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Abstract

Despite the emergence of speech controlled computers and direct manipula-
tion that both have diminished the need to operate computers with textual
commands, manual text entry remains one of the dominant forms of human-
computer interaction. This is because textual communication is one of the
main reasons for using computers.

Mobile and pervasive computing have been popular research areas re-
cently. Thus, these issues have a major part in the thesis at hand. Most of
the text entry methods that are discussed are for mobile computers. One
of the three main contributions of the work is an architecture for a middle-
ware system intended to support personalized text entry in an environment
permeated with mobile and non-mobile computers.

The two other main contributions in this thesis are experimental work
on text entry methods and models of user performance in text entry tasks.
The text entry methods tested in experiments were the minimal device in-
dependent text entry method (MDITIM), two methods for entering num-
bers using a touchpad, Quikwriting in a multi-device environment, and a
menu-augmented soft-keyboard. MDITIM was found to be relatively device-
independent, but not very efficient. The numeric entry experiment showed
that the clock metaphor works with a touchpad, but with a high error rate.
An improved “hybrid” system exhibited a lower error rate. Quikwriting was
tested to evaluate the claims on its performance made in the original publi-
cation and to see if it works with input devices other than the stylus. The
perfomance claims were found to be exaggerated, but Quikwriting worked
well with the three tested input devices (stylus, game controller, and a key-
board). The menu augmented soft keyboard was compared to a traditional
QWERTY soft keyboard to verify modeling results that show significant per-
formance advantages. No performance advantage was observed during the
20 session experiment. However, extrapolations of the learning curves cross
suggesting that with enough practice the users might be able to write faster
with the menu augmented keyboard.

The results of the modeling part are two-fold. First, the explanatory
power of a simple model for unistroke writing time was measured. The
model accounted for about 70% of the variation when applied carefully, and
about 60% on first exposure. This sets the level of accuracy that more
complex models must achieve in order to be useful. Second, a model that
combines two previously known models for text entry rate development was
constructed. This model improves the accuracy of text entry rate predictions
between measured early learning curve and the theoretical upper limit.
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Chapter 1

Introduction

1.1 Context

This thesis is about entering text into computers. In the sense that it is
understood in the field of Human-Computer Interaction (HCI), text entry
began with the emergence of computers during the later part of the 20th
century. At about the same time it became a field of technological innovation
and topic of scientific study. There have been two waves of text input research
activity. One began in the 1970s and another in the 1990s. According to
MacKenzie [2002a] the first wave concentrated on desktop computing and
the second on pen-based and mobile computing. This thesis belongs to the
second wave.

In this thesis I will discuss details of some of the recent developments in
text entry. Before that, however, I will briefly introduce some themes that
will recur later in the thesis.

One of these recurring issues is the long history of writing and the effects
that the established traditions have on text entry research. Writing in general
is as old as history itself because it is the emergence of writing that marks
the beginning of historic time. Throughout the ages writing systems have
interacted with other technology and the societies that have used them. For
example the Sumerian cuneiform writing was tightly interwoven with the
clay tablet and reed stick technology as well as with the needs of the society.
It seems apparent that in this case the writing system evolved to fit the
technology. Other cases, such as the Egyptian use of papyrus, exemplify a
situation where a whole industry is set up to manufacture material suitable
for writing. When a new piece of technology comes along, sooner or later
somebody will try to use it for writing. Similarly, when a new writing task
emerges, people will try to find the most suitable tools for accomplishing it.

The most influential new piece of technology in our era is the computer.
In the light of the historical tendency of trying out new things, it was likely
that somebody would try to use the computer for writing. This did indeed
happen at a very early stage in the development of computers. Today the
majority of writing and written communication happens with computers.

Generally speaking the work in this thesis consists of experiments on how
to use computers for writing. Because computers are well established writing
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INTRODUCTION

tools it could be argued that the whole work is pointless. This is not the
case. The recent proliferation of embedded and mobile computers has led
to many situations where traditional text entry systems are ineffective and
difficult to use. A persistent skeptic could still argue that although new
devices and usage situations have emerged, developing text entry methods
for them is relatively simple. Based on the mature knowledge of coding
schemes developed in computer science and engineering one should be able
to develop optimal systems without much trouble. The counter-argument is
the same as in most user interface issues: text entry would indeed be trivial
if people were as easily programmed as computers are. Because this is not
the case, we need to resort to laborious methods such as experiments to find
out how things work when humans are involved.

Branches of science such as HCI that deal with humans are not purely
experimental. Sometimes experiments can lead to models of phenomena
that can lead to theories that can be used in the same way as theorems in
mathematics and laws in physics. Some hope that in the future HCI theory
can be developed to a level where a theory-based engineering approach could
be used [Scutliffe, 2000]. At present, however, there are many areas of HCI
where theory does not answer all important questions accurately enough.

Although computers offer new options for writing, they do not change ev-
erything. The human body is the same as it was 6000 years ago when the first
writing systems were developed. The motivation for writing is also the same.
The need for writing arises when people need to remember things precisely
over long periods of time or to communicate over distance [Woolley, 1963].
Deals have to be written down so that all parties can agree on what was
agreed upon even after circumstances have changed over time. Records on
prices and debts have to be kept in writing when the economy becomes com-
plex enough.

Once writing emerges for one reason or another, it spreads to other areas
of human activity. Serving as a memory for economic activities is just one
example. People start writing letters to their loved ones, they write down
stories for others to enjoy, and decorate their tombs and other monuments
with words that they want to be remembered by.

1.1.1 Language Issues

Not all writing is equal. Character sets and writing systems interact with
languages in complicated ways. The importance of the language and its ef-
fect on the writing systems is exemplified by the chase of Chinese. Writing
down the pronunciation of Chinese words in the Latin alphabet simply does
not suffice. Chinese has many words that produce the same Latin transliter-
ation, but have different meanings that the Chinese writing system conveys
correctly [Sacher, 1998, Wang et al., 2003]. Language issues are important
and should be considered in work related to writing. However, a researcher
must also recognize his limitations. Verifying that everything in this thesis
applies to all languages is clearly beyond my capabilities. Thus, I mostly
ignore language issues and confine the discussion within the languages that
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1.1 CONTEXT

can conveniently be written with the Latin alphabet. Generalizing beyond
this scope may lead to false conclusions.

1.1.2 History of the Latin Alphabet

Of particular interest for writers of modern western European languages is the
history of the Latin alphabet. The early part, which is the development of the
proto-Semitic script, happened roughly simultaneously with the development
of the Chinese writing systems [Gaur, 1987, Woolley, 1963, Grimberg, 1967].
The sites where early semitic texts have been found are close enough to both
Mesopotamia and Egypt to make it safe to assume that these older systems
were not completely unknown to the early developers of the Semitic scripts.
Semitic scripts were phonemic, that is, the sounds were written instead of
ideas or words. They were also consonantal, which means that vowels were
not written at all.

The next step after the proto Semitic scripts was the Phoenician trade
empire that spread their version of the north semitic script throughout the
Mediterranean. Later the Greeks added some vowels and adapted the script
to their use giving it in turn to the Romans, who left the alphabet in the
hands of the Christian church and the associated secular kingdoms that were
the main practitioners of writing in Europe for much of the middle ages.
The use of the printing press and the industrialization finally lifted the Latin
alphabet to the position that it has today in the western industrialized world.

The name of the Latin alphabet comes from the Latin speaking Roman
culture. The monumental script that can be observed in Roman ruins still
lives in the capital letters of the Roman family of computer fonts. Sometimes
the term Roman alphabet is used instead of Latin, and it is not uncommon to
see people speaking using modern day associations such calling it the English
alphabet.

Because of its long history and wide usage, the Latin Alphabet is likely
to be used in the future, too. As explained later in Chapter 2, this is not
always convenient for text entry. Luckily the use of computers also offers a
partial solution, namely, the separation of input, storage, and output.

1.1.3 Separation of Input, Storage, and Output

The reason for text entry being a more interesting topic than some other
writing technology, such as the ballpoint pen, is that computers differ from
traditional writing tools in many ways. They can take many shapes and sizes
and be operated with different input devices. The short history of computers
shows both the development of input devices for easier writing with a given
text entry method and the development of text entry methods for easier
writing with a given input device. The peculiar thing about computers is
that the physical writing motion is separated from the shape of the resulting
characters. Mechanical typewriters and the printing press have similar qual-
ities, but in the case of computers the separation is cleanest. Finger motion
in pressing the “H” key on the keyboard is very similar to pressing any other

3



INTRODUCTION

key and very different from the shape of the letter “H”. In handwriting the
pen motion is exactly the same as the shape of the resulting character and
consequently different for all characters. The separation of input activity and
character shapes is a powerful feature of computerized writing that has alle-
viated the problem of having to learn many writing systems. We no longer
need to learn a graceful hand for important correspondence, and another for
fast jotting of notes. Instead, both types of texts can be written with the
same keyboarding skill.

On the other hand, the separation means that any physical activity can be
translated to text. Computer manufacturers have utilized this opportunity
and developed computers with very different input devices. Commonly key-
boards such as those of desktop-size, telephone keypads and mini QWERTY
keyboards are used for text input. In addition, styli and even speech can
be used. These all require different skills of the user, effectively countering
the simplification trend mentioned above. The benefit gained from learning
some of these skills is added efficiency. For example, it is not uncommon
for people to touch-type twice as fast as they can write with a pen. It is
also efficient use of time to send a message using a mobile phone rather than
finding a networked desktop computer to send it. This is why people use
these devices despite the need to learn new input skills.

One of the main issues in this thesis is coping with the multitude of writing
systems and input devices. Neither computers nor manual text entry are
passing fads. Both are likely to persist until the end of our civilization.
Consequently, everybody must develop a text entry strategy. Text entry
method developers should strive to make this as easy as possible.

1.1.4 Terminology

By text entry I mean the activity performed to transfer text from the user’s
brain to computer memory. Text input is synonymous with text entry and
often used interchangeably. A text entry method is the abstract description
of how to accomplish text entry. A text entry system is a concrete imple-
mentation of a text entry method. As is apparent, text entry is a subset of
the activities that are usually referred to by the term writing.

Text entry does not include the language related issues of syntax, neither
are the semantics of the text an issue in text entry. Error correction, however,
is a part of text entry by necessity. The way that humans operate always
produces errors. This is analogous to a generic information transmission
channel in engineering. There is always noise that must be dealt with. The
way that human users cope with the noise is first to keep the text entry rate
below the channel capacity. Secondly, when an error occurs, it is noticed
through the feedback channel and corrected, unless there is an error in the
feedback channel, in which case the error goes unnoticed, or in some cases
unnecessary correction activity is initiated.
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1.2 METHOD

1.2 Method

The work reported in chapters 3-5 is done within the paradigms of construc-
tive and empirical research. Constructive research happens in cycle with
two phases. One phase is the construction of a system and the other the
evaluation of that system. The order and breadth of these phases may vary,
but the idea is to develop artefacts with potential practical value and also
knowledge of these artefacts. In HCI the artefacts are user interfaces and
the targeted knowledge is knowledge of human performance with these inter-
faces. Most of the work has a heavy empirical emphasis. The reason for this
is condensed in the title of Shumin Zhai’s recent essay on the state of affairs
in human computer interaction. Because, “Evaluation is the worst form of
HCI research except all those other forms that have been tried” [Zhai, 2003],
I too have to evaluate my systems in order to learn useful things about them.

Within this overall framework I have used snippets of what other branches
of science call the scientific method. These include building thorough descrip-
tions such as taxonomies to understand the problem area, doing evaluations
following the experimental research methods largely developed by psycholo-
gists, and most importantly use of common sense for example in recognizing
situations where an experiment or a prototype cannot consolidate knowledge
beyond what can be achieved through carefully explained reasoning.

One central methodological issue in applied work is the time perspective
used to motivate the work. Dealing with this issue is a balancing act between
aiming for results of lasting value and aiming for results of immediate use.
Results that may be found useful or theoretically interesting in the future
are not necessarily immediately useful in practise. On the other hand results
that are not immediately useful may indeed be completely useless. Because
text entry methods are so tightly interwoven in the culture and technology of
a time and geographical region, any significant change will take a long time.
This makes it difficult to see how the change could occur at all. In retrospect,
however, we can observe historical developments that have changed writing
systems completely. A recent example of a surprising development is the
widespread use of the telephone keypad for text entry. Such changes are
likely to also occur in the future.

Placing a particular piece of work in the context of long term develop-
ments is challenging. I have attempted this in the case of the notion of
device independence addressed in Papers I, III, and VII. Faced with that
argumentation some people say “maybe” and others say “rubbish” - each
according to their position regarding the time perspective. Those with short
term goals do not believe in the concept, and those concerned with very long
term developments cannot really deny that it might turn out to be useful.
Thus, “maybe” is the best we can hope for given the general difficulty of pre-
dicting the future. In the other end of the scale are the experimental results
such as those in Papers I, II, III, and IV. They are of immediate use. By
producing both immediately applicable results and long reaching theoretical
observations, I have hoped to keep the center of mass of the whole body of
work in the right place. That is, beyond product development work done in
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the industry, but with enough ties to reality not to get lost in possibly useless
visions.

1.3 Overview of the Thesis

The main content of this thesis consists of seven papers published in various
scientific forums. The other parts bridge the gaps between the papers and
provide more extensive introductory material than could be included in the
papers themselves. Most importantly Chapter 2 gives an overview of the
current state of manual text entry, including a new framework for classifying
and combining text entry techniques.

In the papers we present three kinds of results. First, the results of evalua-
tions of text input systems, second, models that describe human performance
in certain situations, and third, software that solves certain practical prob-
lems. The papers are linked together in Chapters 3, 4, and 5, each of which
concentrates on one type of contribution.

The text entry method evaluations in Chapter 3 include four systems.
First, a minimal device independent text input method that was an attempt
at building a text entry system that can be operated with almost any input
device while maximizing skill transfer between the input devices. Second,
a comparison of two touchpad based systems for entering numbers. Third,
the evaluation of Quikwriting in a multi-device environment, and fourth an
evaluation of menu-augmented soft keyboards.

The modeling part in Chapter 4 includes a model for unistroke writing
time and work on a combined model of text entry rate development in lon-
gitudinal experiments.

The software part (Chapter 5) consists of a description of a Text Input
Architecture. The architecture supports text input methods that follow the
user rather than the device.

In Chapter 6 I describe and discuss the general limitations of the work. Fi-
nally, conclusions concerning the whole body of work are presented in Chap-
ter 7.

1.4 Division of Labor

Because most of the publications were made in cooperation with other re-
searchers, it is necessary to give details on the division of labor in order to
satisfy the requirement that the thesis should demonstrate capability for in-
dependent research. Below I list those parts in the publications that were
significantly contributed to by others. Participation in the writing process
means discussing the most effective ways of presenting the material that I
had generated and editing the paper to realize the chosen presentation.

Paper I is based on my Master’s thesis. Professor Roope Raisamo super-
vised the thesis and the writing of Paper I.

