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Abstract

Given a pattern string and a text, the task of approximate string matching
is to find all locations in the text that are similar to the pattern. This
type of search may be done for example in applications of spelling error
correction or bioinformatics. Typically edit distance is used as the measure
of similarity (or distance) between two strings. In this thesis we concentrate
on unit-cost edit distance that defines the distance beween two strings as
the minimum number of edit operations that are needed in transforming one
of the strings into the other. More specifically, we discuss the Levenshtein
and the Damerau edit distances.

Aproximate string matching algorithms can be divided into off-line and
on-line algorithms depending on whether they may or may not, respectively,
preprocess the text. In this thesis we propose practical algorithms for both
types of approximate string matching as well as for computing edit distance.

Our main contributions are a new variant of the bit-parallel approximate
string matching algorithm of Myers, a method that makes it easy to modify
many existing Levenshtein edit distance algorithms into using the Damerau
edit distance, a bit-parallel algorithm for computing edit distance, a more er-
ror tolerant version of the ABNDM algorithm, a two-phase filtering scheme,
a tuned indexed approximate string matching method for genome searching,
and an improved and extended version of the hybrid index of Navarro and
Baeza-Yates.

To evaluate their practicality, we compare most of the proposed methods
with previously existing algorithms. The test results support the claim of
the title of this thesis that our proposed algorithms work well in practice.
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Introduction

Finding the occurrences of a given query string (pattern) from a possibly
very large text is an old and fundamental problem in computer science. It
emerges in applications ranging from text processing and music retrieval
to bioinformatics. This task, collectively known as string matching, has
several different variations. The most natural and simple of these is exact
string matching, in which, like the name suggests, one wishes to find only
occurrences that are exactly identical to the pattern string. This type of
search, however, may not be adequate in all applications if for example the
pattern string or the text may contain typographical errors. Perhaps the
most important applications of this kind arise in the field of bioinformatics,
as small variations are fairly common in DNA or protein sequences. The
field of approximate string matching, which has been a research subject since
the 1960’s, answers the problem of small variation by permitting some error
between the pattern and its occurrences. Given an error threshold and a
metric to measure the distance between two strings, the task of approximate
string matching is to find all substrings of the text that are within (a distance
of) the error threshold from the pattern.

In this work we concentrate on approximate string matching that uses
so called unit-cost edit distance as the metric to measure the distance be-
tween two strings. We consider two different kinds of edit distances: the
Levenshtein edit distance and the Damerau edit distance. These two, and
especially the Levenshtein edit distance, are the most commonly used forms
of unit-cost edit distance.

Most of the research underlying this thesis has been inclined towards
practical results. The primary aim has been to develop methods that work
well in practice. Therefore theoretical considerations have been given a
slightly secondary role. A major reason for this choice is that much of the
work has been done in conjunction with a real-life application: applying
string matching in searching for unique oligonucleotides in a large DNA
genome [19, 26, 18, 23]. The term oligonucleotide refers to a fairly short
sequence of DNA.

In the first part we present a concise overview of edit distance and ap-
proximate string matching. This gives the basic background for part two,
in which we present our primary contributions.



Basic Notation

We will use the following notation throughout the thesis.

String characters will be indexed with a subscript: P; refers to the ith
character of the string P, and F; ; to its substring that begins from the
ith character and ends at the jth character. |P| is the length of P. The
first character has the index 1, and so P = Py |p|. We interpret the non-
existing substring P o as the empty character €. The superscript R denotes
the reverse of the string. For example if P = “abcd”, then PR = “dcba”,
Pfg = “dc” and (Ppo)f = “ba”. Note the last two examples that show
how we may use parentheses to differentiate between a substring of the
reversed string and a reversed substring. The notation P o T denotes the
concatenation of the strings P and T'. For example if P = “abc” and T =
“def”, then P oT = “abcdef”.

The string B is a subsequence of the string A if B; = A, ;) for i = 1..|B|,
where x(i) is a mapping that fulfills the conditions 1 < z(:) < |A| for
i = 1..|B| and z(i — 1) < (i) for i = 2..|B|. Thus B is a subsequence
of A if the characters By, By, ..., Bjp| appear in the same order, but not
necessarily consecutively, in A.

For sake of uniformity, the two compared strings in the context of com-
puting edit distance are denoted by P and T. In the context of approximate
string matching P is a pattern and T is the text. It is a standard practice
in the literature to denote the length |P| of P by m and the length |T'| of T’
by n. Throughout the text we assume that m < n.

Y. denotes the used alphabet and o the size (number of different charac-
ters) of ¥.. In addition k denotes the maximum allowed error in the context
of thresholded edit distance or approximate string matching, and w is the
size (number of bits) of the computer word. The Levenshtein edit distance
between the strings P and T" will be denoted by edy (P, T') and the Damerau
edit distance by edp(P,T).

Bit-operations are described as follows: ’&’ denotes bitwise “AND”,
denotes bitwise “OR”, "’ denotes bitwise “XOR”, '~ denotes bit comple-
mentation, and <<’ and ">>’" denote shifting the bit-vector left and right,
respectively, using zero filling in both directions. The ith bit of the bit vec-
tor V is referred to as V'[i] and bit-positions are assumed to grow from right
to left. In addition we use a superscript to denote bit-repetition. As an
example let V' = 1001110 be a bit vector. Then V[1] = V5] = V[6] = 0,
V(2] = V[3] = V[4] = V[7] = 1, and we could also write V = 10%130.
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Part 1
Edit Distance and Approximate
String Matching

The edit distance ed(P,T) between the strings P and T is defined in general
as the minimum cost of any sequence of edit operations that edits P into T or
vice versa. Differing in their choices of the allowed set of edit operations and
their costs, for example the following types of edit distance have appeared
in the literature:

Levenshtein edit distance [31]: The allowed edit operations are inser-
tion, deletion or substitution of a single character, and each operation
has the cost 1. This type of edit distance is sometimes called unit-cost
edit distance. Levenshtein edit distance is perhaps the most common
form of edit distance, and often the term edit distance is assimilated
to it.

Damerau edit distance [9]: Otherwise identical to the Levenshtein edit
distance, but allows also the fourth operation of transposing two adja-
cent characters. A further condition is that the transposed characters
must be adjacent before and after the edit operations are applied.

Weighted/generalized edit distance [56, 33]: Allows the same opera-
tions as the Levenshtein/Damerau edit distance, respectively, but each
operation may have an arbitrary cost.

Hamming distance: Allows only the operation of substituting a charac-
ter, and each substitution has the cost 1.

Longest common subsequence: Measures the similarity between P and
T by the length of their longest common subsequence. This is in effect
equivalent to allowing the edit operations of deleting or inserting a
single character with the cost 1.

This work concentrates on the first two types of edit distance: unit-cost
Levenshtein and Damerau edit distance.

Sometimes one wishes to check whether two strings are within some
pre-determined distance threshold of each other. That is, given a distance
threshold & and strings P and T, one wishes to check whether ed(P,T) < k.



In this thesis we will refer to this kind of “edit distance check” as thresholded
edit distance computation.

Approximate string matching is closely related to edit distance. It refers
to searching for approximate matches of a pattern string P from a usually
much longer text string T, where edit distance is used as the measure of
similarity between P and the substrings of T'. Typically there is a pre-
determined maximum error threshold %k that gives the maximum allowed
edit distance for an approximate match. We will concentrate on this type of
approximate string matching, which can be defined more formally as finding
the text indices j for which ed(P,T;_j. ;) < k for some h > 0. Other more
rare variants of approximate string matching include for example searching
for the best match(es) for P.



1 Levenshtein and Damerau Edit Distance

The unit-cost Levenshtein edit distance between the strings P = P;_,, and
T = Ti.,, denoted by edr(P,T), can be defined as the minimum number
of single-character insertions, deletions and substitutions needed in trans-
forming P into T or vice versa. For example if P = “cat” and T = “act”,
then edp(P,T) = 2 as at least two single-character insertions, deletions or
substitutions are needed in converting “cat” into “act”. There are two ways
to transform P into T with exactly two operations: either delete P; = ¢’
and insert a ’c’ between P, = ’a’ and P35 = ’t’, or substitute P; = ’¢’ with
an ’a’ and P, = ’a’ with a '¢’ (Fig. 1a).

a) delete 'c¢’: cat — at, insert 'c’: at — act
substitute 'c’— ’a’: cat — aat, substitute ’a’— ’¢’: aat — act

b) transpose “ca’: cat — act

Figure 1: The two rows in Figure a) show the two ways of editing the string
“cat” into the string “act” that correspond to edr (“cat”,“act”) = 2. Figure
b) shows how edp(“cat”,“act”) = 1 as the Damerau edit distance allows
also the operation of transposing two adjacent characters.

In similar fashion, the unit-cost Damerau edit distance edp(P,T') can be
defined as the minimum number of single-character insertions, deletions or
substitutions or transpositions between two permanently adjacent characters
that are needed in transforming P into T or vice versa. Continuing with
the same example of the strings P = “cat” and T = “act”, we have that
edp(P,T) =1 as now a single transposition of the characters P; = ’¢’ and
P, =’a’ is enough to convert P into T' (Fig. 1b).






2 Dynamic Programming

Both the Levenshtein and the Damerau edit distance suit well the technique
of dynamic programming. In the case of the Levenshtein edit distance basi-
cally the same way of using dynamic programming has been independently
“invented” several times by different authors [41]. We begin by discussing
the dynamic programming algorithm for the Levenshtein edit distance.

The dynamic programming algorithm computes the desired final solu-
tion edr (P, T) by filling incrementally an (m + 1) x (n + 1) dynamic pro-
gramming table D, in which each cell D[i, j] will eventually hold the value
edr(Py.4,T1.5) for i = 0..m and j = 0..n. Initially the trivially known
“boundary values” of form DI[i,0] = edr (P ;,Th.0) = edr(Py.4,€) = i and
D|0,j] = edr(P1.0,T1.j) = edr(e,T1. j) = j are filled. Then the computa-
tion proceeds incrementally using the second row of the following well-known
Recurrence 1.

Recurrence 1: Computing the Levenshtein edit distance.

D[i,0] = i, D[0, 5] = j.
pij = { Pi=Li—1iP=T;
=\ 14 min(Dli — 1,5 — 1], D[i — 1, 5], D[i,j — 1]), otherwise.

The choices for filling the value DJi,j] enumerate the different possi-
bilities of editing the string 7% ; into P;.; (or vice versa) after T3 j_; has
already been edited into P;_;_1, T into Py _j—1 or Th._j—; into Py ; (or vice
versa). The first choice corresponds to the situation where P; = T}, and thus
it adds no further cost to the value D[i — 1,5 — 1]. If we choose the point of
view of editing T into P, then the three possibilities inside the min-clause
correspond, respectively, to substituting P; by T, inserting P; between the
characters T;_; and T}, and deleting T}.

The form of Recurrence 1 requires that the cell values D[i—1, j—1], D[i—
1,7] and DJi, 5 — 1] are known before computing the cell value D[i, j]. It is
common to fill the table D in either a row-wise (first the cells D[1, 1]..D[1, n],
then D[2,1]..D[2,n], and so on) or a column-wise manner (first the cells
DI[1,1]..D[m, 1], then D[1,2]..D[m, 2], and so on). Fig. 2a shows the dynamic
programming table D for computing the Levenshtein edit distance between
the strings P = “cat” and T' = “act”.

The dynamic programming algorithm for the Damerau edit distance
works in a similar manner to the above algorithm. The only difference is
that now also a choice for doing a transposition is added into the recurrence.
Recurrence 2 shows the version for computing the Damerau edit distance.



a) alc| t b) alc |t
O 1] 2| 3 O 1] 2 3

c| 1] 1 1] 2 c| 1| 1| 1} 2

al| 2| 1| 2 2 al| 2] 1] 1) 2

t| 3| 2] 2| 2 t| 3| 2] 2|1

Figure 2: The dynamic programming matrix D for computing the edit dis-
tance between the strings P = “cat” and T = “act”. Figure a) is for the
Levenshtein edit distance and Figure b) for the Damerau edit distance.

This recurrence is derived from Du and Chang [10].

Recurrence 2: Computing the Damerau edit distance.

DIi,0] = 4, D0, j] = j.
Dli—1,j —1],if P, =Tj.
1+min(D[i —2,j — 2], D[i — 1,7], D[i,j — 1]), if Pi_y.; =

(Tj—1.5)"
1+ min(Dfi —1,j — 1], Dli — 1,4, D[i,j — 1]), otherwise.

Fig. 2b shows the dynamic programming table D for computing the
Damerau edit distance between the strings P = “cat” and T = “act”.

Instead of computing the edit distance between the strings P and T,
the dynamic programming algorithm can be modified to find approximate
occurrences of P somewhere inside T by changing the boundary condition
DI0, j] = j into D[0, j] = 0. In this case D[i, j] = min(edr,(Py.;,Th. ;). h < j)
with the Levenshtein edit distance and D[i, j| = min(edp(P1..;,Th.j), h < 7)
with the Damerau edit distance. Thus the situation corresponds to the ear-
lier definition of approximate string matching. Fig. 3 shows the dynamic
programming table D for searching for approximate occurrences of the pat-
tern string P = “cat” from the text string T = “abradacabra” when the
maximum allowed distance k is 1 and the Levenshtein edit distance is used.

These basic dynamic programming algorithms clearly have a run time
and space consumption of O(mn), as they fill O(mn) cells and filling a
single cell takes a constant number of operations and space. It is simple to
diminish the needed space into O(m) when column-wise filling order of D
is used: When column j is filled, only the cell values in one or two previous
columns are needed, depending on whether the Levenshtein or the Damerau
distance is used. This means that it is enough to have only column (5 — 1)



alb|r|ald|a|c|]a|b]|r a
00000} 0O 0] 0| 0]0]O0

c| 1|1} 1} 1}y 1110 1] 1] 1)1
al 211212121101 2] 1
t| 3| 223 2| 2|2 2|11 2] 2

Figure 3: The dynamic programming matrix D for approximate matching

the pattern P = “cat” in the text T' = “abradacabra” under the Levenshtein
edit distance.

or also column (j — 2) in memory when computing column j, and so the
needed space is O(m).

It is straightforward to verify that the following properties hold for both
the edit distance computation and approximate string matching versions of
D under both the Levenshtein and the Damerau edit distance.

-The diagonal property: D[i,j]—D[i—1,7—1]=0or 1.
-The adjacency property:  DJi,j| — D[i,j — 1] = —1,0, or 1, and
Dli,j] - D[i — 1,5] = —1,0, or 1.

In the text we will sometimes refer to a ¢-diagonal or diagonal q. By this
we mean the diagonal of D that consists of the cells D[i, j| for which j —
i = q. For example the 0O-diagonal (or diagonal 0) consists of the cells
DJ0,0], D[1,1],D[2,2],..., and the -2-diagonal (or diagonal -2) of the cells
DI[2,0],DI[3,1],D[4,2],....

An edit path is a concept that is closely related to the dynamic program-
ming matrix D. An edit path EPp7 between the strings P and T traces
the cells D[i, j] that correspond to an optimal sequence of edit operations
that transforms P into T' (or vice versa) with the minimum total cost (e.g.
edr,(P,T) under the Levenshtein edit distance).

In the case of computing edit distance, EPpr can be generated by first
filling D and then backtracking from the cell DI[|P|,|T’|] to the cell D|0, 0]
by tracing the recurrence backwards. This is done by always moving from
DJi, j] into any one of the cells D[i — 1,j — 1], D[i — 1, j] and DJi,j — 1] (or
also D[i — 2,7 — 2] with the Damerau edit distance) that has a legal value in
terms of the dynamic programming recurrence. At each backtracking step

the corresponding edit operation may be recorded. Note that there may be
more than one edit path for P and T



In the case of approximate string matching an edit path EPpr;,_, . that
corresponds to P and a suffix T}_j, ; of 11 ; that matches best with P can
be traced in a similar manner as above. The only difference is that now
the backtracking starts from D[m, j] and ends at some cell D[0,j — h] with
h > 0.

Fig. 4 shows in bold the cells that belong to some edit path in the
dynamic programming tables of Fig. 2.

a) alc |t b) alc |t
o 1| 2| 3 o1 2| 3

c| 1] 1| 1| 2 c| 1| 1] 1] 2

al 2| 1| 2| 2 al 21| 1) 2

t| 3| 2| 2| 2 t| 3] 2] 2|1

Figure 4: The dynamic programming matrix D for computing the edit dis-
tance between the strings P = “cat” and T = “act”. Figure a) is for the
Levenshtein edit distance and Figure b) for the Damerau edit distance. The
cells that belong to some edit path are shown in bold. In Figure a) there
are several edit paths. From the cell D[3,3] we can backtrack only to the
cell D[2,2], which corresponds to the match P3; = T3, but from there on
there are many options. We can for example continue to the cell D[1,1],
which corresponds to a substitution between P, and 15, and from there to
the cell D[0,0], which corresponds to a substitution between P; and T;. An-
other possibility would be to continue from the cell D|2, 2] to the cell D[2,1],
which corresponds to inserting T5 before P53 or deleting 715 from T, then to
the cell D[1,0], which corresponds to the match P, = T3, and finally to the
cell D[0,0], which corresponds to deleting P; from P or inserting P; before
T;. In Figure b) there is only one edit path. From the cell D[3,3] we can
backtrack only to the cell D[2,2], which corresponds to matching the last
characters of “act” and “cat”, and from there we can continue only to the
cell DJ0,0], which corresponds to transposing the first two characters.

10



3 Filling Only a Necessary Portion of the Dynamic
Programming Matrix

In this section we review three basic methods for trying to restrict the num-
ber of cells that are filled in the dynamic programming table D. Each of
these methods is based on the diagonal and/or the adjacency property. As
these properties hold in both the case of the Levenshtein and the Dam-
erau edit distance, the restriction methods work also with the Damerau
edit distance although they were initially presented for the Levenshtein edit
distance.

3.1 Diagonal Restriction in Computing Edit Distance

Ukkonen [53] presented the following method to try to cut down the number
of cells filled in D when computing the Levenshtein edit distance between
P and T'. From the diagonal and adjacency properties Ukkonen concluded
that if edr,(P,T) <t and m < n, then it is sufficient to fill only the cells in
the diagonals —|(t —n+m)/2],—|(t —n+m)/2|+1,...,[(t+n—m)/2]
of the dynamic programming matrix. All other cell values are known to
have a value larger than D[m,n| = ed(P,T), and thus they can be ignored.
Ukkonen used this rule by beginning with ¢ = (n — m) + 1 and filling the
above-mentioned diagonal interval of the dynamic programming matrix. If
the result is D[m,n] > ¢, t is doubled. Eventually D[m,n] < ¢, and in this
case it is known that D[m,n] = ed(P,T). The run time of this procedure
is dominated by the computation involving the last value of ¢. As this
value is < 2 x ed(P,T) and with each value of ¢ the computation takes
O(t x min(m, n)) time, the overall run time is O(ed(P,T) x min(m,n)).

This method of “guessing” a starting limit ¢ for the edit distance and
then doubling it if necessary is not really practical for actual edit distance
computation. Even though the asymptotic run time is good, it involves a
large constant factor whenever ed(P,T') is large. But the method works
well in practice in thresholded edit distance computation, as then one can
immediately set ¢ = k& and only a single pass is needed.

3.2 Cut-off

Ukkonen [54] has also proposed a dynamic cut-off method to allow filling
less cells in the dynamic programming matrix when the problem involves a
distance threshold k. The idea is very simple: The cells with a value > k
are redundant in terms of a task with an error threshold k. It follows from

11



the diagonal property that once DJi, j| > k, then the cells D[i + h,j + h],
where h > 0, are known to be redundant from that point on. Assume that
column-wise order is used in filling D. Let r, hold the row number of the
upmost and r; the row number of the lowest cell that is deemed to have to be
filled in column j. Initially when j = 1, the boundary condition DIi,0] = i
means that 7, = 1 and r; = k + 1. At each column j the cells D[, j| are
filled for i = ry..r;, and after this computation r, is set to record the index
of the upmost and 7; the index of the lowest row with a value < k in the
column. Finally both r, and r; should be incremented to reflect the fact
that the cut-off actually restricts diagonals, not rows, and the next cell along
a diagonal is one row down. If r; and r, become non-existing, the region
that needs to be filled vanishes, which means that no more cells can have a
value < k. Note that because DI0, j] = 0 for all j in the case of approximate
string matching, one can only use the limit r; in that case as then always
Ty = 1.

