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Abstract 

 
This study addresses the construction of an expert system for the differential diagnosis 

of female urinary incontinence by using data mining techniques. The motivation for 

the work was the problematic diagnostic task, and the need for an alternative to the 

slow and expensive manual knowledge acquisition process in which a knowledge 

engineer interviews an expert repeatedly to acquire the expert’s knowledge. 

Therefore, the main aims were to develop a decision support tool for the physicians, 

and to investigate whether data mining techniques could be used to discover 

diagnostic knowledge automatically from the patient data for the expert system. In 

this context, special attention was paid to pre-processing of the data and the machine 

learning methods were researched. This work produced a new machine learning 

program, Galactica, which is based on genetic algorithms, and the neighbourhood 

cleaning rule (NCL) that balances the imbalanced class distribution by using an 

instance-based approach. Comparison of Galactica with different classification 

methods showed that genetic algorithms were a competitive method for constructing 

classifiers from medical data. NCL enabled improved identification of difficult small 

classes, while keeping the classification ability of the other classes at an acceptable 

level. Galactica, NCL, and other data mining techniques were applied to overcome 

difficulties with real world data, and to build ability for classification and critique for 

the incontinence expert system. The study showed that it is possible to develop an 

expert system with data mining techniques. In ‘laboratory conditions’ the first version 

of the system (IES1) correctly classified 94% and 91% of the two batches of the test 

data, and the medians of the true positive and true negative rates were 97% and 94% 

in the first test set, and 96% and 90% in the second test set. The expert system was 

implemented as an Internet-based application that a physician can use with a World 

Wide Web browser. IES1 seems to be a useful aid for the physicians, but only real 

world diagnostic work-up will prove its utility in the diagnosis of incontinent women. 

 

Keywords: artificial intelligence, decision support systems, expert systems, medical 

diagnostic computing, patient diagnosis, data mining, machine learning, genetic 

algorithms, data pre-processing 
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1. Introduction 

Human reasoning is inherently fuzzy and somewhat illogical and, unfortunately, 

physicians are no different from other humans in this respect. Human beings are likely 

to abandon logic and use heuristics when they are faced with decisions that involve 

uncertainty [Mac95]. Heuristics are fast rules of thumb that produce correct decisions 

most of the time, but may also lead to errors [Wat86, Mac95]. The reliability of 

heuristics under uncertainty depends largely on the skills of the person who applies 

them. For example, senior physicians tend to perform better than juniors [Nyk00]. 

Medical decision making is difficult, because it involves humans as the decision 

makers and other humans as information sources and as the subjects of decisions. 

Exact sciences, such as computer science, mathematics, or statistics, use formal 

methods to model, quantify, and control uncertainty. This type of approach is hardly 

feasible in medicine due to the central role of humans in the profession and its 

decision making processes.  

 Physicians’ work has many aspects that are likely to cause uncertainty hampering 

the decision making of human beings. Incomplete data are a common problem in 

medicine. Patient data may be missing because of haste, by omission, or due to human 

error. Patients may also have difficulties in describing their condition in words, and, 

on the other hand, there are patients who are able to describe their symptoms, but their 

descriptions contradict those they gave earlier. In addition, health professionals are 

nowadays confronted with an increasing amount of information from different 

sources. This information overload may affect the quality of patient work, because 

selection of the relevant information is difficult [Nyk00]. Decision making even in a 

restricted medical subspecialty involves large amounts of knowledge and information. 

Cost reduction - another current trend in patient care - forces physicians to work 

within a tighter schedule, because the same number of patients must be treated with 

fewer resources. 

 Computerised decision support systems (DSS) have been used for decades in 

medicine to aid healthcare professionals [Mil94]. These systems help humans by 

providing consistent and reproducible reasoning under uncertainty. DSSs have been 

developed especially to support diagnosis, which is one of the main tasks in medical 

profession [Mac95, vBM97 Chapter 1, Nyk00]. Even though the opinions on the 
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effect of DSSs on physician performance on diagnosis vary [Mil94, HHH98+], 

medical DSSs have become an established component of medical technology [Mil94]. 

There exist successful applications in areas such as computerised electrocardiogram 

analysis, cytologic recognition and classification, drug dosing, and preventive care 

[Mil94, HHH98+]. Moreover, many medical DSSs have been able to perform as well 

as experienced physicians or even to outperform them [DLS72+, HSB94+, PEJ96, 

KAJ98+, CFC01+]. This study addresses expert systems, which are advanced DSSs 

that perform in a narrow domain like a human who has the expert level skills of the 

area. It is essential that DSSs, such as expert systems, are viewed as decision aids in 

diagnosis. It is acceptable to use computerised decision methods, but the physician 

should always be ultimately responsible for the decision [Mil94, vBM97 Chapter 1].  

Computers can also be utilised in other ways to help physicians. Computer programs 

may act as checklists that remind when something essential has not been done [Mil94, 

HHH98+]. Computer programs are also able to provide feedback to a physician by 

criticising his or her decisions [GW98]. In addition, computers facilitate physician’s 

gathering of background information from electronic sources [vBM97 Chapter 1].  

 We studied computer-aided decision support of the differential diagnosis of female 

urinary incontinence. Urinary incontinence, i.e. involuntary loss of urine, is a fairly 

common problem in women. The prevalence of urinary incontinence among women 

between 15 and 64 years of age is 10-25% [Uri92]. Hu [Hu90] estimates that over 10 

milliard dollars per year are spent in care for the incontinent patients in the United 

States alone. The differential diagnosis of female urinary incontinence is problematic 

for physicians for various reasons. Firstly, diagnosis made on the basis of the patient 

history alone may be unreliable [JNO94]. Therefore, urodynamic testing is needed for 

sufficiently accurate diagnosis, especially when symptoms of urgency are present. 

Secondly, medical knowledge suggests that the incontinence classes are to some 

degree overlapping. For example, one frequent diagnostic class is mixed incontinence, 

which has characteristics from both the stress incontinence class and classes where 

urgency is clearly the dominant symptom. Thirdly, the reliability of the final diagnosis 

is important to avoid unnecessary surgeries [JNO94]. 

 This study describes an expert system for the differential diagnosis of female 

urinary incontinence. The system was named IES1 (for Incontinence Expert System, 

version 1). Existing data mining techniques and our new methods were applied in the 

construction of the system. We made use of machine learning methods to discover 
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diagnostic knowledge automatically from the patient cases. The methods included a 

new learning system based on genetic algorithms. The aim was to avoid the manual 

knowledge acquisition which is the major difficulty in expert system development. In 

addition, different data pre-processing methods were applied, and a new one was 

developed, to enable the knowledge discovery.  

 We started to study the differential diagnosis of female urinary incontinence, 

because the diagnostic task is difficult for physicians, and few studies have applied 

methods of artificial intelligence in this area of medicine. Earlier research includes an 

expert system developed as a decision support and teaching tool for the diagnosis of 

female urinary incontinence [RK88] and an interactive expert system that was used to 

provide information for the incontinent women [Gor95]. In addition, the literature 

searches made at the beginning of the study indicated no previous research involving 

data mining techniques in this area of medicine. Data mining in connection with 

expert systems was interesting from computer scientific viewpoint, because it seemed 

that the greatest progress in the area of the expert systems might be achieved in the 

automatic acquisition of the domain knowledge with machine learning methods. A 

new learning paradigm - genetic algorithms - was appealing, because artificial neural 

networks (ANN), which are also inspired by nature, had been successfully used in 

numerous medical applications [FD95, Cha98], such as the diagnosis of acute 

abdominal pain [PEJ96]. The data pre-processing research was initiated later, when 

we ran into the practical problems concerning the analysis of real world data. 

 The introductory part of this study is organised as follows. Section 2 gives the 

reader background information on knowledge and its acquisition, expert systems, and 

data mining. The aims of the study are stated in Section 3. Section 4 introduces 

several issues related to machine learning. First, representation of data and difficulties 

related to real world data are discussed. Second, genetic algorithms and instance-

based learning, which were used in the research involving new methods, are 

described. Finally, measures for the evaluation of the learning output are presented. 

The original publications are reviewed in Section 5. The introduction ends with 

discussion and conclusions in Section 6. 
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2. Background 

This section provides a reader with background information intended to facilitate 

understanding of the later sections of the study. We first introduce different aspects 

and definitions of knowledge in Section 2.1. We then discuss the expert systems and 

their relations to the knowledge-based systems and decision support systems in 

Section 2.2. Knowledge acquisition and its difficulties are presented in Section 2.3. 

Lastly, we discuss data mining - the automated process for discovering knowledge. 

2.1. Knowledge 

Turban [Tur93] classifies data, information, and knowledge by their degree of 

abstraction and by their quantity. Knowledge is the most abstract and exists in the 

smallest quantity, while data are the least abstract and exist in the largest quantity. 

Knowledge can be viewed as information that has been organised and analysed to 

make it understandable and applicable to problem solving or decision making [Tur93 

Chapter 11.4]. Aamodt et al. [AM95] characterise knowledge as learned information. 

Knowledge is an output of the learning process, where information is incorporated in 

reasoning resources and is made ready for active use within a decision process. 

 Knowledge has several definitions that characterise it by the extremes of its 

continuum. Knowledge may be described by its level as deep or shallow knowledge. 

Deep or scientific knowledge is formal knowledge which deals with deduction - the 

understanding of general principles and relations. In problem solving humans often 

utilise deep knowledge which one can draw, for instance, from books and articles or 

acquire through education. Scientific knowledge is reusable, i.e. it can be applied to 

solve different problems in different situations. By contrast, shallow or experiential 

knowledge is related to specific situations or facts. This knowledge one often learns 

through induction. Consider diagnostic work-up as an example of these knowledge 

types: In diagnostic work a physician uses knowledge of the biological processes and 

relations between the pathophysiological conditions and disease symptoms. This deep 

knowledge allows the physician to diagnose patients with different diseases. On the 

other hand, the physician may make use of shallow knowledge by recognising a 

disease on the basis of certain symptoms that he or she has seen before [Tur93, 

vBM97 Chapter 15, Nyk00].  
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 Knowledge is often categorised into declarative, procedural, and meta-knowledge. 

Declarative knowledge is descriptive and shallow; it gives facts on the state of the 

world. Human experts are typically able to verbalise declarative knowledge. 

Procedural knowledge relates to procedures and sequences that are needed in the 

problem solving process. It tells how to use declarative knowledge and how to make 

inferences. Meta-knowledge is knowledge about knowledge. For example, an expert 

system may have knowledge about its reasoning capability [Tur93, Nyk00]. Another 

viewpoint on knowledge is to characterise it as tacit or explicit. Skills that one has 

acquired so well that he or she can no longer explicitly explain them, are viewed as 

tacit knowledge, while explicit knowledge can be explained in some way [Nyk00].  

 Representation of knowledge is a central issue in systems that utilise it. IF-THEN 

rules are the most frequent way to capture knowledge in expert systems. These rules 

describe the action, the THEN part of a rule, that is performed when the current facts 

match the conditions, i.e. the IF part of a rule. Frames are another popular way to 

represent knowledge. The frame-based methods use a network of nodes that are 

connected by relations and are organised into a hierarchy. Nodes correspond to 

concepts or objects that have attributes and their values. Frames provide a more 

natural and flexible way to present knowledge than rules [Wat86].  

