Markopekka Niinimaki

Conceptual Modelling
Languages

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

A-2004-1

TAMPERE 2004

Markopekka Niinimaki

Conceptual Modelling
Languages

ACADEMIC DISSERTATION

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

A-2004-1

TAMPERE 2004

Opponent: Prof. Dr. Bernhard Thalheim
Christian-Albrechts-University Kiel

Reviewers: Prof. Emer. Veikko Rantala
University of Tampere

Docent Jari Palomaki
Massey University

Electronic dissertation

Acta Electronica Universitatis Tamperensis 326
ISBN 951-44-5910-5
ISSN 1456-954X

http://acta.uta.fi

Department of Computer Sciences
FIN-33014 UNIVERSITY OF TAMPERE
Finland

ISBN 951-44-5846-X
ISSN 1459-6903

Tampereen yliopistopaino Oy
Tampere 2004

Abstract

Conceptual modelling is needed to form a description of the domain of application at hand. In
order to express the result of conceptual modelling, we need a modelling language. First order
predicate logic (FOPL) or its variants (like Horn-clauses and Description Logics) and extensions
(second order logics) can form a backbone of such a language, but some criteria is needed to define
the fruitfulness or suitability of a modelling language, given the modelling task. The modelling
language together with its methodology constitute a modelling perspective.

Many accounts of conceptual modelling emphasise an intensional perspective. This means that
the starting point in conceptual modelling is the contents of the concepts that subsist in the domain
of application (as opposed to “things” in the domain of application — they belong to the extensions
of these concepts). If an intensional perspective is used, it should be visible in the modelling lan-
guage as well; therefore we divide modelling languages into intensional and extensional languages,
and “hybrid” languages that combine some aspects of these two.

First order predicate logic has often been used as an example of a language with a well es-
tablished extensional semantics. We examine FOPL as a modelling language in connection with
Sowa’s Conceptual Graphs (CGs). It can be demonstrated that a limited version of the language of
CGs is equal (in expressive power) to that of FOPL with unary and binary predicates. However,
contrary to the claims of proponents of CGs, CG presentations are not necessarily easier to read or
understand than the same presentations expressed in FOPL (as can be demonstrated by comparing
“typical” but complex FOPL formulas and their CG counterparts) .

Kauppi’s concept calculus is based on concepts and the relation of intensional containment.
An approach where a modelling language is based completely on concept calculus is presented in
this thesis. This approach has the advantage that the user can apply the operations of the calculus
when designing a conceptual schema of the domain of application. However, this sort of modelling
can be restrictive and impractical in many cases, since it enforces rather strict concept structures.
CONCEPT D, a modelling language, can be seen as a less restrictive alternative.

Using CONCEPT D, the modeller reports the results of the modelling task in the form of con-
cept diagrams. But we often need to ask “is this concept diagram correct” or “does it correspond
well to the domain of application”. Without semantics (which connects the diagrams to something
extra-linguistic) we can only answer these questions on the basis of our intuitions. We address these
questions from two different angles. First we demonstrate how to map (simplified) CONCEPT D
concept diagrams into IFO schemata that have well-defined semantics. Then we study what kind of
semantical theory (e.g. possible world semantics, situation semantics, HIT-semantics) would cap-
ture the features that we want to express in concept diagrams. CONCEPT D has been rarely used
in applications where it would be important to make a distinction between, for example, prime
number less than one and round square, but is has the capability of making these distinctions.
Therefore, it seems that it needs semantics “fine-grained” enough. Finally, we discuss, based on
the previous chapters, on what premises HIT-semantics would serve as the semantical background
of conceptual modelling.

il

Acknowledgments

The author wishes to thank Marie Duzi, Ari-Pekka Hameri, Matti Heikkurinen, Marko Junkkari,
Hannu Kangassalo, Makiko Matsumoto Niiniméki, Erkki Mékinen, Tapio Niemi, Timo Niemi,
Jyrki Nummenmaa, Veikko Rantala, Vesa Sivunen, Stephen Slampyak, Ari Virtanen, and John
White for their valuable advice.

This research has been partially supported by TISE travel grants, a grant by Helsinki Institute
of Physics and a grant by Frenckell foundation.

Geneva, December 2003
Marko Niiniméaki

il

Y

Contents

Abstract i
Acknowledgements iii
Preface ix
1 Introduction 1
1.1 Researchproblems 1

1.2 Basicterminology e e e 1

1.3 Preliminaries: Approaches to conceptual modelling 3

1.4 Thecontentsof thethesis 6

1.5 Relatedresearch e 7

1.6 Thepurposeandtheresults 9

1.7 Terminology and conventionso 10

2 Intensional and Extensional Modelling Languages 15
2.1 Introduction e e 15

2.2 Conceptual modelling and modelling languages 17

2.3 A simple extensional modelling language 19

2.4 Languages based on intensional approaches 22

2.5 Hybridlanguages 25

2.6 Summary and discussion: languages in conceptual modelling 28

3 Logic and Conceptual Graphs 31
3.1 Introduction e 31

3.2 First Order Predicate Logic, 32
3.2.1 Thelanguage of FOPL, LEopL o o oo oo oo 32

3.2.2 Semantics of LpopL (model theory) 34

3.2.3 Quantifiers and inverse relations, 36

3.24 Thetranslationform L o ... 37

3.3 Conceptual graphs 37
3.3.1 The language of conceptual graphs (limited syntax),Lcg 38

332 Semanticsof Lcg 44

3.4 Translations, discussion and summaryo 45

4 Concept Calculus, a Functional Approach I 47
4.1 Introduction e e e e 47

4.2 Mathematical notational conventions 48

4.3
4.4
4.5
4.6

Intensional containment and concept systems 49
The intensionof aconcept 52
A functional representation of concept systems 53
Summary and discussion: Concept calculi in conceptual modelling 56

5 Concept Calculus, a Functional Approach II: Concept Association Relations and Op-

erations 59

5.1 Introduction 59

5.2 Basicnotations e e e e e e e e 61

5.3 Concept systems and primary functions 61

5.4 Elementary relations e 62

5.5 Concept associationrelations 63

5.6 Theintensional productand sum Lo oL 65

5.7 Theintensional negation 66

5.8 The intensional quotient and difference 67

5.9 Summary and discussion: Concept association relations and operations 68

6 IFO and CONCEPT D - A Comparison of Modelling Languages 69
6.1 Introduction e 69

6.2 ThelFOapproach e 70

6.3 The COMIC approach and CONCEPTD 72

6.4 Thenotionof semantics 76

6.5 Comparison e e e 77

6.6 Summary and discussion: CONCEPT DandIFO 78

7 Explicating the Semantics of Concept Diagrams 81
7.1 Introduction e e e e e 81

7.2 Semantics and conceptual modelling oL, 82

7.3 The different approaches o 83
7.3.1 Possible worlds semantics and situation semantics 84

7.3.2 HITsemantics 86

7.3.3 Theories of predication Lo 88

7.4 HIT semantics as a background theory of the semantics of CONCEPTD 90
7.4.1 Modelling constructs and CONCEPTD 90

7.4.2 Syntax of limited CONCEPTD 91

7.4.3 Semantic counterparts of CONCEPT D in HIT 93

7.5 Summary and discussion: semantics and concept diagrams 94

8 Summary and discussion: the Intensional Perspective in Conceptual Modelling 95
8.1 Summaryoftheresearch o 95

8.2 Discussion. L e 96
Bibliography 102
Appendix 110
A FOPL CG Translations 111

Vi

B The definitions of intensional relations and operations as presented by Kauppi 117

vii

viii

Preface

Chapters 2 and 7 of this thesis are based on articles published in the series Information Modelling
and Knowledge Bases.!

Chapters 4 and 5 are revised versions of papers written jointly with Marko Junkkari and pub-
lished in the same series.”> An earlier version of Chapter 3 has been published as a Technical
Report.? Both the authors have had equal and inseparable contributions in these papers.

Chapter 6 has been revised from an article published in the “Filosofia” series of the Academy
of Sciences of the Czech Republic.*

All contents reprinted by permission of the publishers, where required.

"Marko Niinimski: Intensional and extensional languages in conceptual modelling, in H. Jaakkola, H. Kangassalo,
and E. Kawaguchi, editors, Information Modelling and Knowledge Bases XII, IOS Press, 2001 and Marko Niinimiki:
Semantics and conceptual modelling — Explicating the semantics of concept diagrams, in H. Kangassalo, H. Jaakkola,
E. Kawaguchi, and T. Welzer, editors, Information Modelling and Knowledge Bases XIII, IOS Press, 2002.

*Marko Junkkari and Marko Niinimiki: An algebraic approach to Kauppi’s concept theory in H. Jaakkola, H.
Kangassalo, and E. Kawaguchi, editors, Information Modelling and Knowledge Bases X, IOS Press, 1999 and Marko
Junkkari and Marko Niinimiki: An algebraic approach to Kauppi’s concept theory II: Concept operations and associ-
ations in E. Kawaguchi, H. Kangassalo, H. Jaakkola, and I.A. Hamid, editors, Information Modelling and Knowledge
Bases X1, I0S Press, 2000.

3Marko Niinimiki: Understanding the semantics of conceptual graphs. University of Tampere, Department of
Computer Science, Technical Report A-1999-4.

4Marko Niiniméki: Semantic Data Models and Concepts — A Comparison of IFO and COMIC, in O. Majer, editor,
Topics in Conceptual Analysis and Modelling, Institute of Philosophy, Academy of Sciences of the Czech Republic,
2000.

X

Chapter 1

Introduction

1.1 Research problems

This thesis addresses problems (“What are intensions?”, “What is the semantics of a concept di-
agram?”’) and proposes solutions concerning the role of intensions and formalisms in conceptual
modelling. In order to make these problems understandable, in this introduction we first define
some terminology used throughout the thesis. As a preview, the research problems of the thesis are
as follows (for details, see Section 1.6):

e Are there notable differences in conceptual modelling languages? If that is the case, in
what way and based on what principles, can different modelling languages (formalisms)
be classified? Tentatively, are there differences between “extensional” and “intensional”
approaches and languages?

e If we take an extensional approach, where First Order Predicate Logic is often used, do we
gain any benefits using a formalism like Conceptual Graphs instead of the traditional First
Order Predicate Logics?

e What are the possibilities and limitations of an intensionally based approach? What is the
role of concept theory like Kauppi’s (see [Kau67]) in this kind of approach?

e If we are to utilise a modelling language based on the intensional approach, how does it
compare to more conventional languages like well-known IFO, and what kind of semantics
would it have?

e What kind of semantical background theory could be seen as useful from the point of view
of conceptual modelling?

1.2 Basic terminology

Modelling can be seen as an activity consisting of (i) an object to be modelled, (ii) a model, (iii)
a modelling relationship between these two, and (iv) someone — a modeller — conducting this
activity.! In this thesis, we call the object of the model the domain of application. The domain

IThis is loosely based on [Pal94]. Some authors, including [Kan00] emphasize that the relationship is affected by
factors like information available about the domain of application, the ontology used as the basis of the conceptualisa-
tion process, the purpose of the modelling, etc.

of application is simply something the modeller is interested in, and we do not assume it has a
specific structure — it may have, but in many cases the structure is imposed later by the modeller.
We assume that the conceptualisation of the domain of application is carried out by means of some
language. Once we have some language by which we can approach the domain of application,
we can define the language’s semantics. At that stage, we consider relations between linguistic
entities and “non-linguistic phenomena” in the Universe of Discourse (UoD), which is a set whose
elements have been “selected” from the domain of application.

In a model, irrelevant details are not taken into account, thus allowing the user of the model to
examine and manipulate the objects of interest in the model.? Data modelling has a long tradition
in computer science; it is concerned with representing the complexity of the domain of application
in a structure that can be manipulated by a computer.

Data models are specific languages® for describing the structure of the data stored and oper-
ations for manipulating it (see [Bor91]). Among them, the relational model is probably the best
known. Since the late 1970’s, several semantic data models (SDMs) have been suggested. Instead
of relying on relations and their operations (such as projection and union), in SDMs the language
in question contains terminology that can be more directly related to the domain of application
(like IS-A and has-attribute).*

In this thesis, we analyse modelling languages, i.e., languages that have been designed for
the purposes of conceptual modelling. Not all of them come from the tradition of semantic data
models, but all of them aim at creating a model of the domain of application. In the model, we can
recognise (i) language primitives that have counterparts in the domain of application or some other
realm (like natural numbers) and (ii) language constructs by which these items can be combined.?

In general, conceptual modelling is a special case of modelling where the model is not some-
thing physical (e.g., a miniature model of a future building) but conceptual. According to Mar-
jomaa in [Mar02], conceptual modelling is the description of information systems on the meta-
level, where conceptual processes, model constructions and knowledge representations play an
essential role. On the other hand, conceptual modelling can be seen as an activity the goal of
which is to develop high level concepts, tools and techniques for all areas in computer science. In
[KKJHOO], Kawaguchi et al. define information modelling as “structuring originally unstructured
or ill-structured information by applying various types of abstract models and principles, for dif-
ferent purposes.” Theory of science, organisational knowledge management, database design and
software development are mentioned among the application areas of information modelling, and
conceptual modelling is seen as one of its most important sub-areas in [KKJHOO].

The goal of a conceptual modelling process is to develop a conceptual schema of the domain of
application. In the construction of the conceptual schema, two principles serve as guidelines (see
[TCI87]), the “conceptualization principle” (only conceptual aspects should be taken into account
when constructing the conceptual schema) and the 100% principle (all the relevant aspects of the
domain should be described in the conceptual schema).

The status of the conceptual schema is not entirely clear. On one hand, the working group of
Technical Committee ISO/TC 97 in [TCI87] emphasises the conceptual nature of the conceptual
schema. This would mean that the conceptual schema is something identical to conceptual model.

ZFor further discussion about models, see e.g. [MMO1].

3For a precise definition of languages, see later in this chapter. Here, it is sufficient to state that languages consist
of primitives and ways of combining them.

“In this chapter, we use the terms “IS-A” and “has-attribute” in an intuitive and practical sense. For discussion
about the IS-A relation in knowledge representation, see [Bra83].

3(i) and (ii) correspond to terminal alphabet and production rules of Section 1.7.

2

On the other hand, in [TCI87], a conceptual schema is defined as a formal description of a domain
of application (called Universe of Discourse, UoD in [TCI87]). It uses some (normative) formalism
and it allows a formal description of entities contained in a domain of application, along with
properties and relationships between those entities. Moreover, it allows the description of formal
rules, constraints, events, processes and other features of semantics. In order to avoid ambiguity,
we emphasise that:

e A conceptual schema does not necessarily need to be implemented in a database, but it can
be manifested for instance in a diagram;

e A conceptual schema is something conceptual (e.g. even in the sense of platonic realism,
where concepts have their own mode of existence), but for the purpose of communication
it has to be written down or otherwise presented using some conventions of a modelling
language, i.e. a formalism. Following Kawaguchi et al. in [KKJHOO], we call a conceptual
schema in this form an externalised conceptual schema. It is expressed using the expressions
of the modelling language.

In order to discuss conceptual modelling, models, schemata, and modelling languages, we
make a distinction between things in the real world, things in the language, and concepts. More
precise definitions can be found in Section 2.2.

1.3 Preliminaries: Approaches to conceptual modelling

In this thesis we concentrate on different approaches to conceptual modelling. These will be dis-
cussed in connection with structural aspects in the description of the domain of application. The
motivation for this is that in practical terms, the modeller needs some sort of a framework for his
modelling task. This can contain the classification of reality as objects, roles, and relationships, as
in many popular modelling approaches. On the other hand, the framework can include identifica-
tion of different knowledge primitives, too, as in the COMIC approach discussed in [Kan93].

It is mostly out of the scope of this thesis to discuss the process of identifying and classifying
real world phenomena in the process of conceptual modelling. This process has been emphasised
in the intensional approach to conceptual modelling, discussed in Chapter 4, and is quite crucial in
the COMIC methodology. However, we make a distinction between semiotic (meaning in cultural
contexts and minds®) phenomena that take place during this process, and semantic phenomena. The
semantic theory employed here is more formal (see Section 1.7) and its relationship to conceptual
modelling can be explained as follows:

The modeller reports the results in the form of an externalised conceptual schema, using a mod-
elling language. An externalised conceptual schema is a linguistic construct, though it represents
(probably) conceptual things. Externalised conceptual schemata are expression sets, linguistic
level objects, composed of alphabets according to rules of a grammar. Thus, it is possible to expli-
cate the semantics of externalised conceptual schemata. A clear semantics is a primary concern of
the people designing a modelling language, since an externalised conceptual schema can be used
as a tool of communication in the user community. It must be emphasised that the principles of

6Nauta, in [Nau72], defines semiotics as the study of “semiosis”, which is a sign process, described as a five-
term relation S(s,i,e,d,c). S stands here for the semiotic relation; s for ‘sign’; i for ‘interpreter’; e for ‘effect’; d for
‘denotatum’ and c for ‘context’. See [Nau72], p.36 and p.28.

semantics are not bound to any particular language: any language with symbols and ways of com-
bining them should have semantics. However, in different kinds of modelling approaches, different
kinds of languages are employed and they are supposed to differ in terms of semantics as well.

The notion of intensionality in conceptual modelling has been emphasised in many accounts,
e.g. [Sow84], [DLNN97], [Woo091], [Kan92] and [Kan93]. In philosophy, intensionality is often
understood through a distinction between intensions and extensions, on one hand, and intensional
and extensional contexts, on the other hand.” If we think of the intension of a concept as the
internal contents of the concept, we are often interested in the elements and relationships within
these contents. The latter, naturally, we call intensional relationships.

It is an open question (discussed in Chapter 2) what the role of intensional relationships is in
a conceptual schema. What is meant by the term “intensionality” in general is discussed from the
perspective of semantics in Chapter 7, but the following will serve as a short summary:

In general, concepts are relatively independent of minds and things in the world. There is
a relation Z (in German ‘“zukommen”) that connects a thing in the world with a concept. The
extension of a concept in the world is a set of things for which this relation applies. Naturally, this
set can be empty as well: in the actual world, there are probably no things in Z-relation with the
concept of ghost.

The intension of a concept, on the other hand, is on the conceptual level. In the context of this
thesis, we adopt the view that the intension of concept a contains the concepts that are contained
in a.

e According to Kauppi in [Kau67], the intension of a concept is based on the relation of in-
tensional containment. Kauppi’s concept theory in based on Leibniz’s (1646 - 1716) phi-
losophy, where truth is analysed as “the subject concept containing the predicate concept”
(see [Zal00]).® Kangassalo has given interpretations of Kauppi’s theory that relate it to con-
ceptual modelling. According to Kangassalo in [Kan96], the intension of a concept is the
“knowledge contents” of the concept and the relation of intensional containment covers those
of IS-A, contains (part-of), and has-attribute. To sum up, according to this view, “something

’Quoting [Bla96], “The extension of a predicate is the class of objects that it describes: the extension of ‘red’ is
the class of red things. The intension is the principle under which it picks them out or in other words the condition
a thing must satisfy to be truly described by the predicate. Two predicates (*...is a rational animal’, ‘...is a naturally
featherless biped’) might pick out the same class but they do so by a different condition. If the notions are extended
to other items, then the extension of a sentence is its truth-value, and its intension a thought or proposition; and the
extension of a singular term is the object referred to by it, if it so refers, and its intension is the concept by means of
which the object is packed out. A sentence puts a predicate or other term in an extensional context if any other other
predicate or term with the same extension can be substituted without it being possible that the truth-value changes: if
John is a rational being, and we substitute the co-extensive ’is a naturally featherless biped’, the John is a naturally
featherless biped. Other contexts such as ‘Mary believes that John is a rational animal’, may not allow the substitution,
and are called intensional contexts.”

Encyclopaedia Britannica [eb-94b] states the difference of intension and extension as “‘intension’ indicates the
internal contents of a term or concept that constitutes its formal definition; and ‘extension’ indicates its range of
applicability by naming the particular objects it denotes.”

Moreover, in philosophy, intensional logics are maybe the best examples of studies of intensionality. Contrary to
many first order predicate logics “intensional logics allow one to develop theories of properties that have the same
extension but differ in intension” ([eb-94a]). A variant of intensional logic, Transparent Intensional Logic (TIL) is
introduced in Section 7.3.2. For a more detailed discussion of intensions in philosophy and logic, see e.g. [VB88].

8<The subject concept containing the predicate concept”we, naturally, interpret as intensional containment. From
today’s point of view, Leibniz’s theory is peculiar, since it analyses, e.g. the statement “Alexander is a king” in terms
of the concept of Alexander containing the concept of king. Thus, is appears necessary that the historical person
Alexander was indeed a king though we would rather see it as a contingent fact (for details, see [Zal00]).

4

is intensional” means that something belongs to the knowledge contents of a given con-
cept.” This view can be criticised on the basis of the properties of the relation of intensional
containment. We would like to maintain (based on Kauppi) that the relation is reflexive,
transitive and antisymmetric, and this is the case if we equate intensional containment with
IS-A relationships or necessary attributes (see Section 2.2). However, if intensional contain-
ment is to cover all of IS-A, part-of and has-attribute relationships, this seems unlikely. Let
us suppose a modeller who has no background information about concept theory wants to
model gardens and stones. A garden may have a stone as its parts (part-of relation), a stone
may have an attribute “survives in totally dry places” (a has-attribute relation). If we only
have the relation of intensional containment, garden intensionally contains stone, stone in-
tensionally contains survives-in-dryness. But for a garden survives-in-dryness would not
apply, so (i) either the relation cannot be transitive in a case like this or (ii) the relation of
intensional containment cannot be always applied to cases where there are many different
relations to be covered by it.!?

e In artificial intelligence related studies of computer science, intensionality is usually seen
from a different angle. The research is motivated by clarity of the background theory. In the
background theory (and thus in the artificial intelligence applications as well), it must hold
for instance that co-extensional concepts are not automatically identified with each other, and
that belief worlds can be asserted (see Chapter 2). Possible world semantics and situation
semantics (discussed in Chapter 7) have usually been employed as background theories.

In possible world semantics, the interpretations of some expressions (individual constants,
predicates and functions) are studied in the context of a collection of possible worlds. For
instance, a predicate (say, red) maps to sets (of red objects) in each of the worlds. Now,
the intension of a concept that corresponds to the predicate is the intersection of these sets
in all the accessible worlds (see [BS79]). The theory gives an explanation (semantics) of
intensional containment, in the case that it is identified with IS-A relationship.

e HIT semantics (Homogeneous Integrated Type-Oriented data model semantics) can be seen
as a detailed extension of the possible worlds theory. The background of HIT semantics
relies on Tichy’s analysis of Frege’s philosophy and, as a result, his Transparent Intensional
Logic (TIL, see [Mat00]). Frege’s distinction between Sinn and Bedeutung is apparent in his
famous star example. There, the expressions “Morning star” and “Evening star” denote to
the same object (Bedeutung — planet Venus) but they have different “modes of presentation”
of it, that is, different Sinns. Though it is suspicious to equate Sinns with concepts, it is
obvious that there is something between the expressions and their denotations. These can
justly be called concepts. According to Materna in [Mat00], Frege disliked the idea that
concepts could be denoted in a same way as (other) objects, but this idea is utilised in TIL,
where many different kinds of objects (including intensions) can be denoted. In TIL, this
means that we use constructions to reach objects.

In HIT semantics, intensions are “empirical functions” (they actualise in an empirical manner
in different worlds, unlike analytical functions) and intensional containment can be explained
in terms of subconstructions (for details, see Chapter 7).

° Analyti et al. have applied this kind of an view by the name of “real world intension” in [ASCD99].
101 the latter case, we can still assume that part-of and has-attribute relations as such are reflexive, transitive and
antisymmetric.

As we adopt the view “intensional = based on intensional containment”, we can trivially define
an intensional modelling language; it is a modelling language where intensional containment is
utilised. On the other hand, an extensional modelling language uses terminology that refers directly
to the objects, relations, attributes, etc., in the domain of application. With a hybrid language,
one can postulate both intensional and extensional phenomena. It is likely that most conceptual
modelling languages have hybrid properties. However, a pure intensional language (as presented
in Chapter 4) is an intensional language that has no “direct” mechanism to refer to directly to the
objects, their relations etc.'! A pure extensional language has no mechanism to assert concepts,
classes or relationships among concepts or classes (like IS-A).!?

An intensional approach to conceptual modelling can be seen as utilising an intensional mod-
elling language and methodology in the modelling process. This approach has its theoretical ad-
vantages (see Chapter 2), but in practical terms we can see the connection between an extensional
and intensional approach as follows:

Let us suppose a modeller models a “new’” domain of application with an extensional modelling
language. It is likely that many objects (e.g. a new company with its clients, suppliers, etc.) asserted
in the model do not exist yet.

Strictly, if we consider “a company that does not exist yet” and “clients of a company that
does not exist yet” as sets, we notice that they are empty. Since these “concepts” have the same
extension, they should be considered identical according to a strictly extensional view. Naturally,
for the modeller, this would hardly mean that as concepts a company that does not exist yet and
clients of a company that does not exist yet are identical, rather, he would think the company and
its clients as possible objects. Another way of seeing this is that the intensions of a company that
does not exist yet and clients of a company that does not exist yet are different. We maintain
that it is meaningful to elaborate these intensions and that the intensional approach can give us
tools for that.

1.4 The contents of the thesis

Several formalisms (modelling languages) have been developed for the purpose of expressing a
conceptual schema. In Chapter 2, we roughly divide these languages in three categories; exten-
sional, intensional and hybrid languages. An extensional modelling language uses terminology of
(extensional) entities and relationships in the description of the domain of application. In an in-
tensional language, concepts have a central role. Hybrid languages combine both intensional and
extensional features.

We also present the semantic background for a language of each category. We study how
suitable these languages are for the purposes of conceptual modelling: the method for that is to
present a set of everyday conceptual modelling needs that can be expressed using a simplified
natural language description. We inspect how the languages of each of the categories can meet
these needs and what kinds of other features they offer in addition to that.

Among languages that we call extensional, first order predicate logic (FOPL) has a long tradi-
tion and a lot of the terminology used in this thesis (the distinction between syntax and semantics,
issues of computability etc.) comes from that tradition. A logical system consists of a syntactic

" There is, of course, the “indirect” way, as J. Palomiki mentioned in a private conversation: the intension dominates
the extension, i.e. using the Z relation, we can refer to objects. However, this does not implicate that our modelling
language would employ this kind of mechanism.

2Here, we do not consider the possibility of using second order predicate logic where it is possible to quantify over
predicates. If concepts are seen as predicates, this would enable us to state relationships among them.

6

proof theory and a semantical model theory. In the standard system of FOPL, the deductive power
is rather weak (“semi-decidable”). Because of that, some more limited logic systems have been
proposed, among them Horn-clauses and languages like Prolog and Datalog based on them (see
[EN94]).!3 In Chapter 3, we discuss a prominent modelling language, Conceptual Graphs, which
has been proposed as an alternative of FOPL. Though the background theory of conceptual graphs
enables us to add intensional features to the formalism, it is natural to use a restricted version of the
language as an example of an extensional modelling language. We demonstrate that this restricted
version is equivalent to a restricted version of FOPL. We maintain, too, that no apparent advantage
is gained using the conceptual graph formalism instead of FOPL.

In Chapters 4 and 5, we discuss a concept-theoretical (intensional) approach to conceptual
modelling, and a language based on it. In the concept-theoretical approach discussed here, there are
only two kinds of primitives in the language: concepts and the relation of intensional containment
on a set of concepts. We present functional methods for expressing and analysing concept systems
(axiomatic systems stating what kinds of relationships are possible among concepts) and outline a
scheme to utilise concept systems in conceptual modelling.

CONCEPT D is a modelling language that has been inspired by the concept-theoretical ap-
proach (see e.g. [Kan83]). Using CONCEPT D, the modeller expresses the concepts that are
relevant to the domain of application (Universe of Discourse in the COMIC terminology), and
the relationships between these concepts. Most of the relationships are considered to be variants
of the relation of intensional containment. This approach is most economical, but it may present
problems concerning the semantics of the relations between concepts. We approach the problem
from two different angles: in Chapter 6 by comparing CONCEPT D with another modelling lan-
guage and in Chapter 7 by constructing a semantics of the structures presented in CONCEPT D
using a semantic background theory. Both of these approaches enable us to use some of the tools
developed in Chapters 4 and 5 in combination with the established semantics.

In many other modelling languages, the basis of the modelling is the extensions of some con-
cepts in the domain of application and various relationships between these extensions (sets). This
starting point has its limitations, but it provides clear semantics for the modelling language. In
Chapter 6, we discuss a mapping between a limited version of CONCEPT D and a well-known
and semantically well founded modelling language, IFO (see [AH87]).

In Chapter 7, we discuss several approaches to concept research, semantics and their rele-
vance to conceptual modelling. The approaches include the theory of possible worlds, situation
semantics, theories of predication and transparent intensional logic. The HIT data model, based
on transparent intensional logic, is discussed as well, and it is applied as the semantics of a limited
CONCEPT D language.

1.5 Related research

Previous research to be mentioned in this context concerns semantics, data models, modelling lan-
guages and intensional features in conceptual modelling. Duzi in [Duz0Ob] discusses the criteria
for conceptual modelling languages and explicitly mentions expressibility, clarity, semantic stabil-
ity, semantic relevance, validation mechanisms, abstraction mechanisms and formal foundation.
Hausser’s work on computational linguistics in [HauOla] contains an extensive study of semantics
in the context of natural languages and the possibilities of human-computer communication. Data

131n addition to limited logics, there are logic systems that limit the syntax of FOPL in some ways and expand it in
some other ways. One of the best known examples of these is KIF [GF92].

7

models in general are discussed by Elmasri and Navathe in [EN94]. The Entity-Relationship for-
malism (The ER Model, or simply ER), presented by Chen in [Che76] is an influential semantic
data model that popularised many notions (entities, attributes, relationships,..) that are still com-
monly used.'* Several extensions to ER were suggested; they include e.g. Extended Entity Rela-
tionship formalism (EER), discussed in [BCN92], where subclass-superclass relationships can be
expressed; and various temporal extensions (see e.g. [Tau91]). Though famous, ER is not the only
semantic data model. Other merited ones include IFO (see [AH87]), whose semantics is based
on database updates and is thus very well defined; SDM (see [HMS81]) for its relative “semantical
relativism”, where it is not very important if something is a relationship or an attribute!3; NIAM
(see [VvB82]), and more recently its successor Object Role Modelling (ORM) [NH89]. In Chap-
ter 2, we further discuss modelling using an ER-like formalism and compare it to other kinds of
formalisms as well.

Alongside semantic data models, knowledge representation languages have gained ground
since the 1980’s. According to Borgida in [Bor91], knowledge representation languages (such
as KRL [BW77] and later KL-ONE [BS85]) have similarities with SDMs; both of them aim at
the construction and use of a database/knowledge base. However, the motivation for their use is
different, the users of SDMs are humans; software developers/maintainers or end-users. The nor-
mal user of a knowledge representation system is a program, which tries to perform some task by
using the knowledge base as a “server”. The program normally carries out some inferences based
on FOPL (or a limited version of it) and much of the post-1980’s research of knowledge repre-
sentation languages has concentrated on the computability of such languages. Papers by Donini
et al. ((DLNN97], [DLN192]) are good examples of this research. These languages have become
known as “concept languages” or description logics (DLs), and are further discussed in Chapter 2.

Given the similarities of SDMs and knowledge representation languages, many languages have
features of both of them. Sowa’s Conceptual Graphs [Sow84] is a rich formalism, where con-
cepts form a subconcept-superconcept hierarchy (a lattice). However, Sowa makes a difference
between reasoning about the hierarchy (intensional features) and things expressed by Conceptual
Graphs themselves (extensional features).!® Conceptual graphs and their relationship to FOPL are
considered in Chapter 3.

Formal ontologies (see e.g. [Gua97], [GGY5]) are another area of computer science where
concepts and their relationships are discussed. We observe much similarity between the intensional
approach (especially of the kind in Chapters 4 and 5) of conceptual modelling and the terminology
in formal ontologies.!”

The perspective of intensionality in conceptual modelling has been discussed in many occa-
sions, but probably [Kan92] is the most precise in formulating the view of intensionality as the
knowledge contents of concepts. Much of the related work has been done in the University of
Tampere, including studies by Junkkari (see [Jun98]) and Niemi (see [Nie0O]). Moreover, Berztiss
in [Ber99] discusses intensional conceptual modelling in a more general sense; Motro in [Mot94]
and Falquet et al. in [FLS94] apply some intensional features to databases; and in [NP98] Nils-
son and Palomiki define a logic-based language to compute intensions and extensions. This is,

14For instance, the popular “Unified Modelling Language”, UML, employs some ER conventions. Here, we do not
cover UML extensively due to its emphasis of software engineering. For details, see e.g. [JBR99].

SHammer and McLeod in [HM81] use the term “relative viewpoint”. It should be noticed that SDM here is a proper
name and does not refer to semantic data models in general.

16The same kind of distinction has been applied to many description logics, including KL-ONE’s [BS85] distinction
of T-Box (concept definitions) and A-Box (“rules” and other extensional statements).

17Some of the similarities of the intensional approach and formal ontologies were pointed out by H. Kangassalo in
a private conversation.

however, different from our approach in Chapters 4 and 5, where an abstract implementation of
managing concept structures developed on the basis of the intensional containment relation.

COMIC methodology with its CONCEPT D modelling language emphasises the intensional
perspective and semantical relativism. Instead of having separate notions of entities, relationships,
attributes or roles like in ER, there are only concepts. COMIC and CONCEPT D are introduced in
[Kan83], [KV90], [Kan92] and [Kan93].