Paper II was written on the course for Scientific Writing in Human-
Computer Interaction given by Professor Kari-Jouko Räihä. The writing pro-
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1.4 DIVISION OF LABOR

cess was influenced by Professor Räihä and some participants of the course.
Mika Käki wrote the program for analyzing the results of the experiment and
participated in the writing of the paper after the course.

Paper III was written with the participation of Professor Roope Raisamo.
Paper IV was written in two phases. The modeling part was written for

a course given by Professor Scott MacKenzie (Research in Advanced User
Interfaces: Models, Methods, Measures). Professor MacKenzie’s comments
on that part influenced the final presentation as well as the decision to un-
dertake the experimental part of the work. Some of the ideas were developed
based on discussions with Dr. Grigori Evreinov.

Paper V was written on the Advanced Course on Human Computer In-
teraction given by Professor Kari-Jouko Räihä. The writing process was
influenced by Professor Räihä and some participants of the course.

Paper VI was written in cooperation with Professor Scott MacKenzie,
who proposed model 1 and participated in the writing process.

Paper VII was written with Professor Raisamo.
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Chapter 2

Current State of Manual Text
Entry

Essentially, text entry is a process where the user indicates the sequence in
which he or she wishes to combine a set of tokens known to the computer.
The tokens can be characters, words, or even sentences. The crucial point is
that the computer knows the tokens being used, and all that the user needs
to do is to indicate which tokens and in which order form the desired text.
In user interface terms this means that text entry is a sequence of menu
selections where the menu consists of the set of tokens in use.

Sometimes this basic structure of text entry is easy to see. For example,
a keyboard is a menu where the correspondence between the tokens (char-
acters) and the menu items (keys) has been made explicit by printing the
characters on the keys. In some other cases, such as handwriting recognizers,
the selection activity is not as clear. However, with some faith, one can see
the same basic structure. The handwriting recognizer knows a list of words
or characters that it can recognize. The user writes a passage of text and
then the recognizer does its best to match the pen trace to a sequence of its
known tokens. The user is not consciously performing menu selections, but
the essence of the recognition algorithm is to map the input to a sequence of
the tokens just like the trivial algorithm in the keyboard driver.

The preceding paragraphs give an overly simplified overview of the current
state of text entry. The simplicity was achieved by abstracting out practical
complications including those that are the topic of this thesis. To achieve a
more useful description, we need to re-introduce some of these issues. Firstly,
it makes sense to differentiate between two types of text entry methods.
Those that show the menu to the user explicitly and those where the user is
under the illusion that the computer recognizes more freely formatted input.
This gives us two basic approaches of text entry: selection and recognition.

A third high-level concept is the use of language models. Recognition
based systems often include sophisticated language models to improve the
accuracy of the recognition algorithm. Selection based methods can include
language models as well, for example to make the more frequent characters
easier to select. In some cases language models may exist as independent
entities that can be used regardless of what the primary text entry system is.

8



Figure 2.1: Main building blocks of text entry methods.

For example, a spelling checker does not need to care whether the checked
text comes from a keyboard, character recognizer or a bar-code reader.

These three main building blocks of text entry systems are shown in Figure
2.1. They will be refferred to in the following overview of known text entry
systems.

The description in this chapter of the known text entry systems aims
to be comprehensive regarding the different types of systems. While being
comprehensive regarding individual systems would be an even worthier goal,
it turns out to be very difficult. For example, there are hundreds, if not
thousands, of publications on handwriting recognizers that appear rather
similar to the user, but which function in different ways. Describing all these
systems is an effort that serves no purpose in this thesis. Instead, I refer
the reader to surveys that specifically address the issue [Tappert et al., 1990,
Steinherz et al., 1999, Plamondon and Srihari, 2000, Vinciarelli, 2002].

Another goal of this chapter is to serve as an introduction to some of
the problems that are addressed later in the thesis. I list the best practices
of handling the various text entry methods theoretically when modeling user
performance. This information serves as an introduction to the work reported
in the three papers (IV,V, and VI) that deal with user modeling and is
given at the end of the discussion on each class of systems. Modeling is an
important tool in HCI design and research in general, but particularly so
in text entry. Text entry skills are practised often and for extended periods
of time. This is why experts can develop skills that are well beyond those
of beginners. Thus, it is of great value to be able to model expert user
performance as accurately as possible to find those text entry methods that
are worth teaching to users.

In addition, this overview discusses two aspects of text entry methods.
The first of these aspects is the modularity of composite methods. Composite
methods that consist of separable components are good for architectures like
the one presented in Paper VII, since the components need to be implemented
only once and can then be used in many methods. The opposite of modular
composites are composites where the parts are so intertwined that clear and
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CURRENT STATE OF MANUAL TEXT ENTRY

re-usable interfaces between them are more time consuming to implement
than a complete re-write of the whole method. The second emphasized aspect
is the multi-device compatibility of text entry methods that is a central theme
in Papers I and III. The reasoning behind multi-device methods is that if the
same text entry method can be used on many devices, some learning is saved
because the user only needs to adapt to the new device instead of learning a
whole text entry system.

2.1 Keyboards

Keyboards are pure selection interfaces. The user is presented with a matrix
of keys and he or she is to select them sequentially to produce text. There are
two kinds of keyboards: hardware keyboards and soft keyboards. The terms
virtual keyboards, soft(ware) keyboards, and on-screen keyboards are syn-
onymous in this thesis. I prefer the term soft keyboard because it emphasizes
the fact that the keyboard is software rendered in contrast to hardware key-
boards, which are physical objects. An important difference between physical
keyboards and soft keyboards is that they offer different approaches to user
interface design. Physical keyboards are largely immutable. The keys are
where they are and function the way they were constructed to function. The
user interface designer can do very little to change these things. A new key-
board can be designed, but as there is usually no more than one keyboard in
each device, the design must be a compromise that serves all applications and
users. The shape and size of soft keyboards on the other hand is entirely soft-
ware controlled as is the visual appearance of the keys. Soft keyboards can
change according to the application, user, or even depending on the context
of use.

2.1.1 Physical Keyboards

Buttons and keys come in many shapes, sizes and arrangements. However, a
collection of keys is a keyboard worth mentioning in the context of text entry
only if it is used for entering text. This rules out light switches and other
isolated buttons and switches connected to non-digital devices. However,
many household appliances such as alarm clocks, TV sets, microwave ovens
etc. nowadays contain a small computer that every now and then needs
textual input. Mostly this happens infrequently such as setting the time
on an alarm clock after changing the batteries, but nevertheless the activity
concerns a set of keys and a string of text (in this case numbers) that needs
to be entered. While delving into the intricacies of these user interfaces
might be interesting, I will limit the following discussion to keyboards that
are used for more extensive text entry tasks such as taking notes or writing
email messages.

10
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Desktop Keyboards

The design for desktop keyboards has been inherited from the typewriter
era. The QWERTY character layout and its language-specific adaptations
dominate the market. It has been observed that the QWERTY layout is not
optimal for typing the languages it is used for. Difficult finger movements are
needed more often than is necessary. Also, long stretches of text are often
written using only one hand. Presumably a layout that relies mostly on the
keys on the home row and distributes consequent characters to the left and
right hands more equally would be better.

One of the somewhat successful attempts at developing a better layout for
the English language is the Dvorak layout [Potosnak, 1988, Noyes, 1983b].
The reason for the limited usage of Dvorak and other non-QWERTY lay-
outs is the fact that, despite its shortcomings, the QWERTY layout actually
makes pretty good use of the human hands. While one finger is pressing a
key, others can prepare for their work by moving over the following keys.
This kind of typing skill takes a while to develop, but once learned, it is
fast and error free enough for many practical purposes. Indeed, attempts to
demonstrate the benefits of the Dvorak layout have shown only little success
in improving text entry rate [Potosnak, 1988]. Speed is not the only impor-
tant criterion. Increased user comfort and reduced risk of stress injuries with
the Dvorak layout have also been claimed [Brooks, 2000]. Further discussion
on attempts to improve key arrangement can be found in the review by Noyes
[1983b].

Besides key arrangement, other aspects of the design space have been
explored. Laptop computers often have slightly smaller keyboards that are
sometimes curved to reduce wrist angles. Many of the currently available
desktop keyboards have a split design: the keyboard is divided at the middle
to allow straighter wrist posture. The keys have also been painted on flat
surfaces that can sense one or many points of contact allowing simultaneous
keying and gesturing [Potosnak, 1988, FingerWorks, 2003].

Desktop keyboards without an actual keyboard have also been con-
structed. They operate by sensing the finger movements by some
other means such as cameras [Roeber et al., 2003] or pressure sensors
[Goldstein et al., 1999]. The keyboard can be projected onto the desk-
top [Roeber et al., 2003] or typing can occur without any visual guide
[Senseboard, 2003, Goldstein et al., 1999].

Telephone Keypad and Disambiguation

Because each key in a telephone keypad is associated with several charac-
ters, a software layer that transforms the keypress stream into text is needed.
Because the software turns ambiguous keypresses into unambiguous charac-
ters, the process is known as disambiguation. The paper by Rau and Skiena
[Rau and Skiena, 1994] is a good source of information on the state of the art
in telephone keypad disambiguation preceding the mobile phone era. What is
now considered the traditional disambiguation algorithm associates the first
consecutive press on a key with the first character on the key, the second
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Figure 2.2: Four ways to map the alphabet in a telephone keypad.

with the second and so on. When two characters on the same key need to
be entered consecutively, the user needs to wait for a pre-determined period
of time (usually about 1.5 seconds), or press a special timeout-cut key. This
algorithm is known as the multi-press disambiguation algorithm.

The multi-press system can be configured in many ways. The standard
way is configuration A in Figure 2.2. The alphabetical order presumably
facilitates novice performance if novices are familiar with alphabetical order.
The problem with the alphabetical layout is that the frequent characters
may end up at the end of the list requiring more keypresses than some less
frequently needed characters. Overall this increases the number of keypresses
needed and unnecessarily slows down expert text entry rates. A natural
reaction is to suggest re-arranging the characters within each key according
to their frequency. Pavlovych and Stuerzlinger [2003] have done exactly
this and labeled their technique Less-Tap. The Less-Tap character layout is
shown under B in Figure 2.2. A more comprehensive re-organization can be
done disregarding the alphabetical order altogether. Layout C in Figure 2.2
is an adaptation of the JustType keyboard (C) as reported by MacKenzie
and Soukoreff [1999].1 Layout D is the result of my own experimentation in
the area.

The JustType layout was optimized for a specific word level disambigua-
tion algorithm. Layout D was constructed by starting from the most frequent
character in English and assigning a character for each key (except 1) until
all keys had three characters in decreasing frequency order. The remaining
characters were assigned to the keys with the lowest overall usage frequency.

Re-arranging is fairly effective. According to Pavlovych and Stuerzlinger
most of the advantage can be gained by within-key re-arrangement. The aver-
age number of keypresses per character for writing English with the standard
multi-tap arrangement is 2.03. The Less-Tap arrangement manages 1.52. My
own computations for layout D indicated 1.47.2 Although the optimization
goal for the JustType keyboard may appear different, it turns out to be sim-

1The eight-key layout reported by King et al. [1995] is different.
2These computations were done using different English language corpora, so the num-

bers are not necessarily comparable down to the last decimal place.
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ilar. For word level disambiguation characters need to be distributed so that
the maximum number of different keys are pressed for each word. The end
result is that each key must have roughly the same sum of frequencies of
assigned characters. Thus, the number of keypresses needed per character in
the multi-tap use of layout C is unlikely to differ significantly from layouts
B and D.

Despite the keypress efficiency of these optimized key arrangements no
implementations are widely available. Now that the covers (including key
covers) of mobile phones can be changed by the user, it would be possible to
have multiple multi-press systems with the correct printing on the key caps
so that new users could quickly pick up the more efficient systems. However,
the choice of device manufacturers remains to be the support of visual per-
sonalization instead of functional. Given that some of the publications (for
example, the Less-Tap paper) are relatively new, such devices may be in the
development pipeline. Whether that is the case remains to be seen.

The most popular improvement over the multi-press disambiguation is the
T9 disambiguation [AOL, 2003]. T9 is a word-level disambiguation system
where the user presses each key only once, thus saving some keypresses. The
T9 algorithm uses a word frequency dictionary to determine the most likely
interpretation of the keypress sequence. If, at the end of a word, T9 guesses
wrong, the user must press the “next” key to scroll through a list of the less
frequent words that match the entered key sequence.

In addition to T9 other algorithms with similar properties have been pro-
posed and used in phones. The simplest of these competitors is the system
known as LetterWise [MacKenzie et al., 2001]. It uses an n-gram (a sequence
of n characters) frequency table instead of a word frequency table.3 The user
is required to monitor the entered text and press a “next” key if LetterWise
guesses wrong.4 More complicated approaches such as EzType and EzText
[Zi Corporation, 2003] and iTap [Motorola, 2003] add word prediction to the
system allowing text entry with even smaller number of keypresses, but with
the added cost of monitoring the system output and reacting to it while
writing.

Disambiguation algorithms generalize to all situations where the number
of available input actions is smaller than the number of different tokens that
needs to be entered. The input actions do not need to be keypresses. For ex-
ample, the Octave text input system that was marketed by a French company
e-acute used a word-level disambiguation algorithm with an eight-armed star
on which one moved a stylus. One arm of the star was selected for each char-
acter and when the stylus was lifted, the system computed its best guess for
the word.

In addition to language models, explicit user input can be used for disam-

3My impression based on personal communications with Eatoni representatives is that
trigram frequencies are good enough and actually used in their products. However, the
approach is not limited to three character sequences. Hence, the n-gram expression.

4In contrast the output of T9 is often not correct before the word is finished and tends
to change as the entry proceeds. For a T9 user, it is actually beneficial not to look at the
entered text until the end of the word.
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biguating the keypresses. With the traditional layout one needs four “shift”
keys to disambiguate the input. Three shifts suffice if more than one are
pressed at the same time [Wigdor and Balakrishnan, 2004]. Another alter-
native is to install an accelerometer into the device and tilt it while pressing
the keys [Partridge et al., 2002, Wigdor and Balakrishnan, 2003].

Other Keyboards for Mobile Use

Keyboards can be seen as a continuum of the number of keys
[MacKenzie, 2002b]. At one end the keyboard consists of one key and at
the other the number of keys is unlimited. The number of keys is in inverse
relationship to the number of keypresses needed for entering one character.
Consequently one-key text input is necessarily awkward and time consum-
ing. Useful systems have been constructed for the use of disabled people who
cannot conveniently operate more than one button. The approach is usually
to use scanning. Scanning means that the possible selections are highlighted
sequentially and the user is to press the button when the desired selection is
highlighted. Another classic one-button compatible technique is the use of
Morse code, which is based on sequences of carefully timed key presses and
pauses.

Two keys can be used in many ways. For example, in addition to the
one-key techniques, text can be entered so that one key moves the selection
and the other confirms it.