 The researchers of machine learning provide yet another viewpoint on knowledge: 

They classify knowledge according to its presentation as symbolic and sub-symbolic 

[MK90]. Machine learning methods produce, for example, symbolic decision rules 

that a human is able to understand and validate. On the other hand, sub-symbolic 

knowledge, such as the weights of neural network, is difficult for a human to 

comprehend. See Section 4.1 for further discussion of this subject. 

2.2. Expert systems 

Waterman [Wat86] defines expert systems [Wat86, Tur93, Lie98, Nyk00] as 

computer programs that use expert knowledge to attain high levels of performance in 

a narrow problem area. The heart of an expert system is a corpus of knowledge, the 

knowledge base, that allows the system to solve problems as well as the domain 

expert. The system should produce solutions in the same time as the expert and it 

should also be able to explain its reasoning. As an institutional memory of knowledge, 

the expert system may be used to train new personnel. Waterman [Wat86] sees expert 

systems as a subspecialty of knowledge-based systems (KBS) [Wat86, H-RJ94]. Both 
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systems store the domain knowledge in the knowledge base, which is separate from 

the general problem solving knowledge, which is called inference engine. Expert 

systems, however, use the knowledge as skilled domain experts [Wat86].  

 Figure 1 shows the structure of a rule-based expert system. The knowledge base 

contains domain knowledge coded into the IF-THEN rules and facts. The inference 

engine comprises an interpreter, which decides how to apply the rules, and a 

scheduler, which gives the application order of the rules. The inference engine uses 

the rules and the known facts to produce inference chains. The matching of the rules 

may cause one or more of the rules to fire and, thus, new facts are produced and added 

to the knowledge base. The successive matching of rules controls the program flow 

with no need for explicit directions as in conventional programs. Expert systems use 

heuristic knowledge, that is simplifications that limit the search of solutions. The 

heuristic method is fast, but may sometimes produce an erroneous solution. The 

algorithmic method always gives a correct or optimal solution, but requires 

enumeration of all solution candidates, which is slow and sometimes impossible 

[Wat86]. 

 

 

 

Figure 1. The structure of a rule-based expert system and relations between the 

system, end-user, knowledge engineer, and domain expert. 
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The early successes of the expert system technology led the developers to consider the 

users of expert systems as passive agents who only query answers from the systems. 

This misinterpretation of the role of the user is known as the Greek Oracle model, 

which refers to the ancient oracle of Delphi who gave equivocal answers to persons 

who sought advice [Mil94, vBM97 Chapter 17]. Nowadays, expert systems are 

considered more like decision support systems [Tur93, vBM97, Nyk00] which help 

the user in the decision making [Nyk00]. There exists no universally accepted 

definition for DSS [Tur93]. DSS may, in principle, be any computer program that 

helps decision makers to make decisions [Tur93, vBM97 Chapter 16, Nyk00]. On the 

other hand, the characteristics of KBS, such as interactivity and the use of knowledge 

[Wat86, H-RJ94], are often seen as essential prerequisites for DSS [Tur93, vBM97 

Chapter 15, Nyk00]. On the basis of these definitions, we consider in this study an 

expert system to be a special type of DSS. A notable exception to this relation is given 

by Turban, who considers expert systems and DSSs to be different disciplines rather 

than having a nested relation. However, Turban emphasises integration of expert 

systems and DSSs so that they can complement each other [Tur93 Chapter 1.11]. 

 One of the main application types of expert systems is diagnosis [Wat86, Dur96]. 

A review by Durkin [Dur96] showed that approximately 30% of expert systems were 

developed to solve diagnostic problems. When application areas are considered, the 

dominant areas are business, manufacturing, and medicine [Dur96]. Other large 

application areas include engineering, power systems, computer systems, and 

transportation. Since diagnosis is of great importance in medicine, it is not surprising 

that most of the medical DSSs and expert systems have been developed to aid 

diagnosis [Wat86, Nyk00]. The early medical expert systems, such as MYCIN 

[SDA75+, Wat86], were pioneering work which was valuable for expert system 

research, but few of the systems were ever used in the practice. The systems were 

difficult to use because of the Greek Oracle approach to decision support and because 

of the technical limitations. 

 From the mid-eighties onward, PC technology and expert system shells have 

allowed efficient building of user-friendly systems. As a result, the expert systems 

have matured from prototypes to real world commercial applications [Dur96, Lie97], 

but opinions on the future of expert systems vary. According Durkin [Dur96] and 

Liebowitz [Lie97] the field is flourishing and new applications are being built 

increasingly. Conversely, De Hoog [DeH98] argues that very KBS specific 
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methodologies are in decline and they will be absorbed in the overall system 

development. The popularity of the medical applications is partly explained by the 

wealth of well-defined diagnostic problems where the early computerised methods 

could be applied with relative ease to help physicians [Wat96]. Although expert 

systems are nowadays built in increasing numbers in other areas, medicine continues 

to be a popular application area [Dur96, Lie97, Cha98].  

2.3. Knowledge acquisition 

Knowledge acquisition refers traditionally to a process where a knowledge engineer 

repeatedly interviews experts to extract knowledge which the experts have gained 

through their education and practical experience (see Figure 1) [Wat86]. The 

knowledge engineer codes the knowledge into the knowledge base, for instance, as 

the IF-THEN rules. In addition, the knowledge engineer may extract knowledge from 

other sources such as the literature, case studies, and personal experience, but often 

the expert is the major source of knowledge.  

 Knowledge acquisition has been identified by various researchers as the major 

bottleneck in the development of expert systems [Wat86 Chapter 14, Tur93 Chapter 

13.3]. Ideally, the expert is a highly skilled person who is open, articulate and 

motivated, is familiar with computers, and has time for the interviews [Wat86]. Since 

it is very difficult to find such experts, the knowledge engineer is often faced with a 

multitude of problems that make knowledge acquisition a laborious, time-consuming, 

and expensive process. Experts often have difficulties in describing their knowledge 

in words, they may be busy, or they may be sceptical of the value of using computers 

and expert systems. Even when an expert is available and articulate, he or she can 

explain his or her conclusions with plausible lines of reasoning that, however, 

resemble the actual use of knowledge only remotely. Furthermore, problem solving of 

the different experts may differ, and, consequently, the extracted knowledge may also 

differ greatly  [Wat86, Tur93].  

 This problem has been addressed with system-building aids that perform 

knowledge acquisition semi-automatically or automatically [Wat86, Tur93, Lie98]. 

Semi-automatic methods support either the expert or the knowledge engineer in 

knowledge acquisition [Tur93 Chapter 13.5]. Systems such as AQUINAS [Tur93 

Chapter 13.10] try to eliminate the knowledge engineer as a mediator in the 

knowledge acquisition process. These systems facilitate the expert’s building of 
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knowledge bases with no or with little interaction with the knowledge engineer. 

Systems that aid the knowledge engineer are intended for more efficient execution of 

common engineering tasks. The automatic methods remove both the experts and the 

knowledge engineers from the development process or try to minimise their role in 

knowledge acquisition. For example, data mining where different machine learning 

techniques are applied allows nearly automatic knowledge acquisition.  

2.4. Data mining 

Data mining [FP-SS96, HK01, HMS01] has aroused increasing interest in recent years 

both among researchers and practitioners, as the advances in technology for 

computing and storage have allowed the collection of large data sets in a well-

organised manner. Data sets have been mined, for example, in medicine [ZLK99], 

biomedicine, finance, marketing, manufacturing, retail industry, and 

telecommunications [FP-SS96, HK01].  Data mining is often treated as a synonym for 

knowledge discovery in databases (KDD) [FP-SS96], in industry and media, because 

the term is shorter and has intuitive appeal [HK01]. On the other hand, data mining 

can be seen as a major step in the process of knowledge discovery in databases [FP-

SS96, HK01]. In this study we shall use data mining as a synonym for KDD because 

of the convenience and increasing popularity of the term. 

 Data mining (or KDD) is defined as the nontrivial process of identifying valid, 

novel, potentially useful, and ultimately understandable patterns in data [FP-SS96]. 

To put it simply, data mining refers to a process where large amounts of data are 

mined with computer programs to find ‘golden nuggets’ of knowledge. There are 

various definitions for the steps of the data mining process (see Figure 2), which often 

differ in number and sometimes in order [FP-SS96, HK01]. For example, data 

collection and knowledge utilisation steps are often omitted from the figures 

describing the process. The core of the process is knowledge discovery with 

computerised methods, such as machine learning and statistical methods. However, 

the other steps are as important as the discovery step for the successful application of 

data mining [FP-SS96]. Preliminary steps include data collection, selection, pre-

processing, and transformation. For example, appropriate data are first retrieved from 

the database, and then possibly cleaned and reduced before knowledge discovery. 

After the discovery step, the knowledge will be evaluated by humans or on the basis 

of objective quality criteria. The knowledge may be incorporated, for example, into a 
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DSS or it may be documented and presented to a wider audience. Data mining is an 

interactive process which is also iterative, i.e. the whole process or parts of it may be 

performed repeatedly.  

 Data mining is frequently used for prediction and description. Prediction involves 

estimating the values of future examples, while description focuses on finding 

patterns describing the data [FP-SS96]. Data mining has connections with 

conventional statistical analysis, but there are also fundamental differences [HMS01]. 

First, data are usually mined from data sets that are considerably larger than data sets 

in the statistical analyses. Also, data mining is considered as secondary data analysis 

utilising data that have usually been collected for some other purpose. Statisticians 

perform primary analysis, where data are carefully collected to test hypotheses. Last, 

data miners work with real world data that have missing values, noise, outliers, and 

other difficulties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The data mining process. Solid lines show the input data to and the output 

data from the different steps of the process. Dashed lines indicate the passing of 

control from one step to another. 
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3. Aims of the study 

The aims of the present study were both practical and methodological. The practical 

aim was to construct an expert system as a decision support tool for physicians in the 

differential diagnosis of female urinary incontinence. The methodological aim was to 

study whether the expert system could be developed using data mining methods to 

overcome the knowledge acquisition bottleneck (see Section 2.3). We designed new 

data mining techniques, inspired by the practical problems, and tested them especially 

in the context of mining female urinary incontinence data. To achieve the practical 

aim, we applied existing machine learning and data pre-processing methods, and 

developed new ones, to enable the mining of diagnostic knowledge for the expert 

system. 

 

To summarise, the main aims of this study were: 

• to develop an expert system for the differential diagnosis of female urinary 

incontinence 

• to research new data mining methodology for solving real world problems. 

 

The main aims can be decomposed into the following sub-aims: 

• treatment of missing data 

• analysis of the usefulness of attributes 

• research of genetic algorithms in machine learning 

• identification of noise and outliers 

• balancing of the imbalanced class distribution 

• use of data mining to discover diagnostic knowledge automatically for the expert 

system 

• implementation of the expert system as an Internet-based application. 

 

The present study consists of the introduction and of six original publications 

(Appendices I-VI).  The author was the main contributor and responsible author in the 

original papers (I)-(IV), which were prepared in collaboration with the co-authors. 

The co-authors’ contribution to the papers was the following. Jorma Penttinen and 
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Pauliina Aukee defined the diagnostic parameters, described the diagnostic work-up, 

and evaluated the results with the author in paper (I). Seppo Lammi helped the author 

in statistical issues in papers (I) and (III). Kati Viikki kindly introduced the decision 

trees to the author in paper (III). Martti Juhola commented all the manuscripts and 

helped the author in methodological issues related to computer science. 

 The original work includes five papers that are reprinted in their published format 

with the kind permissions of the publishers. One paper (VI) is a submitted manuscript. 