Several objections to COMIC methodology and CONCEPT D can been raised, like those of
Duzi in [Duz00c]. These objections can concern both the philosophical background of COMIC
(notions of concepts and intensions) and the semantics of concepts diagrams (externalised concep-
tual schemata expressed with CONCEPT D). The philosophical background is analysed in Chapter
6. Both Chapters 6 and 7 address the question of semantics, too. However, the focus of Chapter
7 is to analyse the semantic theories that would serve as a background for conceptual modelling.
This kind of survey is rather unusual, but inspired by [HLvR96], [Duz01] and [HauO1b].

1.6 The purpose and the results

The purpose of this thesis is to:

e Construct a feasible categorisation of different kinds of modelling approaches and languages
and evaluate them based on that;

e Evaluate and study prominent modelling languages in each of the categories. Especially
evaluate the pros and cons of Conceptual Graphs, a language proposed as an alternative to
first order predicate logic in knowledge representation and conceptual modelling;

e In the category of intensional languages, analyse and demonstrate the possibilities of a lan-
guage based on a purely intensional description of the domain of application;

e Emphasise simplicity and well-defined semantics as virtues of any modelling approach.
The main results are:

e Creating a general framework and clarifying the terminology of modelling languages by
means of the categorisation (Chapter 2);

e Among extensional languages, comparing first order predicate logic and conceptual graphs
and pointing out the limitations of Conceptual Graphs in practice;

e Constructing an abstract implementation of a modelling language that is based purely on
concept theory, and its theoretical background. On this theoretical basis, however, it appears
that only quite limited (and strict) conceptual schemata can be created using the language,
and it may be difficult to relate the language to everyday modelling tasks. These difficulties
are related to semantics and the following items.

e Comparing CONCEPT D with a semantically well-defined conventional modelling lan-
guage, IFO, in order to clarify its semantics;

e Based on the above, proposing a variant of CONCEPT D so that the semantic properties of
CONCEPT D diagrams could be better understood.

e Studying different semantics as background theory and clarifying their positions to concep-
tual modelling.

1.7 Terminology and conventions

In this thesis, a set is loosely defined as follows: “By a set we mean any collection of entities of any
sort” and that the “members of a set [..] belong to the set” [Sup57]. Following Suppes in [Sup57]
we say, too, that “X belongs to set A” is denoted by x € A, and “X does not belong to A” by X & A.
The empty set, denoted by {}, is the set such that for every x, X ¢ {}.

The members of a set are also often called the elements of the set.

In order to give a set a precise definition, and to avoid the so-called Russell’s paradox, axiomatic
set theory can be used.'®

By convention, in computer science, classes are collections of objects of the same type. In
mathematics, however, classes are collections that can be formed arbitrarily (thus, sets are classes).
Logical notions like “predicate”, “quantifier”, “L-model” etc., are presented in Chapter 3, and some
mathematical notions in Chapter 4. Other notions related to theory of computation and set theory
are discussed below.

Two sets, A and B are identical (denoted by A = B) if and only if they have the same members.
If A and B are sets such that every member of A is also a member of B, then we call A a subset of
B [Sup57], denoted by A C B. If A and B are sets, then by the union of A and B (in symbols AUB)
we mean the set of all things which belong to at least one of the sets A and B [Sup57]. Likewise,
if A and B are sets, then by the intersection of A and B (in symbols AN B) we mean the set of all
things which belong to both A and B. If A and B are two sets, then by the difference of A and B (in
symbols A — B) we mean the set of all things which belong to A but not B.

Given a set A, the power set of A, denoted by P(A) is the set of all subsets of A.

If x and y are two objects, we can connect them together explicitly by the ordered pair (X,y).

We define ordered n-tuples as follows (see [Sup57]):

<X17X27 "7Xn> = <<X17X27 --aXn—1>,Xn>-

The Cartesian product of two set A and B (in symbols A x B) is the set of all ordered pairs (X, Y)
such that X € Aand y € B (see [Sup57]).

If A and B are sets, then any subset of A x B is a relation from A to B. If the ordered pair (X,y)
is a member of R, we use notations (X,y) € R or xRy, alternatively. A two-placed relation (like R
above) is also called a binary relation.

If R is a binary relation, then the domain of R is the set of all things X such that, for some
Y, {X,y) € R. The counterdomain of R is the set of all things such that, for some X, (X,y) € R (see

8For conciseness, we quote the axioms of set theory, as presented in [Jec78]:

o | Axiom of Extensionality: if X and Y have the same elements, then X =Y.
e II Axiom of pairing: for a and b there exists a set {a,b} that contains exactly a and b.

e JII Axiom schema of separation: If @ is a property with parameter p, then for X and p there exists a set
Y ={ue X:@u,p)} that contains all those U € X that have the property .

e [V Axiom of Union: for any X there exists a set Y = UX, the union of all elements of X.
e V Axiom of power set: for any X there exists a set Y = P(X), the set of all subsets of X.
e VI Axiom of infinity: there exists an infinite set.

e VII Axiom of schema replacement: If F is a function, then for any X there exists aset Y = F[X] = {F(X) : x €
X}.

o VIII Axiom of regularity: Every nonempty set has an € -minimal element.

10

[Sup57)).

Following Suppes in [Sup57], we define the notions of reflexivity, antisymmetricity, transitivity
and partial ordering as follows.

A binary relation R is reflexive in the set A if for every X € A, XRX.

A relation R is antisymmetric in the set A if for every X and y in A, whenever XRy and yRX, then
X=Y.

A relation R is transitive in the set A if for every X,y and zZ in A, whenever XRy and yRz, then
XRz.

A relation R is a partial ordering of the set A if and only if R is reflexive, antisymmetric, and
transitive in A.

A function R is a binary relation such that if XRy and xRz then y = z (see [Sup57]).

By definition, a function from A to B is a relation from A to B. Let f be a function. If a € A, then
the member b € B such that afb is called the value of f at a, and is designated by f(a) (definition
adapted from [Lip76]). The set of all such values is called the image of f and is denoted by Im(f)
(see [Lip76]).

We denote function f from A to B as f : A— B. There, we call A the domain of the function
and B its range. f : A— B is often called the signature of the function. Now, Im(f) is a subset
of B.

If b = f(a), we call b the result of f for argument a. We say, too, that the function returns b
for argument a.

Informally, the cardinal (cardinality) of a set is the number of its members. We define this
notion more precisely following Zhongwan in [Zho98]. First, two sets S and T are said to be
equipotent, written as S ~ T if and only if there is a one-one function from S to T. Now, a cardinal
of a set S, denoted by |S|, is associated with S in such a way that |S| = |T|if and only if S~ T. A
finite set S is equipotent to {0,..,n — 1} for some natural number n.

Informally, an algorithm is a sequence of elementary operations (steps) required to carry out a
computational task. The complexity of an algorithm is relative to the size of its input. Intuitively,
if the size of the input is n and the algorithm computes the output using nk elementary operations,
the complexity of the algorithm is polynomial (“tractable”). If the number of operations needed is
2", for example, the complexity is exponential. '

A set is decidable if there is an algorithm for determining for any X if X is a member of the set.
In general, a decision problem is a problem with a “yes” or “no” answer. A famous complexity
class of decision problems is called NP (Nondeterministic Polynomial), for which answers can
be checked by an algorithm whose “run time” (number of steps) is polynomial to the size of the
input.20

A language is a set of sequences of alphabet (strings) that is composed of terminal alphabet
using the production rules of a grammar. We say, too, that the grammar defines the syntax of the
language. Let A be a finite set of alphabet. We denote by A* (reflexive transitive closure of A) all
the strings (sequences of alphabet) that can be constructed from A. If s is atring and s € A*, we say
that s is an expression of the language.

Formally, a grammar is a 4-tuple (T,N,R,S). There, T is a finite nonempty set called the
terminal alphabet. The members of T are called terminals or terminal symbols. N is a finite
nonempty set disjoint from T. The members of N are called the nonterminals or auxiliary symbols.

19 A proper definition of complexity would require a lengthy discussion of Turing machines. For details, see [Ata99].

20 According to [Joh90], the class “NP” is defined to be the set of all decision problems solvable by NDTMs in
polynomial-bounded time. There, NDTM (Nondeterministic Turing Machine) is a Turing machine which at each step
(of calculation) has several choices as to its next move.

11

R is a finite set of productions (see below) and S € T is a distinguished nonterminal called the start
symbol (or starting symbol).?!

R consists of 2-tuples (ordered pairs) (a,b), where a is a string of terminals and nonterminals
containing at least one nonterminal and b is a string of terminals and nonterminals. A popular way
of presenting these ordered pairs is to omit the angle brackets and insert a production symbol (—)
between them, i.e. a+— b.

In Chapter 3, we use a very traditional form of a grammar, where all the auxiliary symbols used
are represented by a single alphabet and not a string. In Chapter 2, to conform with Lambrix’s (see
[Lam96]) conventions, we apply a form that is more often used in computer science. There, “::="
is used as the production symbol, auxiliary symbols are strings surrounded by “<>”, and “+” is
used as a symbol of repeating the previous symbol 1,..,n times.

In Section 6, we apply some basic terminology of graph theory. Informally, a graph is a finite
set of dots called nodes (or vertices) connected by links called edges (or arcs). An edge connecting
node A to node B can easily be presented as an ordered pair (A,B). If the direction of the edge is
important, we talk about directed edges, otherwise undirected edges. A graph with directed edges
is called a directed graph.

Horn clauses are defined as follows (please see Chapter 3 for the definition of atomic formulas):

A literal is either an atomic formula or an atomic formula preceded by a negation symbol (—). A
literal preceded with — is called a negative literal. Otherwise, it is called a positive literal. Clausals
are positive or negative literals, connected with V-connectives. A sequence of clausals, connected
with A-connectives, form the clausal form of the formula. A Horn clause is a clausal form that has
maximally one positive literal.

When we use language L to describe something specific, the result is a subset of L, since it uses
a specific set of the terminal alphabet. However, it is more natural to call the result an expression
set.

In modelling, the notion of something being or not being printable (representable by a string)
often occurs. We use the following definition: Let A be a finite set of alphabet. A class is printable
if there is a recursive injection?? from its members to A*.?3 If something is not printable, we call it
abstract. In the NIAM tradition, printable types are called lexical object types (LOTSs) and abstract
types are called nonlexical object types (NOLOTSs) [NH89].

Semantics connects some of the strings with meanings. We identify these meanings with con-
cepts, though there can be concepts that have no linguistic expression (a string) related with them.
However, these concepts are not accessible to us until we find a way (a string) to refer to them. If
there is a semantic connection between a string and a concept, we call the string a name of the
concept.

A modelling language or a formalism is a well-defined technique (language with possibly some
guidelines of how to apply the language, and often some form of graphical visualisation) used in
modelling for expressing something about the domain of application. A modelling language nec-
essarily has a syntax, but we assume that semantics can be defined for the language, too, thus
allowing us to talk about “the semantics of modelling language X”. In the case of modelling lan-
guages, we often call the terminal alphabet language primitives.

A conceptual model is on the level of concepts, but an externalised conceptual schema is a
linguistic level object, an expression set, created using a modelling language.

2IThe definition of grammar has been adopted from [Ata99] with minor changes in the terminology and the naming
of sets T,N and R.

22A function f is an injection if and only if f(X) = f(y) implies that x =y for all X and y in the domain of f.

23«Printable type” is defined accordingly, since types are sets (and thus classes) given by a predicate.

12

A concept has an intension and an extension, linguistic expressions (strings) have meanings
and references. We use the expression “contents of a concept” instead of “content of a concept”.

“Domain of application” refers to the object of modelling. “Universe of Discourse” is reserved
for a more technical use.

Similarly, “a relationship” is a generic non-technical name (like “relationships between ob-
jects”. “Relation” is reserved for more technical use in mathematics, concept theory (“the relation
of intensional containment”), etc.

A database is “a structured collection of data held in computer” [SW98].

According to [Yov93], “information is data which is used in decision-making”. Here, we
consider the notions of information and knowledge to be largely synonymous.

In this thesis, conceptual entities are presented in bold typeface (unless otherwise indicated)
and linguistic entities are written in italics. For emphasis, too, we use italics.

A short arrow (—) 1s used for the sign of logical implication. In the signatures of functions, for
instance fs: N — N, a long arrow is used.

13

14

Chapter 2

Intensional and Extensional Modelling
Languages

2.1 Introduction

Data models are abstractions that hide the technical details of storing data. Generally, there
are three different types of data models: high level, implementational and physical data models
[EN94]. High level data models are close to the way the users see the information. In information
system design, high level data models have gained more and more attention as the applications
get more complex (see [Lan78]). It can be said that with high level data models, there is a trend
towards a conceptual description of the domain of application (apparent, for example, in [TCI87],
[Che76], [HK87]).

In conceptual modelling, the role of intensionality has been emphasised in e.g. [Wo091] and
[Kan96]. In philosophy, intensionality is understood as a distinction between denotation and
meaning; that is, the word “stone” denotes a concrete stone, but means the concept of stone (see
[B1a96]). Yet, it is unclear what exactly is meant by intensionality in conceptual modelling and
how this intensionality can be reflected in conceptual modelling languages. We clarify this by (i)
considering what kind of semantics can be called intensional and (ii) classifying the modelling
languages into three different categories: extensional, intensional and hybrid. An extensional
language uses terminology of extensional entities (things in the domain of application) and re-
lationships among them. In an intensional language, concepts have a central role and the language
has means of expressing relationships between concepts. Hybrid languages combine both inten-
sional and extensional features.! Each of the categories presents a different approach to conceptual
modelling. The following features can be seen as representative among them:

e In Section 2.3, we present an extensional language, influenced by the Entity-Relationship
Model (ER, [Che76]). Extensionality is reflected in the terminology of the language (“sets
of objects”, “relations’), and its simple semantics. The semantics is based on the idea that
sets of objects actually consist of objects in the domain of application. The relationships
are subsets of Cartesian products of the sets of objects, so eventually the relationships also
accommodate objects of the domain of application. While this kind of semantics is very easy
to understand, it does not provide a natural way of describing why some relationships are
intensional in nature. For instance, there is no way to make a difference in notation (or se-

mantics) between the WINE-TASTING-SOCIETY - SOCIETY relationship and the “buys”

"For a proper definition of the basis of the classification, see Section 2.2.

15

relationship (between WINE-TASTING-SOCIETY and WINE-BOTTLE) of our example in
Figure 2.1.

Many papers by Kangassalo, especially [Kan93] and [Kan83], promote an interesting idea of
conceptual modelling based almost entirely on intensional relationships (mainly intensional
containment) between concepts. In this approach, concepts represent anything that is of
interest in the domain of application; for instance an entity, a relationship, an attribute, or a
process.

Since concepts are relatively independent of the domain of application, this approach can
avoid some problems of (too) simple extensional semantics. For instance, we can talk about
concepts of female president of the US in the 20th century and ghost without assuming
that they are identical, though they are co-extensional (in the actual world).

While the extensional approach is given an explicit form in Section 2.3, the intensional
approach is explained in Chapters 4 and 5. There, we only discuss a formalism based on
concepts and the relation of intensional containment in the set of concepts. The relation
1s not given any specific interpretation, but in the examples we consider it similar to IS-A
relationship. However, in [Kan93] the relation of intensional containment is applied to cover
several kinds of relationships that are in other approaches considered to be semantically
different from each other, like IS-A and has-attribute.

Since KL-ONE (see [BS85]) and Classic (see [BT89]), Description Logics (DLs) have
played an important role in knowledge representation. In DLs, intensional relations are
represented as a taxonomy using a so-called concept language as a representation method
[DLNN97]. A concept language is in fact a limited variant of the First Order Predicate
Logic.? In a typical DL, there are only two types of expressions: subsumption expressions
and role expressions. A subsumption expression states a subconcept-superconcept relation-
ship in the set of concepts. A role expression states that some attributes are linked with some
concepts; or that some concepts must match other concept’s attributes. Using these means,
a concept language can be used to describe concepts and to derive new concepts from the
existing ones. The core of a concept language system is a classifier that organises concepts
into a hierarchy according to their specificity (see [DLNN97]). A concept hierarchy is a par-
tial ordering of the set of concepts, based on the subconcept-superconcept relationship (see
[HTOO]). The more expressive the concept language is, the more difficult this classification
gets. Much work has been devoted to the analysis of the complexity of different concept
languages as in [DLNN97], [DLN"92] and [Gre91].

In this chapter, we discuss each of these approaches using a simple modelling example. We
evaluate the approaches from the perspective of conceptual modelling. To do so, we present some
general notions about conceptual modelling, the example and some basic terminology in Section
2.2. In Section 2.3, we describe an extensional modelling language and present the example using
it. In Section 2.4 we discuss concept systems and an intensional modelling language based on
them. “Hybrid languages” that combine both intensional and extensional features are discussed in
Section 2.5. A discussion and a summary can be found in Section 2.6.

2In essence, according to Donini et al. [DLN*+92], the First Order Predicate Logic language that corresponds with
a concept language has only unary and binary predicates, and each concept language expression can be translated into
a predicate logic formula which has one free variable.

16

2.2 Conceptual modelling and modelling languages

In the process of conceptual modelling, the modeller creates a conceptual description of the object
to be modelled and expresses it in some formalism, a modelling language (see [Kan83]). We
call the result of the process an externalised conceptual schema. In order for the schema to be
understandable, the language in question should be suited both to the needs of the domain of
application and the user. Moreover, the schema should meet some technical requirements, like
illustrativeness and unambiguity (see [TCI87], [Mar97]). As discussed for example in [LB85]
and [Nii98], it is fruitful to consider the expressiveness and efficiency of the languages as well: a
language is useless for the purpose if one cannot express enough with it, or if it is so expressive
that its use becomes computably too demanding.

In this chapter, we discuss three semantically different types of languages that can be used to
express the externalised conceptual schema. We use a simple example in order to compare features
of these languages. We see extensional modelling languages as a semantically common sense
approach to modelling problems. Though sufficient for many everyday needs, the extensional
semantics of the languages present some theoretical difficulties. These can be summarised as
follows:

e In simple extensional semantics, the notion of meaning can only be defined in terms of
references. Therefore, language expressions that have the same referent automatically have
the same meaning. This is often expressed by saying “co-extensional concepts are identical”.
This applies to empty referents as well. Thus, semantically, no distinction can be made
between the expressions female president of the US in the 20th century and ghost, since
they have an empty extension in the actual world.

e The “belief worlds” are missing; let us suppose John just moved into the flat where Mary
lives and Sarah does not know that. Sarah knows Mary’s phone number, so against our
intuition we should deduce that Sarah knows John’s phone number as well.

To get over these difficulties, we should prefer semantics where the expressions and referents
are not bound together monolithically. This kind of semantics would establish the meaning of
the expression independently of the referent. We call this meaning a concept, and this kind of
semantics intensional.

It is out of the scope of this chapter to discuss actual semantic theories. However, the features
listed above are used as the background theory of our classification of modelling languages, as
follows:

e If the semantics of the language forces us to identify meanings with referents, we call the
language extensional;

e If the semantics of the language explicitly postulates concepts, and the relationship of inten-
sional containment, we call the language intensional;

e If the language is intensional, but allows us to refer to “things in the world” in the domain of
application, we call it a hybrid language.

In this chapter, we employ the following terminology, partially adopted from [JunO1]. Here, we

make a difference between the representation language level, where there are strings composed of
terminal alphabet using production rules of a grammar; object level, where there are things in the

17

domain of application; and conceptual level, where there are concepts. Abstraction methods (like
grouping, aggregation and taxonomy) are needed to create the structure (structural relationships)
for our representation of the domain of application.

In general, everything at the representation language level is called an L-item.

In the domain of application, there are objects. We do not assume that an object has any
metaphysical characteristics, but only that an object is uniquely distinguishable from other
objects.?

Objects have properties that are intrinsic to them. Properties that describe functional capa-
bilities of objects are called behavioural properties.

Some objects are printable, i.e. representable by an alphanumeric string. Objects that are
not printable are called abstract.

Similar objects share an object type. Collections of objects of the same type are called
classes.* At the conceptual level, there are concepts. Some classes are extensions of some
concepts. At the representation language level, L-entities are L-items that represent classes
or concepts. These we refer to with capital letter strings, like STUDENT.

In the domain of application there are relationships between entities. Each relationship can
be considered a tuple of entities. In the process of modelling, we are interested in presenting
relationship types that we can name, and where we state what are the classes of elements
in this relationship type. For instance, STUDIES-AT-DEPARTMENT is a (binary) relation-
ship type between STUDENTSs and DEPARTMENTS. At the representation language level
we call these relationship types L-links. In what follows, we present structural relation-
ships indicated by abstraction methods. For this reason, we reserve the term “L-link™ to be
used for non-structural relationships, i.e. domain specific relationships, like STUDIES-AT-
DEPARTMENT.

There is an abstraction method of grouping, sometimes called iteration, by which we can
form member-of relationships. By grouping, we form finite sets whose members belong to
a certain class. For instance, a STUDENTS-ATTENDING-A-COURSE has members all
of which are STUDENTSs. Thus, STUDENTS-ATTENDING-A-COURSE is a grouping of
STUDENTS. At the representation language level, this abstraction method is presented as
L-grouping.

There is an abstraction method of aggregation by which properties are introduced. Using
aggregation, the modeller can present L-entities as compounds of other L-items that are
called the attributes of the entity. For instance, a STUDENT can be modelled consisting
of STUDENT-NUMBER, NAME, SEX and AGE; a MOTOR-BOAT consisting of MOTOR
and HULL. At the representation language level, this abstraction method is presented as L-
aggregation and the attributes are called L-attributes. L-attributes can generally be referred
to by their names in the aggreagate, like MOTOR-BOAT’s HULL.

3We may consider “tropic realism” as a plausible background theory of objects. This, however, is outside the scope
of our research. For details, see Niiniluoto in [N1ii99].
“4For discussion of sets and classes, see Section 1.7.

18

e Some attributes are necessary, in a way that the entity could not exist without them. Other
attributes are contingent.

e Part-of-aggregation is a special case of aggregation.” At the representation language level,
we call this L-part-of-aggregation and these kind of attributes are called L-part-of-attributes.

e Some of the attributes are identifying: they unambiguously identify a particular entity. Their
value sets are printable scalars and we call them identifier value sets. A member of that set
is called an identifier and, at the representation language level, L-identifier.

e There is an abstraction method of taxonomy for expressing subclass-superclass relationships,
by which we express IS-A relationships. At the representation language level they are called
L-isa-links. In many modelling methodologies (see e.g. [AH87]), IS-A comes in the form
of either specialisation or generalisation: an L-entity can be depicted as a generalisation
or specialisation of another. If these variants of IS-A differ in the level of language, they
will be called L-specialisation-links and L-generalisation-link. Here, however, we only use
L-isa-links in general.

e There is a method of generating derived information: we can define functions that operate
on entities, attributes or relationships and define their values. Traditionally, some modelling
languages provide support for this only by derived attributes (see e.g. [Che76]).

e There are methods of expressing constraints, that reflect the constraints of known to apply
to the domain of application. For instance, we know that person’s age never decreases.
Here, we consider constraints that can be expressed using relationships. On one hand, a
relationship can directly state a constraint (e.g. “the EXPENSES of a DEPARTMENT may
not exceed the BUDGET of the DEPARTMENT”). On the other hand, a constraint can be
an cardinality constraint, (e.g. “a STUDENT must have exactly one MAJOR”).

If a simple natural language based depiction of the domain of application uses the above termi-
nology, we call it a simplified natural language description. As an example of this, let us consider
the following depiction of the yearly activities of a wine tasting society, as in Figure 2.1. There, the
wine tasting society in question is a society; it is a group of persons, and has a budget. A person
has a name, an id number, an address and a phone number. A wine tasting society buys wine in
wine bottles, but it cannot spend more than its budget for buying wine. A society has a name and a
society id. An address consists of a street address, a zip code and a city name. A wine bottle has a
name, a year, a type (one of red, white or rosé) a label and a price. A label has text and an image.

2.3 A simple extensional modelling language

In this section, we represent the example of Figure 2.1 using a formalism that has been influenced
by the ER model, introduced in [Che76].

There are two basic L-items, named sets of objects and named relations between named sets of
objects. Named sets of objects are L-entities and named relations cover L-aggregation, L-part-of-
aggregation, L-links and L-isa-links.

Tt is difficult to define precisely which attributes are “part-of” -attributes and which ones are not. Winston et
al [WCHS87] simply call “attributes” those properties of which are not intuitively “part-of”’. For instance, in their
discussion, the height of a tower is an attribute but not a part.

19

Attributes of a SOCIETY: name (necessary), society-id (necessary, identifying).

Relationship between SOCIETY and WINE-TASTING-SOCIETY: WINE-TASTING-SOCIETY
is a SOCIETY.

Attributes of WINE-TASTING-SOCIETY: budget (necessary).

Relationship between WINE-TASTING-SOCIETY and PERSON: WINE-TASTING-SOCIETY
built out of PERSONS by grouping.

Attributes of PERSON: name (necessary), membership-id (necessary, identifying), phone number
(not necessary), address (necessary).

Attributes of address: Street address (necessary), zip code (necessary), city name (necessary).
Relationship between WINE-TASTING-SOCIETY and WINE-BOTTLE:
WINE-TASTING-SOCIETY buys WINE-BOTTLEs.

Attributes of WINE-BOTTLE: name (necessary), year (necessary), type (necessary, one of red,
white, rosé), price (necessary).

WINE-BOTTLESs have LABELSs as a parts of them. Relationship between WINE-BOTTLE and
LABEL: LABEL is a part of WINE-BOTTLE.

Attributes of LABEL: text, image.

There is a cumulative price CUMULATIVE-PRICE of all the prices of the wine-bottles. It is
calculated as: the sum of WINE-BOTTLES’ attribute price.

CUMULATIVE-PRICE must be less than the budget of WINE-TASTING-SOCIETY.

Figure 2.1: Example: a simplified natural language description.

A named set of objects can be printable like ZIP (a set of zip codes) or abstract, like PERSON
(a set of persons).

Named relations persist among two or more named sets of objects. Given n named sets N;..Np,
a named relation is a subset of the Cartesian product Ny X .. X Np. For instance, an ADDRESS is a
named relation of STREET-ADDRESS x ZIP x CITY_NAME.

In order to keep the language simple and consistent, it is reasonable to allow named relations
only between named sets (and not between a named set and a named relation, for example). How-
ever, we introduce the usage of a named relation as an abstraction mechanism (Hull and King
would call this a type constructor, see [HK87]). This is actually a function f(Ny,..,Ny) — N,
where N, N; are named sets, and whose name (f) is the same as the respective named relation.

The graphical conventions for the language are presented in Figure 2.2 and the example in
Figure 2.4. In the syntax in Figure 2.3, the following things should be noticed:

e An expression is either a named set (with a type), a named relation, or a named relation as
abstraction;

e “with a type” means that it is indicated with a letter (A/P) if the named set is abstract or
printable;

e A named relation is just a list of two or more named sets with a type,

e A named relation as abstraction is represented by a named relation, an arrow —, and a
named set with a type.

20

person
address person addres

a printable named set an abstract named set a named relation

[person }

label

= |

| image

a named relation used as abstraction mechanism

a named relation connecting
PERSON and ADDRESS

Figure 2.2: The language items of a simple extensional language

< expression >::=
< named — sat —with—type > | < named — relation > | < named — relation — as— abstraction >
< named — set — with—type >::=
< named —set > A| < named —set > P
< named —relation >::=
< named — set — with—type >< named — set — with—type >
< named — relation — as— abgtraction >::=
< named — relation >— < named — sat — with — type >

Figure 2.3: The syntax of a simple extensional language
In the spirit of ER, L-grouping, constraints, distinction between necessary/contingent attributes,
and derived attributes are not included in the language, though it would be possible.

We can observe that this representation language is appropriate for the purposes of the example.
There are, however, some cumbersome details:

e A statement like “a wine tasting society is a society” requires a repetition of society-id and
society-name in both society and wine tasting society;

e It cannot be expressed that wine tasting society members are a grouping of persons;

e It cannot be expressed that there is a difference between part-of and other kinds of named

21

person

person’s
ddress

(o) oy

Figure 2.4: The natural language description represented by using an extensional language.

relations;

e The cumulative sum of wine bought by the wine tasting society cannot be expressed at all;
neither can its comparison with the budget of the wine tasting society be expressed.

Most of these shortcomings, however, do not follow from the language being extensional. It
would be possible to design a language with a similar kind of semantics but expressive enough to
express all the required details.

2.4 Languages based on intensional approaches

To our knowledge, in computer science there have been two different attempts to establish a totally
intensional approach to conceptual modelling through a concept language. The first one was man-
ifested in the early semantic networks (see [Qui68], [Win75], [Ran88]), where links directly con-
nected nodes that obviously presented concepts. The second one is Kangassalo’s COMIC method-
ology with its CONCEPT D language (see [Kan83], [Kan93], [Kan92]) influenced by Bunge’s
philosophy of science (as in [Bun67]) and Kauppi’s concept calculus (see [Kau67]). Our example
of an intensional modelling language is largely similar to CONCEPT D.°

®It should be noticed, however, that CONCEPT D as presented in [Kan83] is not a purely intensional language;
one can state facts about extensions using CONCEPT D.

22

In the COMIC methodology, conceptual modelling is based on describing concepts and the
relation of intensional containment that subsists in the set of concepts. Informally, we can say that
concept a intensionally contains concept b if the knowledge content of concept b is a part of the
knowledge contents of concept a. Using COMIC, the modeller creates a description or a theory
of the domain of application and represents it in the form of an externalised conceptual schema.
This is normally a hierarchical CONCEPT D diagram, where the topmost concept has the largest
knowledge content.

The method of using intensional containment in conceptual modelling has been used else-
where, as well. Papers by Junkkari and Niemi ([Jun98], [Nie0OO]) utilise many ideas first expressed
by Kangassalo, but in a more formal manner. Similarly, Berztiss in [Ber99] makes a distinction
between IS-A intensional containment and “part-of”” intensional containment and gives them dif-
ferent formulations.

It can be said that in both early semantic networks and COMIC-style modelling, some notions
have semantically several interpretations and sometimes the interpretation is not clear:

e As an example, the early semantic networks had some limitations both in the semantics of
the links and in the semantics nodes. In nodes, the same type of node was used to express
a class (type), an instance, an event and a relationship. Moreover, with links, the networks
often failed to make a distinction between structural relationships and domain specific rela-
tionships (see [Ran88]).

e Similarly, according to Kangassalo in [Kan93], the notion of intensional containment in
CONCEPT D is considered to include (at least) IS-A and aggregation (“has” in [Kan96]).
This is natural if we consider both IS-A and aggregation to be reflexive, transitive and an-
tisymmetric. However, in other modelling approaches IS-A and aggregation are different
relationships and have different semantics.

It seems, as well, that these approaches have a view of intensionality that is somewhat similar
to the idea of the “database intension”. There, the database schema contains knowledge about the
domain of application (in the structure of its tables and constraints, see [EN94]) and this knowledge
can be seen as intensional. However, this view of intensionality is different from the view of
Description Logics, where intensionality is more based on possible worlds semantics or situation
semantics, as in [Woo91].

The rest of this section discusses a simple intensional modelling language, and the observations
that we present do not necessarily apply to other languages of a similar kind (unless otherwise
indicated).

Our intensional modelling language can be characterised as follows:

e L-entities are called concepts. Concepts do not only cover L-entities, but some L-links
as well. For instance, the relationship of a wine tasting society buying bottles of wine
is expressed here as the concept of WINE-BUYING that contains the concepts of WINE-
TASTING-SOCIETY and WINE-BOTTLE, since WINE-TASTING-SOCIETY and WINE-
BOTTLE are parts of the knowledge contents of WINE-BUYING.

Concepts are presented simply as underlined uppercase words, which are names of the con-
cepts.

e The principal relationship in the set of concepts is intensional containment. This is repre-
sented by a line between the contained and the containing concept. The containing concept
1s above the contained one, unless otherwise indicated.

23

The intensional containment links cover those of L-grouping, L-aggregation and L-links in
other languages. With necessary attributes, the intensional containment is of the type 1:1,
1.e., each occurrence of the containing concept is related to exactly one occurrence of the
contained concept. This is expressed by placing “1” next to the both ends of the line.

The grammar of the language is very simple; it is sufficient to say that an expression is a
concept statement or an intensional containment statement connecting to concepts (with possibly
a 1:1 constraint).

A fragment of the statements of the simplified natural language description and its graphical
representation can be seen in Figure 2.5.

concept(wine-buying)
concept(wine-tasting-society)
concept(wine-bottle)
concept(total-price-limitation)

intensionally-contains(wine-buying,wine-tasting-society)
intensionally-contains(wine-buying,wine-bottle)
intensionally-contains(wine-buying,total-price-limitation)

WINE-BUYING

WINE-TASTING-SOCIETY

Figure 2.5: The natural language description represented by using an intensional language.

We can observe that the graphical representation is at least equally simple as in the extensional
language. However, there are some cumbersome details in the design. We shall first discuss the
one related to the representation and then those more theoretically based:

e The method of expressing functions (total price being a cumulative sum of bought wine
bottles) and constraints (total price must not exceed the budget) relies more on intuition than
on precise formulas.

e [t is not obvious what the different forms of intensional containment (L-isa-links, L-aggre-
gation) mean in each case in Figure 2.5.

24

The latter item has been discussed in detail by Duzi in [Duz00c], where the theoretical back-
ground of intensional containment as such was challenged. Two of the main points in Duzi’s
criticism are mentioned in the context of attributes (L-aggregation, “has-a”):

e If the relation is contingent (“‘a person has a phone number”, but not “a person necessarily
has a phone number”) then the relation cannot be intensional in a real sense — intensional
containment is supposed to cover only the necessary relations.’

e As intensional containment is applied in our example language, it is unlikely that the relation
can really be reflexive, transitive and antisymmetric as in Kauppi’s theory (see Chapter 1).

2.5 Hybrid languages

Although both approaches described above seemed to be suited to conceptual descriptions, they
had their shortcomings as well. Description logics (DLs) or, as Woods in [Woo091] calls them,
concept languages combine both intensional and extensional features. The intensional approach
becomes apparent in the fact that concept descriptions are an important part of DLs. The exten-
sional part is demonstrated through the use of rules ([B™89], not discussed in this chapter) and by
the fact that concept definitions may contain individual names — symbols refering to extensional
things.

