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ABSTRACT 
 
Vitamin D3 is produced in the skin during exposure to sunlight and is then 25-hydroxylated in 
the liver, yielding the major circulating metabolite 25-hydroxyvitamin D3 (25OHD3). 25OHD3 is 
converted to 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3] mainly in the kidney by 25OHD3-1α-
hydroxylase (1α-hydroxylase). 25OHD3 and 1α,25-(OH)2D3 are further hydroxylated into less 
active metabolites by 25OHD3-24-hydroxylase (24-hydroxylase, CYP24). Vitamin D3 
metabolites exert their effects by binding to the vitamin D receptor. 24-Hydroxylase is highly 
inducible by vitamin D3 metabolites at transcriptional level and controls the biological action of 
25OHD3 and 1α,25-(OH)2D3. The active form of vitamin D3, 1α,25-(OH)2D3 plays a central role 
in calcium homeostasis and at hypercalcemic concentrations it regulates the proliferation and 
differentiation of various cell types.   
 
The present study was designed to investigate the role of vitamin D3 metabolites and their 
enzymes in human primary prostate stromal and epithelial cells as well as in cancer cells. In 
addition, the crosstalk between vitamin D3 and androgen as well as retinoic acid was 
investigated.  
 
The present data show the expression of 1α-hydroxylase and 24-hydroxylase in the prostate. 1α-
Hydroxylase is up-regulated by 25OHD3 in stromal cells. 24-Hydroxylase is up-regulated by 
25OHD3 and 1α,25-(OH)2D3 in epithelial and stromal cells. The transcriptional activity of 
25OHD3 and 1α,25-(OH)2D3 in stromal cells is greatly increased in the presence of a 24-
hydroxylase inhibitor, VID400. 
 
The crosstalk between vitamin D3 and 5α-dihydrotestosterone (DHT) or all-trans-retinoic acid 
(ATRA) was studied in prostate stromal and epithelial cells. DHT at a physiological 
concentration enhances the antiproliferative activities of 25OHD3 and 1α,25-(OH)2D3 by 
suppressing the expression of 24-hydroxylase in LNCaP cells. ATRA via retinoic acid receptor 
α (RARα) significantly decreases the expression of 24-hydroxylase mRNA induced by 25OHD3 
and 1α,25-(OH)2D3 in primary cultures of human prostate stromal cells P29SN and P32S but not 
in either primary culture of human prostate epithelial cells PrEC or cancer epithelial cells LNCaP 
and PC3. Cell proliferation study showed that the combined treatment of 1α,25-(OH)2D3 and a 
RARα-selective ligand, Am80 at 10 nM strongly inhibits cell proliferation whereas either alone 
has no effect.   
 
By inhibiting 1α-hydroxylase enzyme activity, the induction of 24-hydroxylase mRNA by 250 
nM 25OHD3 was clearly enhanced in stromal cells, suggesting that 1α-hydroxylation is not a 
prerequisite for the hormonal activity of 25OHD3. This finding that 25OHD3 at a physiological 
concentration possesses an inherent hormonal activity provides a novel view of the vitamin D3 
endocrine system and suggests that it could be used as an anticancer therapy. 1α,25-(OH)2D3 is 
inactive at its physiological concentrations but pharmacological concentrations are needed for 
induction of target gene expression and growth inhibition. 
 
Altogether, the present study demonstrates a novel vitamin D3 endocrine system mediated by 
25OHD3 and provides feasible therapeutic approaches by using DHT or ATRA in combination 
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with vitamin D3 metabolites at physiological concentrations. It also suggests that 24-hydroxylase 
is a key factor in inhibiting the action of vitamin D3 metabolites in cancer chemoprevention and 
therapy. 
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ABBREVIATIONS 
1αOHD2   1α-hydroxyvitamin D2

1αOHD3   1α-hydroxyvitamin D3

1α,25-(OH)2D3  1α,25-dihydroxyvitamin D3, calcitriol 
1α,24,25-(OH)3D3  1α,24,25-trihydroxyvitamin D3
24,25-(OH)2D3  24,25-dihydroxyvitamin D3
25OHD2   25-hydroxyvitamin D2
25OHD3   25-hydroxyvitamin D3, calcidiol 
AF    activating function 
ANOVA   analysis of variance 
AR     androgen receptor 
ATRA     all-trans-retinoic acid 
BSA    bovine serum albumin 
cAMP    cyclic 3’,5’-adenosine monophosphate  
CBP    cAMP response element-binding protein 
C-terminus   carboxyl terminus    
CYP24A1, 24-hydroxylase 25OHD3-24-hydroxylase 
CYP27A1   27-hydroxylase 
CYP27B1, 1α-Hydroxylase 25OHD3-1α-hydroxylase 
DBD     DNA-binding domain 
DBP     vitamin D binding protein 
DCC-FBS   dextran-treated charcoal-stripped fetal bovine serum 
DHT     5α-dihydrotestosterone 
DRIP     VDR-interacting protein 
ECL    enhanced chemiluminescence  
ER    estrogen receptor 
FBS    fetal bovine serum 
HPLC     high-performance liquid chromatography 
IDBP    intracellular vitamin D binding protein 
IGF-1    insulin-like growth factor-1 
IGFBP-3   insulin-like growth factor binding protein-3 
Ig    immunoglobulin 
Kd    dissociation constant  
LBD     ligand-binding domain 
MAPK    mitogen-activated protein kinase 
mRNA    messenger RNA 
NADPH   reduced nicotinamide-adenine dinucleotide phosphate 
NCoR-1   nuclear receptor corepressor-1 
N-terminal   amino terminal                              
OD    optical density 
PBS    phosphate-buffered saline 
PKA     protein kinase A 
PKC     protein kinase C 
PMCA    plasma membrane calcium ATPase  
PPAR    peroxisome proliferator-activated receptor 
PSA     prostate-specific antigen  
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PTH    parathyroid hormone 
RAR     retinoic acid receptor 
RPLP0    human acidic ribosomal phosphoprotein P0 
rRNA    ribosomal RNA 
RXR     retinoid X receptor 
SD    standard deviation 
SDS-PAGE   sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
SRC    steroid receptor coactivator 
TBS    Tris-HCl buffered saline 
TFIIB     transcription factor IIB 
TGFβ    transforming growth factor β 
TIF    transcriptional intermediary factor  
TR     thyroid hormone receptor 
TRPV    transient receptor potential cation channel  
UV    ultraviolet 
VDR     vitamin D3 receptor 
VDRE    vitamin D-response element 
vs.    versus   
YY1    Ying-Yang 1 
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INTRODUCTION 
 
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], plays a crucial 
role in calcium homeostasis and regulates the proliferation and differentiation of various cell 
types. However, the clinical use of 1α,25-(OH)2D3 is limited because of the induction of 
hypercalcemia at a concentration to suppress cell proliferation. 1α,25-(OH)2D3 functions through 
its interaction with vitamin D3 receptor (VDR) and heterodimer partner 9-cis retinoic acid 
receptor (RXR) to regulate target gene transcription. 
 
1α,25-(OH)2D3 is generated from two sequential hydroxylations of vitamin D3, which is either of 
nutritional origin or produced by its precursor, 7-dehydrocholesterol (provitamin D3) in the skin 
upon exposure to sunlight, UVB (290-315 nm). 25-Hydroxylation is a prerequisite for the 
activation of vitamin D3, yielding the prohormone 25-hydroxyvitamin D3 (25OHD3). 25OHD3 is 
the major circulating metabolite and a marker of the nutritional state. 25OHD3 is then 1α-
hydroxylated by 25OHD3-1α-hydroxylase (1α-hydroxylase, CYP27B1), yielding 1α,25-
(OH)2D3. The principle site of 1α-hydroxylase activity is the proximal tubules of the kidney. 1α-
Hydroxylase has also been found in many extra-renal tissues and cells, such as skin, placenta, 
lung, colon, macrophages and prostate epithelial cells, which suggests an autocrine and/or a 
paracrine role of 1α,25-(OH)2D3. The catabolism of 1α,25-(OH)2D3 is initiated by a 
mitochondrial cytochrome P450 enzyme 25OHD3-24-hydroxylase (24-hydroxylase, CYP24A1). 
It hydroxylates 25OHD3 and 1α,25-(OH)2D3. 24-Hydroxylase is expressed predominantly in the 
kidney and also found in various vitamin D3 target tissues. 24-Hydroxylase expression is up-
regulated in all vitamin D3 target cells by 1α,25-(OH)2D3 at transcriptional level through 
activation of two vitamin D-response elements (VDREs) in its promoter region. CYP24A1 is 
known to be the strongly induced gene, therefore, the induction of CYP24A1 expression is often 
used as an indicator of 1α,25-(OH)2D3 responsiveness. Amplification of the CYP24A1 gene 
region has been found in human breast cancer, ovarian cancer, and prostate cancer as well as 
mouse islet carcinoma. CYP24A1 is therefore considered a candidate oncogene because it can 
abrogate vitamin D3-mediated growth control. Thus, the expression of 1α-hydroxylase and 24-
hydroxylase is important in the metabolism of vitamin D3, which in turn regulates the local 
concentrations of 25OHD3 and 1α,25-(OH)2D3. This thesis aimed to elucidate the role of 
25OHD3, 1α,25-(OH)2D3, and their metabolizing enzymes in normal human prostate stromal and 
epithelial cells as well as in prostate cancer cells. 
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REVIEW OF THE LITERATURE 
 
1. VITAMIN D 
Vitamin D was discovered in the study of rickets. As early as 1822, a Polish physician, 
Sniadecki, observed and concluded that sunbathing cured rickets. Later it was demonstrated that 
exposure of the skin to UV radiation was responsible for the antirachitic activity (Huldschinsky 
1919). After Mellanby’s finding that cod liver oil containing vitamin A could cure the rachitic 
condition in dogs (1919), it was discovered that the antirachitic factor in cod liver oil was in fact 
not vitamin A, but a new vitamin designated vitamin D (McCollum et al. 1922). The active form 
of vitamin D, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], plays a key role in calcium 
homeostasis as well as in bone development and maintenance. Additionally, 1α,25-(OH)2D3 
regulates the proliferation and differentiation of various cell types (Jones et al. 1998, Nagpal et 
al. 2005). 
 

1.1. Metabolism of vitamin D  
Vitamin D is not a true vitamin because its precursor can be produced upon the exposure of the 
skin to ultraviolet B (UVB). Vitamin D is a secosteroid (secosterol), which means that one of the 
rings in its cyclopentanoperhydrophenanthrene ring structure undergoes breakage of a carbon-
carbon bond; for vitamin D, it is the 9,10 carbon-carbon bond of ring B (Figure 1). There are two 
forms of vitamin D with distinct structures. Vitamin D2 (also known as ergocalciferol) is a 
natural form in plants, whereas vitamin D3 (cholecalciferol) is synthesized by vertebrates 
(DeLuca 2004).  
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Figure 1. The metabolism of vitamin D3. 
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1.1.1. Photosynthesis of vitamin D3 
In mammals vitamin D3 is derived either from its cholesterol-like precursor in the skin or from 
nutritional sources. During the exposure of human skin to sunlight, UVB (290-315 nm) converts 
the precursor, 7-dehydrocholesterol (provitamin D3) in the epidermis into previtamin D3, which 
is then isomerized to vitamin D3. Previtamin D3 can also isomerize into biologically inactive 
photoisomers lumisterol and tachysterol in order to avoid vitamin D3 intoxication (Bouillon et al. 
1998). There are three factors affecting the output of vitamin D3. The first factor is UVB, which 
is influenced by season, latitude, and air pollution (Webb et al. 1988, Agarwal et al. 2002). The 
second factor is the concentration of 7-dehydrocholesterol, which decreases with age 
(MacLaughlin and Holick 1985). The third factor is the skin. Sunscreen (Matsuoka et al. 1987), 
clothing (Matsuoka et al. 1992, Salih 2004), and increased melanin pigmentation (Clemens et al. 
1982, Bell et al. 1985) can reduce the photosynthesis of vitamin D3. Once vitamin D3 is 
produced, it enters the extracellular fluid space, where it binds to vitamin D binding protein 
(DBP) in the circulation, and finally enters the bloodstream. Vitamin D3 is then taken up either 
by the adipose tissue for storage or by the liver for further metabolism (Jones et al. 1998).  
 

1.1.2. Vitamin D3-25-hydroxylase 
25-Hydroxylation is a prerequisite for the activation of vitamin D3, yielding 25-hydroxyvitamin 
D3 (25OHD3). 25OHD3 is the major circulating metabolite and a marker of the nutritional state. 
The normal range of serum 25OHD3 concentrations is 25-137.5 nmol/L (Weaver and Fleet 
2004), which varies with seasons among populations (Hine and Roberts 1994). However, it has 
been suggested that the adequate 25OHD3 concentrations would be 100-200 nmol/L (Zittermann 
2003). The liver was shown to be the main site of 25-hydroxylation (Ponchon and DeLuca 1969, 
Ponchon et al. 1969). To date, three cytochrome P450 enzymes, CYP27A1, CYP2R1, and 
CYP3A4 have been reported to possess 25-hydroxylase activity. The first identified enzyme was 
a mitochondrial protein, sterol 27-hydroxylase (CYP27A1) (Cali and Russell 1991, Guo et al. 
1993). It hydroxylates a variety of sterols at the C27 position. This process involves cytochrome 
P450 enzyme receiving two electrons sequentially from reduced nicotinamide-adenine 
dinucleotide phosphate (NADPH) and a short transfer chain formed by ferredoxin reductase 
(adrenodoxin reductase) and ferredoxin (adrenodoxin). Mice with disrupted sterol 27-
hydroxylase gene had normal plasma levels of cholesterol and 1α,25-(OH)2D3 (Rosen et al. 
1998), indicating that sterol 27-hydroxylase is not critical for the maintenance of levels of 
vitamin D3 metabolites in the circulation. Extra-hepatic tissues, such as kidney, skin, and 
intestine have been reported to possess CYP27A1 activity (Gascon-Barre et al. 2001, Schuessler 
et al. 2001, Theodoropoulos et al. 2003). CYP2R1 enzyme is a recently identified microsomal 
protein, vitamin D3-25-hydroxylase (Cheng et al. 2003). Unlike sterol 27-hydroxylase, which 
shows specificity for vitamin D3, CYP2R1 enzyme hydroxylates both vitamin D2 and vitamin 
D3. CYP27A1 hydroxylase is a low affinity, high capacity enzyme, whereas CYP2R1 
hydroxylase is a high affinity, low capacity enzyme (Cheng et al. 2003). Therefore, the 
microsomal hydroxylase is capable of functioning at the physiological condition and is the major 
enzyme in 25-hydroxylation. CYP2R1 mRNA is abundant in the liver and testis, but the 
physiological significance of its expression in the testis remains unclear. A mutation in the 
CYP2R1 gene has been reported in a rickets patient (Cheng et al. 2004), emphasizing the 
important role of CYP2R1 enzyme in vitamin D metabolism. CYP3A4 is the liver microsomal 
enzyme with broad specificity. Although it was cloned in 1986, it has only recently been found 
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to 25-hydroxylate vitamin D2, 1α-hydroxyvitamin D2 (1αOHD2), and 1α-hydroxyvitamin D3 
(1αOHD3) in the liver (Gupta et al. 2004). Recombinant enzyme study shows that CYP3A4 is 
also a 24-hydroxylase for vitamin D2, 1αOHD2, and 1αOHD3 (Gupta et al. 2005). Its activity has 
also been found in the intestine.  
 
The regulation of 25-hydroxylation is not fully understood. CYP27A1 enzyme is down-regulated 
by 1α,25-(OH)2D3 in rat kidney and liver (Axen et al. 1995), and by 25OHD3 and 1α,25-
(OH)2D3 in rat intestine (Theodoropoulos et al. 2001). Growth hormone, insulin-like growth 
factor-1 (IGF-1), and the synthetic glucocorticoid, dexamethasone, increase the promoter activity 
of CYP27A1 (Araya et al. 2003). The microsomal enzymes CYP2R1 and CYP3A4 are so new 
findings that little are known about their regulation. CYP3A4 gene contains a vitamin D-
response element (VDRE) and its expression is up-regulated by 1α,25-(OH)2D3 in small 
intestinal and colon cancer cells (Thompson et al. 2002). However, this vitamin D3 receptor 
(VDR)-mediated regulation may not be meaningful in the liver, because of the undetectable level 
of VDR in the liver (Clemens et al. 1988).  
 

1.1.3. 25-Hydroxyvitamin D3-1α-hydroxylase 
The next step is 25OHD3-1α-hydroxylation catalyzed by 25OHD3-1α-hydroxylase (1α-
hydroxylase, CYP27B1), yielding the main active metabolite 1α,25-(OH)2D3. The normal 
physiological concentration of 1α,25-(OH)2D3 is 0.05-0.15 nmol/L (Mehta and Mehta 2002), 
which is 500-1000-fold lower than that of 25OHD3. The serum 1α,25-(OH)2D3 concentration 
shows no seasonal variation (Hine and Roberts 1994). The principal site of 1α-hydroxylase 
activity is the proximal tubules of the kidney. 1α-Hydroxylase protein is a member of the 
cytochrome P450 superfamily localized to the inner mitochondrial membrane, where it 
hydroxylates 25OHD3 at the C1α position. Enzymatic studies using a reconstituted system 
containing a membrane fraction of recombinant bacterial cells show that the 25-hydroxyl group 
is essential for 1α-hydroxylase activity and that the 24R-hydroxyl group enhances it, but the 
23S-hydroxyl group reduces it (Sakaki et al. 1999b, Sawada et al. 1999). Human CYP27B1 was 
cloned by three separate groups (Fu et al. 1997, Monkawa et al. 1997, St-Arnaud et al. 1997). 
1α-Hydroxylase-knockout mice exhibit a phenotype identical to that observed in human vitamin 
D-dependent rickets type I, a disease caused by mutations in CYP27B1 gene (Dardenne et al. 
2001, Panda et al. 2001). Additionally, female infertility and abnormal immune function were 
observed in 1α-hydroxylase-ablated mice. Enriched calcium diet corrects the abnormal mineral 
ion homeostasis in 1α-hydroxylase-knockout mice, but it is less effective than 1α,25-(OH)2D3 in 
restoring bone growth (Dardenne et al. 2003a, Dardenne et al. 2003b), which reconfirms the 
important role of 1α-hydroxylase in calcium homeostasis. The renal 1α-hydroxylase is tightly 
controlled by several factors; the expression in the kidney is down-regulated by 1α,25-(OH)2D3, 
hypercalcemia, and hyperphosphatemia, and up-regulated by parathyroid hormone (PTH), 
calcitonin, hypocalcemia, and hypophosphatemia (Bland et al. 1999, Murayama et al. 1999, 
Zhang et al. 2002). A negative regulatory region to 1α,25-(OH)2D3 as well as a positive 
regulatory region to PTH and calcitonin have been identified in CYP27B1 gene promoter, 
indicating that the regulation of 1α-hydroxylase expression by 1α,25-(OH)2D3, PTH, and 
calcitonin takes place at transcriptional level (Brenza et al. 1998, Murayama et al. 1998, Kong et 
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al. 1999). In addition, the expression of 1α-hydroxylase decreases with age (Anderson et al. 
2005).     
 
