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ABSTRACT 

In animal models increased vagal outflow has been shown to play a major role in the 
initiation and the maintenance of atrial fibrillation (AF), but the role of the autonomic 
nervous system in the genesis and maintenance of clinical AF has not been well 
established. This research was designed to assess the role of the autonomic nervous 
system in the initiation, maintenance and recurrence of clinical AF episodes by 
measuring various indexes of heart rate (HR) variability in relation to the occurrence 
and duration of clinical AF episodes. 

The study population consisted of patients for whom 24-hour ECG recordings were 
performed because of clinical reasons, and of 116 consecutive patients who were 
treated with transthoracic electrical cardioversion due to persistent AF (>3 month). HR 
variability was initially analyzed in 20-minute intervals before 62 episodes of AF in 22 
patients with lone AF, and then in 15-minute periods both in patients with structural 
heart disease (n=35) and in patients with lone AF (n=28). HR variability was analyzed 
from the entire recording in 78 patients after restoration of sinus rhythm with 
cardioversion. HR turbulence after atrial ectopic beats located 0 to 60 min before the 
onset of AF episodes was compared with the means of HR turbulence after atrial 
ectopic beats by hour in the rest of the recording in 39 patients with structural heart 
disease and in 29 patients with lone AF.  

Traditional time and frequency domain measures of HR variability showed no 
significant changes before the onset of AF. However, a progressive decrease occurred 
both in the approximate entropy (ApEn) (p<0.001) and short-term scaling exponent 
values (α1) (p<0.001) before the AF episodes in patients without structural heart 
diseases.  

In the analysis of possible relationship between the duration of AF and the HR 
variability preceding the AF, the high-frequency (HF) spectral component of HR 
variability was observed to be higher (p<0.0001) and low-frequency (LF) component 
lower (p<0.0001) before long (>200 s, n=41) compared to short (<200 s, n=51) AF 
episodes in patients with lone AF.  

After restoration of sinus rhythm with cardioversion in patients with recurrence of 
AF during one month, all power spectral components except the ultra-low-frequency 
power were increased. An increased HF spectral component specifically predicted the 
early recurrence of AF. 

Turbulence onset was significantly higher during one hour before the AF than 
during the other hours of the recording, both in patients with structural heart diseases 
and in patients with lone AF (p<0.0001 for both). 

In conclusion, specific changes in HR variability patterns are related to 
spontaneous onset, maintenance and recurrence of clinical AF episodes: 1) a decrease 
in the complexity of R-R intervals is a common phenomenon preceding the 
spontaneous onset of clinical AF episodes; 2) altered HR variability, reflecting changes 
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in sympatho-vagal balance, predispose to perpetuation of AF episodes in patients with 
lone AF; 3) increased HR variability, reflecting enhanced vagal tone, is associated with 
recurrence of AF after cardioversion; and 4) R-R interval dynamics immediately after 
atrial ectopic impulses are blunted during one hour before the onset of spontaneous AF 
episodes compared to dynamics during the other hours of the recordings, suggesting 
that vagal inhibition in response to ectopic atrial excitation is absent, or even that a 
transient enhancement of vagal outflow occurs near the AF. 
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ABBREVIATIONS 

α1           short-term scaling exponent of fractal-like correlations 

β             slope of the power-law relations 

AF          atrial fibrillation 

ApEn      approximate entropy 

ECG        electrocardiography 

ERP         effective refractory period 

HF           high frequency  

HR           heart rate 

LF            low frequency 

SD            standard deviation 

SDANN  standard deviation of average normal-to-normal RR intervals  

SDNN     standard deviation of the normal-to-normal RR intervals  

TO           turbulence onset 

TS            turbulence slope 

ULF         ultra low frequency 

VLF         very low frequency  

 
 
 
 



 9

LIST OF ORIGINAL PUBLICATIONS 

I. Vikman S, Mäkikallio TH, Yli-Mäyry S, Pikkujämsä S, Koivisto A-M, 

Reinikainen P, Airaksinen KEJ, Huikuri HV. Altered complexity and correlation 

properties of R-R interval dynamics before the spontaneous onset of paroxysmal 

atrial fibrillation. Circulation 1999;100:2079-2084. 

 
 

II. Vikman S, Yli-Mäyry S, Mäkikallio TH, Airaksinen KEJ, Huikuri HV. 

Differences in heart rate dynamics before the spontaneous onset of long and short 

episodes of paroxysmal atrial fibrillation. Ann Noninvasive Electrocardiol 2001; 

6:134-142 

 
 

III. Vikman S, Lindgren K, Mäkikallio TH, Yli-Mäyry S, Airaksinen KEJ, Huikuri 

HV. Heart rate turbulence after atrial premature beats before spontaneous onset 

of atrial fibrillation. J Am Coll Cardiol; In Press 

 
 
 

IV. Vikman S, Mäkikallio TH, Yli-Mäyry S, Nurmi M, Airaksinen KEJ, Huikuri 

HV. Heart rate variability and recurrence of atrial fibrillation after electrical 

cardioversion. Ann Med 2003;35:36-42 

 

 
 
 
 
 
 
 

 
 
 
 



 10

INTRODUCTION 

The autonomic nervous system has been proposed to play an important role in the 

genesis and maintenance of atrial fibrillation (AF) (Coumel 1992, Coumel 1994). 

Sustained AF is based on multiple reentrant wavelets wandering throughout the atria 

(Moe 1962). The wavelength of these wavelets, defined as the distance traveled by the 

depolarization wave during the duration of its refractory period (wavelength = 

conduction velocity x refractory period), is an important factor to determine the 

induction and maintenance of AF. The smaller the wavelength of the circulating 

wavelets, the more easily AF can be induced and maintained (Rensma et al. 1988).  

Vagal activation causes a shortening of the atrial effective refractory period (ERP), 

increases the dispersion of ERP, and decreases the conduction velocity (Allesie et al. 

1958, Geddes et al. 1996, Wang et al. 1996, Liu et al. 1997, Jayachandran et al. 2000), 

thus favoring induction and perpetuation of AF.  

Analysis of heart rate (HR) variability has become an important noninvasive 

method for assessing cardiac autonomic regulation (Saul et al. 1988, Malliani et al. 

1991, Huikuri et al. 1999). Some reports exist concerning changes in HR dynamics 

before AF episodes, but the results have been partly controversial (van den Berg et al. 

1995, Dimmer et al. 1998, Herweg et al. 1998, Hnatkova et al. 1998a, Hnatkova et al. 

1998c, Hogue et al. 1998, Huang et al. 1998, Wen et al. 1998, Fioranelli et al. 1999, 

Bettoni et al. 2002).  

The present study was set out to evaluate possible alterations in HR turbulence and 

HR variability analyzed with traditional and new dynamical measures preceding 

spontaneous paroxysmal AF episodes in different clinical situations and to evaluate 

whether alterations in HR variability after cardioversion of persistent AF could predict 

further recurrence of AF. 
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REVIEW OF THE LITERATURE 

 

Epidemiology and causes of atrial fibrillation 

AF is the most common sustained arrhythmia that occurs in humans (Kannel et al. 

1992). The incidence of AF increases with age; the prevalence of AF is reported to be 

0.2-0.3% at age 25 to 35 years, 3-4% at age 55 to 64 years and 5-10% at age over 65 

years (Kannel et al. 1982).  

AF is usually a consequence of established heart disease. The majority of AF 

occurs in persons with hypertension and coronary heart disease, particularly in the 

setting of cardiac failure. AF also occurs in association with mitral valve disease, 

hypertensive cardiovascular disease, an enlarged left atrium, cardiomyopathy, and as a 

result of some extracardiac conditions. Cardiovascular disease increases the risk of AF 

three- to fivefold (Kannel et al. 1983).  

In different studies, 2-40% of patients with paroxysmal, persistent, or chronic AF 

have no cardiovascular or extracardiac conditions precipitating AF (lone AF) (Leather 

et al. 1992). Patients with lone AF are more often men. These patients often have 

frequent paroxysms of AF occurring during night, but they seldom develop chronic 

AF. In these patients, ectopic foci which cause atrial firing have been found most often 

in the pulmonary veins (Jais et al. 1997, Haissaguerre et al. 1998, Chen et al. 1999a, 

Hsieh et al. 1999).  
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In small number of patients, genetic defects have also been found as a risk factor 

for developing AF (Brugada et al. 1997). 

Mechanisms of atrial fibrillation 

There have been three major concepts about AF mechanisms: ectopic activity with 

fibrillatory conduction; single circuit re-entry; and the multiple wavelet hypothesis.  

Ectopic activity with fibrillatory conduction 

In the beginning of the 20th century Winterberg surmised that AF was due to multiple 

rapidly-firing foci distributed throughout the atria (Winterberg 1907). Atrial ectopy 

clearly caused atrial tachycardias, but the efficacy of electrical cardioversion in 

terminating AF, and the infrequency of discrete atrial tachyarhythmias after 

cardioversion, made a role for ectopic foci in AF maintenance seem unlikely. 

However, AF is frequently initiated by atrial ectopic complexes (Bennett et al. 1970).  

Atrial ectopy can trigger re-entry in the presence of a vulnerable substrate. 

Prolonged rapid atrial activation promotes AF via tachycardia induced remodeling of 

the atria (Wijffels et al. 1995). The ability of atrial ectopic complexes to induce AF 

depends on the presence of a vulnerable substrate and is related to their timing and 

location relative to electrical heterogeneity gradients (Lammers et al. 1990, Wang et al. 

1996, Fareh et al. 1998).  

Many sites: the vena cavae, the crista terminalis, the ligament of Marshall, ostium 

of the coronary sinus, atrial free wall, interatrial septum, and pulmonary veins, can 

give rise to ectopic activity that may be important as a trigger for AF initiation 

(Haissaguerre et al. 1996, Jais et al. 1997, Haissaguerre et al. 1998, Chen et al. 1999a, 

Chen et al. 1999b, Hsieh et al. 1999, Kim et al. 2000, Saksena et al. 2000, Tsai et al. 