In a DL, terminological axioms are used to express concept names and concept definitions.
Terminological axioms express either sufficient and necessary (=) or just necessary (<) forms
of definitions (see [Lam96]; not to be confused with necessary attributes of Section 2.2). Since
terminological axioms are used to express IS-A relationships, they correspond to L-isa-links.

For relationships other than IS-A, roles are used in DLs. To assert that WINE-TASTING-
SOCIETY buys WINE-BOTTLEs, we would state that there is a concept (L-entity in our termi-
nology) that has the role bought-wine and that WINE-BOTTLESs can be the fillers of that role.
Roles provide us with the means of L-aggregation.

To meet the need for expressing “part-of” relationships, we employ a description logic designed
by Lambrix in [Lam96]. In addition to normal L-aggregation constructs, this language has special
“part-of” aggregation constructs in order to make (syntactic) difference between basic aggregation
and part-of aggregation. The syntax of the language is shown in Figure 2.6. Terminological axioms
are the expressions of this language.

To describe this DL briefly and informally, let us state that T is the concept that is on the top
of the IS-A hierarchy in a way that all other concepts are either directly or indirectly sub concepts
(subclasses) of T. L is at the bottom of the hierarchy.

Here, we employ the following conventions:

e To introduce names for L-entities or L-attributes, we use necessary definitions: every L-
entity or L-attribute is necessarily a subclass of T

e L-part-of and L-attribute constructions are created using roles. The fact that some attribute
(“role name”) is necessary can be expressed using cardinality constraints (atleast 1 role-
name);

e Identifying attributes are necessary attributes and, further, have cardinality constraints (at-
most 1 role-name);

"However, with CONCEPT D’s additional features it is possible to state “contingent intensional containment”.

25

< terminological —axiom >::=
< concept — name > = < concept — descr > | < concept — name > < < concept — descr >

< concept — descr >::=

T

| L

| < concept — name >

|(and < concept — descr >T)

|(all < role—name >< concept — descr >)

|(atleast < positive—integer >< role— name >)

|(atmost < non— negative— integer >< role— name >)

|(fills < role—name >< individual — name >)

|(all p < part —name >< concept — descr >)
|(atleastp < positive— integer >< part — name >)
|(atmostp < non — negative— integer >< part — name >)
|(part — fills < part —name >< individual — name >)
|(pp— condraint < role— name >< part — name >< part — name >)

Figure 2.6: The syntax of the DL used here.

£99

e Names such as “red”, “white” and “rosé” form an enumeration that can fill the role of wine
type;

e In Figure 2.7, comments are preceded by a #-sign.

introduce names for L-items that will not have other definitions
name <T
society-id <T
budget <T
membership-id <T
phone-number < T
street-address <T
zip-code <T
cityname <T
year <T
type <T
price <T
text <T
image <T
#wine-bottle is an aggregate of name, year, type and price
#all of them are necessary, type is one of red, white, rose
wine-bottle =
(and (all name-slot name)
(atleast 1 name-slot)
(all year-slot year)
(atleast 1 year-slot)
(all type-slot type)
(atleast 1 type-slot)
(all price-slot price)
(atleast 1 price-slot)

26

(fills type-slot red white rosé)
(allp label-slot label))
#labels are aggregates of text and image
label =
(and (all text-slot text)
(all image-slot image))
#address is an aggregate of street address, zip code and cityname,
#all of them necessary
address =
(and (all street-address-slot street-address)
(atleast 1 street-address-slot)
(all zip-code-slot zip-code)
(atleast 1 zip-code-slot)
(all cityname-slot cityname)
(atleast 1 cityname-slot))
#person is an aggregate of name, membership id, phone number
#and address. Name, address and membership id are necessary,
#membership-id is identifying.
person = (and (all name-slot name)
(atleast 1 name-slot)
(all membership-id-slot membership-id)
(atleast 1 membership-id-slot)
(atmost 1 membership-id-slot)
(all phone-number-slot phone-number)
(all address-slot address)
(atleast 1 address-slot))
#society is an aggregate of name and society-id,
#both necessary. Society-id is identifying.
society = (and (all name-slot name)
(atleast 1 name-slot)
(all society-id-slot society-id)
(atleast 1 society-id-slot)
(atmost 1 society-id-slot))
#bought wine consists of wine bottles
#and has attribute price
bought-wine = (and (allp wine-bottle-slot wine-bottle)
(all price-slot price))
#wine-tasting-society is a society, buys wine
#and consists of persons
wine-tasting-society = (and society
(allp person-slot person)
(all bought-wine-slot bought-wine))

Figure 2.7: The natural language description represented using a description logic.

It is evident that a DL language is not at its best for a task like this; the DL representation of
the example is long and not exactly visually illustrative. After all, DLs were originally designed
for a more demanding task of classifying concept expressions into a taxonomy; some forms of
aggregation with DLs has been discussed only recently (e.g. in [Lam96]). Since classification

27

can be a demanding (NP-complete®) task even with a limited number of syntactic elements in the
language, researchers have been reluctant to add extra features to DL languages. Partly because of
that, in our example, several features were omitted, including:

e There is no simple way of adding functions in the language; for instance, in order to calculate
the cumulative price of wine bought by the wine tasting society;’

e The same applies to constraints (the price of bought wine must be less than the budget);

e There is no easy way of expressing grouping. In the example, part-of has been used instead.

2.6 Summary and discussion: languages in conceptual mod-
elling

In this chapter, we have discussed three different approaches to conceptual modelling based on
the languages used in modelling: extensional, intensional and hybrid languages. The choice of
language in conceptual modelling reflects rather well the underlying commitments in ontology
and semantics. It is out of the scope of this chapter to give exact definitions of different types of
semantics on which each of these languages rely.!?

We have evaluated a prototypical language of each kind by a real world example. By presenting
a typical real world example, we hope to have avoided elliptical reasoning (“this example requires
a certain type of language”, “it can be presented using only this type of language”, “this language is
certainly most suited for conceptual modelling”). Any language that has been designed to represent
something that exists will naturally have some kinds of ontological commitments. However, we
have tried first to introduce the example in a language as “ontologically neutral” as possible, by a
simplified natural language description. This description expresses the most often used abstraction
methods, like taxonomy, aggregation and grouping.

Based on the representation of the example, we have observed some shortcomings in all the
approaches. Our extensional representation language is influenced by the ER model (see [Che76]).
Mainly, the shortcomings of our extensional language were only difficulties in expressing all the
details of the example. This is because our example did not deal with “belief-worlds” or other
things where the extensional approach cannot be applied at all.

In the intensional approach, we utilised a language influenced by CONCEPT D of [Kan83].
It seems that this kind of language is an able tool to present everything that was needed by the
simplified natural language description. The diagrams seem to be appealingly simple, in their
basic form, where they only contain concept nodes and intensional containment links. Yet the
semantics of the links can be difficult to specify (see Section 7.4.3 for a detailed study).

As an example of a hybrid language, i.e., a language by which one can state expressions about
intensions and expressions about extensions, we used a description logic influenced by Lambrix’s

8NP-complete set of decision problems is a subset of NP, see Section 1.7 and [Ata99].
9There is a DL with this feature as well; see [BS98]. Naturally, in some languages like KL-ONE, these functions
could be embedded using a “host language connection”, i.e., by programming the function in the language which
KL-ONE has been implemented in (see [BS85], [Ran88]).
107t can be noticed, however, that Chen in [Che76] describes the semantics of the ER model by a set theory based
semantics, giving the normal interpretations to relations as tuples of entities and attributes as functions.
Concerning the intensional languages, according to Duzi in [Duz00a], intensional containment can be defined using
HIT semantics, where it corresponds to being member of the contents of the concept. This will be further discussed in
Chapter 7.

28

formalism in [Lam96]. The background theory (representations using terminological axioms and
concept descriptions) seems suitable to conceptual representation and the semantics is well de-
fined. However, there were several difficulties in expressing the example in a description logic
formalism. We see that developing a description logic designed for conceptual modelling seems to
be a promising item for future research (see [CLN98]). This could include the development of a
modelling methodology as well, in the guidelines of the COMIC methodology of CONCEPT D.

29

30

Chapter 3

Logic and Conceptual Graphs

3.1 Introduction

Conceptual graphs have been proposed as an alternative to First Order Predicate Logic (FOPL) in
knowledge representation ([Sow84], [Sow00]; see also [JP89]). FOPL and its derivatives (subsets),
like Horn clauses and logic programming languages, are perhaps the best known and established
formalisms for knowledge representation. To gain acceptance, the alternative formalisms should
offer advantages over FOPL. The advantages may be:

e Simplicity: formulas expressed by an alternative formalism may be easier to read and to
write (or closer to natural language) than formulas of FOPL and its derivatives;

e Deductive power, i.e. how efficient it is to calculate if some formula can be deduced from
a set of other formulas. FOPL is known to be semi-decidable; more limited formalisms can
have a proof theory that is decidable, and even tractable!';

e Expressive power, i.e. what can be expressed using the formalism at hand. With traditional
FOPL, uncertainty or default reasoning, for example, cannot be handled.

In order to see if conceptual graphs are simpler, have more deductive power or have more
expressive power than FOPL, we shall carry out an extensive comparison between FOPL and
conceptual graphs in Sections 3.3 and 3.4.

To make the comparison easier, we use slightly simplified forms of both FOPL and conceptual
graphs.? This is explained in detail in Sections 3.2.1 and 3.3.1. Section 3.2.1 contains a stan-
dard presentation of a slightly limited FOPL and Section 3.2.2 its semantics. We shall use the
term “FOPL” to refer to this limited version. The same kind of presentation of conceptual graphs
(limited syntax) and their semantics will follow in Sections 3.3.1 and 3.3.2. Here, the features in-
cluded in the discussion only cover the formalism of conceptual graphs, not the background theory
(concept hierarchies; see [Sow84]).

The basis for our comparison is the following simple notion: If any expression of a language
L; can be translated into an expression of a language L, and any expression of a language L, can

Tt can be shown that the set of theorems of FOPL is indeed decidable but the set of non-theorems is not. Therefore,
a procedure that tries to determine if some FOPL formula is a theorem would run endlessly if the formula is a non-
theorem.

Basically, we only limit the arity of predicates. This enables us to handle relations in a more mechanical manner.
This limitation can be removed but it would make the translations more difficult.

31

be translated into an expression of a language L1, then the languages have equal expressive power.
The translation is justified by the semantics of the languages L and L;; i.e., if expression e of L
is true in the same models as expression €, of L,, then € can be translated into €, and e; into e; (we
assume that Ly and L; have similar models). Naturally, if any expression of L; can be translated
into L, but there are expressions of L; that cannot be translated into L, we say that the expressive
power of L, is greater than that of L.

Sowa has presented in [Sow84] an algorithm (“operator ¢¢°) that translates a conceptual graph
into a FOPL formula. Sowa states, however, that the expressive power of conceptual graphs may
exceed the expressive power of FOPL: “When the referents of concepts are limited to single in-
dividuals, conceptual graphs cannot go beyond first-order logic.” ([Sow84], p. 116). Later Sowa
extends the notation so that a referent of a concept can be a set of individuals. Sowa’s algorithm
obviously applies only to conceptual graphs where the referents of concepts are single individuals.
This is the limited syntax of conceptual graphs defined in Section 3.3.1.

Assuming that Sowa’s algorithm translates an arbitrary conceptual graph into a formula of
FOPL, it follows that FOPL is at least as expressive as conceptual graphs. In Section 3.4 we
outline an algorithm for translating closed formulas of FOPL into conceptual graphs. On the basis
of these two algorithms it can be claimed that conceptual graphs (with limited syntax) and (our
version of) FOPL equal in expressive power.

3.2 First Order Predicate Logic

Here we present FOPL in a simplified form, but much of the formalism has been adopted from
[vD97] and [Zho98].

3.2.1 The language of FOPL, LropL

A language is a set expressions (in the case of logic, well-formed formulas) composed of a (finite)
set of terminal symbols by rules of a grammar. The set TropL contains the terminal symbols of
our language LrpopL. Elements of Tepop are a constant symbol C, a variable symbol X, a unary
predicate symbol P, a binary predicate symbol R, connectives (—, A, V,—, <), quantifiers (4,V),
parenthesis, comma and prime.>

Constants are sequences of the constant symbol and an arbitrary number of primes: ¢’,c”, ...
Variables (x',x”,..), unary predicates (P’,P”,..) and binary predicates (R’,R",..) are formed in the
same way.

In a more formal approach, predicates can have any arity and the information of a predicate’s
arity must be given. In this chapter we use only unary and binary predicates.

In a metalanguage, i.e. when describing expressions of LropL, we use symbols X, Y,z to denote
variables; a,b,c to denote constants, A,B,C to denote formulas; P,Q to denote unary predicates
and H when a predicate (no matter if its arity is 1 or 2) is discussed.*

In an informal approach (like in Section 3.3.1), we also use lower case natural language words
instead of predicates.

Here, TropL does not include the identity symbol = and there are no functions in the language.

3The inverse binary predicate symbol (see section 3.2.3) can be considered as a special case of binary predicate
symbol.

It should be noticed that P,R,X and c are symbols of both the metalanguage and Trop.. However, in what follows,
it should be obvious when they are used as TropL symbols or in the metalanguage.

32

Variables and constants are jointly called terms. Terms are written after the predicate, between
the parentheses. The number of these terms is determined by the arity of the predicate. These
terms are called the arguments. A predicate followed by its arguments (in parenthesis) is called an
atomic formula. An atomic formula is called a ground formula if all the arguments are constants.

A quantifier binds the variable X in formulas Ix(A) and VX(A). A variable in formula A is bound
if it is bound by a quantifier. Otherwise it is free. If there are no free variables in a formula, then
the formula is called a closed formula. A ground formula is an example of a closed formula.

A replacement of a variable X with a variable y or a constant € in formula A is denoted with
A(x/y) and A(x/c), respectively.

Using replacements, it is possible to rename variables in a formula. As an example, let formula
A be (VX(P(x)) AVx(Q(x))), which we can express in the form (BAC). Now, let us perform
the replacement B(x/y) resulting in (Vy(P(y)) AVx(Q(x))). If, as in the example, the result of
renaming of variables is a formula where independent variables do not have the same name, we
call this process an unambiguous naming of variables.

GreopL is a grammar that generates all formulas of Lgop. The terminal symbols of the gram-
mar are elements of TeopL and the symbol “|” in the production rules means “or”. The auxiliary
symbols are {B,X,C,U,Q,T,F} and F is the starting symbol of the grammar. The production rules
of the grammar are:

1. B~/

2. B+~ B/ (a sequence of primes)

3. X+ xB (variables)

4. C > cB (constants)

5. U+ X|C (constants and variables are terms)

6. Q +— PB (unary predicates)

7. T +— RB (binary predicates)

8. F—Q(U)|T(U,U) (atomic formulas are formulas)

9. F — —(F) (a negation of a formula)
10. F — (F AF) (two formulas connected with A)
11. F — (F VF) (two formulas connected with V)
12. F — (F — F) (two formulas connected with —)
13. F — (F <> F) (two formulas connected with <)

14. F — 3X(F)

15. F — VX(F) (a quantifier, a variable and a formula together form a formula.)

It is worth noticing that the grammar Grpopp allows formulas with bound variables (like
X' (P’'(x’)) and 3x'(IX"(R'(¥',x")))), and formulas with free variables: 3Ix'(P’(x")).

33

3.2.2 Semantics of Lrop. (model theory)

In this section we shall give a short account of the semantics of FOPL. We shall discuss model the-
ory, satisfiability and validity (truth in all L-models). The formal definition of L-model is presented
after these notions.

A formula is said to be satisfiable if it can be true in some situation, i.e. in some L-model.
For instance, the formula 3x’(P’(x’)) is satisfiable. If the predicate P’ is interpreted “to be an even
natural number”, the formula is satisfied when X’ equals 2,4,6,.. In this case, the set {2,4,6,..} is
also called the extension of the predicate P’.

Similarly, a set of formulas is satisfiable (or consistent), if there is an L-model, where all the
formulas of the set are (simultaneously) true.

It is evident that the formula 3x'((P/(X') A —=(P’(X")))) cannot be true in any L-model. This
kind of formula is unsatisfiable. A set of formulas is unsatisfiable (or inconsistent), if there is no
L-model, where all the formulas of the set can be (simultaneously) true.

A formula is valid if it is true in all L-models. —(3x'((P'(x') A—=(P’(x’))))) is an example of a
valid formula.

The formal definitions of an L-model and truth in L-model are as follows (c.f. [SV93]).

Let L be a set of terminal symbols. An L-model is a structure (tuple) M, with the following
parts:

e A non-empty set of elements, a domain dom(M).

A (constant) element of dom(M), cM, for each constant ¢ of L.

A subset of dom(M), PM for each unary predicate P of L.

A subset of dom(M) x dom(x), RM for each binary predicate R of L.

An interpretation function is a function that interprets (“maps”) variables into elements of
dom(M).

An interpretation in an L-model is an interpretation function such that v(x) € dom(M) for each
variable X of the language.

Let v be an interpretation in L-model M. The value of term t, tMV in interpretation V is:

v(x), if t is variable x
cM ift is constant C

Let v be an interpretation function in M and a € dom(M). We define a replacement of variable
in an interpretation v(x/a) as

v(x/a)(y) =

a,ifx=y

{ V(x),if X #y

Let M be an L-model and Vv an interpretation function. The following set of conditions defines
when V satisfies a formula in M:

1. Lett be a term. If the formula is of form P(t), v satisfies the formula if and only if tM:V € PM,

2. Lett and u be terms. If the formula is of form R(t,u), v satisfies the formula if and only if
MV, uMYy € RM.

34

. If the formula is of form —(B), v satisfies the formula if and only if v does not satisty B.

If the formula is of form (BV C), v satisfies the formula if and only if v satisfies B or C.

. If the formula is of form (B AC), v satisfies the formula if and only if v satisfies B and C.

. If the formula is of form (B — C), v satisfies the formula if and only if it is not the case that

v satisfies B and v does not satisfy C.

. If the formula is of form (B «<» C), v satisfies the formula if and only if

e V satisfies B and C.
or

e Vv does not satisfy B and C.

. If the formula is of form 3x(B), v satisfies the formula if and only if v(x/a) satisfies B for

some a € dom(M).

If the formula is of form Vx(B), v satisfies the formula if and only if v(x/a) satisfies B for all
aedom(M).

Truth in a model is defined only for closed formulas, as follows:

A closed formula is true in L-model M if all valuation functions in M satisfy it.

If a formula A is true in an L-model when formulas of a set S are true in that L-model too, then
A is a logical consequence of the formulas of S. This is denoted by S = A.

In the above case, if S in an empty set, then A is a valid formula. This is denoted by = A.

If formulas A and B are satisfied in the same L-models, then they are logically equivalent. This
is denoted by A < B.

The following “shortcut rules” S1 - S20 are examples of logical equivalences:

SI.
S2.
S3.
S4.
S5.
S6.
S7.
S8.
S9.
S10.

S11.

(AVB) & ~((=(A) A=(B))),
=(=(A)) & A,
((AAB)VC) < ((AVC)A(BVC)),

~((AAB)) & (=(A)V~(B)),
~((AVB)) & (=(A)A~(B)),

(A—B) & =((AA—(B))),

(A—B) & (—(A)VvB),

(A B) & (=((AA=(B))) A=((BA=(A)))),
(A+-B)< (A—=B)A(A—B)),
Vx(H(x..)) & =(3x(=(H(x..)))),

where H is a predicate and X.. stands for its arguments.
=(VX(H(x..))) < Ix(—=(H(x..))),

35

S12. =(IX(H(x..))) & Vx(=(H(x..))),
S13. (VX(P(x)) AVXQ(X)) & VxX((P(X)) AQ(X))),
S14. (Ix(P(X)) VV¥XQ(X)) & Ix((P(x)) VQ(X))),

S15. (Kix(P(x)) A Kax(Q(Y))) < Kix(Kay((P(x) A Q(y
does not occur in Q(y) and y does not occur in P(x

S16. (Kix(P(x)) V Kax(Q(Y))) © Kix(Kay((P(x) V Q(y

does not occur in Q(y) and y does not occur in P(x

))), where Ki,K; are quantifiers and X

b

))), where Kj,K; are quantifiers and X

vv vv

b

S17. ((AAB)AC) < ((AA(BAC))),
S18. ((AVB)VC) < ((AV(BVC))),
S19. (AAB) < (BAA),
S20. (AVB) < (BVA).

These shortcut rules will be utilised when FOPL formulas are transformed into a form that is
easy to process and understand. This form will be used when FOPL formulas are compared with
conceptual graphs.

Here, we do not present a proof theory for FOPL. Instead, we state the following short remarks
on semantics and proof theory.

A proof theory for any language consists of a set of axioms and a set of deduction rules. Let A
be a formula and S a set of formulas. If a A can be deduced from the formulas S, then A is called a
theorem. This is denoted by S A. Suppose there is a proof theory PTropL. Language Lropr, with
semantics as defined here, and the proof theory PTgopy are jointly called an interpreted system of
logic. In this system, if every theorem is a valid formula, then the system is sound. If the system
is sound and every valid formula is also a theorem, then the system is complete. It is possible to
construct a proof theory so that the system is complete (see e.g. [vD97]). Thus, all the semantic
shortcut rules are syntactic, too. For instance, since it is known that the shortcut (AV B) is logically
equivalent to (BV A), we can also deduce (B V A) from the set {(AV B)}.

3.2.3 Quantifiers and inverse relations

To support the discussion in Sections 3.2.4 and 3.3.1, we present a short remark on the relationship
of quantifiers and relations.

The inverse relation R~! of R consists of the pairs (y,X) for each pair (x,y) € R. Let R be a
binary predicate. We shall call R™! the inverse predicate of R.

The following inverse predicate formula relates the inverse relations with quantifier sequences:

Ky(KX(R(x,Y))) < Ky(Kx(R™'(y,x))),

where K’s are (possibly different) quantifiers.

To compare FOPL formulas with conceptual graphs, it is convenient to arrange the variables
so that they appear in the same order in the relations as in the quantifier sequence. For binary
predicates this is easy based on the inverse predicate formula; for example, Jy(VX(R(X,y))) =

FY(VX(R™H(,X))).

36

3.2.4 The translation form

Any FOPL formula can be transformed into a translation form (as defined by the following al-
gorithm) by using the shortcut rules S1 - S20. The translation form makes FOPL formulas more
uniform and thus easier to process. A closed formula in a translation form can, in principle, be
translated into a conceptual graph (see Section 3.4 and Appendix A).

An algorithm that transforms an FOPL formula A into a corresponding translation form formula
is as follows:

REPEAT

1. Use shortcut rule S9 to replace equivalences with implications and conjunctions. Use short-
cut rule S6 to replace implications (B — C) with =((BA —(C))).

2. If there are binary predicates in the formula, use commutativity- and associativity shortcuts
(S17 - S20) so that the binary predicates appear as early (left hand side) as possible in the
formula.

3. Limit the scope of the connective — by applying the following shortcuts until none of them
can be applied.

e shortcut S2: replace —(—(B)) with B,
e shortcut S5: replace —((BV C)) with (—=(B) A—=(C)),
e shortcut S4: replace —((BAC)) with (=(B) v —(C)).

4. Perform an unambiguous naming of the variables.

5. Move all the quantifier - variable pairs to the left hand side of the formula by applying rules
S15 - S16.

6. Using the inverse predicate formula of Section 3.2.3, transform the binary predicates into
their inverse predicates if necessary. That is, maintain the same order of variables in binary
predicates as in the quantifier sequence.

UNTIL none of the rules above can be applied.

3.3 Conceptual graphs

Conceptual graphs are a general, large formalism for knowledge representation developed by John
F. Sowa ([Sow84]). The term “general” means that the formalism is not designed for e.g. physical
modelling, but can serve as a similar paradigm as FOPL. Sowa mentions that so-called existential
graphs by Peirce (see [Rob73]) have served as an archetype for conceptual graphs.

Sowa’s system of conceptual graphs includes mechanisms to implement deductions using a
concept hierarchy (information based on the intensions of concepts), but we shall omit these fea-
tures in this discussion.

In addition to these features, our discussion of conceptual graphs in this section differs from
Sowa’s presentation as follows:

1. In Sowa’s account, a concept node can refer to a set of terms (Sowa uses the term “referent”;
see [Sow84], p. 116). For the definition of concept node, see Section 3.3.1 page 38.

37

2. Sowa employs relations whose arity is greater than 2. Here, the maximum arity is limited to
2.

3. Sowa presents various “shortcuts” in the language for proper names, measures and quantities.

4. Sowa uses concept nodes that have no referent. However, this is a shortcut for the represen-
tation of a general concept (see below).

5. Equally, Sowa uses the universal quantifier without an explicit variable. In this chapter, the
variables are explicit.

6. Sowa uses a formalism “#” for a specified referent. This is replaced with a constant in this
chapter.

7. The connective A does not appear in Sowa’s (or Peirce’s, [Rob73]) accounts, but graphs are
written next to each other to represent conjunction. In this chapter, the A -connective is
explicit.

8. Sowa represents most of the connectives and the universal quantifier as shortcuts. Here they
are included in the terminal symbols of the language.

9. Sowa suggests that the set of relation nodes consists solely of symbols corresponding to
“cases” of case grammars, i.e. relation names correspond to AGNT (agent of doing some-
thing) or OBJ (object of doing something). In this chapter the set of relation symbols is a
matter of choice.

10. Sowa (and Peirce) use a line of identity to denote the same referent in two or more concepts.
In this chapter, referents with the same variable or constant “automatically” refer to same
individuals. The same convention is used in logic programming.

It is evident that the differences 3 - 10 are only notational and have no effect to the expressive
power of the language. The first two ones, however, limit the expressive power to a great extent.
Therefore, in this chapter, the version of the conceptual graphs that we use will be called conceptual
graphs with a limited syntax. This version is a subset of Sowa’s original conceptual graph language.

3.3.1 The language of conceptual graphs (limited syntax), Lcc
Introduction

As in FOPL, normal connectives are employed in the set of terminal symbols of conceptual graphs
(limited syntax): {—,A,V,—,<}.

The existential quantifier is not needed in the language, since all variables are assumed to be
existentially quantified, unless they are universally quantified. Thus, only the universal quantifier
(V) is in the set of terminal symbols.

Variables X', x”,.. and constants ¢’,c”,.. will be included, as in FOPL. In the metalanguage,
variables are referred by X, y and z and constants by a, b and c.

Instead of unary and binary predicates, in conceptual graphs (with limited syntax) there are
concept nodes and relation nodes. A concept node is constructed of the left bracket (]), the concept
type symbol (P’,P”...), the colon (:), a term (a constant or a variable) and the right bracket (]). In
a concept node, the concept type symbol (P’,P”,..) is called the type of the term. In the metalan-
guage, P and Q stand for concept type symbols, and informally uppercase natural language words

38

are used instead of predicates. A concept node [P : X] is interpreted the same way as the expression
Ax(P(x)) in FOPL. A concept node may also include an occurrence of the universal quantifier. A
special concept type T ¢ is included in terminal symbols. This is discussed in example 3.3.

Relation nodes connect concept nodes to each other in a conceptual graph. A relation node
consists of an arrow (+ or »—) that is connected with a concept node, a relation (R’,R”,..) in
parenthesis and another arrow (« or) that is connected with another concept node.” Informally,
uppercase natural language words stand for relations, too.

A concept node alone is a conceptual graph, but a relation node must be connected with two®
concept nodes. A simple example of a conceptual graph with a relation node is:

[P:x]— (R) —[Q:Y].
Intuitively, a conceptual graph (or a graph, for short) is:
e A single concept node, or
e two concept nodes, connected with a relation node, or

e a construction, where two or more conceptual graphs are joined by connectives.

The scopes of quantifiers in conceptual graphs are discussed on page 41.

Simple examples

A concept node with a variable is called a generic concept. A concept node with a constant is
called an instantiated concept.

[PAINTING : x] , [PAINTING : a (3.1)
A generic concept and an instantiated concept
or, more formally,
[P :X], [P':c]. (3.2)
The relationship “owns” (i.e. “x owns y”) is presented by:

— (OWN) —,

where the left — connects the relation node with a concept node with the term X and the right
»— connects the relation node with a concept node with the termy.

The inverse relation “is owned by” can be presented simply by reversing the direction of the
arrows, that is:

—~ (OWN) «.

In FOPL, 3x(3y(R(X,Y))) is a well-formed closed formula. In conceptual graphs, it seems that
the types of X and y should be represented by a concept node. For this purpose, the symbol T

>The question whether to use left or right directed arrows is related with the semantics of the relation. This will be
discussed on page 43.
This is because in this chapter, no other arities than 2 are allowed for relations.

39

was introduced in the set of terminal symbols. T¢ is needed to represent an unknown type. The
conceptual graph that conveys the information “there is some X that owns some Yy is

[Te:X]— (OWN) — [Tc:yl. (3.3)

Using connectives, one can construct conceptual graphs that have subgraphs as in Graphs 3.4
and 3.5.

[[ARTIST :a] — (PAINT) — [PAINTING : b]
AN
[COLLECTOR: ¢] — (BUY) »— [PAINTING : b]]. (3.4)

Graph 3.4, that conveys the information “A certain artist paints a certain painting that is bought by
a certain collector”.

[[ARTIST : a] — (PAINT) — [PAINTING : b]
N
S[[COLLECTOR : ¢| = (BUY) = [PAINTING : b]]]. (3.5)

Graph 3.5 that conveys the information “A certain artist paints a certain painting and a certain
collector does not buy it”.

In graph 3.5 the brackets following the connective — enclose the subgraph
[COLLECTOR: ¢] — (BUY) »— [PAINTING: b].

The following conventions are employed for negations:

e —in front of a graph or subgraph G simply means that G is negated, as in the lower subgraph
in Graph 3.5.

e — in the concept node, like [P : X] means that there exists a variable X whose type is not P.

e The ~ symbol is reserved to represent negation in relations. For example, the graph

[P:x]— (~R)—[Q:Y]

means that there exists a variable X of type P and a variable y of type Q and they are not
related by R.

In Appendix A, we present some more complicated examples of knowledge representation
with conceptual graphs. The same information will be represented in FOPL, too, to enable a
comparison of “readability” of FOPL formulas and conceptual graphs. Moreover, in Appendix
A, the translation of a FOPL formula into a conceptual graph is represented using the method of
Section 3.4.

40

The grammar of conceptual graphs (limited syntax)
The set of terminal symbols, Tcg, for the language of conceptual graphs (limited syntax) is
TCG = {/\7 -V, (_)7V7 (7)7 [7]7X7C7 Pa R7I7 TC7N7 —,)_)}

The auxiliary symbols of the grammar are {B,U,C,Q,AF}, the starting symbol is F, and the
production rules are:

1. B/

2. B+ B’ (Sequences of primes)

3. U +— xB (Variables are terms.)

4. U +— cB (Constants are terms)

5. C+ T¢|PB (Concept type symbols, like P’,P”,..)
6. Q — RB (Relation type symbols, like R’,R”,..)

7. A~ [C:U]|[VC: U]|[-C : U] (Concept nodes)
8. F — A (Concept nodes are conceptual graphs)

9. F— A»— (Q) — AJA — (Q) << A (Concept nodes, joined by a relation, are conceptual
graphs)

10. F— A (~ Q) = AJA = (~ Q) «= A (Negated relation)
11. F— —[F]

12. F 5 [F AF]

13. F > [FVF]

14. F—[F > F]

15. F — [F «<> F] (Connectives)

A graph is called simple if it has no connectives, whereas a graph with connectives is called
complex. With complex graphs we shall call the parts (that correspond to each F in the grammar)
subgraphs.

Quantifiers — The scopes

Previously, we stated that there are no free variables in a conceptual graph. In this section, the
scope of quantifiers in graphs is discussed.
For example, Graph 3.6

[[ARTIST : X] A [RICH : X]] (3.6)

could be interpreted in two ways:

41

a) In the same way as the FOPL formula (3x(artist(x)) A 3x(rich(x))), i.e. “there exists some-
one who is an artist and someone who is rich”.

b) In the same way as the FOPL formula 3x((artist(x) A rich(x)), i.e. “there exists someone
who is an artist and rich”.

Like Sowa, we maintain the latter interpretation. In practice this means that if there are vari-
ables that share a name in a graph, the variables are meant to refer to the same individual.

The variable X in Graph 3.7 (“there is a rich artist x, he does not paint painting z”) refers to the
same individual.

[[RICH : X] A —[[ARTIST : x] — (PAINT) — [PAINTING : 7]]] 3.7)

This interpretation will unfortunately have an unpleasant consequence: the renaming of the
variables will not be trivial. Let us consider this with the universal quantifier, as in graphs 3.8 (“all
the collectors buy all the paintings™) and 3.9.

[COLLECTOR : ¥x] = (BUY) »— [PAINTING : \Wy] (3.8)

[COLLECTOR : ¥x] = (BUY) »— [PAINTING : Vx| (3.9)

It is obvious that we do not intend to state that the collector and painting in question are the
same individual; i.e. 3.8 is the graph we prefer.

Quantifiers — The universal quantifier

Let us consider universal quantifiers in graphs using the examples of 3.10 and 3.11.

[PAINTING : Vx| (3.10)

[PAINTING : Vx| — (PAINTEDBY) »— [ARTIST :y] (3.11)

Graph 3.10 expresses that “every object in the domain is a painting”. Graph 3.11 does certainly
not claim that, but it expresses that all those objects in the domain that are paintings have an artist.
Using the connective — (and applying the semantics that we shall define in Section 3.3.2), we can
see that Graph 3.11 could be presented in the form of Graph 3.11°:

[[PAINTING : Vx] — [PAINTING : X] — (PAINTEDBY) ~ [ARTIST :y]|.

