv

≤ h

or equivalently ∣
∣
∣
∣

nxv

wzv

∣
∣
∣
∣
≤ 1,

∣
∣
∣
∣

nyv

hzv

∣
∣
∣
∣
≤ 1.

Of course, we also require that visible points are in front of the viewer, zv < 0.
For reasons to be discussed shortly, there are also two clipping planes in the depth
direction, called the near and far plane. The visible region is

∣
∣
∣
∣

nxv

wzv

∣
∣
∣
∣
≤ 1,

∣
∣
∣
∣

nyv

hzv

∣
∣
∣
∣
≤ 1, n ≤ −zv ≤ f.

Note that z decreases in the viewing direction. This motivates the mapping

xs =
n

w
xv, ys =

n

h
yv, zs = −z (4.10)

to so-called screen space.2 Now visible points will have x and y coordinates in the
range [−1, 1] after projection.

Sometimes view plane windows are not centered with respect to the z-axis.
This occurs, for example, in the CAVE environment (Cruz-Neira, Sandin, DeFanti,
Kenyon & Hart 1992) where each wall functions as a window to a virtual world,
and the viewer may move inside the box formed by the walls (Figure 4.6). In this
case, suppose that the center of the view plane window is displaced by d from the
z-axis in the x direction. Centering the view plane window using a translation gives

n

−wzx− d =
n

−wz

(

x+
wz

n
d

)

.

These projections can be included simply by shearing before projection.
Most triangles of a scene are usually outside visible volume, some are visible

and some are only partially visible. The invisible triangles need to be removed and
the partially visible triangles clipped. The borders of the visible region are formed
by planes, so it suffices to consider clipping a triangle by a plane. In other words,
given a plane π and a triangle uvw, we have to compute the portion of uvw in
front of π. There are 4 basic cases. Two trivial cases occur, when all vertices are on
one side of the plane; either the entire triangle is visible or not. In the remaining
cases one or two vertices are behind the clipping plane. In this case, the result can
be expressed as the union of at most 2 triangles (Figure 4.7). This type of clipper
is described in (Eberly 2001, pp. 133–136).

Triangulation of the result can be deferred. Sutherland & Hodgman’s (1974)
re-entrant clipper that constructs the loop of edges of the polygon resulting from
clipping with multiple planes. In the case of triangles the result is known to be

2Here z is reflected to avoid a 180◦ rotation in perspective projection.

A SIMPLE GRAPHICS PIPELINE 37

Figure 4.6. Projections in the CAVE.

π

u

w′

w

vv′

Figure 4.7. The result of clipping uvw with the plane π can be expressed using
at most 2 triangles. In the case shown, the result is either the triangle uv′w′ or the
two triangles v′vw and v′ww′.

convex so its triangulation is trivial; a simple triangle fan works. Algorithm 3
produces the entire result of clipping at each stage before clipping with the next
plane; the original recurses immediately to the next clipping plane after outputting
a vertex.

The required intersection points are quite easy to compute in screen space For
example, if two triangle vertices are on different sides of the near clipping plane,
then we have the intersection at

z0 + α(z1 − z0) = n ⇐⇒ α =
n− z0

z1 − z0

.

The analogous solution works at the far plane. At the other clipping planes the
sides are given by |x|, |y| ≤ |z| and |x|, |y| ≥ |z|. For example, if two end points are
on different sides of the plane x = z, then the intersection occurs when

x0 + α(x1 − x0) = z0 + α(z1 − z0), ⇐⇒ α =
z0 − x0

x1 − x0 − z1 + z0

.

Naturally all shader parameters have to be interpolated from the old vertices to the
new vertices of clipped triangles.

38 COMPUTER GRAPHICS AND VIRTUAL REALITY

Algorithm 3 Sutherland & Hodgman’s (1974) clipping algorithm adapted to tri-
angles. The variable ni counts the number of vertices output and ui(j) denotes the
jth vertex output at stage i. Inside refers to the side on which to retain the triangle
parts, and, with slight abuse of notation, the operation ∩ computes the point of
intersection.
1: procedure SutherlandHodgmanClip(uvw)
2: u0(1, 2, 3)← u,v,w; n0 ← 3.
3: for clipping planes πi, i = 1, 2, . . . , n, do
4: if ni−1 < 3 then return ∅ . Entire triangle clipped.

5: ni ← 0.
6: if ui−1(1) is inside πi then
7: ui(1)← ui−1(1).
8: ni ← ni + 1.

9: for j ← 2, 3, . . . , ni−1 do
10: if ui−1(j − 1) and ui−1(j) are on different sides of πi then
11: ui(ni)← ui−1(j − 1)ui−1(j) ∩ πi.
12: ni ← ni + 1.

13: if ui−1(j) is inside πi then
14: ui(ni)← ui−1(j).
15: ni ← ni + 1.

16: if ui−1(1) and ui−1(ni−1) are on different sides of πi then
17: ui(ni)← ui−1(1)ui−1(ni−1) ∩ πi;
18: ni ← ni + 1.

19: return {un(1)un(i)un(i+ 1) : i = 2, . . . , nn − 1}. . Triangle fan.

4.4.3 Rasterization

The final stage of the pipeline is rasterization, where the actual picture is formed.
The raster is formed from a regular grid of pixels at integer coordinates xd =
0, 1, . . . , wd − 1 and yd = 0, 1, . . . , hd − 1, where the width and height depend
on device resolution. The input of this stage is a triangle that is known to be
completely visible, but some triangles may still be in front of others. The classical
z-buffer algorithm solves this problem.

The screen space has be to mapped to device coordinates to find the pixels that
a triangle covers. First we perform the perspective division of xs and ys by zs and
then map the range [−1, 1] to the range of pixels. The device coordinates are

xd = wd
xs/zs + 1

2
− 1/2, yd = hd

ys/zs + 1

2
− 1/2. (4.11)

The shift by 1/2 centers the pixel lattice on the view plane window, otherwise some
pixels would lie on the edge. Rounding may cause some vertices on the clipping
boundaries to round off the screen, so we should shrink the scale slightly in this
case (Blinn 1996, ch. 14). We have assumed that the origin is at the bottom left
corner with x increasing right and y up. Due to historical reasons, the device origin
is usually at the top left corner with x right and y down.

A SIMPLE GRAPHICS PIPELINE 39

Figure 4.8. Triangle rasterization.

A point is in front of another if its z-coordinate is larger in view space. Thus,
if we attach the value of z of the corresponding surface point to each pixel then
this solves the problem incrementally for the whole scene: We can simply draw
the surface point only if the previously drawn point is further away. Perspective
interpolation of z according to (4.7) gives

z(β) =
1

1

z0

+ β

(
1

z1

− 1

z0

).

This shows that we can use linear interpolation of z−1 on segments on the device
coordinates instead of perspective interpolation of z to determine visibility.3

There is a small problem with numerical precision as z−1 can be arbitrarily large
and we have to map it to a finite range of values. This is the reason for the near
and far clipping planes at z = −n and z = −f . They truncate the infinite visible
pyramid to a pyramid with the top cut off, known as a frustum. For convenience,
we transform z−1 to map [−f,−n] to [0, 1]

d =

(
1

−n −
1

z

)(
1

−n −
1

−f

)−1

=
f(z + n)

z(f − n)
. (4.12)

In practical implementations d can be mapped to b2bdc for a precision of b bits.
The coordinate d is known as depth.

Rasterization, or scan-conversion, of a triangle uvw fills all pixels inside the
triangle (Figure 4.8). One strategy is to fill all pixels falling between left and right
edges proceeding from top to bottom. Triangles can be clipped into parts that share
edges and they can also share edges and vertices as parts of triangle meshes. In
such cases we need a rule that assigns a pixel hit by an edge to only one of the
triangles sharing it. One alternative is to use half-open intervals. To fill [a, b), we
need all integers in it. The first integer in [a, b) is dae. The number of integers on
the interval is {

bbc − dae, if b integral,

bbc − dae+ 1, otherwise.

3Obviously, z0 < z1 iff z−1

0
> z−1

1
.

40 COMPUTER GRAPHICS AND VIRTUAL REALITY

In fixed point arithmetic, one practical solution is to use bb − εc instead of bbc,
where ε is the smallest representable number. This removes to need to check for an
integral value. In any case, the implementation must guarantee that this leaves no
gaps in the discretized intervals.

First we must find the topmost vertex. The remaining vertices need to be
sorted so that the triangle is in counter-clockwise order. Suppose that uvw is in
this order with u topmost and that v is above w. We can divide uvw into two
parts with a horizontal segment from v to uw. This leaves the filling of pixels
between uv and uw and vw and uw. In general, the vertices are between pixels.
We need to intersect the edges with the scanlines to find the pixels to fill. The
intersection points are quite easy to compute, however. The segment uv, where u
is topmost, intersects all horizontal lines at integral coordinates between bu2c and
dv2e. Intersections with scanlines lines occur at parameter values

αi =
u2 − bu2c+ i

u2 − v2

, (i = 0, 1, . . . , bu2c − dv2e). (4.13)

Substituting this back into the parametric form gives the points of intersection while
walking down the left and right egdes of the triangles. The shader parameters
divided by z as in (4.7), 1/z, and depth are linearly interpolated between the
vertices. On each scanline intersection, we walk the pixels from left to right edges
with linear interpolation analogous to (4.13) between the interpolated values at
edges. On each pixel we test if the interpolated depth is smaller than at that pixels
and if it is, call the shader with (4.7) and fill the pixel, otherwise continue to the
next pixel.