The same 1α-hydroxylase has been found in many extra-renal tissues and cells (Zehnder et al. 
2001), such as skin (Bikle et al. 1986), colon (Cross et al. 1997), intestine (Theodoropoulos et al. 
2003), lung (Jones et al. 1999), placenta (Diaz et al. 2000b), macrophages (Monkawa et al. 
2000), and prostate epithelial cells (Barreto et al. 2000), which supports the concept that 1α,25-
(OH)2D3 acts as an autocrine and/or a paracrine factor. 1α-Hydroxylase gene amplification and 
mRNA splice variants have been found in malignant glioma (Maas et al. 2001). The regulation 
of the extra-renal 1α-hydroxylase is not identical to that in the kidney. Synthesis of 1α,25-
(OH)2D3 is regulated by feedback mechanism in keratinocytes (Bikle et al. 1986), decidual cells 
(Delvin and Arabian 1987), lung cancer cells (Jones et al. 1999), macrophages (Monkawa et al. 
2000), and prostate epithelial cells (Young et al. 2004), but it is unaffected by either phosphate, 
PTH, or calcium. Interestingly, the expression of CYP27B1 mRNA is unaffected by 1α,25-
(OH)2D3 in lung cancer cells (Jones et al. 1999), macrophages (Monkawa et al. 2000) and 
keratinocytes (Xie et al. 2002). It has been elucidated that the decrease of 1α-hydroxylase 
activity is, in fact, due to the increased catabolism of both substrate 25OHD3 and product 1α,25-
(OH)2D3 by 24-hydroxylase (Xie et al. 2002). Interferon γ also regulates the synthesis of 1α,25-
(OH)2D3 in keratinocytes (Bikle et al. 1989) and macrophages (Kreutz et al. 1993, Dusso et al. 
1997).  
 
In contrast to the above-mentioned human vitamin D-dependent rickets type I, granulomatous 
diseases such as sarcoidosis are associated with a high serum concentration of 1α,25-(OH)2D3 
caused by the elevated activity of 1α-hydroxylase in macrophages (Adams et al. 1983, Adams et 
al. 1985). A group of enzyme inhibitors has been developed. They include antifungal imidazole 
derivatives, such as ketoconazole and liarozole, both of which inhibit many P450 enzymes. 
Ketoconazole decreases the synthesis of 1α,25-(OH)2D3 and can be used in the treatment of 
sarcoidosis-associated hypercalcemia (Adams et al. 1990, Bia and Insogna 1991). A newly 
identified SDZ88-357, which specifically inhibits 1α-hydroxylase activity (Schuster et al. 
2001b), might be a useful tool to study the metabolism of vitamin D3. 
 

1.1.4. 25-Hydroxyvitamin D3-24-hydroxylase 
The catabolism of 1α,25-(OH)2D3 is initiated by a mitochondrial cytochrome P450 enzyme 
25OHD3-24-hydroxylase (24-hydroxylase, CYP24A1). It hydroxylates both 25OHD3 and 1α,25-
(OH)2D3 at the C24 position, but neither vitamin D3 nor 1αOHD3 (Ohyama and Okuda 1991). 
Studies using recombinant bacterial and insect cells have shown that 24-hydroxylase is a 
multicatalytic enzyme catalyzing the reactions in the C-24/C-23 pathway to produce the final 
metabolites of 25OHD3 and 1α,25-(OH)2D3 (Akiyoshi-Shibata et al. 1994, Beckman et al. 1996, 
Sakaki et al. 1999a, Sakaki et al. 2000). 24-Hydroxylase displays 10-fold greater affinity for 
1α,25-(OH)2D3 than 25OHD3 (Chen et al. 1993). DBP reduces the rate of 25OHD3 metabolism 
but not of 1α,25-(OH)2D3 metabolism (Masuda et al. 2004). 24-Hydroxylase is expressed 
predominantly in the kidney and also found in various vitamin D3 target tissues. However, it is 
absent from the liver (Armbrecht and Boltz 1991). Recently, a CYP24A1 splice variant, 
designated hCYP24-SV, has been characterized in the kidney, placenta, keratinocytes, and 
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macrophages (Ren et al. 2005). hCYP24-SV lacks the mitochondrial targeting sequence and the 
variant protein is therefore functionally inactive (Ren et al. 2005). This truncated 24-hydroxylase 
may contribute to elevated levels of 1α,25-(OH)2D3 (Ren et al. 2005). The increase in renal 
CYP24A1 mRNA and activity with age has been reported in rats, suggesting that the increased 
renal catabolism of 1α,25-(OH)2D3 may contribute to the decrease in serum level of 1α,25-
(OH)2D3 (Johnson et al. 1995, Matkovits and Christakos 1995a, Anderson et al. 2005). 24-
Hydroxylase expression is up-regulated in all vitamin D3 target cells by 1α,25-(OH)2D3 at 
transcriptional level through activation of two VDREs in its promoter region (Chen and DeLuca 
1995). CYP24A1 is the most strongly regulated gene by 1α,25-(OH)2D3, therefore the induction 
of CYP24A1 expression is often used as an indicator of 1α,25-(OH)2D3 responsiveness. The 
major role of 24-hydroxylase appears to be the inactivation of 1α,25-(OH)2D3 to maintain 
systemic calcium homeostasis and to turn off the local effects of 1α,25-(OH)2D3. Studies have 
shown that the induction of 24-hydroxylase by 1α,25-(OH)2D3 requires new protein synthesis 
(Armbrecht et al. 1997, Zierold et al. 2002, Zierold et al. 2003). To date, no genetic disorder of 
24-hydroxylase in humans has been reported. However, amplification of the CYP24A1 gene 
region has been found in human breast cancer (Kallioniemi et al. 1994, Tanner et al. 1995), 
ovarian cancer (Tanner et al. 2000), and prostate cancer (Wolter et al. 2002) and mouse islet 
carcinoma (Hodgson et al. 2001). CYP24A1 is, therefore, considered a candidate oncogene 
(Albertson et al. 2000) because it can abrogate vitamin D3-mediated growth control. Studies on 
24-hydroxylse-knockout mice and VDR-knockout mice have led to a better understanding of the 
importance of 24-hydroxylase and VDR in 1α,25-(OH)2D3 catabolism. 24-Hydroxylase-
knockout mice are incapable of excreting exogenous 1α,25-(OH)2D3, however, the surviving 
knockout mice have surprisingly low basal levels of 1α,25-(OH)2D3 compared to the wild-type 
controls (St-Arnaud et al. 2000). Further studies (Masuda et al. 2005) demonstrated that there 
was no alternative pathway of 1α,25-(OH)2D3 catabolism and the surviving knockout mice may 
adapt, in part, by suppressing 1α,25-(OH)2D3 synthesis because 1α-hydroxylase mRNA in the 
kidney was undetectable. No C23/C26 oxidation products were detected in keratinocytes from 
Cyp24a1-knockout mice, emphasizing the importance of the multiple roles of CYP24A1. In 
addition, keratinocytes from VDR-knockout mice showed a complete block of 1α,25-(OH)2D3 
catabolism. It can be concluded that both 1α-hydroxylase and 24-hydroxylase regulate 1α,25-
(OH)2D3 homeostasis through VDR.  
 
Other factors such as PTH, calcium, and calcitonin can also regulate CYP24A1. PTH suppresses 
24-hydroxylase mRNA by altering its stability in the kidney cells (Zierold et al. 2001). However 
PTH enhances the 1α,25-(OH)2D3-dependent induction of 24-hydroxylase in osteoblastic cells 
(Krishnan et al. 1995, Armbrecht et al. 1998) and its action is potentiated by insulin (Armbrecht 
et al. 1996). But other group has reported no PTH effect on 1α,25-(OH)2D3-dependent induction 
of 24-hydroxylase in bone cells (Nishimura et al. 1994). PTH has no effect on 24-hydroxylase in 
the intestine (Shinki et al. 1992) because of the absence of PTH receptors. Low calcium 
indirectly suppresses renal 24-hydroxylase activity due to secondary hyperparathyroidism but 
not bone 24-hydroxylase activity (Nishimura et al. 1994). Calcium exhibits no effect on the 
expression of intestinal 24-hydroxylase (Lemay et al. 1995). Calcitonin causes suppression of 
24-hydroxylase mRNA expression and activity in the intestine (Beckman et al. 1994). The effect 
of calcitonin in the kidney has recently been described. Unlike in the intestine, calcitonin 
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stimulates renal 24-hydroxylase-promoter expression and such action is suggested to be very 
important in hypercalcemic state (Gao et al. 2004). Interferon γ abrogates 1α,25-(OH)2D3-
mediated induction of 24-hydroxylase in human monocytes and macrophages, which is one of 
the reasons for the hypercalcemia of various granulomatoses (Dusso et al. 1997).    
 
One of the interesting fields in the study of vitamin D3 is the development of 24-hydroxylase 
inhibitors, which are not only useful tools to study 1α,25-(OH)2D3 catabolism but also to 
enhance 1α,25-(OH)2D3 action. The high basal and self-induced expression of 24-hydroxylase 
may cause 1α,25-(OH)2D3-resistance. Ketoconazole increases 1α,25-(OH)2D3-dependent 
induction of VDR via decreasing 1α,25-(OH)2D3 catabolism (Reinhardt and Horst 1989). 
Liarozole acts synergistically with 1α,25-(OH)2D3 in 1α,25-(OH)2D3-resistant cells (Ly et al. 
1999). VID400, a selective inhibitor of 24-hydroxylase is a valuable tool to explore distinct 
functions of different metabolites (Schuster et al. 2001a, Schuster et al. 2001b).  
 
Because the serum concentration of 25OHD3 is 500-1000-fold higher than that of 1α,25-
(OH)2D3, the major 24-hydroxyl metabolite in blood is 24,25-dihydroxyvitamin D3 [24,25-
(OH)2D3] despite the 10-fold greater affinity of 24-hydroxylase to 1α,25-(OH)2D3. The 
physiological functions of 24,25-(OH)2D3 are not clear and need to be defined. 24,25-(OH)2D3 
was first shown to be essential for bone formation in 1978 (Ornoy et al. 1978). Later, several in 
vivo studies have shown that massive doses of 24,25-(OH)2D3 increase bone volume and strength 
in rats, rabbits, and mice (Nakamura et al. 1987, Nakamura et al. 1988, Nakamura et al. 1989, 
Nakamura et al. 1992, Ono et al. 1996), indicating its role in bone formation at pharmacological 
concentrations. However, another group showed that 1α,25-(OH)2D3, but not 24,25-(OH)2D3, is 
necessary and sufficient for normal bone growth and development in rats (Parfitt et al. 1984). 
Other physiological functions of 24,25-(OH)2D3 are associated with fracture healing (Seo et al. 
1997, Seo and Norman 1997), embryo development (Henry and Norman 1978, Norman et al. 
1983), and cartilage development (Schwartz et al. 1995b). A membrane receptor for 24,25-
(OH)2D3 has been proposed (Pedrozo et al. 1999). By using 24-hydroxylase-knockout mice, the 
role of 24,25-(OH)2D3 has been clarified. The lack of 24-hydroxylase activity during 
development results in impaired intramembranous bone mineralization. This phenotype was not 
rescued by treatment with 24,25-(OH)2D3, but rather by crossing the 24-hydroxylse-mutant mice 
with VDR-knockout mice, demonstrating that deficient mineralization of intramembranous bone 
in 24-hydroxylase-ablated mice is due to elevated 1α,25-(OH)2D3 acting via VDR, not to the 
absence of 24,25-(OH)2D3 (St-Arnaud et al. 2000). The authors concluded that 24-hydroxylase 
plays an important role in regulating 1α,25-(OH)2D3 homeostasis and 24,25-(OH)2D3 is a 
dispensable metabolite during bone development. The interaction between 1α,25-(OH)2D3 and 
24,25-(OH)2D3 is also of interest. 24,25-(OH)2D3 at pharmacological concentrations suppresses 
1α,25-(OH)2D3-stimulated osteoclast formation (Yamato et al. 1993) and the rapid action of 
1α,25-(OH)2D3 on calcium transport (Takeuchi and Guggino 1996, Nemere 1999). The 
regulation of vitamin D3 metabolic pathways is illustrated in Figure 2. 
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Figure 2. The regulation of vitamin D3 metabolic pathways 
 

1.2. Transport of vitamin D3 metabolites 
The bioavailability of vitamin D3 metabolites is dependent on their rates of metabolism and 
catabolism, transport, cellular uptake, and intracellular trafficking. A serum protein called 
vitamin D binding protein (DBP, initially named group-specific component) plays a central role 
in the transportation of vitamin D metabolites and consequently regulates their storage, half-
lives, and cellular uptake. DBP is predominantly expressed and secreted by the liver. DBP binds 
to 88% of serum 25OHD3 with a high affinity (5 X 10-8 M) and to 85% of serum 1α,25-(OH)2D3 
with a lower affinity (4 X 10-7 M) (White and Cooke 2000). DBP has a ligand-binding domain 
that is distinct from that of VDR (Mizwicki and Norman 2003). It is believed that vitamin D3 
metabolites with the higher affinity for DBP possess longer half-lives, slower clearance rate, and 
poorer access to target cells (Jones et al. 1998). Therefore, the binding affinity for DBP is one of 
the factors to be considered in the design of vitamin D3 analogs. DBP also functions in receptor-
mediated endocytosis, in which 25OHD3-DBP complex is taken up in the proximal renal tubular 
cells by endocytic receptor megalin (Nykjaer et al. 1999). This process affects vitamin D renal 
metabolism and consequently, calcium homeostasis (Leheste et al. 2003). Once inside the target 
cells, how the vitamin D3 metabolites reach mitochondria to bind their hydroxylases or nuclei to 
bind their receptors is not fully understood. Microtubule-based transport has been found to 
mediate the synthesis and nuclear activity of 1α,25-(OH)2D3 by regulating the intracellular 
trafficking of 25OHD3 (Kamimura et al. 1995). A group of intracellular vitamin D binding 
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proteins (IDBPs) in New World primates has been identified (Gacad et al. 1997). IDBPs are 
highly homologous to human 70-kDa heat shock proteins and bind 25OHD3 better than 1α,25-
(OH)2D3 (Gacad and Adams 1998). It has been found that IDBPs increase VDR-mediated 
transactivation (Wu et al. 2000) and 1α,25-(OH)2D3 synthesis (Wu et al. 2002) by controlling 
intracellular localization of vitamin D metabolites.   
 

1.3. Mechanisms of vitamin D3 actions 
1.3.1. Nuclear receptor and genomic actions 

1.3.1.1. VDR 
Most of the biological activities of vitamin D3 metabolites are mediated by a nuclear protein, 
VDR, which was discovered over 30 years ago (Haussler et al. 1968). VDR was first cloned 
from chicken (McDonnell et al. 1987), followed by cloning from human, rat, and mouse (Baker 
et al. 1988, Burmester et al. 1988, Kamei et al. 1995). VDR is a ligand-activated transcription 
factor belonging to the nuclear receptor superfamily that includes receptors for estrogen, 
androgen, glucocorticoids, progesterone, thyroid hormone, and retinoids (Evans 1988). VDR 
exhibits the greatest similarity to the retinoic acid receptor (RAR) and thyroid hormone receptor 
(TR) (Jones et al. 1998). Like the other nuclear receptors, VDR has an A/B domain, a DNA-
binding domain (DBD, C-domain), a hinge domain (D-domain), and a ligand-binding domain 
(LBD, E-domain) (DeLuca 2004, Lin and White 2004). The major steps of VDR action in 
regulating gene transcription include ligand binding to LBD, heterodimerization with the retinoid 
X receptor (RXR), DNA binding to the heterodimer VDR-RXR, and cofactor binding to LBD.  
 