(3.11°)

With Graph 3.11°, it is easier to see the scope of the universal quantifier: in addition to node
[PAINTING : Vx|, it also covers the subgraph [PAINTING : x] — (PAINTEDBY) — [ARTIST :y].

42

Quantifiers — Quantifier sequences

As explained in Section 3.2.3, for the sake of clarity it is sometimes profitable to use inverse
relations. In conceptual graphs, the inverse relations can be presented in an easy and intuitive way:
by reversing the direction of — or <= symbols connecting the relation with the concept nodes.
Concerning FOPL and conceptual graphs, the following analogies seem obvious (for transla-
tion details, see section 3.4):
For the FOPL formula Vx(3y(R(X,Y))), the graph counterpart is [T¢ : VX] — (R) — [T¢: Y]
For the formula Vy(3x(R(X,y))) that equals Vy(3x(R™!(y,x))) the counterpart is

[Te: VY] «— (R) «=[T¢:X].

Using the inverse relation, the order of variables in quantifier sequences can be preserved,
which is an advantage in the translation process.

Quantifiers — Summary and the explicit quantifier form

The scopes of the quantifiers are essential in terms of semantics. Since the scopes of quantifiers in
graphs are more implicit than in FOPL, we present a simple explication method. With the method,
the quantifier - variable pairs are presented in front of the subgraph that is their scope. The resulting
form, the explicit quantifier form, is utilised when discussing the semantics of graphs. It should be
noticed that the explicit quantifier form is not the same as the so-called prenex form; instead, the
explicit quantifier form repeats the existing quantifiers in the front of the formula.

Creating the explicit quantifier form is a mechanical tranformation based on the idea of ex-
pressing, for each variable in the graph and for each subgraph of the graph, whether or not the
variable occurs in the subgraph. “Whether or not variable X occurs in the subgraph” is referred to
as variable occurence value of X below.

As an example, let us consider Graph 3.6:

[[ARTIST : x] A [RICH :X]]
x: false true true false

It is easy to notice that the quantifier variable pair should occur in the subgraph that has the
variable occurence value f al se just outside of the outermost subgraph that has the variable oc-
curence value t r ue.” Naturally, for a simple graph like [ARTIST:x], there is no subgraph with the
variable occurence value f al se. In that case, the quantifier variable pair should occur in front of
the graph. If the quantifier that binds any occurence of variable X is V, then the quantifier variable
pair will be VX, otherwise; 3X.

The explicit quantifier form of 3.6 is thus

IX[[ARTIST : x] A[RICH : x]].

We shall apply the method to the rest of the examples above. The variable occurence value of each
subgraph for each variable is shown below it.
3.7

X [[RICH :x]A—3z ARTIST : x] — (PAINT) — [PAINTING : 7]

— =
= = r—

[I
f f f
f f f

N X

t
f

"Please notice that this corresponds to normal scopes of variables in FOPL.

43

3.8":

VxX¥y [[[COLLECTOR:VYXA [PAINTING:Vy]]— [COLLECTOR:X > (BUY)— [PAINTING:y] |
x f f t f £t f
. f f f t £t f

Here, the outermost subgraph that has the variable occurence value true (for both X and Yy) is
[COLLECTOR : Vx] = (BUY) » [PAINTING : Vy].

3.9
VX¥y [[[COLLECTOR:V¥X]A [PAINTING:V¥x]]— [COLLECTOR:X — (BUY) — [PAINTING:x]
X: f f t t f t f

3.3.2 Semantics of Lcg

The semantics for the language Lcg is based on the same principles as the semantics for the lan-
guage LropL. We assume the notions of the value of a term and a replacement of variable in an
interpretation to apply to conceptual graphs too.

Let M be a model, v an interpretation function and EA the explicit quantifier form of a graph
A. The following set of conditions (CGM) defines when V satisfies a graph in M:

1. Concept nodes:
Let t be a constant. If EA is of form [P : t], v satisfies the graph if and only if tM:¥ € PM,
If EA is of form [P : t], v satisfies the graph if and only if tMV ¢ PM.

2. Let B and C be concept nodes and tg and tc terms such that tg is the term of B and tc is the
term of C.

If EA is of form B — (R) »— C, then v satisfies the graph if and only if

e V satisfies B and
e V satisfies C and

o (tgV 12y € RM.
3. If EAis of form B — (~ R) »— C, then v satisfies the graph if and only if

e V satisfies B and

e V satisfies C and
M,v M,v M
b (tB atC) §‘f R™.
4. If EA is of form —[B], v satisfies the graph if and only if v does not satisfy B.
5. If EAis of form [BV C], v satisfies the graph if and only if v satisfies B or C.
6. If EAis of form [B AC], v satisfies the graph if and only if v satisfies B and C.

7. If EAis of form (B — C), v satisfies the graph if and only if it is not the case that v satisfies
B and v does not satisfy C.

8. If EA is of form (B <> C), v satisfies the graph if and only if

44

e V satisfies B and C.
or

e Vv does not satisfy B and C.

9. If EAis of form 3x.., and there is a node [B : X] in the graph, then v satisfies the graph if and
only if v(x/a) satisfies B for some a € dom(M).

10. If EA is of form VX.., and there is a node [B : X] in the graph, then Vv satisfies the graph if and
only if v(x/a) satisfies B for all a € dom(M).

As with FOPL, we define truth in model for a graph as follows: A graph is true in model M if
all valuation functions in M satisfy it.

On the basis of these conditions, one can easily observe that the conditions for connectives
in conceptual graphs are equal to the conditions for connectives in FOPL. Therefore, the shortcut
rules (S1 - S9, S17 - S20) that are related to connectives can be applied to conceptual graphs, too.

3.4 Translations, discussion and summary

In [Sow84], Sowa presents “operator ¢” that he uses to map conceptual graphs into formulas of
FOPL. Here, we consider the possibility of translating (limited) FOPL formulas into conceptual
graphs.

On the basis of the conditions and the definition of truth in a model for a graph in Section 3.3.2,
it is easy to justify the following analogies between conceptual graphs and FOPL:

e The FOPL formula P(t) is semantically identical with the conceptual graph [P : t], since P(t)
and [P : t] are true in M under the same conditions.

e Analogously, the FOPL formula R(t,u) is semantically identical with the conceptual graph
[Te:t]— (R) — [T¢:ul.

Based on these analogies, it is possible to design an algorithm that translates a given FOPL
closed formula into a conceptual graph that (according to the conditions) has the same meaning as
the formula. The principle of the algorithm is as follows:

Let A be a closed FOPL formula where all the predicates are either unary or binary. Using the
inverse predicate formula of Section 3.2.3, it is possible to generate a form of A where the variables
in predicates are in the same order as in the quantifier sequence. Moreover, A can be processed into
the translation form represented in Section 3.2.4. This form of A can be translated into an explicit
quantifier form of a conceptual graph. The resulting conceptual graph can be constructed simply
by erasing the quantifier sequences.

Examples of applications of this method are shown in Appendix A.

Given that FOPL formulas with only unary and binary predicates on the one hand and concep-
tual graphs (with the limited syntax) on the other hand can be translated into each other, it can be
claimed that these languages have equal expressive power. This fact has many interesting conse-
quences. It is possible to design a proof theory for conceptual graphs and study the language, its
semantics and its proof theory. Together, the syntax, proof theory and semantics form an inter-
preted system of conceptual graphs in the same manner as there are interpreted systems of FOPL.
This kind of system of conceptual graphs was suggested by Sowa in [Sow84] and he maintains that
the system is sound and complete.

45

Moreover, the expressive power of conceptual graphs with limited syntax is greater than that
of logic programming, a subset of FOPL.

In the case of equal expressive powers, the use of conceptual graphs could be justified by their
“elegance”, or ease of use. Appendix A features some typical FOPL formulas (including formulas
that contain quantifiers, connectives, etc.) and their Conceptual Graph counterparts. As some of
the examples in the appendix demonstrate, the representation using conceptual graphs is sometimes
more complex than the one using FOPL.

In an “unlimited” language of conceptual graphs (as presented by Sowa), the term in a concept
node can be a set instead of a single term. It is not obvious how these kinds of graphs could be
translated into FOPL formulas. Therefore, it is difficult to estimate the properties of an interpreted
system that is based on it.

46

Chapter 4

Concept Calculus, a Functional Approach I

4.1 Introduction

In this chapter, by using set theory we present association relations and operations of concept the-
ory in a well-known and established manner. This chapter brings together two research traditions:
concept analysis and conceptual modelling ([Kau67], [Kan83], [Kan93]) and algebraic database
definition languages ([TJ92a], [TJ92b], [JN93]). Kauppi’s concept theory is concerned with con-
cepts as purely intensional objects. Intensional representation of concepts is essential (see, e.g.
[Wo091]) and it has been utilised in Knowledge Representation, especially in Description Log-
ics (see [Bor95], [B*89]). Recently, in Knowledge Representation, the processing of transitivity,
and the problems related to it, have become an important field of study (see [Sat95], [AFGP96]).
Niemi and Jirvelin have presented in [TJ92a] a general framework for processing transitive re-
lations based on set theory. Considering concepts, this kind of a framework can be applied to
relationships in the set of concepts. They may be IS-A -relationships as well as transitive part-
whole relationships. Our contribution here is to apply main features of this set-theoretical method
to the field of concept systems.

According to Bunge in [Bun67], the intension of a concept can be defined as a (possibly in-
finite) set of properties and relations contained in the concept. In Bunge’s (intensional) view, the
modeller discovers the relevant part of these properties and relations by abstracting his or her ob-
servations in a Universe of Discourse. The problem in Bunge’s approach is that the structure of the
intension is not explicit.

The containment relation between two concepts can be studied according to Bunge’s idea,
1.e. the generality of concept is defined by ‘“subsumption” between the intensions of these two
concepts. For instance, the concept of centaur should be more general than the concept of Greek
centaur, provided that all the properties of centaur are properties of Greek centaur, too. This is
the case, of course, even though the extensions of both centaur and Greek centaur are empty.

In this chapter, we do not adopt Bunge’s idea of infinite intension. Bunge, however, presents
a notion of finite core intension that consists of the characteristics (earmarks) of the concept. We
assume the characteristics of a concept to be the concepts that are contained in it. For instance,
characteristics of the concept of dog could be mammal, quadruped and carnivore. But in addi-
tion to these, the concept of dog would include the characteristics of mammal, quadruped and
carnivore, like living being, thing, etc.

Bunge discusses the containment among intensions, but Kauppi in [Kau67] bases the intension
of a concept on the relation of intensional containment. Kauppi’s notion of intensional contain-
ment is different from Bunge’s; for Kauppi the relationship of intensional containment is a basic

47

relationship in the set of concepts.

We observe, too, that Bunge’s “generality” between concepts is very close to the well-known
IS-A-relationship (see [Bra83]). Nilsson and Palomiki in [NP98] seem to identify intensional
containment with IS-A relationship. According to Kangassalo in [Kan96], this is, however, only a
“special case” of intensional containment. !

While intensional containment as such is significant, our concern is the explicit representation
of concept systems that are based on this relation. In our study, some limitations are enforced on
the relation of intensional containment on a finite set of concepts. These limitations are imposed
by a concept theory, like a simplified version of Kauppi’s axiomatised concept theory that is dis-
cussed in this chapter. In this way, the concept theory forms a firm basis for discussion of concept
systems. A concept system can be utilised in the process of conceptual modelling. Finally, the set-
theoretical formulation that is presented in this chapter makes the representation and processing of
these concept systems explicit.

In the following sections we first introduce some basic mathematical conventions for represent-
ing a concept theory. In Section 4.3, a simple concept calculus (in the sense of Kauppi [Kau67])
will be outlined. In Section 4.4, we introduce our definition for the intension of concept. We dis-
cuss how the concept system can be assumed to imitate a Universe of Discourse (UoD). Section
4.5 gives a more formal treatment for concepts and concept algebra and defines the concept system
on its basis. Finally, Section 4.6 contains a short summary and items for further study.

4.2 Mathematical notational conventions

For basic definitions that are not presented here, see Section 1.7. Here, we repeat the most essential
ones.

A binary relation R is reflexive in the set A if for every X € A, XRX (c.f. [Sup57]). In other
words, the ordered pair (X,X) € R. The relation R is irreflexive in the set A, if for every X € A, it is
not the case that XRx.

We now define the reflexive relation Re fa in the set A as follows:

Refa = {{X,x)|x € A}.

If R is a relation in A then R — Re fa does not contain those ordered pairs of R in which the first
and the second elements are same (i.e. reflexive ordered pairs).

A relation R is symmetric in the set A if for every X and y in A, whenever XRy, then yRX (c.f.
[Sup57]). In other words, if for every (x,y) € R, (y,X) € R.

A relation R is antisymmetric in the set A if for every X and y in A, whenever XRy and yRX, then
X =Yy (c.f. [Sup57]). In other words, (x,y) € R and (y,x) € R implies X =Y.

A relation R is transitive in the set A if for every X,y and z in A, whenever XRy and yRz, then
XRz (c.f. [Sup57]). In other words, if (X,y) € R and (y,z) € R, then (x,z) € R.

A relation R is a partial ordering of the set A if and only if R is reflexive, antisymmetric, and
transitive in A (c.f. [Sup57]).

If R is a partial ordering of A, then A is called a partially ordered set, or a poset.

' As Hautamiki points out in [Hau86], Kauppi does not give a model to her concept calculus (in the sense of L-
model of Section 3). Therefore, we probably cannot be sure if the models or interpretations provided by Nilsson and
Palomiki, on the one hand, and this section, on the other hand, correspond to Kauppi’s intentions of the scope of
her calculus. However, Kauppi’s theory appears to be fruitfull and flexible enough to allow interesting models and
interpretations. Hautamiki provides one model by means of sets of determinables and their values (see [Hau86]).

48

We define the composition of two relations Ry and R,, denoted by Ry o R, as follows:

Let R; be a relation from A to B, and let R, be a relation form B to C. Then R oR, is the
relation from A to C such that if (X,y) € Ry and (y,z) € Ry, then (X,Z) € Rj oR;.

The composed relation Ro R, is denoted by RZ, RoRoR, is denoted by R? etc. For simplicity,
we define R! =R.

Generally, we denote by U, R" the union R' UR?U..UR™. The union U R" is known as the
transitive closure of R. This is often denoted as R™. Intuitively, if (a,b) € R* then an immediate
or indirect relationship exists between a and b in R.

The reflexive transitive closure of the relation R in the set A is the union of the transitive closure
of R and the reflexive relation in the set A,

R* = RT URefa.

4.3 Intensional containment and concept systems

In this section, Kauppi’s theory is outlined in a very restricted form. Kauppi designed her theory
to apply to infinite concept systems as well as finite ones. Therefore, some definitions and axioms
of this section can be a bit overlapping. For a more detailed explanation of Kauppi’s theory, see
[Pal94].

There are only two ontological primitives in the theory: concept and the relation of intensional
containment. This basic relation is denoted by

azb,

and reads “concept a intensionally contains concept b”” or “concept b is intensionally contained in
concept a”. We can also say that “b is a characteristic of a” or “a has a characteristic b”.
The first axiom of the theory is reflexivity, so every concept contains intensionally itself:

Axrer VX(X > X).
The second axiom is transitivity, i.e. if X contains intensionally y and y contains intensionally
z, then X contains intensionally z,
Axgy VXVYVZ(X > yAy>zZ—X2> 7).

The intensional equivalence means conceptual equivalence and it is defined as:

Df- a=b=gfra>bAb>a.

The definition D f= states that two concepts a and b are equivalent if and only if a contains
intensionally b and b contains intensionally a. The definition Df= is not given as an axiom in
Kauppi’s theory. In spite of that, we assume that the relation of intensional containment is anti-
symmetric. Therefore, the relation of intensional containment forms a partial ordering in a set of
concepts.

With intensional containment Kauppi defines the relation of strict containment. Concept a
contains intensionally strictly concept b, if and only if a contains intensionally the concept b and
they are not equivalent:

Dfs a>b=gra>bA—-(b=a).

49

Kauppi does not present any definition for immediate containment, since her study applies to
any infinite concept system. In our study, only finite concept systems are considered, and for them
the following definition applies. Concept a contains immediately concept b (a >c b), if and only
if a contains intensionally strictly b, and if there is no concept “between” a and b,

Df.,. a>icb=¢gfa>bA-3x(a>xAXx>Db).

Based on the relation of intensional containment among concepts, some further concept asso-
ciation relations between concepts have been defined. Given two concepts, if there is a concept
that is intensionally contained in both of them we call these concepts comparable. This is refered
to by symbol H, and the definition is

Dfy aHb=4f Ix(a>xAb > x).

Concepts a and b are incomparable if there is no concept that is intensionally contained in
both of them. It is refered to by symbol T, and the definition is

Dfr aIb=4f ~Ix(a>xAb>x).

Another way to observe indirect connection between concepts a and b is compatibility. If
there exists a concept, X, that intensionally contains both a and b, it is said that these concepts are
compatible. It is refered to by symbol 1 and its definition is

Df alb=g;Ix(x>aAx>b).
A

The opposite of compatibility is incompatibility. Concepts a and b are incompatible if there is
no concept that could make a and b compatible. It is refered to by symbol f, and the definition is

va| a'b=g; ~Ix(x >aAx>bh).

If concept a is contained intensionally in every concept, then a is equivalent with the so called
general concept G:

Dfc a=G =4t Vx(x > a).

According to Kauppi’s theory there exists a concept that is contained intensionally in every
concept,

Axg IxVy(y = x).

From the axiom AXg it follows that any two concepts are comparable.

A special concept is a concept that is not contained intensionally in any other concept than
itself. There can be several special concepts in Kauppi’s system. The property of a concept being
a special concept is denoted by S. Concept a being a special concept is defined as follows:

Dfs S(a) =qf Vx(x > a—a>x).

For every concept y there must be one or several special concepts so that y is contained in

them:

Axs Vy3x(S(x)Ax>Yy).

50

As indicated earlier, Kauppi’s system includes exactly one general concept and one or several
special concepts.

The concept operations in the theory are intensional sum, intensional product, intensional
negation, intensional reciprocal, intensional difference and intensional quotient. In the scope of this
chapter, we introduce only intensional product and intensional sum. In standard lattice theory, the
counterpart for intensional product is the greatest lower bound (glb) operation and the counterpart
for intensional sum is the least upper bound (lub) operation.

Concept ¢ is equivalent with the intensional product of the concepts a and b, if and only if ¢
contains intensionally every concept that a and b contain.

Dfy c=a®b=g; Vx(c >x+a>xAb >Xx).

The axiom of intensional product states that if concepts a and b are comparable, then their
product exists:

Axg aHb — Ix(x=aQ®b).

Because we have here assumed the existence of the general concept, the intensional product
between any two concepts naturally exists in any valid concept system.

Another intensional operation considered here is intensional sum. Concept ¢ is equivalent
with the intensional sum of the concepts a and b, if for every concept x it holds that x contains
intensionally c if and only if x contains intensionally a and b.

Dfys c=adb=g;Vx(x>c+x>aAx>bh).

The axiom of intensional sum states that if concepts a and b are compatible, then their inten-
sional sum exists:

Axg aib—Ix(x=adb).

The axioms AXg and AXg bring some demands to the form of a concept system. For example,
the form of Figure 4.1 is forbidden, because there is no intensional sum for a and b, and no
intensional product for ¢ and d. In Section 4.6, we discuss more closely the example in Figure 4.1.

In Figures 4.1 and 4.2, any upper level concept contains intensionally the lower level concepts.

a b

Figure 4.1: A concept structure that conflicts with AXg.

There is also an axiom related to distributivity in Kauppi’s theory. We do not, however, assume
the axiom in question, because we want to accept structures like the one in Figure 4.2.

With some additions (further axioms), Palomiki in [Pal94] has demonstrated that Kauppi’s
concept theory forms a distributive structure, a complete semilattice. The system we consider is
not as strong as a pure Kauppi’s system. It is worth noticing that the set of axioms presented here
does not require the concept system to be a lattice, but a semilattice.

51

G

Figure 4.2: A non-distributive structure.

4.4 The intension of a concept

In this section, we define the intension of a concept as a structure based on the intensional contain-
ment relation. The starting point is to bring together Kauppi’s and Bunge’s views of characteristics
for concepts.

Bunge in [Bun67] defines the intension of a concept as “the set of properties and relations P;
subsumed under the concept or which the concept, so to speak, synthesizes.” This is possibly an
infinite set. Bunge proposes, however, that we can study a finite subset of this set. This relevant
subset, the core intension of concept ¢, lcore(c€), is a finite set of the characteristics contained in c,

|core(c) = {Pl, P2, .., Pn}-

We assume in this chapter that these characteristics are concepts, too. We shall also assume
that the concept ¢ belongs to the set of its characteristics.

The set of characteristics is finite, but the problem for conceptual modelling is that it is uncer-
tain if all the characteristics can be found. A characteristic of concept c¢ is, for example, a property
or a concept that is more general than ¢. Thus, being a mammal is a characteristic for the concept
of dog. In this way, there should be a structure in the set of characteristics, but by using a simple
set of characteristics we cannot present this. Next we describe the structure for the characteristics
of a concept.

According to Kauppi’s approach in [Kau67], concept ¢ intensionally contains concepts and we
assume that these contained concepts correspond to Bunge’s characteristics. The characteristics
are thus the concepts intensionally contained in ¢. Contrary to Bunge, our definition of intension is
based on the relation of intensional containment within concepts. We express it as a set of ordered
pairs of concepts. In this respect, the approach is more accurate than Bunge’s. It also incorporates
the view of Kauppi’s axiom AXyef, i.e. the intension of the concept containing the concept itself
(here, of course, in the form of an ordered pair).

Here, I(c) denotes a set of ordered pairs (x,y) such that the intensional containment relation
holds among x and y and they belong to the set of characteristics of concept c. I(¢) of concept ¢ is
thus the relation > in the core intension, lcre(c) for ¢,

1(¢) = {(x,y)[x,y € lcore(¢) Ax >y}

I (c) of concept ¢ is finite and it is a subset of a Cartesian product leore(€) X lcore(€). Kangassalo
in [Kan82] suggests a related kind of definition for the intension of concept. His definition includes
other relations in addition to intensional containment.

52

In conceptual modelling, a limited part of the real world is relevant from the view point at hand.
This relevant part is called the Universe of Discourse (UoD). UoD is often understood simply as
a collection of individuals, but we prefer Kauppi’s and Palomiki’s more explicit approach (in
[Kau67] and [Pal94], respectively).

Applying a modified version of Palomiki’s notation, a UoD is a sequence (V, X, F), where V is
a universe of individuals, X is a universe of concepts and F is a binary “falls under” -relation that is
a subset of V x X. We say that the individual i belongs to the extension of concept ¢, if i falls under
concept ¢, i.e. if (i,c) belongs to F. Moreover, the intersection V N X is not empty. According
to Palomiki in [Pal94], the fact that the intersection of V and X is not empty “follows from the
Platonic assumption that some concepts can be considered as individuals, since, for instance, we
can talk about them”.

The intension of concept ¢ in the UoD, denoted by lyop(c), can now be expressed using or-
dered pairs as follows:

luon(c) = {(x,y)|x,y € X A{x,y) € I(c)}.

Axiomatised concept systems are abstract structures that impose some constraints on the rela-
tionships between concepts. However, there is a connection between concept systems and concepts
that are abstracted from the UoD. A concept system can be a conceptual model of the UoD. Sup-
pose we have a UoD called UoD; and a concept system CS; that contains concepts abstracted from
UoD;. As we have introduced above, we have a strong metaphysical approach that there really are
concepts in a UoD and that they subsist relatively independently of us and can be modelled (see
[Kau67]). Having this approach, it is natural to think that the concepts of UoD; form a (possibly
infinite or very large) concept system.

For practical reasons we cannot handle concept systems that large. But let us assume that the
modeller has discovered a set of concepts, Xcs; from UoDy; that is, Xcsy C X. It is reasonable to
assume that the intensional containment relation in Xcg is a subset of the intensional containment
relation on the concepts of UoD1 in general.

Following this idea, the aim of conceptual modelling is to find the most relevant concepts from
the UoD at hand and to present intensional containment between them. The relevant concepts form
a set (in what follows, C-set) and intensional containment is a partial ordering in this set (in what
follows, I-rel).

In the next section, we present tools to check the form (validity) of such a concept system. If
the concept system is not valid, the modeller can add new concepts and relations to the system until
it becomes valid. In this way, the functions we define can help the modeller to find the relevant
concepts and relations. The concepts the modeller thus finds may be such that they do not appear
explicitly in a preliminary modelling process.

4.5 A functional representation of concept systems

In this section, we first present the most important concept association relations and operations
for a concept system. After that we shall define the legal check function that expresses the same
axiomatisation that was given in Section 4.3.

Let C-set be a subset of concepts of a specific UoD.

Since the wine and art examples of Chapters 2 and 3 are too large for the scope of this chapter,
we will consider the following set:

C-set; = {G,gadget, radio, clock, clock radio}.

53

In each concept system there is an intensional relation I-rel in the set C-set. This relation is a
binary relation that corresponds to immediate containing of concepts presented in Section 4.3.

Formally, I-rel is a subset of the Cartesian product of C-set, I-rel C C-set x C-set. The in-
terpretation of I-rel is: if (a,b) € I-rel, then the concept a immediately contains the concept b,
a>ich.?

In our example, the relation I-rel; in the set C-set; is the following binary relation:

I-rel; = {(gadget,G), (radio,gadget), (clock,gadget), (clock_radio, radio),
(clock_radio,clock)}.

Given an I-rel, we can compute the corresponding I-rel*, which is the reflexive transitive
closure of I-rel. The relation I-rel* corresponds to the intensional containment relation considered
in Section 4.4. In this approach we define a concept system to be an I-rel in a C-set.

The reflexive transitive closure of I-rel; is I-rel} = {(gadget, G), (radio, G), {clock, G),
(clock_radio, G), (radio,gadget), (clock,gadget), (clock radio,gadget), (clock radio, radio),
(clock_radio, clock), (G, G), (gadget,gadget), {(clock, clock), (radio, radio),

(clock_radio, clock_radio)}.

In the following functions, I-rel and C-set are considered global when they are not given
explicitly.

The function genuses computes the set of all such concepts in which no other concepts are
contained immediately or indirectly. Genuses is a function from the power set of the Cartesian
product C-set x C-set to the power set of C-set.

genuses : P(C-set x C-set) — P(C-set)
genuses(l-rel) = {x|—3y € C-set : (x,y) € I-rel}.

In our example, genuses(l-rel;) produces the set {G}.
Respectively, the function specie computes the set of all those concepts that are contained in
no other concepts than themselves in a given concept system.

specie : P(C-set x C-set) — P(C-set)
specie(l-rel) = {x|-3Jy € C-set : (y,x) € I-rel}.

Related to our example, specie(l-rel;) = {clock_radio}.

The Boolean functions compatible and comparable check whether two concepts are compati-
ble or comparable (see Section 4.3). We define functions incompatible and incomparable on their
basis.

compatible : C-set x C-set — {false,true}
compatible(a,b) =

true, if [{x|(x,a) € I-rel* A (x,b) € I-rel*}| > 0,
false, otherwise.

In our example, compatible(clock, radio) is true, since clock_radio intensionally contains both
clock and radio.

incompatible : C-set x C-set — { false,true}

2In the following examples, the names of concepts, as well as the names of the functions, will be written in italics,
not in boldface. This is due to the convention that names are (terminal) symbols of a given language.

54

incompatible(a,b) =
true, if not compatible(a,b),
false, otherwise.

comparable : C-set x C-set — { false,true}
comparable(a,b) =

true, if [{x|(a,X) € I-rel* A (b,Xx) € I-rel*}| > 0,
false, otherwise.

In our example, comparable(clock,radio) is true, since G and gadget are intensionally con-
tained in both clock and radio.

incomparable : C-set x C-set — { false,true}
incomparable(a,b) =
true, if not comparable(a,b),
{ false, otherwise.

In I-rel, no two concepts are incomparable.
Intensional product and intensional sum for any two concepts in a I-rel can be expressed in
the following two functions:

int_sum : C-set x C-set — P(C-set)
int_sum(a,b) =
{c|Vx € C-set : ((x,a) € I-rel* A(x,b) € I-rel* «» (x,c) € I-rel*)}.

int_prod : C-set x C-set — P(C-set)
int_prod(a,b) =
{c|¥x € C-set : ({a,x) € I-rel* A(b,x) € I-rel* < (c,x) € I-rel*)}.

Here, the functions return sets instead of single concepts. In what follows, we check if the
functions return a set of only one element. If we want to ensure that the intensional sum and
product correspond to Kauppi’s definitions, this element is “the” sum or “the” product.

The concept system is said to be operation-legal, if and only if the following points hold:

e For any two concepts a and b in the C-set, if the concepts are compatible, there is exactly
one intensional sum of a and b.

e For any two concepts a and b in the C-set, if the concepts are comparable, there is exactly
one intensional product of a and b.

The function legal_check_operations checks if the concept system is operation-legal for given
two concepts.

legal _check_operations : C-set x C-set — { false,true}
legal _check_operations(a,b) =

true, if compatible(a,b) — |int_sum(a,b)|=1A

comparable(a,b) — |int_prod(a,b)| =1,
false, otherwise.

55

Now we can construct the legal check for a concept system. Having the axioms we presented
in Section 4.3, there can be only one member in the set generated by the function genuses in the
concept system. From that it follows also that if the concept system is seen as a graph, it must be
connected. Moreover, there must be checking for concept operations in the legal check function.

Function legal_check checks if the concept system given by its I-rel is legal.

legal _check : C-set x C-set — { false,true} legal check(l-rel) =

true, if Va € C-set, Vb € C-set : legal check_operations(a, b) A
|genuses(l-rel)| =1,
false, otherwise.

Applying the function legal_check we can see that I-rel; is legal.
When the legality of a concept system has been inspected, we can utilise, for example, the
following simple method for computing the intensional product for the concepts a and b:

a@b = {x|(a,x)} N{yl(b,y)}.

In this section, we have presented an abstract implementation for a part of Kauppi’s theory.
We have done that in order to give principles of implementations of concept systems. In the next
section, we discuss its relevance to conceptual modelling and concept detection.

4.6 Summary and discussion: Concept calculi in conceptual
modelling

In this chapter, we have discussed connections between conceptual modelling, Kauppi’s concept
theory and its abstract implementation. Here, we have presented a part (the core) of Kauppi’s
theory. In our approach, C-set is a finite set of concepts and I-rel is a binary relation on this
set. Together C-set and I-rel can be interpreted to represent a relevant part of the Universe of
Discourse. Since I-rel should reflect a UoD, it is not an arbitrary relation in C-set. We have
provided functions that check the validity of a given I-rel. We have explicitly presented some
association relations (e.g. compatibility) and concept operations of Kauppi’s concept theory in a
well-known and established formalism. Based on the defined functions, we have formed a validity
check for an axiomatised concept system. The contribution of this validity check is in providing us
a tool that helps in concept detection in conceptual modelling. In a limited case this would mean
that the modeller realises that the model should be revised e.g. by adding new concepts, if it is not
valid. For the actual process of detecting what these missing concepts are, see [Kan92].

In this chapter, we have presented only a skeleton model of Kauppi’s concept theory. To
serve the purposes of conceptual modelling, our version is simpler than Kauppi’s. In fact, Kauppi
in [Kau67] presented several axiomatisations, each of which of course resulted in different re-
quirements for a concept system. She also presented more operations than intensional sum and
intensional product. The other operations, discussed in Chapter 5, are intensional difference, quo-
tient, reciprocal and negation. The axiomatisations that make use of intensional reciprocal and
difference omit the axiom AXg (general concept).

Jarvelin and Niemi have shown in [JN93] that an algebraic approach is suitable for manage-
ment of relationships which are very close to IS-A relationship. We assume IS-A relationship to
be a clear example of intensional containment. It is useful to study what kind of a set of axioms
would be fruitful in practical conceptual modelling. In this chapter, the validity check has been

56

done to check the consistency between a proposed concept system and an adaptation of Kauppi’s
concept theory.

According to the theory, for any two comparable concepts there is exactly one intensional
product, and for any two compatible concepts, one intensional sum. These axioms make concept
structures like the one in Figure 4.1 illegal. In many cases, this is fruitful for concept detection.
For instance, in Figure 4.1, we would easily find concepts that make it legal, when added to the
approppriate places in the concept system.

It can be the case that there are axiomatised concept structures that are more fruitful for differ-
ent purposes in conceptual modelling than the one presented in this chapter. For instance, handling
intensional negation and the relations incomparability and incompatibility may be applicable in
cases where a modeller needs ways to incorporate new knowledge into his concept system, espe-
cially in the case where the new knowledge is inconsistent with the existing one. Moreover, using
a proper set of axioms, we can provide the users with a structure that is useful in many activities
of conceptual modelling. These include e.g. finding new concepts, locating concepts and linking
together various concept systems.

57

58

Chapter 5

Concept Calculus, a Functional Approach
II: Concept Association Relations and
Operations

5.1 Introduction

In order to consider a structural framework for knowledge representation, finding the basic ele-
ments of a knowledge structure, i.e. concepts, is needed. In several areas of research, the concep-
tual framework is the basis of presentation of knowledge. For example, in DL (description logics)
(see e.g. [BS92], [Bor95]) and in semantic networks (see e.g. [BS85]), one primary issue of the
research has been to find a framework for representation of knowledge. A recent contribution to
knowledge representation has been formal ontology and different ontological systems. An ontol-
ogy forms the basis for an explicit presentation of knowledge. In general, according to Guarino
in [Gua97], an ontology is a meta-level description of knowledge representation.! In a DL, the
knowledge structure is generated by classification of individuals and by forming IS-A relation-
ships and roles between class concepts. The part-whole relationships have been a recent object of
interest and dispute in DL (see e.g. [AFGP96], [Lam96]). According to Kangassalo in [Kan96],
intensional containment can cover IS-A relationships as well as part-whole (“has a component™)
relationships.