4.4.4 Summary

The pipeline presented here is only a simple conceptual outline. It fits in less than
500 lines of C code. In practice, the systems implemented by modern graphics
application program interfaces (API) are much more complex. For example, the
OpenGL sample implementation released by SGI in the year 2000 contains about
18000 lines of C code, and it was released before programmable shaders and the
shading language were included in the specification.

In addition to the shader function, usually referred to as a fragment or pixel
shader, the APIs also include programmable processing of vertex data. This can
be useful for animation, for example. They generalize the notion of pixel to include
additional data, similar to the depth value used in the z-buffer algorithm. For ex-
ample, the stencil buffer contains a certain number of bits for each pixel. The bits
can be used to count the number of times a pixel has been written, which can be
used to implement shadows or to mask out portion of the raster while rendering.
Translucent primitives can be drawn by alpha blending. Signal processing opera-
tions, such as blurring using a lowpass filter, and working with multiple images at
the same time are possible. In fact, the computational models are so general that
3D hardware is now being used to accelerate scientific computation (Buck, Foley,
Horn, Sugerman, Fatahalian, Houston & Hanrahan 2004)!

There are at present two dominant graphics APIs, Direct3D and OpenGL. They
are quite similar to each other. The programs in the present thesis were imple-

APPLICATION LEVEL 41

mented using OpenGL because of its portability. OpenGL is treated in detail in
the specification (Segal & Akeley 2003).

4.5 Application level

The graphics pipeline is just one part of an application using graphics. It guarantees
to produce the correct picture for every scene, but can be quite inefficient in doing
so, if the application feeding the data into the pipeline is badly written. For ex-
ample, in objects specified by triangle meshes, the triangles share vertices, and the
shared vertices are specified many times as parts of different triangles, but a vertex
does not have to go twice through the transformation from model space to screen
space. Graphics APIs usually provide the user with optimization opportunities for
transferring data. In the case of shared vertices between triangles, the models can
be defined using strips of triangles or triangle fans. (Möller & Haines 1999, pp.
231–240). A few of the most recently used vertices can also be cached.

The z-buffer algorithm can handle an arbitrary number of triangles correctly, but
it is inefficient to solve the visibility problem at the pixel level in image precision.
Drawing the triangles that will be completely occluded is not necessary. Clipping
is an inefficient way to remove individual triangles outside the view frustum. A
considerable amount of research has been done on accelerating visibility processing.
Culling in general refers to removing objects that will not be visible. Möller &
Haines (1999, pp. 191–217) review these techniques. For example, view frustum
culling is a process that removes entire objects that are outside the view frustum.
It requires some auxiliary data structures such as bounding volume trees or at
least simple bounding volumes for objects. Bounding volumes are simple geometric
objects that are used to envelop complex objects; spheres and boxes are popular. If
a bounding volume is outside the view frustum, then the contained objects are also
outside. Occlusion culling is a process that tries to remove objects that are behind
other objects when looking from the view point.

4.6 Animation

An observer perceives motion when images are presented quickly in succession and
consecutive images are sufficiently similar. Realtime computer graphics usually uses
double buffering for animation. One finished picture is visible while another is being
drawn. When the next picture is ready, the pictures are swapped. The swapping is
usually done when the display starts to refresh. Figure 4.9 illustrates the process.
The frequency at which new images are generated and shown has to be at least 25
Hz, preferably higher. Virtual reality systems commonly use 50–60 Hz.

Next, we discuss animation of rigid bodies by specifying their movement paths
as a function time. These paths are one-parameter families of transformations
that include the orientation and the position of an object. During rendering, the
transformation corresponding to the appropriate time is picked from the family and
applied to the object. There are of course other problems in animation, but for the
purposes of this thesis, rigid body animation suffices. These techniques were used

42 COMPUTER GRAPHICS AND VIRTUAL REALITY

render clearswap render swap

front

back

clear

Figure 4.9. Double buffering shows one image, the front buffer, while the next
is being rendered in the back buffer, and swaps the images when the rendering is
ready.

to implement parametric movement, such as moving in an otherwise static scene in
the virtual environments.

4.6.1 Kinematics

Kinematics, the mathematical study of motion, is usually not treated in detail
in computer graphics texts. This is somewhat surprising because much of com-
puter animation is applied kinematics. Strictly speaking kinematics is a subfield
of mechanics concerning motion; forces and masses are not considered (Bottema
& Roth 1990, Preface). It has applications, for example, to designing mechanisms
to produce given motions in robotics. A related field, dynamics, considers also the
forces involved.

The starting point of kinematics is the Euclidean displacement.4 Consider the
motion of a rigid object. The natural requirements are that during motion the
shape of the object does not change and that there is a way to move the object
continuously from the starting position to the final position. The first requirement is
that the displacement is an isometry. However, isometries also include reflections,
hence the second requirement. One formal way to include it is to require the
existence of a continuous sequence of isometries from the identity transformation
to the final position. The latter requirement rules out reflections as there is no way
to continuously reflect an object. The Euclidean displacements form a group and
it is easy to see that translations are Euclidean displacements. The factorization

T (u) = T (u)− T (0)
︸ ︷︷ ︸

R

+T (0)

of a displacement is fundamental. It factors a displacement into a translation and
a rotation R. When discussing an object’s state in space, orientation refers to R,
and position to T (0). A (1-degree of freedom) motion T (u, t) is a one-parameter
family of displacements

T (u, t) = R(t)u + v(t),

where we require that T is continuous with respect to t for all u. The standard
approach to specify motion is keyframe interpolation. We specify T (u, t) at certain

4Euclidean displacements as defined above are also called direct isometries or rigid motions.

ANIMATION 43

instants of time called keyframes and interpolate between them. The term is also
applicable to animation of non-rigid objects, but we focus on the rigid case. Given
a sequence

T1, T2, . . . , Tn

of displacements the goal is produce a smooth motion that interpolates them. We
can consider interpolation of position and orientation separately.

4.6.2 Animating position

Specification of v(t) is much simpler than that of R(t). It represents the movement
of the origin and can be any parametric curve. We are generally interested in
movements that are in some sense smooth. The usual way to ensure smoothness of
v(t) is to require a certain number of continuous derivatives. A parametric curve
is said to be of class Ci if at least the i first of its derivatives are continuous; a
curve of class C0 is simply continuous. Another less stringent requirement is that
of geometric continuity, which requires that the left and right derivatives have the
same direction. The classes analogous to Ci are denoted by Gi.

Perhaps the most natural way to specify translational movement is to give a
list of locations and times when they are reached and simply interpolate between
them. The following treatment is 1-dimensional for simplicity. It generalizes to more
dimensions simply by replacing the appropriate parameters with vectors. Formally,
the objective is to form a smooth function f(x) that interpolates the points

(x1, y1), (x2, y2), . . . , (xn, yn),

that is f(xi) = yi, for i = 1, 2, . . . , n. If the functions g1, g2, . . . , gn satisfy gi(xj) = 1,
if i = j, and gi(xj) = 0, if i 6= j, then obviously f(x) =

∑
yigi(x) fulfills the

requirements. Lagrange’s interpolating polynomials

gi(x) =
∏

j 6=i

x− xj

xi − xj

are well-known. The interpolating function is a polynomial of degree n − 1 and
belongs to C∞. Another even simpler solution to the interpolation problem is the
piecewise linear curve

f(x) = yi +
x− xi

xi+1 − xi

(yi+1 − yi), (xi ≤ x ≤ xi+1), (4.14)

which is in class C0.
Polynomial interpolation suffers from non-locality. Changing one point or add-

ing control points affects the entire curve. The piecewise linear curve is local, but not
smooth at the interpolated points. Splines are piecewise polynomial functions that
can be smooth at interpolated points and have local control. The piecewise linear
curve (4.14) is a spline of first order polynomials. The sharp angles at interpolated
points can be smoothed by using higher order polynomials. If the function f(x) is
a spline with

f(x) = fi(x) (xi ≤ x ≤ xi+1),

44 COMPUTER GRAPHICS AND VIRTUAL REALITY

where fi(x) are segments of the spline, then f ∈ C1, if its segments satisfy

fi−1(xi) = fi(xi), f ′
i−1(xi) = f ′

i(xi).