Unlike other nuclear receptors [estrogen receptor (ER), RXR and RAR, etc.], which contain a 
ligand-independent activating function-1 (AF-1) domain in their A/B domain, VDR lacks AF-1 
domain in its A/B domain (Issa et al. 1998). DBD is the most conserved domain throughout the 
nuclear receptor family. The DBD of VDR recognizes specific DNA sequences through two zinc 
finger motifs that form two α-helices. The specific DNA sequences called VDREs are usually 
found in the promoter regions of target genes. It is known that the 5’-half-site of the VDRE binds 
RXR and the 3’-half-site of the VDRE binds VDR (DeLuca 2004). Some of the vitamin D-
regulated genes are summarized in Table 1. As mentioned in Section 1.1.4, 24-hydroxylase is the 
most powerfully up-regulated gene.   
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Table 1. Vitamin D regulated genes (* containing VDRE; # containing a synthetic vitamin D 
analog responsive element; § no identified VDRE)    
           

Category Up-regulated Down-regulated 
Osteocalcin * (Kerner et al. 
1989, Morrison et al. 1989) 

Type I collagen * (Pavlin et 
al. 1994) 

Osteopontin * (Noda et al. 
1990) 

PTH * (Demay et al. 1992) 

Calbindin D9k * (Darwish and 
DeLuca 1992) 

PTH-related peptide * 
(Falzon 1996) 

Calbindin D28k * (Gill and 
Christakos 1993) 

Bone sialoprotein * (Li and 
Sodek 1993) 

RANKL * (Kitazawa and 
Kitazawa 2002, Kitazawa et al. 
2003) 

 

Carbonic anhydrase II * (Quelo 
et al. 1998) 

 

Type II Na+-dependent Pi 
transporter * (Taketani et al. 
1998) 

 

Na+-sulfate cotransporter Nas1 
* (Dawson and Markovich 
2002) 

 

TRPV5 § (Hoenderop et al. 
2001) 

 

Mineral and bone-
related genes 

TRPV6 § (Nijenhuis et al. 2003)  
CYP24A1 * (Chen and DeLuca 
1995)  

CYP27B1 * (Murayama et 
al. 1998) 

CYP3A4 * (Makishima et al. 
2002) 

CYP27A1 § (Axen et al. 
1995)  

CYP3A1 * (Makishima et al. 
2002)  

 

CYP3A11 * (Makishima et al. 
2002) 

 

Metabolism-related 
genes 

17β-hydroxysteroid 
dehydrogenase (hsd17b2) * 
(Wang et al. 2005) 

 

IGFBP-3 * (Peng et al. 2004) RelB * (Dong et al. 2003) 
PDGF-A * (Pedigo et al. 2003) EGFR * (McGaffin et al. 

2004) 
Insulin receptor * (Maestro et 
al. 2003) 

IL-2 § (Manolagas et al. 
1985) 

TGF-β2 * (Wu et al. 1999) IFN-γ § (Cippitelli and 
Santoni 1998) 

Cytokine and growth 
factor-related genes 

TNFα * (Hakim and Bar-Shavit 
2003) 

IL-12 § (D'Ambrosio et al. 
1998) 
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IGFBP-5 § (Schmid et al. 1996)  
TNF receptor 1 § (Mathiasen et 
al. 2001)  

 

TGF-β1 § (Koli and Keski-Oja 
1995) 

 

p21waf1 * (Liu et al. 1996a) c-myc # (Okano et al. 1999) 
Cyclin C * (Sinkkonen et al. 
2005) 

 Cell cycle-related 
genes 

p27kip1 § (Wang et al. 1996)  
Cathepsin B § (Simboli-
Campbell et al. 1996) 

Bcl-2 § (James et al. 1998) 

Clusterin § (Simboli-Campbell 
et al. 1996) 

 Apoptosis-related 
genes 

Bak § (Diaz et al. 2000a)  
Involucrin * (Bikle et al. 2002)  
Phospholipase C-γ1 * (Xie and 
Bikle 1997) 

 Differentiation-
related genes 

Calcium sensing receptor § 
(Chakrabarty et al. 2005) 

 

β3 integrin * (Cao et al. 1993)  
Fibronectin * (Polly et al. 1996)  Cell adhesion-related 

genes E-cadherin § (Campbell et al. 
1997) 

 

Multidrug resistance-associated 
protein-3 * (McCarthy et al. 
2005) 

 

Other genes 

PPARδ * (Dunlop et al. 2005)  
 
 
The DBD is also responsible for the nuclear localization (Hsieh et al. 1998). The hinge domain 
of VDR confers flexibility to the protein in structural conformation upon ligand activation. 
Deletion of a few amino acids from the hinge region reduces the transcriptional activation of 
VDR in vivo (Shaffer et al. 2005). The LBD is a multifunctional domain and varies between 
nuclear receptors. The functions of the LBD in VDR involve binding of ligands, 
heterodimerization with RXR and binding of cofactors. 1α,25-(OH)2D3 has the greatest binding 
affinity to VDR (Kd = 90-300 pM for rat VDR) (Walters 1992). 25OHD3 binds to human VDR 
approximately 50 times less (Bouillon et al. 1995) and to chicken VDR 150-667 times less 
effectively (Brumbaugh and Haussler 1974, Bouillon et al. 1995). The study of the ligand 
binding pocket has led to development of synthetic 1α,25-(OH)2D3 analogues. Ligand binding to 
VDR results in heterodimerization with RXR. The dimerization interfaces have been found in 
the DBD and LBD domains (Issa et al. 1998, Brown et al. 1999). The DBD of VDR does not 
dimerize with the DBD of RXR in the absence of VDRE (Rastinejad 2001), but the dimerization 
of LBDs, in some cases, is DNA-independent (Khorasanizadeh and Rastinejad 2001). Ligand 
binding to VDR also causes the conformational change at the C-terminus of the protein, a ligand-
dependent activating function-2 (AF-2) domain, which then recruits transcription factors, termed 
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coregulators. Nuclear receptor coregulators are coactivators and corepressors. Coregulators 
contribute to histone modifications, chromatin remodeling, recruitment of RNA polymerase and 
accessory factors, and receptor localization (McKenna et al. 1999, McKenna and O'Malley 
2002). The known coactivators involved in VDR action are such as the transcription factor IIB 
(TFIIB), the VDR-interacting protein (DRIP), the vitamin D coactivator NCoA-62, steroid 
receptor coactivator (SRC-1), transcriptional intermediary factor 1 (TIF1), and the cyclic AMP 
response element-binding protein CBP/p300 (Rachez and Freedman 2000). The corepressors 
known to be involved in VDR action are nuclear receptor corepressor-1 (NCoR-1) (Tagami et al. 
1998), NCoR-2 (Tagami et al. 1998), the silencing mediator of retinoic acid and thyroid 
hormone receptor (Li et al. 1997a), Alien (Polly et al. 2000), and hairless (Hsieh et al. 2003).  
 
Activation of nuclear receptors normally requires ligand binding. It has been shown that some 
nuclear receptors can act ligand-independently. In the absence of ligands, phosphorylation may 
activate VDR-mediated transcription (Matkovits and Christakos 1995b). In the presence of the 
transcription factor Ets-1, VDR ligand-independently stimulates the prolactin promoter (Tolon et 
al. 2000). Alopecia has been observed in VDR knockout mice (Li et al. 1997b, Yoshizawa et al. 
1997) and some kindreds with vitamin D-dependent rickets type II (Tsuchiya et al. 1980, Chen et 
al. 1984), but not in 1α-hydroxylase knockout mice (Dardenne et al. 2001, Panda et al. 2001), 
kindreds with vitamin D-dependent rickets type I, nor in patients with dietary vitamin D 
deficiency. Normalization of mineral homeostasis cannot prevent alopecia (Li et al. 1998). All 
these data strongly suggest that normal hair growth requires VDR, regardless of vitamin D3 
status. Recent investigation revealed that the maintenance of hair follicle homeostasis by VDR 
does not require ligand-dependent transactivation, but rather is mediated by VDR in a ligand-
independent way (Chen et al. 2001, Skorija et al. 2005). 
 

1.3.1.2. Regulation of nuclear action of VDR 
The nuclear action of VDR may be influenced by availability of ligands, VDR, RXR, 
coregulators, and VDRE.  
 
Firstly, the availability of ligands is affected by their metabolism, catabolism, and 
bioavailability.  
 
Secondly, the status of VDR may vary due to the regulation of its expression, phosphorylation, 
nuclear localization, occupancy with other proteins and possibly polymorphisms. (I) VDR is 
widely expressed in various tissues. N-terminal variants of human VDR proteins, generated by 
tissue-specific promoters, have been described (Crofts et al. 1998, Sunn et al. 2001). These 
variants could contribute to the differential responsiveness to ligands in various tissues and cells. 
The expression of VDR can be regulated by its cognate ligands (Christakos et al. 1996), retinoic 
acid (Chen and Feldman 1985), activation of protein kinase A (PKA) (Krishnan and Feldman 
1992) and protein kinase C (PKC) (Krishnan and Feldman 1991), PTH (Krishnan et al. 1995), 
DHT (Ahonen et al. 2000b), estrogens (Liel et al. 1992), and glucocorticoid (Chen et al. 1983). 
The analysis of human VDR gene shows a retinoic acid response site in the exon 1C and no 
VDRE (Miyamoto et al. 1997). Homologous up-regulation of VDR is tissue specific (Gensure et 
al. 1998) and, instead of appearing at the transcriptional level (Wiese et al. 1992); it is, rather, the 
result of blocking ubiquitin/proteasome-mediated degradation (Li et al. 1999a). (II) PKA, PKC, 
and casein kinase II are able to phosphorylate VDR (Brown et al. 1999). It has been shown that 
the ligand binding increases phosphorylation of VDR (Brown and DeLuca 1990). 
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Phosphorylation of VDR can either enhance (Barletta et al. 2002) or suppress (Hsieh et al. 2004) 
the VDR-mediated transcription. (III) RXR promotes nuclear accumulation of unliganded VDR, 
which correlates with an increase in basal transcriptional activity (Prufer et al. 2000). (IV) It has 
recently been discovered that direct protein-protein interactions between activated Stat1 and the 
DBD of VDR impair VDR-RXR binding to human 24-hydroxylase VDRE (Vidal et al. 2002). 
This mechanism delineates how interferon γ antagonizes the 1α,25-(OH)2D3-VDR 
transcriptional activation of 24-hydroxylase (Dusso et al. 1997). (V) The VDR polymorphisms 
have been suggested to be associated with bone-related features (Morrison et al. 1992, Morrison 
et al. 1994, Suarez et al. 1997, Carling et al. 1998, Tao et al. 1998, Uitterlinden et al. 2001). 
However, other studies do not support this relationship (Hustmyer et al. 1994, Lim et al. 1995, 
Garnero et al. 1996, Houston et al. 1996, Ensrud et al. 1999).  
 
Thirdly, the status of RXR may vary due to its cognate ligand binding, its phosphorylation and 
occupancy with other receptor partners (RXR, RAR, TR, or PPAR, etc.). The liganded RXR may 
decrease (MacDonald et al. 1993) or increase (Giguere 1994) the action of VDR. 
Phosphorylation of RXRα can decrease 1α,25-(OH)2D3-dependent activity (Solomon et al. 
1999). Transcriptional interference between actions of VDR and other nuclear receptors may 
occur due to competition for RXR (Giguere 1994, Raval-Pandya et al. 1998). 
 
Fourthly, coregulators may be affected by their tissue specificity, occupancy with other nuclear 
receptors or regulators and perhaps by signal transduction pathways. TFIIB cell-type specifically 
regulates 1α,25-(OH)2D3-dependent transcription (Blanco et al. 1995). Competition between 
VDR and other nuclear receptors for the common coactivators could reduce the transcriptional 
activity of VDR as seen in the transcriptional interference between progesterone receptor and 
estrogen receptor (Meyer et al. 1989). In addition, a ubiquitous regulator Ying-Yang 1 (YY1) 
may also sequester TFIIB/CBP (Usheva and Shenk 1994, Guo et al. 1997, Raval-Pandya et al. 
2001). SRC-1 is phosphorylated through mitogen-activated protein kinase (MAPK), which in 
turn regulates progesterone receptor-mediated activation (Rowan et al. 2000a, Rowan et al. 
2000b). Activation of MAPK pathway may also influence VDR-mediated activation (Barletta et 
al. 2004). Phosphorylation has been reported to enhance VDR-mediated transcription by 
increasing interaction between VDR and DRIP205 (Barletta et al. 2002).     
 
Fifthly, VDR action may be suppressed through competition for VDRE with a ubiquitous 
regulator YY1 (Guo et al. 1997) or by the VDRE-binding protein in New World primates (Chen 
et al. 2000a) and heterogeneous nuclear ribonucleoprotein in humans (Chen et al. 2003b).  
 

1.3.2. Membrane receptor and non-genomic actions 
In addition to the 1α,25-(OH)2D3-mediated genomic actions of nuclear VDR, 1α,25-(OH)2D3 
also produces rapid biological responses involving activation of protein kinases and regulation of 
ion channels (Norman et al. 2002, Fleet 2004). There is some evidence supporting this concept. 
First, a putative membrane VDR has been found in basal-lateral membranes of chick intestinal 
epithelium (Nemere et al. 1994), rat costochondral resting zone and growth zone cartilage cells 
(Nemere et al. 1998) and human tooth and bone (Mesbah et al. 2002). The 1α,25-(OH)2D3 
membrane-associated, rapid-response sterol-binding (1α,25-(OH)2D3-MARRS) protein has been 
found to be involved in phosphate transport in the chick duodenum and it is identical to the 
multifunctional protein endoplasmic reticulum protein ERp57 (Nemere et al. 2004). In addition, 
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non-genomic action of 1α,25-(OH)2D3 was found in nuclear VDR-knockout mice (Boyan et al. 
2003, Wali et al. 2003). Some vitamin D analogs produce non-genomic action without having 
genomic effects because of the poor ability to bind to nuclear VDR (Norman et al. 1993, 
Dormanen et al. 1994). Second, the classical VDR has been shown to be associated with 
caveolae-enriched plasma membranes (Huhtakangas et al. 2004). Studies have shown that 
nuclear VDR had a role in non-genomic action (Nguyen et al. 2004, Zanello and Norman 2004). 
 
2. BIOLOGICAL ACTIONS OF VITAMIN D3 

2.1. 1α,25-Dihydroxyvitamin D3-mediated endocrine system 
1α,25-(OH)2D3 plays a major role in modulating calcium homeostasis, bone development, and 
mineralization. There are three main actions of 1α,25-(OH)2D3 involved in calcium homeostasis. 
First, interaction of 1α,25-(OH)2D3 with VDR increases intestinal calcium absorption by 
stimulating three types of proteins (Van Cromphaut et al. 2001): (1) two calcium channel 
proteins, transient receptor potential cation channel 5 (TRPV5, former name epithelial calcium 
channel 1) (Muller et al. 2000), and TRPV6 (former names calcium channel CaT1 and epithelial 
calcium channel 2) (Peng et al. 2000); (2) an intracellular calcium transfer protein, calcium 
binding protein (calbindin D9k) (Howard et al. 1992, Jeung et al. 1992); (3) a calcium extrusion 
protein, plasma membrane calcium ATPase 1 isoform 1b (PMCA1b) (Verma et al. 1988, 
Kutuzova and Deluca 2004). Second, 1α,25-(OH)2D3 increases calcium reabsorption in the distal 
renal tubule by stimulating TRPV5 (Hoenderop et al. 2001), TRPV6 (Nijenhuis et al. 2003), and 
calbindin D28K (Van Baal et al. 1996). Third, in the absence of intestinal calcium absorption, 
1α,25-(OH)2D3 maintains serum calcium level by stimulating osteoblasts to produce receptor 
activator of nuclear factor-κB ligand (RANKL, other names tumor necrosis factor ligand 11, 
osteoprotegerin ligand, and osteoclast differentiation factor) (Palmqvist et al. 2002, Bergh et al. 
2004), leading to osteoclastogenesis and bone resorption (Hofbauer and Heufelder 2001). The 
latter two actions are accompanied by PTH action. Calcium-sensing receptor in the parathyroid 
gland senses serum calcium concentration. When serum calcium concentration is low, the 
calcium-sensing receptor stimulates PTH secretion, which further, increases calcium 
reabsorption and 1α-hydroxylase activity in the kidney as well as induces calcium release from 
the bone matrix (DeLuca 2004, Hoenderop et al. 2005). 1α,25-(OH)2D3 suppresses the synthesis 
of PTH and parathyroid cell growth (Cantley et al. 1985, Szabo et al. 1989). Both VDR- and 1α-
hydroxylase-knockout mice develop hypocalcemia after weaning (Li et al. 1997b, Yoshizawa et 
al. 1997, Dardenne et al. 2001, Panda et al. 2001), emphasizing the important role of the 1α,25-
(OH)2D3/VDR system in calcium homeostasis. 
 
The action of 1α,25-(OH)2D3 in bone growth and mineralization is related to intestinal 
absorption of calcium and regulation of bone cell differentiation and function. Both VDR- and 
1α-hydroxylase-knockout mice exhibit severely impaired bone formation (Li et al. 1997b, 
Yoshizawa et al. 1997, Dardenne et al. 2001, Panda et al. 2001) as seen in human vitamin D-
dependent rickets type II and I. It has recently been ascertained that bone mineralization is 
directly regulated by serum calcium whereas bone formation and remodeling are regulated by 
1α,25-(OH)2D3/VDR system (Panda et al. 2004). Some biomarkers of bone formation, such as 
osteocalcin (Kerner et al. 1989) and alkaline phosphatase (Kyeyune-Nyombi et al. 1991) are 
induced by 1α,25-(OH)2D3. Some biomarkers of bone resorption may also be regulated. For 
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example, osteopontin (bone sialoprotein I) (Noda et al. 1990) is up-regulated and type I collagen 
(Harrison et al. 1989) is down-regulated by 1α,25-(OH)2D3. 
 
In addition to the crucial role of 1α,25-(OH)2D3 in calcium homeostasis and bone growth, it has 
many other roles. It increases calcium uptake in myoblast cultures (Giuliani and Boland 1984) 
and cardiac muscle cells (Walters et al. 1987) at physiological concentrations. It regulates skin 
cell growth and differentiation (Gniadecki 1997, Gurlek et al. 2002) as well as the function of the 
immune system (Bhalla et al. 1984, Penna and Adorini 2000, Canning et al. 2001, Griffin et al. 
2001) at physiological or pharmacological concentrations. At pharmacological concentrations it 
increases insulin synthesis and secretion (Bourlon et al. 1999) and regulates proliferation and 
differentiation of various cancer cells (Mehta and Mehta 2002, Lin and White 2004). 
 