Starting from three buttons the variety of approaches increases. All the
techniques that work with fewer keys are of course available. In addition
multiple selection schemes can be envisaged. The design space has been
explored at least by MacKenzie [2002c] and Sandnes et al. [2003].

Techniques suitable for four keys include the BinScroll
[Lehikoinen and Salminen, 2002], four-key adaptation of our MDITIM
work (Paper I), and other direction based systems.

Using five keys adds the ability to select in addition to moving along two
axes. An example of a movement and selection interface with five keys is ex-
plored by Bellman and MacKenzie [1998]. Five keys is also a natural number
for chord keyboards [Gopher and Raij, 1988] because it allows allocating one
button for each finger.

Because of the widespread use of mobile phones for text messaging, the
telephone keypad is a major milestone in the continuum between five and
27 keys. 27 is an important number because 27 keys have often been used
in simplified models and experiments pertaining to “full” keyboards that
have a key for each character. Keyboards with more than 27 keys belong
in this sense to the same class that generally tends to aim for one keypress
per character operation with minor deviations such as the production of
upper case characters. Below I will concentrate on chord keyboards and full
keyboards.

Originally mobile phones inherited their keyboard layout from desktop
telephones. Only recently have mobile phones with keypads other than the 3
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Figure 2.3: The Fastap keyboard design [Digit Wireless, 2003]
.

by 4 key matrix become available5. Devices that do not have such historical
baggage have used other keyboard designs. A popular solution is a very small
keyboard with QWERTY layout. Small QWERTY keyboards have appeared
on many devices including PDAs, two-way pagers and even mobile phones.

Although the QWERTY layout remains the most popular full miniature
keyboard design, other designs have been proposed. For example, the Fastap
design where an alphabetically arranged keyboard is combined with the tele-
phone keypad as shown in Figure 2.3 [Digit Wireless, 2003]. The round tele-
phone keys are not real keys, they are just indentations in the keyboard base
plate. The smaller angular alphabet keys are real keys that can be pressed.
They are clearly higher than the base plate. When a user tries to press his
or her finger into one of the indentations, several of the alphabet keys sur-
rounding the indentation are pressed. The keyboard interpets this as a press
of the telephone key. The alphabet keys can be pressed individually. The
developers claim that the key arrangement allows packing more keys per unit
of base plate area without making the keys too small to press even with large
fingers.

Cockburn and Siresena [2002] tested a Fastap prototype device against
multi-tap with a traditional mobile phone keyboard and T9 with another
traditional phone model. The experiment consisted of an initial test for de-
termining walk-up usability, six 10-minute practice sessions on different days,
and a final test to determine expert6 performance. Walk-up performance with

5For example Nokia models 3650, 5510, 6800, 6910, and 7600.
6In comparison to many other studies an hour of practise does not seem like enough

time to become an expert. The definition of an expert has not become established in text
entry research. In the existing literature it is used to refer to virtually anything except for
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Fastap was found to be superior to both multi-tap and T9. Experts were
faster with T9 except when entering abbreviations. Unfortunately the test
did not include a QWERTY keyboard with the same physical dimensions as
the Fastap prototype. Including this comparison would have made it possible
to evaluate the claims that Fastap improves the text entry user interface over
previous miniature full keyboard designs.

A miniature QWERTY keyboard has many buttons, which means that
the buttons tend to be rather small. Approaches with fewer and larger keys
include the various chording keyboards. Chording means pressing more than
one key simultaneously to enter a character. Early work on chord keyboards
was done in the context of mail sorting [Noyes, 1983a]. Later work has in-
volved text entry. Experiments with chord keyboards have shown that the
interfaces tend to be fairly easy to learn. In some cases even easier than tra-
ditional touch-typing [Gopher and Raij, 1988]. However, even a well trained
chord typist cannot reach QWERTY touch typing speeds because chording is
more sequential, whereas touch-typists can prepare for the following strokes
in parallel with the execution of the preceding ones. However, chord key-
boards can have a very large character set. Chord stenography machines that
allow more than one character per chord to be entered can be operated very
rapidly. Also, it should be noted that learning to be a fully trained QWERTY
touch-typist takes years of practise. Most people never reach speeds over 100
words per minute. In fact in my experiments typical QWERTY typing rates
are in the order of 40 words per minute (wpm)7. At these speeds chording
would be competitive if people were to find it otherwise appealing. This
does not seem to be the case, the need to memorize the chords seems to
deter most potential users. Some chord keyboard manufacturers do man-
age to survive in this niche market. Currently available chord keyboards
include Twiddler2 [Handykey Corporation, 2003], Bat [Infogrip Inc., 2003]
and CyKey [Bellaire Electronics, 2003]8.

Skill transfer from a system known to the users can aid users in learning
the use of a new device. The success of mini-QWERTY keyboards and the
failure of chord keyboards to enter the market is just one example of this.
The Half-QWERTY system is an interesting design that aims to utilize the
user’s familiarity with the desktop QWERTY keyboard. The Half-QWERTY
keyboard is a half of the QWERTY keyboard. The characters of the missing
half are located mirrored on the existing half. The space key is used for
shifting the active half. Matias et al. tested the design and found that people
can transfer some of their two-handed touch-typing skill to half-QWERTY
use [Matias et al., 1993, Matias et al., 1996].

absolute beginners.
7Words per minute remains the dominant unit for reporting text entry speed despite

its shortcomings. Word lengths vary and therefore, instead of words, five character chunks
are counted. Thus, one word per minute is equal to five characters (including spaces,
punctuation, and other non alphabet characters) per minute. The more standard and
intuitively clear unit of characters per second is emerging, but has not been favored by
reviewers until recently.

8CyKey is a descendant of the MicroWriter often mentioned in earlier chord keyboard
reviews.
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Physical Keyboard Theory

Physical keyboards have been popular text entry devices for a long time.
Consequently, numerous theoretical models for user performance with them
have been developed. Rather than giving a detailed historical account, I will
give a brief overview of the field.

User populations exhibit very a large spread of keyboarding skills. Some
users can barely type, while others are proficient touch-typists reaching
speeds up to 100 words per minute. Thus, modeling the performance of
the general user population is necessarily guesswork. One might assume that
it takes on average 500 milliseconds to type one character or that it takes 250
milliseconds and both guesses could be correct. For the same reason detailed
psycho-motor models of typing performance cannot be of much value if the
user population is not well known. If the user population is known, the best
way to estimate user performance is to take a sample of the population and
measure the performance. In short, research over the last 20 years has not
added much to the performance figures listed by Card et al. [1983].

Despite the difficulties, models for typing with full-sized desktop keyboard-
ing can be constructed. Such work has been summarized at least by Barber
[1997] and Potosnak [1988]. The models can explain some aspects of typing
activity and produce estimates for the efficiency of different keyboard lay-
outs. While important for understanding the activity, such models have little
value in keyboard design. The reason for this is that when both hands and
all fingers are used for typing, performance differences between well-trained
users that use different layouts are small. Consequently keyboard redesign
has been a comparatively dormant area of research in recent years.

Because mobile telephones tend to be so small, only a few fingers can
be used for entering text using the telephone keypad. Models for ex-
pert performance with one finger and two thumbs have been developed
[Silfverberg et al., 2000, MacKenzie and Soukoreff, 2002a]. These models are
based on the work on soft keyboarding models discussed below.

By and large, the recent work on physical keyboards has been dominated
by the effort to minimize the number of keypresses in the context of lim-
ited keyboards. There are at least two reasons for this. Firstly the number
of keypresses is a concrete measure that is easy to understand and handle
in optimization computations. This makes it very attractive to researchers
aiming at academic publication or hoping to attract capital in order to set
up a company. Secondly, there has been an opportunity to make real im-
provements, especially in the case of the telephone keypad, that has been an
important platform due to the explosive growth of SMS messaging that took
most device manufacturers by surprise.

The emphasis on keystrokes per character (KSPC) [MacKenzie, 2002b] has
left other aspects of text entry activity with much less attention. Different
text entry systems can demand different cognitive and perceptual behavior
from the user. Sometimes these issues may be even more important than
KSPC in judging the suitability of a particular method for a particular use.

One attempt at describing the differences between disambiguation algo-
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rithms was made by Kober et al. [2001] in an unpublished paper. Their main
concern was the effect of errors in dictionary-based disambiguation. When a
word contains one wrong button press, the whole word or a substantial part
of it is incorrectly disambiguated. Kober et al. call this phenomenon error
amplification. Multi-press disambiguation does not suffer from error ampli-
fication because errors made in one character do not affect other characters
in the word. The main result in the paper is that under certain assumptions
the throughput of a dictionary based disambiguation algorithm like T9 will
degrade below the level of multi tap when keypresss error rate exceeds 8%.
In addition Kober et al. modeled their own disambiguation algorithm known
as WordWise. WordWise uses a shift key to explicitly disambiguate eight
characters, thus making 45% of English input unambiguous on a telephone
keypad. Because unambiguous characters are encountered often within a
word, WordWise is not as sensitive to key press errors as T9. The work of
Kober et al. could be expanded to include other disambiguation methods.

While error amplification is not as great a problem with many other text
entry methods, the cost of correcting an error may vary, making modeling
the effect of errors on text entry rate a valuable exercise. The work of Kober
et al. is the only example of this kind of error modeling with disambiguation
algorithms, but including errors in performance models in general has been
done before. For example, Barber [1997] reviews work on using Markov
models and task-network models for computing performance of systems like
speech recognizers under different error rates. These models could just as
well be adapted to describe manual text entry activity.

Other attempts at including the cognitive and perceptual aspects of text
entry systems includes the application of the Keystroke Level Model (KSL)
by Card et al. [1983] to the use of word completion systems. The results of
this work are discussed in more detail in section 2.4.3.

2.1.2 Soft Keyboards

Unlike in 1988 when Potosnak [1988] concluded that virtual keyboards would
not be covered in the Handbook of Human-Computer Interaction due to
lack of research in the area, we now have a wealth of information. Soft
keyboards are an attractive way to enter text on touch-screens and stylus
operated computers. The reasons for the attractiveness include the simplicity
of the software needed, the self-revealing nature of the user interface, and skill
transfer from physical keyboards. Experiments have shown that in addition
to all these good properties, soft keyboards are very fast and error free in
comparison to many text entry methods.

Soft Keyboard Systems

In practise the most popular soft keyboard design is the QWERTY layout and
its language-specific adaptations. Practically all pen-operated computing
devices are equipped with a QWERTY soft keyboard. In addition they may
have other text entry methods, but a soft keyboard is always available as the
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last resort.
Various alternative layouts have been proposed over the years

[Textware Solutions, 2003, MacKenzie and Zhang, 1999, Zhai et al., 2002a]
but none of these have gained much popularity. The main reason for this is
that although the software-rendered layout is easy to alter, it takes a signif-
icant amount of effort to learn to use the new layout. This, together with
the relatively small amount of text being entered with soft keyboards, makes
users rather conservative in adopting new layouts.

In contrast to physical keyboards, with soft keyboards the key layout
has a major effect on the text entry performance. This is because typ-
ing is strictly sequential. To type a character one has to move the stylus
from one key to the next and during this time there can be no prepa-
ration for the following key. Thus, minimizing the distance to be trav-
eled can greatly enhance text entry speed. This can be done more or
less through intuition as in the Fitaly keyboard [Textware Solutions, 2003],
and the result can be verified with a detailed model of pointing per-
formance as with the OPTI [MacKenzie and Zhang, 1999] and OPTI II
[Zhang, 1998, MacKenzie and Soukoreff, 2002b] layouts. Alternatively a
suitable algorithm can be used to do the optimization work using the same
efficiency metrics that are used for evaluation [Zhai et al., 2002a].

Soft Keyboard Theory

Modeling user performance with soft keyboards is one of the areas of text
entry research that have received the largest amount of attention in recent
years. There are at least two reasons for this. First, soft keyboards are
widely used making research on them well justified. Second, the task lends
itself well to modeling because of the limited and predictable role of the user.

Work on soft keyboards has been reviewed in considerable detail in three
papers in the recent special issue of the Human-Computer Interaction Journal
[MacKenzie and Soukoreff, 2002b, Zhai et al., 2002a, Hughes et al., 2002]. I
will not duplicate this effort. Instead, I give a short overview with some
emphasis on issues that are most relevant regarding the work presented later
in this thesis.

The basic idea in dominant soft keyboard models is that because the user
is typing with only one finger (or a stylus), the typing activity is actually
a series of discrete pointing tasks. A pointing task can be modeled using
Fitts’ law [Fitts, 1954, Card et al., 1983, Soukoreff and MacKenzie, 1995] 9.
The models describe the kind of behavior where the motor act of pointing
and tapping on the keys is the bottleneck limiting the text entry speed. This
kind of behavior occurs when people have a lot of experience in the task and
there are no simultaneous cognitive tasks to slow down their performance. In
practise this kind of behavior can usually be observed only in bursts between
slower passages. During the slower passages the writer’s thoughts being oc-

9Fitts’ law in its present form states that movement time from a starting point to a
target at distance A and with width of W is, on average, equal to a + blog( A

W + 1), where
a and b are constants
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cupied by something other than the act of typing. However, if the parameters
of Fitts’ law model are measured from a real usage situation, the model can
produce realistic estimates for user performance even when some cognitive
delays are present in addition to the motor performance. In this case, how-
ever, the modeling assumptions are being stretched. The consequence is that
the results are estimates based on the motor performance and an implicit
correction for time spent on other activity. Both issues should be considered
when comparing such models.

The original model by Soukoreff and MacKenzie [1995] included a compo-
nent for modeling novice performance with soft keyboards. A person new to
a particular soft keyboard needs to scan the keyboard visually and look for
the key to press. Soukoreff and MacKenzie used the Hick-Hyman law 10 to
describe the visual scanning time. Sears et al. [2001] have argued that the
Hick-Hyman law is not suitable for describing visual scanning time because
it describes choice reaction time. They also used the notion of a novice user
in a more convenient manner that does not require the user to be completely
new to the keyboard layout under question. With this definition it is clear, as
pointed out by Sears et al., that previous experience is a factor that needs to
be included in the model. Unfortunately, no workable model has ensued, and
the modeling of novice soft keyboarding performance remanis a gray area.
Luckily novice performance does not need to be modeled because it can be
measured. Expert performance, on the other hand, is expensive to measure
because training users in the use of a new soft keyboard can take years.
The Fitts’ law based upper bound component of the model by Soukoreff and
MacKenzie remains the best tool for finding an estimate for expert perfor-
mance. The alternative method by Hughes et al. [2002] requires extensive
data collection and is therefore more laborious, at least if the quality of the
data needs to be good enough to exceed the accuracy of results attainable
by the Fitts’ law model.

2.2 Menus and Menu Hierarchies

2.2.1 Menus in General

There is no essential difference between a stationary menu and a soft key-
board. Both are selection-based interfaces. However, both are well known
user interface components that are usually conceptualized separately for his-
torical reasons. This is why I discuss keyboards and menus separately.