Thus each segment must satisfy

fi(xi) = yi, f ′
i(xi) = y′i, fi(xi+1) = yi+1, f ′

i(xi+1) = y′i+1

at the end points. The simplest polynomials capable of this are cubics. We introduce
a new parameter t = (x− xi)/(xi+1 − xi) and adjust the conditions on derivatives
accordingly to simplify the situation. To construct a cubic curve with specified end
points and derivatives at end points, set

f(t) = a3t
3 + a2t

2 + a1t+ a0

with f(0) = y0, f
′(0) = y′0, f(1) = y1, f

′(1) = y′1. This gives a system of linear
equations







1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3













a0

a1

a2

a3







=







y0

y′0
y1

y′1







that has the solution







a0

a1

a2

a3







=







1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1













y0

y′0
y1

y′1






.

The function f can now be written in terms of the constraints

f(t) =
[
1 t t2 t3

]







1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1













y0

y′0
y1

y′1







or simply as

f(t) = (1− 3t2 + 2t3)y0 + (t− 2t2 + t3)y′0 + (3t2 − 2t3)y1 + (t3 − t2)y′1.

The coefficient polynomials of the parameters are called the Hermite basis and the
resulting splines are called Hermite curves, in honor of Charles Hermite. Values of
the derivative at the points to be interpolated are still to be determined. Catmull-
Rom splines set y′i = (yi+1 − yi−1)/2. Kochanek and Bartels (1984) present cubic
splines with slightly more control and that are easier to specify. They add 3 param-
eters to each interpolated point: tension τ , continuity γ, and bias β. These curves,
also known as TCB-splines after the parameters, were used in implementing the
virtual reality stimuli in this thesis.

ANIMATION 45

Figure 4.10. De Casteljau’s construction of a cubic Bézier curve.

Bézier curves should be mentioned because of their importance in computer
graphics. They are defined by iterated linear interpolation of consecutive control
points with a single parameter. For example, a quadratic Bézier curve is defined by

f(t) = (1− t)((1− t)y0 + ty1) + t((1− t)y1 + ty2),

= (1− t)2y0 + 2t(1− t)y1 + t2y2.

where y0 and y2 are the end points and y1 is a control point. This method of
evaluation is called de Casteljau’s construction (Figure 4.10). For n + 1 control
points, y0, y1, . . . , yn, the curve can be expressed as

f(t) =
n∑

i=0

(
n

i

)

ti(1− t)n−iyi,

where coefficient polynomials are the Bernstein basis polynomials. One interesting
property about these curves is that they are contained in the convex hull of the
control points. This is apparent from the evaluation as iterated convex combinations
in de Casteljau’s construction.

The instaneous velocity of a point moving along a curve f(t) is ‖f ′(t)‖ and its
integral is arc-length, the distance travelled by a point moving along f(t). The
velocity is not constant in the case of cubic splines, which makes specification of
smooth movement difficult. It is natural to think that an object follows a path with
a certain velocity. Velocity can be decoupled from the movement path by arc-length
reparameterisation of the path, where the parameter t is exchanged to a parameter
s that gives the distance along the path from its beginning. The process computes
s as a function of t by numerical integration, as there is no analytical solution for
cubic curves, and then inverts s(t) to find t for a given s during animation (Watt
& Watt 1992, pp. 346–350).

46 COMPUTER GRAPHICS AND VIRTUAL REALITY

4.6.3 Animating orientation

Rotations are more difficult and also more interesting than translations. We already
wrote R for rotations to signify linearity; it is not difficult to see this. When an
object rotates, it is generally considered that one point does not move. A rotation
R about the origin is an Euclidean displacement with the additional property that
it has the origin is a fixed point. They form a subgroup of displacements. Rotations
preserve the inner product.5 Thus, the image of an orthonormal basis of R

3 is also
an orthonormal basis for R

3. It follows that R is linear.

Rotation matrices have the property that RTR = RRT = I, because the
columns are an orthonormal basis. Thus, R−1 = RT . Now, since

1 = det I = detRTR = (detR)2

we have detR = ±1. However, detR = 1, because the determinant is continuous
and det I = 1. Thus, the group of rotations is isomorphic to orthogonal matrices
with det = 1, the so-called special orthogonal group SO(n).

Some way to define the “curve” connecting two orientations is needed to interpo-
late them. A simple method to do this is to parameterize rotations and interpolate
the parameters. The elements of rotation matrices are not useful as such, because
the matrix is required to remain orthogonal during the interpolation. To come up
with a parameterization of rotations we start from R

2. There, every unit vector
is of the form (cos θ, sin θ) for some θ and the other unit vector in an orthonormal
basis must be ±(− sin θ, cos θ). Only the positive case is possible, because for a
rotation matrix R we have detR = 1. All rotations in R

2 are of the form

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]

.

This gives a parameterization in the planar case. We can rotate any vector to a
coordinate axis. For example, for u = (u1, u2) we can find a rotation such that

R

[
u1

u2

]

= ±
[
‖u‖
0

]

.

Taking

θ =







− arctan(u2/u1), u1 > 0,

π − arctan(u2/u1), u1 < 0,

−π/2, u1 = 0, u2 ≥ 0,

π/2, u1 = 0, u2 < 0

gives the positive case. We can use the parameterization of planar rotations to
build a parameterization of rotations in R

3 from rotations on coordinate planes. In

5As d(u, 0) = d(R(u), 0), the norm is preserved, consider d2(u,v) = d2(R(u), R(v)).

ANIMATION 47

R
3 we have at least the rotations

R1(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 , R2(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 ,

R3(θ) =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





analogous to the planar case; the subscript gives the invariant coordinate. These
are called Givens rotations. If R is a rotation in R

3, we can choose θ and ψ in

R = R3(ψ)R2(θ)R2(−θ)R3(−ψ)R
︸ ︷︷ ︸

R′

.

so that the third column of R′ is e3. Now R′ is also a rotation as a composition
of rotations. The third row vector of R′ is also e3, because it has unit length, and
R′

33 = 1. We must have R′ = R3(φ) for some φ. Thus, any rotation in R
3 is

representable as
R = R3(ψ)R2(θ)R3(φ)

for a suitable choice of the so-called Euler angles φ, θ, and ψ. This parameterization
is not quite unique, as there are always at least two valid choices of θ and ψ in the
above construction. This form is apparently conventional. With a slight change in
the above derivation we can show that there is also a similar representation of the
form R = R3R1R2, where the angles are called yaw, pitch, and roll,6 and indeed
a representation in any factorization into three Givens rotations where consecutive
ones are around different axes. Sometimes the angles occurring in any such factor-
ization are called Euler angles. We can now, in principle, linearly interpolate the
Euler angles to interpolate between orientations.

Rotations in the plane can be represented by considering vectors as complex
numbers. The numbers eiθ correspond to planar rotations. There is a similar
representation of rotations in space, namely the quaternions. Their invention by
Sir William Rowan Hamilton in 1843 is considered a great moment in mathematics
as the first noncommutative algebra was introduced (Eves 1990, pp. 504–508).
Shoemake (1985) introduced them to computer graphics. In short, quaternions
generalize complex numbers by introducing two extra imaginary units with the
rules

i2 = j2 = k2 = ijk = −1.

It follows from this formulation that ij = k, jk = i, ki = j, ji = −k, kj = −i, and
ik = −j. The conjugate q∗ and the norm |q| of a quaternion q = a + bi + cj + dk
are defined

q∗ = a− bi− cj− dk, |q|2 = a2 + b2 + c2 + d2.

Embedding R
3 by u 7→ u1i+u2j+u3k into quaternions, the mapping u 7→ quq∗ is a

rotation, whenever q is a unit quaternion. The proof can be found in (Eberly 2001,

6Assuming the standard setup of axes. Yaw, pitch, and roll are subjectively defined. Yaw
rotates horizontally, pitch vertically, and roll around the line of sight.

48 COMPUTER GRAPHICS AND VIRTUAL REALITY

pp. 13–15). Quaternions are not quite isomorphic to SO(3) as both q and −q
represent the same rotation. The unit quaternions form a 4-dimensional sphere
and the notion of linear interpolation has a simple analogue called spherical linear
interpolation, slerp, on the sphere. Constant angular velocity interpolation between
two unit vectors u0 and u1 along a great circle gives

slerp(u0,u1, t) =
sin(1− t)θ

sin θ
u0 +

sin tθ

sin θ
u1,

where θ is the angle between u0 and u1. Shoemake (1985) replaces linear interpo-
lation in de Casteljau’s construction by spherical linear interpolation to construct
smooth curves on the quaternion unit sphere. Here we have omitted the derivation
of the Bèzier control points. There is a geometric construction of Catmull-Rom
splines that expresses the spline value in terms of linear interpolations of 4 adjacent
interpolated points. It is applied to quaternion interpolation in (Schlag 1991). This
is the method used in this thesis to interpolate orientations.

4.7 Virtual reality

Virtual reality refers to an artificial immersive environment. In this thesis, the
notion is limited to stereoscopic graphics generated based on measured head ori-
entation, but often the environments are interactive. Perceptual factors play a
prominent role in creating virtual environments (Kalawsky 1993, ch. 3).