The papers are presented in their preparation order. Paper (I) was our first work, but it 

was published in 2001 because of a long review process. The chronological order of 

the other papers corresponds to their preparation order. Paper (I) presents a statistical 

evaluation of the attributes of the female urinary incontinence data set where missing 

data were filled in with different methods. Paper (II) describes a learning method that 

makes use of genetic algorithms to produce classification rules. In paper (III), the 

classification capability of the genetic algorithms is compared with different machine 

learning and statistical methods. Paper (IV) involves work where different proximity 

functions were compared to identify the best one for the research of instance-based 

methods. An instance-based method for balancing of imbalanced class distribution is 

presented in paper (V). The last paper (VI) describes an Internet-based multi-expert 

system for the differential diagnosis of female urinary incontinence. 

 

 



 

 13

4. Machine learning 

In this section, we first give an introduction to the field of machine learning and 

different categories of learning methods, and briefly describe the C4.5 decision tree 

generator and ANNs. Second, a data matrix consisting of examples and attributes is 

presented. Third, real world data related problems that we encountered during the 

research are discussed. We present then in greater detail genetic algorithms and 

nearest neighbour classifier - the learning methods that were used in our studies of 

new data mining techniques. Lastly, different measures for evaluation of the 

classification ability of the machine learning methods are discussed.  

4.1. Introduction 

Machine learning [MK90, Mit97] is a sub-domain of artificial intelligence concerned 

with developing computational theories of learning. Broadly defined, machine 

learning includes any computer program that improves its performance at some task 

through experience [Mit97]. Machine learning has been applied in various areas 

including data mining, speech recognition, computer vision, robotics, and game 

playing [MK90, Mit97]. Learning to drive an autonomous vehicle, classification of 

new celestial objects, playing of world-class backgammon, making credit decisions, 

diagnosis of mechanical devices, reducing banding in rotogravure printing, preventing 

breakdowns in electrical transformers, and forecasting of severe thunderstorms are 

only some examples of specific applications [LS95, Mit97]. Machine learning has 

been used extensively in the area of medicine: Some of the medical applications are 

described in [FNI91, Con95, FD95, PEJ96, Cha98, II, Tsu98, KLP99+, Lav99, 

ZLK99, GE00, CFC01+, VI]. Machine learning is inherently a multidisciplinary field 

that has been influenced by areas including artificial intelligence, probability and 

statistics, computational complexity theory, information theory, philosophy, and 

psychology [Mit97]. The machine learning community is increasingly interested in 

statistics, because many well-known statistical methods are often applicable in the 

area of machine learning. Statistics is needed in the evaluation of hypotheses and 

results, and in comparison of methods [GMP96+, Mit97, Sal99].  

 Machine learning methods may be defined according to their primary purpose as 

synthetic and analytic [MK90]. Synthetic learning aims to produce new or better 

knowledge, while analytic learning reformulates knowledge into a better form. 
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Michalski et al. [MK90] use as the further classification criteria type of learning input, 

type of primary inference, and the role of prior knowledge. The majority of learning 

methods may be described as synthetic methods that learn from examples by 

induction, and are empirical, i.e. use little background knowledge in learning. We 

shall refer to this learning type as empirical induction from examples (EIE). Many 

rule and decision tree induction programs, supervised neural networks, and genetic 

algorithm based learners fall into the EIE category, where inductive inference is 

understood narrowly as empirical generalisation of examples without using much 

prior knowledge. On a more abstract level, induction is the opposite of deduction. 

While deduction is derivation of consequents from given premises, induction 

hypothesises premises that entail given consequents [MK90]. Induction systems 

utilise inductive bias - prior assumptions regarding the task - to generate knowledge 

[Mic97 Chapter 2.7]. For example, an approximate inductive bias for a decision tree 

learner might state that smaller trees are better than larger trees [Mic97 p. 63].  

 As the multivariate statistical methods, machine learning may be used both for the 

descriptive and predictive analysis of data. In descriptive analysis the aim is to 

produce knowledge, i.e. models, that help to better understand the underlying 

regularities of data. Predictive analysis aims for the accurate identification of new 

unseen examples. Machine learning is often applied to solve classification problems, 

where the task is to assign each example to a class. It is usually assumed that the 

classes are mutually exclusive and the number of class labels is limited [Qui86]. 

Knowledge used for classification is often referred to as a classifier, which takes as an 

input the attribute values and gives as an output a classification [Qui93]. 

Categorisation of machine learning methods to supervised and unsupervised learners 

originates in the availability of class information during learning. Most machine 

learning methods are supervised methods which use the class information during 

learning. However, unsupervised methods such as cluster analysis [JD88, Eve93] 

work only with the data and do not use the class information.  

 Learning methods may also be categorised according to the knowledge 

presentation as methods that produce symbolic and sub-symbolic knowledge [MK90]. 

Symbolic knowledge is easier for humans to understand than knowledge represented 

on sub-symbolic level. Symbolic knowledge often conforms to the comprehensibility 

principle [MK90] according to which the knowledge created by the learning program 

should be in a form that is easy for a human to interpret and comprehend. 



 

 15

Comprehensible knowledge presentation employs a limited number of terms and 

operators that correspond to those that human experts use [MK90]. For example, 

decision rules and trees are symbolic knowledge, while neural networks are often 

mentioned as examples of sub-symbolic systems. Symbolic representation is not 

necessarily always better than sub-symbolic representation. The learning task may be 

such that the symbolic representation is too cumbersome and complex for humans 

[Qui93 p. 45], and, sometimes, it is more important to learn a good solution than to 

explain it [LS95]. Symbolic learning systems may also categorise quantitative 

attributes in a different way than the experts are familiar with [Tur93 p. 535]. 

Nevertheless, there exist problem domains, such as medicine, where people need to 

understand the system behaviour [MK90, FD95, Lav99]. Furthermore, real world 

applications of machine learning have shown that knowledge which is 

comprehensible for a user is an important factor in the development of successful 

applications [SN98]. 

 A detailed description of the various learning methods is beyond the scope of this 

work. An interested reader will find a good introduction to some currently used 

methods in [Mit97]. Michalski et al. [MK90] discuss the current and early work in the 

area of machine learning. A number of machine learning methods is briefly presented 

and compared for their accuracy, complexity, and training time in [LLS00]. In the 

following, only C4.5 decision tree generator and ANNs, which nowadays are 

probably the most popular learning methods, are briefly introduced. Genetic 

algorithms and nearest neighbour classification are discussed in Sections 4.4 and 4.5. 

 C4.5 [Qui93], the descendant of ID3 [Qui86], is a widely used decision tree 

generator that was also applied in this work. C4.5 takes as its learning input examples 

described with attributes having a categorical or quantitative domain. The learning 

output is a decision tree where leaves represent classes and nodes are tests based on 

attributes. The decision tree is constructed using a top-down approach starting from 

the root of the tree and applied recursively until the tree is complete. At each step of 

the building process, the attribute which divides the training set in the best possible 

way in terms of gain ratio is selected to be the test of the node. Overly complex 

decision trees can be reduced by pruning, and when further simplification is needed, 

unpruned trees may be converted into rules. The conversion into rules is not 

straightforward knowledge reformulation, because rules are also generalised by 

deleting conditions which seem to be irrelevant to the classification [Qui93].  
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 ANNs [RWL94, Swi96] are a biologically inspired learning method that is 

frequently used to solve difficult tasks that involve uncertainty. A neural network is a 

cognitive model capable of learning and composed of processing elements (nodes of 

network) and connections. Weights, which are distributed among the connections, 

determine the propagation of excitatory and inhibitory signals that define the 

excitation of the nodes. The most common method for adjusting the weights is the 

backward propagation algorithm [RWL94, Swi96]. The knowledge that a neural 

network has learnt is represented as a sub-symbolic form by the weights the network. 

Even though the sub-symbolic knowledge may be partially explained [Swi96 Chapter 

7], the neural networks are often black boxes whose functioning is difficult or 

impossible for a human to understand [HW90, FD95]. 

4.2. Representation of the data 

The data are represented conventionally in statistics as a data matrix. Many machine 

learning methods, such as the methods used in this study, also assume that the data are 

in a matrix form. This representation organises the data as an n x m matrix where the 

n rows represent examples (cases, instances or objects) and the m columns correspond 

to attributes (variables or features) [Qui86, Mit97, HMS01]. In data mining, the data 

may differ from this classical representation; data may, for example, be text or images 

[HK01, HMS01]. Each example has a class label, i.e. the data matrix also has a class 

attribute that gives the class of an example. Usually, the class of interest is referred to 

as the positive class and the other classes are known as the negative classes. It should 

be noted that only the data attributes are presented to unsupervised learners. 

 The scale of the attributes indicates how much information the attribute contains. 

Attributes with nominal and ordinal scales are categorical [Agr96]. Nominal attributes 

have no order for their values, while ordinal attributes have order, but the successive 

categories do not represent equal differences in the scale. Both nominal and ordinal 

attributes or only nominal attributes are called qualitative attributes depending on the 

source. In this study, we use qualitative attributes as a synonym for categorical 

attributes and state explicitly when a narrower definition is used. Quantitative 

attributes are described with interval and ratio scales. The values of the interval scaled 

attributes have order, and differences of successive values are equal. Ratio scale has 

all the properties of the interval scale, and, in addition, it has a natural base value that 

cannot be changed [Agr96, Sha96, HMS01]. 
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 As an extremely simple example, consider a problem where we must classify 

healthy persons and persons suffering from influenza into ‘healthy’ and ‘sick’ classes 

of which ‘sick’ is the positive class. A physician has diagnosed the patients on the 

basis of data he or she has gathered by examining the patients. Suppose that the 

physician has recorded the following data for each patient: sore throat (values {‘no’, 

‘yes’}), headache (values {‘no’, ‘slight’, ‘moderate’, ‘severe’}), temperature, sex 

(values {‘female’, ‘male’}), and age. The diagnosis is the class attribute, and sore 

throat, headache, temperature, sex, and age are the data attributes. Table 1 shows the 

data matrix.  

 
Table 1. A data matrix with a class attribute (diagnosis) and five data attributes. 

Diagnosis Sore throat Headache Temperature Sex Age 

healthy no no 36.5 female 45 

sick yes severe 40.2 male 65 

: : : : : : 

healthy no slight 37.1 male 30 

 

Sore throat and sex are nominal attributes, because there is no meaningful order for 

their values. Headache attribute is categorical, but since there is a natural order for the 

degree of the headache, the scale of this attribute is ordinal. Temperature (Co) is a 

classic example of the interval scaled attribute. Age is measured with ratio scale, 

because it has a natural base value (0). Since the base value of temperature is arbitrary 

(freezing point of water), its scale cannot be a ratio scale. The previous example 

showed that some attributes may have less value in learning: The sex and age of a 

patient are probably of little use when the task is to induce rules for the classification 

of patients without or with influenza. Irrelevant attributes and other problems that may 

hinder machine learning are discussed in Section 4.3. 

4.3. Difficulties with real world data  

There are various real world data related problems in applying machine learning and 

many of them are the same as in statistics or very similar to the well-known statistical 

problems. However, machine learning methods are usually less sensitive to 

difficulties caused by real world data than statistical techniques. Problems that we 

encountered during the research were mixed attributes, irrelevant attributes, missing 
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values, unusual data, and imbalanced class distribution. In the following, we discuss 

these problems from the machine learning and statistical viewpoints. Saitta et al. 

[SN98] discuss the more general problems that one is likely to encounter in projects 

that use machine learning methods in real world.  