2.2. 1α,25-Dihydroxyvitamin D3-mediated autocrine/paracrine system 
Since the discovery of extra-renal 1α-hydroxylase, 1α,25-(OH)2D3-mediated autocrine/paracrine 
system has been proposed. It is believed that the extra-renal 1α,25-(OH)2D3 production acts as 
an antiproliferative or immunomodulatory steroid in the producing cells or the cells nearby and 
does not affect the systemic calcium balance. For example, in antigen presenting cells such as 
macrophages (Kreutz et al. 1993) and dendritic cells (Fritsche et al. 2003, Hewison et al. 2003), 
terminal differentiation increases 1α-hydroxylase expression and 1α,25-(OH)2D3 production, 
which thereafter, suppresses the differentiation and antigen-presentation capabilities of the 
precursor cells in a paracrine pathway. Meanwhile, terminal differentiation decreases VDR 
expression in the mature cells, which leads to the decrease in 1α,25-(OH)2D3-responsiveness. 
1α-Hydroxylase expression in the parathyroid gland (Segersten et al. 2002), placenta and 
deciduas (Zehnder et al. 2002b), endothelial cells (Zehnder et al. 2002a), prostate epithelial cells 
(Barreto et al. 2000), and colon (Tangpricha et al. 2001) implies that local 1α,25-(OH)2D3 
production may influence the proliferation and differentiation or immune function of those cells. 
Non-systemic effect of the locally produced 1α,25-(OH)2D3 depends largely on the autocrine 
induction of 24-hydroxylase (Hewison et al. 2004). 
 
3. VITAMIN D3 AND CANCERS 

3.1. Vitamin D3 action in cancers 
1α,25-(OH)2D3 has potent antiproliferative, prodifferentiative, immunomodulatory, and 
apoptotic activities (Colston and Hansen 2002, Mehta and Mehta 2002, Ylikomi et al. 2002, 
Lamprecht and Lipkin 2003, Bikle 2004, Nagpal et al. 2005). 1α,25-(OH)2D3 and its analogs 
induce G1 growth arrest accompanied by either increased expression of cyclin-dependent kinase 
inhibitors p21waf1 and p27kip1, transforming growth factor-β1 (TGFβ1), and insulin-like growth 
factor binding protein-3 (IGFBP-3) or decreased expression of c-myc and phosphorylation of 
retinoblastoma protein in many types of cancer cells, such as prostate (Campbell et al. 1997, 
Zhuang and Burnstein 1998, Yang and Burnstein 2003), breast (Verlinden et al. 1998, Jensen et 
al. 2001), colon (Scaglione-Sewell et al. 2000), ovarian (Li et al. 2004), leukemia (Wang et al. 
1996, Muto et al. 1999), and myeloma (Puthier et al. 1996). However, unlike in other tumors, 
1α,25-(OH)2D3 decreases p21waf1 expression in squamous cell carcinoma (Hershberger et al. 
1999), which may reflect the differentiating effect of 1α,25-(OH)2D3 because p21waf1 has 
inhibitory function in differentiation of keratinocytes (Di Cunto et al. 1998).  
 

26 



1α,25-(OH)2D3 or its analog induces cell differentiation by increasing E-cadherin (Palmer et al. 
2001) and calcium sensing receptor (Chakrabarty et al. 2005) in colon cancer cells, involucrin 
(Gniadecki 1997) and phospholipase C-γ1 (Xie and Bikle 2001) in keratinocytes as well as 
prostate specific antigen (PSA) (Skowronski et al. 1993) and E-cadherin (Campbell et al. 1997) 
in prostate cancer cells.  
 
1α,25-(OH)2D3 and its analogs up-regulate apoptotic markers cathepsin B and clusterin in breast 
cancer cells (Simboli-Campbell et al. 1996) and a proapoptotic protein Bak in colorectal 
carcinoma cells (Diaz et al. 2000a) and down-regulate an antiapoptotic protein Bcl-2 in breast 
cancer cells (James et al. 1998), prostate cancer cells (Crescioli et al. 2002, Guzey et al. 2002), 
and leukemia cells (Pepper et al. 2003).  
 
1α,25-(OH)2D3 may also modulate the immune function (Lemire 1997, Lemire 2000). The 
nuclear factor-κB protein RelB (Dong et al. 2003), interleukin-2 (Bemiss et al. 2002), 
interleukin-12 (Lyakh et al. 2005), interferon-γ (Cippitelli and Santoni 1998), and tumor necrosis 
factor receptor 1 (Mathiasen et al. 2001) are targets of 1α,25-(OH)2D3 in the immune system. 
Despite the potent anticancer activities, 1α,25-(OH)2D3 has not been used in cancer prevention 
or treatment mainly because it causes severe hypercalcemia at the concentration that is effective 
in preventing experimental carcinogenesis or inhibiting cancer growth in experimental models. 
 

3.2. Prostate cancer 
3.2.1. Prostate cancer epidemiology 

Prostate cancer is the third most common cancer in men, the most common cancer in Western 
countries, and the second most fatal cancer in American men (Chen and Holick 2003, Gronberg 
2003). The cause of prostate cancer seems to be related to ethnic origin, age, family history, diet, 
environment, and hormones (Gronberg 2003, Bostwick et al. 2004). Three independent cohort 
studies showed a strong association between high serum levels of insulin-like growth factor-I 
and increased prostate cancer risk (Chan et al. 1998, Harman et al. 2000, Stattin et al. 2000). 
High level of circulating testosterone is not associated with increased prostate cancer risk (Hsing 
and Comstock 1993, Chen et al. 2003a, Stattin et al. 2004) and by contrast, both testosterone and 
DHT levels are lower in men with prostate cancer, especially, with more advanced tumors 
(Gustafsson et al. 1996, Hoffman et al. 2000). The initial hypothesis that vitamin D deficiency 
may be a risk factor for prostate was raised by Schwartz and Hulka (1990). Later some 
epidemiological studies showed a negative correlation between prostate cancer mortality and UV 
radiation exposure (Hanchette and Schwartz 1992, Luscombe et al. 2001, Freedman et al. 2002, 
Grant 2002) and further, an association between low levels of serum 25OHD3 and a higher risk 
of prostate cancer (Corder et al. 1993, Ahonen et al. 2000a). These data may offer an explanation 
for the increased risk of African American men and aged men to develop prostate cancer as a 
result of decreased synthesis of vitamin D3. However, some studies showed no association 
between serum vitamin D3 metabolites and prostate cancer (Braun et al. 1995, Gann et al. 1996, 
Nomura et al. 1998). A recent report showed that both low and high levels of serum 25OHD3 are 
associated with a higher risk of prostate cancer (Tuohimaa et al. 2004), which may be due to 
vitamin D3 deficiency and resistance.    
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3.2.2. Sex steroid hormones in prostate development and carcinogenesis 
The normal prostate consists of epithelial glands and fibromuscular stroma and the glands are 
well organized. In the prostate epithelium, there are three types of cells, secretory luminal cells, 
which are androgen-dependent and secrete PSA, basal cells, and neuroendocrine cells. In the 
prostate stroma, there are fibroblasts, smooth muscle cells, endothelial cells, nerves, dendritic 
cells, and lymphocytes. Because prostate carcinoma is derived from the epithelium, the cancer 
epithelial cells have been most studied. It is known that both epithelial and mesenchymal 
components are required for prostate differentiation and that androgens act first on the 
mesenchyme, and then on the epithelium to form the prostate (Abate-Shen and Shen 2000). 
Additionally, the prostate stroma plays an important role in carcinogenesis and aberrant 
interaction between stroma and epithelium is thought to contribute to carcinoma progression 
(Tlsty and Hein 2001, Chung et al. 2003, Bhowmick et al. 2004, Mueller and Fusenig 2004). 
Studies have shown that carcinoma-associated fibroblasts do not form tumor but promote 
carcinogenesis of non-tumorigenic prostate epithelial cells (Grossfeld et al. 1998, Olumi et al. 
1999, Cunha et al. 2002). Therefore, both stroma and epithelium should be considered in the 
treatment of prostate cancer. 
 
The prostate is an androgen-dependent organ. The male sex hormone testosterone is converted 
by 5α-reductase type II in the prostate, yielding 5α-dihydrotestosterone (DHT), which has 5-fold 
higher affinity for the androgen receptor (AR) than does testosterone (Feldman and Feldman 
2001). AR is normally associated with heat shock proteins in cytoplasm and is dissociated upon 
ligand binding, which is followed by receptor phosphorylation, conformational changes, 
dimerization, and binding of androgen-responsive elements (Ruijter et al. 1999). It has been 
recognized for centuries that castration prevents growth of the prostate (Machtens et al. 2000) 
and therefore, androgen ablation therapy (surgical castration, administration of androgen 
antagonists, or 5α-reductase inhibitors) has been used in prostate cancer treatment. However, the 
tumor cells eventually become more advanced androgen-independent through several 
mechanisms, such as AR gene amplification and overexpression (Visakorpi et al. 1995, Koivisto 
et al. 1997, Linja et al. 2001). In vitro studies have shown that DHT has a biphasic effect on the 
growth of prostate cancer cells. It stimulates the growth of LNCaP cells at low concentrations 
(0.001 to 0.1 nM) and inhibits it at high concentrations (1 to 100 nM) (Sonnenschein et al. 1989, 
Henttu and Vihko 1992, Henttu et al. 1992, Lee et al. 1995, Zhao et al. 1997). 
 
On the other hand, testosterone can be converted into estrogens by aromatase (Schweikert et al. 
1976). Aromatase mRNA expression and/or enzyme activity were detected in the stroma of 
benign and malignant prostate tissues as well as in cancer cells, but not in nonmalignant prostate 
epithelial cells (Hiramatsu et al. 1997, Negri-Cesi et al. 1998, Negri-Cesi et al. 1999, Ellem et al. 
2004). The two ER subtypes, ERα and β, have been found in the prostate (Royuela et al. 2001, 
Linja et al. 2003). The effects of estrogens in the prostate was earlier thought to be mainly in the 
prostate stromal compartment (Ekman 2000), because ERα was localized in prostate stroma. 
Later, ERβ was found to be expressed in the prostate epithelial cells and it has antiproliferative 
effects on the prostate (Weihua et al. 2002). Exogenous estrogens inhibit prostate growth by 
indirect effects caused by suppression of pituitary gonadotropins and testicular testosterone 
output (Harkonen and Makela 2004). The direct effects of estrogens on the prostate have been 
investigated using organ cultures of rat or human prostate. High doses of estrogens were shown 
to be growth inhibitory in the organ culture of rat ventral prostate (Jarred et al. 2000). In the 
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organ cultures of human prostate and rat dorsal-lateral prostate, estrogens were found to 
stimulate DNA synthesis and induce squamous metaplasia (Nevalainen et al. 1991, Nevalainen 
et al. 1993). 
 
It has been suggested that the development of prostate cancer depends on both androgenic and 
estrogenic responses and that neither hormone alone can induce malignant changes on the 
prostate (Risbridger et al. 2003). This hypothesis is supported by the studies performed in the 
hypogonadal mice and aromatase knockout mice. A direct proliferative response to estrogens has 
been found in the hypogonadal mice, which are deficient in gonadotrophins and androgens. 
However, there was no evidence of malignant changes in the prostate of the hypogonadal mice 
(Bianco et al. 2002). The aromatase knockout mice had no estrogen production, but very high 
androgen concentration (McPherson et al. 2001). Those mice developed benign prostatic 
hyperplasia. However, no malignant changes were detected in the prostate of the aromatase 
knockout mice (McPherson et al. 2001). 
 

3.2.3. Retinoic acid in prostate cancer 
Retinoic acid is a derivative of vitamin A. ATRA is the main signaling retinoid in the body and 
exerts its action by binding to RARα, β, and γ. RARα and γ are expressed in both normal and 
malignant prostate tissues whereas the expression of RARβ is significantly reduced in malignant 
prostates (Kikugawa et al. 2000, Lotan et al. 2000). RARβ, as a tumor suppressor gene in lung 
and breast cancers (Houle et al. 1993, Sirchia et al. 2002), has been found to be hypermethylated 
in prostate cancer (Nakayama et al. 2001, Jeronimo et al. 2004). Both inhibitory and stimulatory 
effects of ATRA on prostate cell growth have been demonstrated (Fong et al. 1993, Peehl et al. 
1993, Jones et al. 1997). Interestingly, some antagonists of RARs have been found to inhibit the 
growth of prostate cancer cells (Hammond et al. 2001, Keedwell et al. 2004). ATRA was found 
to induce differentiation of prostate epithelial cells, as measured by PSA secretion (Fong et al. 
1993, Esquenet et al. 1996) and by the expression of cytokeratins 8 and 18 (Peehl et al. 1994). 
ATRA may promote apoptosis of prostate cancer cells (Huss et al. 2004) and potentiate 
Taxotere-induced cell death in prostate cancer (Wang and Wieder 2004). ATRA also has 
antimetastatic activity (Nwankwo 2002). ATRA, like 1α,25-(OH)2D3, also increases the 
expression of IGFBP-3 in LNCaP cells (Goossens et al. 1999). However, several clinical trials 
have shown that the antitumor effect of ATRA in patients with prostate cancer was modest or 
minimal (Culine et al. 1999, Kelly et al. 2000). 
 

3.3. Vitamin D3 and its metabolism in prostate cancer 
3.3.1. Vitamin D3 in prostate cancer 

VDR is expressed in prostate cancer cells, such as LNCaP, PC3, and DU145 (Miller et al. 1992, 
Skowronski et al. 1993) as well as in primary stromal and epithelial cells derived from normal 
and malignant prostate tissues (Skowronski et al. 1995). It is clear that VDR is required in the 
antiproliferative action of 1α,25-(OH)2D3 (Hedlund et al. 1996a, Hedlund et al. 1996b), but 
VDR abundance does not correlate with differential antiproliferative activities of 1α,25-(OH)2D3 
in various cancer cells (Zhuang et al. 1997). 1α,25-(OH)2D3 acts as an anticancer agent through 
different pathways in different prostate cell types. In androgen-sensitive prostate cancer cells 
LNCaP, 1α,25-(OH)2D3 inhibits cell proliferation (Skowronski et al. 1993, Skowronski et al. 
1995), induces the secretion of PSA (Skowronski et al. 1993, Skowronski et al. 1995), and 
down-regulates the expression of proliferating cell nuclear antigen (Hsieh et al. 1996). It is 
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known that the antiproliferative effect of 1α,25-(OH)2D3 in LNCaP cells involves G1 growth 
arrest (Zhuang and Burnstein 1998), hypophosphorylation of retinoblastoma protein (Zhuang 
and Burnstein 1998), induction of IGFBP-3 and p21waf1 (Boyle et al. 2001), stabilization of 
p27kip1, and cyclin-dependent kinase 2 mislocalization (Yang and Burnstein 2003). 1α,25-
(OH)2D3 also causes apoptosis in LNCaP cells (Hsieh and Wu 1997), accompanied by down-
regulation of Bcl-2 (Blutt et al. 2000a). The action of 1α,25-(OH)2D3 is androgen-dependent in 
LNCaP cells (Zhao et al. 1997) and CWR22R cells (Bao et al. 2004) and is androgen-
independent in MDA cells (Zhao et al. 2000). 1α,25-(OH)2D3 inhibits PC3 cell growth through 
induction of both TGFβ and IGFBP-3 production, and the TGFβ pathway seems to be essential 
(Murthy and Weigel 2004). Unlike in LNCaP cells, G1 accumulation is not observed in PC3 
cells after 1α,25-(OH)2D3 treatment (Zhuang and Burnstein 1998). Additionally, 1α,25-(OH)2D3 
inhibits the invasiveness of DU145 cells (Schwartz et al. 1997) and decreases cell adhesion of 
PC3 and DU145 (Sung and Feldman 2000).    
 
Studies in animals showed that 1α,25-(OH)2D3 and its analogs significantly reduced prostate 
tumor volume (Schwartz et al. 1995a), tumor growth (Blutt et al. 2000b, Oades et al. 2002), and 
metastasis (Getzenberg et al. 1997, Lokeshwar et al. 1999). A few clinical trials of 1α,25-
(OH)2D3 have been conducted in prostate cancer patients whose PSA level was significantly 
decreased (Osborn et al. 1995, Gross et al. 1998). However, all in vivo studies show that 1α,25-
(OH)2D3 causes severe hypercalcemia and/or hypercalciuria. Therefore, the clinical use of 
1α,25-(OH)2D3 is limited and lesser calcemic analogs would be promising.    
 

3.3.2. Vitamin D3 metabolism in prostate cancer 
24-Hydroxylase is ubiquitous in the body and is an important enzyme controlling the action of 
vitamin D3 metabolites. It has been shown that 1α,25-(OH)2D3 can induce the expression of 24-
hydroxylase in many prostate cancer cells (Skowronski et al. 1993, Miller et al. 1995, 
Skowronski et al. 1995). Cells expressing high basal or induced level of 24-hydroxylase may be 
vitamin D3 resistant. For example, DU145 cells, expressing a high level of 24-hydroxylase, are 
not inhibited by 1α,25-(OH)2D3 unless in the presence of 24-hydroxylase enzyme inhibitor (Ly 
et al. 1999). The antiproliferative activity of 1α,25-(OH)2D3 seems to be related in inverse 
proportion to 24-hydroxylase expression (Miller et al. 1995). Ketoconazole, a 24-hydroxylase 
inhibitor, has been proposed for use in combination with 1α,25-(OH)2D3 in prostate cancer 
treatment (Peehl et al. 2001, Peehl et al. 2002). The chromosomal region where the 24-
hydroxylase gene is located has been found to be amplified in prostate cancer (Wolter et al. 
2002), which may cause overexpression of 24-hydroxylase and abrogate vitamin D3-mediate 
growth control. 24-Hydroxylase should, therefore, be considered in the use of vitamin D in 
prostate cancer treatment.   
 