Our contribution here is to form an abstract implementation based on a large part of Kauppi’s
concept theory by extending the discussion of Chapter 4 to cover Kauppi’s concept association
relations and operations.

Basically, this means finding and representing those parts of Kauppi’s theory that can be
utilised in knowledge representation and for analysing concept structures. For its representation we
use standard set theory and our formalism is based on that used by Niemi and Jarvelin in [TJ92a].
There, and in [JN93], Jirvelin and Niemi have demonstrated that this kind of an approach is indeed
suitable for the management of those relationships that are very close to the IS-A relationship.

In the following version of concept theory there are three axioms to start our system with. We
assume that the relation of the intensional containment is reflexive, transitive and antisymmetric.
The other axioms of Kauppi’s concept theory determine the structure of the concept system further
(see [Pal94]). We do not adopt all those axioms, because we prefer to allow a more opulent

Tt should be noticed that in computer science term “ontology” is used in a limited sense, whereas in philosophy
ontology is understood as “the theory or study of being as such; i.e., of the basic characteristics of all reality” (c.f.
[eb-94c)).

59

structure in the set of concepts. Some of these axioms, as well as functions to check the legality
of a concept system that is based on them, have been presented in Chapter 4. In this chapter, we
present some extensions to managing concept structures, namely that the results of the functions
can be a set of concepts instead of a unique concept. According to our approach, we get some
tangible results of the operations, although the structure of the concept system, at hand, does not
comply with such a strict axiomatisation as in the original theory.

In Kauppi’s terminology, the notions of the greatest (Ger.: grosste) and the least (Ger.: kleinste)
concept appear frequently. The greatest concept is the concept which contains intensionally all the
other concepts in the collection (structure) that is created using some relevant principles. Because
our approach is set-oriented, we call a maximal concept any concept that is not contained in any
other concept, apart from itself, in a given set of concepts. Analogously, we say that a concept is
minimal if there does not exist any concept that contains intensionally this concept in a given set.
The sets of minimal concepts and maximal concepts play a significant role in our representation.

By the relation of intensional containment, further relations between two concepts are defined.
We call these concept association relations, meaning that there are indirect relationships between
two concepts. When we consider the relationships between some given concepts, and their associa-
tions to the whole concept system, we refer to those relationships as concept operations. Intuitively,
the principle behind the formation of concept operations is to restrict the set of concepts using some
relevant principles, such as the intensional containment relation and the concept association rela-
tions, and consider the maximal or the minimal concepts under these restrictions. According to this
method, we first form the “restricted” set of concepts, and then we find the maximal or minimal
concepts in this set. If the concept system satisfies Kauppi’s axioms as presented in [Kau67], then
our functions return a set where there is exactly one concept.

By our set oriented extension of the concept theory, some decisive advances in the analysis
of concept structures are gained. We can handle structures that are based on defective knowledge
and, respectively, structures that are not based on a strict axiomatisation, like lattice theory.

In the following example, the concept of electric bulb contains intensionally three other con-
cepts: electrical equipment, glass and luminous. Similarly, the concept of glow-worm contains
intensionally two other concepts: alive and luminous. This is presented in Figure 5.1, which uses
the illustration based on CONCEPT D [Kan83], where an upper level concept contains lower level
concepts intensionally. It is evident that this structure is far from being a lattice, but our approach
gives tools to analyse structures like this.

We assumed, for example, that electric bulb contains both electrical equipment and luminous
as characteristics. ing luminous. We say, therefore, that the concepts electrical equipment and
luminous are compatible. As an example of concept operations, we consider the intensional nega-
tion (see Section 5.7), by which we can study the remoteness of concepts by means of analysing
concepts that are not compatible. The intensional negation of electric bulb is living, but there is
no unique negation for glow-worm or living. According to our approach, the intensional negation
of these concepts is the following set {electrical equipment, glass}. In the concept system of this
example these are just the basic primitives that share no features with the concept living.

By using functions and set theory as tools of representation, we present in an explicit and
well-known manner the formal concept theory, which we see as having the potential to manage
knowledge and to describe the structure of knowledge. In this chapter, we generally consider con-
cept theory at a rather formal level and without any inherent ontological or semantic attachments.

In Section 5.2 we present our notations, and in Section 5.3 we introduce the basics of our
functions. Simple intensional relations are introduced in Section 5.4, and the functions of associa-
tion relations are presented in Section 5.5. Concept operations are introduced in Sections 5.6-5.8.

60

ELECTRIC BULB GLOW-WORM

ELECTRICAL GLASS LUMINOUS LIVING
EOUIPMENT

Figure 5.1: Intensional containment

In Section 5.9 we shortly discuss how our system can be applied to different fields of knowledge
representation. Kauppi’s original definitions of association relations and operations, as discussed
in this chapter, are presented in Appendix B.

5.2 Basic notations

In addition to the conventions presented in Section 1.7 and Section 4.2, the following will be used
in this chapter:

1. We call ordered n-tuples tuples for brevity. The empty tuple (0-tuple) is denoted by ().

2. The tuple set of a set S is denoted by T (S). A tuple is an element of T (S) if all elements of
the tuple are different and they are members in the set S.

For example, if S = {a,b,c} then T (S) is {(), (a), (b}, {(c), (a,b), (b,a), (a,c), {c,a), (b,c),
(c,b), (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a)}.

5.3 Concept systems and primary functions

C-set is the finite set of concepts of a specific concept system. To be exact, C-set consists of
the names of the concepts that subsist in the Universe of Discourse. However, to avoid con-
fusion, we call the elements of C-set concepts. As an example, we consider the set C-setl =
{G,gadget, radio, clock, clockradio}, where G is the so-called general concept that is contained
intensionally in every concept. Except in C-setl, we do not assume the existence of a single gen-
eral (minimal) concept in a set of concepts.

In each concept system, there is an intensional binary relation I-rel in C-set. This corresponds
to immediate containment among two concepts (see Chapter 4), i.e. if < a,b >€ I-rel, then concept
a immediately contains concept b intensionally.

As in Chapter 4 , the relation I-rell in C-setl is the following binary relation:

I-rel1l = {{clockradio, radio), (clockradio, clock), (radio,gadget), (clock,gadget), (gadget,G)}.

We compute transitive and reflexive relationships using paths. A simple directed path (or a path
for short) is presented as a tuple of concepts < aj,ay,..,an >, where for every i € {1,..,n— 1}, it
holds that < aj,aj1; >€ I-rel.

The function path_set generates all paths from concept a to concept b in the given concept
system. The function takes three arguments: two concepts, a and b, and the two place relation
I-rel. On the basis of the ordered pairs which are included in the I-rel, we construct all the paths
from a to b (see operation 15 in [TJ92a]).

path_set : C-set x C-set x P(C-set x C-set) — P(T (C-set))

61

path_set(a, b, 1-rel) =

{<aj,..an>|<ay,.,an > T(C-set) :a; =aAa,=bA
Vie{l,..n—1}:<a,aj; >€ l-rel},ifa#b
{<a>},ifa=b

Now in the example path_set(clockradio, G, I-rell) is the set

{{(clockradio, clock,gadget, G), {clockradio, radio,gadget,G)}.

For the sake of future use, we define two auxiliary functions, maximal set and minimal set
for finding the intensionally maximal and the intensionally minimal concepts from a given subset
of all the concepts in a concept system. Given a set of concepts C-set’(C C-set), an intensionally
maximal concept is such that in C-set’ there is no concept that intensionally contains it. Respec-
tively, an intensionally minimal concept is such that in C-set’ there is no other concept that is
intensionally contained in it. The defined functions return the set of maximal concepts and mini-
mal concepts from the given set of concepts C-set’. The signatures of both the functions are of the
form P(C-set) x P(C-set x C-set) — P(C-set).

maximal _set(C-set’, I-rel) = {x € C-set’| -3y € C-set’ :< y,x >€ I-rel}

minimal _set(C-set’, I-rel) = {x € C-set'|-3Jy € C-set’ :< X,y >€ I-rel}

In the case of I-rell, maximal _set({clock, radio,gadget}, I-rell) returns the set {clock, radio},
whereas minimal _set ({clock, radio,gadget}, I-rell) returns {gadget}.

5.4 Elementary relations

If concept a contains intensionally concept b, there is a path from a to b. The Boolean function
contains(a, b, I-rel) returns true if there is at least one path from a to b. The function is_contained(a,
b, 1-rel) is based on the inverse relation of intensional containment. The function returns true, if
and only if concept a is intensionally contained in concept b. The signatures of the functions are
of the form: C-set x C-set x P(C-set x C-set) — { false,true}.

contains(a, b, I-rel) = true, |f_path_set(a,b,|-rel) #{} 5.1)
otherwise false.

. . | true, if contains(b,a,l-rel)

is_contained(a, b, I-rel) = { otherwise false. (5.2)

We get the set of concepts that are contained intensionally in concept a by using the function
contains_set(a,l-rel) in the given relation I-rel. Respectively, the function is_contained set(a,l-rel)
returns all concepts whose characteristic concept is a, i.e. the concepts in which a is contained.
The signatures of the functions are of the form:

C-set x P(C-set x C-set) — P(C-set).

contains set(a,l-rel) = {x € C-set|contains(a,x,I-rel)} (5.3)

is_contained_set(a,l-rel) = {x € C-set|contains(x,a,l-rel)} (5.4)

For example, contains_set(clock,I-rell) returns the set {G, gadget, clock} and is_contained_-
set(clock, I-rell) returns {clock, clock radio}.

62

In any non-empty concept system, there is at least one concept which does not have any other
characteristic but itself, and at least one concept which is not contained in any other concept.
Function bottom_concepts returns the set of minimal concepts of the concept system, i.e. all such
concepts which do not have any successors in the concept relation I-rel. Respectively, the function
top_concepts computes the set of maximal concepts in the concept system, i.e. all the concepts that
do not have any predecessors in I-rel. The signatures of the functions are of the form: P(C-set x
C-set) — P(C-set).

bottom_conceps(I-rel) = minimal _set(C-set,I-rel) (5.5)

top_concepts(I-rel) = maximal_set(C-set,I-rel) (5.6)

Clearly, in the example, bottom_concepts(l-rell) = {G} and top_concepts(l-rel1) = {clockradio}.

5.5 Concept association relations

We relate two concepts a and b to a third concept ¢ in two ways. Either ¢ contains intensionally
both a and b, or ¢ is contained in both the concepts a and b. By constituting converses of these
situations and by composing all meaningful combinations, we get eight Boolean functions alto-
gether. Respectively, we get eight functions that return the sets of concepts which are in a certain
association relation with concept a.

We define compatibility, incompatibility, comparability and incomparability as in Chapter 4,
1.e. as follows:

compatible(a,b, I-rel) = true, |f_3x : X € C-set A contains(x,a, l-rel) A contains(x,b,I-rel) 5.7)
otherwise false.
. . [true, if -compatible(a,b, I-rel)
incompatible(a,b,l-rel) = { otherwise false. (5.8)
comparable(a,b,I-rel) = true, |f_3x : X € C-set A contains(a,x,l-rel) A contains(b,x,I-rel) (5.9)
otherwise false.
. [true, if -comparable(a,b, I-rel)
incomparable(a,b,l-rel) = { otherwise false. (5.10)

By using the above Boolean functions, we define the functions that return the set of those
concepts that are in a respective association relation with a given concept a. The signatures of
these functions are of the form C-set x P(C-set x C-set) — P(C-set).

compatible_set(a,l-rel) = {x € C-set|compatible(a,x,l-rel)} (5.11)
incompatible_set(a,l-rel) = {x € C-set|incompatible(a,x,I-rel)} (5.12)
comparable set(a,l-rel) = {x € C-set|comparable(a,x,I-rel)} (5.13)

63

incomparable_set(a,l-rel) = {x € C-set|incomparable(a,x,l-rel)} (5.14)

By combination of the above association relations we get four new situations. For brevity, we
present these relations, the name of the respective Boolean function and the name of the respec-
tive set function, in the form of table 5.1. The Boolean functions would be defined simply by the
conjunction of partial conditions, and analogously set functions would be defined by the intersec-
tion of relevant sets. For example, the function homogen_compatible(a,b,l-rel) returns true, if and
only if a and b are compatible and comparable, and the function homogen_compatible set(a,l-rel)
returns the intersection of comparable and compatible concepts of a.

Association Combination | Boolean function Set function

relation

Homogen Comparable, | homogen_compatible (5.15) | homogen_compatible_set (5.16)

compatibility | compatible

Heterogen Incomparable, | heterogen_compatible (5.17) | heterogen_compatible set (5.18)

compatibility | compatible

Opposition Comparable, opposition (5.19) opposition_set (5.20)
incompatible

Isolation Incomparable | isolated (5.21) isolated _set (5.22)
incompatible

Table 5.1: Combined association relations.

Let us take an example. |—rel2 = {(cl1,c2), (cl,c8), (c2,c6), (c3,c4), (c3,c5), (c4,c6),
(c4,c7), (c5,c7), (c5,c8)} (Figure 5.2) is a relation in the concept set {C1,..,c8}, and we consider
association relations under it. There are two members in the set that top_concepts(l-rel2) returns;
cl and c3. Respectively, the function bottom_concepts(I-rel2) returns the set {c6,c7,c8}.

c6 c7 c8

Figure 5.2: I-rel2

Let us take concept ¢4 as an object for more circumstantial study. First, there are three charac-
teristics of ¢4 and ¢4 is a characteristic of two concepts, i.e. contains_set(c4,l-rel2) = {c4,c6,c7}
and is_contained_set(c4,l-rel2) = {c3,c4}. There are six concepts that have a characteristic in com-
mon with concept ¢4 and one concept that has no characteristics in common with concept c4.
Functions of comparability and compatibility are applied to ¢4 as follows: compatible_set(c4,l-
rel2) = {c3, c4, c5, c6, c7, c8}, incompatible set(c4,I-rel2) = {cl1, c2}, comparable set(c4,l-
rel2) = {cl1,c2,c3,c4,c5,c6,c7} and incomparable set(c4,I-rel2) = {c8}. The rest of the func-
tions return the following sets: homogen_compatible_set(c4,1-rel2) = {c3,c4,c5,c6,c7}, hetero-
gen_compatible_set(c4,l-rel2) = {c8}, opposition_set(c4,I-rel2) = {c1,c2} and isolated set(c4,I-
rel2) = {}.

64

5.6 The intensional product and sum

According to Kauppi’s theory, the intensional product is an unambiguous concept. In the theory,
concept x is equivalent to the intensional product of the concepts a and b, if and only if x has every
common characteristic of a and b, but not any other characteristics apart from itself. If we assume,
as Kauppi did, that there is exactly one intensional product for any comparable pair of concepts in
the concept system, we rule out some concept systems that could be wholly appropriate in everyday
modelling. Here, we define intensional product in a more relaxed manner so that concept X is in
the set of product concepts of a and b if the following conditions holds: 1. x is a characteristic of
both a and b; 2. within these characteristics, x is among the maximal concepts.

prod_set : C-set x C-set x P(C-set x C-set) — P(C-set) (5.23)
prod _set(a, b, I-rel) = maximal _set (contains_set(a, I-rel) N contains_set (b, I-rel), I-rel)

In the case of I-rell intensional product between any two concepts is simple. For example, the
function prod_set(radio,clock,I-rell) returns the set, whose single member is gadget. By following
the function prod_set(radio,clock,l-rell), the intersection of radios and clocks characteristics is
{gadget,G}. The maximal of these is gadget.

Let us take a more complicated example. The relation of Figure 5.3, I-rel3 = {(c1,c3), (cl,c4),
(c2,c3), (c2,c4), (c4,c5), (c3,c5)} is the relation in the set C-set3 = {c1,..,c5}. Now the function
prod_set(cl,c2,l-rel3) returns the set {c3,c4}. Here the common characteristics of the concepts c1
and c2 are €3, ¢4 and c5. Among these, €3 and c4 are the maximal ones.

Figure 5.3: I-rel3

The intensional sum is considered analogously to the intensional product. In Kauppi’s theory,
concept ¢ is equivalent to the intensional sum of the concepts a and b, if and only if for every x it
holds: x contains ¢ intensionally, if and only if X contains a and b intensionally. As with intensional
product, we define the corresponding function to be more relaxed than the original definition. By
our definition, concept X is in the set that the function sum _set(a,b,I-rel) returns, if: 1. X is among
the concepts that contain both operand concepts a and b; and 2. x is among the minimal of these.

sum_set : C-set x C-set x P(C-set x C-set) — P(C-set) (5.24)
sum_set(a, b, I-rel) = minimal _set (is_contained _set(a, I-rel) N
is_contained set(b, I-rel), I-rel)

The function sum_set works in the same way as prod_set, but inversely. For example, sum_-
set(clock, radio, I-rell) produces the set {clockradio}. Respectively, sum_set(c3, c4, I-rel3) returns
the set {c1,c2}.

65

5.7 The intensional negation

In line with Kauppi’s theory, we express the intensional negation -a of concept a as a concept
which is: 1. incompatible with a; and 2. for every x: if X is incompatible with a, then -a is one of
the characteristics of x.

If there are no concepts incompatible with concept b, there cannot be an intensional negation
of concept b, either. In Kauppi’s theory, there is an axiom according to which if there exists an
incompatible concept with b, there must exist the intensional negation of concept b. Therefore, the
structure of the concept system is very strict. On this account, we consider the intensional negation
in a a “wider” way. That is, we consider the negation set instead of a single negation concept.

In our approach the negation of a concept is understood as follows: If concept b is incom-
patible with concept a, and if b does not have any such characteristics (apart from itself) that are
incomparable with concept a, then concept b is in the neg_set(a,l-rel). In the definition of the func-
tion, we first consider the set concepts that are incompatible with concept a, and then choose the
minimal concepts from this set.

neg_set : C-set x P(C-set x C-set) — P(C-set) (5.25)
neg_set(a, I-rel) = minimal _set(incompatible set(a, I-rel), I-rel)

Let us take a new relation I-rel4 = {{(cl,c4), (cl,c5), (c2,c4), (c2,c6), (c3,c5), (c3,c6),
(c4,c7), (c5,c7), {c6,c7)} in the concept set {cl,..,c7}. Now, the results of the function in these
different cases are as follows: neg_set(cl,l-rel4) = {c6}, neg_set(c2, I-reld) = {c5}, neg_set(c3,I-
rel4) = {c4}, neg_set(c4, Irel4) = {c3}, neg_set(c5,I-rel4) = {c2}, neg_set(c6, I-rel4) = {c1} and
neg_set(c7, I-rel4) = {}. In this example, if the negation of a concept exists, the concept is equiva-
lent to its negation’s negation.

cl c2 c3 W
W& c3 c4 c5
c7 c6

N/

Figure 5.4: I-rel4 and I-rel5

In relation I-rel4 (Fig. 5.4), every negation set corresponds to Kauppi’s definition of the in-
tensional negation because there is maximally one concept in each negation set. The function
neg_set(c7,l-rel4) is an empty set, because €7 is compatible with every concept. Let us modify the
situation. In I-rel5 = {< c1,¢3 >, < ¢2,c3 >, < c2,¢4 >, < €2,¢5 >, < €3,c6 >, < ¢c4,¢6 >},
there is no unequivocal intensional negation for every concept. The concepts €3 and €6 are com-
patible with every concept. The function neg_set(_,I-rel5) with one of the arguments c2, ¢4 or c5
returns the set {Cc1}. On the other hand, neg_set(c1,l-rel5) produces the set {c4,c5}.

In I-rel5 there are no such concepts which would be equivalent with negation’s negation of C1.

66

5.8 The intensional quotient and difference

According to Kauppi’s theory, the intensional quotient from concept a to concept b is the concept
that is a characteristic of every such concept that contains a intensionally and is incompatible with
b.

As earlier in this chapter, we shall define a function that produces a set of concepts so that the
definition preserves the most essential lineaments of Kauppi’s one. If a concept x (# a) is in the
set that the function quo_set(a,b,lI-rel) produces, it must hold that: 1. x contains a intensionally; 2.
X is incompatible with b; and 3. x is among the minimal concepts in the set of concepts that satisfy
the conditions 1 and 2. If concept a satisfies condition 2, i.e. a is incompatible with b, then the
function returns {a}.

quo_set : C-set x C-set x P(C-set x C-set) — P(C-set) (5.26)
quo_set(a, b, I-rel) = minimal _set (S, I-rel)

where S = is_contained_set(a,l-rel) N incompatible set(b,I-rel).

The intensional difference from concept a to concept b is the concept that contains intension-
ally all those concepts that are the characteristics of concept a and are incomparable with b.

We define the function diff_set that produces the set of concepts which satisfy the following
conditions. A concept X (# a) is in the set diff_set(a,b,I-rel) if: 1. a contains x intensionally; 2. x
is incomparable with b; 3. x is among the maximal in the intersection of sets that the conditions 1
and 2 indicate. If concept a satisfies condition 2, i.e. a is incomparable with b, the function returns
the set {a}.

dif f_set : C-set x C-set x P(C-set x C-set) — P(C-set) (5.27)
dif f_set(a,b, I-rel) = maximal_set(S, I-rel)

where S = contains_set(a,l-rel) N incomparable_set(b,l-rel).

In the example of Figure 5.5, I-relé = {{c1,c3), {cl,c4), (c2,c4)}, some non-empty quo_Set
sets can be produced. The functions quo_set(c2,c1,l-rel6) and quo_set(c2,c3,I-rel6) return the set
{c2}. The functions quo_set(c1,c2,1-rel6) and quo_set(c3,c2,1-rel6) return the set {c1}.

/\/°2

c3 c4

Figure 5.5: I-rel6

As with the above, the function diff_set(c2,c3,1-rel6) returns the set {c2} and diff_set(c4,c3,I-
rel6) returns {c4}. The functions diff_set(c3,c2,l-rel6) and diff_set(c3, c4, I-rel6) return the set

{c3}.

67

5.9 Summary and discussion: Concept association relations and
operations

In this chapter, we have represented the relations and the concept operations of Kauppi’s theory
without any reference to the semantics of the relation of intensional containment. Nilsson and
Paloméki maintain in [NP98] that intensional containment is a certain kind of IS-A relationship.
However, Kangassalo suggests in [Kan96] that the intensional containment covers the IS-A re-
lationship, the aggregation and the component relationship. Whatever view is taken towards the
semantics of intensional containment, the representation we employ here provides powerful tools
for analysing different kinds of knowledge structures.

We can compare Kauppi’s calculus with DL (see e.g. [BS92], [Bor95]), if we equate the rela-
tion of the intensional containment with the IS-A relationship. Then, for example, the operations
of the intensional sum and the intensional product are intensional counterparts for the operations
AND and OR in DL. Using the association relations, one can study various relationships (like
comparability and compatibility) between concepts: if two concepts are compatible, there exists a
concept that is a specialisation of both concepts. To our knowledge, an approach involving con-
cept association relations has not been applied in DL. In many extensions of DL, there are the
top-element (empty set) and the bottom-element (universal set) in the system. In the point of view
of the association relations and operations presented here, these special elements make all the con-
cepts both comparable and compatible with each other. Consequently, many of the operations of
this chapter would not be usable in such a system. However, in some cases, ignoring (omitting)
these special elements can provide a starting point for the intensional analysis presented above.

The component relationship (transitive part-of) can be presented similarly to the intensional
relation I-rel here such that only immediate component relationships are explicitly presented, as in
[Jun98]. If notation (a,b) € I-rel is interpreted such that a has an immediate component b, com-
parability would mean that the given arguments have some common components. Analogously,
negation_set generates these objects that are as simple as possible (undivided) and that are not
components of any such objects that have a given argument as a component.

In an analysis of a process system (cf. [Lan78]) we can employ the representation of this
chapter as follows: Let I-rel be a binary relation in a set of processes. I-rel contains all process
pairs (a,b) such that a is an immediate successor process of b, i.e. process b is demanded for the
production of process a. As an interesting application of concept theory, we can present a function
that returns the least defined processes in the set of those processes that are not demanded by the
given one. According to the tradition of concept theory, we prefer to call this the negation _set.

In this chapter, we have considered the association relations and concept operations of Kauppi’s
concept theory and presented an abstract implementation of them. We have extended the concept
theory in two ways. First, we have presented operations that return sets of those concepts that are
in some association relation with the given concept. Second, we have represented a wider interpre-
tation for concept operations. Our functions do not return a single concept, but a set of concepts
that satisfy the most essential conditions. Therefore, the functions provide a non-empty result,
even in the case where there was not a unique concept that satisfied the original definition.

By using a set-oriented approach, we have presented in an explicit and implementable, albeit
an implementation-independent, manner, the formal concept theory which we see as having the
potential to manage and describe the structure of knowledge. This method forms the basis of an
executable knowledge representation language and can be applied, for example, to the analysis of
IS-A relationship, component structures and process structures.

68

Chapter 6

IFO and CONCEPT D - A Comparison of
Modelling Languages

6.1 Introduction

The aim of conceptual modelling is to create models that describe the conceptual level of the
domain of application and which are needed in designing and defining information systems.! In
this modelling process, in most cases some relationships in the domain of application are given
special consideration. As discussed in Chapter 2, these prevalent kinds of relationships (like IS-A,
“has-attribute” or “contains intensionally”) should be captured by the analysis and represented by
some formalism as its result.

A large variety of Semantic Data Models (SDMs) have been proposed for this representation,
e.g. in [Poh96]. In general, following [AH87], we can say that SDMs are based on the following
principles:

e Data about objects and relationships between them should be modelled in a direct manner;
e many relationships (like “has-attribute”) are functional in nature,
e IS-A relationships are significant;

e there are hierarchical mechanisms for building (object) types out of other (object) types.

As in many formalisms of the 1980’s and the 1990’s, all of these elements are present in the
IFO model ([AH84], presented 1984 and [AH87] 1987 in the form discussed here) and COMIC
methodology ([Kan93], presented 1993, whereas its modelling language CONCEPT D was in-
troduced already in 1983 in [Kan83]). In addition, IFO and COMIC are similar in at least two
respects. Both provide a rich modelling language and a graphical representation formalism. Like-
wise, for both there is a translation scheme by which the information represented in the modelling
language can be used to build a relational database implementation (see [AH87], [Nie99]).

The fundamental differences between IFO and COMIC are that IFO concentrates in seman-
tics and mathematical analysis, while COMIC focuses on supporting the process of conceptual
modelling.

Naturally, we make a distinction between the description of the structure of the domain of
application and the actual things (objects) that reside in the domain of application. Since the

! Adapted from [KKJHOO].

69

description relies on a modelling language, we shall use the terminology of language items (L-
items, for short; see Chapter 2). The names of L-items are written in capital letters in this chapter.

The goal of this chapter is to point out the beneficial aspects of both IFO and COMIC ap-
proaches and to discuss the possibility of transforming a CONCEPT D (externalised conceptual)
schema into a corresponding IFO (externalised conceptual) schema. This would enable us to com-
bine the benefits of both approaches: COMIC’s support of the process of conceptual modelling
and IFO’s precise semantics.

In Chapter 2, we discussed intensional, extensional and hybrid languages in conceptual mod-
elling. In Section 2.4, we used a language whose syntax resembled that of CONCEPT D as an
example of an intensional modelling language. However, in what follows we use a “larger” CON-
CEPT D type language and map its expressions into IFO expressions. Though our CONCEPT D
variant utilises intensional containment, the expressions will gain a perfectly extensional interpre-
tations when they are translated into [FO.

This chapter is organised as follows. In Section 6.2, we describe the IFO approach and the L-
items of an IFO (externalised conceptual) schema. In Section 6.3, we discuss the COMIC approach
and CONCEPT D. Section 6.4 discusses the different semantical emphasis of IFO and CONCEPT
D. However, we utilise a notion of “real world intension” to point out how the semantics of a
CONCEPT D (externalised conceptual) schema can be understood in a way that resembles IFO’s
semantics. Based on this similarity, in Section 6.5, we identify similar components in CONCEPT D
and IFO (externalised conceptual) schemata. Finally, in Section 6.6, we describe how a translation
of a CONCEPT D schema into an IFO schema could be performed. The strengths and weaknesses
of the intensional approach (and thus the value of combining it with IFO) are also discussed in
Section 6.6.

6.2 The IFO approach

The background of IFO is in semantic data models. IFO was among the first models to introduce
a well defined procedural semantics (based on database updates). In this way, the L-items of the
IFO language are connected to the database in a rather unambiguous way. Here, like Abiteboul
and Hull in [AH87], we do not make a distinction between IFO’s methodology and modelling
language; they are both called IFO.

In IFO, the L-items are called types (atomic or constructed?), fragments and schemata. Types
model the structure of the objects in the domain of application and roughly correspond to L-entities
in Chapter 2. Fragments contain types and represent functional relationships. IS-A relationships
are defined in fragments by either generalisation or specialisation. IFO schemata are directed
graphs that are built by combining fragments. We shall now shortly describe the use of L-items
in the process of creating an externalised conceptual schema of the domain to be modelled. A
summary of L-items of IFO, described below, is presented in Figure 6.1.

An atomic type can be printable, abstract or free. Printable atomic types correspond to objects
of predefined types that serve as the basis for input and output [AH87]. SURNAME serves as an
example of a printable atomic type; each SURNAME refers to a string (of characters). Abstract
atomic types (like STUDENT) differ from printable ones. Each refers to a subset of a domain of
this abstract type, like a set of particular persons. Finally, free atomic types are used in cases where
there are IS-A relationships between them and other types. It can be said that free atomic types
gain their actual type through the IS-A relationship from other types.

2[AH87] employs the terms “derived”, “more complicated” and “non-atomic” for constructed types.

70

Constructed types are built of atomic types by creating finite sets (like COURSE-PARTICI-
PANTS, a set of STUDENTS) or Cartesian products (aggregation, like forming the type CIGAR
by combining the types GROUND TOBACCO and TOBACCO LEAF).

Fragments are simply functions (“mappings”) whose domain and range are types. For instance,
there may be a fragment THE GRADE OF A STUDENT that represents a function that maps each
student (an abstract type) into his or her grade (a printable type). A fragment is a directed tree,
whose root is called the primary node of the fragment.

In IFO, IS-A relationships are acquired by either specialisation or generalisation. In a speciali-
sation, the possible roles of a given type are considered: a person might be a student. Specialisation
can be overlapping: a person may be both an employee and a student. In a generalisation, distinct
pre-existing types are combined into a new type. These types are not allowed to be overlapping.

o O

Printable Abstract Free
GRADE
STUDENT
STUDENT GRADE

COURSE-
A function PARTICIPANTS
A finite set
CIGAR

@ STUDENT

: : PERSON
GROUND TOBACCO
TOBACCO LEAF IS—A (specialisation or
generalisation)
A Cartesian product

STUDENT

Figure 6.1: L-items of IFO

An IFO graph is a directed acyclic graph, where types are the nodes of the graph and IS-A
relationships (specialisation and generalisation; see below) are represented as directed edges. The
types (nodes) may, naturally, be parts of fragments as well. An IFO schema is an IFO graph that
conforms to some requirements concerning IS-A relationships, as follows. Let us suppose that
there exists an IS-A relationship between two IFO types, A and B, so that A is the first member
of the IS-A relation (the head) and B is the second member (the tail). In this case, A is called
the supertype of B and, respectively, B the subtype of A. The restrictions can be summarised as
follows:

e In specialisation, the type of the node is gained top-down, from supertype to subtype. If both

71

A and B are constructed, non-free types, this can lead to conflicting situations; B is supposed
to inherit its structure from A. Therefore, in specialisation, the tail must be of the free type.>

e In generalisation, the type of the node is gained bottom-up. As in the previous case, type
conflicts may arise. Thus, the head must be a free type.

Other restrictions are related with the types that have some role in fragments. Roughly, in
specialisation, the head is required to be a primary node of a fragment. In generalisation, the tail
is a primary node. These restrictions form the basis of IFO’s sophisticated update semantics that is
discussed in Section 6.4.

6.3 The COMIC approach and CONCEPT D

COMIC, described in [Kan93], is closely connected to the intensional approach of conceptual
modelling, whose background and presentation were discussed in Chapters 4 and 5. Recently,
Niemi in [Nie99] and [NieOO] has presented methods to transform CONCEPT D diagrams into
lattices, thus enabling the intensional operations and associations of Chapter 5.

In this chapter we discuss only the main features of COMIC and CONCEPT D.* More detailed
accounts can be found in [Kan82] and [Kan92] where the background of the process of concep-
tual modelling and concept structures is discussed; in [Kan93] Kangassalo presents the COMIC
methodology based on that background; and in [Kan83] he introduces CONCEPT D modelling
language. In CONCEPT D, many different kinds of L-items of other modelling languages are
covered by only two CONCEPT D L-items: concepts and intensional containment links. This
means that intensional containment covers several different abstraction methods and their presen-
tation on the level of language. Given this ambitious starting point, it is understandable that both
the methodology and the language have been criticised. We take a closer look at this criticism in
Section 6.6.

The background of COMIC lies in information systems development. The development starts
solely on the concepts that the information system users have. Using these concepts, the modeller
builds a theory of the domain to be modelled and expresses it with some formalism. Kangas-
salo in [Kan92] defines conceptual modelling as “a process of forming and collecting conceptual
knowledge about the Universe of Discourse (UoD), and documenting the results in the form of
a conceptual schema.” We assume that conceptual knowledge consists of concepts and knowl-
edge primitives, since Kangassalo and Viitanen characterise in [KV90] concepts and knowledge
primitives as follows:

“A concept is defined to be an independently identifiable construct which has an internal struc-
ture and is composed of knowledge primitives and/or other concepts” and “knowledge primitives

3 As an example of a conflicting situation, let us consider a case where the tail is not free, e.g. let us try to specialise
CIGAR (as in Figure 6.1) from PRODUCT, a Cartesian product of MANUFACTURER and PRICE. Now, CIGAR has
two identities, as two different Cartesian products, and its update semantics would not be unambiguous.