4.3.1. Mixed attributes 

Many statistical methods assume that the data have certain scale and distribution. For 

example, linear regression and discriminant analysis expect quantitative attributes 

with multivariate normal distribution [Wei85, Sha96]. Likewise, the machine learning 

systems make assumptions of the scales of attributes. For example, ID3 requires 

categorical data [Qui86], while the nearest neighbour method, with Euclidean 

distance, assumes that the data are quantitative [Mit97]. Unfortunately, real world 

data do not often meet the given requirements. Statistical as well as machine learning 

methods are especially difficult to apply when the data are mixed, i.e. described by 

both categorical and quantitative attributes.  

 One approach to overcome this problem is to reduce the quantitative attributes into 

categorical ones. However, reduction may result in serious loss of information, and, 

moreover, the objective definition of the categories may be difficult. Sometimes it is 

possible to make use of the order information in ordinal attributes by converting them 

into quantitative attributes by assigning numerical scores to the categories [Agr96]. 

This approach is not applicable for nominal attributes, because it is impossible to 

establish order for these values. The values of nominal attributes can be coded into 

new binary attributes (dummy variables) which some methods assuming quantitative 

data can process [Wei85, Agr96]. The drawback of using dummy variables is the 

increase in the problem size: As the number of attributes increases, additional data 

may be needed to keep the classes large enough for the analysis method. 

4.3.2. Irrelevant attributes 

The selection of the best subset of the available attributes for the analysis of data is an 

important area of research both in statistics and machine learning. Selection of 

relevant attributes is a central issue in multivariate statistical analyses where simpler 

models are preferred over the more complex ones [Wei85, Sha96]. Removing of 

irrelevant attributes is often needed in machine learning to reduce computation time, 

because machine learning is typically applied to large data sets. In addition, a reduced 
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subset of features allows a learning algorithm to decrease the number of hypotheses 

under consideration (to reduce search space), and, thus, to produce more general 

concepts [BL97, DL97]. Some methods, such as stepwise multivariate statistical 

methods and C4.5, are able to reject the irrelevant features. On the other hand, there 

exist methods that use all the attributes throughout the analysis. The simple nearest 

neighbour method and many clustering techniques do not modify the attribute set 

[Eve93, Mit97]. Since automatic attribute selection during analysis has its dangers, for 

instance exclusion of good predictors due to multicollinearity  [Agr96, Sha96], one 

can try to identify the relevant attributes before the actual analysis. Discussions with 

the experts may give valuable information on the usefulness of the attributes [LS95], 

and simple statistical evaluations of dependencies are often of great help. There are 

also available a number of computerised methods, such as Relief and its extensions, 

for the prior selection of attributes [BL97, DL97].  

4.3.3. Missing values 

The real word data frequently have missing values that have numerous origins. 

Known values may be missing because of omission or haste, or because they were 

considered unimportant. Missing values are often missing simply because they were 

never acquired. For example, some of the diagnostic tests may not be needed to reach 

the final diagnosis. In addition, the method used to collect data affects the amount of 

missing data. In prospective studies the data are usually collected systematically, 

while retrospective data collection results in some missing data, since it is usually 

impossible to acquire the missing values later. Unlike statistical methods, many of the 

machine learning methods, such as ID3, C4.5, ASSISTANT [Lav99], and some rule 

induction systems including [DJSG93, Jan93, II], have a built-in capability to treat 

missing values. However, there exist learning methods that require complete data. For 

example, neural networks assume that the input data have no missing values. 

 The main approaches to treat missing data before the analysis are complete-case 

analysis, available-case analysis, and imputation [LR87, SO98]. In complete-case 

analysis only complete cases are used. This approach is feasible with few missing 

values, but otherwise a large amount of the data may be lost, and the consequent 

analyses may be biased [LR87]. In available-case analysis, cases that have values for 

the attributes involved in the analysis are used. This approach utilises more data than 

the complete-case analysis, but the analysis of the results may be difficult due to the 
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different number of cases in different analyses. Lastly, the missing values may be 

imputed (filled in) without biasing the data when the missing value mechanism, i.e. 

the process that produced the missing values, is ignorable for the imputation method 

[LR87, SO98].  

4.3.4. Unusual data 

Another frequent problem in data sets are unusual data: outliers and noise. Outliers 

[BC83, BL87] are observations which appear to be inconsistent with the remainder of 

the data. Human error often produces unintentional outliers. Outliers are also 

frequently generated as a result of the natural variation of population or process one 

cannot control [BL87]. Univariate outliers are extreme data values of distribution of 

an individual attribute, while multivariate outliers are examples which have unusual 

value combinations. Multivariate outliers are not necessarily outliers in a univariate 

sense, because combinations of normal values may be abnormal. Noise is mislabelled 

examples (class noise) or errors in the values of attributes (attribute noise)  [Qui86 p. 

92]. Outlier is a broader concept than noise, because it includes errors as well as 

discordant data produced by the natural variation of population. Examples with class 

noise are outliers produced by sampling error, while attribute noise may or may not 

show in the data as outlying values. Outliers and noise pose a problem to all machine 

learning and statistical methods. The statistical community has studied outliers, 

because many statistical methods, such as linear regression analysis, are sensitive to 

outliers [Wei85]. Machine learning methods are able to withstand noise and outliers to 

a varying degree. Decision trees are quite robust, but noise may cause the attributes to 

become inadequate and may lead to unnecessarily complex tree structures [Qui86]. 

4.3.5. Imbalanced class distribution 

When some classes are heavily under-represented, many classification methods are 

likely to run into problems [KM97]. Examples of the small classes are lost among 

examples of the more frequent classes during learning, and, consequently, classifiers 

such as decision rules or trees are unable to correctly classify new unseen cases from 

the minority classes. Moreover, imbalanced class distribution may hamper descriptive 

analysis, where models describing the data are constructed. The models may give an 

inadequate picture of the data, if the knowledge from the small classes is not fully 

included into them. The learning task is even more problematic if the small class is 
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difficult to identify not only because of its size, but also because of its other 

characteristics. One approach to overcome imbalanced class distribution is the 

reduction of large classes before the actual analysis [KM97]. Other approaches 

include generating artificial data [Swi96, KM97], weighing training cases [KM97, 

KHM98], and introducing different misclassification costs [KM97, KHM98]. There 

also exist methods that are insensitive to the underlying class distribution in the 

training set [KHM98].  

4.4. Genetic algorithms 

Genetic algorithms [Gol89, Dav91a, Gol94, Mit96, Mic96, BFM97, Mit97 Chapter 9] 

are robust search algorithms that are loosely based on the principles of natural 

selection and natural genetics. Genetic algorithms are robust, i.e., capable of good 

performance in a variety of environments [Gol89]. Genetic algorithms can easily be 

introduced into new problem domains and existing systems, because their operation 

requires only a very small amount of problem-specific knowledge [Gol89, Gol94]. A 

drawback of domain independence is that a genetic algorithm sometimes achieves 

only a near-optimal performance level, but this problem can be tackled by exploiting 

problem knowledge [Gol94]. A more efficient search is achieved, for example, with 

problem-specific operators and codings or by hybridising a local search method with a 

genetic algorithm [Gol89, Dav91a]. Genetic algorithms have been applied to a 

considerable number of difficult problems in different areas [Gol89, Dav91a, Gol94, 

Mit96, BFM97] which include optimisation, machine learning, economics, ecology, 

evolution and learning, and social systems. 

 The four classic properties [Gol89] of the genetic algorithms are the sub-symbolic 

coding of the problem, search from the population of chromosomes which are also 

known as solutions or individuals, ‘blind’ search based only on the fitness of the 

chromosomes, and use of stochastic operators. Figure 3 illustrates the functioning of a 

simple genetic algorithm [Gol89] which is a basic form of the genetic algorithms. 

There exist a number of more advanced algorithms that differ more or less from this 

simple algorithm. First, the initial population, which usually consists of binary strings, 

is created. Then, the fitness of each chromosome in the population is calculated. The 

fittest chromosomes are selected as the parents for the next generation. Pairs of 

children are produced by exchanging the parts of parents with the crossover operator. 
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In addition, small changes are made to the children with the mutation operator. The 

genetic algorithm loops until the pre-determined terminating condition is fulfilled. 

 

 

Figure 3. The simple genetic algorithm. 

 
Machine learning systems that utilise genetic algorithms, or genetics-based machine 

learning (GBML) [Gol89, Mic96, Mit97 Chapter 9], have been researched since the 

1980s. In comparison with neural networks and decision trees, GBML is quite a small 

area within machine learning. However, GBML systems have been used successfully 

in various areas including the learning difficult multiplexer problems, learning of 

protein structures, and identification of individuals at risk for coronary artery disease 

[Gol89, Con95, Mit96]. GBML systems are commonly classified according to the 

solution representation to the Michigan and Pittsburgh approaches. In the Michigan 

approach the solution is represented as a set of fixed-length chromosomes. These 

systems, known as classifier systems, were originally developed by Holland et al. 

[Gol89, Jan93]. In the Pittsburgh approach an individual member of a population 

consisting of a set of variable-length chromosomes is a solution to a problem. 

Pittsburgh type systems, also known as learning systems, were proposed by Smith 

[Gol89, Jan93].  

 GBML systems can also be grouped according to the problem knowledge that has 

been included in the system. Some researchers rely on classic domain independent 

design, while others prefer to include domain knowledge in their systems. An 

example of the minimal approach is the simplest version of the GABIL system 

[DJSG93] which uses only the mutation and crossover operators. On the other hand, 
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the GIL system [Jan93] represents the completely opposite approach with many task 

specific learning operators. There also exist GBML systems that use fuzzy logic to 

handle cognitive uncertainties, such as vagueness and ambiguity, involved in 

classification problems [YZ96]. 

4.5. Nearest neighbour method 

The nearest neighbour method [Mit97] is the most basic of the instance-based 

learning methods [AKA91, Mit97], which simply store training examples and 

postpone generalisation until a new instance (or example) is classified. Due to the 

delayed generalisation, the instance-based learning methods are also known as ‘lazy’ 

learners. These methods do not produce general and explicit knowledge. The 

knowledge that the nearest neighbour method generates is a function that maps 

examples into classes [AKA91]. The inductive bias of the nearest neighbour method 

is the assumption that the classification of an example is similar to the classification 

of nearby examples [Mit97].  

 The nearest neighbour method uses measures of similarity or distance to determine 

the classification of a new example. These measures are known in the area of cluster 

analysis as proximity measures [Eve93]. The most common proximity measure is the 

Euclidean distance, which assumes a real-valued space [Eve93, Mit97]. There are 

various other proximity functions designed for different types of data such as 

Jaccard’s coefficient for binary data [Eve93, WM97]. K-nearest (k = 1) neighbour 

method (k-NN) classifies a new example into the class of the example that is nearest 

or the most similar to the new example. When k > 1, k is usually a small odd integer, 

for example 3, 5 or 7, and majority voting is often used to select the class. Ties may 

be broken randomly, for example. Using of k > 1 makes the method less sensitive to 

noise points [Mit97]. 

 The proximity measure should be appropriate for the data. Metricity of the 

proximity measure, normalisation of the data, and treatment of missing values are 

important issues in applying the nearest neighbour classification. The framework 

presented in [MK90] does not include the instance-based learning methods. However, 

EIE category seems to be the most appropriate for the simple nearest neighbour 

method, because EIE is the most straightforward type of learning in the framework.  
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4.6. Evaluation of the learning output  

Learned knowledge may be evaluated by subjective or objective criteria, or by both. 