2000). Ectopic foci are significantly clustered within pulmonary veins, where 80 to 

95% of the foci are identified (Jaïs et al. 2002). Elimination of the arrhythmogenic foci 

by radiofrequency catheter ablation has been shown to be effective for long-term 

elimination of AF (Haissaguerre et al. 1996, Jais et al. 1997, Chen et al. 1999b).  
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Single circuit reentry 

As with rapid atrial ectopy, a single atrial reentry circuit can give rise to a temporally 

and spatially varying activation pattern consistent with AF by virtue of fibrillatory 

conduction away from the circuit to the remainder of the atrium. This kind of 

macroreentry is clearly responsible for atrial flutter (Waldo 1998). Patients with atrial 

flutter and apparent single-circuit macroreentry can be cured by a single linear lesion 

that transects the reentrant pathway (Cosio et al. 1996, Kottkamp et al. 1999, Wu et al. 

2002). The same patients commonly experience both atrial flutter and AF (Biblo et al. 

2001). The success of atrial flutter ablation in preventing AF (Katritsis et al. 1996) 

suggests that these two arrrhythmias may have a common pathophysiological 

mechanism. In animal models a single re-entrant circuit can act as a dominant 

generator of AF (Mandapati et al. 2000).   

 

 

The multiple wavelet hypothesis 

In the early 1960s Moe developed the multiple wavelet hypothesis to explain the 

characteristics of AF (Moe et al. 1959, Moe 1962, Moe et al. 1964). AF is maintained 

by the presence of a number of independent wavelets that travel randomly through the 

atrium around multiple islets of refractory tissue. Wavelets may collide with each 

other, divide, extinguish or combine with other wavelets. Each wavelet may also 

accelerate or decelerate when it encounters tissue in a more or less advanced state of 

recovery or excitability.  

In 1985, Allessie et al. were able to provide the first demonstration in vivo of 

multiple propagating wavelets giving rise to turbulent atrial activity by mapping in 

dogs during rapid pacing-induced AF. During re-entrant rhythms the conduction time 

of the re-entrant impulse must be long enough to allow fibers ahead of the blockage 
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area to recover and become excitable again. The wavelength for circus movement has 

been defined as the product of the conduction velocity and the refractory period 

(Wiener et al. 1946). The smaller the wavelength of the circulating wavelets, the more 

easily AF can be induced (Rensma et al. 1988).  

Maintenance of AF depends on the number of wavelets present in the atria 

(Allessie et al. 1994). With only a small number of wavelets, they may at a certain 

moment die or fuse into a single wavefront, leading to resumption of sinus rhythm or 

atrial flutter. Supporting this idea, termination of AF by class IC antiarrhythmic drugs 

has been shown to be preceded by a decrease in the mean number of wavelets (Wang 

et al. 1992, Wang et al. 1993). The wavelength must be significantly smaller than the 

size of the atrium. Thus, smaller circuits on larger atria favour the perpetuation of AF 

(Rensma et al. 1988).  

Mapping studies in dogs (Kirchhof et al. 1993) , as well as in humans (Cox et al. 

1991, Konings et al. 1994) have given support to the idea that multiple wavelets 

distributed randomly throughout the atria give rise to the seemingly chaotic activation 

patterns observed in the ECGs of patients with AF. The circulatory wavelets require a 

certain mass of atrial tissue in which to circulate, in order not to extinguish themselves 

in refractory tissue. Thus, a critical mass of atrial tissue is necessary for AF to be 

sustained. Surgical approaches to AF have been designed to test this hypothesis (Cox 

et al. 2000). In MAZE procedure multiple surgical lesions are created to 

compartmentalize the atria in regions presumably unable to sustain the multiple 

wavelets (Cox 1991). With this procedure chronic AF could be cured in some patients 

supporting the concept that multiple wavelets of activation are responsible for 

persistent AF in humans (Cox et al. 1991, McCarthy et al. 1993, Cox et al. 1996, 

Kawaguchi et al. 1996).   
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Heart rate variability 

 

Arterial pressure and HR fluctuate from beat to beat, synchronous with respiration. 

Since the original report (Wolf et al. 1978), analysis of spontaneous variations of beat-

to-beat intervals from electrocardiographic (ECG) recordings has become an important 

method for assessing cardiac autonomic regulation (Akselrod et al. 1981, Pomeranz et 

al. 1985, Pagani et al. 1986, Malliani et al. 1991, Task Force of the European Society 

of Cardiology and the North American Society of Pacing and Electrophysiology 1996).  

 Measurement of heart rate variability 

Time domain measures of heart rate variability 

The variations in HR may be evaluated by a number of methods. In time domain 

measures either the heart rate at any point in time or intervals between successive 

normal complexes are determined. All measurements require accurate timing of R 

waves and careful elimination of artefacts and ectopic beats.  

The simplest variable to calculate is the standard deviation of the normal-to-normal 

RR intervals (SDNN) over a 24-hour period. This reflects all the cyclic components 

responsible for variability in the period of recording (Task Force of the European 

Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 1996). Another commonly reported measurement is the standard 

deviation of average normal-to-normal RR intervals (SDANN). This is the standard 

deviation of the 5-minute mean cycle lengths over the entire recording.  

The second class of variables is based on the differences between adjacent cycles. 

These measuremants include rMSSD (the square root of the mean squared differences 

of successive normal-to-normal intervals), NN50 (the number of interval differnces of 

successive normal-to-normal intervals greater than 50 milliseconds) and pNN50 (the 

proportion of cycles where the difference is >50 milliseconds) (Task Force of the 
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European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 1996).  

Time-domain variables are all positively correlated with each other, but the 

strength of correlation varies greatly. SDNN and SDANN have a correlation above 

0.9. The variables calculated from the differences between the adjacent cycles 

(rMSSD, NN50 and pNN50) estimate high-frequency (HF) variations in HR, and thus 

are highly correlated (Kleiger et al. 1995). 

Frequency domain measures of heart rate variability 

The spectral method quantifies how the overall variance is distributed in different 

frequency contributions. The HR signal is decomposed into its frequency components 

and quantified in terms of their relative powers (Akselrod et al. 1981, Malliani et al. 

1991).  

Both a Fast Fourier transform algorithm (nonparametric) and an autoregressive 

model (parametric) have been used to transform RR interval signals into frequency 

domain measures (Öri et al. 1992). The autoregressive model requires an a priori 

choice of the structure and order of the model for the signal generation mechanism. Its 

advantages are smoother spectral components, an accurate estimation of power spectral 

density even on a small number of samples, and easy postprocessing of the spectrum. 

The advantages of the Fast Fourier method are the simplicity of the algorithm used and 

the high processing speed. In most instances, both methods provide comparable results 

(Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology 1996).  

The power spectra are usually quantified by measuring the area in four frequency 

bands: ultra-low-frequency (ULF) <0.003 Hz, very-low-frequency (VLF) 0.003-0.04 

Hz, low-frequency (LF) 0.04-0.15 Hz, and HF 0.15-0.4 Hz (Task Force of the 

European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 1996). The components estimate fluctuations with a periodicity of > 

6 minutes, 25 s-6 min, 7-25 s, and 2.5-7 s, respectively. Total power is represented by 

the total area under the power spectral curve. The duration of the recording should be 

at least 10 times the wavelength of the lowest frequency bound by the spectral 
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components investigated. In addition, the linear trend should be removed by 

detrending and filtering the data to make the signal stationary (Task Force of the 

European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 1996). Spectral components are usually expressed as absolute units. 

LF and HF powers may be also expressed in normalized units by dividing the power of 

a given component by the total power, from which the power <0.04 Hz has been 

subtracted, and multiplying by 100 (Pagani et al. 1986, Malliani et al. 1991). The 

normalization tends to minimize the effect of the changes in total power on the values 

of the LF and HF components. The normalized units of HF and LF and the ratio 

between them have been used to describe the controlled and balanced behavior of the 

two branches of the autonomic nervous system (Pagani et al. 1986, Malliani et al. 

1991, Pagani et al. 1997).  

Non-linear measures of heart rate variability 

Nonlinear dynamics studies systems in which output is not proportional to input. It is 

based on fractals and chaos theory (Goldberger et al. 1987, West et al. 1987, 

Goldberger et al. 1990). Fractals are complex shapes that are not simply lines, 

rectangular or cubes. Fractals are irregular, but their irregularity has an underlying 

pattern and the details seen under magnification resemble the outline of a larger 

structure (West et al. 1987).  Chaos describes an apparently unpredictable behavior 

that may arise from the internal feedback loops of certain nonlinear systems 

(Goldberger et al. 1987, West et al. 1987, Goldberger et al. 1990). A chaotic process 

generates complex fluctuations that do not have a single or characteristic scale of time; 

rather, the signal varies in an erratic and unpredictable way.  

A detrended fluctuation analysis technique quantifies the fractal correlation 

properties of the data. This method is a modified root mean square analysis of a 

random walk (Hausdorff et al. 1995, Peng et al. 1995b). The root-mean-square 

fluctuations of the integrated and detrended data were measured in observation 

windows of varying size and then plotted against the size of the window on a log-log 

scale. The scaling exponent (α ) represents the slope of the line relating fluctuation 

(log) to window size (log) (Peng et al. 1995b). HR correlations can be defined 
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separately for short-term (<11 beats, α1) and for long-term (>11 beats, α2) fluctuations 

in the RR interval data (Peng et al. 1995a, Peng et al. 1995b, Mäkikallio et al. 1997).  

The long-term power-law relation of R-R interval variability describes the 

distribution of the power-law density in the frequency range of 10-4 to 10-2 Hz. It 

reflects mainly fluctuations between ULF and VLF power from the spectra. The 

steeper the slope (β) of the power-law relationship is, the greater is the relative power 

of the ULF component compared to the VLF component in the spectra (Bigger et al. 

1996).   

Approximate entropy (ApEn) is a measure quantifying the regularity or 

predictability of time series data (Pincus 1991, Pincus et al. 1994). It measures the 

logarithmic likelihood that runs of patterns that are close to each other will remain 

close in the subsequent incremental comparisons. A time series containing many 

repetitive patterns has a relatively small approximate entropy; conversely, more 

random data produce higher values (Pincus 1991, Pincus et al. 1994).  

Physiology of heart rate variability 

HR and its variability comprise the cardiovascular response to broadly defined stimuli, 

these stimuli being physical, psychological or environmental. The beat-to-beat 

fluctuation of HR is a result of physical and autonomic nervous system activity, 

respiration, mental stress, thermoregulation, blood pressure regulation and possibly 

other unknown factors. HR variability represents the net effects of all of these 

inhibitory and excitatory influences.  