It has been shown in [4, 2] that using the cut-off method leads into an
expected run time of O(kn) in the case of approximate string matching
under the Levenshtein edit distance.

3.3 Greedy Filling Order

Another restriction method is to fill the cells of D in a greedy fashion:
first all the cells that get the value 0 are filled, then the cells that get the
value 1, then the cells that get the value 2, and so on until all necessary
cells are filled. This is done in a diagonal-wise manner by taking advantage
of the diagonal property. As the values along each ¢-diagonal are non-
decreasing and moving from one diagonal to another costs one operation,
all cells on a g-diagonal that get the value x can be filled if all cells with a
value © — 1 have already been filled. Let us consider first Recurrence 1 for
the Levenshtein edit distance. If the cell DJi, j| has the value x, then also
the cells D[i + h,j + h], where h = max(z | (Pit1.i4> = Tj41.j+2) V (D[i +
z,j—14+z2]=2x—-1)V(Dli—1+2,j+ z] =2 — 1)), will get the value z.
From the diagonal property it follows that D[i + h + y,j + h + y] > x for
y > 0. Note that in particular D[i+h+1,j+h+1]=z+1ifi+h+1<m
and j + h 4+ 1 < n. In the case of Recurrence 2 for the Damerau edit
distance we need to include the option of a transposition, which results in
the condition h = max(z | (Pit1.it2 = Tj+1.j+2) V(Di —24+2,j -2+ 2] =
=1 A(Pitinrits = (Tmtagra) )V (Di+ 2, — 142 = 2 — 1)V (Di -
1+z,j+2]=2—-1)).

The diagonal property allows us to represent the cell values on a ¢-

12



diagonal by recording for it each row i¢ where the value increases by one,
that is, those indices ¢ where D[i,i+¢] — D[i —1,i +q—1] = 1.

Ukkonen [53] initially proposed using the greedy algorithm in the case of
computing edit distance. A straightforward implementation runs in O(dm)
worst-case and O(m+d?) expected time, where d is the edit distance between
the compared strings. By using a suffix tree also a worst-case time of O(m+
k?) is achievable.

Later Landau & Vishkin modified the greedy method for use in ap-
proximate string matching, achieving first O(k?n) [29] and later O(kn) [30]
worst-case run time. There have subsequently appeared also numerous other
variants of the scheme (e.g. [37, 11, 5]).

13
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4 Bit-parallel Methods

During the 1990’s the technique of bit-parallelism broke through in the field
of string matching. This type of algorithms are based on exploiting the
fact that a computer manipulates data in chunks of w bits, where w is the
computer word size (typically w = 32 or 64 in a modern computer). The
idea is to encode multiple data items of an algorithm into a single computer
word and thereby be able to handle many items in parallel during a single
computer operation (thus the name ”bit-parallelism”).

The first bit-parallel approximate string matching algorithm was given
by Wu & Manber [60] and achieved a run time of O(k[m/w]n). Then Wright
[58] presented an O([mlog(c)/w]|n) algorithm and Baeza-Yates & Navarro
[2] followed with an O([km/w]|n) algorithm. Finally Myers [38] achieved
the optimal speedup over the basic dynamic programming algorithm with
his O([m/w]n) algorithm.

In a recent survey by Navarro [41], the bit-parallel algorithms of Wu
& Manber [60], Baeza-Yates & Navarro [2] and Myers [38] dominated the
other approximate string matching algorithms for most part when testing
with English text and pattern lengths up to m = 100. The only case where a
more ”traditional” algorithm was faster was when both m and k were large.
In that case the algorithm of Wu, Manber & Myers [61] was reported to be
the fastest. This result, however, is not completely clear. To check this, we
compared the bit-parallel algorithm of Myers against the algorithm of Wu,
Manber & Myers when the error level k/m is large. The comparison involved
patterns of lengths 10, 20,..., 150, and with each pattern length m the tested
k values were k = 0.5m, k = 0.7m and k = 0.9m. There were 50 randomly
picked patterns for each (m,k)-combination, and the searched text was a
~ 10 MB sample from Wall Street Journal articles taken from the TREC-
collection [14]. The test was done on both a Sparc Ultra 2 workstation and
a 600 MHz Pentium 3 to see how the underlying architecture affects the
comparison. Navarro used a Sparc Ultra 1 in his tests. Fig. 5 shows the
results. It can be seen that the bit-parallel algorithm of Myers is always
faster, and the cases where the margin is quite small do not agree with
Navarro’s findings.
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Figure 5: The plots show the average time for searching for a randomly
picked pattern from a 10 MB sample of Wall Street Journal articles taken
from the TREC-collection. The left column shows the results for Sparc Ultra
2 and the right column for Pentium 3.
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5 Our Variant of the Algorithm of Myers

In this section we derive a slightly modified version of the bit-vector algo-
rithm of Myers. This version is easier to understand than the original ([49],
page 158). It shares the same logic and thus essentially the same set of op-
erations, but uses one variable less and is perhaps more convenient in terms
of modifying the algorithm for other purposes (e.g. in [24]). This work has
appeared as a part of the technical report [17].

To enable an efficient bit-parallel representation, the dynamic program-
ming matrix D is stored by using delta encoding: Instead of the actual cell
values, the differences between the values of adjacent cells are recorded. Be-
cause of the diagonal and adjacency properties, the following bit-vectors can
be used in representing D:

-The vertical positive delta vector V P;:
VP;li] =1iff Dji,j] — D[i —1,5] = 1.
-The vertical negative delta vector VV;:
VN;li| = 1iff D[i,j] — D[i — 1,7] = —1.
-The horizontal positive delta vector HP;:
HP;[i] =1iff D[i,j] — Dli,j —1] = 1.
-The horizontal negative delta vector HNj:
HN;li] =1iff D[i,j| — D[i,j — 1] = —1.
-The diagonal zero delta vector DO0;:
DO0;[i) = 1iff D[i,j] = D[i — 1,j —1].

Fig. 6 shows an example of these vectors.
The algorithm also uses the following pattern match vector PM), for
each character .

-The match vector PMy:

PM,[i] = 1iff P, = A,
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Figure 6: On the left is the dynamic programming matrix for searching for
the pattern P = “one” from the text T' = “once upon”. On the right are
the vectors V Ps, V Ny, HFs, HNg and D0g. Both row and column zero are
shown in bold, and the sixth column, which the shown vectors correspond
to, is shaded.
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The algorithm imitates column-wise filling order of the dynamic program-
ming matrix, and calculates explicitly only the values D[m, j| for j = 1..n.
All other cell values are represented implicitly by the earlier defined delta
vectors. First V Py and V Ny are initialized according to the boundary con-
ditions for D. This means that V Py[i] = 1 and VNy[i] = 0 for i = 1..m.
In addition D[m, 0] is initialized to the value m. Then moving from column
j-1 to column j involves the following four steps:

1. The diagonal vector DO; is computed by using PMr,, VP;_1 and
VNjfl.

2. The horizontal vectors HP; and HN; are computed by using DO,
Vf)jfl and VNjfl.

3. The value D[m, j] is calculated by using D[m, j — 1] and the horizontal
delta values HPj[m] and HN;[m].

4. The vertical vectors V P; and V N; are computed by using DO0;, HP;
and HN]

An approximate occurrence of the pattern ends at text position j whenever
D[m, j] < k during the scan of the text.

Step 1: Computing DO0;

Assume that the values V' P;_1[i], VN;_1[i] and PMrpy;i] are known. From
Recurrence 1 for filling D we can see that there are the following three ways
for DO0;[i] to have a value 1.
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1. Dli,j—1] = D[i — 1,5 —1] — 1, i.e. VN;_1[i] = 1. This enables
the zero-difference to propagate from the left by using the recurrence
option D[i,j] = D[i,j —1]+1=D[i— 1,7 —1].

2. PMr;[i] = 1. The zero-difference arises from the equality P; = Tj,
which sets D[i,j] = D[i — 1,5 — 1].

3. Dli —1,j] = D[i — 1,7 — 1] — 1. This enables the zero-difference to
propagate from above by using the recurrence option DJi,j] = D[i —
1,j]+1=D[i—1,j —1].

The first and second cases are easy to handle. All we need to do is to set
DO;[i] = 1if VN;_1[i] = 1 or/and PMr;,[i] = 1. This means that the cases
1 and 2 can be treated for the whole vector D0; by OR-ing it with both
VN;_1 and PMr;.

The third case, however, is the trickiest part of the algorithm. But Myers
has presented a nice solution for it. Since the adjacency and the diagonal
properties require that D[i —1,j — 1] — 1< D[i —2,j — 1] < D[i — 1,7], it
follows that D[i — 1,5] = D[i — 1,5 — 1] — 1 iff D[i,§] = D[i — 1,j — 1] and
Dli—1,j] = D[i—2,j—1] = D[i, j]—1. This translates into saying that D[i—
1,§] = DJi—1,j—1]—1iff DO;[i] = 1, D0;[i—1] = 1 and VP;_;[i—1] = 1. On
the other hand, the condition V P;_;[i—1] = 1 implies that VN;_;[i—1] = 0,
and then DO0;[i — 1] = 1 iff either the case 2 or the case 3 applies to the row
i—1. This means that D[i—1,j] = D[i—1,j—1]-1iff VP;_1[i—1] =1 and
also PMr,[i—1] = 1 or D[i—2,j] = D[i—2, j—1]—1. By recursively applying
the preceding reasoning for the second term, D[i —2,j] = D[i —2,j — 1] — 1,
of the ‘or’, we have that D[i —1,j]=D[i—1,j—1] - 1i#ff VP;_4[i—1] =1
and also PMy;[i — 1] =1 or VP;_1[i — 2] = 1 and also PMr,[i —2] =1 or
DI[i —3,j] = D[i — 3,j — 1] — 1. When we continue in this manner, always
expanding the last term of form D[i — q,j] = D[i — ¢q,j — 1] — 1, we arrive
at some h < i — 1 for which PM7;[h] = 1, and the recursion can stop. This
must happen because the initial conditions on the dynamic programming
matrix guarantee that D[0, j] # D[0,5 — 1] — 1. Thus we have the following
rule for the case 3:

D[i—1,j]=D[i—1,j — 1] = 1iff 3h: PMr;[h] =1 and VP;_4[q] = 1 for
q=h.i—1.

The above rule states that D[i — 1, j] = D[i — 1,7 — 1] — 1 if and only if the

(¢ — 1)th bit of the vector V Pj_; belongs to such a run of consecutive 1-bits
that there is also a match between the character T; and some character P, of
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Figure 7: On the left are rows h — 1, h,..,i of columns (j — 1) and j of the
matrix D. If D[i —1,j] =2 — 1= D[i —1,j — 1] — 1, then there must be a
match between T} and some character P, above the row i. The vertical delta
is positive at least from row ¢ up to row h. The corresponding segments of
the vectors V P;_; and PMry, are shown on the right. An asterisk indicates
that the corresponding cell/bit may have different values depending on the
situation.

the pattern that overlaps the run of consecutive bits at or above the (i —1)th
bit (Fig. 7).

The run of consecutive 1-bits in V' P;_; propagates a diagonal zero-
difference down in a way that resembles the carry-effect of integer addition.
If PM7,[h] =1 and VP;_1[q] = 1 for ¢ = h..i — 1, then we know from the
previous discussion that DO0;[g] = 1 for ¢ = h..i. Now if we add the vectors
PMr;[h] and V P;_1[h..i—1] together, the carry effect causes the bits h..i —1
of VP;_1 to change from 1 to 0 and the 7th bit to change either from 1 to
0 or from 0 to 1, depending on its original value. Suppose we XOR the bits
h..i of the result of the sum PMr,[h] + V P;_q[h..i — 1] with the original
bits h..t of VPj_1. Then the bits h..i will all have the value 1, which is
exactly the desired result. From PMr; we can extract only the bits i for
which also V' P;_1[i] = 1 by AND-ing PM7, with VP;_1. When we then
add this vector PMr,&V P;_1 together with V P;_; and XOR the resulting
value (PMr,&V Pj_1)+V P;_1 with V P;_1, we get almost the desired result
for the whole vector. There are only two differences. One is the situation
where there are several bits of PMry, that have the value 1 inside the same
continuous run of ones in V P;_;. This causes the XOR-operation to turn
off some of these bits, because they will have a value 1 before and after the
addition. The second is that the bit, which corresponds to the first match
along a consecutive run of ones in V P;_q, will also be set even though the
horizontal delta value above it is not -1. But neither of these two is a prob-
lem in terms of the correctness of the vector D0; because the corresponding

22



[y

|

22 PMy, VP, VP VP,

lolo ]j-l Jl J'l
Al O B F E R OROE E R
B .ol [ = R OB OE R [ & OE
A l2la] o] 1] [o] o [2] [o] [of [Z] [z
A . [312] [ofs[if=[o] [of+[1]=[o] [o]~[z]=[al
BN I -1 B I I I I I I I W (O
A .. [s]al  [of [1] [o] [of [2] [o] [of [Z] [z
A ..[e]s] [o] [1] [o] [of [1] [o] [of [1] [1]
I elel 1[ol [of [of [of [of {1} [il [of IZ]

Figure 8: An example of handling the third case in computing D0; when
Tij_1.; = “AB” and Py 7 = “ABAABAA”. As can be seen from the filled
column j, a match propagates diagonal zero deltas downwards as long as
the vertical delta in the preceding column j — 1 has a value +1. First the
matching bits in P M7, that overlap a segment of ones in V P;_; are extracted
by AND-ing PMr, and V P;_;. Then the resulting vector is added together
with V P;_; to change the bit value in the positions that get a diagonal zero
delta from above. Finally these changed bits are set to 1 by XOR-ing the
result of the addition with the original V P;_;. The darker shading marks
the locations where a match causes a diagonal zero delta, and the lighter
shading the positions where a diagonal zero delta propagates from above.

bits will be set anyway when handling the case 2. Fig. 8 shows an example.
Putting together all the pieces for the cases 1, 2 and 3, we arrive at the
following formula for computing DO0;:

DO; = ((PMr; & VPj_1) + VP;j_1) " VPj_1) | PMr, | VN;_i.

Step 2: Computing HP; and HN;

At this point we can assume that, in addition to the vectors VP;_i, VIN;_;
and PMr;, also the vector DO; is known.

It can be seen from the adjacency and diagonal properties that HP;[i| =
1iff D[i,j—1]=D[i—1,j —1] —1 (Fig. 9b), or D[i,j]=Dli— 1,5 — 1] +1
and D[i,j — 1] = D[i — 1,7 — 1] (Fig. 9a). In terms of the delta vectors this
means that HP][’L] =1 iff VNjfl[’L'] == 1, or DOJ[Z] = 0 and Vijl[Z'] =0
and VN;_1 = 0. Because the left side of the preceding ‘or’ has only the
condition V' N;_1[i] = 1, the requirement V' N;_1[i] = 0 on the right side can
be removed as it is implicitly expressed by the former. This results in the
following formula for computing the vector H P;[i]:
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Figure 9: The figures a) and b) show the only possible combinations for the
cells D[i—1,j—1], D[i,j—1] and DJi, j] to have D[i, j| = x = DJi,j—1]+1.
Similarly figure c) shows the only case where D[i, j] = x = DJ[i, j] — 1.

HP; =VNj1| ~(D0j | VPj1).

In similar fashion as for HP;, we can see that HN;[i] = 1 iff D[i,j] =
Dli — 1,5 —1] and D[i,j — 1] = D[i — 1,5 — 1] + 1 (Fig. 9¢). This results
in the rule V.N;[i] = 1 iff D0O;[i] = 1 and VP;_1[i] = 1, and so we have the
following formula for computing the vector HN;:

HN; = D0, & VPj_;.

Step 3: Computing the value D[m, j]

After computing the vectors HP; and HNj, the value D[m, j| is easy to
calculate from D[m,j — 1]. If HP;[m| = 1, then D[m, j| = D[m,j — 1] + 1,
and if HN;[m] = 1, then D[m, j] = D[m,j — 1] — 1. Otherwise D[m, j] =
D[m,j —1].

Step 4: Computing V P; and V N;

This step is diagonally symmetric with step 2 (computing HP; and HNj).

By imitating the case of H P}, we have that V P;[i] = 1iff HN;[i—1] =1
or DO;[i] =0 and HPj[i —1] = 0. Now we need to align the row (i — 1) bits
HN;jli — 1] and HP;[i — 1] with the row ¢ bit V P;[i]. This means shifting
the former two one step down (that is, to the left). After shifting these two
vectors left, their first bits represent the values H P;[0] and HNj[0], which
are not explicitly present in the algorithm. These two values correspond to
the difference D|0, j]— D0, j —1]. Since we assume zero filling, shifting N
and H P; one step to the left introduces a zero in their first positions. This is
the same as using the values H P;[0] = 0 and HN;[0] = 0, which corresponds
correctly to the boundary condition D[0,j] = 0 (i.e. D|0,j] — D[0,j — 1] =
0) of approximate string matching. If we were to use this algorithm for
computing edit distance, the newly introduced 0-bit of the vector H P; would
have to be changed into a 1-bit so that HP;[0] = 1, which corresponds to
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the initial condition D[0,j] = j (i.e. D|0,j] — D[0,7 — 1] = 1) of computing
edit distance. The resulting formula for computing the vector V P; is then:

VP =(HNj <<1)| ~(D0; | (HP; << 1)).

By imitating this time the case of HN;, we have that V N;[i] = 1 iff D0;[i] =
1 and HP;[i —1] = 1. Again the row (i — 1) bit HP;[i — 1] has to be shifted
one step down to align it with row 7. The same comment as above, about
setting the newly introduced bit of H P; into a 1-bit in the case of computing
edit distance, applies also here. We get the following formula for computing
the vector V Nj:

VNJ' = DOj & (HP]' << 1).

The complete algorithm corresponding to steps 1 - 4 is given in Fig. 10.
We follow the example of [49] and call it “BPM”, which stands for Bit
Parallel Matrix. Apart from the different way of deriving the algorithm,
the only difference between this version and the original algorithm of Myers
is that he uses two vectors X'V; and X H; instead of a single diagonal vector
DO0;. In fact DO; = XV; OR X Hj, and XV corresponds to the cases 1 and
2 and X H; to the cases 2 and 3 of the computation of D0;.

A practical version would avoid shifting the vector H P; twice, make some
of the vectors share the same variable and keep only the currently needed
values of the difference vectors in memory in a similar fashion to what was
discussed about saving space in the case of the dynamic programming matrix
(Section 2).
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ComputePM(P)

1. For i+ 0too—1Do
2. PM; — 0™

3. For ¢ — 1 to m Do

4. PMp, «— 0m"107!

BPMSearch(P, T, k)

5 ComputePM(P)

6 V Ny — 0™, VPy«+— 1™, currDist — k

7. For j — 1 ton Do

8 DOJ — (((PMTJ & Vijl) + Vijl) A Vijl) | PMTJ. | VNj,1
9 HP] — VN]',1 | ~ (DOJ | Vijl)

10. HN] — DOJ & Vijl

11. If HP; & 10m~! =10™"! Then

12. currDist «— currDist + 1

13. Else If HN; & 10™~! = 10™~! Then

14. currDist «— currDist — 1

15. If currDist < k Then

16. Report occurrence at Tj

17. VP; — (HN; <<1)| ~ (D0, | (HP; << 1))
18. VNj<—DOj & (HPj << 1)

Figure 10: Our DO0j-based version of the bit-parallel matrix algorithm
(BPM). We assume that the alphabet ¥ is represented by the integers from
0too—1.
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6 Adding Transposition into the Bit-parallel Meth-
ods

In this section we discuss how the three currently best bit-parallel approx-
imate string matching algorithms (see Section 4) can be modified to use
the Damerau edit distance. This work has appeared in [21], and we have
previously shown a modification for BPM alone in [17].