The knowledge is often presented to the domain expert for subjective evaluation and 

validation [LS95, SN98]. A human may comment the usefulness and novelty of the 

knowledge, and the degree to which it corresponds to his or her own knowledge. For 

example, a physician may inspect a decision tree to find out whether the expected 

symptoms and tests are included in the tree. Objective evaluation is often related to 

the estimation of the quality of a solution to a classification problem. The most 

common measures for classification in the area of machine learning are accuracy and 

error rate [Lav99]. True positive rate (TPR), true negative rate (TNR), and receiver 

operating characteristic (ROC) curve are other common measures for performance 

evaluation. Accuracy and error rate measure the overall classification ability in 

different perspectives. While accuracy indicates the percentage of correctly classified 

examples, error rate gives the percentage of misclassified examples. To avoid 

redundancy, only accuracy is used here. 

 True positive rate is the ratio of true positive (correctly classified positive 

examples) to all the positive examples: 

 
 TPR = NTP / NP ·100%, 

 
where NTP is the number of true positive examples and NP is the number of positive 

examples. Similarly, true negative rate is the ratio of true negative (correctly classified 

negative examples) to all the negative examples: 

 
 TNR = NTN / NN ·100%, 

 
where NTN and NN are the numbers of true negative examples and negative examples, 

respectively. 

 Accuracy is defined as the ratio of correctly classified examples to all the 

examples:  

 
 accuracy = (NTP + NTN) / N ·100%, 

 
where N denotes the total number of examples.  
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 These measures may be calculated from the whole data, but usually a part of the 

data is set aside for testing and the rest of the data is used for training of the learning 

algorithm. Division of data allows more realistic estimates of the classification ability, 

because the learning algorithm may overfit the training data, i.e. the classification 

knowledge is too specific [RWL94, Mit97 Chapter 3.7], and, consequently, 

classification measures give overly optimistic results. Cross-validation has become a 

standard method for evaluating knowledge. The process of k-fold cross-validation 

involves splitting of data into k disjoint subsets and using each of the subsets as a test 

set and the union of other k-1 subsets as the training set [Qui93 pp. 89-90]. An older 

approach is to split the data into separate training and testing sets, for example, in 

70:30% or 60:40% ratio. Nowadays, more testing sets, for example k = 10, are usually 

used in the cross-validation process. In this study, we refer to accuracies in the 

training and test sets as descriptive and prediction accuracies respectively. 

 The use of accuracy has been criticised in the evaluation of real world applications 

[KM97, KHM98] and in the comparison of learning algorithms [PFK98]. The 

practical problem of accuracy is that it does not indicate how the positive examples 

were classified. This is a serious deficiency especially when the class distribution is 

imbalanced so that the positive class is small compared to the negative classes 

[KM97, KHM98]. Even though all of the positive cases are misclassified, the 

accuracy may be almost 100%, because the majority of the negative cases are 

classified correctly. TPR and TNR indicate how the positive and negative classes 

were identified. Van Bemmel et al. [vBM97 Chapter 15] state that medical decision 

support models should be analysed at least using TPR and TNR or their complements. 

TPR and TNR are known in the area of medicine as sensitivity and specificity 

respectively [vBM97 Chapter 15]. Both van Bemmel et al. [vBM97 Chapter 15] and 

Provost et al. [PFK98] prefer the use of ROC curve to single measures of 

performance, because the curve allows evaluation of classification performance with 

different decision thresholds. We did not use ROC curves, because ROC analysis in 

multi-class problems is difficult and because the interpretation of ROC curves is not 

always a straightforward task [PFK98]. 
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5. Results 

The practical aim of our study was to construct an expert system as a decision support 

tool in the differential diagnosis of female urinary incontinence. Studies reported in 

papers (I)-(V) ultimately served this aim. When viewed from the context of the data 

mining process, our work involves mainly data pre-processing, data mining with 

machine learning methods, and knowledge utilisation.  In Section 5.1, the data 

collection described in [I] is reviewed. Section 5.2 reviews our data pre-processing 

work: treatment of missing values [I], evaluation of the diagnostic parameters [I, VI], 

identifying the appropriate proximity function [IV], and a method for balancing the 

imbalanced class distribution [V]. The Galactica system [II], which uses genetic 

algorithms in learning, is discussed in Section 5.3. A comparison of Galactica with 

different machine learning and statistical methods [III, VI] is reported in Section 5.4. 

Lastly, expert system IES1 [VI] is described in Section 5.5. 

5.1. Data collection 

We started the work with data collection, because there was no centralised electronic 

data storage for the data which we were interested in. Firstly, the diagnostic 

parameters (or attributes) were defined and a diagnostic classification, which consists 

of the most common female urinary incontinence diagnoses, was constructed. 

Secondly, a retrospective investigation was performed on the women who were 

treated because of urinary incontinence.  

 Sixteen attributes that are relevant in the differential diagnosis of the female 

urinary incontinence were identified in paper (I) on the basis of the interviews with 

the experts. This attribute set A0 consists of urine in the vagina (UVA), urgency score 

(US), post voiding residual (PVR), probability of motor urge incontinence (PMU), 

cystometry (CYM), pressure transmission ratio (PTR), minimum urethral closure 

pressure (MUCP), stress sign (SS), mobility of urethrovesical junction (UVJ), 

uroflowmetry (UF), cystoscopy (CYP), stress symptom (SSY), continuous loss of 

urine (CLU), difficulties with voiding (DV), urge symptom (USY), and age attributes. 

The attributes were mixed, i.e. there were both binary and quantitative parameters. 

The classification of patients included ‘normal’ class for continent patients and six 

female urinary incontinence diagnoses: stress, mixed, sensory urge, motor urge and 

overflow incontinence, and fistula. After defining the classification, the expected 
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value for each attribute within diagnostic groups was determined by the expert 

physicians. 

 We collected retrospectively D0 (N = 530) and D1 (N = 65) female urinary 

incontinence data sets from patient records in the Department of Obstetrics and 

Gynaecology of Kuopio University Hospital, Finland. Stress urinary incontinence (N 

= 323 + 49 = 372) was the most common diagnosis in both the data sets. The 

frequencies of mixed (N = 140 + 10 = 150), sensory (N = 33 + 2 = 35) and motor (N = 

16 + 3 = 19) urge incontinence and normal, i.e. continent, patients (N = 18 + 1 = 19) 

were considerably lower. The only fistula case was excluded from D0.  

 A motor urge case that was included in D0 in papers (II) and (III), was excluded 

from D0 in papers (I) and (IV)-(VI), because the patient was young in comparison 

with the rest of the patients. This inconsistency could not be avoided, because paper 

(I) was published after papers (II) and (III). However, inclusion or exclusion of a 

single patient did not affect the results. Since the data set D1 was collected later than 

D0, it was used only in papers (I) and (VI). In this study, for the sake of clarity, we 

shall use frequencies and descriptive statistics of data set D0’ with 529 patients. The 

ages of the women in D0’ were 26-89 years, with a mean age of 52.3 years and a 

standard deviation of ±11.3 years. In D1 the ages were 34-83 years, with a mean age 

of 54.3 years and a standard deviation of ±10.9 years. 

5.2. Data pre-processing 

An informal preliminary analysis with descriptive statistics, frequencies, and 

contingency tables showed that the collected data needed pre-processing to enable 

statistical analyses, knowledge discovery, and building of the expert system. We 

found that attributes for identifying the rare diseases were irrelevant because of the 

absence of these cases. It was also obvious that we had to evaluate the usefulness of 

the other attributes and to study whether the attributes were related to diagnoses as 

expected. Statistical multivariate methods seemed to be the best choice for the 

analysis of the attributes. However, missing values had to be treated first, because the 

statistical methods that were the most suitable for the analysis could not process 

missing data. Another obvious problem was the mixed scales of attributes. Part of the 

attributes was binary attributes, and the rest were quantitative ones.  

 The initial classification experiments showed that the imbalanced class distribution 

and unusual data (noise and outliers) might be problematic. The experiments 
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confirmed medical experts’ knowledge of the overlapping class borders. These 

difficulties are demonstrated in Table 2 which shows one-nearest neighbour (1-NN) 

classification results for the imputed data set D0’. The sensory urge class was the most 

difficult to identify, because a large number of the sensory urge incontinence cases 

were misclassified into the mixed incontinence class. In addition, many stress 

incontinence cases were assigned to the mixed incontinence class and vice versa. 

Normal patients could easily be distinguished from the incontinent ones. Descriptive 

accuracy and TPRs for the stress, mixed, sensory urge, motor urge, and normal classes 

were 85%, 92%, 78%, 58%, 67%, and 100% respectively. 

 
Table 2. One-nearest neighbour classification of the data set D0’. The three cells with 

the highest misclassification frequencies are shown in the bold font. 

 Predicted class  

True class Stress Mixed Sen. urge Mot. urge Normal Sum 

Stress 296 24 3 0 0 323 

Mixed 22 109 7 2 0 140 

Sensory urge 2 12 19 0 0 33 

Motor urge 0 3 2 10 0 15 

Normal 0 0 0 0 18 18 

Sum 320 148 31 12 18 529 

 

5.2.1. Treatment of the missing values 

UF and CYP had the highest missing value rates. The missing data rates in D0’ and D1 

data sets were 97.0% and 90.8% for UF and 90.4% and 86.2% for CYP respectively. 

Missing data were inevitable for these measurements, because they are needed to 

confirm the rare overflow and fistula incontinence diagnoses [I]. Since none of the 

patients had the rare diagnoses, UF and CYP were excluded from the imputation, 

multivariate statistical analyses, and data mining in all the papers. Exclusion reduced 

the percentage of missing data in D0’ from 27.4% to 17.9% and in D1 from 17.5% to 

7.4% respectively. After exclusion PMU (63.3%), UVJ (36.1%), and PTR (34.6%) 

had the most missing values in D0’, while PMU (41.5%), PTR (21.5%), and MUCP 

(20%) had the highest missing value rates in D1. The number of complete cases in D0’ 

increased from 0 to 87 [I]. 
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 In paper (I), we applied means, regression, and expectation-maximization (EM) 

imputation methods to fill in missing values in D0’. In addition, complete-cases 

analysis was performed. The results showed that although the imputed values had a 

moderate agreement, the multivariate analysis produced similar results. Complete-

case analysis gave clearly insufficient results. Moreover, the cross-validation of the 

logistic regression equations in D1, where the expert physicians replaced missing 

values, showed that it is possible to classify unseen patients accurately with statistical 

models obtained from data sets imputed with the three different methods. In papers 

(II) and (III), rounded means were used to impute missing values instead of the EM 

method. This approach was reasonable on the basis of paper (I), but the EM method 

could not be applied in the papers (II) and (III), because paper (I) was at that point 

still in the review process. The EM imputed data have been used in the latest papers, 

(V) and (VI), because the EM method biases the female urinary incontinence data, 

which is assumed to be missing at random (MAR) [I], less than sampling-based 

methods [LR87]. Data have not been imputed in all the papers, because the machine 

learning methods used in this study are able to use data with missing values.  

5.2.2. Evaluation of the diagnostic parameters 

The purpose of paper (I) was to statistically evaluate the parameters, i.e. symptoms, 

tests and measurements, which were needed to implement the expert system. The 

missing data values were imputed (see Section 5.2.1). The data were analysed with 

complementary statistical techniques. Logistic regression analysis was performed to 

reveal the relations between the diagnoses and the parameters. Hierarchical cluster 

analysis with six different techniques was conducted to study whether the patients 

could be grouped with parameters alone into the clusters corresponding to the 

diagnostic classes.  