Time and frequency domain measures of heart rate variability 

Time-domain measures of HR variability show a linear relation with 

pharmacologically determined cardiac vagal tone (Eckberg 1983, Hayano et al. 1991). 

Short term HR fluctuation has been thought to be mediated by the modulation of 

autonomic inputs to the sinoatrial node. The magnitude of the HF component of the 

power spectra reflects the degree of respiratory modulation of vagal activity. The 

degree of this modulation augments linearly with the increase in the mean level of 
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vagal tone (Akselrod et al. 1981, Pomeranz et al. 1985, Hayano et al. 1991, Malliani et 

al. 1991, Pagani et al. 1997).  

More controversial is the interpretation of the LF component, which has been 

considered as a marker of sympathetic modulation, especially when expressed in 

normalized units (Rimoldi et al. 1990, Malliani et al. 1991, Kamath et al. 1993, 

Montano et al. 1994). On the other hand the LF component is thought to be mediated 

by both the vagal and sympathetic outflow at this frequency range (periodicity of 7-25 

seconds) (Akselrod et al. 1981, Pomeranz et al. 1985). In some conditions, like in heart 

failure which is associated with sympathetic excitation, a decrease in the absolute 

power of the LF component is observed (van de Borne et al. 1997). During 

sympathetic activation the resulting tachycardia is usually accompanied by a marked 

reduction in total power, whereas the reverse occurs during vagal activation. In normal 

subjects LF and HF expressed in normalized units have a circadian variation and 

reciprocal fluctuations, with higher values of LF in the daytime and of HF at night 

(Furlan et al. 1990, Malliani et al. 1991). 

Although the VLF and ULF components account for 95% of the total power in 

long-term recordings, their physiological correlates are still unknown. VLF and ULF 

power is suggested to reflect both sympathetic and largely parasympathetic modulation 

as well as renin-angiotensin-aldosterone system and thermoregulation (Taylor et al. 

1997). However, the vagal activity may also be a major contributor of these 

components, because a parasympathetic blockade abolishes almost all variations of HR 

(Akselrod et al. 1981, Pagani et al. 1986, Taylor et al. 1997).  

Non-linear measures of heart rate variability 

The physiological background of non-linear HR variability indexes is not well 

determined. Some evidence suggests that increased sympathetic activation is 

associated with an impairment of the fractal dynamics of HR. In a recent study, an 

increase in vagal outflow, together with increased circulating catecholamine levels, 

resulted in a reduction of short-term scaling exponent values (Tulppo et al. 2001b).   

The long-term exponent (β) has been shown to be significantly steeper in a 

denervated heart, suggesting that it is mainly influenced by the autonomic input to the 

heart (Bigger et al. 1996).  
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ApEn has been shown to gradually increase during exercise after atropine (Tulppo 

et al. 1996). Complex R-R interval dynamics have also been shown to be associated 

with high levels of norepinephrine in patients with heart failure (Woo et al. 1994), 

suggesting that sympathetic activation may increase the values of ApEn.  

ApEn, as well as both the short-term (α1) and the long-term (β) scaling exponents, 

has been shown to decrease significantly during ageing (Kaplan et al. 1991, Mäkikallio 

et al. 1998, Pikkujämsä et al. 1999, Jokinen et al. 2001).  

Heart rate turbulence 

HR turbulence was introduced in 1999 by Schimdt et al. It describes the short-term 

fluctuation in sinus R-R intervals that follows an ectopic complex. Turbulence onset 

(TO) quantifies the brief phase of early acceleration after an ectopic beat. TO has been 

defined as the difference between the mean of the first two sinus R-R intervals after an 

ectopic beat and the last two sinus R-R intervals before an ectopic beat divided by the 

mean of the last two sinus R-R intervals before an ectopic beat (Schmidt et al. 1999).  

Turbulence slope (TS) is defined as the maximum positive slope of a regression 

line assessed over any sequence of five subsequent sinus R-R intervals within the first 

20 sinus R-R intevals after an ectopic beat (Schmidt et al. 1999). After an atrial ectopic 

beat HR turbulence has been shown to have a one-beat delay of initiation and a milder 

acceleration and deceleration than after a ventricular ectopic beat (Lindgren et al. 

2003, Savelieva et al. 2003).  

Physiology of heart rate turbulence 

The precious mechanism behind HR turbulence is unknown. The drop of blood 

pressure because of compensatory pause after an ectopic beat causes arterial 

baroreceptor unloading. This decreases tonic vagal nerve activity, causing early 

acceleration of sinus rhythm immediately after an ectopic beat. After that there is an 

increase of blood pressure with subsequent baroreceptor loading. Then vagal nerve 
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activity is again increased, which causes a later deceleration phase of the sinus rhythm 

(Mrowka et al. 2000, Lin et al. 2002, Voss et al. 2002).  

The relative contribution of the 2 limbs of the autonomic nervous system to 

turbulence measures is also unknown. However, the latency time and duration of heart 

responses to vagal activation is very short, while the sympathetic effects have a longer 

latency and duration (Hainsworth 1998). Thus the short and immediate acceleration 

phase may depend more on vagal withdrawal than on sympathetic recruitment. 

Atropine has been shown to abolish HR turbulence completely (Guettler et al. 2001, 

Marine et al. 2002). In the mathematical model betablocking agents reduced TS, but 

not TO (Mrowka et al. 2000). In patients without structural heart disease betablocking 

agents had no effect on HR turbulence (Lin et al. 2002). However, TS and TO are 

independent risk predictors (Schmidt et al. 1999, Ghuran et al. 2002) suggesting that 

HR turbulence is not a purely vagal phenomenon. Besides that, HR turbulence 

measures are only weakly related to HR variability indices (Koyama et al. 2002, 

Lindgren et al. 2003, Sestito et al. 2004), suggesting that other mechanisms than only 

autonomic influences may be involved in the mechanism of HR turbulence. 

Abnormal HR turbulence has been found to predict mortality in post-myocardial 

infarction patients (Schmidt et al. 1999, Ghuran et al. 2002, Barthel et al. 2003), in 

patients undergoing coronary artery bypass grafting (Cygankiewicz et al. 2003), and in 

patients with chronic heart failure (Koyama et al. 2002). In patients with dilated 

cardiomyopathy more negative TO was a significant predictor of transplant-free 

survival (Grimm et al. 2003), and in patients undergoing primary percutaneous 

coronary intervention for a first myocardial infarction, improvement of HR turbulence 

after successful reperfusion has been reported (Bonnemeier et al. 2003). 
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Remodeling of the atrium 

 

Chronic AF is often preceded by episodes of paroxysmal AF (Godtfredsen 1975, 

Kopecky et al. 1987). The transition from paroxysmal to chronic AF may be due to a 

further progression of underlying disease. However, experimental data have revealed 

that AF itself causes changes in the myocardium that favor its irreversibility (Morillo 

et al. 1995, Wijffels et al. 1995). Clinical studies have shown that conversion to and 

maintenance of sinus rhythm by pharmacological or electrical methods becomes more 

difficult with longer duration of AF (Lévy et al. 1998). These observations support the 

conclusion that AF by itself causes changes in atrial electrical function, contractile 

behavior, and structural composition, resulting in sustained AF.  

 

Electrical remodeling 

Experimental studies have shown that marked electrophysiological changes take place 

in the atria during AF, which favor the induction and perpetuation of AF. AF causes a 

shortening of refractoriness and a loss of rate adaptation (Morillo et al. 1995, Wijffels 

et al. 1995, van der Velden et al. 2000b). The shortening of atrial ERP promotes AF by 

decreasing the wavelength, thereby allowing the atria to accommodate a larger number 

of functional reentry circuits and decreasing the chance of AF termination (Rensma et 

al. 1988, Allessie et al. 1994).  The reduction in rate adaptation of the ERP is also 

observed in patients with AF (Attuel et al. 1982, Boutjdir et al. 1986, Franz et al. 

1997). In addition to changes in the absolute value of ERP, atrial tachycardia also 

affects the spatial distripution of ERP in animal models of AF (Satoh et al. 1996, 

Gaspo et al. 1997b, Jayachandran et al. 2000) and in humans with paroxysmal AF 

(Misier et al. 1992). The spatial heterogeneity of ERP appears to be an important 

determinant in the maintenance of AF (Wang et al. 1996, Liu et al. 1997, Fareh et al. 

1998, Ramanna et al. 2000).  
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The ionic mechanisms underlying tachycardia-induced electrical remodeling have 

been studied both in animal models of AF (Gaspo et al. 1997a, Yue et al. 1997) and in 

humans (van Wagoner et al. 1997, Bosch et al. 1999, van Wagoner et al. 1999, Skasa 

et al. 2001). The most important impact of AF on the ion channels was a marked 

downregulation of the L-type Ca2+ channel. Secondary to this process, the reduced 

expression of several K+channels may serve to adapt the myocardial cell to the high 

rate and counteract the shortening of ERP (Brundel et al. 2001, Dobrev et al. 2002).  

Prolonged rapid atrial rates may also lead to a slowing of atrial conduction, but the 

results have been controversial (Morillo et al. 1995, Wijffels et al. 1995, Elvan et al. 

1996, Gaspo et al. 1997b). Gap-junction proteins play an important role in the rapid 

and homogenous propagation of the wavefront in the heart (Elvan et al. 1997, van der 

Velden et al. 2000a). Changes in atrial gap junctions may cause a slowing of atrial 

conduction (Kanagaratnam et al. 2002), but the data presented on changes in 

intercellular connexins are not consistent (Elvan et al. 1997, van der Velden et al. 

2000a).  Spatial heterogeneities in the distribution of connexin have been reported, and 

this might create microscopic obstacles for conduction (van der Velden et al. 2000a, 

Kostin et al. 2002). It therefore remains a possibility that gap junctional remodeling is 

involved in the creation of a substrate for persistent AF.   

 

 

Structural remodeling 

In addition to electrophysiological, functional ion-current and ion-channel gene 

expression changes, AF is also associated with adaptive and maladaptive alterations in 

morphology (Bharati et al. 1992, Ausma et al. 1997, Thijssen et al. 2000). Cellular 

hypertrophy, alterations in connexin expression, disintegration of the contractile 

apparatus, glycogen accumulation, loss of the sarcoplasmic reticulum, and changes in 

mitochondrial size and shape have been noted in AF (Ausma et al. 1997, Elvan et al. 