6.1 A New Recurrence for the Damerau Edit Distance

We begin by reformulating Recurrence 2 into a form that is easier to use
with bit-parallel algorithms. Our trick is to investigate how a transposition
relates to a substitution. Consider comparing the strings P = “abc” and T =
“acb”. Then D|2,2] = edp(Py.2,T1.2) = edp(“ab”,“ac”) = 1, where the one
operation corresponds to substituting the first character of the transposable
suffixes “bc” and “cb”. When filling in the value D3, 3] = ed p(“abc”,“acb”),
the effect of having done a single transposition can be achieved by allowing
a free substitution between the latter characters of the transposable suffixes.
This is the same as declaring a match between them. In this way the cost
for doing the transposition has already been paid for by the substitution of
the preceding step. It turns out that this idea can be developed to work cor-
rectly in all cases. We find that the following Recurrence 3 for the Damerau
edit distance is in effect equivalent with Recurrence 2. It uses an auxiliary
|P| x (|T] + 1) Boolean table MT as it is convenient for bit-parallel algo-
rithms. The value MTYi, j| records whether there is the possibility to match
or to make a free substitution when computing the value DI[i, j].

Recurrence 3
DJi,0] =14, D[0,j] = j, MT[i,0] = false.
true, if P, =T or (MT[i—1,j— 1] = false and

MTIi,j] = Pi1i = (Tj-1.5)").
false, otherwise.

Dli, j] = Dli—1,j — 1], if MT[i,j] = true.
=\ 1+ min(Dfi — 1,5 — 1], D[i — 1, 4], D[i, j — 1]), otherwise.

We prove by induction that Recurrence 2 and Recurrence 3 give the same
values for D[i, j] when ¢ > 0 and j > 0.
Clearly both formulas give the same value for D][i, j| when i = 0 or 1 or
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j = 0or 1. Consider now a cell DJi, j| for some j > 1 and ¢ > 1 and assume
that all previous cells with nonnegative indices have been filled identically
by both recurrences!. Let z be the value given to DI[i,j] by Recurrence
2 and y be the value given to it by Recurrence 3. The only situation in
which the two formulas could possibly behave differently is when P; # T
and P,_1 ; = (Tj,l..j)R. In the following two cases we assume that these
two conditions hold.

If Dli—1,7—1]=D[i —2,j — 2]+ 1, then MT[i—1,j — 1] = false and
MT(i,j] = true, and thus y = D[i — 1, j — 1]. Since the diagonal property
requires that x > D[i — 1,j — 1] and now = < D[i — 2,j — 2] + 1, we have
x=D[i—2j-2+1=D[i—1,j—1]=y.

Now consider the case D[i —2,j —2] = D[i — 1,j — 1]. Because P;,_; =
T; # P, = Tj_1, this equality cannot result from a match. If it resulted
from a free substitution, then MT[i — 1,j — 1] = true in Recurrence 3.
As P; # Tj, the preceding means that MTYi,j] = false. Therefore y =
1+min(D[i — 1,7 — 1], D[i — 1, 5], D[i,j — 1]) and = 1 + min(D[i — 2, —
2],D[i—1,j],DJi,j —1]). Because D[i—2,j—2] = D[i —1, j — 1], the former
means that = 1+ min(D[i — 1,5 — 1], D[i — 1, j], D[i,j — 1]) = y. The last
possibility is that the equality D[i — 2,j — 2] = D[i — 1, j — 1] resulted from
using the option D[i — 1,5 — 1] = 1 + min(D[i — 2,5 — 1], D[i — 1,j — 2]).
As P,y =Tj and P; = T;_1, both recurrences must have set D[i — 1, j| =
D[i—2,j—1] and Dl[i,j— 1] = D[i— 1,7 — 2], and therefore D[i—1,j—1] =
1+ min(D[i — 2,5 — 1],D[i — 1,j — 2]) = 1 4+ min(D[i — 1,4], D[i,j — 1]).
Now both options in Recurrence 3 set the same value y = D[i — 1,j — 1],
and = 1+ min(D[i — 2,5 — 2|,D[i — 1,4],D[i,j — 1]) = 1 + min(D[i —
1,j],Dli,j — 1)) =D[i—1,j — 1] = y.

In each case Recurrence 2 and Recurrence 3 assigned the same value for
the cell D[i, j]. Therefore we can state by induction that the recurrences are
in effect equivalent. O

The intuition behind the table MT in Recurrence 3 is that a free substi-
tution is allowed at D[i, j] if a transposition is possible at that location. But
we cannot allow more than one free substitution in a row along a diagonal,
as each corresponding transposition has to be paid for by a regular substi-
tution. Therefore when a transposition has been possible at D[i, j], another
will not be allowed at D[i + 1,7 + 1]. As shown above, this restriction on
when to permit a transposition does not affect the correctness of the scheme.

!We assume that a legal filling order has been used, which means that the cells D[i —
1,7 —1], D[i — 1,4] and D[i, j — 1] are always filled before the cell D3, j].
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6.2 Modifying the Bit-parallel Algorithms
The Bit-parallel NFA of Wu & Manber

The bit-parallel approximate string matching algorithm of Wu & Manber
[60] is based on representing a non-deterministic finite automaton (NFA) by
using bit-vectors. The automaton has (k + 1) rows, numbered from 0 to k,
and each row contains m states. Let us denote the automaton as R, its row
d as R; and the state i on its row d as Rg4;. The state Ry; is active after
reading the text up to the jth character if and only if ed(Py ;,T}. ;) < d
for some h < j. An occurrence of the pattern with at most k errors is
found when the state Ry ,, is active. Assume for now that w < m. Wu &
Manber represent each row Ry as a length-m bit-vector, where the ith bit
tells whether the state R, ; is active or not. In addition they build a length-
m match vector for each character in the alphabet. We denote the match
vector for the character A as PM),. The ith bit of PM) is set if and only
if P; = A. Initially each vector Rq has the value 0414 (this corresponds
to the boundary conditions in Recurrence 1). The formula to compute the
updated values R/, for the row-vectors R, at text position j is shown in
Fig. 11.

BPRStep(j)

Ry ((Ro << 1) | 0™~'1) & PMr,

For d +— 1 to k Do
Rél — (Ra<<1) & PMTJ.) | Ri—1 | (Ra—1 <<1) | (R&71 <<1)
Rl — Ry | om 1

=

-

Figure 11: The update formula of the bit-parallel algorithm of Wu & Manber
at text position j.

The right side of the third row computes the disjunction of the different
possibilities given by Recurrence 1 for a prefix of the pattern to match with
d errors. The fourth row sets the first bit of R/, for d > 0 to propagate the
effect of the boundary condition DI0,j] = 0. At least [42, 41, 24, 49, 21]
show an erroneous formula that does not take care of this. Ry is different as
it needs to consider only matching positions between P and the character 717,
and it also has to have its first bit set after the left-shift in order to let the
first character match at the current position. When m < w, the run time of
this algorithm is O(kn) as there are O(k) operations per text character. The
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general run time is O(kn[m/w]) as a vector of length m may be simulated
in O([m/w]) time using O([m/w]) bit-vectors of length w. In this thesis
we do not discuss the details of such a multi-word implementation for any
of the bit-parallel algorithms.

Navarro [42] and Holub [16] have independently modified this algorithm
to use the Damerau distance by essentially following Recurrence 2. Navarro
did this by appending the automaton to have a temporary state vector Ty
for each R, to keep track of the positions where a transposition may occur.
Initially each Ty has the value 0™. Navarro’s formula is shown in Fig. 12.

BPRStepDam/Nav(j)
1. Ry« ((Ro<<1)]0m™ 1) & PMy,
2. For d — 1 to k Do

3. Ry« ((Rg << 1) & PMr;) | Ra—1 | (Ra—1<<1) | (R;_, <<1)
| (Td & (PMTj << 1))

4. R« R, | 0™ 11

5. T) — (R4—1 << 2) & PMpr,

Figure 12: Navarro’s modification of the bit-parallel algorithm of Wu &
Manber to use the Damerau edit distance.

Navarro’s formula adds 6k operations into the basic version for the Lev-
enshtein edit distance. The version of Holub is slightly different, but also it
uses 6k additional operations.

Recurrence 3 suggests a simpler way to facilitate transposition. The
only difference between it and Recurrence 1 is in the condition on when
Dli,j] = D[i —1,j — 1]: Instead of the condition P; = T}, Recurrence 3
sets the equal value if MTi, j] = true. We use a length-m bit-vector T'C' in
storing the last column of the auxiliary table MT'. The ith bit of T'C' is set iff
row ¢ of the last column of MT has the value true. When we arrive at text
position j, T'C' is updated to hold the values of column j. Initially TC = 0™.
Based on Recurrence 3, the vector T'C' may be updated with the formula
TC' = PM7; | (((~TC) << 1) & (PMr; << 1) & PMr,_,). Here the
right “AND” sets the bits in the pattern positions where P; 1 ; = (Tj_luj)R,
the left “AND” sets off the ith bit if row (i — 1) of MT had the value true
in the previous column, and the “OR” sets the bits in the positions where
P; = T;. By combining the two left-shifts we get the formula shown in
Fig. 13 for updating the Ry vectors:

Our formula adds a total of 6 operations into the basic version for the
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BPRStepDam/Ours(j)

TC' — PMr, | ((((~TC) & PMr,) << 1) & PMy, ,)

Rl — ((Rp << 1) | 0m~11) & TC’

For d — 1 to k Do
R, — ((Rg<<1) & TC') | Rqg—1 | (Ra—1<<1) | (R)_,<<1)
R, — R, | 0™ 11

AN

Figure 13: Our modification of the bit-parallel algorithm of Wu & Manber
to use the Damerau edit distance.

Levenshtein edit distance. Therefore it makes the same number of operations
as Navarro’s or Holub’s version when £ = 1, and wins when k > 1.

The Bit-parallel NFA of Baeza-Yates & Navarro

Also the bit-parallel algorithm of Baeza-Yates & Navarro [2] is based on
simulating the NFA R. The first d states on row Ry are trivial in that they
are always active. The last k — d states will be active only if the state Ry, ,
is active, and as we are only interested in knowing whether there is a match
with at most k errors, having the state Ry, ,, is enough. These facts enable
Baeza-Yates & Navarro to include only the m — k states Rgqi1..-Rdm—k-+d
on row Ry. A further difference is in the way the states are encoded into
bit-vectors. They divide R into m — k diagonals D1, .., D,,_;, where D;
is a bit-sequence that describes the states Rgq4; for d = 0..k. If a state
R, is active, then all states on the same diagonal that come after R;; are
active, that is, the states Rgip 4p for h > 1. To describe the status of
the ith diagonal it suffices to record the position of the first active state in
it. If the first active state on the ith diagonal is f;, then Baeza-Yates &
Navarro represent the diagonal as the bit-sequence D; = 0¥t1=fi1fi, The
value f; = k4 1 means that f; > k + 1, that is, that no states on the ith
diagonal of R is active. A match with at most k errors is found whenever
fm—k < k+ 1. The D; bit-sequences are stored consecutively with a sin-
gle separator zero-bit between two consecutive states. Let RD denote the
complete diagonal representation. Then RD is the length-(k+2)(m—k) bit-
sequence 0 D1 0 D3 0...0 D,,_j. We assume for now that (k+2)(m—k) < w
so that RD fits into a single bit-vector.

Baeza-Yates & Navarro encode also the pattern match vectors differently.
Let PM D) be their pattern match vector for the character A. The role of
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the bits is reversed: a 0-bit denotes a match and a 1-bit a mismatch. To

align the matches with the diagonals in RD, PM D, has the form

0 ~ (PMy[l.k+1]) 0 ~ (PMy[2..k+2]) 0..0 ~ (PMy[m—k..m]).
Initially no diagonal has active states and so RD = (0 1¥T1)m=k_ The

formula for updating RD at text position j is shown in Fig. 14. Again, we

follow the example of [49] and call the algorithm “BPD”, which stands for

Bit Parallel by Diagonals.

BPDStep(j)

1.z« (RD>>(k+2)|PMDr,

2. RD'«— ((RD << 1) | (0*11)™=F & (((z + (0*H1)m=k) A g) >> 1)
3. & (RD << (k+3)) | (0F11)m—k=101k+1) & (0 1FF1)m—k

Figure 14: The update formula of the bit-parallel algorithm of Baeza-Yates
& Navarro at text position j.

If (k4 2)(m — k) < w, the run time of this algorithm is O(n) as there is
only a constant number of operations per text character. The general run
time is O([km/w]|n) as a vector of length (k + 2)(m — k) may be simulated
in O([km/w]) time using O([km/w]) bit-vectors of length w.

Because of the different way of representing R, our way of modifying the
algorithm of Wu & Manber to use the Damerau edit distance does not work
here without some changes. Now we use a bit-vector T'C'D instead of the
vector T'C of the previous section. T'C'D has the same function as T'C, but
its form corresponds to the algorithm of Baeza-Yates & Navarro. First of
all the meaning of the bit-values is reversed: now a 0-bit corresponds to the
value true and a 1-bit to the value false in the table TR of Recurrence 3.
The second change is in the way we compute the positions where P;_1 ; =
(Tj_luj)R. Because of the interleaving 0-bits in the pattern match vector
PMDy, the formula (PM Dy, << 1) | PMDr,_, does not correctly set
only those bits to zero that correspond to a transposable position (note that
also the roles of “AND” and “OR” are reversed). But by inspecting the
form of BPD), we notice that the desired effect is achieved by using the
formula (PM D7, >> (k+2)) | PMDr,_,. Shifting (k + 2) bits to the
right causes diagonal (i — 1) to align with the ith diagonal, and this previous
diagonal handles the matches one step to the left in the pattern. The only
delicacy in doing this is the fact that now the first diagonal will have no
match-data. Because we need to have made a substitution before making a
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free substitution that corresponds to a transposition, a transposition will be
possible only in diagonals 2..m — k. Thus the missing data can be replaced
with mismatches. Note that we do not need to consider the states not present
in the reduced automaton of Baeza-Yates & Navarro. By similar reasoning
also the previous values of TC'D will be shifted (k + 2) bits to the right
instead of 1 bit to the left, and its missing data can be replaced by ‘false’
values. Initially 7C'D has only ‘false’ values and so TC'D = (0 1++1)m=k,
The modified formula for updating RD at text position j is shown in Fig. 15.

BPDStepDam/Ours(j)

1. TCD'«— PMDz & ((~TCD) | PMDr,) >> (k+2)) | PMDg;_,)
2. | 01k+10(m7k71)(k+2))

3. z— (RD>>(k+2)|TCD

4. RD'« ((RD << 1) | (0*11)™=* & (((z + (0FFL1)m=F) N 2) >> 1)

5. & ((RD << (k+3)) | (0F+l1)ym=k=1gik+l) & (0 1k+1)m—F

Figure 15: Our modification of the bit-parallel algorithm of Baeza-Yates &
Navarro to use the Damerau edit distance.

Now the number of added operations is 7, as one “extra” operation arises
from having to set the missing values (second row).

Myers’ Bit-parallel Computation of D

Because the algorithm of Myers uses the same pattern match vectors as the
algorithm of Wu & Manber, both of these algorithms can be modified to
use the Damerau distance by using exactly the same method. Thus the
formula to compute the updated vectors DO, HP', HN',VP' and VN’ at
text position j is simply as shown in Fig. 16.

There is again 6 added operations.

6.3 Test Results

We implemented and tested a Damerau edit distance -version of each of
the three discussed bit-parallel algorithms. The version of the algorithm
of Wu & Manber was implemented from scratch by us, and the other two
were modified using the original implementations from those authors. We
compared also the versions for the Levenshtein edit distance to see how
our modification affects the respective performance of the algorithms. The
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BPMStepDam/Ours(j)

TC' — PMy, | (((~TC) & PMr,) << 1) & PMy, ,)
D0 — ((TC" & VP)+VP)"VP) | TC' | VN
HP' — VN | ~ (D0 | VP)

HN' — VP & DU

VP «— (HN' <<1) | ~ (D0 | (HP' << 1))

VN’ — (HP' << 1) & D0’

S otk W

Figure 16: Our modification of the bit-parallel algorithm of Myers to use
the Damerau edit distance.

computer used in the tests was a 600 MHz Pentium 3 with 256 MB RAM
and Linux OS. All code was compiled with GCC 3.2.1 and full optimization
switched on.

The tests involved patterns of lengths 10, 20, and 30, and with each
pattern length m the tested k values were 1..|m/2|. There were 50 randomly
picked patterns for each (m, k)-combination. The searched text was a 10 MB
sample from Wall Street Journal articles taken from the TREC-collection
[14].

The version of the algorithm of Baeza-Yates & Navarro was the one from
[46], which includes a smart mechanism to keep only a required part of the
automaton active when it needs several bit-vectors. As the pattern lengths
were < w = 32, the other two algorithms did not need such a mechanism.

Fig. 17 shows the results. In general the algorithms compare quite sim-
ilarly to each other with and without our modification to use the Damerau
edit distance. It is seen that with the Levenshtein edit distance the algorithm
of Wu & Manber becomes slowest when k& > 4, whereas with the Damerau
edit distance it becomes slowest already at k& = 3. The algorithm of Baeza-
Yates & Navarro is typically the fastest for low error levels irrespective of
which of the two distances we use. But its advantage over the algorithm of
Myers becomes smaller under the Damerau edit distance. The algorithm of
Myers is affected very little by the modification, and it is the fastest algo-
rithm when the error level k/m is large and the algorithm of Baeza-Yates
& Navarro needs more bit-vectors in representing the automaton.

The algorithm of Baeza-Yates & Navarro behaved oddly with the Lev-
enshtein edit distance in the case m = 10 and k& < 3. We found no other
reason than some intrinsic property of the compiler optimizer or the proces-
sor pipeline for the bad performance with these two values (even worse than
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Figure 17: The two first rows show the average time for searching for a
pattern from a 10 MB sample of Wall Street Journal articles taken from
TREC-collection. The first row shows the results for the Levenshtein edit
distance and the second row for the Damerau edit distance. The third row
shows the ratio of the run times with and without the modification.
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the version modified to use the Damerau edit distance).
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7 Using Diagonal Tiling in Computing Edit Dis-
tance

In this section we present a bit-parallel version of the diagonal restriction
scheme of Ukkonen, which was briefly discussed in Section 3. This work has
appeared in [20, 22].

In the following we concentrate on the case where the computer word
size w is large enough to cover the required diagonal region. Let [, denote
the length of the delta vectors. Then our assumption means that w > [, =
min(m, |(t —n+m)/2] + [(t+n —m)/2| +1). Note that in this case each
of the pattern match vectors PM) may have to be encoded with more than
one bit vector: If m > w, then PM) consists of [m/w] bit vectors.

The basic idea is to mimic the diagonal restriction method of Ukkonen
by tiling the vertical delta vectors of BPM diagonally instead of horizontally
(Fig. 18a). We achieve this by modifying slightly the way the vertical delta
vectors V' P; and V N; are used: Before processing column j 4+ 1 the vertical
vectors V P; and V N; are shifted one step up (to the right in terms of the
bit vector) (Fig. 18b). When the vertical vectors are shifted up, their new
lowest bit-values V P;[l,] and V Nj[l,] are not explicitly known. This turns
out not to be a problem. From the diagonal and adjacency properties we
can see that the only situation which could be troublesome is if we would
incorrectly have a value VN;[l,] = 1. This is impossible, because it can
happen only if D0; has an "extra” set bit at position [, +1 and HP;[l,] = 1,
and these two conditions cannot simultaneously be true.

In addition to the obvious way of first computing V' P; and V' N; in normal
fashion and then shifting them up (to the right) when processing column
(7 + 1), we propose also a second option. It can be seen that essentially the
same shifting effect can be achieved already when the vectors V P; and V N;
are computed by making the following changes on lines 17-18 of the BPM
algorithm in Fig. 10 (Section 5, page 26).

-The diagonal zero delta vector DO0; is shifted one step to the right.
-The left shifts of the horizontal delta vectors are removed.

This second alternative uses less bit operations and does not require the
extra modification of setting the first bit of HP; after shifting it left in
order to incorporate the boundary condition D[0,j] = j (this modification
is shown in Fig. 25 on page 46). But the choice between the two may depend
on other practical issues. For example if several bit vectors have to be used
in encoding D0;, the column-wise top-to-bottom order may make it more
difficult to shift DO; up than shifting both V P; and V N; down.
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Figure 18: a) Horizontal tiling (left) and diagonal tiling (right). b) The
figure shows how the diagonal step aligns the column (5 — 1) vector one
step above the column j vector. c) The figure depicts in gray the region
of diagonals, which are filled according to Ukkonen’s rule. The cells on the
lower boundary are in darker tone.