There are two kinds of menus in user interfaces: stationary and pop-up
menus. These are usually managed so that some space on a display is used for
a small stationary menu that pops up larger pop-up menus. Context-sensitive
pop-up menus containing options pertaining to the object that was clicked to
launch the menu are another commonly used technique. All these approaches
can be used in text entry. Menu items can be individual characters, prefixes

10The Hick-Hyman law states that the time from a stimulus to selection of one of N
targets is equal to c + dlog2(N) where c and d are constants.
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or suffixes, words, or entire phrases.
A large vocabulary can be arranged into a tree form and displayed as

hierarchical menu system. Such a menu system can be navigated using a
very constrained input device. In the extreme only one switch is needed.
Menu items are then highlighted automatically in sequence and selections
are done by activating the switch while the desired item is highlighted.

Systems like this are used for text entry especially by people with disabil-
ities that prevent the use of other input devices. The menu systems can be
context sensitive, so that the tree is pruned of branches that cannot fit the
phrase being written.

2.2.2 Menu Systems

Hierarchical menus have also been proposed for stylus-based text entry for
able-bodied users. The T-Cube system [Venolia and Neiberg, 1994] used a
two-level circular menu structure. The first level menu had eight items in a
doughnut arrangement around a central ninth item. Landing the stylus on
any of these nine items popped up a further eight-item menu. Characters
were selected in the second level menu by moving the stylus in the direction
of the desired item and lifting it.

The difference between menus and interfaces sometimes labeled “gesture-
based” is not entirely clear. The gesture-based techniques such as
Cirrin [Mankoff and Abowd, 1998], Quikwriting [Perlin, 1998], EdgeWrite,
[Wobbrock et al., 2003] and Weegie [Coleman, 2001] all have an input area
that is divided into zones that are selected in specific sequences. Whether we
call these sequences selections, menu selections, or gestures does not make
that much difference. Herein all these systems are considered menu selection
techniques. Systems that claim to be gesture recognizers or character recog-
nizers but work using a similar zone-based algorithm should be considered
recognizers. The difference is, as stated above, whether the user is supposed
to be aware of the selection nature of the system or not.

2.2.3 Menu Theory

The theory to apply to menu-based text entry interfaces depends on the
nature of the interface. If the user does not know the menu system or
if the menu system is dynamic and therefore requires the user to ob-
serve the display and make decisions, the cognitive processes should be
present in the models. The best way to go is an appropriate adap-
tation of the Goals, Operators, Methods, and Selection rules (GOMS)
[John and Kieras, 1996] methodology. The lessons learned in menu us-
age in general [Norman, 1991, Aaltonen et al., 1998, Byrne et al., 1999,
Shen et al., 2002, Kurtenbach and Buxton, 1993] should be taken into ac-
count and adapted appropriately for the text entry context. If, on the
other hand, the system is to be learned so that using it requires only lim-
ited cognitive involvement and feedback processing, models of motor per-
formance such as Fitts’ law [Fitts, 1954, MacKenzie, 1992] or Steering law
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[Accot and Zhai, 1997] should be used for the motor parts of the usage in-
stead of the time constants in the GOMS framework. A simple model for
a text entry method involving pointing and menu selection is described in
Paper IV.

2.3 Text Recognition

2.3.1 Text Recognition in General

Initially teaching computers to read the same text representations that are
intended for human use may seem like a good idea. From the human perspec-
tive it is indeed a good idea. However, from the perspective of computing
it is a horrible idea. Text on paper, regardless of whether it is machine or
hand written, is not a suitable way to present information for computers.
Decades of research have been invested in developing text recognition al-
gorithms and the results are still far from perfect. The capabilities of the
systems currently available are impressive for anyone who has ever tried to
construct such a system, but for a lay user they are still too error prone.
This is the case if the user is expecting perfection, which is reasonable if the
attitude is that computers should not make mistakes. According to stud-
ies [Frankish et al., 1995, LaLomia, 1994] users may be expecting perfection,
but do not absolutely require it. The required recognition accuracy depends
on task and application [Frankish et al., 1995] but 97% accuracy is a good
rule of thumb [LaLomia, 1994].

Given the nature of the recognition task, a 97% recognition rate is difficult
to achieve. The difficulties stem from the fact that when seen at a low level,
text on paper is ambiguous. The same shape may mean different things in
different places. A circle may be “.”, “o”, “O”, “0”, or even the dot on
“i”, “ä”, “ö” or more likely on “̊a”. In handwriting the text is not precisely
formatted and different shapes may mean the same thing. People make use
of the semantic and other redundancies in the text to fill in the blanks and
resolve the ambiguities. In order for computers to do the same, they would
need roughly the same level of language skills that humans have. Despite
the ongoing work on language technology and artificial intelligence, this is
unlikely to be reality in the foreseeable future.

Regardless of the computational challenges, many text recognition systems
are in use. According to the convention in the area, I have divided these
methods and systems into two main classes: off-line recognition and on-line
recognition. On-line recognition is by far the more important regarding this
thesis as it is the desired method in interactive text entry situations.

2.3.2 Off-line Recognition

Off-line text recognition means that text is generated first and recognized
later. There are several reasons that make this a good idea. Firstly, com-
puting power used to be very limited. When the algorithms could run as
long as they needed it was possible to get better results. Another reason
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for using off-line recognition is that there is more information available be-
cause the whole text can be used as a context of recognizing a particular
character or word. The last reason for off-line recognition is that sometimes
it is exactly what is needed. For example, scanning and converting texts
from paper to computerized form using optical character recognition is a
task that employs off-line recognition naturally. The need for doing this
emerges for example when sorting mail or processing cheques automatically
[Vinciarelli, 2002, Plamondon and Srihari, 2000].

2.3.3 On-line Recognition

On-line recognition means recognizing text under some sort of real-time re-
quirement. Usually the requirements are of a soft nature, such as not keeping
the user waiting for too long. A fundamental difference from off-line methods
is that the recognition algorithm can use only past events in the recognition.
For example, a character recognizer does not know whether a vertical stroke
will be followed by another stroke or not. Dealing with this limitation has
led to a variety of solutions.

In the context of handwriting recognition on-line recognition usually
means having access to data on the dynamic characteristics of the writing.
This means that the order of strokes, pen tip velocity, pen tilt, and pen tip
pressure can be used to aid recognition.

In addition to the on-line/off-line continuum, text recognizers are different
in the use of the context in the recognition. There is a whole range of
possibilities from recognizing each character in isolation to recognizing words
or phrases with and without a language model. Language models may be
simple rules derived from usage context or more generic systems that include
knowledge of grammar and other patterns typical for writing in general or in
a specific domain.

Character Recognition

At one end of the range of context use are character recognizers that recognize
text one character at a time. These systems need to deal with the character
segmentation problem mentioned above. Solutions include time delays after
each stroke in anticipation of another stroke belonging to the same character,
boxed recognition, where each character must be drawn in its own box, and
tentative recognition, where the recognizer can take back its earlier guess if
new information makes it unlikely to be correct.

Off-line Recognition Using On-line Information

Because character segmentation is difficult, especially for cursive handwrit-
ing, and recognizing characters in isolation is sometimes impossible even after
perfect segmentation, it makes sense to gather longer passages of input and
then recognize words or phrases instead of individual characters. This kind
of approach leads to a recognizer with relaxed real-time requirements. The
user does not need instant feedback after every character, and can wait for a
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few seconds for a passage to be recognized. The recognizer can also work in
the background while the user is writing to pre-process the input for recog-
nition and to do tentative recognition. All this means that the recognizer
can do most of the things that off-line recognizers do, but it also has access
to all of the information produced by a pointing device including timing of
the movements. A recognizer that utilizes this technique is included in the
Microsoft TabletPC platform.

Unistrokes

Ambiguity and segmentation are two significant problems in on-line hand-
writing recognition. If all characters are drawn with a single stroke and the
strokes are designed to be as unambiguous as possible, these problems can
be eliminated. The advantage is a greatly simplified recognition algorithm
with higher recognition accuracy. The downside is that people cannot use
their familiar handwriting, but need to learn a new character set.

Avoiding the segmentation problem is an old trick that could not have gone
unnoticed by the developers of the early handwriting recognizers. Similarly
it must have been clear that designing a character set to fit a recognition
algorithm is easier than designing a recognition algorithm that can recognize
traditional handwriting. However, these ideas were not put forward as a goal
to be pursued until Goldberg and Richardson published their unistroke paper
[1993].

Unistrokes are characters that are drawn with a single stroke. This makes
character segmentation trivial, because each stylus lift signals the end of a
character. The original unistrokes utilized four shapes that were drawn in
different directions and orientations to produce the entire English alphabet.
Unlike with pen and paper, the direction of stylus movement is a good way
to distinguish between characters in on-line handwriting recognition.

Soon after the paper by Goldberg and Richardson, Palm computing 11

published their PDA platform utilizing a text input system called Graffiti
[3Com, 1997]. Graffiti characters are mostly drawn with a single stroke.
The exception being accented characters that are drawn with two strokes so
that the base character is drawn first and the accent with the next stroke.
This one stroke per character approach resembles Goldberg and Richardson’s
Unistrokes. The shapes of the characters, however, are usually closer to
Latin hand printing than the shapes proposed by Goldberg and Richardson.
Although some people find Graffiti cumbersome and dislike it, it has been a
commercial success12. Palm PDAs have a large market share and even the

11In keeping with the dynamic years of the IT bubble, Palm was soon acquired by
USRobotics, which was then bought by 3Com. Around this time some of the Palm veterans
left the company and set up a competing company called Handspring. A few years later
3Com split Palm into a separate company that then bought Handspring, thus completing
the circle. As a result of this history, the references to devices in the Palm product family
take many forms in recent publications.

12Recently Palm has abandoned their old Graffiti system and bundled a version of Jot
by Communication Intelligence Corporation (CIC) with their PDAs. The new system is
called “Graffiti 2 powered by Jot”. One of the reasons that may have contributed to this
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character recognizer in the Microsoft PocketPC platform includes a mode for
Graffiti-like characters.

Originally Unistrokes were argued to be faster than traditional handwrit-
ing. The claim makes sense because the strokes can be simpler thanks to
the added dimension of stroke direction. This issue is discussed further in
Chapter 4, where a simple model for the relationship of stroke complexity
and drawing time is described.

2.3.4 Recognition Interface Theory

Research on handwriting recognition has largely focused on recognition tech-
nology. Work on other aspects of the user interface is less common. No-
table exceptions to this trend are the character set re-design efforts discussed
above. Another departure from the mainstream is work on interaction tech-
niques for dealing with situations when recognizers cannot resolve ambiguities
without help from the user. This work has been summarized and extended
by Mankoff et al. A typical technique is to present the user with a list of
possible interpretations so that he or she can choose the intended one. In
other words, when recognition fails the user interface falls back to explicit
selection. [Mankoff et al., 2000]

Because the design of the characters and handwriting practises in general
has been taken as a given and immutable starting point of recognition inter-
face design, there has been little need for models and theories that aid the
design of character sets and the recognition interface. One exception is the
work on gesture design and gesture design tools by Long et al. [1999, 2000].
Although the original context of the work is gesture recognition rather than
character recognition, the findings also apply to character recognizers.

2.4 Composite Systems

2.4.1 Composite Systems in General

Usually classification efforts run into trouble at some point. One of the
troublesome points in classifying text entry systems is combinations of two
or more basic technologies. To which class does a system like SHARK
[Zhai and Kristensson, 2003] with a soft keyboard and handwriting recog-
nizer belong? Is it a soft keyboard or a handwriting recognizer? My solution
is to call it a composite system and place it in its own class. The composite
system class is an umbrella class that covers all combinations of the basic
technologies discussed above. In terms of Figure 2.1 this means introducing a
category of systems that overlaps two or more of the other categories. Figure
2.4 shows a more detailed version of the category visualization including the
major sub-categories described above.

decision is the long-running legal battle over whether the Unistroke patent (US patent
5596656) owned by Xerox, applies to Graffiti.

25



CURRENT STATE OF MANUAL TEXT ENTRY

Figure 2.4: Text entry building blocks revisited.

The components of composite methods can be configured in different ways.
Parallel and serial configurations are shown in Figure 2.5. In the soft key-
board and handwriting recognizer example above the configuration is paral-
lel. Both components function as independent sources of text. The input is
routed to one of them, depending on the type of stylus activity that is taking
place. The other obvious configuration is serial. In this case the output of
one method is the input of another. The chain could in theory be longer
than two methods, but real-world examples are difficult to find.

Typically the first method is a text entry system that can be used on its
own and the second method in the chain adds some useful functionality. Word
completion algorithms, abbreviation engines, and other language models are
popular second layer methods.

Word completion aims to guess the word as the user writes it. If it guesses
right, the user can accept the completion and move on to the next word. This
technique works well if the words are long and the word endings do not vary
much. This is the case for some languages but not for all.

Abbreviation expansion engines have an abbreviation dictionary that they
use to expand the abbreviations that the user enters. This kind of a system
can be useful when a user needs to enter long phrases or words frequently.

Systems with more than one basic language model operating simulta-
neously are possible. For example, the EzText system by Zi Corpora-
tion combines disambiguation and word prediction for mobile phone use
[Zi Corporation, 2003].

In addition to the serial-parallel dimension of organizing the components of
text entry methods it is useful to think of the level of modularity of composite
systems. In a clear parallel configuration the different methods do not need
to communicate. Both can produce text as they see fit. In a clear-cut serial
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Figure 2.5: Basic composite configurations.

configuration the situation is likewise simple. One method produces a stream
of text or other tokens and another processes that stream. In these cases the
methods can be implemented quite independently of each other. This is the
case for most word completion products. They are relatively independent of
the underlying text entry scheme. It may be a hardware keyboard, software
keyboard or handwriting recognizer. All the word completion package cares
about is receiving character events to use for the prediction.

Sometimes such modularity is not equally easy to realize. For example,
if we want to configure a soft keyboard to have a pop-up menu that is dy-
namically updated to contain the most probable characters following the last
character entered (in a way reminiscent of [Shandbhag et al., 2002] and Pa-
per IV), we cannot easily separate the menu and the keyboard into generic
modules. The operating logic and the shared display area of the two systems
are intertwined in a way that necessitates shared control logic. The control
logic can be mediated with systems like Microsoft COM/DCOM that allow
control to pass from one process to another, but this does not change the fact
that function calls need to be made and somebody has to make them. There-
fore, the parts cannot be truly independent. Arguments for the usefulness of
independent text entry modules are included in Paper VII.