1997, Frustaci et al. 1997, van der Velden et al. 1998, Everett et al. 2000, Thijssen et 

al. 2000, Ausma et al. 2001). These changes resemble those observed in the 

hibernating myocardium of patients (Schotten et al. 2001b). In chronic lone AF, signs 
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of irreversible changes leading to cell death are absent (Dispersyn et al. 1999). The 

structural changes in response to AF might be considered as the consequence of a 

physiological adaptation to chronic Ca2+ overload and metabolic stress (Allessie et al. 

2002). In patients with AF and atrial dilatation, degenerative changes and signs of 

apoptosis in atrial myocytes have also been found (Aime-Sempe et al. 1999, Thijssen 

et al. 2000). Furthermore, the degree of interstitial fibrosis is increased in patients with 

chronic AF (Frustaci et al. 1997, Wouters et al. 2001, Kostin et al. 2002). The normal 

atria has a heterogenous transmural and transseptal myoarchitecture (Ho et al. 2002). 

Atrial dilatation, fibrosis and other structural changes induced by AF are distributed 

nonuniformally in the atria, thus creating more three-dimensional structural 

heterogeneity which results in further inhomogenies in conduction and refractoriness.  

 

Time course of remodeling 

Atrial action potential duration (ADP) is abbreviated in a few minutes of high atrial 

rate, largely by causing inactivation of L-type CA2+-channels (Courtemanche et al. 

1998). During the first 24 hours of AF ERP shortens and loss of rate adaptation of ERP 

have been noted (Morillo et al. 1995, Wijffels et al. 1995, Elvan et al. 1996, Gaspo et 

al. 1997b), and the decrease of ERP can occur over a time interval as short as several 

minutes (Daoud et al. 1996). Further electrical remodeling takes place during the first 

days of AF, with ERP reaching a new steady state after 2 -3 days (Wijffels et al. 1995).   

Structural remodeling of the atria is also a gradual, but much slower, process. 

During the first week of AF the first signs of structural remodeling occur, and in the 

time between 1 and 4 weeks several additional changes have been noted, such as a 

decrease of connexin, heterogenous distribution of connexin, an increase in the size of 

atrial myocytes, and a loss of sarcomeres (Allessie et al. 2002). When AF continues for 

longer than 1 month, further structural changes will occur (Morillo et al. 1995, Ausma 

et al. 1997, Li et al. 1999, Ausma et al. 2001).  
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Reversal of remodeling  

After restoration of sinus rhythm ERP recovers quickly over the first few minutes to 

hours (Goette et al. 1996), and returns completely to normal within 1 week (Wijffels et 

al. 1995). A shorter duration of AF exhibits a faster recovery of the atrial ERP 

following conversion to sinus rhythm (Daoud et al. 1996). Lee et al. (1999) found  

regional differences in recovery from tachycardia-induced changes. In humans with 

persistent AF, reversal of electrical remodeling depends on the duration of sinus 

rhythm (Hobbs et al. 2000) and has been shown to be completely reversible within 3 

days of sinus rhythm (Yu et al. 1999).  

Reversal of the structrural changes caused by prolonged AF is a very slow process; 

a full recovery might not be possible at all. Everett et al. (2000) found no signs of 

recovery from atrial structural remodeling 2 weeks after cardioversion of AF, despite a 

complete reversion of electrical remodeling (Yu et al. 1999). After several months of 

sinus rhythm a lot of structural changes have been still present (Ausma et al. 2003), 

and atrial conduction disturbances have been detected even after 3 years of conversion 

to sinus rhythm (Nishino et al. 2000). 

 

Autonomic nervous system  

In the presence of a normal conduction system, HR is determined by the discharge rate 

of the sinoatrial node. The intrinsic discharge rate is affected by the metabolism of the 

pacemaker cells (Opie 1998). The sinus node is richly innervated with both 

parasympathetic and sympathetic nerve endings. Both divisions of the autonomic 

nervous system are continually active and regulate to an important extent the 

frequency of pacemaker discharge. Increased sympathetic nervous activity, with the 

released norepinephrine acting via the β-adrenergic pathway, increases the HR. 

Parasympathetic activity, which stimulates cholinergic receptors through the release of 

acetylcholine from vagal nerve fibers, diminishes the HR (Zipes 1997). The two 

branches of the autonomic nervous system work in a co-ordinated way, usually acting 
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reciprocally, but sometimes synergistically on HR. In resting conditions the 

sympathetic influence is minimal and the variations in HR are largely dependent on 

vagal modulation (Levy 1971, Chess et al. 1975). In the presence of stress or disease, 

β-adrenergic receptor control of HR is more important (Opie 1998). Several reflexes in 

the cardiovascular system help to control the HR. Regulation of cardiac neural activity 

is highly integrated and is achieved by circuitry at multiple levels. The intrinsic cardiac 

nerves and fat pads appear to provide local neural coordination independent of higher 

brain centers.  

The baroreceptors in the carotid sinuses and aortic arch are among the major 

control systems responsible for changes in HR (Hainsworth 1995). Beat-to-beat 

fluctuation of HR is the result of a complex interaction between autonomic tone, 

sensory input, central influence, vasomotor regulation, and target organ 

responsiveness.   

Physiology of the autonomic nervous system  

The importance of the autonomic nervous system in the genesis of AF has been known 

for several years (Coumel 1992). Parasympathetic stimulation shortens the atrial ERP, 

increases the heterogeneity of ERP, and decreases the wavelength, thus favoring both 

the onset and maintenance of AF (Allesie et al. 1958, Geddes et al. 1996, Wang et al. 

1996, Liu et al. 1997, Jayachandran et al. 2000). The occurrence of AF episodes has a 

unique circadian rhythm, so that the probability of maintenance is higher during 

nighttime than during daytime (Yamashita et al. 1997). In animal models vagal 

stimulation has been much more effective than sympathetic stimulation in promoting 

sustained AF (Geddes et al. 1996, Liu et al. 1997, Olgin et al. 1998). In dogs, catheter 

ablation of parasympathetic nervous input to the atrium can abolish vagally mediated 

AF (Schauerte et al. 2000).  

The intrinsic neural network within the heart provides local, independent heart 

rhythm control (Randall et al. 1985, Chiou et al. 1998). Components of this 

innervation system reside within discrete fat pads. The cardiac fat pads and local 

cardiac regulatory systems are also of considerable clinical significance. The Maze 

procedure causes partial parasympathetic denervation, which may partly explain high 
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success rates in eliminating AF (Cox et al. 1996).  In a recent ablation study, complete 

vagal denervation in the fat pads around and outside the pulmonary vein areas has been 

shown to significantly reduce recurrence of AF (Pappone et al. 2004).  

Increased parasympathetic tone may also enhance ectopic firing, serving as a 

trigger of paroxysmal AF in subjects without evidence of other structural cardiac 

abnormality (Haissaguerre et al. 1998, Zimmerman et al. 2001). Experimental regional 

cardiac denervation has been shown to result in a regional shortening of atrial ERP, 

heterogeneity of atrial depolarization, and predisposition to induction of AF (Chen et 

al. 1998, Olgin et al. 1998, Jayachandran et al. 2000, Hirose et al. 2002). In goats a 

high vagal tone after restoration of sinus rhythm has been shown to attenuate the 

recovery of the atrial ERP (Blaauw et al. 1999).   
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AIMS OF THE STUDY 

The purpose of the present work was to examine changes in HR dynamics preceding 

clinical episodes of AF by using conventional time and frequency domain measures of 

HR variability, as well as non-linear methods of HR variability. Alterations in 

responses to atrial ectopic impulses were also assessed by analyzing HR turbulence 

after atrial ectopic beats.  The specific aims were: 

 

1. To study the probable alterations in HR variability preceding spontaneous 

paroxysmal episodes of AF in patients with structural heart disease and in 

patients with lone AF. 

 

2. To find out if the amount of ectopic beats increases before spontaneous onset of 

AF episodes. 

 

3. To find out if alterations in HR variability before spontaneous episodes of AF 

could predict the perpetuation of AF episodes in patients with lone AF. 

 

4. To evaluate whether vagal responses to atrial ectopic beats were different 

during one hour before the onset of AF episodes as compared to other hours of 

the 24-hour recordings.  

 

5. To assess whether alterations in HR variability measures could predict the 

recurrence of AF after restoration of sinus rhythm with cardioversion. 
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SUBJECTS  

The study population consisted of patients for whom 24-hour ECG recording was 

performed because of clinical reasons in Tampere or Oulu University Hospitals during 

1991-2001, and of 116 patients who were treated with transthoracic electrical 

cardioversion due to persistent AF (>one month) in Tampere University Hospital 

during 1999-2001.  From the 24-hour ECG recordings those containing one or more 

paroxysmal AF episode(s) lasting more than 10 seconds, with at least 20 minutes of 

sinus rhythm preceding the AF, were included in the analyses.  

Patients >60 years of age who had sinus pauses >2.5 seconds were excluded. 

Patients who had hypertension, coronary artery disease, or other structural heart 

disease were included in the group of patients with structural heart disease. Patients 

without hypertension, diabetes, structural heart disease, or atrioventricular accessory 

pathways were included in the group of patients with lone AF. 

Only patients with lone AF were included in Studies I-II, while both lone AF 

patients and patients with structural heart diseases were included in Study III. The lone 

AF study population included in Studies I and II consisted of 22 patients from which 

26 24-hour recordings were made, containing 92 episodes of AF. In Study III the study 

population consisted of 29 lone AF patients (21 of them were the same patients as in 

Studies I and II), for whom 33 24-hour recordings were made and of 39 patients with 

structural heart disease, for whom 40 Holter recordings were made. From the 116 

patients who underwent electrical cardioversion, 98 achieved sinus rhythm. The final 

study group consisted of 78 patients; 20 patients were excluded because of signal 

artefacts, frequent ectopic beats or sick sinus syndrome. One patient was excluded 

because of early recurrence of AF 6 hours after cardioversion. The clinical 

characteristics of the study population are presented in Table 1.  
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The study protocol was approved by the Ethics Committee of the University of 

Tampere. Written informed consent was obtained from each of the cardioverted 

patients. 

 
 
Table 1. Clinical characteristics of the study population. 
 