We also modify the way some cell values are explicitly maintained. We
choose to calculate the values along the lower boundary of the filled area of
the dynamic programming matrix (Fig. 18c). For two diagonally consecutive
cells D[i — 1,5 — 1] and D]i,j] along the diagonal part of the boundary
this means setting D[i,j| = D[i — 1,5 — 1] if D0;[l,] = 1, and DJi,j| =
D[i—1,j —1]+1 otherwise. The horizontal part of the boundary is handled
in similar fashion as in BPM: For horizontally consecutive cells D[i, j—1] and
DJi, j] along the horizontal part of the boundary we set D[i, j] = D[i, j—1]+1
if HP;[l,) = 1,Dl[i, 5] = D[i,j — 1] = 1 if HN,[l,| = 1, and D[i,j|] = DJi,j —
1] otherwise. Here we assume that the vector length [, is appropriately
decremented as the diagonally shifted vectors would start to protrude below
the lower boundary.

Another necessary modification is in the way the pattern match vector
PMr; is used. Since we are gradually moving the delta vectors down, the
match vector has to be aligned correctly. This is easily achieved in O(1) time
by shifting and OR-ing the corresponding at most two match vectors. Note
that this requires us to keep track of the amount of misalignment between
the current tile position and the match vectors.

If we are using the Damerau edit distance version of BPM (Section 6.2),
we have to also modify the way the vector T'C' is computed in the first line of
Fig. 16 (page 34). First of all the old T'C' vector is shifted down (left), which
is not necessary when the vectors are tiled diagonally. Because of similar
reason the vector PM;_; has to be shifted one step up (to the right). This
means that also the value PM;_1[l, + 1] will have to be present in the match
vector PM;_1. We do not deal with this separately, but assume from now
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on that [, + 1 < w when dealing with the Damerau edit distance. Another
option would be to set the last bit separately, which can be done in O(1)
time.

Figures 19 and 20 show the algorithms for computing the delta vectors
at column j when diagonal tiling is used. The former figure is for the
Levenshtein and the latter for the Damerau edit distance. We do not show
the details of building the match vectors or updating the cell value at the
lower boundary. These can be done as discussed above.

When [, < w, each column of the dynamic programming matrix is com-
puted in O(1) time, which results in the total time being O (o + n) including
also time for preprocessing the pattern match vectors. In the general case,
in which l, > w, each length-l,, vector can be simulated by using [/, /w]
length-w vectors. This can be done in O([l,/w]) time per operation, and
therefore the algorithm has in general a run time O(c + [l,/w]|n), which is
O(o + [ed(P,T)/w] xn) as I, = O(ed(P,T)). The slightly more favourable
time complexity of O(o + [ed(P,T)/w]| x m) in the general case can be
achieved by simply reversing the roles of the strings P and T: We still have
that 1, = O(ed(P,T)), but now there are m columns instead of n. In this
case the cost of preprocessing the match vectors is O(o + n), but the above
complexities hold since n = O(ed(P,T) + m) when n > m.

Computing column j in diagonal tiling (Levenshtein distance)

Build the correct match vector into PMry,

DO — ((PMp, & VPj_1)+VPj_1) " VPj_1) | PMy, | VN;_1
HPj < VNj 1| ~(D0; | VPj1)

HN; «— D0; & VPj_4

Update the appropriate cell value at the lower boundary.
VN]' — (DOJ >> 1) & HP]

RIS

Figure 19: Computation of column j with the Levenshtein edit distance and
diagonal tiling (for the case I, < w).

7.1 Test Results

In this section we present initial test results for our algorithm in the case of
computing the Levenshtein edit distance. We concentrate only on the case
where one wants to check whether the edit distance between two strings A
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Computing column j in diagonal tiling (Damerau distance)
Build the correct match vector into PMr,

TC]' — PMTJ. | ((N Tijl) & (PMTJ. << 1) & (PMjfl >> 1))
DOj — (((TCJ & Vijl) + Vijl) A Vijl) | TCj | VNjfl
HPj —VNj_1| ~(DO0j [ VPj1)

HN; — D0; & VPj_;

Update the appropriate cell value at the lower boundary.
VP]' — HNJ | ~ ((DOJ >> ].) | HPJ)

VN]' — (DOJ >> 1) & HPJ

XN oot W

Figure 20: Computation of column j with the Damerau edit distance and
diagonal tiling (for the case I, < w).

and B is below some pre-determined error-threshold k. This is because the
principle of the algorithm makes it in practice most suitable for this type
of use. Therefore all tested algorithms used a scheme similar to the cut-off
method briefly discussed in the end of Section 3.2. As a baseline we also
show the runtime of using the original BPM, the O([m/w]|n) bit-parallel
algorithm of Myers.

The test consisted of repeatedly selecting two substrings in pseudo-
random fashion from the DNA-sequence of the baker’s yeast, and then test-
ing whether their Levenshtein edit distance is at most k. The computer used
in the tests was a 600 MHz Pentium 3 with 256 MB RAM and running Mi-
crosoft Windows 2000. The code was programmed in C and compiled with
Microsoft Visual C+4 6.0 with full optimization. The tested algorithms
were:

MYERS: The algorithm of Myers [38] modified to compute edit distance.
The run time of the algorithm does not depend on the number of errors
allowed. The underlying implementation is from the original author.

MYERS(cut-off): The algorithm of Myers using cut-off modified to com-
pute edit distance. The underlying implementation (including the cut-
off-mechanism) is from the original author.

UKKA (cut-off): The method of Ukkonen based on filling only a restricted

region of diagonals in the dynamic programming matrix and using the
cut-off method (Section 3.1).
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UKKB(cut-off): The “greedy” method of Ukkonen [53] based on comput-
ing the values in the dynamic programming matrix in increasing order
(Section 3.3).

OURS(cut-off): Our method of combining the diagonal restriction scheme
of Ukkonen with BPM. We used a similar method of tracking the lowest
active row as is used in ABNDM/BPM (Section 8.1).

The results are shown in Fig. 21. We tested sequence pairs with lengths 100,
1000 and 10000, and error thresholds of 10%, 20% and 50% of the sequence
length (for example & = 100, 200 and 500 for the sequence length m = n =
1000). It can be seen that in the case of k = 10 and m = 100 UKKB(cut-off)
is the fastest, but in all other tested cases our method becomes the fastest,
being 8 % - 38 % faster than the original cut-off method of Myers that is
modified to compute edit distance. The good performance of UKKB(cut-
off) with low values of k is not too surprising as its expected run time has
been shown to be O(m+k?) [36]. But we did investigate this a bit more and
concluded that a major reason for the bit-parallel methods not to be always
the fastest is that for low k the cost for preprocessing the match vectors
(PM)) becomes significant.

m=mn = 100 m =n = 1000 m =n = 10000

error limit (%) 10 20 50 10 20 50 10 20 50

UKKA (cut-off) 1,92 | 5,93 | 32,6 | 13,5 | 52,7 | 322 | 13,1 | 54,9 | 351
UKKB(cut-off) 1,23 | 3,02 | 14,9 | 6,17 | 22,9 | 139 | 5,57 | 22,4 | 146
MYERS(cut-off) | 2,46 | 3,23 | 4,07 | 2,47 | 4,48 | 15,9 | 0,71 | 2,35 | 134
OURS(cut-off) 2,271 2,47 | 3,32 | 1,96 | 3,08 | 10,5 | 0,48 | 1,47 | 9,03
MYERS 4,24 17,0 14,5

Figure 21: The results (in seconds) for thresholded edit distance computa-
tion between pairs of randomly chosen DNA-sequences from the genome of
the baker’s yeast. The error threshold is shown as the percentage of the
pattern length (tested pattern pairs had equal length). The number of pro-
cessed sequence pairs was 100000 for m = n = 100, 10000 for m = n = 1000,
and 100 for m = n = 10000.

7.2 Further Considerations

We note that the diagonal area of the dynamic programming matrix could
also be covered using the conventional horizontal tiling: compute the matrix
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otherwise in a similar manner as the cut-off version of the original method of
Myers [38], but now excluding all tiles that do not overlap the diagonal area.
The run time would be O(o + ([ed(P,T)/w] + 1)m). This method could be
competitive for large values of ed(P,T') as then the additional work could
be compensated by the benefit of not having to build the match vectors at
each column.
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Figure 22: The BDM search scheme.

8 Using BPM in ABNDM

In this section we modify the ABNDM algorithm of Navarro and Raffinot
[48] to use BPM (Section 5). The original version used BPR (see Section 6.2,
page 29), which has the drawback that its run time scales directly with k.
This work has appeared in [24].

In [8] Czumaj et al. proposed the BDM-heuristic for exact string match-
ing. The method is based on the fact that if a pattern occurrence begins
at position 7}, inside a text window 7} ji;,—1 of length m, then the prefix
Py j_phy1 of the pattern matches the text window suffix T}, ;. This sim-
ple fact can be exploited by using a suffix automaton (an automaton that
matches all suffixes of the pattern, discussed for example in [7]) that is built
for the reverse pattern P so that it detects prefixes of P. Initially j = 1, so
that the text window is T3 ,,, and the window is searched backwards start-
ing from the last character 1,1 = T;,. The search continues until either
the whole window has been searched or the automaton signals that there
can no longer be further matches for any prefix of the pattern. If the suffix
automaton reaches the beginning of the window and signals a match there,
then T} ji»,-1 = P and a match of the complete pattern has been found.
During the search the last (smallest) [, for which T4 j1m—1 = Piyi.m and
[ > 0, is recorded. If no such position is found, then [ = m. After the
backward search stops, the window is moved [ positions forward so that its
first character is T4, the next possible text position where a match for the
whole pattern can begin. This ensures that no occurrence of the pattern
can be missed. Fig. 22 illustrates.

The average run time of BDM is O(nlog,(m)/m), which is optimal for
exact string matching [62].

In [48] Navarro and Raffinot presented BNDM, a bit-parallel version of
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BDM that is very fast for small or moderate m. It is optimal on aver-
age when m < w, and O(nlog, (w)/w) otherwise. BNDM included, among
other things, also an extension of the basic heuristic of BDM for approxi-
mate string matching under the Levenshtein edit distance. The approximate
scheme has later been called ABNDM, and in [42] Navarro used it also under
the Damerau edit distance. BNDM and the original ABNDM use modified
versions of the bit-parallel NFA-simulations of Baeza-Yates and Gonnet [1]
(the case of exact matching) and the BPR of Wu and Manber [60] (the case
of approximate string matching).

The heuristic of ABNDM differs from that of BDM (and exact BNDM)
in three ways.

The first difference is that the length of the text window is m — k, as
that is the minimum length that an approximate match with k£ errors can
have.

The second difference is that now the suffix automaton must detect ap-
prozimate matches of the suffixes of P (= prefixes of P).

The third difference is that the possible matches must be verified sep-
arately. An approximate match between T ji,,—r—1 and some prefix of P
does not guarantee an approximate match for the full pattern; it is a neces-
sary but not a sufficient condition for a full match. This means that when
the approximate suffix automaton reaches the beginning of the window and
signals there a match with some prefix of the pattern, the current location
is checked for a full match by running an edit distance computation between
P and text from T} forward until either an approximate match with the pat-
tern is detected or the edit distance algorithm can decide (by using cut-off)
that there is no match.

Fig. 23 illustrates the approximate heuristic and Fig. 24 shows a high-
level pseudocode.

ABNDM-heuristic has been shown to work well with moderate m < w,
fairly low error-level k/m and small o. This is an interesting case, for
example, in DNA searching. But as the run time of BPR scales directly with
k, the original ABNDM can be competitive for only very small k regardless
of the values of m and w.

We show how to modify BPM for use with the ABNDM heuristic.

To make the algorithm pseudo-codes in the following discussion simpler,
we will enclose the basic logic of the BPM algorithm into the procedure
BPMEDStep shown in Fig. 25. The shown version keeps the vectors in
single bit-vectors. The procedure is shown only for the Levenshtein edit
distance. We will not discuss separately the case of using the Damerau
edit distance, but it can be handled by adding the modifications shown in
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Approximate suffix search remembering the last found prefix
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Verification by computing edit distance

Figure 23: The ABNDM search scheme.

ABNDM-heuristic (P, T, k)
je1
While j <n—(m—k)+1 Do
h—m-k—11l—m-—k
While h >0 AND suffix automaton for P® has active states Do
Feed suffix automaton with T4,
If suffix automaton matches Then /* prefix recognized */
If h>0Then!«—h
Else compute edit distance from 7} on to verify
h—h-1
pos «— pos + 1

© XN oA W=

—
e

Figure 24: The generic ABNDM algorithm.

Fig. 16 in Section 6.2. In order to compute edit distance, lines 4 and 5 of
BPMEDStep set the first bit of V P after shifting it (see Section 5).

8.1 Verifying with BPM

Let us start by discussing how to use BPM in the verification process.
Assume that we want to verify the position T for a possible approximate
match, and consider the dynamic programming table D that corresponds to
the edit distance computation between P and T . We assume the same
order as usual, that is, that the pattern is along the left side of D and T,
is on top. As the maximum length of an approximate match is m + k, D
will have at most (m + k+ 1) columns. By following the cut-off method (see
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BPMEDStep(PM,)

1. DO« ((PMy & VP)+VP)"VP)| PMy | VN
HP —VN | ~ (D0 |VP)

HN — D0 & VP

VP — (HN <<1)| ~ (D0 | (HP <<1) | 0m'1))
VN « DO & ((HP << 1) | 0m~11)

CUk

Figure 25: The basic update logic of the BPM algorithm that is modified to
compute edit distance.

Section 3.2), the verification can be abandoned if all cells in the currently
computed column have values larger than k.

As mentioned in Section 5, it is straightforward to modify BPM to com-
pute edit distance. But a problem is how to handle the cut-off heuristic.
BPM knows only the value D[m, j] explicitly at column j and the other cell
values are encoded implicitly by the delta vectors (see Section 5). In order
to use cut-off, we need to know if all cell values in the current column are
larger than k. We propose to handle this problem by keeping track of the
lowest active row (the lowest row with a value < k) in each column. We do
this with a bit-vector L; that is defined as follows:

-The lowest active row vector L;:
L;li] =1iff i = max{h | D[h,j] <kand 1 <h<m }.

Let /; denote the index of the lowest active row in column j. Then
Li=1<<(;—-1)= 10% 1. Note that if there is no active row, then j is
undefined and L; = 0.

From the boundary conditions on D we have that ¢; = k and L; =
0™m~*10*~1 initially when j = 0. It is clear from the diagonal property that
£; < €;_1+1. Our strategy is to first assume that this increment £; = £;_1+1
happens, which corresponds to setting L; = L;_; << 1. This enables us to
also handle the case k& = 0 correctly: in that case Ly would need to have only
its non-existing Oth bit set. But as we now pre-shift L; before text position
j, we can start the algorithm by setting L1 = Ly << 1 = 0™ %~110*  which
works also when k = 0.

At text position j we check whether the pre-shift of L; was correct by
AND-ing D0; and L;. If the result is zero, then D[¢;_1 +1,j] = D[¢;_1,j —
1]+ 1 =k+1 and L; needs to be recomputed. This is done by using the
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vertical delta vectors V.N; and V P;. We start from the value D[¢;_1+1,j] =
k+ 1 and use VN, VP; and L; to compute the values D[¢;_1 — h,j] for
h = 0,1, .. until either a value < k is found or there are no more rows left
(h > £;_1). The vector L; is updated during the computation.

A match is found if row m becomes active, and this is detected by check-
ing if L; = 10™~1. Note that the condition D[¢;,j] = k holds throughout
the verification as it is stopped when a match is found.

Fig. 26 shows the algorithm. Here we keep/update also the current
value of L; in a single bit-vector L. The amortized cost of updating L; is
constant per processed text character as £; < £;_1 + 1, initially ¢; = O(k),
each increment or decrement takes constant time and at least O(k) text
characters need to be processed before £; becomes undefined.

BPMVerify(PM, j)

1. VP «+— 1" VN <« 0™

2. I — Om—k—llok

3. While j <n Do

4. BPMEDStep(PMr,)

5. If DO & L = 0™ Then

6. val +— k+1

7. While val > k Do

8. If L = 0™ '1 Then Return FALSE

9. IfVP & L # 0™ Then val «— val — 1
10. IfVN & L # 0™ Then val < val +1
11. L—L>>1

12. Else If L = 10™~! Then Return TRUE

13. L—L<<1

14. j— J+1

15. Return FALSE

Figure 26: Adaptation of BPM to verify whether an occurrence of the pat-
tern starts from T}.

8.2 Suffix Matching with the BPM Simulation

The backward scanning phase of ABNDM uses a suffix automaton for P
to match prefixes of P. Approximate matching suffixes of A = PF against
a prefix of B = (T} jim—k—1)" can be defined as finding the indices j’ for
which edr,(Ap.m,B1.j) < k. Since the edit distances we deal with are
symmetric, we know from the discussion of approximate string matching
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version of the dynamic programming table D (Section 2) that using the
boundary conditions D[i,0] = 0 and D|0, j] = j results in having D[i, j| =
min(edr,(Ap. i, B1.j),h < i). In particular, we then have that D[m,j] =
min(edr,(Ap. m, Bi.j), h < m), which corresponds to matching suffixes of A
against the prefix B; ;: a suffix of A matches By ; when D[m, j] < k. Thus
the procedure BPMEDStep in Fig. 25 can be used also in this type of
approximate suffix matching by using the initial settings VN; = 0™ and
V P; = 0™k, Note that we use the strings A = P and B = (T} j1m—r—1)"
in order to match prefixes of P against a suffix of T} jm—r—1.

The problem now is how to use cut-off efficiently with the backward
suffix matching; this is crucial in terms of the performance of the ABNDM
heuristic as it seeks to skip text characters by abandoning the current text
window after scanning only relatively few characters from its end.

In principle we could use a similar method of keeping track of the lowest
active row with L; as was done in the previous section. But as the boundary
condition is now DJi,0] = 0 and the backward scan proceeds at least as long
as at least one cell in the current column is active, there are two changes.
First of all the condition D[{;, j] = k does not hold any more: when £; = m,
the cell D[¢;, j] may have any value between 0 and k. We can handle this by
updating L; as before only when £; < m, and computing the value D[m, j]
explicitly as long as £; = m. A second change is that now ¢y = m, which
means that the cost of updating L; is no more amortized to a constant time
per text character. This makes this basic approach quite slow.

In the following sections we present two solutions to determine faster
that all the DJi, j] values at current position j have surpassed k.

Bit-parallel Counters

The original BPM computes explicitly only the value D[m,j] at column
7. To have more explicit information about the cell values at the current
column 7, we discuss in this section a scheme to compute many such values
in parallel.

Our proposal is to put several counters into a single bit-vector MC' so
that they can be updated in parallel. Each counter will know the explicit
value of some cell DJi, j|. Because the window is of length m — k, we know
that 0 < DJ[i,j] < m — k during the backward scan. Thus each counter
needs at least [logy(m — k)| bits and there can be at most O(m/logm) of
them (assuming m < w).

Assume that each counter takes @ bits and that there are t = [m/Q]
counters that know the values D[m,j], D[m — Q,j],..,D[m — (t — 1)@, j]
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P MC sMask  eMask
1[] 1[] 1[] 1[]
2[] 2] 2] 2]
3 3 3 3
4[] s . 7y | 4l
5[] 5[] | Q-bit counter 5[] 5[]
sH st [ for D[4,] °H ‘;.
8] s . s 8
9[] o] ( Q-bit counter o[ 9]
nf|  ugJ forDI8] Y |
12 [ iy | . 12l 12

— 13 [ }Q—blt counter 13 13 [

14 i 14 14
1 for D[12,)] 51 =

Figure 27: The structure of the bit-vectors MC, sMask and eMask when
m =12 and Q = 4.

at column j. In this situation the counters need m + @ — 1 bits, and so
we assume from now on that m + Q@ — 1 < w. We compute a bit-vector
sMask = (09711)t0m*T@~171Q that has set bits in exactly those locations
that are aligned with the first bits of the counters (see Fig. 27). By using
sMask we can update the counters of MC' at position j by setting MC' «
MC — (HN; & sMask) + (HP; & sMask).