To illustrate the richness of composite systems that can be generated
around any given basic text input technology I will take a closer look at soft
keyboard composites. Because soft keyboards have attracted widespread
interest in recent years, the number of different composite methods with a
soft keyboard component is rather large. A nice feature of the soft keyboard
composites is that most of them make some kind of sense and could prove
useful in some potential situation.
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2.4.2 Soft Keyboard Composites

Disambiguation systems, abbreviation engines, and word and phrase com-
pletion systems can be used with any text input system including soft key-
boards. Because soft keyboards that have approximately one key for each
character are relatively fast, the utility of some of these techniques is often
questionable. However, there are other ways to use language models with
soft keyboards.

Goodman et al. [2002] have proposed using a language model to reduce
the error rate of soft keyboard text entry. This is a useful approach because,
assuming that the user is writing in the language that the model knows, the
model will correct errors in the background so that the user does not even
notice its existence. However, as we know based on experience with word
processors with automatic spelling correction, if the language of the model
and the user do not match, the use of the model can actually slow down work
and seriously frustrate the user in the process. The basic rules of language
specific systems apply. Making one for every language is expensive. On the
other hand, a few systems for the major languages go a long way.

Besides invisibly adapting the size of the keys based on the language model
and usage context (this is essentially what the system by Goodman et al.
does), keyboards can adapt in other ways. At least one such system has
been constructed [Himberg et al., 2003]. This system adapted the layout
of a soft-keyboard according to the pointing coordinates so that the buttons
moved and changed their size to better match the user’s typing motions. The
keyboard that Himberg et al. experimented with was the traditional nine-key
numeric keypad. It was used on a flat touch-screen with the thumb so that
the other fingers were behind the screen. In the experiment the adaptation
algorithm behaved mostly in a stable manner and the adaptation seemed to
make sense in terms of the movement capabilities of the thumb. However,
sometimes the system produced fast and great changes in the keyboard lay-
out, leading to key placement that was clearly undesirable. The adaptation
algorithm needs to be improved. It is unclear if this kind of system would
be useful in general.

Soft keyboards and menus have been combined in many ways. The two
main goals have been to save space and to increase text entry speed. Space
can be saved by placing infrequently needed characters in a menu that pops
up in convenient places. Shanbhag et al. [2002] constructed a soft keyboard
and menu composite for entering the Devangari script. In this approach
the 50 Devangari script primitives are arranged in groups that are accessed
by selecting one of 21 keys showing “group leader” primitives. The initial
selection changes the key assignments so that the surrounding keys contain
the other characters in the group. Thus characters are entered with taps and
menu selections. A similar approach has been used in some soft keyboards for
languages that use supersets of the Latin alphabet. For example the Fitaly
soft keyboard [Textware Solutions, 2003] includes a “sliding” feature that
allows entering an upper case version or an accented version of a character
by doing a menu selection after landing on a key. The feature can also be
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customized to fit user preferences. The use of this kind of technique for
speeding up text entry is examined in Paper IV.

The shorthand aided rapid keyboarding (SHARK) system is an interest-
ing composite system. It combines two kinds of language modeling with
a recognition and selection based text entry methods. The soft keyboard
component is the ATOMIC keyboard [Zhai et al., 2002a]. The key positions
have been optimized to minimize key distances when entering English text.
The soft keyboard can be used in the normal manner by tapping the keys.
Additionally, when the user draws on the keyboard with the stylus, the tra-
jectory is recognized using a handwriting recognizer. The recognizer knows
the shapes that connect the keys of the most frequent words in the language
(the second application of language modeling). The user can, therefore, lift
the stylus between each key or drag it from one key to the other and both
behaviors result in the entry of the same word. Additionally, the recognizer
does not mind if the size of the stroke changes. It is still recognized cor-
rectly. The shape of the stroke may change within limits giving the user
some freedom to cut corners in order to achieve faster strokes. The goal is
to let the user use the recognition part for rapid entry of the frequent words
and the tapping part for sequences that he or she does not know well enough
to draw. Zhai and Kristensson conducted an experiment and showed that
the trajectories can be taught to both the handwriting recognizer and the
users. Final conclusions on the usefulness of the system are yet to be made,
as long term trials with the system have not been conducted to measure the
user and recognizer performance. [Zhai and Kristensson, 2003]

While methods for text enty in non-European languges in general are
beyond the scope of this thesis, I will mention one system as an example of
more complicated composite systems. The Predictive cOmposition Based On
eXample (POBox) system [Masui, 1998a, Masui, 1998b] is mainly intended
for input of East Asian languages such as Japanese and Chinese, which have a
very large number of characters. It can also be used for European languages,
but the advantages of using it are more limited. POBox contains a soft
keyboard, a handwriting recognizer, an abbreviation expansion engine, a
word completion system, a stationary (but dynamically updated) menu, and
a popup menu. For a detailed description of the system, we refer the reader
to Masui’s articles [1998a, 1998b, 1999] on it. It is sufficient here to say
that the components have both parallel and serial relationships. Because
of the large character set of the Japanese language POBox is an efficient
way to enter Japanese into pen-based computers despite the congnitive and
perceptual demands it places upon the user. Consequently, it is more widely
used than the other systems discussed in this section. Many implementations
are available for downloading in the Internet. Additionaly adaptations of
POBox have been used by Sony in mobile phones in the Japanese market13.

13According to personal communications with Toshiyuki Masui and press releases by
Sony and Sony Ericsson.
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2.4.3 Composite System Theory

The notion of composite systems emerges from the classification effort. It
is a useful notion for understanding the structure of text entry systems and
identifying the proper context of the different features of the components, but
it is not especially useful in modeling user performance. Additionally, most
composite systems are marginal in the real world. Thus it is not surprising
that no general theory or tools for modeling user behavior with composite
methods exists. The way that user modeling is done in these cases is to
use ad hoc composite models that combine the models of the component
methods. While I am not aware of any examples, it would be relatively easy
to combine for example the Keystroke Level model (KSL) [Card et al., 1983]
as employed by Dunlop and Grossan [2000] and the Fitts’ digram model
by Soukoreff and MacKenzie [1995] into a new model that could be used
for modeling soft keyboard composites that do require significant cognitive
effort.

While it may be difficult to construct accurate models for user performance
with complex composite systems, it is sometimes easy to find the limits within
which the user performance must be.

For example we can estimate whether word completion will be helpful if
the speed of the underlying text entry method and the time needed for select-
ing or accepting the completion is known. Figure 2.6 shows an adaptation
of Figure 1 in Zagler [2002]14. The curves show the borders where use of
word completion starts to pay off. Below and to the left of any given curve
word completion can save some time. Above and to the right using word
completion is slower than not using it. The factors accounted for in Figure
2.6 are the speed of the text entry technique being used (horizontal axis),
the time needed for each word completion (vertical axis), and the number of
characters entered through a completion (curves from 1 to 8).

If we have a text entry system that can produce about 40 words per
minute and selecting a word completion takes on average one second, we
can see that each completion has to save us from entering seven or more
characters in order to speed up text entry. Such a system is very difficult
to construct because the average word length in English is less than seven
characters. On the other hand if selecting a completion still takes the same
amount of time but we are using a very slow text entry system such as a
gaze-operated keyboard (10 wpm), we can see that if the system saves more
than two characters per completion, it can be helpful.

2.5 Multi-Device Methods

2.5.1 Multi-Device Methods in General

Some text entry methods are designed for use with a specific device. This
makes sense, because many devices have unique capabilities that can be

14This may have been inspired by Koester and Levine [1994].
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Figure 2.6: Limits for the usefulness of word completion with different num-
bers of characters saved per completion. Below each curve time can be saved.
The lowest curve is for one saved character and the highest for eight saved
characters per completion.

exploited to make the method faster and more pleasant to use. However,
having a different method for each device creates the need to learn many
methods. The idea of multi-device text input methods is to design methods
that can be used with as many input devices as possible. This idea is in use for
example when the QWERTY layout is used on a soft keyboard. The designer
of the soft keyboard has decided to utilize skill transfer from physical desktop
keyboards instead of requiring the user to learn a new keyboard layout.

Designing a good multi-device text input system is a difficult task because
maximal device independence tends to produce systems that use only those
features that all of the compatible devices share. This set of features tends
to be very small. Some devices are not used optimally, making it difficult to
match the performance of device specific methods.

2.5.2 Multi-Device Systems

Dasher by Ward et al. [2000] is an example of a multi-device method. It can
be used with any input device that allows reasonably good two-dimensional
pointing. This includes mice, styli, joysticks and eye trackers.

Dasher is used by pointing characters that appear from the right edge of
the display. Each character has its own area within which the pointer has to
be in order for the character to be selected. The character areas close to the
pointer grow in size until they fill the whole display. the following characters
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then grow within the area of the preceding ones. The growing speed of a
character area is controlled with the pointer. The closer the pointer is to
the right edge of the display, the faster it grows. This dynamic animation is
orchestrated by a variation of a data compression algorithm so that the most
probable following characters are given the largest initial sizes. Entering
“typical” text can be done very fast because the typical strings are present
most prominently and therefore they are easy to see and select.

In tests by Ward [2001] Dasher proved to be competitive in both speed
and error rate against traditional stylus-based text entry techniques such as
handwriting and soft keyboard tapping. It was not as fast as touch typing on
a desktop keyboard. In eye tracker use Ward claims the highest text entry
rates ever recorded on an eye tracker (up to 20 wpm).

The disadvantages of Dasher include the relatively large display area re-
quired and potentially stressful operation as the user needs to control the
cursor continuously. Taking a break requires a conscious decision to with-
draw the cursor on the central area so that the animation stops.

Multi-device text entry methods are discussed in more detail in Chapter
3, where we report two experiments on such systems.

2.5.3 Multi-Device Theory

As with composite systems, the use of multi-device systems is problematic
to model accurately. The reasons for the difficulty are somewhat different.
Composite systems themselves may be complicated and therefore their in-
teractions with the user are very varied, necessitating complicated models.
The interactions with multi-device systems tend to be simple because they
utilize only a limited set of input primitives that are common to all compat-
ible input devices. The existence of multiple input devices is the factor that
complicates the situation. Because the input devices may be different, one
model most likely cannot handle them all accurately. Device-specific mod-
eling may be more fruitful. The appropriate methodology depends on the
implementation on the particular device. Suitable models can be found in
the earlier sections.

2.6 Performance of the Different Methods

Comparing the performance of different text entry methods is almost impos-
sible to do accurately. Because of the long learning path of many methods,
users exhibit a wide variety of skills. Even empirical pairwise within-subject
comparisons are influenced by the earlier experience that the users have.
Despite these difficulties there are good reasons for doing performance com-
parisons. Improved performance is by and large the most obvious objective
reason for choosing one text entry method over another.

Using information throughput measures commonly used in engineering for
modeling human performance has been a long running undercurrent in HCI.
Examples of such work include some uses of Fitts’ law that are based on
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the analogy between Fitts’ equation and Shannon’s theorem for information
transfer over a noisy channel [Ward, 2001]. Shannon’s concept of information
is sometimes directly applicable to user interfaces. For example in a com-
munications system for disabled people the user is often actually selecting
one object among many. This is the very task that Shannon used for his
definition of information [Shannon and Weaver, 1949]. Consequently in this
area there have been calls for using bits per second as the measure of user
interface efficiency [Wolpaw et al., 2002].

There is nothing wrong with these endeavors. Shannon’s theory does
describe information transfer between a computer and a user. However, just
like in engineering, the theory only sets the limits under which the systems
operate. Exact information transmission rates depend, within these limits,
on the practical implementation issues such as coding schemes that are used
in the apparatus that is used for the information transmission. Conclusions
such as those drawn by Ward [2001] should, therefore, be taken with the
caution that while some transmission rate is theoretically possible, it may
not be so in practise.

The performance figures given below are based on experimental results
available in the literature. In some cases modeling results have been used
to fill in the blanks in the experimental work. Overall the numbers have
been selected to reflect the best available knowledge and to give a coherent
view of the state of the art without going into the intricacies of each system,
experiment and model. Consequently the given numbers are unlikely to be
strictly accurate. The purpose is to give an overview, not to replace more
detailed comparisons.

Keyboards

Full keyboards are by far the fastest text entry methods in common use.
World records of over 200 wpm over short periods of time have been claimed
[Blackburn and Ranger, 1999, Grey Owl Tutoring, 2003]15. According to the
same sources, highly proficient typists can maintain speeds of over 100 wpm
for several minutes. Typically typists work at speeds between 50 and 75 wpm
[Card et al., 1983].

Often comparison between a desktop keyboard and a text entry method
intended for mobile use is not really fair because some mobile devices are
used with just one hand. I have been unable to find reports on one-handed
typing. Therefore, in the context of work reported in Paper III, I measured
one-handed text entry rates in 5-minute transcription tasks. The results in-
dicate a rate of about 20-25 wpm with a desktop QWERTY keyboard. This
corresponds to about 70% of the two-handed performance of the same par-
ticipants who were not particularly fast, averaging only 36 wpm. With faster
typists the difference may be greater even if, unlike my participants, they

15The Internet sources more or less agree on that the fastest burst speeds are around 210
wpm. What they do not agree on is who is the record holder. Most refer to some edition
of the Guinness Book of World Records as the source of the information. Undoubtedly
different editions may contain different information
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take some time to train their one-handed skill. Whether to compare the per-
formance of other text entry methods to one or two-handed typing does not
depend only on the one- or two-handedness of the method being compared,
but also on whether two handed keyboarding is a realistic alternative. In
mobile use this is rarely the case.

Because miniature QWERTY keyboards are too small to fully allow the
parallelism that makes desktop-sized keyboards so fast, they are somewhat
slower. The results of the Dom Perignon speed contest organized by Textware
Solutions [2002] give an indication of the kind of performance that is possible
with highly trained users and limited text passages. The highest rate mea-
sured in the third contest was 84 wpm. Due to extreme training with the
short text passage used in the context, this result exceeds the upper limit
estimate of 60.74 wpm produced by the model for two-thumb text entry
[MacKenzie and Soukoreff, 2002a]. Typical expert text entry rates with full
miniature keyboards are likely to be in the order of 20-40 wpm.

Text entry rates with the telephone keypad have been measured in ex-
periments and estimated with models. Novice performance with multi-tap
disambiguation is typically around 7 wpm. The longest experiment with
multi-tap was in the LetterWise study by MacKenzie et al.. By the 20th
25-minute session the participants reached an average rate of 15.5 wpm.
Models predict that the human motor system allows speeds up to 27 wpm
[MacKenzie et al., 2001]. Disambiguating language models reduce the num-
ber of necessary key presses. MacKenzie et al. measured an average text
entry rate of 21 wpm with the LetterWise algorithm. Theoretically 38 wpm
should be possible [MacKenzie et al., 2001].

Chord keyboards seem to be relatively fast. Speeds up to 36 wpm with
one-handed chording and up to 42 wpm with two-handed chording have been
reported after 35 hours of training [Gopher and Raij, 1988]. These rates
would undoubtedly increase with further training. Due to the scarcity of
chord keyboard users, information on highly trained users is not available.
However, we can safely assume that chording cannot be as fast as touch
typing on regular keyboards. This is because chording is more serial than
ten-finger typing. The whole hand is committed to the entry of one char-
acter and no preparation for the following ones can happen. Two-handed
keyboards allow parallel operation of two input streams, but this is still far
from what can be achieved with ten somewhat independent fingers. A rea-
sonable estimate for the range of expert text entry rates possible with chord
keyboards is in the order of 40-70 wpm.