 
Lone AF 
patients 
 

Patients with 
structural heart 

disease 

Cardioverted 
patients 

Number of patients 30 39 78 

Age, years 52±15 64±10 63±13 

Sex, male/female 15/15 20/19 55/23 

Heart disease: n (%)    

   Hypertension - 28 (72) 37 (47) 

   Valvular - 13 (33) 8 (10) 

   Dilated cardiomyopathy - 3 (8) 4 (5) 

   Ischemic - 17 (44) 10 (13) 

   None 30 (100) - 25 (32) 

Diabetes mellitus - 12 (31) 10 (13) 

Cardiac medication     

   betablocking agents 13 (43) 21 (54) 63 (81) 

   IA antiarrhythmics       2 (7) 2 (5) - 

   IC antiarrhythmics   7 (23) 4 (10) 6 (8) 

   digitalis 4 (13) 8 (21) 37 (47) 

   no medication 11 (37) - 3 (4) 

Duration of AF (months)   3±2 

Left atrial diameter (mm)   45±6 

Left ventricular ejection 
fraction (%) 

63±6* 51±17† 60±12 

AF, atrial fibrillation; *available from 20 patients; †available from 22 patients. 
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METHODS 

All patients underwent a 24-hour ECG recording. Transthoracic echocardiography was 

performed for all patients who underwent electrical cardioversion, for 56% of the 

patients with structural heart diseases, and for 67% of the patients with lone AF.  

ECG recordings 

All two-channel 24-hour recordings were analyzed with the Medilog Excel (version 

4.1c, Oxford Medical Ltd) ECG software system and also manually to detect and 

quantify arrhythmias and artefacts. The data were sampled digitally and transferred to 

a microcomputer for the analysis of HR variability. 

Measurement of heart rate variability  

After the ECG data were transferred to the microcomputer, the R-R interval series 

were first edited automatically, followed by careful detailed manual editing. In Studies 

I and II all ectopic beats and noise were deleted and in Studies III and IV the artefacts 

and ectopic beats were deleted and the formed gaps were replaced by the interpolation 

method described earlier (Huikuri et al. 1994, Salo et al. 2001). All questionable 

portions were compared with two-channel Holter electrocardiograms. Only segments 

with >80% qualified sinus beats were included. Details of this analysis and filtering 

method have been described previously (Huikuri et al. 1993, Huikuri et al. 1996b). 

All analyses of R-R interval variability were performed with a custom-made 

analysis program (Hearts, Heart Signal Co, Oulu); the details of the methods have been 

described elsewhere (Huikuri et al. 1993, Huikuri et al. 1996b, Mäkikallio et al. 1996, 
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Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology 1996, Mäkikallio et al. 1998). HR variability was 

analyzed from 2 hours preceding AF episode(s) in 20-minute segments in Studies I and 

II, from the entire recording in Study IV, and from the sinus rhythm in the whole 

recording, in 60-minute segments in Study III. In Study III HR variability was also 

analyzed in 15-minute segments from 60 minutes preceding AF episode(s). In Study I 

not all AF episodes had 2 hours of sinus rhythm suitable for analysis; the trend for HR 

variability measures was analyzed from episodes, which had at least 40 minutes of 

sinus rhythm preceding AF.  

In Study II the AF episodes were divided into two groups according to their 

duration. If there was less than five minutes sinus rhythm between subsequent AF 

episodes they were defined as one episode, and the duration of the AF was calculated 

by adding both episodes together. The definition of short and long episodes was 

determined before the HR variability analysis by making a histogram from the 

logarithmic transformations of the durations of the arrhythmia episodes and then 

having the peak of the gaussian curve as a cutoff point.   In that way, episodes shorter 

than 200 seconds were defined as short ones and those longer than 200 seconds as long 

AF episodes. The same cutoff point of 200 seconds was used in the Study III when 

comparing TO before long and short AF episodes. 

 

Time and frequency domain measures of heart rate variability 

Time domain and spectral measures of HR variability were analyzed according to the 

methods recommended by the task force (Task Force of the European Society of 

Cardiology and the North American Society of Pacing and Electrophysiology 1996). 

SDNN and the mean length of the R-R intervals were computed as time-domain 

measures.  

A Fast Fourier transform method was used to estimate the power spectrum 

densities of the HR variability. The power spectra were quantified by measuring the 

area in four frequency bands: <0.0033 Hz (ULF), 0.0033 to 0.04 Hz (VLF), 0.04 to 

0.15 Hz (LF) and 0.15 to 0.40 Hz (HF). ULF- and VLF spectral components were 
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computed over the entire recording interval. LF and HF components were computed 

from the segments of 512 R-R intervals and the average values of the entire recording 

or 60-minute periods were used.  

Periods of 15 or 20 minutes were divided into two segments of equal size 

according to their beat count; a linear detrend was applied to those segments of 400-

1000 samples to make the data more stationary, and LF and HF spectral components 

were analyzed over the 15 or 20-minute periods. In addition to absolute units, 

normalized units (nu) of LF and HF were calculated by multiplying the power of each 

spectrum by 100 and then dividing it by the sum of the power of the LF and HF 

spectra. The ratio between LF and HF spectra was also calculated. 

 

Nonlinear measurements of heart rate variability 

The same pre-edited R-R interval time series that had been used for the spectral and 

time domain analysis of HR variability were also used for calculating scaling and 

complexity properties of R-R intervals by various indices.  

A detrended fluctuation analysis technique was used to quantify short-term fractal 

correlation properties of the R-R interval data. HR correlations were defined 

specifically for short-term (<11 beats, α1) fluctuations in the data (Peng et al. 1995b, 

Mäkikallio et al. 1997). 

 For overall complexity ApEn was computed. Two input values, m and r, must be 

fixed to compute approximate entropy, and m=2 and r =20% of the standard deviation 

of the data sets were chosen on the basis of previous findings of accurate statistical 

validity (Pincus et al. 1992, Pincus et al. 1994). Analyses of approximate entropy and 

the short-term scaling exponent α1 were also carried out from data where only noise 

was abolished and ectopic beats were not excluded. In the final analysis both edited 

and unedited data were used. 

A long-term power-law relation of R-R interval variability was calculated from the 

frequency range of 10-4 to 10-2 Hz. The point power spectrum was logarithmically 

smoothed in the frequency domain, and the power was integrated into bins spaced 

0.0167 log (Hz) apart. A robust line-fitting algorithm of log (power) versus log 
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(frequency) was then applied, and the slope of this line was calculated, yielding the 

long-term scaling exponent (β). 

 

Effects of ectopic beats  

The amount of ectopic beats by percentage was also analyzed. Because of the potential 

effect of ectopic beats on ApEn and scaling exponents, the effect of the ectopic beats 

on ApEn and on the scaling exponent α1 was assessed in Study I by various 

experiments with real and artificial R-R interval data. Short and long time intervals 

resembling ectopic beats with a compensatory pause were added and the amount of 

replaced beats was increased progressively. First, ectopic beats with a constant 

coupling interval (500 ms) were added. The amount of replaced beats was then 

increased progressively from 0 to 40%. Second, the same procedure was repeated, but 

the time length of the coupling intervals was changed randomly within certain limits 

(350 to 800 ms). The tests were performed on real R-R interval data of a healthy 

subject with mean HR ~60 and SDNN 130 ms and also on artificial signals with 1/f 

signal properties, with a mean R-R interval length of 1000 ms and SDNN 160 ms. 

Heart rate turbulence 

Identification of atrial ectopic beats 

Atrial ectopic beats were first identified automatically. The criterion for prematurity 

was at least a 20% shortening of the R-R interval. After that, careful manual editing 

was performed by checking simultaneously 2-channel Holter recordings and R-R 

interval tachograms. An ectopic beat was considered as an atrial ectopic beat if there 

was evidence of atrial depolarization in any of the Holter channels. Only isolated atrial 
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ectopic beats (preceded and followed by ≥20 normal sinus beats) with clear 

postectopic pause were included. The prematurity index for ectopic beats was 

calculated by dividing the coupling interval of the ectopic beat by the mean of two 

sinus R-R intervals preceding the coupling interval. 

Analysis of heart rate turbulence after atrial ectopic beats  

HR turbulence was calculated as previously described (Schmidt et al. 1999). 

According to Schmidt et al. (1999) TO is defined as the difference between the mean 

of the first two sinus R-R intervals after a compensatory pause and the last two sinus 

R-R intervals before the atrial ectopic beat, divided by the mean of the last two sinus 

R-R intervals before the atrial ectopic beat. TS was calculated as the maximum slope 

of the regression line over any sequence of 5 sinus R-R intervals within the first 20 

sinus beats after an atrial ectopic beat. The mean of TO and TS for all atrial ectopic 

beats located one hour preceding AF episode(s) was calculated. From the rest of the 

24-hour recording the mean of TO and TS for all atrial ectopic beats were calculated 

by hour and compared with the mean of the values for one hour preceding AF.  

 

Statistics 

The results are presented as mean value ± SD. In the light of a Kolmogorov-Smirnov 

test (z value > 1), in addition to the absolute values, a logarithmic transformation to the 

natural base was performed on the spectral components of HR variability, the SDNN, 

and the number of ectopic beats in different time periods. These logarithmic 

transformations of HR measures were used in statistical analyses in all studies.  The 

differences in continuous variables from the same recordings were analyzed with the 

paired samples Student´s t test. When comparison was made between different groups, 

the independent samples Student´s t test was used. Differences between categorical 

variables were analyzed with an χ2 –test. Pearson correlation coefficients were used in 

the analysis of correlation between the continuous variables.  One-way ANOVA was 
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used to compare the changes of HR variability measures in 15-minute periods before 

AF. Twenty-minute periods preceding AF episodes had unbalanced data. Thus, in 

order to evaluate if there had been a significant change in different HR variability 

measures or in the amount of ectopic beats before the onset of AF, the linear mixed 

models were used. With these models it is possible to analyze unbalanced repeated-

measure designs, which use different types of mean and covariance structures. The 

linear mixed models were fitted using PROC MIXED in the SAS System for Windows 

version 6.12.   

In Study IV the continuous R-R interval variability measures were dichotomized. 

Because there are no well-defined cutoff values for the continuous R-R interval 

variability measures, they were dichotomized by counting tertiles for each variable. 