If we want to use only the values D[m, j], D[m—@Q, j|, .., Djm—(t—1)Q, j]
to know that all cells in the current column are > k, we need to have that
Dim — hQ,j] > k+ |Q/2] for h = 0..(t — 1). In the following we use
the notation k' = k + |@Q/2]. The preceding rule is a consequence of the
adjacency property (Section 2). Because DI[0,j] = j > DIJi, j] for i > 0, we
may think of having an implicit counter at row 0: If any counter has a value
> k/, then also D0, j] > k. Each cell is at most at distance |Q/2] from a
counter or row 0, and so for any i we have that D[i,j] > k' — |Q/2] = k
when all counters have a value > k’.

To be able to check the counters fast, we set up each counter in such a
way that its last bit is activated exactly when the value of the counter is
> k’. This is done by adding a value b to the value of each counter. Given
the previous discussion, the values @) and b have to fulfill the following rules:

(1) b+k +1=29"1
(2) b+m—k<29
(3) b>0
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To check the last bits of the counters we use a bit-vector eMask = sMask <<
(Q — 1) = (109-1)tpm+Q-1—t@ Tt has set bits at the positions that are
aligned with the last bits of the counters (see Fig. 27). Now all counters
have a value > k' = k + |Q/2] exactly when MC & eMask = eMask.

The value of () is determined so that it is the minimal number that
fulfills the previous conditions (1)-(3). These rules can be transformed into
requiring that b = 291 — k' — 1, m —k —k <29 1 and k' +1 < 291,
From this we get the solution @ = 1+ [logy(max(m —k — k', k' +1))] and
b=29-1 — k' — 1, which contains a recurrence for Q. Fortunately it is easy
to solve. Since (X +Y)/2 < max(X,Y) < X +Y for any nonnegative X
and Y, we have that logy(((m—k—k")+ (k' +1))/2) = logs((m—k+1)/2) <
logy(max(m—k—Fk', k'4+1)) < logy((m—k—k")+(k'+1)) = logy(m—k+1). As
logy(m—k+1) = 14+logy((m—Fk+1)/2), the result is that [logy(m—k+1)] <
Q < 1+ [logy(m — k + 1)], a 2-integer range for the actual @ value. If
Q = [logy(m — k +1)] does not satisfy the conditions (1)-(3), we use @ + 1.
This scheme works correctly as long as X,Y > 0, that is, |Q/2] <m — 2k,
or m—k > k’. The preceding is not a true restriction because if m —k < k/,
then none of the counters will ever get a value > k’ and they would thus be
useless anyway.

It is also possible to use several interleaved sets of counters, each set
in its own bit-parallel counter. This would make the distance between two
adjacent counters smaller and hence decrease the limit k’. For example with
two interleaved MC counters we could use the value k' = k+ |Q/4], and in
general with ¢ counters the value k' = k + |Q/2¢].

Because we traverse the window backwards until all the counters exceed
k', we will examine a few more text characters than if we had known the
exact values of all D[i, j|: The backward scan will behave as if we permitted
k' = k+|Q/2] differences. Note that the amount of shifting in the ABNDM
heuristic is not affected: we do know the exact value of D[m, j|.

Fig. 28 shows the algorithm for using bit-parallel counters. All the bit
masks are of length m, except sMask, eMask and MC, which are of length
m—+ @ — 1. Now we use two different pattern match tables: PM for P and
PMR for PE.

Bit-parallel Cut-off

The technique of the previous section has the problem that it inspects more
text characters than necessary. Now we propose a way to achieve a more
accurate cut-off with the bit-parallel counters. The idea is to mix the bit-
parallel counters with the technique of keeping track of the lowest active
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row.

Assume that, given a value ) that we define later, the multiple counter
vector MC is built in similar fashion as in the previous section. Thus it
contains t = [m/Q] counters that hold the values of the cells D[m, j], D[m—
Q,7],...,Dim — (t — 1)@, j]. Now each counter is assigned a region of @) bits
so that the counter for D[m — hQ,j] handles the cells D[m — (h + 1)Q +
1,7],..D[m — hQ, j]. Note that the counter for D[m — (t — 1)@, j] may have
a smaller region, but this will not be a problem. We will keep track of the
lowest active row within these regions. By this we mean that we will know
the minimum 2z for which D[m — h@ — z,j] < k with some h € [0..t — 1].
Let ; denote the value of x at column j, that is, the minimum distance
between an active cell and the end of the corresponding counter region. As
D[m,0] = 0, we will initially have §p = 0.

Now the value of ) is the minimum number that fulfills the following
conditions:

(1) b+k+1=29"1
(2) b+m—Fk<29
(3) b>0

This time we can directly compute @ = 1+ [logy(maz(m — 2k, k + 1))].
Keeping track of the lowest active row within some region can be done
in parallel. We will trace the lowest active row(s) by keeping track of the
value d; and setting the counter-vector MC' to hold the values of the cells
Dim —é;,7], Dlm — Q — 6;,7],..,Dlm — (t = 1)Q — 0;, 7] at column j. The
values of §; and MC can be computed by following a similar strategy as was
done with /; and L; in Section 8.1. If §;_1 > 0, we assume that §; = 6;_1 —1,
and otherwise that §; = ;1 = 0. Note that as J; measures the distance to
the end of a region, decrementing it corresponds to incrementing ¢;. Then
the values of the counters are updated. If we set initially §; = ;-1 — 1,
the counter values are updated by setting MC — MC + (~ (D0; <<
9;) & sMask), and otherwise by setting MC «— MC — (HN; & sMask) +
(HP; & sMask). The latter needed no shifting as then we initially assume
that §; = d;_1 = 0. If no counter has a value < k after updating them, we
start to increment J; and update M C' correspondingly. This is done by first
setting MC — MC + (VN; << §;) & sMask) — ((VP; << ;) & sMask)
and only then ¢; < 6; + 1. This order of computation comes from how we
move “the wrong way” along the vertical delta vectors VN and VP. We
keep incrementing J; until either some counter has a value < k or we would
be already trying the value 6; = (). In the latter case we stop because then it
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is known that all cells in the current column have a value > k (each counter
has already tried all remaining possibly active cells within its region).

It is possible that the value m — (t — 1)@ — §; becomes smaller than 0
while incrementing ¢;, which means that the upmost counter would no more
correspond to an existing cell D[i, j]. For this to happen, however, the whole
region of the upmost counter must have values larger than k, and it is not
possible that a cell in this area gets a value < k later. So if the upmost
counter goes out of bounds, we can safely stop using it by clearing its check
bit from eMask. Note that ignoring this fact leads to inspecting slightly
more characters (an almost negligible amount) but one instruction is saved,
which is convenient in practice.

We also tried a practical version of using cut-off, in which the counters are
not shifted. Instead they are updated in a similar fashion to the algorithm of
Fig. 28, and when all counters have a value > k, we try to shift a copy of them
up until either a cell with value < k is found or () — 1 consecutive shifts are
made. In the latter case we can stop the search, since then we have covered
checking the whole column j. This version turned out to be sometimes
slightly faster than the present cut-off algorithm, but the difference between
the two is very small.

Fig. 29 shows the algorithm. The counters are not shifted, we use §
instead.

8.3 Experimental Results

We compared our BPM-based ABNDM against the original BPR-based AB-
NDM, as well as those other algorithms that, according to a recent survey
[41], are the best for moderate pattern lengths. We tested with random pat-
terns and text over uniformly distributed alphabets. Each individual test
run consisted of searching for 100 patterns from a text of size 10 Mb. We
measured total elapsed times.

The computer used in the tests was a 64-bit Alphaserver ES45 with four 1
GHz Alpha EV68 processors, 4 GB of RAM and Tru64 UNIX 5.1A operating
system. We used a 64-bit architecture in order to test our ABNDM with
higher k values: As we test only with m < w and the ABNDM heuristic
works for only a fairly low error level k/m, the limit m < w = 32 would
have restricted us to very low k values. All test programs were compiled
with the DEC CC C-compiler and full optimization. There were no other
active significant processes running on the computer during the tests. All
algorithms were set to use a 64 KB text buffer. The tested algorithms were:
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ABNDM/BPR(regular): ABNDM implemented on BPR [59], using a
generic implementation for any k.

ABNDM/BPR(special code): The same as above, but especially coded
for each value of k to avoid using an array of bit masks.

ABNDM/BPM(1 counter): ABDNM implemented using BPM and bit-
parallel counters (Sec. 8.2). The implementation differed slightly from
Fig. 28 due to optimizations.

ABNDM/BPM(2 counter): The same as above, but using two inter-
leaved counter vectors.

ABNDM /BPM(cut-off): ABDNM implemented using BPM and cut-off
(Sec 8.2). The implementation differed slightly from Fig. 29 due to
optimizations.

ABNDM/BPM(static): The practical version of AMNDM/cutoff that
does not actively shift the counters.

BPM: The sequential BPM algorithm [38]. The implementation was from
us and used the slightly different (but practically equivalent in terms
of performance) formulation from [17].

BPP: A combined heuristic using pattern partitioning, superimposition
and hierarchical verification, together with a diagonally bit-parallelized
NFA [2, 46]. The implementation was from the original authors.

EXP: Partitioning the pattern into k£ + 1 pieces and using hierachical ver-
ification with a diagonally bit-parallelized NFA in the checking phase
[44]. The implementation was from the original authors.

Fig. 30 shows the test results for ¢ = 4, 13 and 52 and m = 30 and
55. This is only a small part of our complete tests, which included o =
4,13,20,26 and 52, and m = 10,15, 20,...,55. We chose o0 = 4 because it
behaves like DNA, o = 13 because it behaves like English, and ¢ = 52 to
show that our algorithms are useful even on large alphabets.

Among our ABNDM/BPM variants the results show that using cut-off is
always faster than using counters by a nonnegligible margin. ABNDM/BPM(cut-
off) and ABNDM/BPM(static) are the fastest, and the difference between
these two is very small.

It can be seen that our ABNDM/BPM versions are often faster than AB-
NDM/BPR(special code) when k = 4, and always when k > 4. Compared
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to ABNDM/BPR(regular), our version is always faster for £ > 1. We note
that writing down a different procedure for every possible k value, as done
for ABNDM/BPR(special code), is hardly a real alternative in practice.

With moderate pattern length m = 30, our ABNDM/BPM versions are
competitive for low error levels. However, BPP is better for small alphabets
and EXP is better for large alphabets. In the intermediate area o = 13, we
are the best for k = 4...6. This area is rather interesting when searching
natural language text.

When m = 55, our ABNDM/BPM versions become much more compet-
itive, being the fastest in many cases: For k = 5...9 with ¢ = 4, and for
k =4...11 both with ¢ = 13 and ¢ = 52, with the single exception of the
case 0 = 52 and k = 9, where EXP is faster (this seems to be a variance
problem, however).
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ABNDMCounters(P, T, k)

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Preprocessing
For c € ¥ Do PM[c] — 0™ , PMR]c] « 0™
Foriel...m Do
PMp, «— PMp, | 0m~%10""1
PMRp, «— PMRp, | 0F-110m
Q « [logy(m — k + 1)]
If 2971 < max(m — 2k — |Q/2],k+1+ |Q/2]) Then Q «— Q + 1
b 2971 —k—(Q/2] -1
t e [m/Q]
sMask « (09~11)tgm+@-1-t@
eMask « (109-1)tgm+@-1-tQ
Searching
pos «— 0
‘While pos < n — (m —k) Do
je—m—k, last — m—k
VP — 0" VN 0™
MO — [b]é?om+Q—1—tQ
While j #0 aAND MC & eMask # eMask Do
BPMEDStep(PMRz,,,. )
MC «— MC + (HP & sMask) — (HN & sMask)
Je—=J—1
If MC & 10m+%@=2 £ 0m+@~1 Then /* prefix recognized */
If j > 0 Then last — j
Else If BPMVerify(PM,pos + 1) Then
Report an occurrence at pos + 1
pos «— pos + last

Figure 28: The ABNDM algorithm using bit-parallel counters. The ex-
pression [b]g denotes the number b seen as a bit mask of length ). Note
that BPM Verify can share its variables with the calling code because these
are not needed any more at that point.
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ABNDMCut-off (Pl...m, Tl...n; k‘)

1 Preprocessing

2 For ¢ € ¥ Do PM|c] — 0™ , PMR]c] — 0™
3 Foriec1l...m Do

4. .P]\fp1 — .P]\fp1 | om—i10t-1

5. PMRp, — PMRp, | 0°-110m~¢

6 Q — 1+ [logy(max(m — 2k, k + 1))]

7 be—29071 k-1

8

9

t—[m/Q]

. sMask « (09-11)tgm+@-1-t@Q
10. eMask « (109~ 1H)tgm+@-1-tQ
11. Searching
12. pos «— 0
13. While pos < n— (m —k) Do
14. je—m—k, last —m—k
15. VP — 0" VN« Q0™
16. MC — [p]Lom+e-1-tQ
17. 00
18. While j#0 AND 6 < @ Do
19. BPMEDStep (PMRz,,, . ;)
20. If 6 =0 Then MC «— MC + ((HP & sMask) — (HN & sMask)
21. Else
22. b—d—1
23. MC — MC + (~ (D0 << 0) & sMask)
24. While § < Q@ AND MC & eMask = eMask Do
25. MC «— MC — (VP << 0) & sMask) + (VN << §) & sMask)
26. 0—d+1
27. If § =m — (t — 1)Q Then eMask « eMask & 1(-1DQm+2Q-1-tQ
28. je—j—1
29. If6 =0 AND MC & 10m+%@=2 o£ 0m+@~! Then /* prefix recognized */
30. If j > 0 Then last — j
31. Else If BPMVerify (PM,pos + 1) Then
32. Report an occurrence at pos + 1
33. pos < pos + last

Figure 29: The ABNDM algorithm using bit-parallel cut-off. The same
comments of Fig. 28 apply.
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Figure 30: Comparison between algorithms, showing total elapsed time as
a function of the number of differences permitted, k. From top to bottom
row we show o = 4, 13 and 52. On the left we show m = 30 and on the

right m = 55.
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9 On Using Two-Phase Filtering

In this section we first discuss using so-called filtering conditions, then pro-
ceed to propose a scheme of “two-phase filtering”, and finally present some
experimental results in conjuction with a specific application in bioinformat-
ics. The section is largely based on the conference paper [19] and focuses
only on the Levenshtein edit distance.

One way to accelerate approximate string matching is to try to mini-
mize the amount of text that actually has to be searched with the above-
mentioned algorithms. This leads to dividing the overall searching process
into two different procedures: filtering (or scanning) and checking. The for-
mer procedure tries to decide quickly which parts of the text possibly contain
approximate matches of the searched string, and the latter procedure then
uses one of the verification capable (can explicitly measure edit distance)
approximate string matching algorithms to explicitly search only these ar-
eas of the text. Filtering is generally based on checking which portions of
the text fulfill some minimal necessary criteria that any approximate match
of the pattern must fulfill. The text locations that are not filtered out are
often referred to as surviving regions. Some filtering criteria are discussed
in more detail in the next subsection.

To be useful, the filtering process naturally has to have low-enough over-
head and high-enough filtration efficiency to make the overall search faster
than simply searching sequentially through the whole text. Achieving this
goal depends a lot on whether it is plausible to preprocess the text before
the search takes place. This type of searching is sometimes called off-line
(as opposed to on-line) searching. We focus mainly on off-line searching
where the text can be preprocessed. In this case we also assume that the
text will be a target for searching for many different patterns since otherwise
the preprocessing would be pointless due to its often considerable overhead.
The goal of the preprocessing is generally to build an index, which can be
queried to directly obtain the surviving regions, i.e. the locations in the text
that still need further checking after applying the used filtering criteria.

Filtering can be viewed from two perspectives: We can think of it as
pruning out text areas that are dissimilar to the pattern or as searching for
text areas that are similar to the pattern. These views are complementary
and affect only the nature of the discussion. We choose the latter perspec-
tive, searching for similar areas.
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9.1 General Filtering Criteria

Practically all filtering criteria boil down to determining how much of the
pattern must remain unaffected after it is altered with k arbitrarily chosen
edit operations. This is usually treated as a combinatorial problem, which
is dealt with application of the Pigeonhole Principle. A general approach
is to choose a set of substrings from the pattern and count how they can
be affected by k edit operations. For this purpose we propose Lemma 9.1,
which can be seen as a generalization/combination of the filtering conditions
presented in [15, 2].

Lemma 9.1 Let S be a set of substrings from the pattern and o be an over-
lapping factor, which specifies the maximum number of substrings in S that
overlap the same character. If the pattern has been edited with at most k
edit operations, then there exists a subset Sy of S for which the following
conditions hold:

1) 154 = g = |S] = [ko/(ds +1)].
2) Each string s € Sy has been altered by at most ds edit operations.

Proof: Let b denote the number of substrings in S that have been altered by
more than ds edit operations. Clearly then the claim of the lemma is true if
and only if b < |ko/(ds+1)|. Let G be a graph with & vertices corresponding
to the edit operations and |S| vertices corresponding to the substrings of the
set S. If for each k edit operations we add into G directed edges from its
edit-vertex to each substring-vertex that corresponds to a substring altered
by the operation, the graph will include at most ko edges. Now suppose that
b > |ko/(ds +1)]. Because b is an integer, b > ko/(ds + 1). But this means
that there must be at least (ds + 1)b > (ds + 1)ko/(ds + 1) > ko vertices in
G, which is a contradiction. Thus b < |ko/(ds + 1)] and the claim of the
lemma is true. ([l

Lemma 9.1 gives a simple and flexible basis to composing filtering schemes.
It tells us that if we choose a set S of substrings from the pattern, then
each approximate occurrence of the pattern must contain at least g = |S| —
|ko/(ds + 1)] of them with at most ds errors. Thus by varying the size of
S as well as the level of overlap and the number of errors allowed within .S,
we can experiment with the lower limit for the number of substrings from S
that any approximate match for the pattern must contain. In the following
discussion we assume that Lemma 9.1 is used in such a manner that g > 0
and all strings in the set S are at least ds + 1 characters long. This is
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because otherwise the filtering criteria could include conditions that are in
effect empty (satisfied by all locations of the text).

A natural additional condition is to require that the g substrings must
occur in such locations with respect to each other that they could belong to
an approximate match for the pattern. This requirement is formulated in
Lemma 9.2.

Lemma 9.2 Let S be a set of substrings from the pattern and for each
s; € S, let u; denote the position of the rightmost character of s; in the
original pattern and v; denote the position of the rightmost character of s;
after the pattern has been edited. If the pattern has been edited by at most k
edit operations, then the following conditions hold:

1) Ifs; €8, then |v; —u;| < k.
2) If si,s5 €S, then |(v; —u;) — (vj —uj)| < k.

Proof: A single edit operation can change character-position or -distance
by at most one, and so k operations can result in a total change of at most
k. Thus k is an upper limit for the left sides of the inequalities 1) and 2),
which denote, respectively, the change in position of the rightmost character
of a substring s;, and the change in the distance between the rightmost ends
of two substrings s; and s;. ([l

For non-overlapping substrings we can formulate the following stricter ver-
sion of the condition 2) in Lemma 9.2.

Lemma 9.3 If S is a set of non-overlapping substrings from the pattern,
then the condition 2) in Lemma 9.2 can be replaced with the following con-
dition 2’°):

2’) If Siy Sit1s s Sitj € S and wipp—1 < Uiyp for h=1,.., 7, then

>t | (Wien = wivn) = Wign—1 — wiyn—1)| < k.

Proof: Initially Z%:l |(Vitn — Uith) — (Vith—1 — Uirn—1)] = 0. A single edit
operation can increment only one of the distances |(v;1p — wirn) — (Vigp—1—
u;+h—1)|, and the increment can be at most one. Thus k edit operations can
increase the value of the whole summation by at most k. O

By combining Lemma 9.1 with either Lemma 9.2 or Lemma 9.3 we have
that a text region can include an approximate match of the pattern only if
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it contains at least g such substrings from a chosen pattern substring set
S, that the locations of the substrings with respect to each other fulfill the
conditions of Lemma 9.2 (or Lemma 9.3 if there is no overlap within §). The
regions that fulfill the filtering criteria are the surviving regions. This term
refers to the fact that we have not been able to rule out the possibility of
them containing approximate matches, and therefore these regions require
further checking.