Binocular disparity caused by the slightly different images in left and right eyes
is one of the factors in depth perception. The closer an object is to the viewer, the
greater the differences are in the images. Binocular disparity can be simulated by
drawing two images from slightly different view points and showing one to the left
eye and the other to the right eye (Figure 4.11). There are two basic forms of display
for this purpose: Either there are two completely separate displays or two images
are overlaid and the different images are filtered out for the left and right eyes.
The former method is used in head-mounted displays and the latter in projected
displays. Showing two different overlaid images can be accomplished by polarized
light or with shutter glasses. Shutter glasses shut out one eye and alternate rapidly
between eyes. This action is synchronized with the display so that the display shows
one image to the left eye and another to the right eye. Polarized light tends to lose
intensity, and the result can be like wearing sunglasses in a dark room. Shutter
glasses suffer from flicker, and head mounted displays are cumbersome and have
limited resolutions.

Looking around in the virtual environment requires head movements to be
tracked, and interaction with the environment requires specialized input devices.
Kalawsky (1993, ch. 4–6) surveys the hardware and software solutions for VR. It
is easy to integrate the sensor data into rendering from an implementor’s point of
view: For example, head-orientation sensors basically give R in (4.9).

VIRTUAL REALITY 49

IPD
left eye right eye

Figure 4.11. Stereoscopic projection. The interpupillary distance (IPD) separates
the two centers of projection and the eyes see different images.

Chapter 5

Implementation and applications

During the research presented in Publications I–V, we conducted many experiments
with virtual reality and posturography, and our measurement system underwent
iterative improvements. In the first version, one computer showed VR graphics on
a head-mounted display (HMD), another computer collected the measurements, and
the two were synchronized manually. Later, the system evolved to an integrated
package designed for laboratory use by laboratory assistants. This chapter begins
with a detailed description of the most advanced version and then presents the
applications with various versions along with comments on the system’s evolution
over time.

5.1 Implementation

The measurement system, as used in Publications IV and V, is deployed it in three
laboratories: the Virtual Reality Laboratory at the University of Tampere, the
Hearing Center of Tampere University Hospital (HC), and at the Finnish Institute
of Occupational Health (FIOH) in Helsinki. The laboratories have different hard-
ware configurations: The HC and FIOH installations include the moving platform,
and the FIOH installation uses a stereoscopic projection display implemented with
polarized light. Figure 5.1 shows the structure of the system.

The main components of the measurement system are a force platform, an HMD
(Virtual Research V8) or another VR display device, and two personal computers.
One of the computers (client) runs the operator’s user interface, and the other com-
puter (server) generates the virtual environment; it is equipped with a 3D graphics
accelerator (nVidia GeForce series) for this purpose. The computers communi-
cate over an Ethernet network. The server receives measurements of head orienta-
tion from a head orientation tracker (InterSense InterTraxx or IS-300 InertiaCube)
mounted on the HMD, and uses them when rendering the graphics. The tracker
only measures head orientation, which suffices for looking around in the virtual
environment by rotating the head, but not for larger movements.

Force transducers (Hottinger Baldwin PWSM-100kg) beneath the force platform
measure forces. These measurements go through an amplifier, and an analog-digital
converter (ADC, Hewlett-Packard HP-34970A or Data Translation 9800 series) sub-
sequently samples them with a sampling rate of 50 Hz and a resolution of 16 bits.

50

IMPLEMENTATION 51

Monitor

Monitor

PlatformAD Converter

Client

Amplifier

Signal splitter

Signal splitter

Server

Tracker

MotorController

Monitor

HMD

right eye

left eyenetwork

Operator

trigger

forces

orientation

Figure 5.1. VR posturography system: components and interconnections.

The server receives the sampled measurements from the ADC over an USB or RS-
232 serial connection. It also uses the ADC to signal a controller (API Motion
DS-3042i) to start a preprogrammed movement sequence, when the programmable
tilting platform is in use. A motor-driven screw-slider system accomplishes the tilt-
ing. The design of the mechanism is such that the movement of the platform is
essentially unaffected by a person standing on it. The platform is quite accurate in
the static case when a weight is placed on it. For example, when we carried out one
calibration of a static platform with a 60 kg calibrated weight, the standard devi-
ation of measurements was about 0.0005 V on each of the three channels. Most of
the noise is from the environment, as the platform was in an office building and was
not shielded from mechanical vibration. After calibration using Algorithm 1, the
root mean square (RMS) error of weight was 0.010 kg on the unfiltered calibration
measurements. The tilting platform has some more noise, because the motors keep
the platform in place. In a calibration with a 40 kg weight, the standard deviation
of measurements was about 0.0013 V and the RMS error of weight was 0.056 kg.

The operator uses the client computer to control the server. The interface is
simple: It can only start and stop trials and save the measurements. There are
safeguards against saving over previous measurements and forgetting to save them.
After each measurement, a display of the measured stabilograms and some basic
parameters is shown, and the operator can verify that the data acquisition works

52 IMPLEMENTATION AND APPLICATIONS

properly. She can also see the virtual environment on monitors during a trial;
the feature is implemented with signal splitters. We use MATLAB to analyze the
measurements after taking them.

The software implementation is modular and mostly portable. We developed it
mainly under Linux and used the GNU toolchain to build the executables. MinGW
was used to build the software under Microsoft Windows. Our laboratories run
it on Microsoft Windows XP, but the software also works on Unix-like platforms
such as Linux. Cross-platform libraries ensured portability; the Simple DirectMedia
Layer (SDL), OpenGL, and GTKmm were used. SDL provides portable graphics
initialization and event handling, OpenGL is for 3D rendering, and GTKmm is a
cross-platform GUI toolkit that we used to implement the operator’s user interface.
The implementation in the C++ programming language takes about 20000 lines
of code. Of course, much more code was written and thrown away during the
development, because the requirements changed from one experiment to another.

We saw the addition of new VR stimuli and measurement devices as the most
likely changes to the software, and implemented a plugin architecture for this pur-
pose. The virtual environments and the software modules for measurement devices
are implemented as dynamic link libraries (DLL) loaded at run-time, and the server
software implements a simple API for them. Figures 5.2 and 5.3 contain a few of our
virtual environments—some of them are not used in published research. The client
computer controls the server via a simple text protocol over TCP/IP; these pro-
gramming interfaces are documented in (Stevens 1993, Stevens 1998, Stevens 1999),
for example. We used libraries provided by the equipment manufacturers to control
the measurement devices, with exception of the HP-34970A that used a simple text
protocol over a serial connection.

The software was written so that the measurements and stimulus would be as
synchronized as possible. This was accomplished by a simple protocol: All compo-
nents first prepare to start their operation as quickly as possible. For example, the
stimulus module loads the bitmaps used as textures into memory and generates the
geometric objects to be displayed, and the AD converter data acquisition settings
are set. The signal to start the measurement is given after all components are ready.
The measurement devices begin collecting data and the stimulus module begins to
render the graphics. The underlying operating systems, Linux and Windows XP,
are not realtime operating systems, and some unexpected events may cause the
stimulus to miss a rendering deadline. To cope with this, the rendering conceptu-
ally samples a continuously running stimulus based on absolute time. Luckily, the
synchronization is not critical, because the measured movements are relatively slow
and all the parameters used in the included studies are averages in some sense.

5.2 Applications

5.2.1 Pilot study

Our first study with virtual reality and postural control was a small study with only
3 test subjects. It concerned the effects of alcohol and virtual reality stimulation on
balance. The study was reported in (Tossavainen, Juhola, Aalto, Toppila, Pyykkö,

APPLICATIONS 53

(a)

(b)

(c)

Figure 5.2. Virtual reality stimuli: (a) dots, (b) cylinder, and (c) moving and
tilting room.

54 IMPLEMENTATION AND APPLICATIONS

(a)

(b)

(c)

Figure 5.3. More VR stimuli: (a) lattice, (b) tunnel, and (c) textured tunnel with
a random texture.

APPLICATIONS 55

Honkavaara, Laurikkala & Laakso 2001). My role was to implement the VR software
for this study.

In the test setup, one computer produced the VR environments, another com-
puter collected the measurements, and the two computers were synchronized man-
ually. The Sense8 WorldToolkit (WTK) library was used to implement the virtual
environments. An Intergraph workstation equipped with an Intense3D Wildcat
graphics accelerator rendered the graphics. It had 3 monitors: one displayed the
user interface and the other two displayed the VR graphics. During the software
development, our laboratory at the University of Tampere did not have a force
platform or the HMD, and the development workstation only had one monitor.
We performed the experiment at the Finnish Institute of Occupational Health in
Vantaa. The experiments in Publication I use essentially the same hardware setup.