The crucial difference between physical keyboards and soft keyboards is
that soft keyboards usually allow only one point of contact. This makes
the motor activity in text entry strictly serial. Consequently soft keyboards
are not quite as fast as physical miniature keyboards. The Dom Perignon
III Speed Contest recorded the highest soft keyboard rate of 78 wpm. This
rate was recorded with the the Fitaly keyboard that has been modeled to be
capable of about 42 wpm [MacKenzie, 2002a]. Again, the modeling result
attempts to reflect the average performance of a well trained population of
normally talented users, whereas the record rate has been set by an appar-
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ently exceptional individual. In an experiment with the OPTI layout that
has modeled performance roughly equal to the Fitaly layout, the partici-
pants achieved an average text entry rate of 45 wpm. Overall, text entry
rates with soft keyboards are in the order of 15-50 wpm depending on the
key organization and user skill level.

Menus and Menu Hierarchies

Scanning menu systems intended as communications aids for disabled people
tend to be slow. Text entry rates are at best in the order of 10 wpm. With
more expressive input devices scanning can be replaced with direct selection.
yielding higher rates. The next obstacle is overcoming the need to use the
visual feedback loop for guiding the selection. This can happen if the users
learn the menu layout so that they do not need to see and comprehend it in
order to use it. This may happen, for example, in T-Cube, where the second
level menus can be learned. Only the initial selection in the first menu needs
to be visually guided. The second selection can happen immediately after it
in one fluid motion. A longitudinal pilot experiment with T-Cube yielded
text entry rates between 12 and 21 wpm [Venolia and Neiberg, 1994]. At the
end text entry rates were still growing, suggesting that with practice the rate
would improve. It is likely that efficient menu systems yield text entry rates
only slightly lower than soft keyboards. That is, experienced users can enter
text at rates between 20 and 40 wpm.

Handwriting Recognition

Text entry rate with handwriting recognition is slightly lower than traditional
handwriting speed. The fastest shorthand systems are mostly unsuitable
for text entry since they rely heavily on abbreviations effectively increasing
the number of strokes to be recognized. This makes constructing a reliable
recognizer nearly impossible. Even regular handwriting tends to deteriorate
as speed increases. Realistically we can expect fluent recognition to occur
when the user is not writing at full speed and so that he or she taking into
account some of the special needs of the particular recognizer being used.
Alternatively, the user can write fast and spend time on correcting errors.
Overall, the end result is that effective text entry rate with handwriting
recognition is less than 25 wpm [Ward, 2001, Chang and MacKenzie, 1994,
MacKenzie et al., 1994].

Composite Methods

As explained above in the context of word completion systems, composite
methods with a language model can be faster than the same method without
the language model. Word completion techniques are effective only if the un-
derlying text entry method is slow enough. This is because visual feedback
is needed to perceive the suggestions made by the system and cognitive pro-
cessing of the feedback takes some time. Other composite methods such as
the SHARK system [Zhai and Kristensson, 2003] and my work in Paper IV
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claim to offer speed advantages, but have not so far demonstrated significant
improvements. Overall, composite systems tend to perform no faster than
the fastest of the component methods.

Multi-Device Methods

The known multi-device methods achieve their input device compatibility by
using some form of two dimensional pointing that degrades gracefully when
the performance of the pointing device diminishes. For example, MDITIM in
Paper I uses a touchpad or a mouse but extracts only four movement direc-
tions and a button press from the input. These can just as well be entered
with five keys. Similarly the nine tokens used for Quikwriting input can
be entered by pointing or with nine keys. Due to its extreme simplification
and unfamiliar character shapes MDITIM is slow: only 7.5 wpm after five
hours of practise. Quikwriting and Dasher, on the other hand, are some-
what competitive in comparison to other systems that can be used with the
same input devices. With eye trackers Dasher is the fastest known system,
allowing expert text entry rates of over 25 wpm [Ward, 2001]. The Highest
joystick-based text entry rate of 13 wpm is reported for Quikwriting (Paper
III). Although there are no empirical results available, Dasher is likely to be
faster in joystick use. Overall, multi-device methods are likely to be slower
than the fastest device-specific methods with each device.
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Chapter 3

Experiments

This and the following two chapters discuss the papers that contain the main
contributions of this thesis. For each subject matter in the papers there are
two subsections: introduction and discussion. It makes sense to read the
introduction before the relevant paper and the discussion after the paper.

The breadth and depth of the treatment in these chapters varies depending
on the amount of relevant work that has been left out of the papers due to
the space constraints involved in conference publication. In some cases new
material is introduced based on feedback received after the publication.

The work is divided between this chapter and Chapter 4 on models based
on the content. Some papers contain both experiments and models. Here
the experiment is the main focus. Discussion on the central modeling part
of Paper IV is left for Chapter 4.

3.1 MDITIM

3.1.1 Introduction

One of the main themes in this thesis is coping with the variety of input
devices that are available. Paper I presents the idea of designing text in-
put methods that can be used with many devices. Based on the evaluation
presented in Paper I the particular implementation was not a great success.
Paper I is included in this thesis because it is the origin of the notion of
device-independence that is is re-visited in Papers III and VII.

3.1.2 Discussion

Statistical tests are not presented in Paper I. I re-analyzed the data from
the experiment and present the results here in a form that is similar to the
treatment of experimental results in later experimental papers.

Two issues should have been tested. First, we claimed that participants
can learn to use the text entry system. A repeated Measures ANOVA con-
firmed what is obvious based on Figures 4 and 5. The session (i.e. practise)
has a significant effect on the text entry rate (F9,36 = 22.7, p < 0.001).
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The second issue was the existence of skill transfer from the touchpad
to the other devices. This claim seems reasonable based on Figure 7, but
its statistical justification is more difficult based on the collected data. The
weakness is that we did not make the same measurements with all devices.
The missing piece of information is user performance with other devices than
the touchpad before the 5-hour touchpad training. We can assume that the
performance would not have been any better than the initial performance
with the touchpad, but we do not have the data to see whether this was the
case.

Additionally, in the Discussion section we claim to have found differences
in text entry rate with the different devices. The best I could do to examine
this issue was to run a repeated measures ANOVA on the average text entry
rates with the five different input device conditions (last touchpad session,
trackball, joystick, keyboard, and mouse). There was a significant effect
(F4,16 = 5.9, p < 0.01), but a closer examination with paired-samples t-
tests revealed that none of the pairwise differences were significant enough
to withstand the Bonferroni correction for 10 pairwise comparisons.

However, because text entry rate and error rate can be traded within
limits depending on the user’s speed-accuracy emphasis, we also need to
check whether error rates differ. Again, there was an overall effect of the
device (F4,16 = 5.2, p < 0.05). Bonferroni corrected pairwise t-tests showed
that only the difference between the trackball and the joystick conditions
was significant (t4 = 8.3, p < 0.05). Remembering that the trackball was the
second fastest device, it seems that some of that speed was achieved at the
cost of dimished accuracy. Similarly, joystick was slow partly because with
it the participants seemed to emphasize accuracy more than with some other
devices.

In short, although the differences in text entry rate and error rate seem
clear in the figures in Paper I, the differences are mostly not statistically
significant. This may be because of the small sample of only five users, or
because there really are no differences. As argued in Paper I, the performance
of different input devices is known to be different. Therefore, the conclusions
on speed and error rate in Paper I still seem correct but cannot be supported
by statistics.

3.2 Touchpad-based Number Entry

3.2.1 Introduction

Having recently finished work on MDITIM, I was listening a presentation
by Professor MacKenzie on the work that he and his colleagues had done
on the PiePad system [McQueen et al., 1994, McQueen et al., 1995]. PiePad
used the clock metaphor for easy remembering of the menu locations of num-
bers. The main problem with it was that the error rate was high. This is
understandable because the menu slices were only 30 degrees wide. The two-
segment characters in MDITIM were easy to draw and could be recognized
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robustly. These two pieces of information were combined in what is referred
to as the hybrid design in Paper II.

3.2.2 Discussion

The publication of Paper II was met with two kinds of comments. First,
it was observed that the results depend on human capabilities and on the
capabilities of the algorithms used for recognizing the strokes.1 We do not
claim otherwise. Based on our data we cannot conclude that the better
performance is due only to the fact that the hybrid strokes are better for the
user. They are also better for the recognizer. The other part of this argument
is that the pure stroke recognizer could possibly be improved so that there
would be no difference between the two systems. This is possible, but that
does not mean that it was futile to test the unimproved pure recognizer. Now
that we know that it performs poorly we have the motivation to attempt
improvements.

The second type of feedback consisted of suggestions for improving the
user interface. This includes ideas like printing or engraving tactile guides on
the touchpad and using some adaptive2 or intelligent recognition algorithms.
These are all good suggestions, but like the first point, we consider them
ideas for further work rather than shortcomings of Paper II.

3.3 Quikwriting on Multiple Devices

3.3.1 Introduction

The motivation for undertaking an evaluation of Quikwriting [Perlin, 1998]
arose from a number of sources. Firstly, there is a statement in the origi-
nal publication on Quikwriting being typically three times faster than Graf-
fiti 3. This statement has been met with disapproval over the years. For
example MacKenzie, uses it as an example of inflated claims that are not
based on quantitative measurements and should therefore not be made
[MacKenzie and Soukoreff, 2002b]. MacKenzie has good grounds for stating
that Perlin’s claim is not based on properly gathered quantitative evidence.
However, to credibly refute the claim one needs to measure the performance
of Quikwriting.

Inflated claims are commonplace enough not to justify arduous experi-
mental work on their own. Our main motivation for experimenting with
Quikwriting was that it is well suited for adaptations for different input de-
vices. Like MDITIM, it works on all two-dimensional pointing devices and
keyboards with four or more keys. Because of this, Quikwriting was a good

1This view was incisively presented by Guo Jin of Motorola Silicon Valley Human
Interface Lab.

2Re-analysis of the collected data from the point of view of designing an adaptive
recognizer was suggested by Barton A. Smith of IBM Almaden Research Center in a
posting at CHIPlace (www.chiplace.org).

3See last paragraph on page 2 in [Perlin, 1998].
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tool for testing some of the issues in the text entry architecture (described
in Paper VII) that I was developing at that time.

3.3.2 Discussion

We did not compare Quikwriting and Graffiti head-to-head. Therefore,
strictly speaking, Perlin’s claim still remains to be refuted. However, un-
like before, we now have a measured learning curve for the early part of
Quikwriting use. Based on this curve it seems unlikely that Quickwriting is
orders of magnitude faster than Graffiti or other text enty systems. More
importantly, we found Quikwriting well suited for multi-device use and it
appeared to perform better than MDITIM.

3.4 Menu-augmented Soft Keyboards

3.4.1 Introduction

As described in Paper IV, adding menus to soft keyboards is becoming in-
creasingly popular. This, like many other trends in user interface develop-
ment is advancing without publicly available evidence of the usability and
usefulness of the changes. I decided to study the performance characteristics
of the combination of a marking menu and soft keyboards. This decision was
influenced by Dr. Grigori Evreinov, who showed me some of his inventions
relating to soft keyboards. In parallel with my work, Dr. Evreinov offered
a menu-augmented soft keyboard evaluation as a topic for coursework in his
course on new interaction techniques. This project resulted in a report that
has been published by the Department of Computer Sciences in a collection
of such works [Jhaveri, 2003].

Paper IV is different from the earlier text entry experiment papers in this
thesis because it does not address the issue of multi-device compatibility. The
connection to the main subject matter of this thesis is through the modeling
section discussed in the next chapter. The model shows that combining a soft
keyboard and a marking menu makes text entry significantly faster on some
soft keyboard layouts. The experiments reported in Paper IV were done to
clarify the conditions under which this might occur.

3.4.2 Discussion

The results presented in Paper IV have been met with many kinds of criticism
and questions. What was the purpose of the first experiment? What would
have happened if the longitudinal experiment had continued? Would it not
be easier to learn an optimized soft keyboard layout? Is using the menu really
helpful enough to make it worth learning? What is the nature of the cognitive
burden measured in the second experiment? Most of these questions concern
issues on which I have no data. This makes it impossible to give conclusive
answers. However, some aspects of these issues can be discussed in more
detail than the space constraints in Paper IV allowed.
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The purpose of the first experiment was simply to see if tapping and
selecting indeed is as efficient as it intuitively seems. For those readers who
trust their intuition this may seem an unnecessary step. I considered it
worth taking to make sure that the basic notions in the modeling of the
motor efficiency and the whole concept were not fatally flawed.

The longitudinal experiment was preceded by a pilot experiment that took
several weeks. I used the same 15+15 -minute protocol that was used in ex-
periment 2 up to session 92. Using the menu started to be faster around
session 50. Another person did the same up to session 27. He reached
the menuless text entry rate but did not show any speed advantage with
the menu-augmented system. We also did short experiments with differ-
ent learning protocols that introduced the menu items gradually instead of
suggesting learning them all at once. To no avail, we observed no bene-
fits under these protocols. Based on these experiences it was clear that we
could not demonstrate speed advantage with the menu-augmented system in
a 20-session experiment.

However, it was equally clear that the performance of the pilot partici-
pants was potentially tainted by intimate knowledge of the workings of the
system and possible motivation to show that the menu is a valuable idea. An
experiment with more independent participants was therefore needed to see
whether these initial experiences were accurate in the sense that the menu
usage can be learned and that the text entry rate does indeed increase as
rapidly as it seemed to do. The results seemed to confirm our initial obser-
vations. Unfortunately the participants did slightly better than we expected,
almost reaching the menuless text entry rate by session 20. This makes it
seem as if the experiment ended at a very critical moment. However, pro-
ducing a statistically significant difference in favor of the menu-augmented
system would have taken at least until session 30. Running the experiment
this long was impossible due to practical scheduling reasons.

It does not seem reasonable to assume that the development of the text
entry rate with the menu-augmented system would suddenly stop at the
menuless rate. Other experiments have not shown evidence of some common
general barrier for text entry rate with different systems even when used with
the same input devices [MacKenzie and Zhang, 1999, McQueen et al., 1995,
MacKenzie et al., 2001]. Therefore it is reasonable to believe that at least
in the short term, the power curves are accurate estimates of future perfor-
mance.

A different question is whether the speed advantage that expert users
might have is significant in practise. Using the menu seems to be cognitively
more demanding than using a plain soft keyboard. Even if the cognitive
performance can be trained to a level where the motor performance begins to
limit text entry rate (as suggested by the model), it could still be demanding
enough to impair the user’s multi-tasking capability while entering text. If
this is the case, using the menu might not always be wise even if faster.