After we have found a set of at least g substrings that fulfill the used
filtering criteria, the boundaries for the surviving region implied by these
substrings can be determined by using the condition 1) of Lemma 9.2. It is
straightforward to see that the upper limit for the change in position of the
last character of a string s € S is also an upper limit for the change in the
distance between the last character of s; and the left or the right end of the
pattern.

One additional note is that due to the symmetry of the Levenshtein edit
distance, Lemmas 9.2 and 9.3 can also be applied in the other direction: pick
substrings from the text and consider how many of them must be contained
in the pattern if the substrings are part of an approximate match. This
would be reminiscent of the approach used in [50].

9.2 Overview of Some Filtering Schemes

In this section we briefly overview some of the filtering schemes we have
seen in the literature. A more in-depth review on the subject is presented
by Navarro in [40, 41], and an interested reader is strongly encouraged to
read the referenced original papers.

Wu & Manber

The filtering condition proposed by Wu & Manber [60] corresponds to the
setting o = 1,d; = 0 and |S| = k+ 1 in Lemma 9.1 and states, that if we
divide the pattern into k41 nonoverlapping substrings, then an approximate
match must contain at least one exact copy of at least one of the substrings.
This same rule has also been used in at least the methods of Baeza-Yates
& Perleberg [3] and Navarro & Baeza-Yates [43]. The preceding methods
did not take into account the location of the substrings in the pattern when
defining the boundaries for the surviving regions. This has been improved
for example by Navarro & Baeza-Yates [44] by using a requirement that
corresponds to Lemma 9.2. Of these mentioned schemes [43] concerned
the case of indexed searching, while the other two were focused on on-line
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searching. The indexed method used a simple ¢-gram index, which contains
for each possible string of length ¢ a list of all its locations in the text.

Holsti & Sutinen

Setting 0 = ¢q,ds = 0 and |S| = m — ¢+ 1 in Lemma 9.1, where ¢ is
a parameter defining the length of each substring, leads to the filtering
condition used in the SSEQ filter of Holsti and Sutinen [15]. The method
requires that at least g = (m — ¢+ 1) — kg = m+ 1 — (k + 1)q substrings of
length ¢ from the pattern are present in an approximate match. The value
m + 1 — ¢ is the number of all substrings of length ¢ in the pattern. The
method also imposes a requirement, which corresponds to Lemma 9.2, on the
relative locations of the substrings. This is done by cumulating appropriate
counters during a sequential scan over the whole text.

Myers

The indexed filtering method of Myers [35] is quite similar to the setting
o=1and g =1 in Lemma 9.1. It is essentially based on using recursively
the fact that if for some strings A and B edp (A, B) < k and A is split into
two pieces AY and A! (ie. A = A” o A!, where o denotes concatenation),
then there must exist a partition B = BY o B! that satisfies the condition
edr (A, BY) < |k/2] or edp(A', BY) < |k/2|. The method uses a simple
g-gram index and relies on generating so-called condensed d-neighborhoods.
The condensed d-neighborhood UCy(A) of a string A is the set of all such
strings B, that edy (A, B) < d and for all prefixes B’ of B edy (A, B') > d.

The method first splits the pattern recursively until the resulting pieces
are short enough with relation to the index. Then the condensed [k/2" |-
neighborhoods, where r is the number of splitting iterations, are generated
for all the pattern pieces. Locations of all strings contained in the generated
sets are then found from the text by querying the index. Finally these
occurrences are extended in a stepwise manner by merging the pattern pieces
back together in the reverse order, which corresponds to backtracking the
splitting phase. On each step it is checked whether the merged pattern piece
is found from the current text location with at most |k/2?] errors, where
1 is the number of the splitting iteration in which the currently considered
pattern piece was formed. If the test fails, the particular occurrence does
not need to be extended any further.
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Jokinen, Tarhio & Ukkonen

The counting method for filtering proposed by Jokinen, Tarhio & Ukkonen
[27] (and later also Navarro [39]) is based on the fact that of the m characters
in a region (“window”) with length m, at least m — k must still be present
after making at most k edit operations. This leads to a rule that 7T; can be
the last character of an approximate match of the pattern only if the text
area Tj_p,41.j contains at least m — k characters from the pattern.

Baeza-Yates & Navarro

In [2] Baeza-Yates & Navarro presented the method of intermediate parti-
tioning, which corresponds to the setting o = 1 and ¢ = 1 in Lemma 9.1.
The rule is a generalization of the filtering condition of Wu & Manber and
states that if we choose j non-overlapping substrings from the pattern, then
an approximate match must contain at least one of them with at most |k/7]
errors. The original paper [2] considered on-line searching, but in [45] and
[50] this filtering condition has also been used in indexed off-line search-
ing. Both of these papers were based on running a bit-parallel approximate
string matching algorithm [2] on a trie data structure composed from the
text (a suffix tree or a suffix array in the former, and a trie of a chosen
set of substrings of the text in the latter). This filtering condition is also a
generalization of the basic filtering condition used by Myers [35], and in [46]
Baeza-Yates & Navarro presented a slight generalization of the complete
recursive splitting/checking method of Myers. They called it hierarchical
verification. It works essentially in the same way as the method of My-
ers, the main difference being splitting the pattern and its pieces into an
arbitrary number of substrings.

9.3 Two-Phase Filtering

The sought advantage of off-line searching over on-line searching is usually
derived from being able to query the index to find the interesting locations in
the text that would otherwise have to be located with often costly sequential
search. Due to size inhibitions, the index is usually built in such a way that
it can be used in locating certain substrings, but it cannot contain too much
information about the surrounding area of the substring in the text. If the
used filtering condition relies on finding multiple and/or short substrings in
appropriate locations with respect to each other, the index may thus leave
a relatively large amount of text that still has to be inspected.
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Using a filtering scheme that consists of two phases may be helpful in
reducing this problem. With the set of initial hits we refer to the set of
locations in the text that we get from straightforward queries into the index.
The idea is simply to always use such filtering criteria with relation to the
index that the set of initial hits is as small as possible. After this, we may
impose a second set of filtering criteria on the set of initial hits. This can
be done by using a simple observation that if the pattern is edited with at
most k£ edit operations, then also each subsequence of the pattern is edited
with at most k edit operations.

Based on the preceding discussion, we present the following high-level
description of using what we call two-phase filtering.

1. Choose an indexed filtering method based on Lemma 9.1 in such a way
that g = 1 and the expected size of the set of the initial hits is as small
as practically achievable.

2. When an initial hit is located in the text, determine the boundaries of
the corresponding surviving region.

3. Ignore from the surviving region that/those substring(s) that was/were
located by the index query of step 1. Also ignore the corresponding
substring(s) from the pattern.

4. Treat the resulting subsequences from step 3 as substrings and test
a second filtering condition between them with k£ errors. The current
surviving region is checked only if the second filtering condition holds.

For example the filtering condition of Wu & Manber could be applied twice
as shown in Fig. 31.

In some cases the following Lemma 9.4 may improve the performance of
the initial filtering criteria.

Lemma 9.4 Let S be a set of nonoverlapping substrings of the pattern and
suppose that each s € S has been altered by at least ds edit operations. If
the pattern has been edited with at most k edit operations, then there exists
a subset Sy of S for which the following conditions hold:

1) |Sg| = g" = [S| = (k — [S]ds).
2) Each string s € Sy has been altered by exactly ds edit operations.
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Figure 31: Applying the filtering condition of Wu and Manber twice. The
first row shows the pattern partitioned into four pieces corresponding to
a situation where k& = 3. If we find the shaded piece on the second row
in the text, we know that the rest of the pattern must occur close to the
found piece with three errors. We can partition that part of the pattern
again into four pieces, and check if one of those is present in the text. If
the initially found substring breaks one of these secondary pieces, we check
the occurrence of that secondary piece by trying to extend the initial match

to cover also that piece without errors. Forming the secondary partition is
shown on the second and the third rows.

Proof: Since the strings in the set .S do not overlap, a single edit operation
can alter at most one string in S. Thus we need at least |S|ds operations
to alter each substring in the set S with exactly ds edit operations. This
leaves k — |S|ds edit operations, which means that at most k — |S|ds string
can be altered by more than ds operations. So there must be at least ¢’ =
|S| — (k —|S|ds) substrings that are altered by exactly ds edit operations. [

An example of applying Lemma 9.4 will be presented in Section 9.5.

9.4 An application in bioinformatics: Searching for unique
oligonucleotides

The notion oligonucleotide refers to a DNA-sequence of moderate length.
Thus in terms of string matching, an oligonucleotide is simply a string from
the alphabet ¥ = {A, T, C, G}. There are several applications in bioin-
formatics that may benefit from using gene specific oligonucleotides. One
example of such an application is the use of microarrays in analyzing gene
expression. This procedure aims to determine whether or not a given sample
contains certain genes by letting a large number of oligonucleotides, which
are known to be present in the genes of interest, to interact with the sam-
ple. The presence of a particular gene is then inferred from the reactions
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of the oligonucleotides corresponding to the gene. Thus it seems reasonable
that the oligonucleotides representing a certain gene should be unique to it:
no other genes should contain similar elements, since otherwise the results
might be at least partially inconclusive.

Our approach to handle this problem is to use string matching in search-
ing for appropriate unique oligonucleotides from a gene. We have discussed
this earlier in [18, 26], which are two short practically oriented reports on
searching for unique oligonucleotides from fourteen different small genomes.

Based on practical experience from molecular biology ([32, 57]), we chose
25 to be the length of the searched oligonucleotides. In order to permit some
variation inherent in DNA, a minimum Levenshtein edit distance of five was
decided to be the threshold that makes two oligonucleotides different enough.
In addition there are also other desirable properties to take into account,
but we do not consider them here since they have no real effect on the string
matching problem. From the preceding we get the following formulation for
the problem of finding unique oligonucleotides: Given a certain gene, we
want to find from it all such oligonucleotides (substrings) of length 25, that
no other gene in the genome contains an approximate match for any of them
with the error threshold k = 4.

Since there are no really effective methods for conducting approximate
search for more than a few strings at the same time, our current angle of
attack for solving the task of finding unique oligonucleotides is to individu-
ally check the uniqueness of each oligonucleotide from a gene against all the
other genes. Due to the static nature of the data in question, we can use
indexing to accelerate the process. The eventual target genome for search-
ing for unique oligonucleotides is the human genome. But due to its huge
size of around 3 x 10° nucleotides, we used the genome of Saccharomyces
cerevisiae (baker’s yeast, length roughly 107 nucleotides) as a test genome
for developing a suitable method.

9.5 Test results with the genome of Saccharomyces cere-
visiae

In this section we present some practical results regarding the different fil-

tering schemes presented in Sections 9.2 and 9.3.

All tests have been made in conjunction with searching for unique oligonu-
cleotides, and are thus limited to searching DNA with certain values for the
length of the pattern m and error level k.

The following implementations of filtering methods were tested with the
genome of Saccharomyces cerevisiae. Due to its simplicity, we chose to

67



use the bit-parallel approximate string matching algorithm of Myers [38]
in checking the surviving regions. Thus all implementations used it unless
explicitly stated otherwise. We also briefly tested the algorithm of Baeza-
Yates & Navarro [2] and saw no significant difference in the run times.

Indexed Wu & Manber (WM). Our implementation was quite simi-
lar to the method presented in [43]. The patterns (oligonucleotides) were
partitioned equally into k + 1 = 5 parts of length 5. Also a simple 5-gram
index was built, which contained for each possible 5-gram all their locations
in the genome. Initially this was implemented by using lists, but later the
use of arrays instead proved to improve the overall searching times by as
much as roughly 25%. We treated the 5-grams as base-4 numbers and used
the numerical values in querying the index. If T;_,11 ; was an occurrence
of a pattern piece, the text area T)j_,,—k+1. j+m+k—q Was checked.

Indexed Wu & Manber with location sensitivity (WMLS). The
only difference to the preceding implementation was the use of location sen-
sitivity in deciding the boundaries of the surviving regions. From Lemma 9.2
we know that the distance between the end of the pattern and the end of
any substring of it can change by at most & when the pattern is edited with
at most k edit operations. This meant that if T;_,41.; was an occurrence
of the substring P;_441.4, then the area Tj_;_j_jim—1—i+xr Was checked.

Indexed Wu & Manber with location sensitivity and a second
phase of using Holsti & Sutinen (WMLS-HS). A second phase of
using the filtering criteria of Holsti & Sutinen with the setting ¢ = 3 was
used in conjunction with WMLS. We denote the concatenation of strings
To.p and Ty g by T, p 0 T 4. When an occurrence Tj_q11.; of the pattern
piece P;_4y1.; was located, the substring T_; . j—q © Tj11. j4+m—1—i+k Was
searched for 3-grams of the pattern. If the found piece was from either end of
the pattern, we did not include the part of the subsequence that would cor-
respond to edit operations outside the pattern. For example if i —g+1 =1,
we consider only the substring T’ j4m—1—i+k. The counter cumulation
method presented in [15] was used in testing whether the found 3-grams are
in such locations with respect to each other that an approximate match is
possible.

Indexed Wu & Manber with location sensitivity and a second
phase of using Jokinen, Tarhio & Ukkonen (WMLS-JTU). Now
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a second phase of using the counting filter of Jokinen, Tarhio & Ukkonen
was added into WMLS. If T}_,41. ; was an occurrence of the pattern piece
P;_441..i, we checked whether the substring T;_; . j—oTj 41, j4m—1—i+k CON-
tains a substring of length m — ¢ that has at least m — g — k characters from
the corresponding pattern substring Py ;_q 0 Piy1.m.

Indexed Wu & Manber with location sensitivity and a second
phase of using Wu & Manber with location sensitivity (WMLS-
WMLS). This method was implemented in similar fashion to the Fig. 31.
If an occurrence T} _ 4 1. ; of the pattern piece P;_441.; was found, we checked
whether the substring T _;_x. j—q © Tj11. j4m—1—i+k contained at least one
piece from the partitioned substring Py ;_4 o Pjy1.m so that the location of
the substring has moved by at most k positions.

Generating 1-neighborhoods (G1N). In this method we chose to look
for at least one non-overlapping substring of the pattern that contains at
most 1 error. This corresponds to the setting o = 1,ds =1 and g =1 in
Lemma 9.1, which results in |[S| =1+ [k/2| = 3. Thus we divided the pat-
tern into three non-overlapping substrings knowing that each approximate
match must contain at least one of them with at most one error. The pat-
tern was partitioned evenly so that the substrings had equal lengths ¢ = 8.
We used a similar approach to the first part of the method of Myers [35]
to locate the pattern pieces with at most one error. For all pattern pieces
Py —g+1.p; aset M(1,q) of g-grams was generated so that any string from
the condensed 1-neighborhood of P,,_411.p, must either contain or be con-
tained in some string of M(1,q). To be more accurate, M(1,q) consisted of
the pieces Pp,,_q+1.p; Plus the set of all g—grams that can be derived from
them by one of the following three choices:

-Deleting a character P,, where p € [p; — ¢+ 1..p; — 1], and appending any
character of the alphabet to the end.

-Inserting a character from the alphabet between the characters P, and
P,i1, where p € [p; — ¢+ 1..p; — 2], and removing the last character.

-Replacing a character P,, where p € [p; — ¢ + 1..p;], with any character
of the alphabet that is different from P,,.

The reason for limiting the deletion or the insertion operation to only a
part of the substring is that the ignored cases are always covered by some
replacement operation. It should be noticed that in order for appending
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the substring in the case of a deletion to work correctly, the text must be
appended with one extra character.

We used a simple 8-gram index and base-4 numerical representations of
the 8-grams in querying the index. The boundaries of the checked areas
were derived from the first condition of Lemma 9.2 in a similar way to what
we discussed earlier. This time we just had to take into account the fact
that containing one error can move the end of the pattern substring by one
position in either direction. Therefore if the substring T'; 1. j corresponded
to a pattern substring P;_,1.; (was either equal to it or generated from it),
we checked the text area Tj_;_p_1. j4m—1—itk+1-

This method of generating 1-neighborhoods could be described as a cross-
ing between a special case of the pattern partition of Baeza-Yates & Navarro
[2] and the indexing method of Myers [35]. The difference to the former is
the use of neighborhood generation, and to the latter the details of neigh-
borhood generation and the way the surviving regions are checked.

Generating 1-neighborhoods with a second phase of using Wu
& Manber with location sensitivity (G1IN-WMLS). Adding this
method was implemented in the same way as when using Wu & Manber
with location sensitivity as the first step. The only difference was the value
of q.

Generating 1-neighborhoods with a second phase of using Joki-
nen, Tarhio & Ukkonen (G1N-JTU). Also adding this method was
implemented in the same way as when using Wu and Manber with location
sensitivity as the first step. The only difference was the value of ¢.

Generating 1-neighborhoods with a second phase of applying
Lemma 9.4 (G1N-L4). If we apply Lemma 9.4 in the case of generating
1-neighborhoods we see that if all pattern pieces are changed by at least one
edit operation, then at least two pattern pieces are changed by exactly one
edit operation. This was used in such a way that if the substring Tj_,11.;
was generated from a pattern substring P;_,; ; (and was not equal to it),
we checked the text area Tj_;_j_1. j4m—1—i+k+1 only if it contained a non-
overlapping occurrence of at least one other string from the set M (1,q).
During the generation of the set M (1,q) we recorded the base-4 numerical
representations of the generated strings, and so the occurrence of any of these
strings could be checked by incrementally computing the base-4 values of
the g-grams of the surviving region during a single linear scan.
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Generating 2-neighborhoods (G2N). Now we chose to look for at least
one nonoverlapping substring of the pattern that contains at most 2 errors.
This corresponds to the setting o = 1,ds = 2 and ¢ = 1 in Lemma 9.1,
which results in |S| = 1 4 |k/3] = 2. The pattern was divided evenly,
which resulted in two non-overlapping substrings with length ¢ = 12. Now
we generated a set M(2,q) in a similar way to the generation of M(1,q),
but this time two alterations were made. In this case the text should be
appended with two characters. The other parts of the method were almost
identical with the method of generating 1-neighborhoods. We for example
used once again the base-4 representations for the g-grams. Now we had to
take into account the possibility of the end of the pattern substring moving
two positions in either direction. When the substring 1’;_,1. ; corresponded
to a pattern substring P;_,11.; (was either equal to it or generated from it),
we checked the text area Tj_;_r_2. j4m—1—itk+2-

Navarro & Baeza-Yates (NBY). The implementation of this method
was from the original authors. The method is given a parameter j, which
specifies how many substrings the pattern is partitioned into. Based on the
value of j as well as the other parameters m and k of the situation, the
method then uses a suitable configuration of the bit-parallel approximate
string matching automaton [2] in performing a depth-first search over a suffix
array [34] of the text in order to locate the pattern pieces with at most |k/j|
errors. Once these are found, the method locates the occurrences from the
text with the help of occurrence lists that have been added into the tree
during preprocessing, and finally checks the surviving regions implied by
them with the bit-parallel automaton. We tested the method with several
different values for j. It should be noted that the tested implementation was
not optimized for the case of searching DNA. This may have some effect on
its results.

The tests

The tests were conducted with a set of 100 oligonucleotides of length 25.
These oligonucleotides were chosen from random locations of random genes
(all tests used exactly the same test set), and in the test runs each oligonu-
cleotide was checked against gene other than its original one by searching for
approximate matches of the oligonucleotide. Since we wanted to get a worst
case estimate on the run time, we did not interrupt the checking phase of an
oligonucleotide if it was found to be nonunique. The computer used in all
tests was a 600 MHz Pentium IIT with 1024 MB RAM running on Windows

71



NT 4.0. The programming language of implementation was C++, and we
used Microsoft Visual C++ 5.0 with optimization turned on in compiling
the code. The results of the tests with 100 oligonucleotides are shown in
Fig. 32.