5.2.2 Affecting balance (I)

In the study presented in Publication I, we aimed to show that VR stimulation does
have an effect on balance. We measured 30 healthy subjects (26 male, 4 female,
aged 21-35 years) for 60 seconds while exposed to a static stimulus, consisting of
an immobile scene with two blocks and a floor, and a moving tunnel stimulus while
standing in a standard measurement posture on the force platform. The tunnel
stimulus is similar that depicted in Figure 5.3 (b) with a different surface texture.
It follows a parametric curve consisting of 4 sinewaves that are not harmonically
related, 2 horizontal and 2 vertical, and constant velocity forward. The stimuli
were administered using HMD, and the amount of swaying was assessed using sway
path. The result was that there is a clear difference between the measurements:
More swaying occurs during the tunnel stimulus. The results for sway path are
mean 192.1 cm, std. dev. 55.3 cm, range 113.2–305.3 cm for the static stimulus and
mean 258.1 cm, std. dev. 93.8 cm, range 126.8–484.1 cm for the tunnel stimulus.
Three test subjects either needed support to stay upright during the tunnel stimulus
or adjusted the HMD during the measurements. These cases were removed from
the analysis. On the average, the sway path is 1.34±0.28 (mean ± std. dev.) times
longer during the tunnel stimulus. The Wilcoxon signed ranks test indicates that
the difference in sway paths is statistically significant (p = 1.23× 10−5).

5.2.3 Inducing different effects on balance (II)

Publication II demonstrates how virtual environments can cause different effects on
balance. We measured 22 test subjects (20 male, 2 female, age 22–45) in six virtual
environments: oscillating dots, dots rotating around 3 different axes, a rotating
cylinder, and a tunnel. In addition, the subjects were measured with eyes open
and closed and while wearing HMD without a visual stimulus. Dots is depicted
in Figure 5.2 (a), cylinder is depicted in Figure 5.2 (b), and tunnel is depicted in
Figure 5.3 (b). The oscillating dots rotates the environment ±25◦ for 15 seconds
around the different axes at a frequency of 0.2 Hz. It pauses for 5 seconds between
the oscillations. The rotating stimuli start to rotate with constant angular velocity,
accelerating for 15 seconds and decelerate similarly to a halt in the next 15 seconds.

56 IMPLEMENTATION AND APPLICATIONS

There is a pause of 10 seconds between the two rotations. The peak angular velocity
of rotation just before deceleration is 160◦/s in cylinder and 120◦/s in rotating dots.
The tunnel movement is similar to the tunnel stimulus in Publication I.

We evaluated swaying using COP MV (called sway path in Publication II). The
visual stimulation increased MV by 8–83% on the average compared to the case
of wearing the HMD with no stimulus. In particular, both tunnel and cylinder
increase MV by more than 50%, and this increase was statistically significant by
the Wilcoxon signed ranks test (p ≤ 0.013 with Bonferroni correction). In addition
to MV, we analyzed the leaning caused by the rotating stimuli. The mean position
of COP is displaced during the rotation 0.54–0.86 cm from the mean position during
the first 10 seconds when the stimulus was immobile. The direction of leaning is
generally in the direction of rotation. For example, the subjects tend to lean left
during counter-clockwise rotation around the line of sight. This can be interpreted
as a reaction to illusory self-motion in the opposite direction. The Wilcoxon signed
ranks test indicates that the leaning is significant in all cases.

We made a number of changes in the system for this study. The HP data ac-
quisition device was controllable using a simple text-based protocol over a serial
connection, so we implemented its control in the stimulation program to improve
synchronization. This enabled the use of measures other than averages in the analy-
sis, which was impossible earlier because of manual synchronization. We also ported
the virtual environments from WTK to OpenGL for efficiency.

5.2.4 Laboratory bus installation

FIOH conducted a study on the effects of antioxidants on noise-induced temporary
hearing loss and balance (Toppila, Pyykkö, Starck, Tossavainen, Nyman, Juhola &
Oksa 2002). The study was supposed to use a discotheque as the noise source, and
the measurement system was installed in a field laboratory bus. The level of noise
turned out to be too low in the discotheque, so the exposure had to be conducted in
the premises of FIOH. Nevertheless, the measurements were carried out in the bus
as the laboratory was already installed in it. This shows that VR measurements can
be used in the field, at least in principle. The VR equipment is fragile and has to be
handled with care. A programmable motor-driven tilting platform was added to the
hardware setup, and we made the required changes to the measurement program.
I helped in setting up the measurement system in the bus and my VR software was
used for the balance measurements.

5.2.5 CAVE experiments (III)

The Tampere Virtual Reality Center (VRC) at Tampere University of Technology
built a CAVE (Cruz-Neira et al. 1992, Cruz-Neira, Sandin & DeFanti 1993) and the
University of Tampere had the opportunity to use it. We only had the HMD, and
its limitations—low resolution, narrow field of view, and weight—were apparent.
The CAVE seemed well-suited for visual stimulation, so we arranged an experiment
to compare it to the HMD using the same virtual environments on the same test
subjects with both displays. Figure 5.4 contains photographs taken during the

APPLICATIONS 57

experiment.

The study, reported in Publication III, included 20 healthy test subjects (17
male, 3 female, age 22–46). The test setup was otherwise similar to Publication II,
but the stimuli only included dots rotating around the mediolateral axis, cylinder,
and tunnel. In summary, dots and cylinder are more effective with the CAVE
and tunnel is more effective with the HMD. We used Wilcoxon signed ranks test
for statistical evaluation, and found that all stimuli cause a significant increase of
swaying compared to the baseline measurement in quiet standing with eyes open.
The differences between the displays are significant in the case of dots and tunnel
(p = 0.0002 and p = 0.001, respectively), and also in cylinder (p = 0.048). In
particular, dots is radically more effective with the CAVE. Dots with CAVE caused
3 test subjects to lose balance and 2 of them also lost balance during tunnel with
CAVE. Everyone was able to complete all of the other tests.

Differences in field of view, resolution, contrast, and lighting conditions affect
these results. With hindsight, we should have paid more attention to matching
brightness and contrast between the two displays, especially for the tunnel stimulus.
The HMD is brighter due to the shutter glasses used in CAVE, and also the black
CAVE floor was not completely matte. Dots and cylinder scenes have a lot of black
so this may affect them less than tunnel.

We had to port the virtual environments to CaveLib for display in the CAVE,
so we extracted them into stand-alone executables that were implemented with
plain OpenGL. These were easy to port to CaveLib, and it only took a few hours
of programming in the VRC laboratory. We also extracted the data acquisition
part into a stand-alone application and used a laptop computer to collect the data.
Synchronization had to be done manually during the experiment.

5.2.6 Effects of solvent exposure on balance

The Finnish Institute of Occupational Health (FIOH) studied the effects of solvent
exposure on balance using the VR measurement system (Toppila, Forsman, Pyykkö,
Starck, Tossavainen, Oksa & Uitti 2006). They included 264 male subjects in the
study and found that styrene is an additional risk factor in impaired postural sta-
bility, with the effects occuring already in younger workers. The VR posturography
system used in the study is identical to the laboratory bus installation. I helped to
set up the laboratory at FIOH.

5.2.7 Detecting balance disorders (IV, V)

We had extracted many parts of the system to independent components during
our previous research. The Intergraph workstation had aged, and an inexpensive
upgrade path was needed. Common graphics accelerators had exceeded it in per-
formance, for the game industry drove their rapid development. The accelerators
began to support two monitors, which was a requirement for our application. When
we started our research, no common graphics card supported hardware-accelerated
rendering on two synchronized monitors. Now this could be done, so we replaced the
workstation with two standard desktop computers and equipped one of them with

58 IMPLEMENTATION AND APPLICATIONS

(a)

(b)

Figure 5.4. CAVE experiments: (a) before stimulation, (b) during dots.

APPLICATIONS 59

an nVidia 3D graphics accelerator. We also replaced the HP-34970A on RS-232
with a Data Translation DT-9800 series ADC connected with USB.

Different versions of the system included a projection display and a programm-
able moving platform. The software obviously needed to be more configurable, so
that we could make changes faster in response to research needs. It was rewritten
from the ground up, and we put more effort on the user interface, as the new
measurement system was intended for use by laboratory assistants.

In Publication IV, we used the new measurement system to implement a series of
tests. The series includes measurements in quiet standing with eyes open and eyes
closed, the cylinder stimulus, a tilting platform stimulus without VR stimulation,
and the tunnel stimulus with the tilting platform. It is designed to characterize
a test subject’s postural control comprehensively. We had implemented more ad-
vanced environments already, but cylinder and tunnel were kept, because we had
used them in earlier studies. First the eyes open and eyes closed tests are adminis-
tered. After these tests, the test subject puts on a safety harness to prevent falls,
and the cylinder, the tilting platform, and the tunnel tests are performed.