“More specifically, we omit the following important features of CONCEPT D:

o In the original definition of CONCEPT D, there are various different generalisation structures;

e The conditions and constraints can relate concepts using various different criteria (properties and relationships
between their extensions, etc.). These have been omitted for simplicity;

o The role of the identifiers has been greatly simplified in this presentation.

72

are used as building blocks of concepts, possibly together with other concepts”. Furthermore, as
defined by Kangassalo in [Kan93], a concept structure is a diagram which represents a definition
of a concept. In order to express a concept structure, a language is needed. Kangassalo and Vii-
tanen state in [KV90] that language CONCEPT D/D “is used to describe the hierarchical concept
structure of a single concept composed of other concepts and knowledge primitives”. In addition to
CONCEPT D/D, there is a language called CONCEPT D/CS but, in the scope of this chapter, we
shall simply see “CONCEPT D/D” and “CONCEPT D” as synonyms. A graphical representation
of the CONCEPT D L-items that are relevant in this discussion can be seen in Figure 6.2.
In [Kan96], Kangassalo mentions the following knowledge primitives:

e Name of the concept used to refer to the concept.
e Intensional relationship between two concepts.
e Extensional relationship between two occurrences of concepts.

e Identifying property is a property of concept B intensionally contained in concept A that
enables an occurrence of concept B to be used to identify an occurrence of concept A.

e Condition schema.
e Constraint schema.

e Value set is a set of other concepts and their representations associated with a given concept
to represent it.

e Function is a mapping from a value set to another.

Semantic rule is a text explaining the concept.

Strictly, all of these knowledge primitives should have a presentation in a modelling language.
Here, we simplify the discussion (and the graphical notation) and consider only the most frequently
occuring knowledge primitives.

Together, concept structures build up a conceptual schema. This in turn is used as an input for
a semi-automated (currently automated) support system that generates a database implementation
of the schema, described in [Nie99]. The database implementation also includes update and query
functionalities. There is a close relation between the database and the design formalism, and
therefore it is not surprising that there is a graphical query tool as well. The graphical conventions
of the query language resemble those of the design language (for details, see [KKP90]).

When expressed in a modelling language (CONCEPT D), a concept structure is a diagram
which represents a definition of a concept. In a concept structure, concepts are primarily connected
by directed edges, representing the direct intensional containment relationship between concepts
(see Chapter 4), and we call them intensional containment edges. Some additional information
(conditions, constraints) is provided by undirected edges as well, but their role is less important.

A concept structure consists of defining concepts and a defined concept, and forms a definition
hierarchy (a directed, acyclic, connected graph with a root node; see [Kan93]). We equate the

73

“concept x is defined by concept y” relation in the hierarchy with the intensional containment rela-
tion.> © For instance, if PERSON is (partially) defined by SURNAME, we can say that PERSON
(directly) intensionally contains SURNAME, too; and that SURNAME is (directly) intensionally
contained in PERSON. This is presented by an intensional containment edge from PERSON to
SURNAME. It should be noticed, too, that the notion of intensional containment used in COMIC
is “liberal” in a sense that it apparently does not imply that in every possible situation every person
would have a surname, but that in the domain of our interest this is the case.

Naturally, there must be something with which to start the definition hierarchy: basic concepts.
A basic concept is simply a concept not defined by any other concepts in the definition hierarchy.
Concepts that are not basic are called defined (or derived) concepts. A concept structure has a
unique root node, one that is defined by all the other concepts. The root node is a concept that
contains all the knowledge concerning the domain of application (for details, see [Kan93], where
the domain of application is called UoD).

Related to intensional containment between two concepts, there can be some additional in-
formation, i.e. information about the numeric containment (cardinality constraints in intensional
containment edges) of the concepts. By default, it is 1:1 (as in the case of PERSON and SOCIAL
SECURITY NUMBER; i.e. PERSON can intensionally contain exactly one SOCIAL SECURITY
NUMBER), but can also be defined to be 1:n.

A constraint, for example, states that SENIOR CITIZEN’s AGE must be greater than 64. In
a CONCEPT D schema, conditions and constraints are expressed with (undirected) dotted lines
that connect two concepts with each other, and a rule attached to the line. In our limited version of
CONCEPT D, we only consider constraints where the constraining concept is directly or indirectly
contained in the constrained concept.

The only additional relationship we consider in this chapter is the cardinality constraint (other
than the numeric containment: intensional containment with cardinality constraints) and it is ex-
pressed by a dotted line between two concepts, and a cardinality ratio, like 1:n, attached to it.

There are three methods of defining concepts in concept structures; aggregation, generalisa-
tion, and value transformation. In the context of this chapter, we consider one additional one,
specialisation, though in CONCEPT D it is a construct of aggregation and constraints. The con-
cept definition created by these methods is evaluated in order to understand the intension of the
defined concept. In Section 6.4 we suggest how this evaluation can be related to semantics.

Aggregation is the most basic form of concept definition. In aggregation, the defined concept
is depicted mainly by intensional containment links that relate it to its defining concepts. For
instance, the concept of PERSON can be defined by expressing that it intensionally contains the
concepts SOCIAL SECURITY NUMBER, JOB and ADDRESS.

Using generalisation, a concept can be defined by extracting information from concepts that
contain it intensionally (the opposite way of aggregation). For instance, PERSON can be defined
as a generalisation of CHILD, ADOLESCENT, MIDDLE-AGED and SENIOR CITIZEN. Unlike
in the original version of CONCEPT D, we do not consider generalisation a short-cut form of a
complex aggregation, since for our purposes it is beneficial to reserve a specific notation for it. In
the case of the example, the generalised concept (PERSON) would simply contain all the concepts

SIn what follows, we shall use words written with capital letters to refer to CONCEPT D’s L-items, too, although
they should be interpreted to be concepts (and written in bold typeface).

®Kangassalo emphasises in [Kan93] and [Kan96] that the presentation of definitions is not solely based on inten-
sional containment, but on definition types (aggregation, generalisation, value transformation) that utilise intensional
containment. However, since these in turn are based on intensional containment, we consider our assumption to be
valid.

74

that are intensionally contained in all of its defining concepts (like AGE).

Here, specialisation is a method of deriving a more specific concept from a more general one,
like SENIOR CITIZEN from PERSON. This is done by constraints; in the case of the example,
simply by stating that

e SENIOR CITIZEN intensionally contains PERSON, and

e there is a constraint between AGE and SENIOR CITIZEN so that the age of SENIOR CITI-
ZEN must be greater than 64.

In what follows, we assume that in our CONCEPT D variant, all intensional containment
structures that express IS-A type relationships are either generalisations or specialisations.

A value transformation represents a concept definition, wherein a transformation function is
applied to some concept(s) to gain a new concept. For instance, the concept of AMOUNT OF
SALARY can be defined by using a value transformation function of the concepts WORKING
HOURS and HOURLY WAGE. In this case, the function is a simple multiplication applied to
the values of WORKING HOURS and HOURLY WAGE. In a schema, a dotted arrow is used to
represent a value transformation.

Apart from value transformation functions, some functional relationships are covered by inten-
sional containment. This is apparent when we think about the relations between the concepts STU-
DENT, COURSE and THE GRADE OF A STUDENT. It is obvious that THE GRADE OF THE
STUDENT intensionally contains STUDENT, since this information/knowledge is a prerequisite
of THE GRADE OF THE STUDENT. However, the functional relationship between STUDENT
and THE GRADE OF THE STUDENT is not a value transformation.

In addition to these simple structures, CONCEPT D contains a set of methods for more precise
definition of concepts. These are related to the knowledge primitives mentioned above. The most
important of these are identifiers and their scopes. An identifier is simply a unique string of charac-
ters that is attached to some concept. An identifier (K) primarily identifies the concept it is attached
to (a) and the concept(s) (b) that directly intensionally contain a. Secondarily, it identifies the con-
cepts that are directly or indirectly contained in b. The concepts that an identifier can identify are
jointly called the scope of the identifier. Since it is often the case that some concepts contained in b
can be identified by an identifier other than K, the scope of K can be limited. This limit is imposed
by a “cut” of the scope, represented simply as a tag on some intensional containment edge with the
name of the identifier next to it (for details, see [Kan83]).

Identifiers and cardinality constraints are important if we want to determine what kind of a
variant of intensional containment (IS-A, “part-of” ...) each one of the intensional containment
edges actually represents. To simplify this task, we propose a limited version of CONCEPT D,
whose L-items are presented in Figure 6.2.

We emphasise that if we consider only intensional containment relations in a CONCEPT D
schema, it is always a acyclic directed graph. This means that cyclic concept definitions are not
allowed in CONCEPT D schemata.

Unlike in the original version of CONCEPT D, we introduce an addition by which the user
can state if the concept in question is abstract or printable. In the graphical presentation, printable
concepts are designated with the letter P, and abstract concepts do not have a designation. This
addition will help the translation process.

In 6.2, defined concepts are presented as underlined uppercase words, basic concepts as pre-
sented as underlined uppercase words, printable concepts are designated by letter P, intensional

75

PERSON an abstract concept SLIRNAMEP a basic concept

SOCIAL SEC NBR a printable concept
PERSON a cardinality

1 constraint
an intensional containment

n
ADDRESS between two concepts SURNAME

SﬁNJQRQJ“_IZEN a specialisation PERSON a generalisation
| using a constraint —
PERSON | N

AGE CHILD ADOLESCENT MIDDLE-AGED SENIOR CITIZEN

WORKING HOURS HOURLY WAGE AMOUNT OF SALARY a value transformation
P P a P

Figure 6.2: L-items of limited CONCEPT D

containment is simply a line connecting an upper (containing) concept to lower (contained) con-
cepts, a generalisation is an intensional containment structure with a horizontal line, cardinality
constraints are show next to concepts, a specialisation of a contained concept is expressed using a
dotted line and an expression next to it, and a value transformation is a dotted arrow pointing from
concepts by which the value is calculated to the concept that expresses the value of the calculation.

6.4 The notion of semantics

In IFO, there are operations that operate on the database, i.e. they add, delete or update some sets
of values in it. We call these sets of values instances and they correspond to the IFO L-items. The
semantics of IFO is based on the instances that would exist in the database after each update. This
provides a strong basis for mathematical analysis of the update operations.

An IFO operation is a three place tuple (A,B,C), where A is a node, and B and C are sets of
values, B representing an old set and C representing a new set. Thus, an operation is a modification
of the values of an instance. An addition of a new instance is defined as (A, L,C), and a deletion
of an existing instance is defined as (A,B,).

Some update operations (more precisely those that apply to instances associated with a given
primary node) lead to propagational effects — i.e. they change the instances residing in some other
nodes. The propagational effect behaves differently for each of the different types of edges con-
necting the nodes. Abiteboul and Hull have designed sophisticated algorithms to carry out the
propagational effect in any valid IFO schema (see [AH87]).

In principle, our view of the IFO update semantics is as follows:

An IFO instance can be given a normal set-theoretical interpretation, in the sense that the
values in the database reflect some objects in a given domain of application. They have attributes
(that would be defined as functions in the standard set-theoretical approach) and relationships with
other objects of some type, the most important of these relationships being the IS-A relationship.
In the set-theoretical approach, the behaviour of objects whose types are in an IS-A relationship
is based on set inclusion. This kind of semantics is intuitive, but it is given its actual substance

76

through update operations. The update algorithms effectively specify, in different situations, what
it means at the extensional level that the type is in an IS-A relationship with another type. For
instance, an update on STUDENT updates PERSON since STUDENT is a PERSON. The same
principle applies to IFO functions as well.

In COMIC the notion of semantics relies on the semantic ideas of users or the semantics that
the concepts and other elements have in the conceptual schema. Some parts of this probably
cannot be analysed by conventional means. However, in this chapter, we utilise the notion of
the “real world intension”, as presented in [ASCD99]. There, each object is defined by a set of
constraints called the real world intensions of the object. Using the notion of real world intension,
we can make a distinction between the intension in general (the way concepts could be defined in
some possible world) and the way we want concepts to be defined in the domain in which we are
interested. We prefer to think that in COMIC’s concept structures, the concept hierarchy as well as
the constraints and conditions reflect those in the real world intension. Thus, we can say that the
externalised conceptual schema represents the real world intension of the concept structure during
some time span. In the next section, we consider how to compare the (externalised conceptual)
schemata of IFO and CONCEPT D on this semantical basis.

6.5 Comparison

In Section 6.4 we discussed how the semantical basis of IFO differs from that of COMIC. In
COMIC, the evaluation process of a concept structure leads to an understanding of the Universe of
Discourse (the domain of application). When this evaluation is applied to some given state of the
UoD, it actually describes the objects of the domain of application at that moment. In this way, the
evaluation can be seen as a counterpart of the procedural semantics of IFO.

Based on this similarity, we now compare the elements of the modelling languages of IFO and
COMIC. In the case of COMIC, the modelling language is, of course, CONCEPT D. In both of
these formalisms (IFO and CONCEPT D), there are nodes and directed edges.

We shall now proceed to compare the L-items of the modelling languages. In IFO, types are the
basic units of knowledge. Naturally, their counterparts in CONCEPT D are concepts. Printable
types in IFO have simple semantics, and therefore they can be equated with printable concepts
in our version of CONCEPT D. IFO’s abstract types and free types correspond with the defined
concepts of CONCEPT D.

Since there is only one kind of directed edge (intensional containment) connecting the nodes
in CONCEPT D, it is obvious that all the constructed types of IFO are constructs created by inten-
sional containment in CONCEPT D. Therefore, IFO’s finite sets that are built by “iterating” (group-
ing) a type (like STUDENT) to form a set type (like STUDENTS ATTENDING A COURSE), have
their counterpart in CONCEPT D: concept STUDENT ATTENDING A COURSE is defined as
containing STUDENT. Likewise, Cartesian products, like CIGAR that has GROUND TOBACCO
and TOBACCO LEAF, is simply an aggregation in CONCEPT D; the concept of CIGAR is an
aggregation of GROUND TOBACCO and TOBACCO LEAF.

However, in the scope of this presentation, it seems impossible to have a semantic criteria
in which CONCEPT D intensional containment structures could correspond to finite sets of IFO.
Therefore, in the discussion of schema transformations in Section 6.6, we omit finite sets.

The fragments of IFO contain types and functions. A function of IFO is a mapping of a
type to a set of values (a printable type). In CONCEPT D, a function is a value transformation
that is attached between two concepts, but intensional containment sometimes covers functional

77

relationships between concepts, as indicated earlier.

Finally, an IFO schema is a collection of fragments connected to each other by IS-A links
(generalisation or specialisation). In this chapter, we consider CONCEPT D to have something
that corresponds to specialisation and generalisation, but naturally they are both based on the in-
tensional containment relation. In specialisation, the defined concept is a modified version of the
concepts that define it. This modification is done by conditions and constraints. In a generalisation,
the generalised concept simply gathers those concepts that are shared by the concepts included in
1t.

Figure 6.3 presents a summary of the counterparts of IFO and our version of CONCEPT D.

IFO CONCEPT D variant

printable types concepts (printable)

abstract types concepts (abstract)

free types concepts (defined)

finite sets intensional containment

Cartesian products intensional containment

fragments (functions) | intensional containment

specialisations intensional containment with a constraint
generalisations generalisations

schemata schemata

Figure 6.3: The counterparts of IFO in our version of CONCEPT D

6.6 Summary and discussion: CONCEPT D and IFO

In this chapter, we have compared two modelling languages, CONCEPT D and IFO, both of which
can be understood as semantic data models. The IFO approach concentrates on the mathematical
analysis of semantic data models, whereas in COMIC, the conceptual modelling perspective is
emphasised.

We have shown the similarities between CONCEPT D and IFO notations. We see these simi-
larities as a justification for transforming a CONCEPT D schema into a IFO schema. This would
provide the COMIC approach with conventional semantics (like that of IFO or predicate logic).
The transformation procedure will follow the following principles:

e Create an IFO printable type for each CONCEPT D printable concept. If the printable con-
cept at hand has an identifier, determine the range of the printable type to be that of the
identifier.

e Recognise CONCEPT D L-items that correspond with IFO fragments. By analysing the
structure of a simplified CONCEPT D schema (suggested in Section 6.3), the following
steps can be taken:

— Functions: Any CONCEPT D value transformation maps to an IFO function.

— Cartesian products (intensional containment edges representing aggregation): if the
CONCEPT D structure does not employ a constraint or a generalisation, it corresponds

78

to an IFO Cartesian product. However, if there is only one contained concept, it corre-
sponds to a IFO function.

e Construct the corresponding IFO types based on each of the relationships identified above.

e The remaining CONCEPT D relations correspond with IS-A relationships (generalisations
or specialisations) in IFO. They can be recognised by their graphical form (generalisations)
and by the fact that specialisations employ constraints.

To meet IFO’s requirements:

— for every generalisation, set the type of head node free,

— for every specialisation, set the type of tail node free.

In our opinion, the benefits of using the COMIC methodology reside in its easiness (a very
limited amount of L-items), semantic relativism (no need to make a difference if something is an
entity, a named relationship, or an attribute — they are all concepts) and its support for the process
of conceptual modelling. COMIC’s first implementation in the 1980’s was one of the first (possibly
the first) data modelling packages in the world where the database design and queries were carried
out completely on the level of user knowledge, that is with no visual or terminological reference to
the underlying database layer.

However, some objections can be raised concerning both the philosophical background of
COMIC and the formalism used.

The philosophical background relies heavily on the theoretical tradition of concepts developed
by Leibniz and later axiomatised by Kauppi [Kau67]. This view can be characterised as being
thoroughly Platonic, i.e. concepts subsist in their own world, independently of minds and exten-
sions. Kangassalo [Kan92] combines this view with ideas of psychology of cognition (modeller’s
conceptions of the domain of application and construction of theories). This combination seems
beneficial for the purposes of conceptual modelling, but its notion of concept seems a bit vague. It
can be best described as “concepts are knowledge structures, build out of knowledge units (other
concepts or knowledge primitives) and are independent of minds or extensions, but detected or
constructed by modellers”.”

In this process of detection or construction, intensional containment between concepts plays
an important role. Kangassalo maintains in [Kan92] that the relation of intensional containment
creates a partial ordering between knowledge units within a body of knowledge. This seems to
suggest that all hierarchical structures that we normally use in modelling (the relation of something
being something’s part or attribute, a generalisation or a specialisation of something) are different
kinds of applications of the relation of intensional containment (see, e.g. [Kan96] and [Kan00]).
If we accept the Leibniz/Kauppi tradition this may be so, but the following objections should be
observed:

e Inreal life, we are simply interested in whether something is an attribute, a part, or a special-
isation of something else, since the nature of the relationship sometimes determines how we
carry out reasoning. So there should be a way of including this information in the knowledge
structure (perhaps by using knowledge primitives);

e We probably should not assume any particular properties (transitivity, antisymmetry) with
this relation, since not all of the different applications have the same kinds of properties;

"This description is the author’s own, but contains components of papers [Kan83], [Kan93] and [Kan00].

79

e While the concepts that are within the same knowledge structure can present “entities”
(whose counterparts in predicate logic are unary predicates) and “relations” (n-ary predi-
cates, n<1), it is not clear if the background philosophy agrees with this, as mentioned in
[Duz00c]. For instance, Kauppi’s work [Kau67] clearly makes a distinction between con-
cepts (unary) and relations (n-ary), and they have axiomatic systems of their own.

Apart from the shortcomings mentioned above, CONCEPT D does have an interesting philo-
sophical background. But there are some items that can be used to criticise CONCEPT D as well:

e A theoretical point: CONCEPT D is a language by which concepts and their intensional
relationships are described. However, it does not guarantee that using this kind of language
we would “automatically” have access to the conceptual domain and thus link the L-items
of the schema with something conceptual. In our opinion, this link needs proper semantics.

e A practical point: the expressiveness of the original CONCEPT D is hard to define in terms
of more conventional languages or modelling approaches. However, with description logics
(DLs) or knowledge representation systems this is a crucial issue, since the reasoning carried
out by these systems is dependent on: if the expressive power is too strong, the reasoning
is computationally complex, possibly even undecidable. Likewise, if the language does
not support L-items like explicit attributes, generalisations or specialisations, the reasoning
based on this cannot be implemented at all.

To sum up, the semantic problems of CONCEPT D can be at least partially solved by mapping
CONCEPT D diagrams into some other formalism (as in this chapter) or by designing a seman-
tics that supports the intensional characters of the formalism (as in Chapter 7). The evaluation of
COMIC methodology and CONCEPT D language depends thus on the view we have about the pur-
pose of its use. If we consider the primary goal of conceptual modelling to be to create intensional
descriptions of the domain of application, COMIC and CONCEPT D are most suited for the task.
But if we want to make other kinds of descriptions, which emphasise several kinds of relationships
(aggregations, attributes, time based relationships), we need to employ another methodology and
formalism. The same applies, of course, if the goal is to create a logic based system that needs
strict (traditional) semantics.

80

Chapter 7

Explicating the Semantics of Concept
Diagrams

7.1 Introduction

In the previous chapters we discussed the role of language in conceptual modelling. We consid-
ered different approaches to conceptual modelling and, based on these approaches, divided the
languages used in conceptual modelling (modelling languages) into three categories; extensional,
intensional and hybrid languages. An extensional modelling language uses terminology of (exten-
sional) entities and relationships in the description of the domain of application. In an intensional
language, concepts have a central role and it is possible to asserts intensional relationships between
them. Hybrid languages combine both intensional and extensional features. We used typical mod-
elling constructs to demonstrate the syntactic conventions and “tricks of the trade” of a language
from each category.

In this chapter the focus is on what can be seen as being behind the language. We concentrate
on the following questions:

e What kind of semantics is useful in conceptual modelling?

e What kind of semantic theory would provide semantics for intensional and hybrid modelling
languages?

e How can we apply a semantic background theory to explicate so-called concept diagrams
(externalized conceptual schemata created using a formalism like CONCEPT D that employs
symbols of concepts and intensional containment)?

If the semantics is not clear, the language used for conceptual modelling will run into obvious
difficulties that can compromise the whole effort of conceptual modelling, as in early semantic
networks, discussed in [Ran88]. More modern approaches to conceptual modelling, like Clas-
sic (presented by Bordiga et al. in [BT89]) and later Description Logics (DLs) [Bor95] feature a
much more precise semantics. Often, however, they neglect the intensional aspect of conceptual
modelling. That aspect will be emphasised in this chapter.

The starting point of this chapter is to demonstrate how different theories postulate concepts —a
key issue in conceptual modelling. We take a closer look at the following theories: possible worlds
semantics and situation theory (situation semantics), theories of predication and HIT-semantics.

81

In Section 7.2, we take a general look at the possible roles of semantics in conceptual modelling
and evaluate them on the basis of what they can contribute in conceptual modelling. In Section
7.3, we examine more closely the different semantic approaches. In Section 7.4, we concentrate
on HIT-semantics that, based on the analysis, has the features needed to work as a semantics for
conceptual modelling. Basic constructs of HIT-semantics are applied to explicate the semantics of
CONCEPT D, a modelling language, whose background relies in the intensional containment of
concepts. Conclusions are presented in Section 7.5.

7.2 Semantics and conceptual modelling

Conceptual modelling languages can be roughly divided into three categories; extensional lan-
guages, intensional languages and “hybrid” languages which utilise both intensional and exten-
sional features. Since the semantics of extensional languages is quite traditional and the semantics
of DLs is well established, we shall mostly concentrate on the semantics of intensional and hybrid
modelling languages.

As an example, we shall use a variant of the CONCEPT D modelling language. CONCEPT
D is based on a modelling methodology with intensional background (see [Kan83], [Kan93],
[Kan92]). When CONCEPT D is used, the externalised conceptual schema is expressed by con-
cept diagrams. The actual meaning of the diagrams is, however, sometimes unclear. We maintain
that even though concepts do not have meanings (they are meanings of some expressions), concept
diagrams exist on the level of language, they have a syntax and gain their meaning trough appro-
priate semantics. In the case of a language with an intensional background, the semantics clearly
needs intensional features, which are studied later.

Intensional containment is an important relation in the set of concepts. In many modelling
languages, intensional containment appears as the IS-A relationship. In the case of CONCEPT D,
intensional containment covers many other relationships that traditionally have been treated with
a different kind of semantics (see [Kan93]).

The following list presents the features needed in an appropriate semantics of concept dia-
grams:

e A clear distinction between the language (expressions), occurrences (things in the World),
and conceptual levels,

e A capability to express what is intensional and what is extensional,

e A capability to express relations between concepts, as follows: (i) there should be a way
to express subconcept/superconcept relationships, like that of intensional containment or
IS-A. (i1) There should be means to map the different uses of intensional containment into
different relationships in the domain of application. (iii) There should be a possibility to
include concept-theoretical aspects (like those of Kauppi’s concept theory in [Kau67]) into
the theory.

Based on the above requirements, we shall evaluate the following semantic approaches of
conceptual modelling: possible worlds semantics and situation semantics, theories of predication,
and HIT-semantics. They will be introduced in the next section.

Previous research in the field of modelling and semantics is many-faceted and we limit the
discussion to semantic data models and CONCEPT D. According to Abiteboul and Hull in [AH87],
semantic data models emphasise that data about objects and relationships between them should

82

be modelled in a direct manner. This is manifested in the fact that implementation-dependend
features are omitted in the models of our interest. On the other hand (see [AH87]), semantic data
models include tools to express functional relationships, IS-A relationships and building “object
types” (in our case concepts) out of other object types. Considered this way, ER ([Che76]), EER
([EN94]) as well as IFO ([AH87]) and SDM ([HMS81]), and even description logics can all be
considered semantic data models. SDM is one of the few ones that support semantic relativity,
where something can be equally seen as an entity, a relationship or an attribute. Semantic relativity
is an important feature of CONCEPT D as well — what is represented as a concept in CONCEPT
D can be seen as an entity, a relationship or an attribute in many other modelling languages. The
principles of CONCEPT D have been presented in [Kan83] and [Kan93]. A thorough syntax of
CONCEPT D is given in [Kan92]. In this chapter, like in Niemi’s papers [NieOO] and [NNO1], we
use only a part of the original syntax of CONCEPT D. In Niemi’s approach, generating a relational
database schema and creating an intensional query language have been studied. Both of these
involve a semantical point of view: the data in the database have a semantics and queries have a
semantics corresponding to the results of each query. Our approach is more concerned with finding
the semantics in the concept diagrams.

7.3 The different approaches

In this section, we briefly examine different philosophical theories that can serve as a seman-
tic background for conceptual modelling. It is worth noticing that already in ER presented in
[Che76], there was a semantic perspective mainly based on the semantics of first order predicate
logic (FOPL). In ER, entities can have the same semantics as unary predicates in FOPL, relations
can have the semantics of n-ary predicates, and attributes can have the semantics of functions. ER
does not appear to have a possible world perspective, but concentrates on just one domain of ap-
plication. On the other hand, Classic, a description logic, very clearly postulates possible worlds
in its semantics for subtype/supertype definitions (for details, see [B™89]).

Although the approaches taken in ER and Classic have historical importance, we are more
interested in explicitly semantic theories.

Situation theory of Barwise and Perry ([BP85], see also [Bar89] and [Per99]) has been sug-
gested to serve as a philosophical background of concept languages in [Woo91]. This theory is
based on the logical tradition of Frege, model theory, and possible worlds semantics, but chal-
lenges it in many respects. The changes Barwise and Perry present to model theory make the
theory work well with so-called opaque contexts, like attitude reports.

HIT semantics (Homogeneous Integrated Type-Oriented data model semantics) of Materna
and Duzi (see [Duz92]) is based on the work of Tichy’s Transparent Intensional Logic (see e.g.
[Tic88]). HIT-semantics is a thorough theory, using a wide array of logical tools. As in situation
semantics, the starting point lies in the analysis of natural language expressions. Yet the conclu-
sions are very different.

Theories of predication, as studied by Palomaiki in [Pal94], spring from another tradition of
logics. Using second order logic, different formulations of ontological views of concepts (nomi-
nalism, conceptualism, realism) are considered.

We shall now take a look at how these different approaches formulate concepts, intensional
containment, and other items that are important in conceptual modelling.

83

7.3.1 Possible worlds semantics and situation semantics

Possible world semantics has a close connection with modal logics, i.e. logics that formulate the
notions of possibility and necessity. The idea is that a proposition is possible if it is true in some
(accessible) world and necessary if it is true in all (accessible) worlds.

In possible world semantics, the interpretations of some expressions (individual constants,
predicates and functions) are studied in the context of a collection of possible worlds instead of a
single world (or “Universe of Discourse”).

Let W be a non-empty (possibly infinite) set and R a binary relation on W. Intuitively, W is a
set of possible worlds and R a relation that states what worlds are accessible from the given one.

IfweW,w €W and (w,W') € R, we say that world w* is possible with respect to world w or
that w* is accessible from w [BS79].

More formally, a frame is a tuple (W,R) consisting of a non-empty set of possible worlds W
and R that is a relation on W. W is called a domain of (W,R), and R the accessibility relation. Let
D be a valuation, and in this simple case, let it relate members of W to proposition symbols. Now,
we call a tuple (W,R, D) a model, where (W,R) is a frame and D is a valuation on W.

We can inspect concept symbols (terms that correspond to concepts) in a model, so that for a
symbol of an individual concept we interpret it to individuals in each accessible world; and for a
symbol of a predicate or a relation we interpret it to a set of individuals or a set of tuples in each
accessible world.

Another method is to use possible worlds to define a concept. Following Hintikka and Mon-
tague, Rantala in [Ran03] defines a concept as a function (possibly partial) from the possible worlds
we are considering to extensions in those worlds. We can express this in a more formal manner if
we categorise concepts as individual concepts (e.g. the concept of Thomas Jefferson), properties
(“being a person”) or relations (“someone being someone’s child”) and propositions (“It rained in
Geneva on 3rd June 1999.”).

In the following definition by Rantala in [Ran03], w refers to a possible world, and properties
are considered 1-place relations.

e If Cis an individual concept then ¢(w) is an individual of w, that is, an element of the domain
of w (if ¢ is defined at w);

e If c is an n-ary relation concept, then c(W) is a set of n-tuples of individuals of w;
e If C is a proposition, then ¢(w) is a truth value at w.

As an example, we can assume that person is a 1-place relation concept. There, c(w) for the
actual world would be a set of persons. Naturally, this does not equate the extension of person
with persons of the actual world, since other possible must be considered, too.

With the presented formalism, we can now express the connection between possible world
semantics and intensional containment, as follows (see [Ran03]):

Let ¢ and d be concepts. We use the notation “c > d” to denote that concept ¢ intensionally
contains concept d” as in Chapter 4. Now, for all concepts ¢ and d,

¢ > d = for all worlds w,c(w) C d(w).

Since this is only an implication, we cannot say that we had defined intensional containment
by means of possible worlds semantics. Rantala (see [Ran03]) maintains, however, that with some
restrictions on Kauppi’s theory (e.g. excluding the “empty concept” G and contradictory concepts),
the following would apply:

84

¢ > d & for all worlds w,c(w) Cd(w) .

It is apparent that this definition would require us to identify intensional containment with
the IS-A relationship. Moreover, this analysis casts aside some questions by omitting the empty
concept and contradictory concepts. !

Situation semantics can be seen as an extension and criticism of possible worlds semantics. It
is not explicit about the role of concepts, since it is concerned with meanings and information. In
certain ways, Barwise and Perry are reluctant to admit the existence of concepts as such.? It seems,
however, justifiable to identify meanings with concepts.

According to Perry in [Per99], “the basic idea of situation semantics is that in thought and
action we use complexes of objects and properties to directly and indirectly classify parts and
aspects of reality, or situations.” Moreover, “we classify situations by what goes on in them; which
properties objects have, and the relation they stand into one another in virtue of the events that
comprise the situation”.

The act of classifying situations according to some uniformities gives rise to meaningful rela-
tions. These uniformities are “invariants across real situations”, like individuals, properties, rela-
tions, and locations [BP85].

A simple example of a situation is a state of affairs, expressed as a tuple of these invariants, a
time indicator t, and a truth value (indicating whether the state of affairs holds at time t).

In [Per99] Perry states, too, that “various objects are built on the basic interplay of situations
and states of affairs, permitting complex and abstract ways of classifying situations, including
complex states of affairs, properties and relations. A key concept is a type of situation [..]. One
type of situation may involve another: if there is a situation of the first type, there will also be one
of the second type [..]. These sorts of states of affairs are called constraints”.

Concerning meanings, Barwise and Perry maintain in [BP85] that a meaning is a relationship
between utterances and described situations. In order to analyse so-called embedded sentences,
as follows. Suppose “I am sitting” and “Carson City is west of L.A.” both have the same truth
value. In many traditional semantic accounts, attitude reports that involve embedded sentences
cannot make a difference between two attitude reports if the embedded sentences have the same
truth value (like “John thinks that I am sitting.” and “John thinks Carson City is west of L.A.”).
However, in situation semantics, the reference/meaning of a sentence (“I am sitting” or “Carson
City is west of L.A.”) is not a truth value but a situation.

Though the theory can explain well how meanings come about, it probably fails to explain the
special nature of intensional containment. For instance, the expression “kissing means touching” is
explained “Kissings and touchings are uniformities across situations recognised by human beings
in this culture - relational activities” [BP85].

Still, this does not completely undermine an interesting possibility of applying situation se-
mantics in conceptual modelling. Situation semantics introduces a selection of constraints that can
be applied to situations. We can easily identify some variants of intensional containment with nec-
essary constraints and some with conditional constraints. Thus, a conceptual schema as a whole
corresponds to a possible situation.

IFor details, see Wood’s critique in [Woo091] and Section 8.2.

ZBarwise and Perry strongly put forward the idea of “Priority of External significance”. This means that the in-
formation within things in the world comes first and gives rise to mental significances. There should not be other
“privileged” realms like ideas or senses (concepts) (see [BP85], p.42). As opposed to “realism” (concepts exist inde-
pendently) and “conceptualism” (concepts exist in minds), the position of Barwise and Perry could be described as
“nominalism” (concepts do not exist as such).