The autocrine/paracrine role of 1α,25-(OH)2D3 in the prostate was evidenced by the finding of 
1α-hydroxylase activity in prostate cells (Schwartz et al. 1998). PC3, DU145, and primary 
prostate epithelial cells possess 1α-hydroxylase activity and no measurable production of 1α,25-
(OH)2D3 was detected in LNCaP cells (Schwartz et al. 1998). 25OHD3 inhibits the proliferation 
of 1α-hydroxylase-possessing cells, which was assumed to be due to the conversion of 25OHD3 
to 1α,25-(OH)2D3 (Barreto et al. 2000). Moreover, the less 1α-hydroxylase activity the prostate 
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cancer cells possess, the less sensitive they are to 25OHD3 (Hsu et al. 2001). Accordingly, 
25OHD3 and its analogs have been evaluated as therapeutic agents for prostate cancer (Chen et 
al. 2000b, Swamy et al. 2004). Because of the less calcemic property, 25OHD3 and its analogs 
would be better anticancer agents than 1α,25-(OH)2D3. The regulation of prostate 1α-
hydroxylase is different from that of renal 1α-hydroxylase. 1α,25-(OH)2D3, but not PTH or 
calcium, suppresses 1α-hydroxylase gene-promoter and enzyme activity in prostate epithelial 
cells (Young et al. 2004). It is possible that the activation of 25OHD3 by 1α-hydroxylase in the 
prostate may contribute to the antiproliferative activity of 25OHD3, but 25OHD3 itself may also 
have an effect on cell proliferation.     
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AIMS OF THE PRESENT STUDY 

 

The aims of the present study were: 

 

1. To study the expression and 25OHD3- and 1α,25-(OH)2D3-mediated regulation of two key 

enzymes involved in vitamin D3 metabolism, namely 1α-hydroxylase and 24-hydroxylase, in 

prostate stromal and epithelial cells (I, II, III, IV) 

2. To study the role of DHT in the transcriptional and antiproliferative activities of 25OHD3 

and 1α,25-(OH)2D3 in prostate cancer epithelial cells (II, IV)   

3. To study the combined effect of ATRA and vitamin D3 metabolites on 24-hydroxylase 

expression in prostate stromal and epithelial cells (III) 

4. To evaluate the hormonal role of 25OHD3 in prostate stromal and cancer cells (I, IV) 
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MATERIALS AND METHODS 
 
1. MATERIALS (I, II, III, IV) 
25OHD3 and 1α,25-(OH)2D3 were generously donated by Leo Pharmaceuticals (Ballerup, 
Denmark). VID400, an inhibitor of 24-hydroxylase, and SDZ88-357, an inhibitor of 1α-
hydroxylase, were kindly provided by Dr. Anton Stuetz (Novartis Research Institute, Vienna, 
Austria). LE135 and Am80 were kindly provided by Dr. Hiroyuki Kagechika (School of 
Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan) and BMS453 by Dr. 
Hinrich Gronemeyer (IGBMC, Department of Cell Biology and Signal Transduction, Illkirch, 
France). DHT was obtained from Merck (Darmstadt, Germany), Casodex from AstraZeneca 
(London, UK), and hydroxyflutamide from Schering-Plough Avondale (Rathdrum, Co. 
Wicklow, Ireland). All-trans-retinoic acid (ATRA) was obtained from ICN Biomedicals 
(Eschwege, Germany). Cycloheximide was purchased from Sigma (St. Louis, MO), TRIzol 
Reagent from Gibco BRL (Life Technologies, Grand Island, New York), and Lipofectamine™ 
2000 from Invitrogen (Paisley, UK). RPMI-1640 and DMEM-F12 media were purchased from 
Sigma-Aldrich (Steinheim, Germany), FBS and penicillin-streptomycin from Gibco BRL 
(Groningen, The Netherlands), Amphothericin B and insulin from Sigma-Aldrich (St. Louis, 
MO, USA), BSA from Roche (Mannheim, Germany), and prostate epithelial cell growth 
medium from Cambrex (Walkersville, MD, USA). The expression vector pARL was kind gift 
from Dr. Albert O. Brinkmann (Department of Reproduction & Development, University 
Medical Center Rotterdam, The Netherlands) and pSG5-hRARβ from Dr. Hinrich Gronemeyer, 
(IGBMC, Department of Cell Biology and Signal Transduction, Illkirch, France). 
 
2. CELL AND PRIMARY CULTURES (I, II, III, IV) 

2.1. Cell cultures 
Human prostate cancer cells LNCaP clone FGC, PC3, and DU145 were purchased from the 
American Type Culture Collection. Cells were routinely maintained in 75 cm2 flasks with phenol 
red-free RPMI-1640 medium, supplemented with 10 % FBS, 100 units/ml penicillin and 100 
μg/ml streptomycin at 37°C in a humidified atmosphere of 5 % CO2 in air. To deplete 
endogenous steroids, the medium was changed to one containing 10 % DCC-FBS two to three 
days before starting the experiments. 
 

2.2. Primary epithelial culture 
The primary culture of normal human prostate epithelial cells PrEC was obtained from Cambrex 
(Walkersville, MD, USA). According to the manufacture’s instructions, PrEC cells were 
cultured in prostate epithelial cell growth medium containing bovine pituitary extract, 
hydrocortisone, recombinant human epidermal growth factor, bovine insulin, epinephrine, 
triiodothyronine, transferrin, and gentamicin sulfate amphotericin-B (Cambrex, Walkersville, 
MD, USA). 1 % BSA was used in treatments of PrEC cells due to the lack of serum in the 
culture medium. The cells used in the experiments were from passage 6. 
 

2.3. Primary stromal cultures 
2.3.1. Tissues 

Two primary cultures, designated P29SN and P32S, were derived from a benign area of prostate 
carcinoma and benign adenoma, respectively. The use of prostate tissue was approved by the 
local ethical committee and informed consent was obtained from both subjects. 
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2.3.2. Isolation and culture of primary stromal cells  

Stromal cell cultures were established essentially according to previously described methods 
(Peehl and Sellers 1997). Tissue samples were minced into fragments not larger than 3 mm3 and 
dissociated by enzymes. After overnight digestion at 37°C with 0.05 % collagenase A (P32S) or 
0.05 % collagenase/dispase (P29SN), the partly digested tissue was centrifuged and digestion of 
the pellet was continued with fresh 0.1 % collagenase A at 37°C until isolated glands could be 
observed. Epithelial acini were separated from the stromal fraction by centrifugation at 50 g. The 
stromal fraction was carefully rinsed with culture medium and transferred to a 75 cm2 culture 
flask. The primary stromal cells and serial cultures were maintained in phenol red-free 
DMEM/F12 medium, supplemented with 5 % DCC-FBS, 5 μg/ml insulin, and antibiotics 
(penicillin 100 units/ml, streptomycin 100 μg/ml, amphotericin B 2.5 μg/ml) at 37°C in 
humidified atmosphere of 5 % CO2 in air. The cells used in the experiments were from passages 
6 to 12. 
 
3. TRANSIENT TRANSFECTIONS (II, III) 

3.1. Transfection of AR 
PC3 cells (6 x 105) were transfected with a wild-type human AR cDNA expression vector 
(pSG5-hAR) or the mutant AR of LNCaP cells (pARL) in 25 cm2 flasks. Each flask received 1 
μg of DNA and 2.5 μl of Lipofectamine™ 2000 in 1.5 ml of serum-free RPMI-1640 medium for 
4 h following the manufacturer's instructions. After transfection, the cells were incubated in 
RPMI-1640 medium with 10 % DCC-FBS for 44 h to allow the expression of the transfected 
AR.  
 

3.2. Transfection of RARβ 
In the transfection of a human RARβ cDNA expression vector (pSG5-hRARβ) or the empty 
vector (pSG5), 8 x 104 of PC3 cells grown in 6-well plates were used with 100 ng of DNA and 
0.3 μl of Lipofectamine™ 2000 in 1 ml of serum-free RPMI-1640 medium following the same 
procedure mentioned above in section 3.1. 
 
4. CELL TREATMENTS AND RNA ISOLATION (I, II, III, IV) 
The subconfluent cells were treated with vehicle (ethanol, final concentration 0.02-0.12 %), 
hormones, or other compounds at the concentrations indicated for 6, 24, and 48 h. The ethanol 
concentration was equal in controls and hormone-treated samples. 
 
Total cellular RNA was isolated by using TRIzol Reagent following the manufacturer's 
instructions. Total RNA amounts were quantified by measuring absorbance at 260 nm. The 
OD260/OD280 nm absorption ratio was always greater than 1.9. Denaturing agarose gel 
electrophoresis was performed to verify the integrity of RNA. The intensity of the 28S rRNA 
band was more than twice that of the 18S rRNA band stained by ethidium bromide. 
 
5. REAL-TIME RT-PCR (I, II, III, IV) 

5.1. Primer design 
As recommended in the manufacturer’s protocol, primers were designed using Primer Express 
v2.0 software (Perkin-Elmer Applied Biosystems, USA) to ensure suitability for the ABI Prism 
7000 sequence detection system and the reaction parameters. To confirm the specificity of the 
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primer sequences, BLASTN searches were performed. All primers were designed to be intron-
spanning to preclude amplification of genomic DNA. In order to normalize the amount of 
sample cDNA added to the reaction, human acidic ribosomal phosphoprotein P0 (RPLP0) was 
used as the endogenous control. RPLP0 is ubiquitously expressed and is considered to be a 
reliable endogenous control. All sequence specific oligonucleotide primers (Table 2) were 
synthesized by TAG Copenhagen A/S (Copenhagen, Denmark).  
 
Table 2. Oligonucleotide primer sequences 

 
Genes Oligonucleotide Sequence Position 

forward primer 5'-GCCCAGCCGGGAACTC-3' 1907-1922 CYP24 
(NM_000782) reverse primer 5'-AAATACCACCATCTGAGGCGTATT-3' 1968-1945 

forward primer 5'-TTGGCAAGCGCAGCTGTAT-3' 1409-1427 CYP27B1 
(NM_000785) reverse primer 5'-TGTGTTAGGATCTGGGCCAAA-3' 1484-1464 

forward primer 5'-CCTTCACCATGGACGACATG-3' 948-967 VDR 
(NM_000376) reverse primer 5'-CGGCTTTGGTCACGTCACT-3' 1025-1007 

forward primer 5'-TGTCAACTCCAGGATGCTCTACTT-3' 3386-3409 AR 
(NM_000044) reverse primer 5'-ATTCGGACACACTGGCTGTACA-3' 3478-3457 

forward primer 5'-AATCTCCAGGGGCACCATT-3' 515-533 RPLP0 
(NM_001002) reverse primer 5'-CGCTGGCTCCCACTTTGT-3' 588-571 

forward primer 5’-AGTACTGCCGACTGCAGAAGTG-3’ 648-669 RARα 
(X06538) reverse primer 5’-TGTTTCGGTCGTTTCTCACAGA-3’ 695-716 

forward primer 5’-CAAATCATCAGGGTACCACTATGG-3’ 601-624 RARβ 
(X07282) reverse primer 5’-CTGAATACTTCTGCGGAAAAAGC-3’ 651-673 

forward primer 5’-TGCCGGCTACAGAAGTGCTT-3’ 847-866 RARγ 
(M24857) reverse primer 5’-CTTCTTGTTCCGGTCATTTCG-3’ 895-915 

forward primer 5’-TCCTTGGAGGCCTACTGCAA-3’ 1270-1289 RXRα 
(X52773) reverse primer 5’-GGCAGGCGGAGCAAGAG-3’ 1343-1327 

forward primer 5’-AGCAGCAGGGACGGTTTG-3’ 1559-1576 RXRβ 
(M84820) reverse primer 5’-GATGCTCTAGACACTTAAGGCCAAT-3’ 1612-1636 

forward primer 5’-TTTCCCGCAGGCTATGGA-3’ 58-75 RXRγ 
(U38480) reverse primer 5’-TGCTGATGGGCTCATGGAT-3’ 102-120 
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5.2. cDNA synthesis and real-time PCR 
The total RNA from each sample was reverse-transcribed using a high-capacity cDNA achieve 
kit (Perkin-Elmer Applied Biosystems, USA) following the manufacturer's instructions. The 
experimental protocol was following: 10 min at 25°C followed by 120 min reverse transcription 
at 37°C. All PCR reactions were performed in MicroAmp optical 96-well reaction plates using 
an SYBR Green Master Mix kit (Perkin-Elmer Applied Biosystems, USA) on an ABI Prism 
7000 sequence detection system (Perkin-Elmer Applied Biosystems, USA). The thermal cycling 
conditions consisted of a 10 min polymerase activation/initial denaturation at 95°C and 45 cycles 
with a 95°C denaturation for 15 sec and a 60°C annealing/extension for 1 min.  Detection of 
accumulated fluorescent products was performed at the end of the extension step of each cycle. 
To verify the specific products, dissociation curve analysis was carried out after 45 cycles. 
 
Serial dilutions of cDNA from the cells treated with 10 nM 1α,25-(OH)2D3 for 24 h were made 
to generate the standard curves of endogenous control and target genes. The calibrator sample 
used in the data analysis was the untreated sample. The data were quantified by the standard 
curve method with ABI Prism SDS Data Analysis software. The relative expression level of the 
target gene was calculated using amplification efficiencies obtained from the standard curves and 
Ct values as previously described (Pfaffl 2001). Results are expressed as means (± SD) of two to 
five independent experiments performed in duplicate. 
 

5.3. Statistical methods 
Statistical significance was evaluated by Student’s t-test, one-way ANOVA, and two-way 
ANOVA followed by Bonferroni post-tests (GraphPad Prism 4 software, San Diego, CA, USA). 
Differences of P > 0.05 were considered not significant (NS), and P < 0.05 significant (*), P < 
0.01 (**) and P < 0.001 (***) highly significant. 
 
6. WESTERN BLOT ANALYSIS (I, II) 

6.1. Analysis of 1α-hydroxylase 
The subconfluent cells were trypsinized and pelleted. Cell lysate protein was prepared using M-
PerTM mammalian protein extraction reagent (Pierce, Rockford, IL, USA) following the 
manufacturer’s instructions. Protein concentrations were measured using BCA protein assay kit 
(Pierce, Rockford, IL, USA). Cell lysate was subjected to SDS-PAGE using a 7.5 % gel. Protein 
bands were transferred to nitrocellulose transfer membranes (0.45 μm pore; Schleicher & 
Schuell, Germany). After blocking of nonspecific binding sites with 20 % non-fat milk in TBS 
containing 0.1 % Tween 20 (TBS-T) at room temperature for one hour, the membranes were 
incubated with anti-mouse 1α-hydroxylase antibody (The Binding Site Ltd. Birmingham, UK) 
(Bland et al. 1999) at a 1:500 dilution in TBS-T containing 0.1 % non-fat milk at 4°C overnight. 
After washing with TBS-T, the membranes were incubated with secondary antibody (horseradish 
peroxidase-conjugated; ZYMED, CA, USA) at a 1:4000 dilution in TBS-T containing 0.1 % 
non-fat milk at room temperature for one hour. The blots were detected by enhanced 
chemiluminescence reagents (ECL, UK) and exposed to x-ray film for 2 min. The control 
experiment included presaturation of the primary antibody with an excess of the immunizing 
peptide (mouse amino acid sequence 266 to 289: R-H-V-E-L-R-E-G-E-A-A-M-R-N-Q-G-K-P-
E-E-D-M-P-S) (Zehnder et al. 1999). 
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6.2. Analysis of AR 
For the study of AR, the cytosolic and nuclear proteins were extracted and Western blot analysis 
was performed as described previously (Ahonen et al. 2000b). Polyclonal rabbit antibody AR70 
used in Western blot analysis was produced against synthetic peptides corresponding to the N-
terminal amino acids 1 to 17 of human AR (Tahka et al. 1997). 
 
7. IMMUNOHISTOCHEMISTRY (I) 

7.1. Cells 
For immunohistochemical analysis cells from each primary stromal culture were grown on 4-
well glass slides (Lab-Tek II Chamber Slide, Nalge Nunc, Naperville IL) until subconfluent. The 
cells were then fixed with 2 % formaldehyde for 20 min at room temperature and thereafter 
permeabilized with pre-chilled (-20°C) 94 % ethanol for 10 min on ice. 
 

7.2. Antibodies 
Mouse monoclonal anti-human antibodies were used to immunohistochemically characterize the 
stromal primary cultures. Antibodies against vimentin (1:200), desmin (1:100), smooth muscle 
actin (1:100), cytokeratins 5/6 (1:100), and 18 (1:50) were purchased from Dako (Glostrup, 
Denmark). Antibody against cytokeratins 14 (1:200) was from Novocastra (Newcastle, UK) and 
those against fibronectin (1:50) and cytokeratin 8 (1:50) from Santa Cruz (Santa Cruz, 
California, USA). Rat monoclonal anti-VDR antibody (1:200) was from Neo Markers (Fremont, 
CA, USA). Controls included omission of the primary antibodies and staining with 
nonimmunized mouse IgG. Normal rat IgG (Santa Cruz, California, USA) was used as control of 
VDR staining. 
 

7.3. Immunostaining 
The staining using the primary antibodies mentioned above was performed with a broad 
spectrum Zymed Histostain-Plus kit  (Zymed Laboratories, South San Francisco, CA, USA) with 
the following modifications to the manufacturer’s instructions: primary antibodies were 
incubated overnight at 4°C and biotinylated second antibody 20 min RT. All washings were 
repeated three times, 5 min each. 
 