As an application, we considered discriminating 33 controls (all male, age 24–46,
mean 33, std. dev. 5) from 88 Ménière patients (23 male, 54 female, age 38–82, mean
60, std. dev. 10). We used MV as in the previous studies, and also introduced a
new parameter called vertical force power fraction (VFPF) to catch the test subjects
who were hanging or leaning on the safety harness. The parameter is the fraction
of signal power below 1 Hz of the instantaneous weight signal after DC-removal
computed from a standard periodogram. Its purpose is to detect (relatively) slow
drifting in weight. VFPF proved to be more effective than MV for discrimination.
Both of the parameters had significant differences between the groups, however.
To evaluate the discriminative power of the test set, we applied univariate cutoff
value classifiers, Fisher’s linear discriminant (LD), k nearest neighbor (kNN) with
automatic choice of k, and Adaboost with decision stumps to classify the cases into
the respective groups and used leave-one-out cross-validation (LOOCV) to estimate
the classification accuracy. We also used feature subset selection with LD and kNN.
This test included only the cases with complete data: 33 control subjects and 55
Ménière cases. Some of the patients were unfit or unable to complete the entire
series of tests. We found that classification slightly more accurate than 80% could
be expected on the basis of the measurements. The baseline classifier, majority
rule, that classifies every case to Ménière has an accuracy of 62.5%.

In Publication V, we take the same measurements and try to apply pattern
recognition methods to describe how the measurements of controls and Ménière
patients differ. As stated earlier, there is no established way to analyze stabilograms,
and brute-force methods may give hints on where to start looking. We computed
156 different parameters from the test series and used a feature subset selection
algorithm to select a set of 5 features that seemed to be good at describing the
differences. The fitness of the feature subset was defined by a .632+-bootstrap
error estimate of a simple 1NN classifier that standardizes the variables and uses the
Euclidean metric. The accuracy of the subset selection process was estimated with
LOOCV. The classification accuracy seems to improve slightly with the addition of
more parameters, but there are too many correlated parameters with respect to the

60 IMPLEMENTATION AND APPLICATIONS

number of measurements to choose the best subset with certainty. The differences
of estimated discriminative power between parameter subsets may be just random
variation.

During the work for Publication V, we were still experimenting with the analy-
sis of the instantaneous weight. Consequently, the VFPF1 parameter is a different
version from the one described in the text: Instead of subtracting the mean, it sub-
tracts the best straight line fit from the signal before computing the periodogram.
The two parameters are quite close. Also, the results in Publication IV are reported
in percents of signal power, and in Publication V, they are reported as fraction of
signal power. This explains the small differences in the VFPF results between the
two publications.

5.2.8 Psychophysiological stimulation

In (Alatalo, Juhola, Surakka & Tossavainen 2005), we applied the measurement
system in a psychophysiological experiment on approach-withdrawal reactions. We
used a virtual environment, where a person runs directly toward the test subject,
and changes direction just before collision to pass him by on his left or on his
right. The facial expression of the runner varies between happy, neural, and angry.
The event takes place in a city scene that is much more realistic than the envi-
ronments used in our postural control studies. For example, it includes realistic
buildings, animation, lighting, and dynamic shadows. The test included 20 healthy
test subjects, who were exposed repeatedly to the stimulus with the runner’s facial
expression and passing sides randomized. We used force platform measurements
to evaluate the response and found statistically significant evasive actions visible
in the stabilograms before the impending collision. The study also shows that VR
balance measurements have applications outside postural control research.

The stimulus was implemented as a module for my VR stimulation and mea-
surement software. I helped with the integration work and with the balance mea-
surements and their analysis.

Chapter 6

Discussion

We used essentially the same hardware to implement the test setups described in
Chapter 5 and in Publications I–V. The setups used multiple visual stimuli during
the course of the experiment, and later we also included a tilting force platform
for mechanical perturbations. The stimuli caused quantifiable effects on balance,
and we could design them to induce different effects, such as leaning in the rotating
cylinder and tracking movements in the tunnel. Healthy subjects and patients with
Ménière’s disease had significantly differering responses to stimulation.

It was straightforward to implement the virtual environments used in Publica-
tions I–V, and we deliberately kept them simple. Complex environments would have
made the results more difficult to interpret. The hardware also placed limitations
on them, especially during the experiments in Publications I–III. Programming is
still required for implementing new environments or modifying the existing ones.
Parametric environments are a simple solution. For example, the tunnel can follow
any parametric curve, so the curve could be generated in another application, e.g.
MATLAB, and read from a file. The same applies to the path of movement in
static environments. Importing virtual environments from 3D modelling programs
would add even more flexibility. Stimuli with complex environments are probably
easiest to implement with open source game engines or scene graph libraries such
as Ogre3D and OpenSceneGraph.

There are some improvements that could be made to improve the usability
of the system in a laboratory environment. First, the measurement logic could
be improved. The present version only starts and stops the measurement and
saves the measured data, but some test setups change the stimulus based on the
previous measurements. Making the sequence scriptable based on previous test
outcomes is a general solution. Second, measurements involving many tests and test
subjects complicate the management of collected data and the integration of data
from multiple sources. The identification of the measured data is done manually
with filenames and directories in the present version. The solution is sufficient for
now, but the issue will have to be dealt with in the future. This will probably
require some changes in the architecture of the measurement system; a rewrite of
the non-realtime portions, the user interface and remote control of the server, in
a more dynamic programming language would be beneficial. The stimuli and the
control of measurement devices should be decoupled from the server into stand-

61

62 DISCUSSION

alone executables to make the implementation of new stimuli easier, but this will
introduce new synchronization problems and startup delays between measurements.

While the virtual environments worked for visual stimulation, they can still be
improved. Some of the new environments that were not used in the included studies
try to take perceptual issues into account. For example, the new tunnel can have
arbitrary textures on the tunnel surface, and the lattice takes advantage of the
parallax effect to improve movement perception. There is much to do in this area;
the theories of motion perception in perceptual psychology are a good place to start.

Our HMD is quite cumbersome, and test subjects may have difficulties making
the required user-dependent adjustments. The field of view is quite narrow, only
60◦ measured diagonally, and it rules out much of peripheral vision. A projection
display might be better as it does not encumber the viewer with heavy equipment or
need subjective adjustments. However, it may be difficult to eliminate the floor or
other visible objects from the test subject’s field of view with one, and the displays
take a lot of space. We were concerned for the safety of test subjects, especially
when using with the tilting platform, and added a safety harness to prevent falls.
This caused some problems, as some of the subjects tended use the harness for extra
support. We can probably improve its design.

The novel VFPF parameter introduced in Publication IV and the pattern recog-
nition methods applied in Publication V seem promising. The feature subset se-
lection methods need a lot of data, but they are valuable tools when faced with
data that is difficult to interpret. In Chapter 3, we made novel improvements to
algorithms for estimating COM movements from COP movements. Algorithm 2 is
close to optimal within the stated assumptions. Given its simplicity, it is tempting
to introduce new parameters based on the estimated COM movement. For example,
patterns in COM accelerations may correspond to muscle activations. We did not
have the chance to use VR stimulation for system identification, but it is possible.
For example, the room stimulus in Figure 5.2 (c), can be used to show simple linear
and angular movements. We also recorded the head orientations during stimulation;
their analysis is still open.

In summary, we investigated the applicability of virtual reality as a stimulation
method in postural control research. From the applications presented in Chapter 5
and in Publications I–V, and the results obtained in them, we can conlude that vir-
tual reality is a versatile and effective stimulation method when applied to dynamic
posturography.

Appendix A

Personal Contributions

I have worked in a multidisciplinary group during the studies presented in thesis.
Given the breadth of the topic, this thesis would not exist without collaboration
between scientists from different fields. However, in a thesis consisting of individ-
ual publications with multiple authors, I have to try to separate my individual
contributions. They are as follows:

I. I implemented the virtual environments, designed the test setup, and con-
ducted the measurements using a measurement program written by Esko
Toppila. Martti Juhola and I wrote the article.

II. I designed the test setup, implemented the measurement software, conducted
and analyzed the measurements, and wrote the article.

III. I ported the virtual enviroments to CaveLib with much assistance from the
staff of Tampere Virtual Reality Center (VRC). VRC staff also assisted during
the experiments with the CAVE. I performed the HMD experiments, analyzed
the measurements, and wrote the article. Martti Juhola provided assistance
in logistic arrangements.

IV. The test setup was designed by Esko Toppila and Ilmari Pyykkö. I wrote
measurement software for VR tests and Esko Toppila’s program was used for
measurements without VR. Kalevi Nieminen designed and built the tilting
force platform, and Esko Toppila programmed its movements. Laboratory
staff at the Hearing Center of Tampere University Hospital collected the mea-
surements. I analyzed the data and implemented all the algorithms used in
the analysis. The VFPF parameter and platform calibration are my inven-
tions. I wrote most of the article with contributions from Ilmari Pyykkö on
medical aspects and suggestions from my other colleagues.

V. Publication V is completely my own work based on balance measurements
collected in the laboratory in the Hearing Center.

63

Bibliography

Alatalo, T., Juhola, M., Surakka, V. & Tossavainen, T. (2005), Creation of a virtual
reality stimulation for psychophysiological measurement. Submitted to Virtual
Reality.