The most “abnormal” tertile was then used as the dichotomization cut point. Kaplan-

Meier estimates of the distribution of the times from cardioversion to AF were 

computed and log-rank analysis was performed to compare the curves, which indicate 

the maintenance of sinus rhythm. Odds ratios and 95% confidence intervals were also 

calculated for univariate predictors of recurrence of AF. The sensitivity, specificity and 

predictive accuracy values of R-R interval variability measures for recurrence of AF 

were also calculated.  The P value of <0.05 was considered significant. 
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RESULTS 

Time and frequency domain measures of heart rate 

variability 

None of the time and frequency domain measures analyzed in 15-minute (Table 2) or 

20-minute periods (Table 3) showed any significant changes before the onset of AF 

episodes. When compared one hour before the onset of AF with other hours of the 

recording no significant changes in average R-R interval (984±185 vs 969±135 ms), 

SDNN (84±35 vs 79±27 ms), HF power (299±316 vs 261±235 ms2) or LF power 

(491±460 vs 484±431 ms2) were seen (p=NS for all).  

 
Table 2. Changes in R-R variability before spontaneous onset of atrial fibrillation. 

 

Time epoch before AF 60-45 min 45-30 min 30-15 min 15-0 min 

All Patients n=63*     

Average RR interval (ms) 997±189 1000±181 998±192 972±201 

HF power (ms²) 358±584 308±395 262±249 289±334 

LF power (ms²) 556±608 522±535 473±460 471±496 

LF/HF ratio 2.2±1.8 2.2±2.0 2.3±1.9 2.2±2.1 

SDNN (ms) 64±31 71±30 60±26 70±34 

*Number of recordings. Values are mean ± SD. LF, low frequency; HF, high 
frequency; SDNN, standard deviation of all RR intervals; P=NS for all. 
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Before long episodes of AF the HF power (normalized units) was significantly 

higher, the LF power (nu) lower, and the ratio between LF and HF lower than before 

short episodes of AF (Table 4).  Figure 1 presents the HF power in normalized units 

from the patients (n=8, 10 recordings) who had both short and long episodes of AF. 
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Figure 1.   High frequency spectral power in normalized units (mean±standard error of 
mean) from patients who had both short and long episodes. High frequency power was 
almost regularly higher before a long episode than before a short episode in the same 
patient.  
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Table 4. Heart rate variability measures before short and long atrial fibrillation 
episodes in 22 patients with lone atrial fibrillation. 
 

 AF duration  < 200 s  > 200s 

AF episodes, n  51 41 

Average RR interval, ms 994±168 1008±175 

SDNN, ms 70±27 63±30 * 

HF power, ms² 381±559 404±428  

   NU 31.5±16.4 40.1±14.8 †

LF power, ms² 756±683 589±475 * 

   NU 68.5±16.4 59.9±14.8 †

LF/HF ratio 3.3±2.5 1.9±1.3 † 

ectopics, %     2.6±3.2 3.4±4.2 

* p<0.05, † p<0.0001. Values are mean ± SD. AF, atrial fibrillation; SDNN, standard 
deviation of all RR intervals; HF, high frequency; LF, low frequency; NU, normalized 
units; ectopics, the amount of ectopic beats as a percentage from the total beat count. 
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Table 5 presents time and frequency domain measures after restoration of sinus 

rhythm with transthoracic cardioversion. All power spectral components, except the 

ULF power, were significantly higher in patients who had relapse of AF during the 

one-month follow-up when compared with patients who remained in sinus rhythm. 

Increased HF and LF power were observed both during day- and night-time in patients 

with recurrence of AF. These patients had also higher SDNN and their mean HR was 

slower during night-time than in patients who remained in sinus rhythm.  

 

 
Table 5. R-R interval variability of patients who had recurrence of atrial fibrillation 
and those who remained in sinus rhythm during the one month follow-up. 
 

 Sinus Rhythm (n=51) AF  (n=27) 
Mean R-R interval, ms 920±123 957±101 
SDNN, ms 100±29 117±34 * 
ULF power   
         ms2               6565±4135 8132±7196 
         ln 8.6±0.6 8.7±0.8 
VLF power   
         ms2 872±618 1587±1095 
         ln 6.5±0.8 7.1±0.8 † 
LF power   
        ms2 384±348 666±533 
        ln 5.6±0.9 6.2±0.8 † 
        nu 56±17 61±17 
HF power   
        ms2 267±202 351±199 
        ln 5.3±0.7 5.7±0.6 * 
        nu 44±17 39±17 
LF/HF ratio 1.61±1.01 2.08±1.32 

* p<0.05, † p<0.01. Values are mean ± SD.  SDNN ,standard deviation of all normal 
R-R intervals; ULF, ultra-low-frequency power; VLF, very-low-frequency power; LF, 
low-frequency spectral power; HF, high-frequency spectral power; ln, logarithmic 
transformation of power spectral measures; nu, normalized units of power spectral 
measures. 
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Figure 2 shows Kaplan-Meier curves from various dichotomized variables 

depicting the probality of remaining in sinus rhythm during the one-month follow-up 

after cardioversion. During the first week after cardioversion increased HF power was 

the most powerful predictor of recurrence of AF, with an odds ratio of 2.8 (95% 

confidence interval 1.0 to 8.0, p<0.05). However, later recurrence of AF was predicted 

most powerfully with increased VLF power, with an odds ratio of 3.3 (95% confidence 

interval 1.6 to 7.2, p<0.01).   
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Figure 2.   Kaplan-Meier curves depicting the probability of maintenance of sinus 
rhythm (SR) during 30 days after cardioversion of patients with natural logarithmic of 
high-frequency spectral component (lnHF) of  < 5.81 and > 5.81, respectively (left); 
patients with natural logarithmic of low-frequency spectral component (lnLF) of < 
6.24 and > 6.24, respectively (center); and patients with natural logarithmic of very-
low-frequency spectral component (lnVLF) of < 7.12 and > 7.12, respectively (right). 
 

 

 
 
 
 



 43

 

Non-linear measures of heart rate variability  

 

In patients with lone AF, ApEn analyzed in 20-minute segments from fully edited data 

and the real R-R interval data without excluding the ectopic beats decreased 

significantly before the onset of AF (Figure 3). The short-term scaling exponent α1, 

analyzed from the real R-R interval data, also decreased progressively before the onset 

of AF (from 1.01±0.28 in 120-100 minutes to 0.89±0.28 in 20-0 minutes before AF, 

p<0.05). When α1 was analyzed from the fully edited data no significant changes were 

found before AF.  
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Figure 3. Approximate entropy before the onset of atrial fibrillation episodes in 
patients with lone atrial fibrillation. 
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When ApEn was analyzed in 15-minute periods from fully edited data no 

significant changes were found either in patients with lone AF or in patients with 

structural heart diseases. One hour before the onset of AF, ApEn analyzed from fully 

edited data was significantly lower when compared with the other hours of the 

recording, both in patients with structural heart diseases (0.94±0.26 vs 1.02±0.23, 

p<0.05) and in patients with lone AF (0.97±0.25 vs 1.09±0.21, p<0.01). 

Before long episodes of AF, α1 was significantly lower (1.12±0.21 vs 1.24±0.23, 

p<0.0001) and ApEn higher (1.16±0.23 vs 1.11±0.22, p<0.05) than before short 

episodes of AF. Figure 4 presents α1 -values in patients who had both short and long 

episodes of AF. Also in this subgroup of patients α1 was significantly lower before 

long episodes of AF than before short episodes of AF. 
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Figure 4. Scaling exponent α1 (mean±standard error of mean) from patients who 
had both short and long episodes. The fractal scaling exponent α1-values were 
regularly lower before long than before short episodes in the same patient.  
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After cardioversion, long-term power-law slope β differed significantly between 

the patients who remained in sinus rhythm during the one-month follow-up and who 

had recurrence of AF (-1.29±0.19 vs -1.19±0.20, p<0.05), while no differences in 

ApEn and α1 were found. When these measures were analyzed from the patients who 

had relapse of AF during the first week after cardioversion no differences could be 

found in α1 and β –values, but ApEn was lower in those patients who remained in 

sinus rhythm (0.99±0.22 vs 1.15±0.25, p<0.05). 

Atrial ectopic beats 

The amount of ectopic beats increased during the last 40 minutes preceding AF 

episodes in patients with lone AF (Table 3). One hour before the onset of AF episodes 

the amount of ectopic beats was higher than during other hours of the recording in 

patients with lone AF (Table 6). The atrial ectopic beats were also more premature 

near AF than far from AF (Table 6) in patients with lone AF. In patients with structural 

heart diseases no differences in the amount or prematurity of ectopic beats were found 

when compared between one hour before the onset of AF and the other hours of 

recording (Table 6). There was no difference in the amount of ectopic beats before the 

onset of AF episodes between short and long episodes of AF (Table 4).  

The amount of ectopic beats in patients who had recurrence of AF after restoration 

of sinus rhythm with cardioversion was not different than in patients who remained in 

sinus rhythm during the one-month follow-up. 

When the number of ectopic beats with constant coupling interval was added to 

real and artificial R-R interval data, ApEn decreased progressively (from 1.08 with no 

ectopics to 0.63 with 40% ectopics from real data). The opposite effect, with 

increasing values of ApEn, was noted when ectopic beats with randomly varied 

coupling interval were added (from 1.08 with no ectopics to 1.49 with 40% ectopics 

from real data). α1 decreased when ectopic beats, either with constant or varying 

coupling intervals, were added to the real or artificial data. 
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Heart rate turbulence  

During one-hour period(s) preceding the onset of AF episodes, TO values were 

significantly higher than the means of TO values by hour from the rest of the recording 

both in patients with lone AF and in patients with structural heart diseases. The mean 

value of TS was not significantly different between the two time periods (Table 6).   
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Figure 5. Heart rate turbulence onset (TO) after spontaneous atrial ectopic beats. 