8. CELL GROWTH ASSAYS (I, III, IV) 

8.1. Crystal violet staining assay 
P29SN and P32S cell growth was analyzed by crystal violet staining assay performed in 96-well 
culture plates seeding 1000 cells/well in 200 µl medium. The cells were allowed to attach for 24 
h. Cells were then treated with 100, 250, 1000 nM of 25OHD3 or 10 nM of 1α,25-(OH)2D3. Both 
control and treated cells received ethanol vehicle at a concentration of 0.1 %. Media were 
changed and treatments were renewed every 48 h. Relative cell numbers were quantified at 0, 3, 
5, 7, 9, and 11 days by using crystal violet assay (Kueng et al. 1989). Briefly, cells were fixed 
with 11 % glutaraldehyde, washed with deionized water, air-dried, stained with 0.1 % crystal 
violet, washed with deionized water, and air-dried. Then 10 % acetic acid was added and a 
Victor 1420 Multilabel Counter (Wallac, Turku, Finland) was used for the optical density 
measurements of extracts at a wavelength of 590 nm. Two separate experiments were done in 
which six determinations were used for each treatment. Statistical significance was evaluated by 
Student’s t-test. 
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8.2. Cell number counting assay 
P32S or P29SN cells seeded in 24-well plates at a density of 5758 cells per well in 1 ml medium 
or in 6-well plates at a density of 3 x 104 cells per well in 3 ml medium were treated with vehicle 
(0.1 % ethanol), 100 nM, 250 nM of 25OHD3, or 10 nM of 1α,25-(OH)2D3 and/or Am80 (RAR 
selective ligand) at the concentrations indicated. Media were changed and treatments were 
renewed every 48 h. At day 6 or 9, cells were trypsinized and pelleted. Cell numbers were 
counted in a Burker chamber (Assistent, Sondheim, Germany). The experiments were performed 
three to five times independently and the results are expressed as percent of control (mean ± 
SD). Statistical significance was evaluated by Student’s t-test or one-way ANOVA followed by 
Bonferroni post-tests (GraphPad Prism 4 software, San Diego, CA, USA). 
 
LNCaP cell growth was analyzed by counting cell numbers. LNCaP cells seeded in 6-well plates 
at a density of 5 x 104 cells per well in 3 ml RPMI-1640 medium containing 10 % FBS were 
allowed to attach for 48 h and then treated with vehicle (0.1 % ethanol), 100 nM, 500 nM of 
25OHD3, 0.1 nM, 10 nM of 1α,25-(OH)2D3, and/or 1 nM of DHT. Media were changed and 
treatments were renewed every 48 h. At day 6, cells were trypsinized and pelleted. Cell numbers 
were counted in a Burker chamber (Assistent, Sondheim, Germany). The experiments were 
performed three times independently and the results are expressed as percent of control (mean ± 
SD). Statistical significance was determined by two-way ANOVA followed by Bonferroni post-
tests (GraphPad Prism 4 software, San Diego, CA, USA). Differences of P > 0.05 were 
considered not significant (NS), and P < 0.05 significant (*), P < 0.01 (**) and P < 0.001 (***) 
highly significant. 
 
9. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS (I, II) 

9.1. 1α-Hydroxylase activity assay 
P29SN cells were seeded in 25 cm2 flasks in 3 ml of complete growth medium. After 48 h of 
incubation, the medium was replaced with fresh medium containing 250 nM 25OHD3 and/or 
1000 nM SDZ88-357. At 4 h, the media and cells were collected for quantitation of 1α,25-
(OH)2D3 concentration. The radioactive 1α,25-dihydroxy (26,27 methyl-3H) vitamin D3 TRK 
656 5 uCi, Amersham) was added and the samples were pre-purified using the acetonitrile-C18 
Sep-Pak Cartridge (Waters, Ireland) (Turnbull et al. 1982) followed by separation of the 
metabolites by high-performance liquid chromatography (HPLC, Pharmacia LKB HPLC pump 
2248, VWM 2141, Uppsala, Sweden). The mobile phase solvent system was hexane: 
dichloromethane: methanol: isopropanol (75:12:6:7). The concentrations of 1α,25-(OH)2D3 were 
quantified by radioreceptor assay (Reinhardt et al. 1984). The corresponding protein 
concentrations were measured using BCA protein assay kit (Pierce, Rockford, IL, USA). 
Enzymatic activity was expressed as fmol/mg protein/h. Data are expressed as means (± SD) of 
five repeats. 
 

9.2. 1α,25-(OH)2D3 assay 
LNCaP cells (3.5 X 105) cultured in 25 cm2 flasks in the growth medium containing 10 % DCC-
FBS for three days were pre-treated with 10 nM 1α,25-(OH)2D3 in the absence or presence of 10 
nM DHT for 48 h and then incubated with a physiological concentration of 1α,25-(OH)2D3 for 
16 h. The media and cells were collected for the assay of the unmetabolized 1α,25-(OH)2D3 
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following the procedure described above in section 9.1. Statistical significance was determined 
by Student’s t-test. 
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RESULTS 
 
1. REGULATION OF CELL GROWTH (I, III, IV) 

1.1. Prostate stromal cell growth 
1.1.1. Characterization of the primary stromal cultures 

Both primary stromal cultures P29SN and P32S showed similar staining characteristics. An 
extensive staining for vimentin and fibronectin was seen, over 99 % of cells being positive for 
these markers. Less than 5 % of the cells present expressed smooth muscle actin and less than 2 
% expressed desmin. There was no specific staining with anti-cytokeratins 8 and 18. Stainings 
with anti-cytokeratins 5/6 and 14 as well as PBS were negative. A positive immunostaining for 
VDR was detected in the discrete foci of cell nuclei. The control staining for VDR was negative. 
These data indicate that the vast majority of both primary prostate cultures were fibroblasts in 
phenotype. 
 

1.1.2. Effect of 25OHD3 and 1α,25-(OH)2D3 
The crystal violet assays showed that the growth of P29SN cells was significantly inhibited when 
treated with 250 nM, 1000 nM of 25OHD3, and 10 nM of 1α,25-(OH)2D3. 25OHD3 dose-
dependently inhibited P29SN cell growth. Compared to the controls, the relative cell growth at 
day 9 treated with 100 nM, 250 nM, 1000 nM of 25OHD3, and 10 nM of 1α,25-(OH)2D3 was 98 
± 25 % (P > 0.05), 70 ± 8 % (P < 0.01), 51 ± 6 % (P < 0.0001), and 62 ± 9 % (P < 0.001), 
respectively (Table 3). To verify the results above, a cell number counting method was applied. 
Compared to the controls, at day 9 the relative growth of P29SN cells treated with 100 nM, 250 
nM of 25OHD3, and 10 nM of 1α,25-(OH)2D3 was 139 ± 16% (P = 0.050), 78 ± 5% (P = 0.018), 
and 68 ± 8% (P = 0.023), respectively. 
 
The crystal violet assays showed that the growth of P32S cells was not inhibited by 10 nM of 
1α,25-(OH)2D3 but significantly inhibited by 25OHD3. Compared to the controls, at day 9 the 
relative cell growth treated with 100 nM, 250 nM, 1000 nM of 25OHD3, and 10 nM of 1α,25-
(OH)2D3 was 81 ± 12 % (P < 0.01), 77 ± 9 % (P < 0.01), 60 ± 7 % (P < 0.0001), and 95 ± 20 % 
(P > 0.05), respectively (Table 3). 
 
Table 3. Antiproliferative effect of 25OHD3 and 1α,25-(OH)2D3 on prostate stromal cells 
(relative cell growth at day 9: percent of control, mean ± SD, n = 12) 
 

25OHD3 (nM) 1α,25-(OH)2D3 (nM)  
0 100 250 1000 10 

P29SN cells 100 % 98±25 % 70±8 % 51±6 % 62±9 % 
P32S cells 100 % 81±12 % 77±9 % 60±7 % 95±20 % 

 
1.1.3. Effect of RAR-selective ligand Am80 

Am80 at the concentrations of 1 to 10 nM had no effect on the growth of P32S cells, whereas at 
100 and 200 nM concentration it strongly inhibited cell growth by 43.9% (P < 0.01) and 44.4%, 
respectively (P < 0.001). 
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1.1.4. Combined effect of Am80 and 1α,25-(OH)2D3 or 25OHD3   
The combined treatment of 1α,25-(OH)2D3 and Am80 at 10 nM concentration exhibited strong 
inhibitory effect (P < 0.01), whereas either of these alone had no effect on cell growth. Am80 at 
1 or 100 nM, the same enhancement was observed but it was not statistically significant. Due to 
the strong inhibitory effect of 200 nM Am80, no enhanced effect of 1α,25-(OH)2D3 was 
observed. Moreover, 25OHD3 inhibited the growth of P29SN cells (P < 0.05) and the effect was 
enhanced in the presence of 200 nM Am80 (P < 0.001). 
 

1.2. Prostate cancer epithelial cell growth 
1.2.1. Effect of 25OHD3 and 1α,25-(OH)2D3 

LNCaP cell growth was significantly inhibited by 25OHD3 at 500 nM and by 1α,25-(OH)2D3 at 
a pharmacological concentration of 10 nM by 43% (P < 0.001) and 76% (P < 0.001), 
respectively (Table 4). However, 25OHD3 at a physiological concentration of 100 nM and 
1α,25-(OH)2D3 at a physiological concentration of 0.1 nM did not affect LNCaP cell growth (P 
> 0.05, Table 4). 
 

1.2.2. Effect of DHT 
DHT (1 nM) caused a 54% decrease in LNCaP cell growth (P < 0.001, Table 4). 
 

1.2.3. Combined effect of DHT and 25OHD3 or 1α,25-(OH)2D3 
The combined treatment of 1 nM DHT with either 25OHD3 or 1α,25-(OH)2D3 at physiological 
concentrations suppressed cell growth by 71% (P < 0.001) and by 72% (P < 0.001), respectively 
(Table 4). 1 nM DHT enhanced the effect of 500 nM 25OHD3 from 43% inhibition to 90% 
inhibition (P < 0.001). The effect of 10 nM 1α,25-(OH)2D3 was increased from 76% inhibition 
to 89% inhibition by 1 nM DHT (P > 0.05, Table 4). It should be noted that the combined 
treatment of 1 nM DHT and either 25OHD3 or 1α,25-(OH)2D3 was more antiproliferative than 1 
nM DHT alone (P < 0.05; P < 0.001; P < 0.01). Two-way ANOVA shows a statistically 
significant interaction between two factors: 25OHD3 and DHT (F = 5.668, P = 0.0185) and 
between 1α,25-(OH)2D3 and DHT (F = 13.3, P = 0.0009). 
 
Table 4. Antiproliferative effect of 25OHD3 and 1α,25-(OH)2D3 with and without DHT on 
LNCaP cells (relative cell growth at day 6: percent of control, mean ± SD, n = 3) 
 

25OHD3 (nM) 1α,25-(OH)2D3 (nM)  
0 100 500 0.1 10 

0 100 % 101±9 % 57±7 % 100±21 % 24±8 % DHT 
(nM) 1 46±11 % 29±2 % 10±5 % 28±4 % 11±2 % 

 
2. VDR EXPRESSION (II, III) 
VDR was detected in all the cells studied. Neither 10 nM 1α,25-(OH)2D3 nor DHT at 
concentrations of 0.01 to 100 nM altered the expression of VDR mRNA in LNCaP cells. The 
level of VDR mRNA was not altered by ATRA in P29SN and PrEC cells. 
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3. RARs and RXRs (III) 
3.1. Differential mRNA expression in epithelial and stromal cells 

To better understand the action of ATRA, we studied the expression of RARs and RXRs. 
LNCaP cells expressed a significantly lower level of RARα than PrEC (P < 0.05). In the other 
cell types the expression level of the receptor did not differ. Of particular interest, RARβ was 
expressed differentially in prostate epithelial and stromal cells. The stromal cells expressed a 
much higher level of RARβ than the epithelial cells (LNCaP vs. P29SN, P < 0.001; LNCaP vs. 
P32S, P < 0.001; PrEC vs. P29SN, P < 0.001; PrEC vs. P32S, P < 0.001), while there was no 
significant difference between LNCaP and PrEC or between P29SN and P32S. The prostate 
cancer cells, LNCaP, expressed less RARγ than the other types of cells (P < 0.001) and PrEC 
cells expressed less RARγ than stromal cells (PrEC vs. P29SN, P < 0.01; PrEC vs. P32S, P < 
0.05). 
 
The expression of RXRα was slightly higher in epithelial than in stromal cells (PrEC vs. P29SN, 
P < 0.05; PrEC vs. P32S, P < 0.01; LNCaP vs. P32S, P < 0.05). RXRβ was similarly expressed 
in all cell types except for a significant difference between LNCaP and P29SN cells (P < 0.05). 
The expression of RXRγ was extremely low or negligible in P29SN, P32S, and PrEC cells. 
 

3.2. Differential mRNA regulation by ATRA in epithelial and stromal cells 
ATRA at 1000 nM did not regulate RARα and RARγ expression in any studied cell type. 
However, ATRA caused a 16-fold increase in RARβ mRNA level in PrEC cells (P = 0.018), a 3-
fold increase in P29SN cells (P = 0.031), and a 5-fold increase in P32S cells (P = 0.029) but not 
in cancer LNCaP cells. The expression of RXRα mRNA appeared to be unaltered by 1000 nM 
ATRA in LNCaP, PrEC, and P29SN cells and slightly down-regulated 0.7-fold in P32S cells (P 
= 0.043). The expression of RXRβ mRNA was slightly decreased 0.6-fold in P29SN (P = 0.027) 
and increased 1.4-fold in P32S (P = 0.002), and further, unaltered in LNCaP and PrEC cells. 
 
4. 1α-HYDROXYLASE EXPRESSION (I, IV) 

4.1. In stromal cells 
Immunoblotting analysis using an anti-mouse 1α-hydroxylase antibody showed a clear single 
band at 56 KD in both primary stromal cultures P29SN and P32S, which is the size of 1α-
hydroxylase protein. No signal was seen in the presaturation controls.  
 
To determine whether the primary prostate stromal cells can produce 1α,25-(OH)2D3, we 
performed a 1α-hydroxylase activity assay. 1α-Hydroxylase activity in P29SN cells was 30 ± 29 
fmol/mg protein/h (n = 5). However, the concentration of 1α,25-(OH)2D3 in culture medium and 
in cells was much lower than physiological concentration (50 pM). When the cells received 250 
nM 25OHD3 in the presence of 1000 nM SDZ88-357, a specific 1α-hydroxylase inhibitor 
(Schuster et al. 2001b), 1α-hydroxylase activity was 7 ± 36 fmol/mg protein/h (n = 5), which 
indicates that SDZ88-357 can effectively inhibit 1α-hydroxylase activity. 
 
In both P29SN and P32S cells, quantitative real-time RT-PCR showed a detectable and similar 
level of 1α-hydroxylase mRNA. Among these, only in P29SN cells did the use of 100 nM 
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25OHD3 for 6 h cause statistically significant up-regulation of 1α-hydroxylase mRNA level (2 ± 
0.3-fold, P < 0.05). 
 

4.2. In epithelial cells 
Immunoblotting analysis using an anti-mouse 1α-hydroxylase antibody showed a weak band of 
56 kD in DU145 cells. No signal was seen in the presaturation controls. However, in LNCaP 
cells, a very weak band of 56 kD was found along with a non-specific band at 64.6 kD, which 
did not disappear in the presaturation control. Quantitative real-time RT-PCR showed no 
regulation of 1α-hydroxylase expression by 500 nM 25OHD3, 10 nM 1α,25-(OH)2D3, or 1 nM 
DHT in LNCaP cells. The combined treatment of 500 nM 25OHD3 and 1 nM DHT caused a 1.8-
fold increase in the level of 1α-hydroxylase mRNA (P < 0.05). However, the combined 
treatment of 10 nM 1α,25-(OH)2D3 and 1 nM DHT did not alter the level of 1α-hydroxylase 
mRNA. 
 
Normal epithelial PrEC cells expressed a much higher basal 1α-hydroxylase mRNA level than 
stromal P29SN cells and cancer LNCaP, PC3, and DU145 cells (P < 0.001). The level of 1α-
hydroxylase mRNA expressed in PrEC cells was 358-fold higher than that in LNCaP cells (P < 
0.001). Further, P29SN cells expressed 0.8-fold less and PC3 and DU145 cells 17-fold and 21-
fold more 1α-hydroxylase mRNA than LNCaP cells, respectively (P > 0.05). 
 
5. 24-HYDROXYLASE EXPRESSION (I, II, III, IV) 

5.1. mRNA expression and regulation in stromal cells 
5.1.1. Effect of 25OHD3 and 1α,25-(OH)2D3   

25OHD3 and 1α,25-(OH)2D3 induced the expression of 24-hydroxylase mRNA in primary 
prostate stromal cells P29SN and P32S in a concentration- and time-dependent manner. 25OHD3 
at a physiological concentration of 250 nM and 1α,25-(OH)2D3 at a pharmacological 
concentration of 10 nM were effective.  
 
100 nM 25OHD3 at 6 h increased the mRNA level of 24-hydroxylase 2.27 ± 0.32-fold (P > 0.05) 
in P29SN cells and had no effect in P32S cells, while 250 nM and 1000 nM 25OHD3 enhanced 
the mRNA level of 24-hydroxylase in P29SN (200 ± 5-fold, P < 0.01 and 12000 ± 220-fold, P < 
0.01, respectively) and in P32S cells (4 ± 0.5-fold, P < 0.05 and 660 ± 5-fold, P < 0.0001, 
respectively). In P29SN and P32S cells, treatment with 250 nM 25OHD3 caused a 140 ± 10-fold 
(P < 0.05) and 7 ± 2-fold (P > 0.05) stimulation at 24 h, a 90 ± 0.2-fold (P < 0.01) and 5 ± 0.7-
fold (P < 0.05) stimulation at 48 h in 24-hydroxylase mRNA level, respectively. 
 