The critical advantage of the menu augmentation is that traditional and
menu-augmented usage of a soft keyboard can coexist. Traditional use of a
soft keyboard is not disturbed. However, in the context of soft keyboards this
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advantage is especially slight. Soft keyboard layout can easily be changed
depending on user preferences. Thus, it might indeed make more sense to
learn a new optimized soft keyboard layout. The participants in a study that
compared QWERTY and an optimized soft keyboard layout achieved their
QWERTY performance in about 200 minutes [MacKenzie and Zhang, 1999].
With the menu-augmented system in Paper IV it took about 300 minutes.
Due to differences in the experimental procedure these figures may not be
directly comparable. However, they suggest that learning a soft keyboard
layout may be easier than learning the on-line planning skill that is needed
for efficient utilization of the vowel menu.

One aspect of the user interface that was not tested or discussed in Paper
IV is the physical strain while using the systems. Rapid text entry with
the menu-augmented system seems much more peaceful and relaxed than
entering the same text at the same rate without the menu. This is because
30% of the characters seem to appear for free. The input activity in these
cases is piggybacked on the tap on the previous key. By reducing the need
to move the stylus the menu use also reduces the hand movements. It could
be that this reduces the stress on the hand, potentially reducing the risk of
stress injuries. Without objective data on the actual strain on the hand this
conjecture is, of course, unfounded. However, it is a factor potentially worth
investigating in future work.

3.5 Future Work

Detailed ideas for further work with each individual system can be found in
the papers. On a more general level the experimental work presented above
has revolved around the notion of device independent text input methods.
Despite the effort, I have failed to find a system that is compatible with a wide
range of input devices and competitive in speed and error rate with the best
systems for each device. In the future the notion of device independent text
entry methods should be kept in mind and if suitable candidates emerge, they
should be investigated. When a good device independent text entry method
is paired with the kind of system described in Chapter 5, the concept may
suddenly have practical value. At this point, however, device independent
text entry is unrealizable due to a lack of suitable text entry methods and
architectural support.
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Chapter 4

Models

Experimental work produces isolated pieces of information that sometimes
suggest the existence of general rules that govern the phenomena under in-
vestigation. Models condense this information into useful constructs that
can be used to describe and predict events in similar situations. In short,
my approach to modeling is utilitarian in the spirit described by MacKenzie
[2003]. The simpler the models are the better, as long as they are useful.

Below I describe models that address three issues in text entry. First,
models for learning, second, a model for unistroke writing time, and finally
a model for text entry rate with a menu-augmented soft-keyboards.

4.1 Models for Text Entry Rate Development

4.1.1 Introduction

Text entry involves extensive learning. A short-term test, say five minutes
of writing, does not tell much about the text entry system. What it tells
about is how a particular user (or a group of users) performs with a text
entry system, given the learning preceding the test. If this is all we want
to know a short test is adequate. If, however, we want to know what would
happen if the tested text entry system were to be used for extended periods
of time, we need to account for learning. Historically commitments to text
entry systems tend to be long. This is why we need to understand the effects
of learning on the user performance with any system proposed for general
use.

Learning has a very different effect on error rate and text entry rate.1

Error rate is a product of the speed-accuracy trade-off that the users make.
Typically in a longitudinal experiment with a new text entry system error
rate is initially high but quickly falls to a level that the users are willing
to tolerate. If the error tolerance of the users does not change, error rate
tends to stay on this same level until the end of the experiment. Text entry
rate on the other hand improves following the power law of learning. This

1This is by no means an original observation. McQueen et al. [1994] give Bailey [1989]
as a source for this typical speed-accuracy trade-off behavior.
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law can be used to describe the time needed for an individual action such as
entering one character, word or phrase [Jong, 1957, Card et al., 1978]. The
traditional form of the law is:

tn =
t1
nx

(4.1)

where tn is the average time for operation n, t1 is the time for the first
operation, and x is estimated from the data. Values for x must be between
0 and 1. Typical values for x are around 0.32 [Jong, 1957]. The law can be
written to describe the rate of doing these individual operations in the form
[McQueen et al., 1995]:

rn = r1n
x (4.2)

where rn is the rate (operations per unit of time) at which the work proceeds
during repetition n, r1 is the rate during the first repetition and x is again
estimated from measured data. Both curves are linear in two dimensional
log-log space making the use of linear regression easy for estimating x.

Measured performance is known to initially follow the power law. In fact
the law usually holds long enough to make it seem to hold forever in the light
of experimental results. Clearly, this cannot be the case.

A well-known method for estimating the upper limit of text entry speeds
is to model it using Fitts’ law. These modeling techniques can be used for
text entry systems that require repetitive pointing. Knowledge of these two
models led us to the idea of combining them into a more comprehensive
model. Ideally the model should have the good properties of both of the
component models. It should fit the measured data from the beginning of
learning almost perfectly and it should not grow to infinity, but should instead
approach an upper limit as learning progresses. This work is presented in
Paper VI.

4.1.2 Discussion

After presenting Paper VI at CHI 2003, we were informed2 that similar work
has been done before. The paper in question appears to be the one published
by De Jong [1957]. Because of the similarities it is worthwhile to discuss the
differences between our approach and that of De Jong.

De Jong is mainly concerned with the duration of repetitive tasks in indus-
trial settings where it has economic consequences. For example, if workers
are paid bonuses based on above-normal performance, it is important to
know what is normal. Because workers’ skill increases over time, the incen-
tive programs must be structured to take this into account. On a higher
level, the planning of production needs to take into account the increasing
rate at which the work happens so that different batches of products can be
scheduled reliably to avoid costly idle hands in the factories.

2By Stuart K. Card
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De Jong cites earlier work as a source for the basic power law that is
presented in the form:

Ts =
T1

sm
(4.3)

where T1 is the time required for the first cycle of the repeating task, Ts is
the time for the cycle number s, and m is the “exponent of the reduction”.

De Jong introduces the concept of “factor of incompressibility” denoted
by M . And gives an example where M is used to describe the fall of cycle
times using the formula:

Ts = T1(M +
1−M

sm
) (4.4)

De Jong notes that this equation explains the situation where the fall of
the cycle time is limited by a hard lower limit. He does not claim that the
account is perfect. Instead he describes it as “satisfactory”. Indeed, as Figure
4.1 reveals, Equation 4.4 suffers from the same phenomenon as Model 1 in
Paper VI. It does not fit the data perfectly. The curve is too tight in the early
part and too straight in the later parts. Furthermore, the exponent m is not
naturally produced in the process. It needs to be estimated separately. Note
that I am not using repetition cycle count as the unit on the horizontal axis.
Instead, for compatibility with the figures in Paper VI, the units in Figure 4.1
are sessions. In this case the change does not matter. The same relationship
between De Jong’s equation and the OPTI data can be observed in a plot
with the cycle count on the horizontal axis. Note also that this is just one
set of data from one experiment. The individual data points in the figure
contain some measurement error that may or may not be random. Overall,
we should not expect a simple function like that in Equation 4.4 to fit such
data perfectly. However, the overall features of the fit that I mentioned above
are unlikely to be due to measurement error.

De Jong’s factor of incompressibility suggests another approach that can
be combined with Model 1 in Paper VI to produce an improved version of
model 1. First M is calculated. This can be done by finding the upper
limit of text entry speed Rmax and calculating the time needed per character
Tmin. M is then Tmin

T1
. Then the time spent per character is normalized so

that T1 = 1, and then M is subtracted from these normalized values. At
this point the data looks like figure 4.1 except that the points have been
shifted down by M (with the OPTI data M = 0.29). Now the best fitting
power law curve is found through log log linear regression. In the case of the
OPTI data the equation is Ts − 0.29 = 0.8475s−0.712. The cycle times can
be approximated and thus the text entry rates calculated for any positive s.
The approximations are limited from above by Rmax which was the point of
the whole exercise.

In Figure 4.2 the resulting curve is compared to the traditional power law
and Model 2 from Paper VI up to session 150. The new model (Model 3)
curves slightly too much in the early part and too little in the later part. The
advantage of this new procedure over Model 1 is that it improves the model
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Figure 4.1: Per session average cycle times of MacKenzie and Zhang [1999]
and a model after De Jong’s Equation 3.

fit in terms of R2. With our example data the R2 for model 1 was 0.92. With
the new model it is 0.99. With De Jong’s Equation 3 the correlation is about
the same, but there is the extra trouble of estimating m. In comparison to
model 2 in paper VI, both De Jong’s equation 3 and the new model produce
lower medium range predictions. It is not known which of the medium range
trends is more accurate. In the early part of the medium range predictions
the tendency of all of the models to underestimate the last measured points
suggests that Model 2 may be more accurate.

On the whole, the purpose of these models is to maximize the use of the
expensively acquired experimental data by allowing reliable extrapolations
beyond the end of the experiment. The other facet of this issue is that if
reliable models can be developed, we can run shorter experiments. If, for
example, we are interested in user performance after ten hours of practise,
we could compute Rmax , measure a couple of hours of performance and
then model the performance at 10 hours, saving eight hours per participant
or making it possible to obtain a more representative sample of the user
population by processing five times the number of participants in the same
amount of time.

For this kind of use, we need to know how accurate the mod-
els are. An estimate can be found by examining published data
on longitudinal text entry experiments. I did this for 15 data sets
from 8 different papers [Gopher and Raij, 1988, Matias et al., 1996,
McQueen et al., 1995, Isokoski and Käki, 2002, MacKenzie et al., 2001,
MacKenzie and Zhang, 1999, Isokoski and Raisamo, 2003b, Isokoski, 2004].
The data sets were chosen based on their length (minimum of 20 sessions)
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Figure 4.2: Comparison of mid-range predictions of three models on the
OPTI data by MacKenzie and Zhang [1999]. Model 3 is the new model,
Model 2 is from Paper VI, and Power is the traditional power law prediction.

and suitability of the text entry rate data for naive power law modeling (the
one-handed chord keyboard data by Gopher and Raij was rejected because
it has too steep a slope between sessions 1 and 2). All data were modeled by
using 2, 4, 6, and 8 first points for double log linear regression to determine
the power law coefficients. The remaining points were then re-created using
the model, and the difference (in %) between the model and the measured
value calculated. The results are shown in Figure 4.3. The horizontal axis is
proportional to the number of points used so that at 1 the two-point model
is predicting point 4, the four-point model is predicting point 8, and so on.
We can see that the two point model is somewhat weaker than the others.
The 4, 6, and 8 point models can predict roughly at 7% error rate as far into
the future as the length of data that they were built on. The error exceeds
10% at around two times the length of data used for building the models.

Except for the two point model the results seem encouraging. It appears
that if we are willing to accept a ±10% error, we can save two thirds of the
sessions in a given experiment. Unfortunately the truth is not so positive.
The 10% error is the average. The actual errors may be larger. In the data
examined there were several examples of learning curves that seemed to jump
up or down after 1-4 sessions. Such jumps may be the result of change in
the participants’ motivation or strategy in completing the text entry task or
a feature of the learning process such as overcoming some initial difficulty.
Regardless of the reasons of these anomalies in the curves, the consequence
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Figure 4.3: The average error in predicting text entry rate development with
the power law after using 2, 4, 6, and 8 first sessions for building the model.

is that the very early performance cannot be relied to develop consistently
in the long run.

The effect that the combined models discussed above would have on the
results in Figure 4.3 is a small increase in the error. The reason for this
is that the combined models tend to slightly underestimate the text entry
rate. In the basic power law models used to create Figure 4.3 there were
a roughly equal number of cases where the models tended to overestimate,
be reasonably correct, and underestimate the data. Under these conditions
adding a slight bias toward underestimating increases the overall average
error. In this light the combined models seem poor. However, this is not
what they were made for. The goal in their development was to remove the
gross over-estimation that unbounded power curves have in the long run.

4.2 Model for Unistroke Writing Time

4.2.1 Introduction

The design of handwriting systems has been a surprisingly popular hobby.
Especially in the era preceding computers, many people who wrote a lot had
their own variations of a mixture of shorthand and regular handwriting. The
critical difference that computers have brought to the situation is that the
writing no longer needs to be legible on paper. It is enough that a computer
can translate it into text.
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Figure 4.4: Average writing times vs. complexity class for all four tested
character sets.

In order to design efficient character sets for computer input, we need to
know what factors govern the efficiency. It seems intuitively clear that the
more strokes and corners a character consists of the more time it takes to
draw it. The accuracy of this simple model is explored in Paper V.

4.2.2 Discussion

While the accuracy of the model in describing or predicting the time con-
sumption per individual instance of character is poor due to random varia-
tion, a strong linear relationship between the character complexity and writ-
ing time emerges when writing time is averaged over several instances of the
character. Averaging over users further strengthens the relationship. Finally
if all characters are pooled according to their complexity, a picture like that
shown in Figure 4.4 emerges.

Each point in Figure 4.4 represents the average writing time of all char-
acters of a given character set that belong to the same complexity class.
The correlations between the complexity and writing time are surprisingly
high. MDITIM exhibits the highest correlation (r2 = 0.992). This is par-
tially explained by the nature of the characters that consist of straight lines
connected by 90 and 180 degree corners. Additionally, MDITIM has only
3 different complexity classes, making a high correlation likely. Unistrokes
(r2 = 0.969) has only four complexity classes. Graffiti (r2 = 0.989) has five
and the Roman hand printing characters (r2 = 0.851) have eight. The rela-
tively low correlation for the Roman characters is due to the poorly fitting
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points for complexities 7 and 8. These points represent only one character
written by only one participant each. Removing them increases the r2 value
to 0.997.

Another feature of the data shown in Figure 4.4 is that the slopes of
the regression lines vary. MDITIM has the steepest slope (0.22 seconds per
complexity unit), Unistrokes are next (0.117), followed closely by Graffiti
(0.105) and Roman characters (0.091). This order is the same as the order
of familiarity that the participants had with the character sets. Writing the
Roman characters is close to pure motor activity and the other character sets
require more cognitive involvement, which slows the performance down. The
earlier work that the model is partly based on presented a rule of thumb that
states that we have roughly 5 Herz hands. That means that we can perform
a controlled movement about 10 times a second3. Our data with the more
familiar character sets suggests that the model successfully extracts these
movements from the character shapes.

4.3 Modeling Menu-Augmented Soft-

Keyboards

Paper IV includes two parts: modeling of user performance with menu-
augmented soft keyboards and two experiments where user performance is
measured. Some aspects of the modeling work are discussed below.

4.3.1 Introduction

The traditional approach to the modeling of expert soft keyboard tap-
ping has been the Fitts’ digraph method by Soukoreff and MacKenzie
[Soukoreff and MacKenzie, 1995]. It uses spreadsheets with matrixes for key
distances and digram frequencies. This approach works well and is not very
labor intensive for plain soft keyboards. However, if the layout is dynamic or
if the user interface contains other components that combine in a multiplica-
tive manner with the keys, the distance tables grow. The threshold where
the complexity becomes unbearable depends on the researcher performing the
modeling. At some point, however, alternative techniques become attractive.