The mean values of TO are significantly higher (p<0.0001) during one hour preceding 
atrial fibrillation (prior AF) than the mean values by hour from the rest of the 
recording (24 h) both in patients with lone atrial fibrillation (left) and in patients with 
structural heart diseases (right).  
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Table 6. Changes in heart rate turbulence before spontaneous onset of atrial fibrillation 

Time epoch  Non-AF hours One hour prior to AF 

All Patients n=73* 
  

   Turbulence onset (%) -0.35±1.46 0.71±1.76 ‡ 

   Turbulence slope (ms/RRI) 15.5±7.4 15.0±7.5 

   Atrial ectopic beats (n) 3.2±2.2 3.7±3.2 

   Coupling interval (ms) 629±102 615±151 

   Prematurity index 0.67±0.07 0.65±0.09 

Lone AF n=33*   

   Turbulence onset (%) -0.85±1.56 0.17±1.67 ‡ 

   Turbulence slope (ms/RRI) 18.8±8.2 17.0±8.3 

   Atrial ectopic beats (n) 2.9±2.2 4.2±4.2 † 

   Coupling interval (ms) 611±80 560±129 † 

   Prematurity index 0.64±0.08 0.61±0.09 † 

Patients with structural heart 
disease  n=40* 

  

   Turbulence onset (%)  0.07±1.23 1.16±1.73 ‡ 

   Turbulence slope (ms/RRI) 12.8±5.5 13.5±6.5 

   Atrial ectopic beats (n) 3.4±2.0 3.3±2.0 

   Coupling interval (ms) 644±115 660±155 

   Prematurity index 0.69±0.06 0.68±0.08 

*Number of recordings; Values are mean ± SD. † p<0.05, ‡ p<0.0001 
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Patients with lone AF had lower values of TO than patients with structural heart 

diseases both during one hour before AF and during the rest of the recording (p<0.05 

and p<0.01, respectively) (Figure 5). There were 17 recordings  (11 from patients with 

lone AF and 6 from patients with structural heart diseases) in which there was at least 

one ectopic beat in each 15-minute time epoch during the last hour before the onset of 

AF. Among this subgroup of patients TO values from the ectopic beats located 0-15 

minutes preceding the AF episode was significantly higher than the TO values from 

the ectopic beats located 45-60 minutes before the onset of the AF episode (Figure 6). 
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Figure 6. Heart rate turbulence onset after spontaneous atrial ectopic beats in 15-

minute time epochs during the one-hour period preceding atrial fibrillation (AF) 
episode(s). In the subgroup of patients (n=15; 17 recordings) having at least one atrial 
ectopic beat in each 15-minute period during the last hour before atrial fibrillation 
episode, turbulence onset is significantly higher during the 0-15 minute period before 
atrial fibrillation than during the 45-60 minute period preceding atrial fibrillation. 
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There were 87 short (<200 seconds) and 63 long (>200 seconds) episodes of AF. In 

the whole group and in the patients with structural heart disease TO values were not 

significantly different preceding short and long episodes (0.35±2.65 vs 1.04±2.50; 

p=NS and 1.15±2.46 vs 0.86±2.41; p=NS, respectively).  In patients with lone AF, TO 

was significantly lower before short than long episodes of AF (-0.39 ±2.62 vs 

1.24±2.63; p<0.01).  
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DISCUSSION 

The main findings of the Study are that there are alterations in HR variability before 

spontaneous onset of AF episodes, and that these alterations may predict the 

perpetuation of AF episodes and recurrence of AF after cardioversion. Furthermore, 

vagal responses to atrial ectopic beats were different during one hour before the onset 

of AF episodes as compared to other hours of the 24-hour recordings.  

 

 

Time and frequency domain measures of heart rate 

variability  

The role of autonomic tone in the genesis and maintenance of AF has been clinically 

recognized for many years (Coumel 1992, Coumel 1994, Chen et al. 1998).  Activation 

of the vagus nerve shortens the atrial ERP, decreases the wavelength, and increases the 

dispersion of refractoriness, thus favoring the onset and maintenance of AF (Allesie et 

al. 1958, Geddes et al. 1996, Wang et al. 1996, Liu et al. 1997, Jayachandran et al. 

2000). The main tool in clinical cardiology to evaluate cardiac autonomic regulation is 

analysis of HR variability from continuous ECG recordings (Task Force of the 

European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 1996). 

Before spontaneous onset of atrial fibrillation episodes  

Several reports have been published about changes in spectral and non-spectral 

components of HR variability before the onset of AF episodes both in patients with 
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lone AF and in patients with overt cardiac disease (van den Berg et al. 1995, Dimmer 

et al. 1998, Herweg et al. 1998, Hnatkova et al. 1998a, Hnatkova et al. 1998c, Hogue 

et al. 1998, Huang et al. 1998, Wen et al. 1998, Fioranelli et al. 1999, Bettoni et al. 

2002, Dimmer et al. 2003, Tomita et al. 2003). According to these reports, most 

episodes of AF in patients without structural heart disease are related to increased 

vagal tone, while in patients with structural heart disease AF episodes have been 

preceded by increased sympathetic tone.  

However, even though dynamic changes in autonomic tone prior to AF have been 

demonstrated, the frequency, character, time frame, and degree of change vary 

considerably from study to study. In many reports only a minority of episodes could 

have been categorized to be purely related to parasympathetic or sympathetic tone and 

the mode of onset has also been inconsistent within individuals (Hnatkova et al. 1998a, 

Fioranelli et al. 1999, Dimmer et al. 2003, Tomita et al. 2003). Nonstationarity of the 

data and the replacement of ectopic beats and compensatory pauses by any 

interpolation method are the major problems in the spectral analysis of HR variability 

during uncontrolled conditions. In the present study there were no changes in 

traditional time and frequency domain measures before the onset of AF either in 

patients with lone AF or in patients with structural heart disease.   

The lack of change in the spectral components of HR variability prior to AF may 

not exclude significant changes in autonomic tone before the onset of AF episodes, 

because it appears that the relative sympathovagal balance is as important, or more 

important, than the absolute vagal or sympathetic tone. It has been shown that regional 

cardiac sympathetic denervation can result in a relative increase in parasympathetic 

tone without a change in absolute vagal tone. This causes regional shortening of the 

atrial ERP, thus creating a heterogeneity of atrial depolarization, which predisposes the 

onset of AF (Chen et al. 1998, Olgin et al. 1998, Chang et al. 2001, Hirose et al. 2002).  

 

 

Predicting perpetuation of atrial fibrillation episodes 

Spatial dispersion of functional properties such as refractoriness has been shown to be 

an important factor contributing to the maintenance of AF (Geddes et al. 1996, Liu et 
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al. 1997, Olgin et al. 1998). In animal models vagal stimulation has been more 

effective than sympathetic stimulation for providing sustained AF (Geddes et al. 1996, 

Liu et al. 1997, Olgin et al. 1998).  

There are not much data about factors related to the perpetuation of paroxysmal AF 

episodes in humans. The maintenance of AF episodes has been shown to follow a 

unique circadian rhythm, so that the probability for perpetuation of AF is higher during 

night-time, suggesting the importance of vagal tone in the maintenance of AF 

(Yamashita et al. 1997). Fukiji et al. (2003) found that an abrupt increase in fibrillation 

cycle length occurred before spontaneous termination of AF, which might be explained 

by the shift towards vagolytic autonomic balance. Concurrent with these findings 

increased HF power and decreased LF power preceding long AF episodes were noticed 

in this study.  

Predicting recurrence of atrial fibrillation after electrical cardioversion of 
persistent atrial fibrillation 

Maintenance of sinus rhythm after cardioversion is a major clinical problem. Even in 

the precence of an appropriate antiarrhythmic therapy, 40% to 60% of patients have a 

recurrence of AF (Coplen et al. 1990, van Gelder et al. 1997, Lévy et al. 1998). In this 

study 35% of patients had a recurrence of AF during one month, and in agreement with 

other studies (Tieleman et al. 1998, Lombardi et al. 2001, Boriani et al. 2003) the 

majority of recurrences occurred during the first week after cardioversion.  

AF itself causes electrical and structural changes in the atria, favoring the 

maintenance of AF both in animal models and in humans (Attuel et al. 1982, Boutjdir 

et al. 1986, Wijffels et al. 1995, Franz et al. 1997). Characteristic features of atrial 

tachycardia induced electrical remodeling include decreased atrial ERP and decreased 

conduction velocity (Morillo et al. 1995, Wijffels et al. 1995, Gaspo et al. 1997b). 

Along with these electrical changes, loss of atrial contractility occurs during only a few 

minutes of AF (Schotten et al. 2001a). Remodeling is spatially heterogeneous, which 

also contributes to AF vulnerability (Gaspo et al. 1997b, Fareh et al. 1998). After 

restoration of sinus rhythm the reversal of AF-induced electrical remodeling takes only 

a week, even after prolonged periods of AF (months to years) (Yu et al. 1999).   
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In the present study, different patterns of HR variability predicted the recurrence of 

AF early during the first week after cardioversion and later during the one-month 

follow-up.  During the first week after cardioversion, when the atria are in a vulnerable 

state, increased HF power, reflecting mainly cardiac vagal outflow, was the most 

powerful predictor of recurrence of AF.  

In line with the present observations, experimental data have shown that vagal 

stimulation increases the heterogeneity in the atrial ERP, thus increasing vulnerability 

to the onset of AF (Geddes et al. 1996, Liu et al. 1997, Olgin et al. 1998). Furthermore, 

in an animal model high vagal tone during recovery of the atrial ERP has been shown 

to be associated with a short atrial ERP and an attenuated recovery of electrical 

remodeling of the atria (Blaauw et al. 1999). The time for recovery of ERP after 

reversion to sinus rhythm varies regionally, which creates heterogeneity favoring early 

recurrence of AF (Lee et al. 1999). Previously correlation between a higher tendency 

of AF recurrence and the shortening of monophasic right atrial action potential have 

been described (Olsson et al. 1971, Cotoi et al. 1972). 

In agreement with this study Kanoupakis et al. (2000) have found significantly 

higher vagal activity in patients who had a relapse of AF than in patients who 

remained in sinus rhythm following cardioversion. However, they used only time-

domain measures of HR variability.  

Lombardi et al. (2001) have reported increased LF spectral power among patients 

with AF recurrence.  They found that increased LF/HF power due to concomitant 

reduction in HF power was a powerful predictor of AF recurrence during the first two 

weeks after cardioversion. In accordance with their results, this study showed 

increased LF variability as well as increased LF/HF ratio in patients with recurrence of 

AF later during the one-month follow-up. However, in this study HF power was higher 

in patients with a relapse of AF, while Lombardi et al. (2001) reported lower HF 

spectral power among patients with a recurrence of AF. There are some salient 

differences between these studies. Amiodarone was used in all patients in the study by 

Lombardi et al. (2001), while none of the patients in this study were on amiodarone 

treatment. However, 80% of patients in the present study received beta-blocking 

agents during recordings. Amiodarone has been shown to reduce HR variability in all 

major spectral bands (Rohde et al. 1998). Conversely beta-blocking agents increase the 

HF spectral components, but has only a minor effect on the lower spectral components 
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(Cook et al. 1991, Lucini et al. 1993, Niemelä et al. 1994, Keeley et al. 1996). Besides 

that, 24-hour data recordings were used in this study, whereas 15-minute recordings 

were used in the previous study (Lombardi et al. 2001), which may cause subtle 

differences particularly in the lower spectral components.  