85

7.3.2 HIT semantics

Since HIT semantics have been introduced in various sources ([Duz92], [Duz00c], [Duz00a],
[Duz00b]), we only give a cursory account of the theory here. Moreover, we neglect the dis-
tinctions between TIL and HIT and regard them as a uniform theory. In practice, TIL is concerned
with the meanings of expressions in general, whereas HIT is applied to meanings of data structures.

According to this approach, concepts are meanings of expressions (of a language) and con-
structions are methods of reaching them. A HIT conceptual schema consists of (HIT) attributes,
that are constructions, and a set of consistency constraints connected to the attributes [Duz00c].

A HIT attribute is a function whose domain is a set of states-of-affairs (see below), and range
is a set extensional functions (database tables). Thus, it associates with every state-of-affairs a
database table. For instance, the attribute “Address of a person” selects a function which associates
with each person his or her address.

In this short presentation, only the basic features of HIT-semantics can be explained. We shall
first introduce constructions, then the base of sorts on which HIT-attributes operate, and finally
HIT-attributes in general. Here, to make a distinction between the term “object” in HIT and, e.g.
object oriented design, we use the term “T-object” to designate physical or conceptual objects. A
type, like PERSON, is a set of T-objects. Moreover, constructions “build” T-objects, since they are
ways by which T-objects are obtained; as such, they can be understood as functions that “return”
simple or structured T-objects. A construction that builds a T-object is called a T-construction. In
HIT-semantics, concepts and intensions are special kinds of T-objects, as will be explained later in
this section.

A base is a collection of mutually disjoint non-empty sets. The epistemic base consists of (0)
truth values, true and false; (1) the Universe of Discourse, whose members are individuals; (T) time
points expressed by real numbers; and (w) possible worlds. States of affairs are pairs (w,t), where
w € wand t € T. This is often expressed in the form of (wt).

A type is either

e an elementary type (a member of the base),
e if Ty, T, are types, then (T; — T;), a set of partial functions from T to T, is a type,

e if Ty,.., Ty, (N> 1) are types, then (Ty,.., Tp), a Cartesian product of Ty,..,Tp, is a type.

Construction can be defined as follows (see also [Duz00a]):

Let there be types for each of which there is an unlimited number of representatives, variables,
and a total function (valuation) which assigns one object of the given type to each variable. A
T-variable is a variable of type T, and a T-construction constructs a T-object..

e Atomic constructions are variables. A variable X v-constructs a T-object which the valuation
V assigns to X.

e If X is a T-object, °X is a construction called trivialization. °X constructs simply X without
any change.

e Let Aj,..,An be Ty,.., Ty constructions, respectively. (Ay,..,Ap) is a (Ty,..,Tp) construction
called a tuple.

e Let (A1,..,An) be a (T1,..,Tn) construction. A(yy,..,An) are Ty, .., Tn constructions, respec-
tively, called projections.

86

e LetF bea ((Ty,..,Th) — T) -construction and Ay, ..,An Ty, .., T -constructions, respectively.
[F(A1,..,An)] is a T-construction called the application of F to (A, ..,Ap).

e LetXy,..,X,be pairwise different Ty, .., T, -variables and A a T-construction. Then AXj, .., XpA
isa ((Ty,..,Th) = T) -construction called the A abstraction of A on Xy,..,Xp.

For the purposes of discussing intensions of concepts, we define here the notion of subcon-
struction, as follows [Duz00b]:
Let C be a construction

e C is a subconstruction of C.

Let C be 9X. If X is a construction, then X is a subconstruction of C.

Let C be [F(Xy,..,Xn)]. Now, F, X{, .., X are subconstructions of C.

Let C be AXy,..,XnX. Now, X is a subconstruction of C.

If A is a subconstruction of B and B is a subconstruction of C, then A is a subconstruction of

C.

As we have seen, the definition of a type is rather general. In modelling, we are interested in
specific cases, types that manifest themselves in the domain of application. These are called sorts
and they are members of the base of sorts.

The base of sorts in HIT semantics is the set {E,D,T,w}, where E is a set of entity sorts
(given solely by a property, like “being a person’), D is a set of descriptive sorts (corresponds to
printable), T is the set of time points, and w the set of possible worlds as above.

Itis not a logical necessity that a person, say N.N., has a certain address. Therefore, the (actual)
world and the time point must be considered when expressing an attribute “Address of a person”,
leading to the form of construction

wt) = ((T) = (T2)),

where Ty and T, are sorts, in this case PERSON and ADDRESS, respectively.
The logical distinction between intensional and extensional T-objects is based on the form of
the construction by which a T-object is achieved:

e A T-object that is not of the form w — T is an extension (also called intension of the Oth
degree). Examples of this are, naturally, time points and individuals, but also analytical
functions; that is, functions that are not dependent on possible worlds or points of time.

e Let T-object T be of intension of the nth degree. (W — T") -object, where T” is either T or
(t — T),t € Tis an intension of (n+ 1)th degree.

Intensions of the 1st degree or higher are called, briefly, intensions. Specifically, ((wt) —
(Ty — Ty)) is called an empirical function.

Because of its form, the function ”Address of a person” is an empirical function and thus an
intension.

HIT-attributes are, indeed, empirical functions and of the form:

e (Wt) — (T} — T,) (singular attributes) or

87

o (wt) — (T; — (T2 — 0)) (multivalued attributes)

As stated earlier, a HIT-database schema consists of HIT-attributes and consistency constraints.
Consistency constraints rule out impossible or undesired states of affairs in the world (see [Duz00b]).
They enforce rules such as “for each material there is always a supplier”. Consistency constraints
are expressed using constructions, but we suppress the details here.

The conceptual schema in HIT-semantics is, however, not equal to a CONCEPT D diagram.
In CONCEPT D diagrams, some of the relationships between concepts cannot be seen as em-
pirical functions — especially some forms of intensional containment and functions. Thus, we
consider concepts and intensional containment on the basis of constructions, following [Duz00b]
and [Duz00a]:

e A concept is a closed construction, i.e. a construction without free variables.

e A simple concept is a construction X, where X is a variable (of any type) or an object that
is not a construction.

e The content of a concept C is the set of subconstructions of C that are themselves concepts.

Some forms of intensional containment in CONCEPT D correspond very apparently to the
last item: in HIT-semantics, concept C intensionally contains concept C’, if and only if C’ is a
member of the content of C. If we accept this notion and if we equate CONCEPT D’s intensional
containment relation with it, we can use HIT semantics as the backgound theory of CONCEPT D.

It should be emphasised, like Paloméki in [Pal97] and [Pal02], that the contaiment relation
established by subconstructions does not correspond to Kauppi’s intensional containment relation.
Therefore, we can not argue that we could provide the basis to Kauppi’s concept theory using
HIT semantics. However, we see HIT semantics as a viable option to establish the semantics of
CONCEPT D diagrams. This will be considered in Section 7.4.1.

7.3.3 Theories of predication

Theories of predication are based on the idea of equating propositional functions, functions whose
value range is a proposition, with concepts. Propositional functions can be logically analysed using
second order predicate logic (20PL). As Palomiki has demonstrated, different ontological views
concerning concepts (nominalism, conceptualism, realism) can be studied this way as well.

These different ontological views give different interpretations to the following formula, known
as the comprehension principle:

(FFEM) (¥X1)..(V%n) (F"(X1, .., Xn) <> @),

where F" is an n-place predicate variable, n > 0, F" does not occur free in @and @is a well-formed
formula (wff) of 20PL with distinct individual variables X1, .., Xp.

The main benefit of this approach is that it is a thorough formalisation of different views, and
the formalisation contains semantics as well. As an example, we shall briefly examine logical
realistic semantics that can be seen as a fruitful background for conceptual modelling. This study
has been adopted from Paloméki’s presentation in [Pal94] with only minor editing.

First, we need to introduce the syntax of 20PL as follows:

88

e The terminal alphabet of language L,op consists of logical constants =, —,V, d,=; a count-
ably infinite number of individual variables X;,i € N; a countably infinite number of n-place
predicate variables F" for each n € N; a countably infinite number of m-place predicate
constants P™, for each m € N; the parentheses and the comma.

e The grammar can be expressed as follows: Wffs are expressions. Atomic wifs are (i) of
the form (X =), where x and y are individual variables or (ii) of the form F"(xy,...,Xn),
where F" is an n-place predicate variable or constant and X1, ..., Xy are individual or predicate
variables. Other wffs are of the form —@, (p— 0), (VX)@, (3X)@, (VFM)@, (IF")@, where @
and 0 are wffs, x is an individual variable and F" is an n-place predicate variable.

To define the semantics, two auxiliary tools will be needed: an interpretation function and a
completely referential assignment.

Let LoopL be a language (i.e. the set of all wffs) and D a non-empty set. Let f be a function
whose domain is Loop.. Thus, f is an interpretation function that maps (some) expressions of
the language into individuals and sets of D, as follows. Let D" be the set of all n-tuples whose
constituents are in D. For alln > 0,n € N,P" € Lyop. : f(P") C D" is a model for Lyop .

A completely referential assignment in D is a function A whose domain is the union of sets of
individual and predicate variables such that A(x) € D for each individual variable x and A(F") C D"
for each n-place predicate variable F" (n < 0,n € N). Whend € D, let A(d/x) = (A—{{x,A(x)) }) U
{(x,d)} and when X C D" let A(X/F™) = (A—{(F",A(F") D) U{(F",X)}.

The semantics can be defined as follows, when Lyop is a language, U = (D, f) is its model,
and A is a completely referential assignment in D:

A satisfies (x =) in U if and only if A(X) = A(y),

A satisfies P"(Xy,..,xn) in U if and only if (A(X1),..,A(Xn)) € f(P"),

A satisfies =@ in U if and only if A does not satisfy @in U,

A satisfies (¢ — 0) in U if and only if A does not satisfy @in U or A satisfies 8 in U,

A satisfies (VX)@in U if and only if for all d € D, A(d/x) satisfies @in U,

A satisfies (3X)@in U if and only if for some d € D, A(d/x) satisfies @in U,

A satisfies F"(Xy,..,Xn) in U if and only if (A(X;),..,A(Xn)) € A(F"),

A satisfies (VF")@in U if and only if for all X C D", A(X/F") satisfies @in U.

A satisfies (3F")@in U if and only if for some X C D", A(X /F") satisfies @in U.

A theory is defined in a usual manner, i.e. a theory is (S, L) where S is a set of wffs of language
L. In a theory of predication, L equals Loop. and S consists of a “normal” set of 20PL axioms as
well as the axiom schema of conceptualisation principle, cited above.

The semantics of the conceptualisation principle can now be equated with different ontological
views of concepts. In the case of logical realism this task is simple, since according to logical
realism every fully applied wff @(Xj,..,Xn) is assumed to represent a real universal. Thus, if A is
a completely referential assignment in D, as above, and (X1, ..,Xp) is a standard wff of 20PL in
which F" does not occur free, then A satisfies (IF") (Vx1)..(VXn) (F"(X1,..,Xn) <> @) in U.

89

To sum up, according to theories of predication, concepts are propositional functions. Being
based on second order predicate logic, the theory “automatically” contains a distinction between
language, extensional and concept levels. On the other hand, the theory does not really explain the
features needed in conceptual modelling (like intensional containment).

7.4 HIT semantics as a background theory of the semantics of
CONCEPTD

7.4.1 Modelling constructs and CONCEPT D

According to a rather subjective survey of modelling situations in Chapter 2, the following fea-
tures/constructs often occur in conceptual modelling:

e Representing some objects as entities;

e Representing an aggregation to connect some features of objects to the objects themselves.
The features will be called attributes. Attributes are not considered to exist independently,
1.e. without entities;

e Expressing that some attributes are necessary;

e Expressing that some attributes are identifying;

e Representing “member of” relationships by grouping;

e Representing arbitrary relationships between entities;

e Representing subclass-superclass relationships (IS-A relationships) between entities;

e Representing “part-of” relationships between entities and their attributes, or between enti-
ties;

e Representing functions by which derived information is calculated.

We indicated in Chapter 6 that all of these features are covered by CONCEPT D. In CON-
CEPT D, there is no difference between something being an attribute or entity, there are only
nodes called concepts. The principal method of connecting nodes to each other is the relationship
of (the direct) intensional containment, that covers aggregation, grouping, IS-A and part-of rela-
tionships (according to [Kan93]). Additional information is provided by cardinality constraints
and identifiers (keys) that indicate identifying attributes. Conditions and functions are used, in
addition to intensional containment, to carry information about how the nodes are related to each
other. A more thorough account of the features of CONCEPT D can be found in Chapter 6. For
the sake of brevity, in this chapter we only consider issues of entities, relationships — including
IS-A relationships (generalisation, specialisation) — and aggregations. It should be noticed that in
CONCEPT D, generalisation and specialisation are only variants of aggregation (see [KV90]) but
here we discuss generalisation and aggregation as independent structures, as in Chapter 6. The
graphical conventions of representing these structures were introduced in Chapter 6, too.

In our simplified CONCEPT D terminology:

e A concept is a node, identified by the name of the concept.

90

The relation of direct intensional containment connects concepts to each other: concept a
intensionally contains concept b, if (as in Section 1.3) concept b belongs to the knowledge
contents of concept a. There can be cardinality constraints in the intensional containment
between two concepts. By default, the relation is 1:1, but can be defined as being 1:n.

There can be constraints between concepts that are contained by intensional containment
either directly or indirectly.

Aggregation, generalisation and specialisation are structures based on intensional contain-
ment. These structures are directed acyclic graphs with a root node.

Aggregation can be simply a 1:n intensional containment between two concepts, like in the
case of PERSONNEL and EMPLOYEE, where PERSONNEL contains N EMPLOYEEs (in
this case, aggregation corresponds to grouping in the terminology of Chapter 2).

In an aggregation structure, several concepts can be (directly) contained in a single one
instead of one in the PERSONNEL - EMPLOYEE example. For instance, ZIP-CODE, CITY
and STREET-ADDRESS can be contained in ADDRESS. This corresponds to aggregation
in the terminology of Chapter 2.

e In a generalisation structure, a concept is expressed as a generalised version of concepts
related to it. In [Kan93], several variants of generalisation (unconstrained, explicit and im-
plicit) are introduced, but here we consider only unconstrained generalisation. Our form of
generalisation is “automatically” considered to be a 1:1 relation (thus, no cardinality indica-
tor is needed in our syntactic generalisation statements below).

e In a specialisation structure, there is a constraint between the specialised concept (e.g. SE-
NIOR CITIZEN) and its criteria (AGE being greater than, say, 64 years). This is the only
way we use constraints in this version of CONCEPT D.

As an additional feature we present the type of concept to be either printable or abstract. While
a distinguishing feature of CONCEPT D is that the user can build the externalised conceptual
schema using almost entirely the terminology of the domain of application (i.e. no “attributes”,
“roles” or other technical terminology), we feel that the users can easily interpret whether a concept
is printable or abstract. The benefit of this addition is that interpretation of the concept diagrams
in terms of IS-A and aggregation becomes much easier, as we shall demonstrate in Section 7.4.3.

7.4.2 Syntax of limited CONCEPT D

We now define the syntax of this modified CONCEPT D language in a rather informal manner to
allow for an explanation of the syntax.

concept(name,type) Concepts are introduced using this notation. A name is a unique
identifier of the concept; a type states if the concept is print-
able (p) or abstract (a). For instance: concept(student-card-
number,p), concept(age,p), concept(student,a), concept(employ-
ee,a), concept(senior-citizen,a), concept(person,a).

intensionally-contains(c1l,c2,n) Intensional containment between two concepts, cl and c2, is
declared using this notation; concept cl intensionally contains

91

concept c2. The cardinality constraint (1:1 or 1:n) between the
concepts is expressed by the third argument that is either ’1° or
'n’. For example: intensionally-contains(student,student-card-
number,1).

generalisation(c,c1,c2,..) This notation declares generalisation of concept c using concept
cl,c2,.. For example: generalisation(person,student,staff).

constraint(cl,c2,limit-of-c1) This notation expresses a constraint between concepts ¢l and c2.
The only type of constraint considered here is an arithmetical
one. For example: constraint(age,senior-citizen,> 64).

Next, we define (informally) the constraints with which a valid schema of limited CONCEPT
D must conform.

Ic statements and generalisation statements together define a graph in the following sense (for
graph theoretical details, see, e.g. [Eve79]):

e In intensionally-contains statements, c1 and c2 form an ordered pair. Let the set of ordered
pairs formed by intensionally contains statements be called V.

e In generalisation statements, ¢ and c1, ¢ and c2, .. form ordered pairs. Let the set of ordered
pairs formed by generalisation statements be called V,.

e In concept statements, let concept names be members of a set named N.

e G=(N,V|UV,) is a directed graph, where V| UV, are the edges of the graphs.
e A path is defined based on the transitive closure of the edges as usual.

Based on the graph and the statements, the following must hold:

e G is acyclic, connected and has a root vertex.

e VNV, = 0 (for practical reasons we want to make a difference between generalisation state-
ments and intensionally-contains statements).

e Let a be any abstract concept and p any printable concept. (p,a) & V| UV, (a printable
concept may not directly intensionally contain an abstract concept).

e Let there be a constraint statement constraint(a,b,c). There must exist a path p where a
precedes b (in a specialisation, the specialisation criteria must be intensionally contained in
the concept that it specialises). Moreover, in intensionally-contains statements where a is the
first argument, only *1’ is acceptable as the last argument (all specialisations must be 1:1).

It is interesting to notice that the syntax defined above is much like a syntax of a Descrip-
tion Logic (see. e.g. [Bor95], [Lam96], [DLNT92]). However, the actual logical (computational)
components of CONCEPT D have not been defined.

As stated earlier, we concentrate on CONCEPT D structures whose semantic counterparts
can be seen as entities, relationships — including IS-A relationships (generalisation, specialisation)
and grouping — and aggregations (attributes). We can now identify the semantically different con-
structs in our limited version of CONCEPT D, and how they would correspond to HIT terminology
namely:

92

e Nodes and edges: The nodes correspond to HIT entity sorts (abstract) or descriptive (print-
able). The edges have no semantics as such, but it depends on the construct in which they
take part;

e Intensional containment: IS-A in the case of specialisation and generalisation, otherwise
aggregation or grouping.

The semantics of these structures, based on HIT semantics, will be discussed in the next sec-
tion.

7.4.3 Semantic counterparts of CONCEPT D in HIT

In a more formal discussion, we should give explicit rules for combinations of syntactic elements
and thus explain what their semantical counterparts are. This kind of method would be very similar
to the one used in DLs (e.g. [B*89], [Lam96]) where the syntax is first introduced, and then, for
instance, an IS-A statement is given its semantics. Here, we apply a more informal method in
the discussion of CONCEPT D structures that can be identified as IS-A structures, grouping and
aggregation.

Only specialisation and generalisation are recognised as IS-A structures. We have defined all
specialisation and generalisation structures to be 1:1. We consider this a necessary relation. For
specialisation and generalisation, intensional containment defined with contents and subconstruc-
tion as in Section 7.3.2 can be applied. However, we present another method as well, in 7.4.3.1.
This corresponds to the “standard” semantics of IS-A -structures in HIT-semantics. In sections
7.4.3.2 and 7.4.3.3, we discuss aggregation and grouping. It should be emphasised that though
these structures are called intensional containment in CONCEPT D, they do not correspond to
intensional containment in HIT-semantics.

7.4.3.1: IS-A structures: Based on [Duz00b], we define:

An entity sort E; that is determined by property P; is a subtype of an entity sort E, if, in all the
states of affairs, the population of E; is a subset of the population of E,.

To analyse the IS-A structures more profoundly, we can use the notions of constructions and
subconstructions in the sense of Materna [Mat00]. Here, we identify primitive concepts Cy, ..,Cp.
Concepts Cm1,Cmy2, .. are distinct from them and Cy, ..,Cp, are their subconstructions.

A grouping structure between two concepts A and B is, for example, CLASS — STUDENT or
CHAPTER — PARAGRAPH. In our version of CONCEPT D, it can be identified from a structure
where there is only one concept (B) directly contained in another (A) and both A and B are of
the same type (either printable or abstract). In Section 7.4.1 we indicated that in CONCEPT D, a
grouping structure is a special case of an aggregation structure. Therefore, we discuss the semantics
of other aggregation structures before grouping structures.

7.4.3.2: Aggregation structures: In HIT semantics, the counterpart of an aggregation structure
is, simply, an attribute. Suppose a CONCEPT D structure where concept A directly contains
concepts By, B, .. .Bn. Earlier we stated that HIT attributes are empirical functions. Thus, in its
simplest form, the corresponding attribute is (wWt) — (A — ((B1,B2,..Bn) — 0)).

7.4.3.3: Grouping structures: Respectively, a grouping structure is an attribute in HIT seman-
tics as well. This attribute constructs multiple instances and, consequently, it is multi-valued.
Given the example above, we express it as (Wt) — (A — (B — 0)).

93

7.5 Summary and discussion: semantics and concept diagrams

Previously, in [Nii98] we tried to explicate the semantics of intensional containment by normal
modal logic. According to this theory, concepts are predicates; there is a notion of logical necessity
and intensional containment is based on that.

This account can be challenged in many ways; here we only state that it is profitable to seek
alternatives that contribute to conceptual modelling from the point of view of semantics. We have
identified the requirements of a suitable semantic theory to be as follows:

e A clear distinction of the language, occurrences and conceptual levels,
e A capability to express what is intensional and what is extensional,

e A capability to explain subconcept/superconcept relationships (IS-A, intensional contain-
ment). There should be sufficient means to map the different uses of intensional containment
into different relations in the domain of application.

e A possibility to include concept-theoretical aspects into the theory.

We have considered the following alternatives: situation semantics in Section 7.3.1, HIT-
semantics in Section 7.3.2 and theories of predication in Section 7.3.3. Among the alternatives,
theories of predication focus on the philosophical background and situation semantics deals with
the semantics of utterances in daily life situations. However, HIT-semantics has features by which
it can, among the candidates, be best applied to conceptual modelling. This is because the theory
clearly postulates concepts (as constructions), and defines a criteria for intensionality (intension
as an empirical function, intensional containment as a containment between constructions). HIT-
semantics is, furthermore, flexible enough to incorporate other concept-theoretical aspects. For
instance, the structural limitations discussed in Chapter 4 can be expressed as consistency con-
straints. However, as indicated by Paloméki in [Pal97] and [Pal02] the intensional containment
relation (based on subconstructions) of HIT does not equal to that in Kauppi’s concept theory.

In Section 7.4 we discussed the other main theme of this chapter, i.e. the semantics of CON-
CEPT D diagrams. A limited version of CONCEPT D was introduced by means of a definition of
its syntax in Section 7.4.2 and informal semantics in section 7.4.3. The semantics of the language
was then discussed using the tools of HI'T-semantics. As the discussion indicates, HIT-semantics
is applicable for this purpose and could be applied to explain the semantic background of other
formalisms as well.

94

Chapter 8

Summary and discussion: the Intensional
Perspective in Conceptual Modelling

In this chapter, Section 8.1, we present the main points of the research. Moreover, in Section 8.2
we bring together issues related to the realm of “conceptual” in conceptual modelling. The issues
discussed are: (i) the intensional perspective, (ii) how the intensional perspective can be seen
from the point of view of semantics, and (ii1) how the different modelling languages discussed
here address the problem. This gives impetus to provide a view of (iv) how to combine the use
of intensional and extensional modelling languages in a typical modelling situation. Finally, we
discuss (v) other considerations related to modelling and address some items for future research.

8.1 Summary of the research

The principal hypothese and results of this research can be presented as follows:

e [t is fruitful and possible to create a framework of conceptual modelling languages and com-

pare them with each other. The categorisation of the languages can be based on how the lan-
guages express concepts and intensions. We have divided conceptual modelling languages
in the categories of intensional, extensional, and hybrid languages based on that.

It is meaningful to use the notions of first order predicate logic as a basis of discussion of
semantics of any extensional language. By doing so, we have demonstrated that (a limited
version) of the language of conceptual graph has expressive power equal to (slightly limited)
first order predicate logic. We have demonstrated, too, that conceptual graphs are not always
more intuitive than corresponding first order predicate logic formulas, contrary to the claim
of John Sowa.

It is possible to construct a modelling language based purely on Kauppi’s concept theory. Itis
possible, too to create formal tools (an abstract implementation) to manage the externalised
conceptual schemata of this kind of language, as has been demonstrated in this thesis.

It is possible and meaningful to map a CONCEPT D schema to an IFO schema, under some

constraints. This is beneficial, since it could combine the intuitiveness of CONCEPT D with
precise semantics of IFO.

95

e It is possible to consider the semantics of concept diagrams (CONCEPT D schemata) from
the point of view of semantical theories. It is possible, too, under some constraints, to employ
HIT semantics to explicate the “meanings” of concept diagrams.

8.2 Discussion

(i) The intensional perspective in conceptual modelling.

In previous chapters we observed the different ways in which the term “intension” is understood.
As a summary, the philosophical base is the distinction of the intension and the extension of a
concept. The intension of a concept is seen as the internal contents ([eb-94b]), or the knowledge
contents of the concept ([Kan93]). In Kauppi’s theory in [Kau67] the intension is based on the
(undefined) intensional containment relation. On the other hand, Bunge discusses the intension as
a set of properties and relations “subsumed under the concept” (see [Bun67]), and Kangassalo’s
formalism in [Kan93] indicates a connection between “X is (partially) defined by y” and “x inten-
sionally contains y”. With possible worlds semantics, intensions are seen as combinations (sets) of
extensions in all (accessible) possible worlds, and intensional containment can be based on subset
relationships of these sets. With HIT-semantics, a conceptual containment relation can be based
on “subconstructions”, i.e. concepts are seen as constructions and the elements of construction A
can be elements of construction B, too.

Still, the term “intensional” needs clarification. In database literature, almost anything re-
lated to the structure of the data (e.g. the design of the relations in a relational database) is called
intensional, as opposed to the “extensional” real data. However, in the scope of this thesis, we
see intensionality basically as being based on intensional containment. The view is expanded in
Section (ii) below.

In Chapter 2, we tentatively divided modelling approaches into three categories: intensional,
extensional and hybrid. The question of something being intensional is not very important in the
extensional approach. In the intensional approach, something being intensional is nearly synony-
mous to something belonging to the contents of a concept. In hybrid approaches, both intensional
and extensional features can be modelled and utilised, and the intensional features normally in-
clude IS-A relationships.

A purely intensional approach is discussed in Chapters 4 and 5. This kind of approach is clear
and theoretically well-established, since it relies heavily on concept theory developed by Kauppi
[Kau67]. However, this approach limits the description of the domain of application completely
to the level of concepts and intensional containment. While this is most useful as a background,
in many applications we are interested in making a difference between several kinds of language
items (entities, relationships, attributes, IS-A, part-of, etc.).

COMIC methodology [Kan93] and CONCEPT D modelling language [Kan83] have a broader
view of the intensional approach than that of the “pure core” described in Chapters 4 and 5.

We can call CONCEPT D a concept definition oriented modelling language; the user of the
language expresses his or her knowledge of the domain of application in the form of concept struc-
tures that resemble definitions. Together, these concept structures form a CONCEPT D (exter-
nalised conceptual) schema. The structures consist of concepts, intensional containment relations
among them, and knowledge primitives other than concepts, such as constraints, identifying keys,
etc. The relation of intensional containment is used to express both general IS-A -type relationships
(that probably prevail independently of the domain of application), and highly domain dependent

96

relationships, too. For instance, using the relation the user can express that the concept of PER-
SON contains the concepts LIVING BEING and ADDRESS. There, the containment of LIVING
BEING should be considered a traditional IS-A relationship, while the containment of ADDRESS
is more like an contingent attribute (not every person in every situation has an address).

In order to make a distinction between different kinds of intensional containment structures,
two different approaches are proposed in this thesis. In both approaches we have only considered
a subset of CONCEPT D in order to make the comparisons between CONCEPT D and other
modelling languages more feasible. The first one, in Chapter 6, suggests translating CONCEPT
D schemata into IFO schemata, IFO being a well known modelling language. However, given the
different natures of CONCEPT D, the translation appears forced. Another approach, in Chapter 7,
is based on the investigation of different semantical theories. We primarily consider HIT semantics
of Materna, Duzi and others [Duz01] and proceed to show that using rather simple rules with a
limited CONCEPT D language a mapping can be established between structures in a CONCEPT
D schema and HIT data model.

(ii) Semantics

In his influential paper [Wo091], Woods discusses the role of concepts in knowledge presentation
languages, especially Description Logics, like KL.-ONE and its followers. Woods does not like to
identify the notion of concept with the notion of predicate in FOPL, and emphasises that concepts
are structural and “intensional in the sense in which [morning star] and [evening star| are inten-
sionally distinct concepts”. Furthermore, Woods criticises possible worlds semantics, where (in
its some forms) concepts are identified with their extensions in all the accessible worlds: prime
number less than one and round square have empty extensions in all possible worlds, but they
are still distinct concepts.

Wood suggests “conceptual descriptions” that would preserve the structural features needed,
and thus make the difference between morning star and evening star, on one hand, and prime
number less than one and round square, on the other. However, Woods does not give an exact
definition of a concept in his paper. Therefore we discuss another possibility of analysis, which
preserves the intensional emphasis of Woods but establishes a more integral theory as well. This
theory can better explain how to address the question of prime number less than one versus
round square.

Woods seems to emphasise that concepts are something structural and abstract, distinct from
expressions. We shall see how these notions can be explained in the context of Materna’s analysis
in [Mat00]. There, concepts have extensions and intensions; the contents (Kauppi’s intension) of
a concept is a set “but the concept itself can be construed as some procedure that ‘organizes’ the
elements of the contents” [Mat00]. Thus, a concept can be seen as this procedure and the contents
(the details of this view, especially constructions, are explained in Section 7.3.2).

Let us now define some clarifying notions, based on [Mat00]:

e We say that (linguistic) expressions denote objects. As a special case, they can refer to
things in the world (or in an imaginary world). In such a case, the expression is empirical.
Non-empirical expressions can be found in formal sciences.

e Expressions E1 and E2 are synonymous if and only if they express one and the same concept.

e Expressions E1 and E2 are equivalent if and only if they denote one and the same object.

97

e E1 and E2 are coincident if and only if they are empirical and they share the same intension
in the actual world and time.!

It is rather easy to find coincident expressions (“human”, “featherless biped”) as well as equiv-
alent ones (“a polygon with three angles”, “a polygon with three sides”, cf. [Woo091]). But we
notice an “anomaly” in the definition of synonymity: concepts are expressed, not denoted. This
is due to the theory that concepts are constructions, as discussed in 7.3.2. When it comes to con-
cepts, both their contents and the way of putting them together matter, so the concepts of prime
number less than one and round square are, indeed, distinct concepts. Naturally, the expressions
“morning star” and “evening star” are coincident.

We have now seen that Woods was right in his emphasis of the “intensional” or, at least,
concept-oriented approach in modelling. But using Materna’s theory, we can express this concept
oriented emphasis in a more concise manner. In what follows, we shall examine how the idea that
both the contents and the procedure of organization (putting things together) matter when it comes

to concepts.

(iii) Language support

What follows is obvious with respect to CONCEPT D: Evening star intensionally contains ce-
lestial body and shines in the evening, morning star includes celestial body and shines in the
morning; thus, the concepts are different. This naturally applies to concepts like prime number
less than one and round square.

This, however, is just the contents side of concepts. The procedure of organization, “putting
together”, can be illustrated by the example in Figures 8.1 and 8.2. Here, we follow Bernard
Bolzano’s notion (in his book Wissenshaftslehre) that the concepts an uneducated son of an ed-
ucated father and educated son of an uneducated father differ. Following CONCEPT D’s
background theory (see [Kan93]), we assume here the following view of intensional containment:
“concept a intensionally contains concept b if the knowledge content of concept b is a part of
the knowledge contents of concept a.” This enables us to present intensional containment rela-
tionships, such as an uneducated son of an educated father intensionally contains uneducated
son”.”

We see in Figures 8.1 and 8.2 that the “putting together” is crucial to make a difference between
the concepts an uneducated son of an educated father and an educated son of an uneducated
father, both of which eventually contain the same basic concepts (father, son, educated, unedu-
cated). Naturally, Figure 8.1 explicates the concepts an uneducated son of an educated father
and an educated son of an uneducated father better, since it illustrates the concepts of educated
son, uneducated father, uneducated son and educated father. The explication or “discovery”
of these concepts can be supported by a methodology like the one described in Section 4.6.

The same example could, of course, be introduced using a DL, like in the simplistic presenta-
tion of figure 8.3. It would be, however, rather artificial to try to present it using a language like
ER.

! According to Materna’s definition “the value of the intension denoted by them is the same in the actual world and
time”.
2If we want to avoid the potentially ambiguous term “knowledge contents of a concept”, we can equate “concept X
is (partially) defined by concept y” relation with the intensional containment relation, too, as in Chapter 6.
Bolzano’s example was analyzed by Kauppi in [Kau67], but in her analysis Kauppi used “relation concepts”. This
extension to her concept theory is not presented in this thesis.

98

AN EDUCATED SON OF AN UNEDUCATED FATHER AN UNEDUCATED SON OF AN EDUCATED FATHER

EDUCATED SON UNEDUCATED FATHER UNEDUCATED SON EDUCATED FATHER

Figure 8.1: A “proper” way of “putting together” an uneducated son of an educated father and
an educated son of an uneducated father.

AN EDUCATED SON OF AN UNEDUCATED FATHER AN UNEDUCATED SON OF AN EDUCATED FATHER

Figure 8.2: The same example showing only the contents, but less “putting together”.

uneducated-son-of-educated-father =
(and uneducated-person (all father-slot educated-person)
(atleast 1 father-slot))

educated-son-of-uneducated-father =
(and educated-person (all father-slot uneducated-person)
(atleast 1 father-slot))

educated-person < person
uneducated-person < person
person <T

Figure 8.3: A DL presentation of the previous example.