Baratto, L., Morasso, P. G., Re, C. & Spada, G. (2002), ‘A new look at posturo-
graphic analysis in the clinical context: sway-density vs. other parameterisation
techniques’, Motor Control 6(3), 248–273.

Bles, W. & Roos, J. W. P. (1991), ‘The tilting room and posturography’, Acta
Oto-Rhino-Laryngologica Belgica 45, 387–391.

Blinn, J. (1996), Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, Morgan
Kaufmann, San Francisco.

Blinn, J. F. & Newell, M. E. (1976), ‘Texture and Reflection in Computer Generated
Images’, Communications of the ACM 19(10), 542–547.

Blinn, J. F. & Newell, M. E. (1978), Clipping using homogeneous coordinates,
in ‘SIGGRAPH ’78: Proceedings of the 5th annual conference on computer
graphics and interactive techniques’, ACM Press, pp. 245–251.

Bottema, O. & Roth, B. (1990), Theoretical Kinematics, Dover.

Brandt, T., Paulus, W. & Straube, A. (1986), Vision and posture, in W. Bles &
T. Brandt, eds, ‘Disorders of Posture and Gait’, Elsevier Science Publishers
B.V., Amsterdam, pp. 157–175.

Bräuer, D. & Seidel, H. (1978), ‘The autoregressive time series modelling of sta-
bilograms’, Acta Biologica et Medica Germanica 37, 1221–1227.

Bräuer, D. & Seidel, H. (1979), ‘Time series analysis of postural sway’, Agressologie
20B, 111–112.

Bräuer, D. & Seidel, H. (1980), ‘The autoregressive structure of postural sway’,
Agressologie 21E, 101–104.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M. & Han-
rahan, P. (2004), ‘Brook for GPUs: stream computing on graphics hardware’,
ACM Transactions on Graphics 23(3), 777–786.

64

BIBLIOGRAPHY 65

Carola, R., Harley, J. P. & Noback, C. R. (1990), Human Anatomy & Physiology,
McGraw-Hill, New York.

Caron, O., Faure, B. & Brenière, Y. (1997), ‘Estimating the centre of gravity of
the body on the basis of the centre of pressure in standing posture’, Journal
of Biomechanics 30(11/12), 1169–1171.

Carpenter, M. G., Frank, J. S., Winter, D. A. & Peysar, G. W. (2001), ‘Sampling
duration effects on centre of pressure summary measures’, Gait & Posture
13, 35–40.

Chiari, L., Cappello, A., Lenzi, D. & Croce, U. D. (2000), ‘An improved technique
for the extraction of stochastic parameters from stabilograms’, Gait & Posture
12, 225–234.

Chiari, L., Rocchi, L. & Cappello, A. (2002), ‘Stabilometric parameters are affected
by anthropometry and foot placement’, Gait & Posture 17, 666–677.

Chow, C. C. & Collins, J. J. (1995), ‘Pinned polymer model of posture control’,
Physical Review E 52(1), 907–912.

Collins, J. J. & De Luca, C. J. (1993), ‘Open-loop and closed-loop control of posture:
A random-walk analysis of center-of-pressure trajectories’, Experimental Brain
Research 95, 308–318.

Collins, J. J. & De Luca, C. J. (1994), ‘Random walking during quiet standing’,
Physical Review Letters 73(5), 764–912.

Collins, J. J. & De Luca, C. J. (1995a), ‘The effects of spaceflight on open-loop
and closed-loop postural control mechanisms: human neurovestibular studies
on sls-2’, Experimental Brain Research 107, 145–150.

Collins, J. J. & De Luca, C. J. (1995b), ‘The effects of visual input on open-loop
and closed-loop postural control mechanisms’, Experimental Brain Research
103, 151–163.

Collins, J. J. & De Luca, C. J. (1995c), ‘Upright, correlated random walks:
A statistical-biomechanics approach to the human postural control system’,
Chaos 5(1), 57–63.

Cook, R. L. & Torrance, K. E. (1982), ‘A Reflectance Model for Computer Graph-
ics’, ACM Transactions on Graphics 1(1), 7–24.

Cruz-Neira, C., Sandin, D. J. & DeFanti, T. A. (1993), Surround-screen projection-
based virtual reality: the design and implementation of the CAVE, in ‘Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques’, ACM Press, pp. 135–142.

Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V. & Hart, J. C. (1992),
‘The CAVE: audio visual experience automatic virtual environment’, Commu-
nications of the ACM 35(6), 64–72.

66 BIBLIOGRAPHY

Eberly, D. H. (2001), 3D Game Engine Design, Morgan Kaufmann, San Diego.

Eves, H. (1990), An Introduction to the History of Mathematics, 6th edn, Saunders
College Publishing, Philadelphia, Pennsylvania.

Ferdjallah, M., Harris, G. F. & Wertsch, J. J. (1999), ‘Instantaneous postural sta-
bility characterization using time-frequency analysis’, Gait & Posture 10, 129–
134.

Foley, J. D., van Dam, A., Feiner, S. K. & Hughes, J. F. (1989), Computer Graphics:
Principles and Practice, Addison-Wesley, Reading.

Fransson, P.-A., Hafström, A., Karlberg, M., Magnusson, M., Tjäder, A. & Jo-
hansson, R. (2003), ‘Postural control adaptation during galvanic vestibular
and vibratory proprioceptive stimulation’, IEEE Transactions on Biomedical
Engineering 50(12), 1310–1319.

Godement, R. (1968), Algebra, Kershaw Publishing Company, London.

Goldman, R. (2002), ‘On the algebraic and geometric foundations of computer
graphics’, ACM Transactions on Graphics 21(1), 52–86.

Goldman, R. N. (1985), ‘Illicit expressions in vector algebra’, ACM Transactions
on Graphics 4(3), 223–243.

Goldstein, E. B. (2002), Sensation and Perception, 6th edn, Wadsworth, Pacific
Grove, CA.

Goral, C. M., Torrance, K. E., Greenberg, D. P. & Battaile, B. (1984), Modeling
the interaction of light between diffuse surfaces, in ‘SIGGRAPH ’84: Pro-
ceedings of the 11th annual conference on Computer graphics and interactive
techniques’, ACM Press, New York, NY, USA, pp. 213–222.

Grzegorzewski, B. & Kowalczyk, A. (2001), ‘First-order statistics of human stabilo-
gram’, Human Movement Science 20, 853–866.

Gurfinkel, E. V. (1973), ‘Physical foundations of the stabilography’, Agressologie
14(C), 9–14.

Heckbert, P. S. & Moreton, H. P. (1991), Interpolation for polygon texture mapping
and shading, in D. F. Rogers & R. A. Earnshaw, eds, ‘State of the Art in
Computer Graphics: Visualization and Modelling’, Springer-Verlag, New York,
pp. 101–111.

Hufschmidt, A., Dichgans, J., Mauritz, K.-H. & Hufschmidt, M. (1980), ‘Some
methods and parameters of body sway quantification and their neurological
applications’, Archiv für Psychiatrie und Nervenkrankheiten 228, 135–150.

Jacobson, J., Redfern, M. S., Furman, J. M., Whitney, S. L., Sparto, P. J., Wilson,
J. B. & Hodges, L. F. (2001), Balance NAVE: a virtual reality facility for
research and rehabilitation of balance disorders, in ‘Proceedings of the ACM

BIBLIOGRAPHY 67

Symposium on Virtual Reality Software and Technology’, ACM Press, pp. 103–
109.

Johansson, R., Magnusson, M. & Åkesson, M. (1988), ‘Identification of human pos-
tural dynamics’, IEEE Transactions on Biomedical Engineering 35(10), 858–
869.

Johansson, R., Magnusson, M., Fransson, P.-A. & Karlberg, M. (2001), ‘Multi-
stimulus multi-response posturography’, Mathematical Biosciences 174, 41–
59.

Kajiya, J. T. (1986), The rendering equation, in ‘SIGGRAPH ’86: Proceedings of
the 10th annual conference on computer graphics and interactive techniques’,
ACM Press, pp. 143–150.

Kalat, J. W. (1984), Biological Psychology, 2nd edn, Wadsworth Publishing Com-
pany, Belmont, CA.

Kalawsky, R. S. (1993), The Science of Virtual Reality and Virtual Environments,
Addison-Wesley, Reading.

Karlsson, A. & Frykberg, G. (2000), ‘Correlations between force plate measures for
assessment of balance’, Clinical Biomechanics 15, 365–369.

Keshner, E. & Kenyon, R. (2000), ‘The influence of an immersive virtual environ-
ment on the segmental organization of postural stabilizing responses’, Journal
of Vestibular Research 10, 207–219.

Kim, N. G., Yoo, C. K. & Im, J. J. (1999), ‘A new rehabilitation training sys-
tem for postural balance control using virtual reality’, IEEE Transactions on
Rehabilitation Engineering 7(4), 482–485.