Non-linear measures of heart rate variability 

New non-linear measures of HR variability are based on fractals and chaos theory 

(Goldberger et al. 1987, West et al. 1987, Goldberger et al. 1990). These measures of 

HR variability reflect different aspects of HR dynamics compared with traditional 

measures of HR variability. They do not indicate the magnitude of HR fluctuations 

around its mean value, but rather the scaling characteristics and other features of 

behavior. They may reveal subtle abnormalities in HR dynamics which may not be 

covered with traditional time- and frequency-domain measures (Ho et al. 1997, 

Mäkikallio et al. 1997, Hogue et al. 1998, Mäkikallio et al. 1998, Mäkikallio et al. 

1999).   

Before spontaneous onset of atrial fibrillation episodes  

In this study ApEn decreased significantly before the onset of AF episodes both in 

patients with lone AF and in patients with overt cardiac disease.  In lone AF patients 

the short-term scaling exponent α1, analyzed from real R-R interval data, decreased 

prior to AF, but no change was observed in α1 values in pure sinus interval data. The 

decrease of ApEn has been previously found to precede AF episodes in patients after 

coronary bypass surgery (Hogue et al. 1998). Reduced values of α1 have been 

previously reported to precede ventricular fibrillation in postinfarction patients 

(Mäkikallio et al. 1998). In selected patient populations the loss of the fractal nature of 

HR variability has been associated with a higher risk of for arrhythmic events and has 

predicted a poor prognosis (Mäkikallio et al. 1999, Huikuri et al. 2000, Tapanainen et 

al. 2002). However, the physiological correlates of ApEn or the short-term scaling 

exponent α1 have not been well defined.  
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Predicting perpetuation of atrial fibrillation episodes 

The short-term scaling exponent α1 was lower before long than before short episodes 

of AF. It has been shown that vagal blockade leads to increased α1 -values (Penttilä et 

al. 2003), and coactivation of cardiac vagal outflow at the time of a high level of a 

circulating sympathetic transmitter results in a reduction of short-term scaling 

exponent values (Tulppo et al. 2001b). The short-term scaling exponent has been 

shown to correlate with the LF/HF spectral ratio in controlled conditions (Tulppo et al. 

2001a). The precise mechanisms behind altered fractal dynamics are not known. In the 

present study no differences in ApEn before short or long AF episodes could be seen, 

suggesting that the triggers for initiation and maintenance of atrial fibrillation may be 

different.  

Predicting recurrence of atrial fibrillation after electrical cardioversion of 

persistent atrial fibrillation 

From the non-linear HR variability measures, only the long-term power-law slope β 

differed between patients who remained in sinus rhythm and those who had a 

recurrence of AF during the one-month follow-up.  The long-term power-law slope β 

was steeper among the patients who remained in sinus rhythm. A steep slope reflects a 

high relative power of the ULF component compared to the VLF component in the 

spectra (Bigger et al. 1996).  Non-linear measures of HR variability did not provide 

any additional predictive power for the recurrence of AF as compared to conventional 

HR variability measures.   

Clinical factors 

Related to maintenance of atrial fibrillation episodes 

In the previous study, advanced age was associated with longer AF episodes 

(Hnatkova et al. 1998b). In the present study, cardiac medication, time of the day, or 
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age of the patient had no impact on the duration of AF episodes. The overall HR 

variability and especially the LF power and α1 have been shown to decrease with 

ageing (Jokinen et al. 2001), but many other factors besides the autonomic nervous 

system, such as enlargement of the atrium, increased atrial fibrosis, and higher 

prevalence of structural cardiac abnormalities, may explain the association with age 

and the length of the AF episodes. As also shown previously (Hnatkova et al. 1998b), 

women had more long episodes than men. Women also have lower LF/HF ratios and 

reduced short-term scaling exponents than men (Huikuri et al. 1996a, Pikkujämsä et al. 

1999).  

Related to recurrence of atrial fibrillation after electrical cardioversion 

Various clinical factors have been shown to affect the recurrence of AF, mainly left 

atrial dimension or function, sex, age, AF duration, and the presence of coronary, 

pulmonary, or mitral valve disease (Ewy et al. 1980, Höglund et al. 1985, Brodsky et 

al. 1989, Dittrich et al. 1989, Zehender et al. 1992, Reimold et al. 1995, Alt et al. 1997, 

van Gelder et al. 1997, Duytschaever et al. 1998, Frick et al. 2001). However, in 

accordance with the results in the present study, many recent reports could not find any 

differences in clinical or echocardiographic parameters between patients with a relapse 

of AF and patients who remained in sinus rhythm (Brodsky et al. 1987, Kanoupakis et 

al. 2000, Lombardi et al. 2001, Maounis et al. 2001, Wozakowska-Kaplon et al. 2003). 

Heart rate turbulence after atrial ectopic beats  

The replacement of ectopic beats is a major problem in HR variability analysis. With 

any of the interpolation methods, ectopic beats may themselves cause a potential bias 

in HR variability analysis (Salo et al. 2001). The amount of ectopic beats often 

increases before the onset of AF (Kolb et al. 2001, Dimmer et al. 2003, Guyomar et al. 

2003), which was also observed in the present study among patients without structural 

heart disease.  

 
 
 
 



 57

HR turbulence is a novel method, which is based on a simple expression of 

fluctuations of sinus rhythm cycle length after a single ectopic beat. It was first 

described to occur in response to ventricular ectopic beats with a typical short-term 

early acceleration and later deceleration of HR after an ectopic beat (Schmidt et al. 

1999). Abnormal HR turbulence has been shown to be a strong risk predictor for total 

mortality and for fatal and nonfatal cardiac arrest in patients after myocardial 

infarction (Schmidt et al. 1999, Ghuran et al. 2002, Jokinen et al. 2003).  

Recent pacing and Holter studies have shown that atrial ectopic beats also affect 

the postectopic HR (Lindgren et al. 2003, Savelieva et al. 2003, Schwab et al. 2004). 

However, there are differences in the HR response to ventricular and atrial ectopic 

beats, the latter showing a blunted early acceleration phase immediately after atrial 

ectopic complexes (Lindgren et al. 2003, Savelieva et al. 2003, Schwab et al. 2004).  

In this study the immediate R-R interval responses to atrial ectopic beats were 

different during one hour before the onset of AF as compared to the other hours in the 

24-hour ECG-recordings. Early acceleration has been shown to result from the sudden 

drop in blood pressure with the ectopic beat, resulting in vagal withdrawal and 

sympathetic recruitment, both of which accelerate sinus rate (Lin et al. 2002, Voss et 

al. 2002). After that, there is an increase of blood pressure with subsequent 

baroreceptor loading; vagal nerve activity is again increased, leading to a late 

deceleration phase of cardiac rhythm (Davies et al. 2001, Guzik et al. 2002). The early 

acceleration phase, quantified by TO, has been thought to be mainly due to the rapid 

parasympathetic modulation of heart rate (Mrowka et al. 2000). However, in 

agreement with a previous study (Lindgren et al. 2003), TO was not correlated to HR 

variability measures and was only weakly correlated to TS, suggesting that besides 

autonomic influences on the HR, there may be other mechanisms involved in the 

immediate response of the HR to atrial ectopic impulses.  

Sinus node resetting has been shown to occur in response to atrial ectopic beats 

(Hadian et al. 2002). In accordance with other studies TO was not related to 

prematurity of atrial impulses (Watanabe et al. 2002, Schwab et al. 2004). Thus, the 

changes from resetting sinus node activity may not be solely responsible for the 

temporal changes in TO. It seems that the sinus node resetting, together with the 

rapidly-acting vagal withdrawal, determine the immediate R-R interval length after the 

compensatory pause of the atrial ectopic beat. In the same individual, sinus node 
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resetting after an atrial ectopic beat could be assumed to remain relatively stable, 

leading to the conjecture that observed changes in TO near AF depend on enhanced 

vagal activity. 
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SUMMARY AND CONCLUSIONS 

This study showed that there are alterations in HR variability preceding spontaneous 

paroxysmal AF episodes both in patients with structural heart disease and in lone AF 

patients. Moreover the immediate response to atrial ectopic beats was different during 

one hour before the onset of AF as compared to the other hours of the 24-hour 

recordings.  The HR dynamics facilitating the onset of AF, predicting the recurrence or 

the perpetuation of AF episodes, do not seem to be similar, suggesting that the factors 

related to recurrence, maintenance, or initiation of paroxysmal AF episodes are 

different. The specific findings were as follows: 

I.    An alteration of short-term, fractal-like, correlation properties and a reduced 

complexity of R-R interval data precede the onset of AF episodes. None of the 

traditional time and frequency domain measures showed any significant 

changes before the onset of AF. 

II.    The amount of ectopic beats increases before the spontaneous onset of AF in 

patients without structural heart disease.  

III.    The HF spectral power, reflecting enhanced cardiac vagal outflow, is increased 

before the onset of long episodes of AF. A decrease in short-term correlation 

properties also precedes long episodes of AF, suggesting an increase in vagal 

outflow at the time of high circulating levels of a sympathetic transmitter. 

IV.    Sinus rhythm fluctuation immediately after atrial ectopic beats are different 

during one hour before the onset of AF episodes as compared to R-R interval 

dynamics after atrial ectopic beats during other hours of the 24-hour 

recordings, both in patients with structural heart diseases and in patients with 

lone AF. The data suggest that vagal inhibition due to ectopic atrial complexes 

is absent, or that even transient enhancement of vagal outflow occurs during 

one hour before the onset of AF episodes. 
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V.    Patients with a recurrence of AF after restoration of sinus rhythm with 

electrical cardioversion have increased HR variability compared to patients 

who remain in sinus rhythm during a one-month follow-up. During the first 

week after cardioversion increased HF spectral power, reflecting enhanced 

cardiac vagal outflow, was the most powerful predictor of the recurrence of 

AF. The fractal and complexity measures of HR variability did not show any 

additional predictive power for recurrence of AF when compared to traditional 

frequency domain measures.  
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