1α,25-(OH)2D3 at a physiological concentration (0.1 nM) had no effect on the expression of 24-
hydroxylase mRNA at 6 h in either primary culture. In P29SN cells, 10 nM 1α,25-(OH)2D3 
increased 24-hydroxylase mRNA level 6900 ± 500-fold (P < 0.001), 14600 ± 800-fold (P < 
0.0001), and 2900 ± 500-fold (P < 0.01) at 6, 24, and 48 h, respectively. Similarly, in P32S cells, 
10 nM 1α,25-(OH)2D3 increased 24-hydroxylase mRNA level 4200 ± 1600-fold (P > 0.05), 
34000 ± 200-fold (P < 0.01), and 18000 ± 200-fold (P < 0.01) at 6, 24, and 48 h, respectively. 
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5.1.2. Effect of 24-hydroxylase inhibitor, VID400 
The transcriptional activity of 25OHD3 and 1α,25-(OH)2D3 was greatly increased in the presence 
of an inhibitor of 24-hydroxylase, VID400 (Schuster et al. 2001a, Schuster et al. 2001b). 
Combination of 250 nM 25OHD3 and 100 nM VID400 exhibited an 8.3-fold (P < 0.05) and 60-
fold (P < 0.05) stimulatory effect compared to 250 nM 25OHD3 alone in P29SN and P32S cells, 
respectively. Moreover, 100 nM VID400 increased the 10 nM 1α,25-(OH)2D3-mediated 
induction of 24-hydroxylase mRNA 1.9-fold (P < 0.05) and 2.5-fold (P > 0.05) in P29SN and 
P32S cells, respectively. 
 

5.1.3. Effect of 1α-hydroxylase inhibitor, SDZ88-357 
By using a specific inhibitor for 1α-hydroxylase, SDZ88-357, which has been shown earlier to 
inhibit 1α-hydroxylase activity, we found that 250 nM 25OHD3 is capable of inducing 24-
hydroxylase mRNA and 1α-hydroxylation is not a prerequisite for its hormonal activity of 
25OHD3. In the presence of 1000 nM SDZ88-357, 250 nM 25OHD3 was 4 times (P > 0.05) and 
2 times (P > 0.05) more effective than in the absence of 1α-hydroxylase inhibitor in P29SN and 
P32S cells, respectively. In the presence of both 100 nM VID400 and 1000 nM SDZ88-357, the 
induction of 24-hydroxylase mRNA by 250 nM 25OHD3 was increased 6-fold and 4-fold in 
P29SN and P32S cells, respectively. 
 

5.1.4. Effect of ATRA and RAR-selective ligands 
In P29SN cells, ATRA at 100 and 1000 nM did not affect the expression of 24-hydroxylase 
mRNA. However, ATRA significantly antagonized the effect of 25OHD3 and 1α,25-(OH)2D3. 
The level of 24-hydroxylase mRNA induced by 250 nM 25OHD3 was decreased by 61 % (P < 
0.001) with 100 nM ATRA and by 95 % (P < 0.001) with 1000 nM ATRA, respectively (Table 
5). The level of 24-hydroxylase mRNA induced by 10 nM 1α,25-(OH)2D3 was decreased by 36 
% (P < 0.001) with 100 nM ATRA and by 83 % (P < 0.001) with 1000 nM ATRA, respectively 
(Table 5). Two-way ANOVA shows a statistically significant interaction between the two 
hormones: 25OHD3 and ATRA (F = 35.13, P < 0.0001), 1α,25-(OH)2D3 and ATRA (F = 42.20, 
P < 0.0001). 
 
In P32S cells, ATRA at 100 and 1000 nM had no significant effect on the expression of 24-
hydroxylase mRNA. However, it significantly reduced the effect of 25OHD3 and 1α,25-
(OH)2D3. The level of 24-hydroxylase mRNA induced by 250 nM 25OHD3 was decreased by 38 
% (P < 0.001) with 100 nM ATRA and by 96 % (P < 0.001) with 1000 nM ATRA, respectively 
(Table 5). The level of 24-hydroxylase mRNA induced by 10 nM 1α,25-(OH)2D3 was decreased 
by 89 % (P < 0.001) with 100 nM ATRA and by 98 % (P < 0.001) with 1000 nM ATRA, 
respectively (Table 5). Two-way ANOVA shows a statistically significant interaction between 
the two hormones: 25OHD3 and ATRA (F = 184.56, P < 0.0001), 1α,25-(OH)2D3 and ATRA (F 
= 53.69, P < 0.0001). 

44 



Table 5. Effect of ATRA on the 25OHD3- and 1α,25-(OH)2D3-mediated induction of 24-
hydroxylase mRNA expression in prostate stromal cells (mean ± SD, n = 3) 
 

P29SN cells P32S cells 
ATRA (nM) ATRA (nM) 

 

0 100 1000 0 100 1000 
Vehicle 1 1±0.6 0.8±0.2 1 3±2 3±2 
25OHD3  
(250 nM) 31583±7531 12310 ±1513 1641±35 411±6 253±43 16±5 

1α,25-(OH)2D3

(10 nM) 34127±3714 21952 ±5378 5748±715 43595±8996 4919±3461 823±686

 
To further determine which retinoid receptor plays a role in the suppression of 24-hydroxylase 
expression in stromal cells, we applied two RAR-selective ligands, BMS453 and LE135. 
BMS453 binds with the same affinity to RARα, RARβ, and RARγ and it is a potent antagonist 
for RARα and RARγ, whereas it acts as a mixed agonist/antagonist for RARβ (Chen et al. 1995, 
Germain et al. 2004). LE135 does not bind to RXRs and RARγ, whereas it binds with higher 
affinity to RARβ (Ki = 0.22 μM) than to RARα (Ki = 1.4 μM) and acts as RARβ-selective 
antagonist (Li et al. 1999b). 
 
We used BMS453 and LE135 at 1000 nM (Chen et al. 1995, Li et al. 1999b) in combination 
with 100 nM ATRA in P32S cells. The inhibitory effect of ATRA on 1α,25-(OH)2D3-induced 
expression of 24-hydroxylase mRNA was reversed by BMS453 (P < 0.05) and unaltered by 
LE135, indicating that ATRA acts through RARα and/or RARγ but not RARβ. In the study of 
RARβ mRNA expression, 100 nM ATRA induced the expression of RARβ 3.1 fold (P < 0.001), 
which was not affected by LE135. However, BMS453 reduced the ATRA-induced expression of 
RARβ by 29 % (P < 0.01), indicating that RARα and/or RARγ but not RARβ mediate(s) the 
ATRA action in the induction of RARβ. 
 
To ascertain whether RARα or RARγ mediates the action of ATRA, we used an RARα agonist 
Am80. Am80 selectively activates RARα (Ki = 6.5 nM) and RARβ (Ki = 30 nM), and cannot 
bind to RARγ and RXRs (Umemiya et al. 1997). Am80 exhibited the same effect as ATRA. 
Am80 at 200 nM reduced the 1α,25-(OH)2D3-induced expression of 24-hydroxylase mRNA by 
80.2% in P32S cells (P < 0.001). Moreover, 200 nM Am80 induced the expression of RARβ 3.8 
fold in P32S cells (P < 0.05), which was as effective as 100 nM ATRA (4.0-fold induction, P < 
0.05). Taken together, RARα mediates the action of ATRA in inhibiting the 1α,25-(OH)2D3-
induced expression of 24-hydroxylase mRNA and in inducing the expression of RARβ in 
prostate stromal cells. 
 

5.2. mRNA expression and regulation in primary epithelial cells 
5.2.1. Effect of 25OHD3 and 1α,25-(OH)2D3 

In PrEC cells, 250 nM 25OHD3 and 10 nM 1α,25-(OH)2D3 at 24 h increased 24-hydroxylase 
mRNA level 317 ± 6-fold (P < 0.001) and 316 ± 33-fold (P < 0.01), respectively. 
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5.2.2. Effect of ATRA   

In PrEC cells, ATRA (100 and 1000 nM) had no effect on the expression of CYP24 mRNA and 
did not affect the action of either 25OHD3 or 1α,25-(OH)2D3 (two-way ANOVA: 25OHD3 vs. 
ATRA, F = 2.14, P = 0.1599; 1α,25-(OH)2D3 vs. ATRA, F = 0.84, P = 0.4561). 
 

5.3. Expression and regulation in cancer epithelial cells 
5.3.1. Effect of 25OHD3 and 1α,25-(OH)2D3 

In LNCaP cells, both 10 nM 1α,25-(OH)2D3 and 1000 nM 25OHD3 time-dependently induced 
the expression of 24-hydroxylase mRNA. 10 nM 1α,25-(OH)2D3 increased 24-hydroxylase 
mRNA level 1218 ± 220-fold (P > 0.05), 4294 ± 16-fold (P < 0.01), and 2513 ± 118-fold (P < 
0.05) at 6, 24, and 48 h, respectively. 1000 nM 25OHD3 increased 24-hydroxylase mRNA level 
3730 ± 342-fold (P < 0.05), 11618 ± 199-fold (P < 0.01), and 9300 ± 906-fold (P< 0.05) at 6, 24, 
and 48 h, respectively. 25OHD3 at 500 nM and 750 nM also increased 24-hydroxylase mRNA 
level 77 ± 6-fold (P > 0.05), 21387 ± 1082-fold (P < 0.01), respectively. However, neither 
1α,25-(OH)2D3 at a physiological concentration (0.1 nM) nor 100-250 nM 25OHD3 affected the 
expression of 24-hydroxylase mRNA at 24 h in LNCaP cells. The induction of 24-hydroxylase 
mRNA by 1α,25-(OH)2D3 requires protein synthesis, because a protein synthesis inhibitor, 
cycloheximide, strongly inhibited 1α,25-(OH)2D3-induction of 24-hydroxylase mRNA by 90 % 
(P < 0.001) in LNCaP cells. 
 
24-Hydroxylase mRNA level in PC3 cells was increased 149 ± 29-fold (P < 0.001) and 288 ± 
84-fold (P < 0.05) at 24 h by 500 nM 25OHD3 and 10 nM 1α,25-(OH)2D3, respectively. 10 nM 
1α,25-(OH)2D3 increased 24-hydroxylase mRNA level 45 ± 11-fold (P < 0.05) in DU145 cells. 
 

5.3.2. Effect of DHT 
DHT alone at all concentrations tested had no significant effect on the 24-hydroxylase mRNA 
expression in LNCaP cells (P > 0.05, Table 6). The 1α,25-(OH)2D3-induced expression of 24-
hydroxylase in LNCaP cells was strongly decreased by DHT at 1, 10, 100 nM by 50 % (P < 
0.001), 94 % (P < 0.001), 97 % (P < 0.001), respectively, and slightly increased by DHT at 0.01 
and 0.1 nM by 27 % (P < 0.001) and 37 % (P < 0.001), respectively (Table 6). Similarly, the 
25OHD3-induced expression of 24-hydroxylase in LNCaP cells was strongly decreased by DHT 
at 1, 10, 100 nM by 75 % (P < 0.05), 97 % (P < 0.01), 99 % (P < 0.001), respectively, and 
slightly increased by DHT at 0.01 and 0.1 nM by 11 % (P > 0.05) and 3 % (P > 0.05), 
respectively (Table 6). This DHT effect is mediated by AR. Hydroxyflutamide (an agonist for 
the mutant AR of LNCaP cells) at 1 μM strongly inhibited the 1α,25-(OH)2D3-induced 
expression of 24-hydroxylase by 97 % (P < 0.001) and did not change the DHT effect. A pure 
antagonist, Casodex (1 μM), did not affect 1α,25-(OH)2D3-stimulated expression of 24-
hydroxylase mRNA and partially antagonized the DHT effect. DHT did not significantly 
enhance the degradation of 24-hydroxylase mRNA. The biological consequence of the inhibitory 
effect of DHT on the expression of 24-hydroxylase mRNA is the protection of 1α,25-(OH)2D3 
from catabolism. Pre-treatment with 10 nM 1α,25-(OH)2D3 for 48 h significantly enhanced the 
catabolism of 1α,25-(OH)2D3 (P = 0.0312 vs. no cell control and P = 0.0270 vs. one pre-treated 
with 10 nM 1α,25-(OH)2D3 and 10 nM DHT). However, pre-incubation with 10 nM 1α,25-
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(OH)2D3 and 10 nM DHT did not cause a significant change in 1α,25-(OH)2D3 concentration, 
indicating that 10 nM DHT protects 1α,25-(OH)2D3 from catabolism. 
 
Table 6. Effect of DHT on the 25OHD3- and 1α,25-(OH)2D3-mediated induction of 24-
hydroxylase mRNA expression in LNCaP cells (mean ± SD, n = 3) 
 

DHT (nM)  
0 0.01 0.1 1 10 100 

Vehicle 1 10±15 3±2 6±4 11±11 2±1 
25OHD3  
(500 nM) 69±5 77±29 71±4 17±23 2±2 0.8±0.5 

1α,25-(OH)2D3 
(10 nM) 30360±405 38489±748 41547±5929 15266±737 1771±220 1056±384 

 
However, DHT does not affect the action of 1α,25-(OH)2D3 in inducing 24-hydroxylase in 
androgen-insensitive DU145 or PC3 cells whether transfected with the wild-type AR or the 
mutant AR of LNCaP cells. The levels of AR mRNA in PC3 and DU145 cells were, 
respectively, 0.32 % (P < 0.0001) and 0.051 % (P < 0.0001) of that in LNCaP cells. Two-way 
ANOVA shows no significant interaction between the two factors: 1α,25-(OH)2D3 and DHT (P 
> 0.05). 
 

5.3.3. Effect of ATRA 
The expression of 24-hydroxylase mRNA was not regulated by ATRA at 100 and 1000 nM in 
either LNCaP or PC3 cells. ATRA did not significantly interfere with either 25OHD3 or 1α,25-
(OH)2D3 in regulating the expression of CYP24 mRNA in either LNCaP cells or PC3 cells 
whether transfected with RARβ or not. 
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DISCUSSION 
 
1. LOCAL METABOLISM OF 25OHD3 AND 1α,25-(OH)2D3 IN THE PROSTATE 
This study shows evidence for the prostatic expression of two key enzymes involved in vitamin 
D3 metabolism, 1α-hydroxylase and 24-hydroxylase. By using quantitative real-time RT-PCR 
and immunoblotting, we demonstrate, for the first time, the expression of 1α-hydroxylase in 
prostate stromal cells. 1α-Hydroxylase mRNA was not detected in prostate stromal cells in an 
early report (Barreto et al. 2000) possibly due to the low sensitivity of the traditional RT-PCR. 
Our results indicate that the stromal cells express more 1α-hydroxylase protein than cancer 
epithelial cells DU145 and LNCaP. However, the activity of this enzyme in stromal cells was 
low, being approximately 40-100-fold lower than that reported in normal epithelial cells (Hsu et 
al. 2001). Quantitative real-time RT-PCR showed that normal epithelial PrEC cells expressed a 
much higher basal level of 1α-hydroxylase mRNA than stromal P29SN cells and cancer LNCaP, 
PC3, and DU145 cells. Previous study showed that the promoter activity of 1α-hydroxylase gene 
was lower in PC3 and DU145 cells than that in normal prostate cells and was lost in LNCaP cells 
leading to the defect in 1α-hydroxylase enzyme activity (Chen et al. 2003c). Quantitative real-
time RT-PCR showed that the expression of 1α-hydroxylase mRNA was not regulated by either 
25OHD3 or 1α,25-(OH)2D3 in LNCaP cells, but was up-regulated by 100 nM 25OHD3 in P29SN 
cells. Earlier reports show that renal 1α-hydroxylase is down-regulated by 1α,25-(OH)2D3 at 
transcriptional level (Murayama et al. 1998, Kong et al. 1999) but the extra-renal expression of 
CYP27B1 mRNA is unaffected by 1α,25-(OH)2D3 in lung cancer cells (Jones et al. 1999), 
macrophages (Monkawa et al. 2000), and keratinocytes (Xie et al. 2002). It is possible that 
production of 1α,25-(OH)2D3 in the prostate acts as an autocrine/paracrine regulator. This 1α,25-
(OH)2D3-mediated autocrine/paracrine system has been proposed earlier in the prostate (Barreto 
et al. 2000), breast (Townsend et al. 2005), colon (Bises et al. 2004), and immune system 
(Hewison et al. 2004).  
 
The action of vitamin D3 metabolites is controlled by 24-hydroxylase-mediated inactivation 
(Jones et al. 1998, Omdahl et al. 2002). The present study demonstrates that 24-hydroxylase 
expression is induced by both 25OHD3 and 1α,25-(OH)2D3 in stromal, normal epithelial, and 
cancer epithelial cells in a concentration- and time-dependent manner. Stromal and normal 
epithelial cells (250 nM 25OHD3 is effective) are more sensitive to 25OHD3 than cancer 
epithelial cells (≥ 500 nM). Our result also shows that protein synthesis is required in the 
induction of 24-hydroxylase mRNA by 1α,25-(OH)2D3 in LNCaP cells, which has earlier been 
reported in other cell lines (Armbrecht et al. 1997, Zierold et al. 2002). A previous study 
performed on prostate cancer epithelial cells suggested that the growth response was inversely 
correlated with 24-hydroxylase expression (Miller et al. 1995), which was also observed in our 
study. 10 nM 1α,25-(OH)2D3 failed to control P32S cell growth, perhaps partially due to the 
highly induced 24-hydroxylase expression. On the other hand, 25OHD3 induced a much smaller 
amount of 24-hydroxylase in those cells and the growth was even inhibited by 100 nM 25OHD3. 
This vitamin D3-resistance phenomenon has been observed in DU145 cells (Ly et al. 1999). We 
found that in the presence of a 24-hydroxylase inhibitor, VID400, the transcriptional activity of 
both 25OHD3 and 1α,25-(OH)2D3 in stromal cells is greatly increased, emphasizing the critical 
role of 24-hydroxylase-mediated inactivation. It has been reported that 24-hydroxylase enzyme 
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inhibitors enhance the transcriptional activity of 1α,25-(OH)2D3 in human skin (Kang et al. 
1997) as well as the antiproliferative activity of 1α,25-(OH)2D3 in prostate cancer cells (Ly et al. 
1999, Peehl et al. 2002) and ovarian cancer cells (Miettinen et al. 2004). The importance of 24-
hydroxylase in vitamin D3-resistance has been highlighted by a study demonstrating that 24-
hydroxylase is a putative oncogene in human breast cancer (Albertson et al. 2000). 
Amplification of the chromosomal region, where 24-hydroxylase gene is located, has frequently 
been reported in human ovarian cancer (Tanner et al. 2000), breast cancer (Kallioniemi et al. 
1994, Tanner et al. 1995), and prostate cancer (Wolter et al. 2002) and mouse islet carcinomas 
(Hodgson et al. 2001). The overexpression of 24-hydroxylase due to its amplification may 
diminish or abolish vitamin D3-mediated growth control (Albertson et al. 2000). Epidemiological 
study also suggests that a high level of serum 25OHD3 is associated with a higher prostate cancer 
risk, perhaps due to the development of vitamin D3-resistance (Tuohimaa et al. 2004). Thus, 24-
hydroxylase is a key factor in the successful application of vitamin D3 metabolites in cancer 
chemoprevention and therapy. 
 