 Logistic regression analysis showed that the set A1 = { US, PMU, MUCP, SS, 

UVJ, SSY, USY, age } of attributes (A1⊂A0)  had significant (p < 0.05) relations to 

the stress, mixed, and sensory urge diagnoses. The motor urge and normal classes 

were too small for the statistical analysis. Attributes were mostly those that are 

important in the diagnostic work-up and, moreover, the directions of relations were as 

expected. The results of paper (I) as well as those of the latter papers showed that the 

attributes are sufficient for accurate supervised classification of the data. None of the 

parameters were dropped from the expert system, because the rare fistula and 
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overflow cases should also be detected. However, in the data mining we used set A2 = 

A1 ∪ { PVR, PTR, CYM } (A1⊂A2⊂A0), because PVR and PTR were needed in 

studies on the identification of unusual data [V, VI]. CYM was known to be an 

important parameter for the identification of the small motor urge incontinence class 

on the basis of medical knowledge of the expert physicians [I]. Paper (VI) showed 

that CYM was indeed a useful attribute: CYM was often included into the 

automatically generated diagnostic rules.  

 The attributes seemed to be insufficient for successful unsupervised classification. 

Hierarchical cluster analysis [Eve93] detected clusters corresponding only to the small 

normal class and was unable to clearly separate the larger incontinence classes [I]. 

The k-means algorithm [Eve93] gave better results [LJP97+, III], but supervised 

classifiers outperformed this method [III]. Since unusual data often makes 

unsupervised classification difficult, we studied in [LJ01] clustering of the data set 

D0’ which was cleaned by removing noise and outliers. Some hierarchical methods 

managed to produce clusters that corresponded to the diagnostic classes, but the 

overall result was that hierarchical clustering could not separate classes even in the 

cleaned data. However, k-means algorithm performed quite well with the cleaned 

data. 

5.2.3. Identifying the appropriate proximity function 

When we started the research of data pre-processing with instance-based methods, the 

first consideration was to find a proximity measure suitable for mixed data with 

missing values. The problem was that most of the proximity functions assume the 

same level of measurement for all attributes. Many real world data sets, however, 

have attributes of mixed type. A proximity function designed for one type of data may 

not be the best choice, especially for mixed data with nominal attributes. For example, 

Euclidean distance treats nominal attributes, whose values do not have meaningful 

order, as if they were quantitative. 

 In paper (IV) we compared Manhattan and Euclidean distances - the two variants 

of Minkowskian distance function, with three heterogeneous proximity functions, 

which treat the attributes differently according to their scales, to find out if there were 

truly differences between the functions. The heterogeneous proximity functions were 

Gower’s similarity function [Eve93], Aha’s heterogeneous Euclidean-overlap metric 

(HEOM) [AKA91, WM97], and heterogeneous value difference metric (HVDM) 
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[WM97]. We defined the scales in this comparative study as in [WM97], where 

ordinal attributes were treated as quantitative attributes. Missing values caused the 

distance between the values to be maximal, i.e. 1, for all types of attributes in the 

Minkowskian distance functions, HEOM, and HVDM [WM97]. Instead of this 

‘pessimistic’ approach, Gower’s similarity function used ‘ignore’ strategy, where 

attributes with missing values were not considered in the proximity evaluation 

[Eve93].  

 Our experiments showed that a heterogeneous proximity function is not necessarily 

better than a proximity function assuming the same scale for the data. The differences 

in accuracies were mainly insignificant and the Minkowskian functions outperformed 

Gower’s similarity function and HEOM. However, significant differences (p < 0.05) 

were in favour of HVDM, which treats the nominal attributes more appropriately than 

the other functions studied. The significant differences in TPRs favoured HVDM, and 

TPRs of the other functions behaved as the accuracies: The Minkowskian distance 

functions outperformed Gower’s similarity function and HEOM. Our results 

concerning the relative performance of the Euclidean, HEOM, and HVDM were in 

accord with those of Wilson et al. [WM97].  

 There were five reasons for performing the study in paper (IV) although Wilson et 

al. [WM97] showed with an extensive comparison that HVDM is a better choice for 

mixed data than the Euclidean distance or HEOM. First, we wanted to test how TPR 

would behave, because only accuracies were studied in [WM97]. Since accuracy has 

its shortcomings (see Section 4.6), TPR should also be examined. Second, we felt that 

the possibility of identifying significant differences by chance in multiple 

comparisons should be taken into account [Pet97, Sal99]. Bonferroni correction was 

made to accommodate the potential for increased Type I error [Pet97, Sal99]. Third, 

due to small sample sizes a nonparametric paired test was in our opinion more 

appropriate that the paired t test used in [WM97]. Fourth, 90% confidence level (p < 

0.1) applied in [WM97] is rather low, and, therefore, we used the higher 95% 

confidence level (p < 0.05). Last, we did not want to rely only on the data retrieved 

from the UCI machine learning repository [BM98], because we are specifically 

concerned with medical data, and, moreover, it is sometimes risky to assume that the 

UCI data represent the actual real world situation [SN98]. For these reasons, seven of 

our real world biomedical data sets were included in the study.  
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 Although experimental work in [WM97, IV] showed that HVDM is a good choice 

for the mixed data, the metricity of this distance function is an important issue. Since 

Wilson et al. [WM97] did not study whether HVDM or other of their new distance 

functions are metric, we have proven the metricity of HVDM in [JL01]. 

5.2.4. Balancing the imbalanced class distribution 

In paper (V), we presented a new instance-based method for balancing imbalanced 

class distribution before the data analysis. A more detailed description of the method 

is found in [Lau01]. The neighbourhood cleaning rule (NCL) is based on the idea of 

the one-sided selection (OSS) method by Kubat et al. [KM97] which is an instance-

based data reduction method for reducing the larger class when the class distribution 

of a two-class problem is imbalanced. NCL utilises the OSS principle, but considers 

more carefully the quality of the data to be removed. The major drawback of OSS is 

that the data reduction process is quite sensitive to noise. Although noise is removed 

after data reduction, the result is not the best possible because of a large amount of 

noise in the remaining data. Moreover, noise is usually removed before statistical 

analyses and data mining. 

 The basic idea of our method is the same as in OSS: All examples in the class of 

interest C (positive class) are saved, while the rest O of the original data T (negative 

classes) is reduced. NCL can be applied to several classes of interest, but for the sake 

of clarity, we discuss here only the setup of one class against the other classes. In 

contrast to OSS, NCL emphasizes more data cleaning than data reduction. Our 

justification for this approach is two-fold. Firstly, the quality of classification results 

does not necessarily depend on the size of the class. There are small classes that can 

be identified easily and large classes that are difficult to classify. Therefore, besides 

the class distribution, we should consider other characteristics of data, such as noise, 

that may hamper classification. Secondly, studies of data reduction with instance-

based techniques [WM00] have shown that it is difficult to maintain the original 

classification accuracy while the data are being reduced. This aspect is important, 

since while improving the identification of small classes, the method should be able to 

classify other classes with acceptable accuracy. 

 Consequently, we chose Wilson’s edited nearest neighbour rule (ENN) [WM00] to 

identify noisy data A1 in O. ENN removes examples whose class differs from the 

majority class of the three nearest neighbours in O. ENN retains most of the data, 
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while maintaining a good classification accuracy [WM00]. In addition, we cleaned 

neighbourhoods of examples belonging to C: The three nearest neighbours in T that 

misclassify examples of C and are members of O are inserted into the set A2. To avoid 

excessive reduction of small classes, only examples from classes larger than or equal 

to 0.5 · | C | are considered while forming A2. Lastly, the union of sets A1 and A2 is 

removed from T to produce the reduced data set S. To make NCL to suit better for 

solving real world problems than OSS, we utilised HVDM and designed NCL with 

multi-class problems in mind. Our method was named the neighbourhood cleaning 

rule, because it considers data cleaning in neighbourhoods from two viewpoints. 

Negative classes are cleaned by using neighbourhoods for noise removal, whereas the 

neighbourhoods that misclassify examples of the class of interest are removed. 

Algorithm 1 shows the functioning of the NCL method.  

 
Algorithm 1: Neighbourhood cleaning rule. 

Input: Original data T, Index i of the class of interest. 

Output: Reduced data S. 

1. Split T into the class of interest Ci and the rest of data O with classes Cj ( i ≠ j ). 

2. Identify noisy data A1 in O with the edited nearest neighbour rule. 

3. For each case x ∈ Ci 

        if ( x is misclassified by its 3-nearest neighbours Y in T ) 

             for each y ∈ Y 

                  if ( y ∈ Cj ) and ( | Cj | ≥ 0.5 · | Ci | ) then A2 = { y }∪ A2 

4. S = T - ( A1 ∪ A2 ) 

 

NCL outperformed simple random sampling within classes and the OSS method in 

the experiments with ten complete data sets that had a small and difficult class. All 

reduction methods clearly improved identification of these classes (20-30%), as 

measured with the mean TPR of the three-nearest neighbour method and C4.5 

decision tree generator, but differences between the methods were insignificant (p < 

0.05). However, the significant differences in accuracies, TPRs and TNRs obtained 

from the reduced data were in favour of NCL. The results suggest that NCL is a useful 
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method for improving modelling of difficult small classes, as well as for building 

classifiers that identify these classes from real world data which often have an 

imbalanced class distribution.  

5.3. Galactica - a genetics-based machine learning system 

The strengths of genetic algorithms and research indicating that machine learning 

systems based on genetic algorithms can solve medical problems at least as well as 

the conventional systems [BP91, Jan93, Con95] motivated us to develop a general 

purpose learning system, named Galactica [II], that utilises genetic algorithms. 

Another motivation was the success of ANNs, which are also inspired by nature, in 

solving medical problems [FD95, PEJ96, Cha98].  

 Galactica is based on the ideas presented in GABIL [DJSG93] and GIL [Jan93] 

systems. Our method resembles more the straightforward GABIL than GIL. Both 

GABIL and Galactica utilise the standard ‘off the shelf’ genetic algorithm with minor 

modifications, while GIL is a complex system that makes use of many task specific 

learning operators. The major difference in the design of the GABIL and Galactica 

systems is the presentation of the examples to the learning system. GABIL learns in a 

batch-incremental manner: One or few examples are presented to the system at a time, 

and if the current rules misclassify the new data, the rules are updated using all the 

training data. On the other hand, Galactica is a batch learner that uses all the training 

data on the each iteration of the genetic algorithm. In addition, completeness, 

consistency, and complexity of the rule sets are presented as separate terms in the 

fitness function of Galactica. 

 Galactica uses a simple genetic algorithm to learn rules for two-class problems 

inductively and in a supervised manner from examples which are characterised by 

categorical attributes. The genetic algorithm maintains a population of variable-length 

chromosomes from which the fittest individuals are selected for reproduction. The 

parents are modified with the crossover and mutation operators to generate a new 

generation. The populations are non-overlapping populations which are selected by 

the roulette wheel method [Gol89]. Elitism is used, i.e., the best member of each 

generation is moved intact into the new generation. Two of Michalski’s concept 

learning operators, adding condition and dropping conditions [Mic83, Jan93], are used 

to improve the learning process. After the genetic algorithm has terminated, 

chromosomes can be decoded as symbolic rules for examination. 
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 Knowledge is represented in sub-symbolic chromosomes for the genetic algorithm 

and in symbolic IF-THEN type decision rules for humans. For example, a rule for the 

stress incontinence diagnosis might be: IF [Urine in vagina = No] & [Stress symptom 

= Yes] & [Difficulties with voiding = No] &  [Urge symptom = No] THEN Stress 

incontinence. The chromosomes are coded as binary strings so that for each condition 

as many bits are reserved as the corresponding attribute has values, and the condition 

bit is set at one if the attribute has a corresponding value, otherwise the bit is set at 

zero [DJSG93, Jan93, YZ96]. If an attribute does not exist in a rule, all of its value 

bits are turned to one, i.e. the attribute can have any value and is therefore 

meaningless.  