Because of the slow run time we got with the combination of the methods
of Wu & Manber and Holsti & Sutinen, we did not even test combining
the latter with our 1-neighbourhood generation method. The special case
involving the use of the 1-neighbourhood method in two phases proved to
be the fastest choice. In addition it was also seen that using the methods of
Wu & Manber and Jokinen, Tarhio & Ukkonen in the second filtering stage
resulted in improved run times compared to the use of only one filtering

phase.

Method Run time (s) | Total verified area (millions of chars)
WM 25 394
WMLS 14.9 223
GIN 8.6 132
G2N 4.2 29
WMLSWMLS 15.1 141
WMLSHS 22.3 156
WMLSJTU 10.2 105
GINWMLS 7.6 75
GINJTU 8.6 106
GINL4 3.5 11
NBY (j = 1) 61.5 NA
NBY (j =2) 8.0 NA
NBY (j = 3) 29.3 NA
NBY (j = 4) 328.6 NA
NBY (j = 5) 82.4 NA

Figure 32: The test results of checking 100 randomly chosen oligonucleotides
of length 25 in the genome of Saccharomyces cerevisiae.
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10 A Practical Index for Genome Searching

In this section we propose an approximate string matching index for search-
ing for patterns of moderate length in DNA. The index uses the Levenshtein
edit distance and is basically an improved version of the index of Myers [35].
Large parts of this section appear in the conference paper [25].

10.1 The index of Myers

In the index of Myers [35] all the text g-grams, where ¢ = [log, n], are
stored together with their text positions. Then the pattern is recursively
split (first the whole pattern into two or three pieces, then each piece into
two or three smaller pieces, and so on), until a suitable partition is achieved
(Fig. 33). During each split, the number of errors permitted in the pieces is
also divided. If the pattern is split into j disjoint pieces, then an occurrence
of it will contain at least one of them with at most [k/j] errors, and so
through recursive use of this rule the number of errors is divided by j (always
rounding down) during a j-way split. The lengths of the pieces in the final
partitioning depend on the pattern length m. If it is a multiple of ¢, the
partitioning of Myers will set the pieces to have length ¢, and if m > ¢2, the
pattern will be partitioned into pieces of length ¢ and g+ 1. Myers does not
describe in detail how the partitioning is done when neither of the preceding
two conditions hold, only that the pieces will be of length ¢ + ¢ for some ¢
“in a fashion that gives the best performance possible”.

k

v

Figure 33: The pattern is recursively split into smaller and smaller pieces,
also dividing the number of errors. Above each pattern piece we show with
how many errors that piece is to be searched for.

Let d; be the number of errors that are left for a given piece P! in the
partitioning. The occurrences of P’ in the text with at most d; errors are
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located by generating its condensed d;-neighborhood UCy,(P?) (Section 9.2,
page 63). Any occurrence of P? in the text with at most d; errors must have
a prefix in UCy, (P?). All text occurrences of these generated substrings are
located fast by using the g-gram index. These occurrences are then extended
by going up the splitting hierarchy in stepwise manner. Each step consists
of merging pieces back together and checking, with dynamic programming,
whether the merged piece occurs in the text with as many errors as cor-
responded to it during the splitting phase. This recursive merge/check-
process is continued until either some piece cannot be extended any further,
or the merging results in finding an occurrence of the whole pattern. The
condensed d-neighborhood generation algorithm presented by Myers runs in
time O(dz + ¢), where z is the number of strings in UCj.

10.2 Index Structure

Our g-gram index is almost identical to that of Myers. The ¢-grams are
ordered according to their base-o numerical representation. For DNA, we
use the codinga =0,t =1, c = 2 and g = 3, and each ¢-gram is treated as a
base-4 number. For example the 4-gram “agct” has the base-4 representation
03214. The g-gram index has two tables: the header table and the occurrence
location table. The header table H, contains for each g-gram the start
position of the interval in the location table, which holds in ascending order
all the locations of the g-gram in the text. The location table L, holds
the intervals of location values one after the other in the order of growing
numerical representation. For example if ¢ = 4, the first interval holds
the text positions in which the g-gram “aaaa” = 00004 occurs, the second
interval the positions for the ¢g-gram “aaat” = 00014, and so on until the last
one, which is “ggge” = 33334. With this representation, the occurrences of
the g-gram with numerical value x are located in the location table interval
L,[H[z]..Hy[z + 1] — 1], except for the last g-gram. But we handle this in
similar fashion by setting one extra value Hy[o? + 1] to hold the location
which is right after the last value of the last interval H,[o9].

The length of the g-grams in the index affects the length-range of the text
substrings that can be retrieved most efficiently with the index. Having a
“too large” ¢ is not a problem in practice as long as the implementation of the
table H,, which has a size O(c?), is not affected too much. This is because, as
mentioned for example by Myers [35], a ¢g-gram index can be used without
much change also in finding shorter substrings. Let ¢ be some positive
integer, which is smaller than gq. The locations of the (¢ — ¢)-gram with
numerical representation x correspond to the interval Ly[Hy[zo]..Hy[(z +
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1)o¢] —1], that is, to all g-grams that have the given (¢ — c¢)-gram as a prefix.
This does not work with the (¢ — ¢)-grams that occur in the text after the
character T}, _,1, unless extra care is taken. One solution is to pad the end
of the text with ¢ — 1 additional characters, and another option would be
to check the last ¢ — 1 characters of the text separately during search time.
Finding the locations of a (¢ + ¢)-gram A requires more work. We can for
example take A1 4, that is, the first ¢ characters of A, and check one by one
which locations of A; , in the text are also locations of the whole A. As
shown by Myers [35], this results in an O(ch) additional overhead, where h
is the number of locations of A in the text.

Using the setting ¢ = [log, n] of Myers would result in the value ¢ = 16
when indexing the human genome. In this case there would be 416 ~ 4.3x10°
different ¢-grams, which would result in a huge header table. Even though
we permit secondary memory to be used in storing the index, we prefer to
be able to keep the header table in primary memory (see Section 10.6). In
our practical implementation we have currently opted to use ¢ = 12, which
results in a header table with 412 ~ 16.8 x 10° entries. It is straightforward
to build the above described ¢-gram index in O(n 4 %) time and space.
With the 3 billion character human genome and our choice of ¢ = 12, the
size of the header table is 67 MB and the size of the location table is roughly
12 GB. These come from using 32-bit integers (= 4 bytes) for all entries.

In fact, it is possible to replace the location table by a suffix array,
and still use the index header to accelerate the search for g-gram intervals.
Pieces of length g 4 ¢ could then be searched by restricting the interval of
their length-¢ prefix (obtained with H,;) with a binary search in secondary
memory for the remaining ¢ characters. Hence the O(ch) cost of Myers
would become O(clogn), although this time we refer to disk accesses. A
drawback of this scheme is that text positions come totally unordered from
the index, which increases the cost of merging occurrences and also worsens
the prospects of compressing the index. This is the same effect of having a
large ¢, in any case.

10.3 Building the Hierarchy in Bottom-up Order

Previous intermediate partitioning methods have used the rule that when
the pattern P is partitioned into j disjoint pieces P!, .., P7, then each piece
P' is searched with d; = |k/j| errors. However, in [47] a more accurate
rule was proposed. If a string A contains no pattern piece P* with d; errors,
then ed(A, P) > Zgzl(di +1) = 25:1 d; + j as each piece P’ needs at least
d; + 1 errors to match. We must have Y 7_,d; +j > k + 1 to ensure that
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no approximate occurrence of P is missed, which can be rephrased as the
condition Y 7_, d; > (k+ 1) — j for the error values dy,..,d; of the pieces.
Naturally the best choice is to search for each piece with the least possible
number of errors, and thus we use the strict requirement > 7_, d; = k—j+1.

Because a g-gram index is most suitable for retrieving substrings of
length < ¢, we partition the pattern into pieces of at most length ¢. In
addition let g7, be the minimum length for a pattern piece in the partition.
We use the setting q;, = ¢/2 = 6 as it permits us to partition any pattern
with m > ¢ into parts of at least size qy,.

Let dj; denote the maximum number of differences d that we will permit
when searching for a pattern piece.

We have tested two partitioning methods. A simple scheme, that is
somewhat similar in nature to previous methods, is to partition the pattern
into j = [k/dps] pieces. This is the minimum number of pieces that permits
each piece P’ to have d; < dj;. To cover the whole pattern and have
as equal lengths as possible, m modulo |m/j| of the pieces will have the
length [m/j] + 1 and the rest the length |m/j|. Finally all pieces longer
than ¢ will be set to have the length q. To enforce the strict error limit
S i di=k—j+1, weset d; = [k/j| for (k modulo j) + 1 of the pieces
(giving preference to the longest pieces), and d; = |k/j| — 1 for the rest.

The second, and more sophisticated, approach is to precompute and store
for each r-gram z, where r € qr,...q, and for each d € 0...min(dys, [0.25 x
r|—1), the number of text occurrences of all the r-grams in the d-neighborhood
of x. This value, C, 4, will be used in determining the optimal splitting.

Let us define M;; as the minimum number of text positions to verify in
order to search for P;_,, with ¢ errors. Then the following recurrence holds

M, = 0,ift<0,
M;y = oo, ifi+qr—1>mAt>0,
My = min(Mit1,, min(Cp, ., y.a+ Miyrt—a-1
|de€0...min(t,dy) A7 € qr,...q)), otherwise.

The following lemma establishes the correctness of the recurrence.

Lemma 10.1 Let M;; be defined as in the above recurrence. Then, for
1 <i<mandt >0, M;; is the minimum number of occurrences of j
disjoint pieces chosen from P;_,, in such a way, that the number of errors
permitted in matching any single piece is at most dyr and the total number
of errors for matching all the pieces ist —j+ 1. The minimum of an empty
set is assumed to be oo.
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Proof: We use induction on m—1i. If m—14 < ¢—1, then we cannot choose a
g-gram from P;_,, and the theorem refers to the minimum of an empty set,
which is correctly set to oo on the second line of the recurrence. For larger
m — i values there are two possible cases: either one of the chosen pieces
starts at the pattern position ¢, or not. In the second case, the solution is
the same as for Pj;1.m,, so by induction the minimum is given by M1
(the number j of pieces in both solutions is the same). In the first case we
can search for a piece P;_;y,—1 with any number of errors between zero and
min(¢,dpr). The third line of the recurrence accounts both for the choice of
the first and second case, as for the choice of the number of errors.

Once we have decided that the pattern piece P; ;i,—1 is searched for
with d errors, the rest of the pieces have to be chosen from P;, ,, in such
a way that the pieces are disjoint and the total number of errorsis ¢t —d — 1.
By induction the minimum sum is given by Cp, . a+ Mijrt—q-1-

It only remains to clarify the reason for the ¢t — d — 1 errors. Say that
the solution for M, 4—1 involves partitioning into j' pieces, so that the
total number of errors, by inductive hypothesis, is (¢t —d — 1) — j' + 1. Then
the solution for M;;, which involves one more piece searched with d errors,
uses j = j' + 1 pieces, and the total number of errors for all the pieces is
d+((t—d—1)—j"4+1) =t—j" =t—j+1, which is the right value. The first
line of the recurrence is a guard for the case where we have already used all
the errors and therefore do not need to choose more pieces. O

From the definition of M; ; it is clear that by computing the value M; j we
get the optimal partitioning of the pattern in terms of the number of text
occurrences to verify. Omnce the C, 4 values are pre-computed, the above
algorithm takes time O(gmk?), which is rather low compared to the amount
of verification and disk reads/seeks we might save, as we are ensuring that
we will choose the pieces that yield the lowest overall number of positions
in the text to verify.

The cost of precomputing C, 4 is also not prohibitive. What is more
relevant is the amount of memory necessary to store C, 4. Since the infor-
mation for d = 0 has to be kept anyway (because it is the length of the list
of occurrences of x, and it is known also for every r < ¢), the price is two
more numbers for each different r-gram. A way to alleviate this is to use
fewer bits than necessary and reduce the precision of the numbers stored,
since even an approximation of the true values will be enough to choose an
almost optimal strategy.

If the partitioning that was finally chosen contains at least four pieces,
we form a hierarchy on the pattern pieces similar to that of Myers (see
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Fig. 33). But as we begin by optimizing the pieces at the lowest level of the
partitioning-hierarchy, we form the hierarchy in bottom-up order.

Let j, denote the number of pieces and P“" the ith piece at the hth
level of the partitioning-hierarchy. Also let d; ;, denote the number of errors
associated with piece P®". The first (up-most) level corresponds to the
whole pattern at the root of the hierarchy and therefore j; = 1, P1! = P
and di; = k. Assume that computing the value M} leads into an /th
level partitioning with j, pieces PM¢, .., Piot, In general the (h — 1)th level
partitioning is formed by pairing together two adjacent pieces from the hth
level so that Pi'—1 = p2i=Lho p2ih 1f j, is not even, the last piece P7n-" will
be joined together with the last pair, in which case Pin-1:"=1 = p2in-1=Lhg
PZin-1vh o p2in-1+Lh Note that we will always have j,_1 = [jn/2].

The number of errors for the piece PHh=1 is determined by enforcing the
partitioning rule >3/, d; = k — j + 1 locally. Using this rule for the piece
P"=1 means replacing the k with d; h—1, the sum 2521 d; with do;j—1 p+da2; p,
or dg;—1,p + doip + doiy1,n, and j with 2 or 3. The last two choices depend
on whether P*"~1 is involved in a two- or a three-way merger. Thus in the
case of a two-way merger we have d; 1 = dgj—1,, + d2;;, + 1, and in the
case of a three-way merger d; j,—1 = do;—1,p + doip + dojy1,n + 2.

Here we assume that the possible gaps between or next to the pieces on
the fth level of the hierarchy are padded by stretching the pieces on both
sides of the gap (or one side, if the gap is at the beginning or the end of
the pattern) when the (¢ — 1)th level partitioning is formed. The lowest
level pieces PUY, .., Pitt are still searched as such, and so possibly having
gaps in between them, but the pieces on all upper levels will cover the whole
pattern.

The partitioning process goes up from the hth level to the (h—1)th level
until only one piece, the whole pattern P, is left.

Lemma 10.2 The above described bottom-up method produces a correct pat-
tern partitioning hierarchy.

Proof: First we note by induction that the condition > 7", d; , = k—jp+1
holds for any h € 1...7. ‘

From the definition of M; ; we have that Y 7%, d; o = k — j; + 1, so the
condition holds for h = ¢. Now assume the condition holds for h, that
is, > dip, = k — j, + 1. When the bottom-up method merges two or
three pieces together into a (h — 1)th level piece P*"~!, the corresponding
number of errors d; ;1 is the sum of the errors in the merged pieces plus
the difference between the number of pieces before and after the particular

78



merging. In this process each piece on the hth level is merged exactly once
into a piece on the (h — 1)th level. Thus the total number of errors on the
(h—1)th level = >-7"1" d; 1 = the total number of errors on the hth level

+dh—Jh1 =2 din+ h— g1 =k —jn+1+jh—Jn1 =k —jn1 + 1.
This concludes the inductive proof.

The bottom-up process of forming the partitioning hierarchy will end up
in a situation in which there is only one piece left, and that piece is the whole
pattern. This is because the number of pieces decreases when moving to an
upper level, the possible gaps in the lowest level partitioning are removed
so that the pieces on the upper levels cover the whole pattern, and clearly
there will always be at least one piece. The corresponding number of errors
will be k, because then > 7', d;1 = di1 = k—j1+1 = k. Thus the first level
of the partitioning hierarchy will be correct: it looks for the whole pattern
with k errors. From the way the partitioning rule is enforced locally during
each merger, it is quite obvious that the second level partitioning is correct:
as the condition > 7_; dy = k — jo + 1 holds, we know that no occurrence of
the pattern P with at most k errors is missed if we inspect only such areas
of the text that contain some piece P2 with at most d; o errors. The same
argument can now be repeated for each of the pieces on the second level,
on the third level, and so on until the (¢ — 1)th level: no occurrence of an
hth level piece P“" is missed if we inspect only such areas of the text that
contain some piece PH"*1 where P! is part of P*", with at most d; 511
errors. O

10.4 Generating d-neighborhoods

Our way of generating the d-neighborhoods differs slightly from the approach
of Myers. Let A be the ¢g-gram for which we wish to find all text substrings
that are within d errors from A. Instead of generating the condensed d-
neighborhood UCy(A), we generate an “artificial prefix-stripped length-q” d-
neighborhood UQ4(A). This is done by enumerating all different strings that
result from applying d errors into the string A in all possible combinations
with the following restrictions:

1)  All errors are applied only within the window of the first ¢ characters.
A character is only replaced with a different character.

No characters are inserted before or after the first or the last character.
The string is aligned to the left side of the length-¢ window. That is,
upon deletion the characters to the right of the deleted character are

moved one position to the left, and upon insertion the characters after

=W N
— O —
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the inserted characters are moved one position to the right.
5) A character introduced either by an insertion or a replacement is not
removed or replaced.

It is difficult to accurately estimate the size of the set UQq(A). According
to Ukkonen’s analysis [55], we have an upper bound O((]A|c)?) for both
UCy(A) and UQ4(A). However, in practice we have noted that using the
set UQ4(A) often results in a slightly smaller set of g-grams to locate from
the text than by using the set UC4(A) of Myers. This is because if for
example A = “atcg” and d = 1, all the strings “aatcg”, “tatcg”, “catcg”
and “gatcg” would belong to UC4(A), but of these only “aatcg” belongs to
UQq4(A). This discarding of strings that include insertions made at the front
is what we refer to as “artificial prefix stripping”. On the other hand, there
are strings that belong to UQg4(A) but not to UC4(A). For example if B
= “attaa” and d = 2, then “ataaa” belongs to UQ4(A) but not to UCy(A),
as its prefix “ataa” is in UCy(A). But when using the ¢-gram index, also
the method of Myers will fetch all g-grams with the prefix “ataaa” provided
that ¢ > 5. A straightforward and crude analysis gives time complexity
O((3qo)?) for generating the set UQq(A).

10.5 Faster Verification on Average

In [35] they used an O(kn) dynamic programming approximate string match-
ing algorithm in the stepwise merging/checking process, where it is checked
whether a pattern piece occurrence can be extended to an occurrence of the
whole pattern. In addition, they group pattern piece occurrence locations
that were close to each other into a single interval. The idea was to process
the whole interval in a single pass, and thus avoid checking the same text
positions multiple times. In [45] they used a faster bit-parallel algorithm,
but their approach was more crude: as any approximate occurrence of the
pattern is at most of length m + k, they checked the text between the posi-
tions j —m — k..j +m + k with an approximate string matching algorithm
whenever a pattern piece occurrence ends at position j of the text. Also
they merged checking of adjacent piece occurrences into a single interval.
Our approach is to check each piece occurrence separately on the bottom-
level of the verification hierarchy. This is done by using an algorithm for
computing edit distance instead of one for approximate string matching. We
have found this verification method, a slight modification of the one used
in nrgrep [42], to be considerably faster than the previous ones (see Sec-
tion 10.7). On the upper levels we use interval merging and an approximate
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string matching algorithm. This is a safeguard against a possible (although
unlikely) event that a significant amount of verifications is done in areas
where a complete match is found: In this case checking each piece sepa-
rately could lead into quite a large overhead, as a single match could be
checked as many times as it contains a match to a piece P’ with at most d;
errors.

The bottom-level verification works as follows. Let P! = P, ;.3 be a
pattern piece, string A belong to the set UQ4(P?), and A occur in the text
starting from character 7. Also let the substring Pl = Pi_y ity be the
“parent” of P’ in the hierarchy of the pattern pieces, that is, the piece
P was one of the parts that the string P/ was split into. Note that if the
number of pieces j < 4, then Pf = P. Initially we set d = dy+1, where dy is
the number of errors for P/ in the hierarchy. The value d can be interpreted
to be the number of errors in the best match for P/ found so far. If P is not
the rightmost piece in P/, the edit distance ed(Tj. j+a, Pi.i+v) is computed
for a =0,1,2,... until either all distances of form ed(T}. jiq, P itc), where
c € [1..v], have a value > d, or we arrive at a value ed(T}. jta, P;. .itv) = 0.
Whenever a value ed(Tj. jtq, Pi.i+v) = d—1 is found, we set d = d — 1. This
forward edit distance computation will process at most v+d ¢ +2 characters,
as after that the first stopping condition must be true. If d = dy + 1
after stopping, we know that the current setting does not correspond to an
occurrence of the pattern. If d < dy, we start computing the edit distance
ed(Tj_q. j—1,Pi—y.i—1) for a = 1,2,... in similar fashion as above, but this
time setting initially d = dy—d+1 and without updating the value after that.
If this backward computation finds a value ed(Tj_q. j—1, Pi—y.i—1) < d, we
have found an occurrence of the substring P/ with at most d ¢ errors. If this
does not happen, the current piece occurrence can be abandoned. Otherwise
the position is recorded. In this case if P/ = P, a pattern occurrence
was found (this type of occurrences will have to be sorted as they are not
found in order and there may be multiple occurrences for the same position),
and otherwise the position will be verified later on the upper level of the
verification hierarchy using interval merging.