Taken together, our results indicate that the induction of 24-hydroxylase expression by 25OHD3 
and 1α,25-(OH)2D3 seems to be a determinant of vitamin D3 action in the prostate because the 
inhibition of 1α-hydroxylase expression by 1α,25-(OH)2D3 is absent. Although, the 1α,25-
(OH)2D3-induced decrease in 1α-hydroxylase activity has been observed in some extrarenal 
tissues (Bikle et al. 1986, Delvin and Arabian 1987, Jones et al. 1999, Monkawa et al. 2000, 
Young et al. 2004), this is, in fact, due to the up-regulation of 24-hydroxylase, which decreases 
concentrations of both the substrate 25OHD3 and the product 1α,25-(OH)2D3 (Xie et al. 2002). A 
better understanding of the tissue-specific regulation of vitamin D3 metabolism and function may 
help the clinical use of vitamin D3 metabolites in cancer treatment. 
 
2. INTERACTION BETWEEN ANDROGEN AND VITAMIN D3 
To understand the prostate-specific regulation of vitamin D3 metabolism and function, we 
studied the androgen effect on 24-hydroxylase and vitamin D3-mediated growth control. 
Androgen plays an important role in the prostate. LNCaP cells are androgen-sensitive and 
express AR. DHT has been shown to stimulate the growth of LNCaP cells at low concentrations 
(0.001 to 0.1 nM) and to inhibit it at high concentrations (1 to 100 nM) (Lee et al. 1995, Zhao et 
al. 1997). Both epidemiological and experimental studies have suggested that androgen signaling 
is required for the anticancer action of vitamin D3 (Zhao et al. 1997, Ahonen et al. 2000a, Bao et 
al. 2004). However, it is not clear how vitamin D3 and androgen signaling pathways interact. The 
present study demonstrates that DHT regulates the induction of 24-hydroxylase mRNA levels by 
25OHD3 or 1α,25-(OH)2D3 in LNCaP cells in a concentration-dependent manner. DHT at low 
concentrations (0.01-0.1 nM) slightly increased the levels of the induced 24-hydroxylase mRNA. 
However, DHT at a physiological concentration of 1 nM caused a 50 %-75 % reduction and 10-
100 nM of DHT caused 94 %-99 % suppression. Furthermore, DHT at 10 nM reduced 1α,25-
(OH)2D3 catabolism suggesting that it protects 1α,25-(OH)2D3 from inactivation and therefore, 
the local tissue concentration of 1α,25-(OH)2D3 remains higher. Moreover, our study shows that 
DHT enhances the antiproliferative activity of 25OHD3 and 1α,25-(OH)2D3. The growth-
inhibitory effect of 500 nM 25OHD3 and 10 nM 1α,25-(OH)2D3 is significantly enhanced by 1 
nM DHT. Both 25OHD3 and 1α,25-(OH)2D3 at physiological concentrations exhibit strong 
antiproliferative activity only in the presence of 1 nM DHT. This enhancement by DHT of the 
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antiproliferative action of vitamin D3 hormones correlates with the inhibitory effect of DHT on 
the expression of 24-hydroxylase.  
 
This study may explain the epidemiological result, which shows that 25OHD3 has a protective 
role against prostate cancer only before the andropause, when serum androgen levels are higher 
(Ahonen et al. 2000a). It also suggests that a combination of androgen and either 25OHD3 or 
1α,25-(OH)2D3 at physiological concentrations may be a more beneficial treatment of androgen-
dependent prostate cancer than either alone. Because DHT itself has a dose-dependent inhibitory 
effect on cell growth and may prevent prostate cancer from becoming androgen independent 
(Feldman and Feldman 2001), the clinical use of DHT in combination with vitamin D3 
metabolites could be more beneficial than the use of other 24-hydroxylase enzyme inhibitors. 
Although androgen ablation is considered a standard therapy for prostate cancer treatment, the 
epidemiological studies show no association between high levels of circulating testosterone and 
increased prostate cancer risk (Chen et al. 2003a, Stattin et al. 2004). In contrast, prostate cancer, 
especially with more advanced tumors, causes lower levels of both testosterone and DHT 
(Gustafsson et al. 1996, Hoffman et al. 2000), which may stimulate the growth of prostate cancer 
cells (Lee et al. 1995, Zhao et al. 1997). The use of androgens in the treatment of prostate cancer 
has earlier been suggested (Prehn 1999). Based on the present study, the use of either 25OHD3 or 
1α,25-(OH)2D3 in combination with androgen at physiological concentrations may reprensent a 
feasible therapeutic approach for androgen-dependent prostate cancer.      
 
By using AR agonist and antagonist as well as androgen-insensitive cells, we demonstrate that 
AR is required for the effect of DHT. 1α,25-(OH)2D3-induced expression of 24-hydroxylase was 
strongly inhibited by hydroxyflutamide. Hydroxyflutamide functions as an agonist for the mutant 
AR of LNCaP cells (Veldscholte et al. 1992, Berrevoets et al. 1993). An AR antagonist, 
Casodex, did not affect 1α,25-(OH)2D3-induced expression of 24-hydroxylase but partially 
antagonized the action of DHT because the dose of Casodex (100-fold excess) used can only 
partially inhibit DHT binding. It has been reported that a 1000-fold excess concentration of 
Casodex is needed to completely block DHT binding (Zhao et al. 2000). The effect of DHT was 
not observed in androgen-insensitive human prostate cancer cell lines, DU145 and PC3 whether 
transfected with the wild-type AR or the mutant AR of LNCaP cells. This indicates that besides 
AR, there must be other factor(s) involved in the action of androgen.   
 
The mechanism of this action of DHT is not known. Some possible pathways have been 
excluded. First, DHT does not change VDR mRNA levels. This is consistent with previous 
reports in other types of cells including prostate cells (Wiese et al. 1992, Li et al. 1999a, Leman 
and Getzenberg 2003). Second, DHT does not affect the stability of 24-hydroxylase mRNA. 
Third, no androgen-responsive element has been identified in 24-hydroxylase gene promoter and 
DHT does not affect the basal level of 24-hydroxylase mRNA. DHT may directly impair the 
transcriptional function of the liganded VDR, presumably by interfering with coactivator 
recruitment or by mitogen-activated protein (MAP) kinase activation. There is no earlier report 
about the interaction of androgen and vitamin D signaling pathways at a specific gene level. 
Further studies are needed to elucidate the mechanisms underlying the effect of DHT.  
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3. INTERACTION BETWEEN ALL-TRANS RETINOIC ACID AND VITAMIN D3 
This study demonstrates that ATRA significantly decreases the expression of 25OHD3- and 
1α,25-(OH)2D3-induced 24-hydroxylase mRNA levels in primary cultures of human prostate 
stromal cells P29SN and P32S, but not in either primary culture of human prostate epithelial 
cells PrEC or cancer epithelial cells LNCaP and PC3. Studies on the transfection of RARβ in 
PC3 cells and using RAR-specific ligands eliminated the role of RARβ in the action of ATRA. 
Furthermore, by using an RARα agonist Am80, we found that this action of ATRA is actually 
mediated by RARα. RARα has been found to be responsible for the action of RA in breast 
cancer cells (Fitzgerald et al. 1997, Schneider et al. 2000). This inhibitory effect of ATRA in 
stromal cells may therefore enhance the antiproliferative activity of vitamin D metabolites. Cell 
growth study showed that the combined treatment of 1α,25-(OH)2D3 and Am80 at 10 nM 
strongly inhibits cell growth whereas either alone has no effect. The prostate stroma plays an 
important role in benign prostatic hyperplasia as well as in carcinogenesis, and aberrant 
interaction between stroma and epithelium is believed to contribute to carcinoma progression 
(Tlsty and Hein 2001, Chung et al. 2003, Bhowmick et al. 2004, Mueller and Fusenig 2004). It 
has been demonstrated that carcinoma-associated fibroblasts do not form tumors but promote 
carcinogenesis of non-tumorigenic prostate epithelial cells (Grossfeld et al. 1998, Olumi et al. 
1999, Cunha et al. 2002).  
 
ATRA, the most potent form of vitamin A, plays an important role in the growth and 
differentiation of many cells (Altucci and Gronemeyer 2001). ATRA is the main signaling 
retinoid in the body and exerts its action by binding to RARs, which also act as heterodimers 
with RXR and bind to the retinoic acid response element (Altucci and Gronemeyer 2001). 9-cis 
RA binds to both RARs and RXRs (Giguere 1994, Chambon 1996). The role of ATRA in 
regulating 24-hydroxylase expression is not very clear. An early study showed that RXR-
selective ligands stimulate 24-hydroxylase mRNA expression and enzymatic activity in mice 
(Allegretto et al. 1995). In our experiments, ATRA alone had no effect on 24-hydroxylase 
expression, suggesting that isomerization of ATRA to 9-cis RA is negligible. There has been no 
earlier report about the effect of ATRA on prostate cells. Our finding is the first demonstration to 
show crosstalk between vitamin D and ATRA in prostate stromal cells. 9-cis RA has been 
reported to reduce 1α,25-(OH)2D3-induced expression of osteocalcin by diverting RXRs away 
from VDRs (MacDonald et al. 1993). ATRA and vitamin D have earlier been shown to 
cooperate to promote differentiation of promyeloid leukemia cells (Brown et al. 1994) and 
synergistically inhibit the growth of breast cancer cells (Koga and Sutherland 1991, Wang et al. 
2000) with different mechanisms.   
 
The present data show that RARα, but not RARβ, mediated ATRA-induced expression of RARβ 
in prostate stromal cells, which is consistent with other studies performed in cervical cells 
(Geisen et al. 1997) and breast cancer cells MCF7 (Shang et al. 1999). The higher expression 
levels of RARβ in stromal cells may result from the more active RARα, which mediates the 
action of ATRA in reducing 24-hydroxylase expression in stromal cells. Additionally, the 
present study shows that prostate cancer LNCaP cells express much lower levels of RARs than 
normal cells, which is consistent with earlier reports showing that the expression of RARs is 
decreased in tumor progression (Hansen et al. 2000). The loss of responsiveness to ATRA in 
terms of growth inhibition and RARβ inducibility, as seen in LNCaP cells in our study, has been 
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reported in colon (Nicke et al. 1999), lung (Zhang et al. 1994) and breast cancers (Liu et al. 
1996b). We found that ATRA did not regulate the expression of RARα and RARγ genes in 
prostate cells, as also in breast cancer cells (Liu et al. 1996b, Shang et al. 1999). 
 
4. NOVEL ENDOCRINE SYSTEM OF 25OHD3 
The present study demonstrates that 25OHD3 is an active hormone in the prostate. 25OHD3 
(physiological concentrations 20-105 nM) at 100-250 nM in stromal cells and primary epithelial 
cells or at 500 nM in cancer LNCaP cells can induce 24-hydroxylase expression and inhibit cell 
growth, whereas 0.1 nM of 1α,25-(OH)2D3 within a physiological concentration range (48-156 
pM) is inactive. 25OHD3 at physiological concentration is as effective as 1α,25-(OH)2D3 at 
pharmacological concentration. By using a specific inhibitor of 1α-hydroxylase, we demonstrate 
for the first time that 25OHD3 possesses an inherent hormonal activity and that its activation 
through 1α-hydroxylation is not essential for its biological activity. 
 
1α,25-(OH)2D3 has the greatest binding affinity to VDR (Kd = 90-300 pM for rat VDR) (Walters 
1992). 25OHD3 binds to human VDR approximately 50 times less effectively (Bouillon et al. 
1995) and to chicken VDR 150-667 times less effectively (Brumbaugh and Haussler 1974, 
Bouillon et al. 1995). Therefore, 1α,25-(OH)2D3 has been regarded as the vitamin D hormone. 
However, the serum concentrations of 25OHD3 are approximately 1000-fold greater than those 
of 1α,25-(OH)2D3, which indicates that the biological activity of the circulating 25OHD3 is 
significant. Moreover, 24-hydroxylase displays 10-fold greater affinity for 1α,25-(OH)2D3 than 
25OHD3 (Chen et al. 1993). It has been suggested that 55 to 90 % of the biological action of 
vitamin D3 metabolites is mediated by 25OHD3 (Zittermann 2003). 1α,25-(OH)2D3 has been 
demonstrated in vitro to regulate the growth, differentiation, and function of a variety of cells 
including cancer cells (Mehta and Mehta 2002, Ylikomi et al. 2002, Chen and Holick 2003, Lin 
and White 2004, Nagpal et al. 2005), but its antiproliferative and differentiation actions are 
achieved only at hypercalcemic concentrations (Osborn et al. 1995, Gross et al. 1998, Smith et 
al. 1999). 
 
Based on the present results, we propose a novel vitamin D3 endocrine system (Figure 3), 
distinct from the classical system involved in calcium homeostasis and mediated by 1α,25-
(OH)2D3. The novel vitamin D3 endocrine system is based on the liver hormone, 25OHD3, which 
regulates cell proliferation and gene expression at physiological concentrations. The synthesis of 
1α,25-(OH)2D3 in the kidney is tightly controlled by the hormone itself, PTH, and calcium, 
through the regulation of 1α-hydroxylase and 24-hydroxylase. Thus, the circulating levels of 
1α,25-(OH)2D3  vary within an extremely narrow range not affected by the season (Hine and 
Roberts 1994, Corder et al. 1995). In contrast, the physiological serum concentration of 25OHD3 
fluctuates within a wide range, depending on the season (Hine and Roberts 1994, Corder et al. 
1995). The results may also explain those epidemiological studies suggesting that UV radiation 
and 25OHD3 may protect against prostate cancer (Schwartz and Hulka 1990, Ahonen et al. 
2000a, Luscombe et al. 2001) and other cancers (Tangrea et al. 1997, Grant 2002, Bertone-
Johnson et al. 2005). However, serum levels of 1α,25-(OH)2D3 are not associated with cancer 
risk (Tangrea et al. 1997, Bertone-Johnson et al. 2005). 
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Figure 3. Summary of the results. There are two vitamin D3 endocrine systems: the classical 
1α,25-(OH)2D3-mediated system is responsible for calcium homeostasis whereas the novel 
25OHD3-mediated system regulates cell proliferation and differentiation. Both hormones 
regulate the key enzymes 24-hydroxylase and/or 1α-hydroxylase in the prostate. Androgen and 
all-trans-retinoic acid enhance the activities of vitamin D hormones by suppressing the 
expression of 24-hydroxylase in prostate epithelial and stromal cells, respectively.   
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SUMMARY AND CONCLUSIONS 
 
This study provides evidence for the prostatic expression of two key enzymes involved in 
vitamin D3 metabolism, 1α-hydroxylase and 24-hydroxylase. 1α-Hydroxylase is up-regulated by 
25OHD3 in stromal cells. 24-Hydroxylase is up-regulated by both 25OHD3 and 1α,25-(OH)2D3 
in epithelial and stromal cells. In the presence of a 24-hydroxylase inhibitor, VID400, the 
transcriptional activity of both 25OHD3 and 1α,25-(OH)2D3 in stromal cells is greatly increased, 
emphasizing the critical role of 24-hydroxylase-mediated inactivation. Thus, inhibition of 24-
hydroxylase is very important aspect in the clinical use of vitamin D3 metabolites.  
 
To understand the prostate-specific regulation of vitamin D3 metabolism and function, the 
androgen effect on 24-hydroxylase and vitamin D3-mediated growth control was studied. DHT at 
a physiological concentration enhances the antiproliferative activities of 25OHD3 and 1α,25-
(OH)2D3 by suppressing the expression of 24-hydroxylase in LNCaP cells. This finding provides 
a feasible therapeutic approach for androgen-dependent prostate cancer. 
 
ATRA significantly decreases the expression of 24-hydroxylase mRNA induced by 25OHD3 and 
1α,25-(OH)2D3 in primary cultures of human prostate stromal cells P29SN and P32S but not in 
either primary culture of human prostate epithelial cells PrEC or cancer epithelial cells LNCaP 
and PC3. With an RARα agonist Am80, RARα was found to mediate the action of ATRA. This 
inhibitory effect of ATRA in stromal cells may therefore, enhance the antiproliferative activity 
of vitamin D metabolites. Cell growth study showed that the combined treatment of 1α,25-
(OH)2D3 and Am80 at 10 nM strongly inhibits cell growth whereas either alone has no effect.   
 
The finding that 25OHD3 at a physiological concentration possesses an inherent hormonal 
activity provides a novel view of the vitamin D3 endocrine system and suggests a potent 
anticancer therapy. 1α,25-(OH)2D3 is inactive at its physiological concentrations but 
pharmacological concentrations are needed for induction of target gene expression and growth 
inhibition.  
 
Taken together, the present study demonstrates several important aspects regarding the role of 
vitamin D3 metabolites and their enzymes in the prevention and treatment of prostate cancer. 
25OHD3 mediates a distinct vitamin D3 endocrine system. 24-Hydroxylase is a key factor in the 
successful application of vitamin D3 metabolites in cancer chemoprevention and therapy. The 
crosstalk between vitamin D3 and DHT or ATRA may provide therapeutic approaches. 
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ERRATA 

 

There are two errors in the original communication III: 

Page 1976, in the caption of Fig. 1, “P < 0.05 (ns)” should read “P > 0.05 (ns)”; 

Page 1978, in the caption of Fig. 3, “P < 0.05 (ns)” should read “P > 0.05 (ns)”. 
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