One way to circumvent the complex spreadsheet calculations is to write a
program that simulates the user’s stylus or finger movements. The computa-
tional complexity of this approach is in linear relationship to the size of the
text corpus that is used for the simulations. A more sophisticated approach
could condense the corpus to, for example n-gram frequencies (with n suit-
able to the simulated text entry technique), simulate each n-gram once, and
weight the results according to the frequency. Such approach has roughly

3Approximating sine wave for the frequency measurement requires a movement in one
direction and a movement back. Thus, 5 Hz equals 10 movements per second. Other
examples of this can be found in the key repeat time measurements by Soukoreff and
MacKenzie [2002] and Silfverberg et al. [2000]. Similar figures are cited by Card et al.
[1983]
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the same computational complexity as the spreadsheet approach (essentially
constant time operation regardless of the size of the corpus once the n-gram
frequencies are known).

In Paper IV I was faced with the task of simulating a mixture of soft
keyboard tapping and menu selection activity. I used the naive approach
of simulating the whole corpus. With corpora of moderate size (less than
a million characters) the simulations do not take long to run on modern
computers. I used a very small corpus of only about 15000 characters.

4.3.2 Discussion

The validity of the modeling results remains unverified. However, the validity
is presumably as good as it is with the spreadsheet approach or any other
means of calculating the same numbers. Overall, no hard upper limit for text
entry speed exists. Because we do not know precisely the level of expertise
that we are modeling, the estimates of expert performance produced are likely
to be somewhat inaccurate. Thus, the modeled upper limits should not be
interpreted too strictly. Another interpretation of the modeling results is to
compare the results of different text entry systems. This was the approach
taken in Paper IV. I ran the simulations for different soft keyboard layouts.
Regardless of whether the magnitude of the simulated text entry rates is
correct, we can expect the relative differences between the layouts to be
accurately reflected.

4.4 Future Work

The modeling of handwriting characters could be conveniently explored with
a suitable software package. The work reported in Paper V was done partially
as an early feasibility study in order to find out whether there is room to
exceed the accuracy of human intuition with suitable tools. This seems to
be the case. Human ability to estimate the time consumption of a character
using only paper and pencil is surprisingly good, but the accuracy is limited.
The construction of the software has not been completed. It might be worth
doing.

The work on the learning curve models should be continued as well. The
work reported above has concentrated on data fitting only. A more theo-
retical approach could produce more refined models which, in addition to
being theoretically sound, could be tunable depending on the parameters
of the task and measured performance. A model that could produce upper
limit prediction for text entry rate based on data recorded over a number of
sessions would be especially useful.

Modeling expert performance with soft keyboards using Fitts’ law based
models is beginning to be a routine procedure. However, as detailed in Paper
IV, there are a number of issues on which no widespread consensus exists.
For example my choice of using the Fitts’ law intercept for modeling repeat-
ing taps on a key is seems to be supported by some [Zhai et al., 2002b], while
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others find it ridiculous [Soukoreff and MacKenzie, 2002]. Such controversies
should be solved and a unified methodology developed to increase the inter-
study comparability of modeling results. Setting up an open source software
package with capabilities for both digraph table and simulation based mod-
eling would allow easy comparison between a baseline model and any new
developments that may happen in the future.
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Chapter 5

Systems

Constructive research produces knowledge and systems. The papers in Chap-
ters 3 and 4 describe the knowledge gained through experiments using the
systems produced. In the paper discussed in this chapter the system has the
main role.

5.1 Text Input Architecture

5.1.1 Introduction

Paper VII presents a text input architecture supporting the personalization
of text entry methods. The personalization is achieved through user-specific
configurations provided by the user for the system when he or she begins to
use it. Text entry methods are implemented as modules that are loaded over
the Internet when needed.

This architecture is the result of an evolutionary process that has lasted
for five years. At first I began by writing separate pieces of software for each
computation and experimental prototype. The work for Paper I was done
with this approach. Soon it became apparent that this style of work was
unnecessarily laborious. The next step was to combine the common parts of
the software into a framework that could be easily extended with new text
entry methods. This framework was implemented in C++ and ran under
GNU/Linux and X. Papers II and V report work done with this framework.

Finally it became apparent that operating system dependencies should be
minimized. I chose Java as the platform for the next framework. The operat-
ing system dependent code was separated from the core of the framework and
implemented separately for GNU/Linux and Microsoft Windows. Papers III
and IV report work done with this latest generation of the framework.

5.1.2 Discussion

The basic concepts of the architecture are an improvement over the present
way of making and marketing computing devices and software. Currently
little emphasis is placed on the user’s ability to transfer his or her data and
skills between devices from different manufacturers and device generations.
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This is understandable, given that some device and software manufacturers
have users who are used to their devices; they do not want to make it too
easy for the users to start using their competitors’ products.

However, I expect that the time will come when the only valid marketing
argument is the service that a particular device or piece of software can offer
its user. When viewed from this perspective, the ability to transfer the user’s
preferred text entry system onto whichever device he or she is using is a basic
requirement that must be satisfied. It may take some time before we progress
so far. Other aspects of technology can be improved for years before there
is a real need to take user interface standardization seriously enough in the
area of the architecture in Paper VII addresses. It is also possible that the
development will take a path that avoids the need to have user specific text
entry methods. If everybody writes only English and agrees to use only one
or a small number of input devices to do it, the problem that I have tried to
solve will disappear.

5.2 Future Work

The existing implementations of the architecture are for desktop computers.
Desktop coputers are practically the only platform with adequate text entry
capabilities and a user base well trained in their use. Therefore, desktop com-
puters have the smallest need for this kind of architecture. Implementations
for the Symbian smart phone platforms or Palm or Microsoft PDA operating
systems would be more useful. So far I have not done any of these since the
desktop platforms are easier to work with and adequate for demonstration
and research purposes. If the architecture is to be of any practical use, the
implementations for mobile computing platforms will need to be completed.
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Chapter 6

Discussion

I have described experiments, models partially based on the results of these
experiments, and a text entry system that was needed for doing the exper-
iments. In this chapter I discuss some of the general limitations that apply
to this work.

6.1 Experimental Methodology

The experiments reported in chapter 3 are somewhere in between typical
usability evaluations and rigorous experiments. The goal was to do work
with optimal internal and external validity given the practical limitations.
Each experiment was typically preceded by a pilot phase that consisted of
iterative usability testing of the experimental procedure. Changes were often
made to help the participants focus on the essential parts of the task and to
improve the working conditions of the experimenter.

6.1.1 Experimenter Bias

The experiments to evaluate the new text entry techniques were conducted
by the developer. It is possible that the enthusiasm of the experimenter may
have influenced the participants. It is customary in other sciences such as
medicine to perform evaluations with the double-blind protocol. In this pro-
tocol the treatment (for example a new drug) is compared against a placebo
treatment known to have no medical effect or against a known competing
treatment. The people who interact with the participants do not know which
of the treatments is placebo and which is real. Because of this they cannot
influence the participants’ perceptions and motivations. The difficulty of ap-
plying this protocol to user interface evaluations is that developing a placebo
user interface is often very difficult. Due to their previous experience the
participants can usually easily understand the experimental setup. Never-
theless, we must be aware of these issues both when designing experiments
and when reading and interpreting reports on such experiments. I suspect
that subjective evaluations are highly sensitive to whatever bias the experi-
menter may exert upon the participants. This explains the relative scarcity
of subjective data in this thesis.
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6.1.2 Sampling Methods

Another problematic aspect in the experiments reported in this thesis is
the representativeness of the participants. In all cases the participants were
recruited from nearby offices of whatever part of the University I happened to
be working in. Apart from being convenient for me, this procedure required
the minimal amount of work from the participants. The experiments were
typically longitudinal, consisting of 10-20 sessions. Because I did not have
resources to compensate the work that the participants did for me, I deemed
it unlikely hat I would be able to recruit participants from a sample of the
general public.

However, the result of this sampling protocol is that not only were the
participants typically young male adults with university education, but they
were also very experienced computer users, and in in many cases HCI re-
searchers. If these factors affect a person’s performance in experiments like
mine, the conclusions drawn based on these experiments may not be repre-
sentative of the general public.

6.1.3 Language Issues

Language is an issue in some of the experiments. It appears that remember-
ing and entering a phrase in a foreign language is more difficult than in the
first language. I did the experiments using English phrases. This does not
necessarily invalidate the results in situations where two systems are com-
pared under the same conditions. However, cross-study comparisons with
studies done on native English speakers should take the language issue into
account.

6.1.4 Choice of Metrics

When designing experiments one has to decide which parameters will be
measured and how. In all the work presented in this thesis, I used efficiency
metrics almost exclusively. In the light of the summary data by Nielsen and
Levy [1994], performance measures are correlated with subjective preference.
On the other hand it has been suggested that relying on one or the other is a
dangerously narrow approach. For example Fokjaer et al. [2000] suggest that
effectiveness, efficiency, and subjective satisfaction should all be investigated
unless it has been shown that in a particular task some aspects do not matter.

These arguments have been framed in the context of usability in gen-
eral. Whether text entry is a special case where performance in the form
of efficiency is the dominant factor of usability and usefulness has not been
generally shown. However, efficiency emphasis can be defended as a relevant
approach in some areas of text entry. Namely, efficiency is always good in
situations where time is money. For example, in transcription typing a slow
way of typing is difficult to justify economically. Generally a user whose goal
is to be efficient in his or her work will appreciate efficient user interfaces.
Strangely enough, there are other uses of text entry where efficiency can

56



6.1 EXPERIMENTAL METHODOLOGY

actually be a bad thing, or where zealous efficiency emphasis can at least
be questioned. For example, when people entertain themselves by writing
SMS messages, they get more entertainment for a given amount of money if
the writing is not too efficient because only sending the messages costs. At
present there is no reliable evidence that this is the case, but the difference
of a game, in which the goal is to entertain the user as long as possible, and
an entertaining and funny user interface can sometimes be very small.

Overall, the efficiency emphasis is a feature of the work reported. Effi-
ciency should not be confused with the overall preferability of a given text
entry method except when it is clear that the two are synonymous because
of the nature of the task and needs of the users.

6.1.5 Replication

An important part of rigorous scientific work is independent replication of
experimental results. Even when proper care is taken to minimize factors like
experimenter bias, skewed sampling, and opportunistic choice of metrics,
the fact remains that the experimenter has many interests vested in the
experiment. It is possible that the observed effects are sometimes not due
to the treatment that is administered. Even if no foul play on the part of
the experimenters can be found, statistical conclusions contain a margin of
error.

For these reasons it makes sense to replicate important experiments inde-
pendently in different laboratories using different samples of the user pop-
ulation and experimental apparatus. If the results still hold, it is far more
unlikely that it is due to chance or some unnoticed influence by the experi-
menters.

In HCI there is no systematic tradition of replicating experiments. In
fact, it is practically impossible to publish successful replications with no
other contributions. They are considered unoriginal and therefore worthless.
When replication occurs it is mostly because of ignorance of the original work
or because another team of researchers wants to continue the work of others
and need access to data similar to what has been previously reported in order
to make comparisons.

The work that I report in this thesis has not been independently replicated
to verify its validity. The work does contain a small amount of internal
replication, since experiments were preceded by pilot experiments used to
test the procedure. However, the power of such internal replications to reveal
significant flaws in the whole setup is small. As such the work must be
considered tentative until independent evidence of its validity appears.

The reported experiments themselves contain instances of partial replica-
tion of previous work. The pure clock face condition in Paper II replicates
earlier work in a slightly different environment (touchpad instead of sty-
lus). The re-implementation of Quikwriting (Paper III) is another instance
of replication as well as the stylus tapping model in Paper IV. Mostly the
results confirm earlier findings. A notable exception is the case of Quikwrit-
ing, where we did not observe the kind of general superiority to other writing
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systems as had been (informally) claimed.

6.2 Relationship to Device Manufacturers

The work reported in this thesis has been done independently of device man-
ufacturers, software vendors, and other parties with financial interest in text
entry methods. This has both positive and negative consequences. The pos-
itive side is that the results are more likely to be impartial regarding the
different interest groups. The negative side is that the research questions,
and therefore the results, may not be relevant to the questions that one en-
counters when actually making the devices and software that people buy and
use.

An incomplete picture of the world is unavoidable. One simply cannot
have it both ways. Close cooperation creates dependencies and bias while
detachment hinders the flow of information. In keeping with the academic
tradition I have maintained independence. This is certainly not the only
possible way - not even necessarily the best.
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Chapter 7

Conclusions

I have presented new text entry methods, results of modeling different aspects
of text entry activity, and a new system for personalized text entry. While
many of the results may be interesting, it is difficult to envisage that any
of this work will bring about significant changes in text entry. This is not
surprising, considering the very long history of writing. In fact, it would be
highly suprising to stumble on a completely new and efficient method at this
late stage in history. The work presented consists mostly of improvements
on earlier work and novel combinations of previously known systems and
methods.

One of the goals listed in my original research plan was to develop guide-
lines for selecting an appropriate text entry method for a given task, device,
or user. Despite considerable effort, the results in this respect are meager.
The results of the experiments as well as some of the modeling work can be
used for this purpose, but they are only small pieces in the puzzle that must
be considered, not suitable for general guidelines. The only general guideline
that I have found reliable is that in a short time perspective the best text
entry method is the one that the user knows. Almost everything else requires
lengthy learning before it becomes useful and even longer before it performs
any better than a system familiar to the user.

Several research themes have emerged in the course of the thesis work.
Some of these deserve further investigation. One of the unfinished issues is the
relationship between pointing device throughput and text entry throughput.
Pointing device performance can be characterized with Fitts’ law and a text
stream has a certain information content. Combining these notions into
one theory of information throughput has been hinted at numerous times.
However, no models that would be useful in practise when designing text
entry systems have emerged.

Another issue that continues to stimulate my curiosity is the notion of
device independence. It could be possible to develop text entry methods that
work well enough on all input devices to make it unattractive to learn any
other methods. Unfortunately we do not know whether the non-emergence
of such methods is due to lack of imagination or because they are impossible.

Finally, the text input architecture work is worth continuing. Device and
operating system platform independent text entry methods make sense as
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user interface components and as a software development model in this par-
ticular case. They may not make economic sense because they encourage
standardization and free availability of text entry methods, but this can only
hinder making money with the idea, not researching it.

The changes in the text entry user interface of mobile computing devices
have been rapid during the last few years. For example when the first publi-
cation in this thesis (Paper I) was written in 1999, the dominant text entry
method in mobile phones was multi-tap. Since then T9 and other disam-
biguation algorithms have become popular. Now, in 2004, multi-tap and
telephone keypad disambiguation are still popular in less expensive phones,
while new high-end devices seem to be abandoning the telephone keypad and
moving towards stylus-based text entry or minitature QWERTY keyboards.
Whether different device models for different uses is the final answer remains
to be seen. It seems that the interesting times in mobile text entry are likely
to continue for at least a couple of years.
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