(iv) Combining intensional and extensional approaches

As mentioned in Chapter 1, a modeller may design something that does not yet exist in the domain
of application. The modeller probably visualises and evaluates the prospective features of his
design by using concepts. These concepts do not necessarily currently have a non-empty extension,
but (unless they are logically impossible) they have an extension in some possible “world”, at
least the one envisioned by the modeller. If the modeller is successful, the concepts will have an
extension, partially because of his modelling activity. We can assume as well that the intellectual
activity of the modeller is (at least on the conceptual level) more or less the same whether he uses
an intensional or extensional modelling language when reporting the results of his modelling.

In Chapter 6 we stated that it would be profitable to combine the benefits of the intensional
approach (easiness, semantic relativism and support for the process of conceptual modelling) with
those of the extensional approach (popularity, most often simple and unambiguous semantics). To
achieve that goal, we discussed the possibility of designing the externalised conceptual model by

99

using a language that resembles CONCEPT D, and then translating the model into IFO notation.
Here, we propose a slightly alternative method.

In Section 2.4 we presented a simple intensional modelling language and in Figure 2.5, a
modelling example. As we can see in the figure, the externalised conceptual schema is quite
readable and can probably be used as a medium of communication between a modeller and domain
experts. This could be utilised as follows:

e The modeller collects information about the domain of application and reports the results
using an intensional modelling language like CONCEPT D or the simple language of Section
2.4.

e As long as the modelling is based solely on concepts and the intensional containment re-
lation, the modeller can utilise the tools (legality checking, finding association relations)
developed in Chapters 4 and 5. This will possibly guide the modeller to discover “new”
concepts that he will find useful to add in the schema.

e When the modeller thinks to have found all the concepts needed to express the information
contents, the perspective can be changed from a purely conceptual one. That is, in order to
make the semantics of the schema more explicit and to facilitate a simple mapping of this
schema and a database, the modeller adds information about how the intensional containment
relation should be interpreted in each of its occurrences in the schema.

Figure 2.5 with the information of the interpretation of each intensional containment edge
added can be seen in Figure 8.4. There, A stands for aggregation, IS-A stands for an IS-A relation-
ships and GR stands for a grouping. Niemi, Nummenmaa and Thanish have presented a language
that resembles our notation in [NNTOO].

WINE-BUYING

Figure 8.4: Figure 2.5 with interpretation symbols of intensional containment edges.

(v) Other considerations and future research

We can state the main points of intensions and semantics in conceptual modelling as follows:

100

e It appears to be useful to discuss intensional and extensional modelling languages or, to
see the question from a different angle, to discuss intensional and extensional features in
modelling languages. The criterion for a language to be intensional is that it states some sort
of intensional containment relation, i.e., “intensional = based on intensional containment”>;

e With the intensional approach (and intensional modelling language), we can use concept
operations and possibly utilise them in concept analysis and discovery;

e Constructing semantics suitable for the intensional approach is possible (e.g. with HIT se-
mantics), but complicated. However, if we combine intensional and extensional perspectives,
we can facilitate the explication of the semantics of externalised conceptual schemata.

We can ask whether in conceptual modelling the choice of the modelling language really mat-
ters. In engineering (including software engineering) people have been using fundamentally ex-
tensional modelling languages for over a decade, though from the theoretical point of view we
see their shortcomings. However, if we want our (externalised conceptual) schemata to be well-
understood and to avoid paradoxes, we should rely on semantically well-established theories. In
engineering, we normally consider extensional, though complex, objects. But the role of a se-
mantically well-established theory is more important in the fields where the subject matter is not
necessarily tangible; natural language processing and codes of law are good examples of that.

As explained in [Pal94], it is not too uncommon to see theory construction as a modelling task.
In what follows, we shall shortly discuss the modelling methodology and its theory connection.

In Chapters 2 and 6, we discussed the possible gain for conceptual modelling if a COMIC-
like methodology were combined with a modelling language that is the most beneficial in each
of the domains of applications. Among the benefits of COMIC we find simplicity and concentra-
tion on the conceptual level. Moreover, Vaden [Vad94] has discussed how COMIC methodology
corresponds to structural views of scientific theories.*

CONCEPT D is a natural choice for a modelling language when using COMIC methodology,
but for many specific purposes CONCEPT D is not the most applicable language. In order to be
able to use COMIC in connection with a modelling language other than CONCEPT D, in Chapters
6 and 7 we presented how to map CONCEPT D externalised conceptual schemata with externalised
conceptual schemata that are expressed using a more conventional language.

Naturally, we have the possibility of abandoning COMIC in favour of other methodologies,
which are numerous. In Object Role Modelling (ORM, [BBMP95]), one of the recent achieve-
ments has been to define an axiomatised kernel that relates modelling constructs (in this case
object types, generalisation, specialisation, grouping, etc.) to each other and presents constraints
to them. ORM can be criticised on the basis that it does not support a clear theoretical distinction
of what is intensional and what is not — this task is left to the modeller. Other possible starting
points for a methodology could be the following:

e A methodology based on the background theory of Conceptual Graphs (see Chapter 3.3 and
[Sow84]). The theory is many-faceted, consisting of at least the conceptual graph notation
itself; type hierarchy; proof theory; theory of heuristics in conceptual graph based artificial
intelligence systems; and ways to represent data flow within the graphs.

3This applies, naturally, to languages defined in the context of this thesis. For languages of intensional logic, see
[vB88].

“Tt must be mentioned, however, that the structural view probably cannot be defined as precisely as the more
traditional statement view, and that Tichy [Tic71] has demonstrated how to manipulate statement view based theories
using second order predicate logic, that is the basis of HIT, too.

101

e A methodology based on description logics and formal ontologies. This kind of methodology
would possibly be closely related to existing COMIC, but allow one to use a description logic
as the language of representing the externalised conceptual schema. This sort of approach
could easily incorporate the ontological analysis of different IS-A relationships as in [GW00]
and the logical rigour of Catarzi’s and Lenzerini’s “conceptual data base modelling” [CL92].

e A methodology based on HIT -semantics. As we have seen in Chapter 7, HIT-semantics
has its background in thorough logical theory, but the basic modelling construct (attribute)
is flexible and relatively easy to understand.

All of these possibilities also serve as items for further studies. The goal is, naturally, to
develop intension-supporting modelling languages and methodologies. This kind of a language
could be in some senses analogous to the popular XML (Extensible Markup Language) formalism
in software development (see, e.g. [BT01]). This would guarantee the portability of externalised
conceptual schemata; there would be a common understanding of the guidelines of their usage
and a rich variety of tools supporting their design. A simple implementation of an XML based
modelling tools is discussed in [NS03].

Another direction of further studies is that of mereology (see e.g. [Sim87]). The mereological
relation is apparently similar to the intensional containment, and mereology could be used as a
background of the semantics of intensional containment.

102

Bibliography

[AFGP96]

[AH84]

[AH87]

[ASCD99]

[Ata99]

[B89]

[BT01]

[Bar89]
[BBMP95]

[BCN92]

[Ber99]

[Bla96]
[Bor91]

[Bor95]

A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-whole relations in object-
centered systems: an overview. Data and Knowledge Engineering, 20(3), 1996.

S. Abiteboul and R. Hull. IFO: A formal semantic database model. In Proceedings
of the Third ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
Waterloo, Ontario, Canada, April 2nd-4th, 1984.

S. Abiteboul. and R. Hull. IFO: A formal semantic database model. ACM Transactions
on Database Systems, 12(4), 1987.

A. Analyti, N. Spyratos, P. Constantopoulos, and M. Doerr. Inheritance under partici-
pation constraints and disjointness. In H. Jaakkola, H. Kangassalo, and E. Kawaguchi,
editors, Information Modelling and Knowledge Bases X. IOS Press, 1999.

M. J. Atallah, editor. Algorithms and Theory of Computation Handbook. CRC Press,
1999.

A. Borgida et al. CLASSIC: A structural data model for objects. In Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data. Portland,
Oregon, May 31st - June 2nd, 1989.

M. Birbeck et al. Professional XML. Wrox, 2nd edition, 2001.
J. Barwise. The Situation in Logic. Number 17 in CSLI Lecture Notes. CSLI, 1989.

G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. Proper. A unifying object
role modelling theory. Information Systems, 20(3), 1995.

C. Batini, S. Ceri, and S. Navathe. Conceptual Data Base Design: An Entity-
Relationship Approach. Benjamin/Cummings, 1992.

A. Berztiss. Concepts, objects and domains. In H. Jaakkola, H. Kangassalo, and
E. Kawaguchi, editors, Information Modelling and Knowledge Bases X. IOS Press,
1999.

S. Blackburn. The Oxford Dictionary of Philosophy. Oxford University Press, 1996.

A. Borgida. Knowledge representation, semantic modeling: Similarities and differ-
ences. In H. Kangassalo, editor, Entity-Relation Approach: The Core of Conceptual
Modelling. Elsevier Science Publishers, 1991.

A. Borgida. Description logics in data management. |EEE transactions on knowledge
and data engineering, 7(1), 1995.

103

[BP85]

[Bra83]

[BS79]

[BS85]

[BS92]

[BS98]

[Bun67]

[BW77]

[Che76]

[CL92]

[CLN98]

[DLN*92]

[DLNN97]

[Duz92]

[Duz00a]

[Duz00b]

[Duz00c]

J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1985.

R.J. Brachman. What IS-A is and isn’t: An analysis of taxonomic links in semantic
networks. IEEE Computer, 16(10), 1983.

R. Bradley and N. Swartz. Possible Worlds. Blackwell, 1979.

R.J. Brachman and J. Schmolze. An overview of the KL.-ONE knowledge representa-
tion system. Cognitive Science, 9(2), 1985.

S. Bergamaschi and C. Sartori. On taxonomic reasoning in conceptual design. ACM
Transactions on Database Systems, 17(3), 1992.

F. Baader and U. Sattler. Description logics with aggregates and concrete domains,
part ii (extended). Technical Report LTCS-Report 98-02, Aachen University of Tech-
nology, Research Group for Theoretical Computer Science, 1998.

M. Bunge. Scientific Research I: The Search for System. Springer-Verlag, 1967.

D. Bobrow and T. Winograd. An overview of KRL, a knowledge representation lan-
guage. Cognitive Science, 1(1), 1977.

P. Chen. The entity-relationship model - towards a unified view of data. ACM Trans-
actions on Database Systems, 1(1), 1976.

T. Catarci and M. Lenzerini. Conceptual database modeling through concept model-
ing. In S. Oshuga, H. Kangassalo, H. Jaakkola, K. Hori, and N. Yonezaki, editors,
Information Modelling and Knowledge Bases I11. IOS Press, 1992.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems. Kluwer Academic Publisher, 1998.

EM. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and A. M. Spaccamela.
The complexity of existential quantification in concept languages. Artificial Intelli-
gence, 53(2/3), 1992.

EM. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept lan-
guages. Information and Computation, 134(1), 1997.

M. Duzi. Logic and Data Semantics. PhD thesis, Dept. of Logic, Institute of Philoso-
phy, Czechoslovak Academy of Sciences, 1992.

M. Duzi. A contribution to the discussion on concept theory. Discussion paper in
the 10th European-Japanese Conference on Information Modelling and Knowledge
Bases, May 2000.

M. Duzi. Logical foundations of conceptual modelling. A manuscript, 2000.

M. Duzi. Two approaches to conceptual data modelling. In O. Majer, editor, Topics
in Conceptual Analysis and Modelling. Academy of Sciences of the Czech Republic,
2000.

104

[Duz01]

[eb-94a]

[eb-94b]

[eb-94c]

[EN94]

[Eve79]
[FLS94]

[GF92]

[GGIY5]

[Gre9l]

[Gua97]

[GWO00]

[Hau86]

[HauO1a]

[HauO1b]

M. Duzi. Logical foundations of conceptual modelling using HIT data model. In
H. Jaakkola, H. Kangassalo, and E. Kawaguchi, editors, Information Modelling and
Knowledge Bases XII. IOS Press, 2001.

The history and kinds of logic. In The New Encyclopaedia Britannica, Macropaedia,
volume 23. Encyclopaedia Britannica, 15th edition, 1994.

Intension and extension. In The New Encyclopaedia Britannica, Macropaedia, vol-
ume 6. Encyclopaedia Britannica, 15th edition, 1994.

Ontology. In The New Encyclopaedia Britannica, Macropaedia, volume 8. Ency-
clopaedia Britannica, 15th edition, 1994.

R. Elmasri and S. Navathe. Fundamentals of Database Systems. Benjamin/Cummings,
2nd edition, 1994.

S. Even. Graph Algorithms. Computer Science Press, 1979.

G. Falquet, M. Leonard, and J. Sindayamaze. F2Concept: a database system for man-
aging classes’ extensions and intensions. In H. Jaakkola, H. Kangassalo, T. Kitahashi,
and A. Markus, editors, Information Modelling and Knowledge Bases V. 1I0S Press,
1994.

M. Genesereth and R. Fikes. Knowledge Interchange Format — Reference Manual.
Computer Science Department, Stanford University, Stanford, California, 3rd edition,
1992. Logic Group Technical Report Logic-92-1.

N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a terminolog-
ical clarification. In N.J.I Mars, editor, Towards Very Large Knowledge Bases. IOS
Press, 1995.

R. Mac Gregor. The evolving technology of classification-based knowledge repre-
sentation systems. In J.F. Sowa, editor, Principles of Semantic Networks. Morgan
Kaufman, 1991.

N. Guarino. Understanding, building and using ontologies. International Journal of
Human Computer Studies, 46(2/3), 1997.

N. Guarino and C. Welty. Ontological analysis of taxonomic relationships. In A. Laen-
der, S. Liddle., and W. Storey, editors, Conceptual Modeling - ER 2000, 19th Interna-
tional conference of Conceptual Modeling, Lecture Notes in Computer Science 1920,
Salt Lake City, Utah USA, October, 2000.

A. Hautamiki. Points of View and their Logical Analysis, volume 41 of Acta Philo-
sophica Fennica. Philosophical Society of Finland, 1986.

R. Hausser. Foundations of Computational Linguistics, Human-Computer Communi-
cation in Natural Language. Springer, 2nd. edition, 2001.

R. Hausser. The four basic ontologies of semantic interpretation. In H. Jaakkola,
H. Kangassalo, and E. Kawaguchi, editors, Information Modelling and Knowledge
Bases XII. IOS Press, 2001.

105

[HK87]

[HLVR96]

[HMS81]

[HTOO0]

[JBRY9]

[Jec78]

[JNO3]

[Joh90]

[JP&9]

[Jun98]

[JunO1]

[Kan82]

[Kan83]

[Kan92]

[Kan93]

R. Hull and R. King. Semantic data modelling: Survey, applications and research
issues. ACM Computing Surveys, 19(3), 1987.

T.W.C. Huibers, M. Lalmas, and C.J. van Rijsbergen. Information retrieval and situa-
tion theory. SIGIR Forum, 30(1), 1996.

M. Hammer and D. McLeod. Database description with SDM: A semantic database
model. ACM Transactions on Database Systems, 6(3), 1981.

T. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In A. Cohn,
F. Giunchilia, and B. Selman, editors, KR 2000, Principles of Knowledge Represen-
tation and Reasoning, Proceedings of the Seventh International Conference, Brecken-
ridge, Colorado, USA, April 11-15, 2000, 2000.

I. Jacobson, G. Booch, and J. Rumbauch. The Unified Software Development Process.
Addison-Wesley, 1999.

T. Jech. Set Theory. Academic Press, 1978.

K. Jarvelin and T. Niemi. Deductive information retrieval based on classifications.
Journal of the American Society for Information Science, 44(10), 1993.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. Elsevier Science Publishers, 1990.

M. Jackman and C. Pavelin. Conceptual graphs. In G.A. Ringland and D.A. Duce,
editors, Approaches to Knowledge Representation. Wiley and Sons, 1989.

M. Junkkari. The modelling primitives for component relationships and a ’design
by example’ method. Technical Report A-1998-13, University of Tampere, Dept. of
Comp. Sci., 1998.

M. Junkkari. The systematic object-oriented representation for managing intensional
and extensional aspects in modeling of part-of relationships. Technical Report A-
2001-5, University of Tampere, Dept. of Comp. Sci., 2001.

H. Kangassalo. On the concept of concept in a conceptual schema. In H. Kangassalo,
editor, First Scandinavian Research Seminar on Information Modelling and Database
Management, volume 17 of series B. University of Tampere, 1982.

H. Kangassalo. Concept D - a graphical formalism for representing concept struc-
tures. In H. Kangassalo, editor, Second Scandinavian Research Seminar on Infor-
mation Modelling and Database Management, volume 19 of series B. University of
Tampere, 1983.

H. Kangassalo. On the concept of concept for conceptual modelling and concept
detection. In S. Oshuga, H. Kangassalo, H. Jaakkola, K. Hori, and N. Yonezaki,
editors, Information Modelling and Knowledge Bases I11. IOS Press, 1992.

H. Kangassalo. Comic: A system and methodology for conceptual modelling and
information construction. Data and Knowledge Engineering, 9, 1993.

106

[Kan96]

[KanO00]

[Kau67]

[KKJHOO0]

[KKP90]

[KVO0]

[Lam96]

[Lan78]

[LB85]

[Lip76]

[Mar97]

[Mar02]

[Mat00]

[MMO1]

[Mot94]

H. Kangassalo. Conceptual description for information modelling based on inten-
sional containment relation. In F. Baader, M. Buchheit, M.A. Jeusfeld, and W. Nutt,
editors, Knowledge Representation meet Databases, Proceedings of the 3rd Workshop
KRDB’96, Budapest, Hungary, August 13th, 1996.

H. Kangassalo. Frameworks of information modelling: Construction of concepts and
knowledge by using the intensional approach. In S. Brinkkemper, E. Lindencrona, and
A. Solvberg, editors, Information Systems Engineering, State of the Art and Research
Themes. Springer, 2000.

R. Kauppi. Einfuhrung in die Theorie der Begriffssysteme, volume 15 of series A.
University of Tampere, 1967.

E. Kawaguchi, H. Kangassalo, H. Jaakkola, and I.A. Hamid, editors. Information
Modelling and Knowledge Bases XI, Preface. 10S Press, 2000.

S. Kari, H. Kangassalo, and J. P6s6. CQL — conceptual query language: A visual user
interface to application data bases. In H. Kangassalo, S. Ohsuga, and H. Jaakkola,
editors, Information Modelling and Knowledge Bases. IOS Press, 1990.

H. Kangassalo and A. Viitanen. A concept data base for conceptual schemata. In
H. Kangassalo, S. Ohsuga, and H. Jaakkola, editors, Information Modelling and
Knowledge Bases. 10S Press, 1990.

P. Lambrix. Part-Whole Reasoning in Description Logics. PhD thesis, Linkoping
Studies in Science and Technology No. 448, 1996.

B. Langefors. Theoretical analysis of information systems. Studentlitteratur, 4th edi-
tion, 1978.

H.J. Levesque and R.J. Brachman. A fundamental tradeoff in knowledge representa-
tion and reasoning. In R.J. Brachman and H.J. Levesque, editors, Readings in Knowl-
edge Representation. Morgan Kaufman, 1985.

S. Lipschutz. Discrete Mathematics. Schaum’s outline of Theory and Problems.
McGraw-Hill, 1976.

E. Marjomaa. Aspects of relevance in information modelling: methodological princi-
ples and conceptual problems. PhD thesis, University Of Tampere, 1997.

E. Marjomaa. Peircean reorganization in conceptual modeling terminology. Journal
of Conceptual Modeling, January 2002.

P. Materna. Two notions of concepts. In O. Majer, editor, Topics in Conceptual
Analysis and Modelling. The Institute of Philosophy, Academy of Sciences of the
Czech Republic, 2000.

E. Marcos and A. Marcos. A philosophical approach to the concept of data model: Is
a data model, in fact, a model? Information Systems Frontiers, 3(2), 2001.

A. Motro. Intensional answers to database queries. IEEE Transactions on Knowledge
and Data Engineering, 6(3), 1994.

107

[Nau72]

[NH89]

[Nie99]

[Nie00]

[Nii98]

[Nii99]

[NNO1]

[NNTOO]

[NP98]

[NSO3]

[Pal94]

[Pal97]

[Pal02]

[Per99]

D. Nauta. The meaning of information. Mouton, 1972.

G. Nijssen and T. Halpin. Conceptual Schema and Relational Database Design: a
fact oriented approach. Prentice-Hall, 1989.

T. Niemi. Transforming Concept D schema into relational database schema. In
H. Jaakkola, H. Kangassalo, and E. Kawaguchi, editors, Information Modelling and
Knowledge Bases X. IOS press, 1999.

T. Niemi. New approaches to intensional concept theory. In E. Kawaguchi, H. Kan-
gassalo, H. Jaakkola, and I.A. Hamid, editors, Information Modelling and Knowledge
Bases XI. IOS press, 2000.

M. Niinim#ki. Kasitteellinen mallintaminen, ekstensionaaliset ja intensionaaliset
kasitekielet (Conceptual modelling, extensional and intensional concept languages).
Licenciate Thesis, University of Tampere, 1998.

I. Niiniluoto. Critical Scientific Realism. Oxford University Press, 1999.

T. Niemi and J. Nummenmaa. A query method based on intensional concept definition.
In H. Jaakkola, H. Kangassalo, and E. Kawaguchi, editors, Information Modelling and
Knowledge Bases XlI. IOS Press, 2001.

T. Niemi, J. Nummenmaa, and P. Thanisch. Applying dependency theory to concep-
tual modelling. In O. Majer, editor, Topics in Conceptual Analysis and Modelling. The
Institute of Philosophy, Academy of Sciences of the Czech Republic, 2000.

J.F. Nilsson and J. Palomiki. Towards computing with extensions and intensions of
concepts. In PJ. Charrel, H. Jaakkola, H. Kangassalo, and E. Kawaguchi, editors,
Information Modelling and Knowledge Bases IX. IOS Press, 1998.

M. Niiniméki and V. Sivunen. Experiences in computer assisted xml-based modelling.
In H. Kangassalo, E. Kawaguchi, Y. Kiyoki, and H. Jaakkola, editors, Information
Modelling and Knowledge Bases XV. IOS Press, 2003.

J. Palomiki. From Concepts to Concept Theory. PhD thesis, University of Tampere,
1994.

J. Palomiki. Three kinds of containment relations of concepts. In H. Kangassalo, J.F.
Nilsson, H. Jaakkola, and S. Ohsuga, editors, Information Modelling and Knowledge
Bases VIII. IOS Press, 1997.

J. Palomiki. Intensional vs. conceptual content of concepts. In H. Kangassalo and
E. Kawakuchi, editors, Proceedings of the 12th European-Japanese Conference on
Information Modelling and Knowledge Bases, Krippen, Germany, May 27 - 30, 2002,
2002.

J. Perry. Semantics, situation. In Concise Routledge Encyclopedia of Philosophy.
Routledge, 1999.

108

[Poh96]

[Qui68]

[Ran88]

[Ran03]

[Rob73]

[Sat95]

[Sim87]

[Sow84]

[Sow00]

[Sup57]
[SV93]

[SWIg]

[Tau91]

[TCI87]

[Tic71]

[Tic88]

[TJ92a]

K. Pohl. Requirements engineering: An overview. In A. Kent and J. Williams, editors,
Encyclopedia of Computer Science and Technology, Vol. 36. Supplement 21. Marcel
Deccer Inc, 1996.

M.R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Information Pro-
cessing. MIT Press, 1968.

D. Mac Randal. Semantic networks. In G.A. Ringland and D.A. Duce, editors, Ap-
proaches to Knowledge Representation. Research Studies Press, 1988.

V. Rantala. Possible worlds. In L. Haaparanta and I. Niiniluoto, editors, Analytic
Philosophy in Finland, Poznan Studies in the Philosophy of the Sciences and the Hu-
manities. Rodopi, 2003.

D. D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton, 1973.

U. Sattler. A concept language for engineering applications with part-whole relations.
In A. Borgida and D. Nardi, editors, Proceedings of the International Workshop on
Description Logics DL-95, Roma, Italy, 1995.

P. Simons. Parts: A Study in Ontology. Clarendon, 1987.

J.E. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison Wesley, 1984.

J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing, 2000.

P. Suppes. Introduction to Logic. D. van Nostrand Company, 1957.

H. Salminen and J. Viininen. Johdatus logiikkaan (Introduction to logics). Gaudea-
mus, 1993.

J. Simpson and E. Weiner, editors. The Oxford English Dictionary. Oxford University
Press, 1998.

B. Tauzovich. Towards temporal extensions to the entity-relationship model. In
T. J. Teorey, editor, Proceedings of the 10th International Conference on Entity-
Relationship Approach (ER’91), San Mateo, California, USA, 23rd-25th October,
1991.

Information processing systems Technical Committee ISO/TC 97. Information pro-
cessing systems — Concepts and Terminology for the Conceptual Schema and the In-
formation Base. ISO, TR 9007:1987 (E), 1987.

P. Tichy. Synthetic components of a finite class of postulates. Archiv fiir Mathematis-
che Logik und Grundlagenvorschung, 2(17), 1971.

P. Tichy. The Foundations of Frege’s Logic. De Gruyter, 1988.

Niemi T and K. Jirvelin. Operation-oriented query language approach for recursive
queries — part 1: Functional definition. Information systems, 17(1), 1992.

109

[TJ92b]

[Vad94]

[vB&8]

[vD97]

[VvB82]

[WCHS7]

[Win75]

[Wo091]

[Yov93]

[Zal00]

[Zho98]

Niemi T and K. Jdrvelin. Operation-oriented query language approach for recur-
sive queries — part 2: Prototype implementation and its integration with relational
databases. Information systems, 17(1), 1992.

T. Vaden. Conceptual modelling as theory construction: Some implications for the
metalevel treatment. In H. Jaakkola, H. Kangassalo, T. Kitahashi, and A. Markus,
editors, Information Modelling and Knowledge Bases V. IOS Press, 1994.

J. van Benthem. A manual of intensional logic. CSLI, 1988.
D. van Dalen. Logic and Structure. Springer, 3rd edition, 1997.

G. Verheijn and J. van Bekkum. Niam: An information analysis method. In T.W. Olle,
H.G. Sol, and A. Verrijn-Stuart, editors, Information Systems Design Methodologies:
A Comparative Review (CRIS *82 Proceedings). Elsevier Science Publishers, 1982.

M.E. Winston, R. Chaffin, and D. Herrman. A taxonomy of part-whole relations.
Cognitive Science, 11, 1987.

H.P. Winston. Learning structural descriptions from examples. In H. P. Winston,
editor, Phychology of Computer Vision. McGraw-Hill, 1975.

W.A. Woods. Understanding subsumption and taxonomy: A framework for progress.
In J.F. Sowa, editor, Principles of Semantic Networks. Morgan Kaufman Publishers,
1991.

M. Yovits. Data and information. In A. Ralston and E. Reilly, editors, Encyclopedia
of Computer Science. Chapman & Hall, 3rd edition, 1993.

E. Zalta. A (Leibnizian) theory of concepts. In U. Meixner and A. Newen, editors,
Philosophiegeschichte und logische Analyse, Band 3. Mentis, 2000.

L. Zhongwan. Mathematical Logic for Computer Science. World Scientific, 2nd edi-
tion, 1998.

110

Appendix A

FOPL CG Translations

GI.

G2.

G3.

G4.

a is a painting:

painting(a).
The formula is in the translation form. The counterpart for this formula is the conceptual
graph
[PAINTING : a].

There exists (at least one) painting:

3Ix(painting(x)).
The formula is in the translation form. The counterpart for this formula is the conceptual
graph

[PAINTING : x].

There exists something that is not a painting:

Ax(—(painting(x))).
The formula is in the translation form. The counterpart for this formula is the conceptual
graph
[FPAINTING : x].

There is no (such thing as) kitsch.

—(3x(kitsch(x))).
The formula is in the translation form. The counterpart for this formula is the conceptual
graph

=[[KITSCH : x]].

111

GS.

Go6.

G7.

G8.

GO.

There are artists and collectors:

(Ix(artist(x)) A Jy(collector(y))).

In the translation form, the formula is (Ix(Jy((artist(x)) A (collector(y)))). The graph coun-
terpart for this formula is

[[ARTIST : X] A[COLLECTOR : y]].

Someone is both an artist and a collector.

3x((artist(x) A collector(x))).
The formula is in the translation form. The graph counterpart for this formula is

[[ARTIST : X] A [COLLECTOR : X]].

There is at least someone who is an artist and not a collector.

3x((artist(x) A —=(collector(x)))).

The formula is in the translation form. The counterpart for this formula is the conceptual
graph
[[ARTIST : x] A[-COLLECTOR : x]].

Everything is art:

vx(art(x)).
The formula is in the translation form. The counterpart for this formula is the conceptual
graph

[ART : Vx].

For everything, there is something that is more beautiful:

Vx(3Jy(morebeautiful(y,x))).

Using the inverse relation we get:

vx((3y) (morebeauti ful ~!(x,y))),

that is the translation form of this formula. The graph counterpart is thus:

[Te:VX] — (MOREBEAUTIFUL) « [T¢:y].

112

G10. There is something that is more beautiful than everything else:

3Ix(Vy(morebeauti ful (x,y))).

The formula is in the translation form. Its graph counterpart is

[Te:X] — (MOREBEAUTIFUL) »— [T¢: Wyl.

G11. The collector b buys painting a:

((collector(b) A painting(a)) A buy(b,a)).

The counterpart of this formula is the conceptual graph

[[COLLECTOR : b] — (BUY) ~— [PAINTING : a]
VAN
[[PAINTING : a] A [COLLECTOR : b]]].

According to conditions CGM!, this means the same as

[COLLECTOR : b] — (BUY) »— [PAINTING : a].

G12. Some collector buys the painting a:

3x(((collector(x) A painting(a)) Abuy(x,a))).

The translation process is similar to that in G11, resulting in

[COLLECTOR : x] — (BUY) »— [PAINTING : a].

G13. There exists a collector who does not buy painting a:

3x((collector(x) A (—(buy(x,a)) A painting(a)))).
The translation form of the formula is

Ix((—(buy(x,a)) A (collector(x) A painting(a)))).

The counterpart for this formula is the conceptual graph

[[COLLECTOR: b] — (~ BUY) = [PAINTING : a]
AN
[[PAINTING : a] A [COLLECTOR : b]]].

According to conditions CGM, this means the same as

[COLLECTOR : b] — (~ BUY) — [PAINTING : a].

!See page 44. Naturally, there should be a syntactic rule to justify this short cut, too.

113

G14. No collector buys painting a:

—(3x((collector(x) A (painting(a) A buy(x,a))))).
The translation form of the formula is

—(3x(buy(x,a) A (collector(x) A painting(a)))).

The counterpart for this formula is the conceptual graph

~[[COLLECTOR : x] «= (BUY) « [PAINTING : a]
A
[COLLECTOR :] A [PAINTING : a]].

G15. No collector buys any painting:

—(3x(Jy((collector(x) A (painting(y) Abuy(x,y)))))).

The translation process, similar to the one in the previous example, leads to:

S[[[COLLECTOR : x] «~ (BUY) «~ [PAINTING : y]
VAN
[[COLLECTOR : x] A [PAINTING : y]]]I.

G16. Each painting has been painted by some artist:

Vx(painting(x) — 3Jy((artist(y) A paintedby(x,y)))).

The process of transforming the formula into the translation form is as follows:

Eliminate —:

Vx(—(painting(x) A =(Jy((artist(y) A paintedby(x,y))))))-

Move quantifiers, move binary relations closest to quantifiers:

Vx(3y((—(painting(x) A —=((paintedby(x,y) Aartist(y)))))))-

The graph counterpart of this formula is:

S[[[PAINTING : ¥x] A=[[PAINTING : X] — (PAINTEDBY) — [ARTIST : y]]]].

According to the semantics of the quantifier V and the shortcut rule S6, this graph is equal to
[PAINTING : Vx| — (PAINTEDBY) ~— [ARTIST :y].

114

G17. There exists a painting that all the collectors want:

Ax((painting(x) A Vy((collector(y) — want(x,y)))))-

The translation process is similar to that in the previous example. Its result is the graph:

[[PAINTING : X]A
[COLLECTOR : Vy] — (WANT) — [PAINTING : X]].

115

116

Appendix B

The definitions of intensional relations and
operations as presented by Kauppi

Comparable: D fy“aHb” =4 “(3x)(a > x&b > x)”

e Incomparable: Dfp“aTh” =4; “ ~ (3Ix)(a > x&b > x)”
|
e Compatible: Df| “aAb” =¢¢ “(IX)(x > a&x > a)”
A

e Incompatible: va“a\|/ b” =4t “ ~ (IX)(x > a&x > a)”
\

| |
e Homogen-compatible: Df | “aAb” =4 “aHb&aAb& ~a>b& ~ b > a”
A

| |
e Heterogen-compatible: Df “ad\b” =y; “aTb&aAb”
A
e Opposite: DfD“a|Db” =qf “aH b&a\|/b”
|

e Isolated: D fY“aYb =df “aIb&a\|/ b”

e Sum: Dfg“c=adb” =4 “(X)(x > ¢ > x > a&x > b)"
e Product: Dfg“c =a®b” =4¢ “(x)(c > x > a > x&b > x)”

e Negation: Df_“b=2a" =4 “(X)(x > b+ X\|/a)”

e Difference: Dfg“c =aob” =4 “(X)(c > x <> a > x&bTx)"

e Quotient: Dfp“c=aob’ =4 “X)(x > c+>r x> a&X\|/ b)

Notes:

e There is a printing error in [Kau67], p. 44 in the definition of opposite.
e Logical symbols are as follows: negation (~), conjunction (&), universal quantifier (x).

e The symbol > is used here instead of Kauppi’s >.

117