King, D. L. & Zatsiorsky, V. M. (1997), ‘Extracting gravity line displacement from
stabilographic recordings’, Gait & Posture 6, 27–38.

Kochanek, D. H. U. & Bartels, R. H. (1984), Interpolating splines with local tension,
continuity, and bias control, in ‘Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques’, ACM Press, pp. 33–41.

Kramer, P. D., Roberts, D. C., Shelhamer, M. & Zee, D. S. (1998), ‘A versa-
tile stereoscopic visual display system for vestibular and oculomotor research’,
Journal of Vestibular Research 8(5), 363–379.

Kuczyński, M. (1999), ‘The second order autoregressive model in the evaluation of
postural stability’, Gait & Posture 9, 50–56.

Kuno, S., Kawakita, T., Kawakami, O., Miyake, Y. & Watanabe, S. (1999), ‘Pos-
tural adjustment response to depth direction moving patterns produced by
virtual reality graphics’, Japanese Journal of Physiology 49, 417–424.

68 BIBLIOGRAPHY

Lafond, D., Duarte, M. & Prince, F. (2004), ‘Comparison of three methods to esti-
mate the center of mass during balance assessment’, Journal of Biomechanics
37, 1421–1426.

Le Clair, K. & Riach, C. (1996), ‘Postural stability measures: what to measure and
for how long’, Clinical Biomechanics 11(3), 176–178.

Lee, H.-Y., Cherng, R.-J. & Lin, C.-H. (2004), ‘Development of a virtual reality
environment for somatosensory and perceptual stimulation in the balance as-
sessment of children’, Computers in Biology and Medicine 34(8), 719–733.

Lenzi, D., Cappello, A. & Chiari, L. (2003), ‘Influence of body segment parame-
ters and modeling assumptions on the estimate of center of mass trajectory’,
Journal of Biomechanics 36, 1335–1341.

Levin, O. & Mizrahi, J. (1996), ‘An iterative model for estimation of the trajectory
of center of gravity from bilateral reactive force measurements in standing
sway’, Gait & Posture 4, 89–99.

Maki, B. E. (1986), ‘Selection of pertubation parameters for identification of
the posture-control system’, Medical & Biological Engineering & Computing
24, 561–568.

Maki, B. E. & Fernie, G. R. (1988), A system identification approach to balance
testing, in O. Pompeiano & J. H. J. Allum, eds, ‘Progress in Brain Research’,
Vol. 76, Elsevier Science Publishers B.V., chapter 26, pp. 297–306.

Mitchell, S. L., Collins, J. J., Luca, C. J. D., Burrows, A. & Lipsitz, L. A. (1995),
‘Open-loop and closed-loop postural control mechanisms in parkinson’s dis-
ease: increased mediolateral activity during quiet standing’, Neuroscience let-
ters 197, 133–139.

Möller, T. & Haines, E. (1999), Real-Time Rendering, A.K. Peters, Natick, MA.

Morasso, P. G., Spada, G. & Capra, R. (1999), ‘Computing the COM from the
COP in postural sway movements’, Human Movement Science 18, 759–767.

Nashner, L. M. (1971), ‘A model describing vestibular detection of body sway mo-
tion’, Acta Otolaryngologica 72, 429–436.

Nashner, L. M. (1985), Strategies for organization of human posture, in M. Igarashi
& F. O. Black, eds, ‘Vestibular and Visual Control on Posture and Locomotor
Equilibrium’, Karger, Basel, Switzerland, pp. 1–8.

Önell, A. (2000), ‘The vertical ground reaction force for analysis of balance?’, Gait
& Posture 12, 7–13.

Peterka, R. J. (2000), ‘Postural control interpretation of stabilogram diffusion anal-
ysis’, Biological Cybernetics 82, 335–343.

BIBLIOGRAPHY 69

Phong, B.-T. (1975), ‘Illumination for computer generated pictures’, Communica-
tions of the ACM 18(6), 311–317.

Proakis, J. G. & Manolakis, D. G. (1996), Digital Signal Processing: Principles,
Algorithms, and Applications, 3rd edn, Prentice Hall, Upper Saddle River,
New Jersey.

Redfern, M. S., Yardley, L. & Bronstein, A. M. (2001), ‘Visual influences on bal-
ance’, Journal of Anxiety Disorders 15, 81–94.

Riley, M. A., Balasubramaniam, R. & Turvey, M. T. (1999), ‘Recurrence quantifi-
cation analysis of postural fluctuations’, Gait & Posture 9, 65–78.

Rocchi, L., Chiari, L. & Cappello, A. (2004), ‘Feature selection of stabilometric
parameters based on principal component analysis’, Medical & Biological En-
gineering & Computing 42, 71–79.

Roy, S. H., Ladin, Z. & De Luca, C. J. (1987), Experimental evidence for a random
process model of postural sway, in ‘The IEEE Ninth Annual Conference of the
Engineering in Medicine and Biology Society, Boston, MA’, p. 759.

Schlag, J. (1991), Using geometric constructions to interpolate orientation with
quaternions, in J. Arvo, ed., ‘Graphics Gems’, Vol. II, Academic Press, San
Diego, pp. 377–380.

Schmid, M., Conforto, S., Camomilla, V., Cappozzo, A. & D’Alessio, T. (2002),
‘The sensitivity of posturographic parameters to acquisition settings’, Medical
Engineering & Physics 24, 623–631.

Schumann, T., Redfern, M. S., Furman, J. M., El-Jaroudi, A. & Chaparro, L. F.
(1995), ‘Time-frequency analysis of postural sway’, Journal of Biomechanics
28(5), 603–607.

Segal, M. & Akeley, K. (2003), The OpenGL R© Graphics System: A Specifi-
cation (Version 1.5), Silicon Graphics. Retrieved January 7, 2006, from
http://www.opengl.org.

Seidel, H., Bräuer, D., Bastek, R. & Issel, I. (1978), ‘On the quantitative charac-
terization of human body sway in experiments with long-term performance’,
Acta Biologica et Medica Germanica 37, 1551–1561.

Shimba, T. (1984), ‘An estimation of center of gravity from force platform data’,
Journal of Biomechanics 17(1), 53–60.

Shoemake, K. (1985), Animating rotation with quaternion curves, in ‘Proceedings
of the 12th Annual Conference on Computer Graphics and Interactive Tech-
niques’, ACM Press, pp. 245–254.

Stevens, W. R. (1993), Advanced Programming in the UNIX R© Environment, Addi-
son Wesley Longman Inc., Reading, Massachusetts.

70 BIBLIOGRAPHY

Stevens, W. R. (1998), UNIX Network Programming, Vol. 1, 2nd edn, Prentice-Hall,
Upper Saddle River, New Jersey.

Stevens, W. R. (1999), UNIX Network Programming, Vol. 2, 2nd edn, Prentice-Hall,
Upper Saddle River, New Jersey.

Sutherland, I. E. & Hodgman, G. W. (1974), ‘Reentrant polygon clipping’, Com-
munications of the ACM 17(1), 32–42.

Toppila, E., Forsman, P., Pyykkö, I., Starck, J., Tossavainen, T., Oksa, P. & Uitti,
J. (2006), ‘Effect of styrene on postural stability among reinforced plastic plant
workers in Finland’, Journal of Occupational and Environmental Medicine
48(2), 6 pages. To appear.

Toppila, E., Pyykkö, I., Starck, J., Tossavainen, T., Nyman, P., Juhola, M. &
Oksa, P. (2002), Protection of inner ear against acute environmental noise
with antioxidants, in ‘XXII Barany Society Meeting’. Abstract.

Tossavainen, T., Juhola, M., Aalto, H., Toppila, E., Pyykkö, I., Honkavaara, P.,
Laurikkala, J. & Laakso, J. (2001), ‘Postural control as assessed with virtual
reality’, Acta Otolaryngologica Supplement 545, 53–56.

van Asten, W. N. J. C., Gielen, C. C. A. M. & van der Gon, J. J. D. (1988),
‘Postural adjustments induced by simulated motion of differently structured
environments’, Experimental Brain Research 73, 371–383.

Watt, A. (2000), 3D Computer Graphics, 3rd edn, Addison-Wesley, Harlow, Eng-
land.

Watt, A. & Watt, M., eds (1992), Advanced Animation and Rendering Techniques,
Addison-Wesley, Harlow, England.

Whitted, T. (1980), ‘An improved illumination model for shaded display’, Commu-
nications of the ACM 23(6), 343–349.

Widder, D. W. (1989), Advanced Calculus, 2nd edn, Dover, Mineola, New York.

Winter, D. A. (1990), Biomechanics and Motor Control of Human Movement, 2nd
edn, Wiley Interscience, New York.

Yamada, N. (1995), ‘Chaotic swaying of the upright posture’, Human Movement
Science 14, 711–726.

Zatsiorsky, V. M. & King, D. L. (1998), ‘An algorithm for determining the grav-
ity line location from posturographic recordings’, Journal of Biomechanics
31, 161–164.