 The fitness of a chromosome is mostly based on the number of positive and 

negative examples covered in the training set. The fitness increases as the positive 

cover grows and the negative cover diminishes. In addition, the complexity of the 

chromosome slightly affects its fitness; the simpler chromosomes are considered 

better than the more complex ones. A binary coded example is covered by the 

chromosome when the logical AND operation between the example and the 

chromosome returns the example unchanged. In other words, the example is covered 

if the attribute values both in the example and in the chromosome match. Missing 

values do not prevent classification, because match is considered to occur when an 

attribute is absent from the example or chromosome, or when the attribute is absent 

both from the example and chromosome. 

5.4. Comparison of Galactica and other classification methods 

Galactica was compared in paper (III) to discriminant analysis [Sha96], logistic 

regression [Agr96], k-means cluster analysis, C4.5 decision tree generator, and a 

random bit climber (RBC) [Dav91b]. The methods were evaluated in the diagnosis of 

female urinary incontinence in terms of prediction accuracy of classifiers produced 

from the patient data. The missing data were imputed with rounded means to allow 

application of the statistical methods. The classification ability of machine learning 

methods was also compared in the original incomplete data. The task was to classify 

stress, mixed, and sensory urge cases by using the principle of one class against the 

other classes.  

 Discriminant analysis, logistic regression, C4.5, and Galactica produced the most 

accurate classifiers from the imputed data D0’ (mean prediction accuracy 89-91%). 
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The statistical differences in the prediction accuracy of these classification methods 

were insignificant. RBC performed slightly worse than these methods and k-means 

cluster analysis was clearly the weakest method. The poor performance of the k-

means algorithm was expected, because the hierarchical clustering methods could not 

recover diagnostic classes from the data in [I]. C4.5 was the best, Galactica the next 

best, and RBC was the worst method with the original incomplete data. The mean 

prediction accuracies of these methods ranged from 84% to 92%. The unexpectedly 

good performance of RBC suggests that the classification task was such that the more 

advanced methods were not able to express their full power. However, the results 

were in agreement with the results of earlier research indicating that genetic 

algorithms are a competitive method for constructing classifiers from medical data.  

 Our system was applied in [KLP99+] to discover rules from the data on otological 

diseases involving vertigo [Ken96]. The vertigo data had 564 examples that were 

described with the subset of 38 mixed attributes of all the 170 available attributes. 

Galactica learned diagnostic rules, with the principle of one class against the other 

classes, for vestibular schwannoma (N = 128), benign paroxysmal positional vertigo 

(N = 59), Menière’s disease (N = 243), sudden deafness (N = 21), traumatic vertigo (N 

= 53), and vestibular neuritis (N = 60) diagnoses. The prediction accuracies (and true 

positive rates) of rules for these diagnoses were 91% (62%), 96% (74%), 81% (76%), 

95% (11%), 92% (28%), and 98% (90%) respectively. Besides being accurate, the 

rules contained the five most important diagnostic questions identified in the earlier 

research [Ken96]. True positive rates indicated that our method had difficulties in 

identifying the small sudden deafness and traumatic vertigo classes. In a comparison 

of the accuracies obtained with discriminant analysis and genetic algorithms 

[KLJ00+], discriminant analysis outperformed Galactica slightly. These results 

showed that our method could also solve a larger classification problem accurately.  

 Galactica, C4.5, and the three-nearest neighbour method (3-NN) were compared 

indirectly in [VI], where different methods were used to construct an ensemble 

classifier from the EM imputed data D0’. The mean prediction accuracies of 11 

classifiers built with these methods were 83%, 85%, and 85% respectively. The 

accuracies were lower than in paper (III), because the multiclass situation is more 

difficult for learning algorithms than the setup of one class against the others. Similar 

to RBC, the simple 3-NN was able to produce results comparable with the results of 
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the more complex methods. On the other hand, 3-NN with HVDM seems to be as 

good as C4.5 rules produced with default settings [V]. 

 We considered machine learning systems C4.5 and Galactica preferable for the 

automatic construction of medical decision aids, because they can cope with missing 

data values directly and can present a classifier in a comprehensible form. For these 

reasons they were used in the expert system [VI]. The presentation of knowledge in a 

comprehensible manner is crucial in areas such as decision making and medicine, 

where humans must fully understand the classifiers [HW90, MK90, FD95]. Logistic 

regression and discriminant analysis create a mathematical model which gives 

valuable information, for example, about the dependencies between diagnostic 

parameters and diagnosis. Understanding and thus correct interpretation of these non-

symbolic models is usually quite difficult for individuals who do not have 

considerable statistical knowledge. Consequently, medical decision support systems 

constructed from the results of statistical methods are black boxes having limited 

capabilities to explain their decisions. Moreover, rigorous evaluation and testing may 

be far more difficult than with transparent systems [HW90]. Conversely, decision 

trees and rules are understandable without extensive expertise. An expert in the 

problem area, for example a physician, can directly evaluate and verify this type of 

classifier provided that it is not too complex. 

 ANNs have been applied successfully in decision support in medicine [FD95, 

Cha98]. Artificial neural networks were not included in the comparison of paper (III), 

because we suspected that there were not enough data for the network [III]. In the 

diagnosis of acute abdominal pain, for example, Pesonen et al. [PEJ96] used a neural 

network with 14 input nodes, two output nodes, and 1333 examples, while in [III] we 

used 13 attributes, two classes, and had only 529 examples available. The lack of data 

is a common problem in medical applications of ANNs, because an abundance of 

examples is needed to train and validate a neural network, but it is often impossible to 

collect large medical data sets [FD95]. Another reason why we did not strive for 

ANNs was their sub-symbolic knowledge representation, which makes ANNs 

essentially black boxes. Interpreting of the knowledge captured in the weights of the 

neural network is even more difficult than understanding the decision models built 

with statistical methods. Moreover, ANNs can process only complete data, which is 

quite rare in the area of medicine.  
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 We recently tested a feedforward multilayer perceptron using the attributes in the 

set A1, excluding age and including CYM, as the input nodes. The network had four 

hidden nodes and three output nodes that corresponded to the stress, mixed, and the 

other female urinary incontinence diagnoses. The network was trained with the EM 

imputed data set D0’, backward propagation algorithm, and 10-fold cross-validation. 

The average accuracy and TPRs for the three classes were 78%, 88%, 65%, and 51% 

respectively. As we anticipated in (III), ANNs were not suitable for this data set: the 

classification ability was moderate, the diagnostic classes had to be combined, and not 

all the available attributes could be used. Better results might be obtained with a larger 

data set. 

5.5. Female urinary incontinence expert system 

Paper (VI) describes IES1 which is an Internet-based multi-expert system. Multi-

expert refers to the ensemble classifier that was constructed from 3-NN classifier, and 

from decision rules produced with Galactica and C4.5. A total of 11 classifiers was 

built from the EM imputed D0’ by using a 70:30% ratio split into the training and 

testing sets and attribute set A2. Diagnostic rules were crafted manually for the rare 

overflow urinary incontinence and fistula diagnoses. Training data for 3-NN was 

reduced with NCL to improve identification of the small and difficult sensory urge 

class.  

 The original aim was to use an ensemble classifier EN0 that would give a single 

diagnosis based on the majority voting scheme. It was assumed that the different 

learning biases and different knowledge presentations would result in classifiers that 

make errors in different but complementary manner. Unfortunately, EN0 classifier 

performed approximately as well as the individual classifiers. However, the ensemble 

classifier EN1, which gives from one to three diagnoses, was clearly better than the 

individual classifiers and EN0. The good performance of EN1 does not stem simply 

from its multi-diagnosis feature. On average, 20% of the EN1 classifications were 

multiple diagnoses, and of these on average 6% included three different diagnoses. 

EN1 improved EN0 classifications especially because it could correctly identify more 

mixed and sensory urge cases than EN0.  

 EN1med, an EN1 classifier with median accuracy of 11 EN1 classifiers, was used to 

implement the inference module of IES1. The rationale for building a number of 

classifiers and then using a mediocre classifier instead of the best one was the need for 
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objectivity. It is known that one can usually generate a good model or classifier for a 

data set by merely building enough of them [HMS01] and, therefore, a data miner 

should try to avoid this pitfall, for example, by using a classifier that performs 

moderately. The first diagnosis of EN1med was correct in 86% of the test cases in 

‘laboratory conditions’. When the second and the third diagnoses were considered, the 

classifier correctly identified 94% of the test data of D0’, the medians and the ranges 

of TPRs and TNRs being 97%, 82-100% and 94%, 87-96% respectively. The 

accuracy of EN1med was 91% in the data set D1. If the misclassification of the only 

normal case is ignored, the medians and the ranges of TPRs and TNRs in D1 were 

96%, 70-100% and 90%, 75-95% respectively. 

 We generated ‘exception’ rules from the noisy cases identified with NCL and 

outlier thresholds [LJK00] for individual attributes. The system comments on request 

whether a case which a physician has diagnosed as stress or mixed incontinence is 

unusual. A case may have unusual value combinations or a quantitative attribute, for 

example MUC, may have unexpectedly low or high values. We expect that this 

function draws the physician’s attention to the possible errors in individual values and 

to possibly misclassified or borderline cases, but the final usefulness and benefit of 

this feature remains to be seen. Our approach is opposite to the work in [FNI91], 

where decision trees were built from the reliable cases to identify unusual thyroid 

patients. We also considered this approach, but since we did not have reliability 

information available, ‘exception’ rules were generated. 

 The expert system was implemented as a Java applet that a physician can access 

via Internet with a Java enabled World Wide Web (WWW) browser (see Figure 4). 

The client-server architecture that IES1 utilises has some advantages over the stand-

alone expert systems. Firstly, the user does not have to worry about the software 

installation or maintenance, which is sometimes problematic in the case of the 

traditional stand-alone applications. All that is needed is a relatively new Java-enabled 

WWW browser, such as Netscape Navigator or Microsoft Internet Explorer. 

Secondly, Java applets have continuous running state, which makes the system like a 

normal application for a user, except that it must be launched from a browser. The 

expert system can interact with the user and locally perform tasks, such as error 

checking and user-interface manipulation, which are appropriate there. Lastly, Java 

offers a platform independent way to use our system. 
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Figure 4. The architecture of IES1. The expert system is implemented as a Java applet

that a physician may load into a WWW browser over Internet. 
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6. Discussion and conclusions 

The aims of this work were both practical and scientific. The practical aim was to 

develop an expert system as a decision support tool for the differential diagnosis of 

female urinary incontinence. The main scientific aim was to study whether data 

mining techniques could be used as an alternative to the conventional knowledge 

acquisition process, where a knowledge engineer extracts knowledge from an expert 

via lengthy interviews. Pre-processing of the data and discovery of the diagnostic 

knowledge with machine learning methods were paid special attention. This work 

produced a new machine learning program, Galactica, which is based on genetic 

algorithms, and the neighbourhood cleaning rule (NCL) that balances the imbalanced 

class distribution by using an instance-based approach. Galactica, NCL, and other 

data mining techniques were applied to overcome difficulties of real world data, and 

to develop ability for classification and critique for the Internet-based incontinence 

multi-expert system IES1.  

 Galactica proved to be a competitive approach for building classifiers in 

comparison with different machine learning and statistical methods in two real world 

medical data sets. In female urinary incontinence data the system was among the best, 

and in data of otological diseases involving vertigo the system performed 

approximately as well as the discriminant analysis. Genetic algorithms are able to 

roam efficiently large search spaces without being trapped in a local minimum or 

maximum [Gol86]. This kind of search would be extremely useful in data mining 

where search spaces are huge. Unfortunately, genetic algorithms are computationally 

complex and, consequently, require a lot of processing time. However, we believe that 

the genetic algorithm paradigm in machine learning is worth pursuing, but our method 

needs further research to be applicable to the mining of large databases. The system 

should also be developed to solve multi-class problems with mixed attributes. In 

addition, a carefully planned comparison with other methods by using a number of the 

UCI data sets as well as our real world data sets is needed to ascertain Galactica’s 

performance in various different tasks. 

 Our contribution to the pre-processing of real world data was a new instance-based 

method NCL that improves identification of difficult small classes by balancing the 

imbalanced class distribution with data reduction. NCL outperformed simple random 
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sampling within classes and the OSS method in the experiments with 10 data sets. 

Improvement in TPRs of the class of interest was 20-30%, but the differences 

between the methods were insignificant. However, NCL was more successful than 

other methods in maintaining the original classification ability of the other classes. 

Our results suggest that NCL is a useful method for improving descriptive analysis of 

difficult small classes. NCL may also be used for building classifiers that better 

identify difficult small classes from real world data, which frequently have an 

imbalanced class distribution. The drawback of the method is its complexity, because 

the building of the proximity matrix takes O(N2) time, where N is the number of 

examples. 

 Our studies showed that it is possible to develop an expert system by making use 

of knowledge discovered with machine learning. In addition, data pre-processing 

results allowed us to implement functionality that draws users’ attention to possible 

errors or borderline cases. The expert system not only aids physicians in the diagnosis 

of the incontinent women, but it also acts as a critic for the physicians’ decisions 

[GW98]. The diagnostic ability of the system was quite good. The first diagnosis was 

correct in 86% of the test cases in ‘laboratory conditions’. When the second and the 

third diagnoses were considered, IES1 correctly identified 94% of the test data of D0’, 

while 91% of the data set D1 were correctly classified. The Internet-based client-

server architecture allows access and distribution of the expert system through Java-

enabled WWW browsers. Physicians are currently evaluating the usefulness of IES1 

in diagnostic work. Although the classification ability of the system is good, only 

prolonged field-use can qualify an application developed with machine learning as a 

successful real world system [SN98]. Even though the symptoms of stress are 

sometimes so unmistakable that surgery may be carried out without urodynamic 

measurements, previous research suggests that diagnoses based solely on the 

symptoms may not be accurate enough [JNO94]. The real world diagnostic work-up 

will show whether IES1 is able to reduce the number of expensive urodynamic 

measurements. 

 Patient data collected in a local hospital may not be a representative sample of the 

population and, moreover, different clinical procedures in different organisations may 

further bias the data. Therefore, future research should explore methodologies to make 

IES1 easily applicable in different hospitals. One approach could be to discover 

diagnostic knowledge from a data set created by combining locally collected data sets, 



 

 43

but this approach would require carefully planned and extensive co-operation between 

various organisations. Locally built classifiers might be a better approach to adapt the 

classifiers to the differences in the procedures and patients of the different 

organisations. Furthermore, ontologies might be of great help in the development of 

generally applicable and easy to use DSSs for the differential diagnosis of the female 

urinary incontinence. Another area for future research is the planning of the therapy 

for the incontinent women. The methodologies used to develop diagnostic capability 

for IES1 may be used to build classifiers for therapy as well. 

 One can justifiably ask whether IES1 is really an expert system. It is difficult to 

answer this question, because the terms DSS, KBS, and expert system are nowadays 

used quite freely. For example, the expert system by Güvenir et al. [GE00] for the 

diagnosis of erythemato-squamous diseases is similar to IES1, but uses only sub-

symbolic knowledge representation. Likewise, Chae [Cha98] makes no distinction 

between the traditional rule-based systems and sub-symbolic ANNs in his review of 

medical expert systems. IES1 is, as a computer program designed to aid physicians, 

definitely a DSS. Clearly, domain knowledge of IES1 is captured in symbolic rules 

produced by Galactica and C4.5, and in a function produced by 3-NN that maps 

classes to examples. IES1 does not have a traditional inference engine that controls 

the reasoning, because its rules are simple classification rules, but the rule matching 

and voting features of the system may be seen as the general problem solving 

knowledge. In addition, the diagnostic knowledge is mostly represented in symbolic 

rules which explain the reasoning behind the automatic diagnosis to a user. For these 

reasons, IES1 is in our opinion a KBS. The ability to perform as well as a human 

expert in a specific task makes a KBS an expert system (see Section 2.2). 

Unfortunately, we have neither found any comparison of the diagnostic accuracy of a 

physician and a computer program in diagnostic work-up of female urinary 

incontinence, nor any comprehensive study of the accuracy of physicians’ diagnoses 

in this area of medicine. However, we argue that IES1 probably meets this 

requirement, because its classification ability was over 90% and TPRs were 70-100%. 

This is quite a good result for a human or a computer when the only data available are 

examples.  

 The greatest drawback of using EIE learning is that the discovered knowledge is 

likely to be shallow. For example, the rules of IES1 are straightforward decision rules 

whose THEN part simply gives the predicted class (see Section 5.3). These rules do 
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not allow inference chains that are traditionally applied to mimic expert’s reasoning. 

However, it should be noted that the terms deep and shallow knowledge are extremes, 

and in practice the knowledge captured in expert systems is somewhere between the 

extremes. There probably exist many manually crafted expert systems whose 

knowledge is partly shallow due to the difficult knowledge acquisition process. 

Likewise, knowledge produced with the EIE learners is not totally shallow; it may 

capture some aspects of deep knowledge. Expert system development with machine 

learning methods also has problems caused by real world data, such as those we 

encountered during building IES1. However, we believe that these difficulties are 

smaller than difficulties related to the manual knowledge acquisition. Maintaining of 

the knowledge and the different approaches to solve problems in different 

organisations are problematic for the both development approaches. 

 The usefulness of automatic knowledge discovery with machine learning depends 

largely on the aims of a data miner and the problem characteristics. If the aim is to 

analyse and model the data, automatically acquired knowledge is usually of great 

value to the domain experts. The situation is more complex when the knowledge is 

further utilised in a DSS aimed for the classification of data. The developers must 

decide whether the knowledge needs additional refinement and whether the 

explanations based on the knowledge are sufficient for a user. Symbolic EIE learners 

may be considered as preliminary tools that are used to extract raw knowledge for 

further use in expert system shells, where knowledge is rearranged and cleaned to 

produce the final expert system [Tur93 Chapter 13.12]. A more straightforward 

approach is to use knowledge ‘as it is’ only with slight modifications needed to utilise 

it. IES1, the expert system by Güvenir et al. [GE00], and many ANNs based expert 

systems are examples of this approach. For example, in IES1 a class hierarchy, with 

the base class ‘Classifier’, was designed, and individual classifiers were implemented 

as subclasses whose methods were overridden. If the knowledge is symbolic, expert 

systems built with machine learning methods may provide explanations for decisions, 

although explanations are more limited than in the traditional expert systems. If 

explanations are not needed, sub-symbolic EIE learners, such as ANNs, are 

applicable. The use of machine learning may be the best or the only alternative for 

knowledge acquisition if the problem is such that experts are not available, the expert 

is unable to verbalise his or her knowledge, or the problem is so complex that it is 

almost impossible for a human to understand. In these cases machine learning is of 
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great help for humans who require decision support and possibly need to understand 

the problem.  

 If partial or missing explanations are acceptable, expert systems based on 

knowledge obtained with the EIE learners are a viable alternative to manually built 

expert systems. The machine learning approach is inexpensive and fast in comparison 

with manual expert system development providing that the data are available or that 

data collection is not overly slow or difficult. Waterman  [Wat86] estimates that a 

moderately difficult expert system project with a 2-4 person team requires 1-6 person 

years, while a very difficult task with 4-6 people takes 10-30 person years. In 

comparison, C4.5 often discovers knowledge in few seconds or minutes. Although the 

machine learning approach is clearly more automatic than manual and semi-automatic 

knowledge acquisition, in practice it is not a fully automatic acquisition method 

[Tur93 Chapter 13.5]. In fact, quite a lot of interaction is sometimes needed between a 

data miner, who replaces a knowledge engineer, an expert, and a user who is often an 

expert. It is especially important to understand a user’s problem and that the user 

participates actively in the application process [SN98]. The interaction between 

different parties takes time, but since the knowledge discovery is automated, the total 

development time, including the time needed to put knowledge into operation, will be 

only a fraction of the time required with the conventional approach [GSB93+, 

WWZ99].  

 According to Hill et al. [Tur93 p. 537], the ideal knowledge acquisition system 

should have the following characteristics: (1) direct interaction with expert without 

knowledge engineer, (2) applicability to unlimited problem domains, (3) tutorial 

capabilities, (4) detection of inconsistencies and gaps in knowledge, (5) ability to use 

many sources of knowledge, (6) easy user interface, and (7) ability to inference with 

different expert system tools. We doubt that any system will ever fully meet all these 

requirements, and agree with Turban [Tur93 Chapter 13.12] in that machine learning 

is still limited in its capabilities in the area of knowledge acquisition. However, the 

most important requirements (1) and (2) are met. Machine learning can bypass 

lengthy interviews and is applicable in various problem areas. The ensemble learning 

approach applied in IES1 addresses characteristic (5). Although automatic knowledge 

acquisition is still in progress, several authors agree with us in that the knowledge 

discovery with machine learning is one of future areas in the field of the expert 

systems [H-RJ94, DeH98, Dur98, Alt99]. There is also evidence to back this claim. 
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Expert systems described in [GSB93+, BD-M95, Tsu98, WWZ99, CFC01+] have 

proven to be as good as human experts or manually crafted expert systems. Another 

promising trend is the use of WWW in connection with expert systems [Dur98]. We 

also addressed this new area in IES1.  

 Future research might focus on the development of an expert system building tool 

that utilises multiple EIE learners and other data mining methods to automatically 

extract knowledge from data. This type of system would generate automatically or 

interactively classifiers, ability for critique, and explanations for decisions for an 

expert. In addition, the system might automatically code this functionality into the 

rules of an expert system shell or the system might produce a Java applet or other 

Internet-based application that could be used both locally and via Internet. In addition, 

the available ontologies might be used automatically in the expert system 

development. This approach might enable an expert to build expert systems directly 

without the need to consult neither knowledge engineer nor a data miner.  

 To summarise, we constructed an Internet-based multi-expert system for the 

differential diagnosis of female urinary incontinence by using data mining techniques. 

Inspired by the practical problem, we developed methods for machine learning and 

data pre-processing. The genetics-based machine learning system Galactica showed to 

be a competitive method for classifying medical data. The neighbourhood cleaning 

rule outperformed the other two methods for balancing the imbalanced class 

distribution. Although further work is needed, automatic knowledge discovery seems 

to be a good alternative for the manual knowledge acquisition in the expert system 

development.  
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