In the bi-directional verification phase we use the diagonal tiling edit
distance computation algorithm [22] (Section 7), and the merged intervals
are checked using the original BPM [38].

10.6 Secondary Memory Issues

In this section we discuss how to handle the situation in which the whole
index cannot be stored in primary memory. In terms of secondary memory,
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perhaps the biggest disadvantage compared to primary memory is slow seek
time. That is, even though the secondary storage devices are in principle
capable of reading data at rates of several megabytes per second, the situa-
tion worsens significantly if the data is not read from a moderate number of
continuous locations. In terms of accessing the ¢g-gram index from secondary
memory, it is obvious that the queries will typically occur from more or less
scattered positions. When d-neighborhood generation is used, the number
of g-grams to be queried from the index grows almost exponentially with d.
As each different ¢g-gram means potentially a seek operation in secondary
memory, we wish to limit the number of ¢-grams. This is done by setting
an appropriate value, which is based on practical experience, for the limit
dpyr of generating the d-neighborhoods. In addition we choose to store the
header table H, in primary memory. Otherwise querying a single g-gram
would involve two secondary memory seeks instead of one. This is feasible
since the size of the table H, is not prohibitively large for primary memory
if a moderate value for ¢ is used.

If we use the estimate |UQq(A)| = (|A|o)? with the value ¢ = |A| = 12,
the size of the set UQy(A) is =~ 48 for d = 1, ~ 2304 for d = 2, and ~ 110592
for d = 3. If the average seek time of secondary memory were 1 ms, the
seek time for the case d = 3 could be almost 2 minutes! We tested that with
q = 12 and d = 2 the time for reading the d-neighborhood occurrences from
disk was already around 17 seconds on our computer. Based on this, we have
currently chosen to use the limit dy; = 1 in generating the d-neighborhoods.

The effect of the slow performance of secondary memory can also be
taken into account in choosing the partitioning. The way we do this is
to weight the value C 4 of the occurrence table (Section 10.3) with an
estimated cost for querying the ¢g-gram index with all the strings in UQ 4(A).
Specifically, if C}’; is the weighted cost for the substring x and d errors, we
use the formula

wd =  Cyga x (verification-cost + disk-transfer-cost)
+  d-neighborhood-size(z, d) x disk-seek-cost

normalized to the form Cj, 4+ ¢ x d-neighborhood-size(x, d). The appropriate
weight value ¢ depends on the actual type of memory used in storing the
index, and thus it should be based on empirical tests.

10.7 Test Results

As the test results in [45] found the index of Myers to be the best method

in the case of DNA, we have compared the performance between it and our
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index. The code for that index was from the original author. We used the ~
10 MB genome of Saccharomyces cerevisiae (baker’s yeast) from [51] as the
text, as it allows the index to be completely in memory. These tests were run
on a 600 MHz Pentium 3 with 256 MB RAM and Linux OS, and all code was
compiled with GCC 3.2.1 using full optimization. The implementation by
Myers is only a limited prototype that is constrained to the pattern lengths
of form g x 2%, where z is a non-negative integer and ¢ = [log, n|. In the
case of S. cerevisiae this means that we may use pattern lengths 12, 24, 48,
and so on.

The left side of Fig. 34 shows the results we got with searching for a
pattern with lengths 24, 96, and 384 and a sampling of k-values having the
error level k/m < 0.25. The test included three different variants of our in-
dex. All three used the simple partitioning scheme described in Section 10.3
with value djp; = 2. The first method used bidirectional verification and
the second conventional interval-merging combined with approximate string
matching. Both of these used the d-neighborhood generation method of Sec-
tion 10.4. The third method used bidirectional verification, but combined
with a d-neighborhood generation method closer to that of Myers (back-
tracking with edit distance computation over the trie of all strings). The
first method was a clear winner, being 2 to 12 (and typically around 4 or
more) times faster than the index of Myers. In many cases a large part of
our advantage is explained by the strict rule Y °7_, d; = k—j+1. This shows
most evidently in the figures when k& moves above m/6: at this point the
index of Myers sets all pieces to have d; = 2, whereas our index increases
the number of errors in a more steady manner. The difference between the
search mechanisms themselves is seen when k = m/6 —1 or k = m/4 — 1,
as at these points both indexes set d; = 1 or d; = 2, respectively, for all of
the pieces. In these cases our fastest version is always roughly 4 times faster
than the index of Myers.

We chose our fastest scheme from the tests with S. cerevisiae to be the
core method for searching the human genome. Differences were that now
the index was on disk, we used the value dj; = 1 and the text was encoded
using 2 bits per nucleotide. In testing we used the August 8th 2001 draft
of the human genome (obtained from [52]), which consists of roughly 2.85
billion nucleotides. The computer was a 1.33 GHz AMD Athlon XP with
1 GB RAM, 40 GB IBM Deskstar 60GXP hard disk and Windows 2000
OS, and the code was compiled using Microsoft Visual C++ 6.0 with full
optimization. We compared the two different partitioning schemes from
Section 10.3: the simple (as with S. cerevisiae) and the optimized one. The
results are shown on the right side of Fig. 34. In the majority of cases

83



using optimized partitioning had a non-negative gain, which varied between
0-300%. There were also some cases where the effect was negative, but
they were most probably due to the still immature calibration of our cost
function. We also made a quick test to compare our disk-based index with
the sequential bit-parallel approximate string matching algorithm of Myers
[38]. For example in the case m = 384 and k = 95 our index was still about
6 times faster.
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Figure 34: The figures in the left column show the comparison between the
index of Myers and three variants of our index in searching the genome of S.
cerevisiae. The figures on the right show the comparison between our two
different partitioning schemes in the case of searching the human genome
and using the best combination of verification/d-neighborhood generation
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11 An Improvement and an Extension on the Hy-
brid Index of Navarro & Baeza-Yates

In this section we propose an improvement on the hybrid index of Navarro &
Baeza-Yates for the Levenshtein edit distance [45]. In their tests that index
was found to be the best in the case of searching English text. Our improved
version is roughly 2-3 times faster than the original when the pattern is not
partitioned. Then we also discuss how to extend the index for the Damerau
edit distance.

11.1 The Hybrid Index

The so-called “hybrid index” of Navarro & Baeza-Yates [45] is based on inter-
mediate partitioning, where the pattern is partitioned into j pieces P!, .., PJ
and then each piece P’ is searched for with d; = |k/j]| errors. When a hit
Tj_p.j is found so that edL(Pi,Tj_h__j) < d;, there are two cases. If j > 1,
the text area T)j_,,—k. j+m+k Will be recorded to be checked for a complete
match of P with k errors. The original implementation uses plain dynamic
programming in verifying the hit surroundings. Otherwise if j = 1, the
found hit is reported as a match for the pattern as then P? = P and d; = k.

The hits for each piece P’ are found by a depth-first search (DFS) over a
suffix tree? built for the text and filling an edit distance computing version of
the dynamic programming table D during the DFS. When the DFS arrives
at a node that corresponds to the text substring 7} ;i;, the distance
edr (P!, Tj11. j11) is computed. This is done incrementally by using column-
wise filling order in filling D: moving from a depth-/ node to a depth-(I 4 1)
node is similar to moving from column [ to column [ 4+ 1. We may assume
that columns 0..I of D have been filled previously to enable computing the
value T4, j4; at depth [, and so one needs to compute only column [ + 1
at depth [ 4+ 1 to get the value edL(Pi, Tj+1..j+l+1)- Here we assume that all
columns of D are kept in memory. After column [ has been computed there
are the following three cases:

1. D[m,l] < d;, that is, edL(Pi,TjH,,jH) < d; and a matching text
substring has been found. The corresponding text positions are then
recorded from the leaf nodes that descend from the current node. Now

all matches with the current text substring T} ;4 as a prefix have
been found, and so the DFS backtracks.

2A trie of all suffixes of the text in which each suffix has its own leaf node and the
position of each suffix is recorded into the corresponding leaf.
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2. DJ[i,l] > d; for i = 1..m, that is, there are no active cells in column /.
Now no string with the current substring 7,1 j4; as a prefix can be
a match, and so the DFS backtracks.

3. D[m,l] > d; but D[i,l] < d; for some ¢ € [1,m — 1], that is, a matching
text substring is not found but there is at least one active cell. Now
there may be some text substring with length > [ that has T’ 1 ;4 as
a prefix, and so the DFS tries to continue to a level-l + 1 child of the
current node. If the current node has no children, the DFS backtracks.

When the edit distance computation backtracks from depth [ to depth
I — 1, the current columns 0..I — 2 of D can still be used. When another
character is tried at depth [ — 1, the previously computed values D[i,[ — 1]
are overwritten.

Navarro & Baeza-Yates used a faster bit-parallel algorithm [2] instead of
dynamic programming in computing the Levenshtein edit distance during
the DFS.

A suffix array [34, 13] is a list of the starting positions of all n text
suffixes that are sorted in lexicographic order. It permits the most typical
searching operations that can be done with a suffix tree, but there is an
additional cost factor of O(logn) as the strings in a suffix array are searched
by using binary searches. The hybrid index of Baeza-Yates uses a suffix
array instead of a suffix tree. One major reason for this is space: a suffix
array takes typically 4n bytes whereas a suffix tree takes 9n bytes or more
[12]. In their tests Navarro & Baeza-Yates also found that a suffix array
works faster in practice despite the additional O(logn) penalty.

It is not straightforward to select the number of pieces j in an optimal
manner. Navarro & Baeza-Yates proved that the best choice is to have
j = ©(m/log,n), which results in the run time O(n"”) where k < 1 when
k/m < 1 —¢/y/o. Here ¢ is a constant that is proven to be < e and
empirically known to be close to 1. They also proposed that using the
simple rule j = (m + k)/log, n works reasonably well even though it does
not always give the best choice for j.

11.2 Pruning the DFS

Based on our experience with the work in Section 10.3, an immediate way
to improve the original hybrid index of Baeza-Yates & Navarro would be
to use some of the smarter intermediate partitioning methods that were
discussed in Section 10.3 and to use BPM in verifying the hits instead of
the slow dynamic programming algorithm. But in the present work we
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focus on improving the DFS search over a suffix array and leave aside the
way the partitioning and verification is done. Thus we will consider only
the case where j = 1. This work has value also for the general case as it
corresponds to the initial phase where a pattern piece P? is searched. There
have been attempts to improve the performance of the DFS in [55, 6], but
their practical value has been questioned in [45, 47].

In our experiments with the hybrid index we found that the DFS over
the suffix array takes a considerable amount of time. By this we refer to
the time that it takes to traverse the nodes: the speed of the algorithm
used in computing edit distance during the DFS seemed to have very little
significance to the overall time. When we modified the algorithm to compute
column [ twice at each level-l node, there was a very negligible change in
the overall run time of the DFS (less than 1%).

Early Cut-off

Now we propose a way to process less nodes in the suffix array during the
DFS. It is based on the same idea that Myers used in the d-neighborhood
generation algorithm of his index [35]. Assume that the DFS is looking for
matches to a pattern string P with d errors. The basic idea is that when the
DFS reaches a depth-/ node that corresponds to the text substring T’ 1. j4;
and where DJi,l] > d for i = 1..m, the only strings that have T} j1; as a
prefix and match P with d errors are the strings of form 7’11 j4; 0 Pry1.m,
where r fulfills the condition D[r,{] = d. This is a simple consequence of the
diagonal property (page 9) and the form of the Levenshtein edit distance:
once all cells (and thus diagonals) of column [ have a value > d, the only?
ways to have a value D[m,l+ h] < d, where h > 0, is to have the rest of the
cells along a still active diagonal to correspond to a match. And this requires
exactly that the next traversed characters in the suffix tree/array form a
suffix P,y1. ., where the corresponding cell, D[r, ], in the current column is
active. Thus in this kind of situation we can try extending the current text
substring Tj41. ;4 with all such suffixes P41, for which Dr,l] = d. A
natural exception is the case where D[m, j| = d, as in that case the whole
text substring is a match in itself and the extensions would be redundant.
Fig. 35 illustrates.

The DFS searches for only the shortest prefixes that match with P,
and we would like to keep that property to minimize the number of hits.
This means that when we try to extend the current text substring with the

3Under the Levenshtein edit distance.
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t|h|le]|Tr | e

O 1] 23| 4| 5| 6| 7| 8
t| 1] 0| 1| 2] 3| 4
h| 2] 10 1| 2| 3
e| 3| 2| 1] 0] 1] 2
s| 4| 3| 2] 1] 1] 2| 2
i| 5 4| 3] 2 22| 2] 2
s| 6| 5] 4| 3| 3| 3| 2| 2| 2

Figure 35: The dynamic programming matrix D for computing the Leven-
shtein edit distance between the pattern P = “thesis” and the text substring
Tj41.. = “there..”. Assume that d = 2. Column 5 is the first column whose
each cell has a value > 2. Now the only way to reach a cell value D[m, z] = 2,
x > 5, is to have only matches at the remaining parts of the diagonals with
the value D[h,4] = 2. The cells in these diagonal extensions have the value
d = 2 underlined, and the pattern suffixes corresponding to the cell values
DI3,5], D[4,5] and DI5,5] (shown in bold) are Py ¢ = “sis”, P5. ¢ = “is” and
Ps = “s”, respectively. Thus at this point we can check directly whether the
current path can be continued to correspond to T} j450 P46 = “there-
sis”, Tj1.j+5 0 Ps.¢ = “thereis” and/or Tj41. j450 Ps = “theres”, and then
backtrack in the DFS.
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suffixes of P, we should not use a suffix P, _p, if also some shorter prefix
Priith.m, b > 0, of it can be used. That is, if P.y11p. ., i a prefix of
Pri1.m, D[r+ h,l] = d and DJ[r,l] = d, then we should not use the longer
suffix P11, because the resulting string T j4; 0 Pry1.., has the shorter
prefix 111 41 © Pry14h.m that matches with P. For example in Fig. 35
the possible suffix extension P, g = “sis” has the shorter possible suffix
extension P = “s” as its prefix, which means that T} ;450 FPs = “theres”
is a prefix of Tj 1. j450 P4 ¢ = “theresis”. Thus the latter is redundant and
can be discarded.

As noted already by Myers, the failure-function f of the well-known
exact string matching algorithm of Knuth, Morris & Pratt [28] can be used
in avoiding the preceding problem. Also we use it, but in a slightly different
manner than Myers. Let fp denote the failure function for the pattern P.
It is defined as follows:

fp(i) =max(h | (h=0)V (Pr.h = Pi—pt1.4) A (0 < h <1)))

Thus the value fp(i) gives the length of the longest prefix of P _;_1 that is
also a suffix of Py ;. We will use f/, a “reverse-indexed” version of f 15' that
is defined as follows:

fpli) = fE(m —i+1)

As (P.m)® = P, _,. |, the value fj(i) gives the length of the longest
suffix of P; ,, that is also a prefix of Py ,,. Together with f’ we use a
check table extTab that is initialized by setting extTabli] = 0 for i = 1..m.
When DJi,l] > d for i = 1..m and D|m,!l] > d, we go through the suffixes
Py, 4, in the order h = d + 1..m. Note how we do not try extending with
the suffixes P; ., .., Pi.m as they match P as such and will be handled by
the DFS in other branches of the tree. When considering the suffix Py .,
we have one of the following five cases:

1. DIh—1,1] = d and fp(h) = = > 0. In this case the suffix P}, ,, is a
possible extension with a shorter prefix Pp, p12-1 = Pn—z+1..m that
could also be a possible extension. We do not try to extend with Py,_,,
yet, but record the possibility by setting extTab[m — x4+ 1] = h so that
it can be handled when h = m —x + 1 (note that now h < m—z +1).

2. DIh—1,1l] > d, fp(h) = x > 0 and extTablh] = y > 0. In this case
the suffix P, ,, is a possible extension that was recorded using Step
1 because Pj, pi,—1 is its prefix. Now Pp py.—1 turned out not to
be a possible extension, but it has a yet shorter prefix Py pi,-1 =
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Pp—z4+1..m that could be one. Thus we record the earlier possible
extension Py ,, to be handled when h = m — z + 1, that is, we set
extTabim —x + 1] = y.

3. D[h—1,l] =d and fp(h) = 0. In this case the suffix Pj_,, is a possible
extension that has no prefix that could be a possible extension. Thus
we can check if there is a descending path that corresponds to the
extended text substring T}41. j41 0 Ph.m-

4. Dh—1,1] > d, extTablh] =y > 0 and f,(h) = 0. In this case the suffix
P, is not a possible extension, but the previously recorded suffix
P, ., is. Now all prefixes of P, ,, that could be possible extensions
have been checked, and none of them actually were possible extensions.
Thus we can check if there is a descending path that corresponds to
the extended text substring 1)1 110 Py .m-

5. DIh—1,1] > d and extTab[h] = 0. In this case P}, ,, is neither a possible
extension nor a prefix of some longer possible extension. Thus we do
nothing.

One difference between our and Myers’ way of suffix extension is that our
version accesses the values D[i,[] in sequential order. This is convenient
if we use BPM in computing edit distance as it encodes the values DJi,[]
incrementally.

Further Reduction of Traversed Nodes

The original hybrid index included a simple heuristic to decrease the number
of visited nodes and the number of redundant matches found. It is enough
to find only those matches to P that begin by matching one of its first d+ 1
characters. Therefore the hybrid index prunes the DFS at the root node
by entering only to those nodes that correspond to one of these characters.
We take this idea further by requiring that the chosen depth-1 character Py
actually matches with the character P in the corresponding edit path. We
do this by computing the edit distance for only the suffix Pj_,, of P and
preventing the edit distance computation from matching the character Py at
depths > 1. Moreover, since assuming that the first matching character is Py,
means that there must be at least h — 1 errors before it in the corresponding
match, we allow only d; —h+1 errors during the part of the DFS that enters
the tree with the character P,. If P, = P, = Awithsome 1 < x < h < d+1,
the preceding restrictions are determined by the smallest such value x when
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we enter the tree with the character A. This ensures that the scheme works
correctly even though we enter the tree only once for each different character.

Test Results with Our DFS

In this section we present test results to compare the DFS of the original
hybrid index with our version that includes both the early cut-off and the
prefix restrictions on matching pattern characters. Our implementation was
built on the original implementation of Navarro & Baeza-Yates, so that the
basic scheme of handling the suffix array nodes was the same. We used
BPM in computing edit distance and the early cut-off was implemented by
keeping track of the lowest active row (see Section 8.1). As noted earlier,
the overall run time of the DFS is affected little by even fairly substantial
differences in the performance of the edit distance computation algorithm.
Therefore the fact that the two compared methods used different edit dis-
tance algorithms should not be a significant factor in the comparison. Each
(m, k)-combination was tested by searching for 100 patterns that were picked
randomly from the text. The tested pattern lengths were m = 5, m = 10
and m = 15. We used two texts of size = 10 MB. The first was a 10 MB
sample from Wall Street Journal articles taken from the TREC-collection
[14]. The second was the DNA genome of S. cerevisiae (baker’s yeast) ob-
tained from [51]. As we wanted to test the DFS, each pattern was searched
with the option j = 1 so that no pattern partitioning was involved. Fig. 36
shows the results. It can be seen that our DFS version is considerably faster
with these parameters.

11.3 Using the Damerau Edit Distance

Now we discuss how to extend the hybrid index for the Damerau edit dis-
tance. This requires us to modify both the DFS and the intermediate par-
titioning scheme.

DFS Under the Damerau Edit Distance

Consider again the case of looking for matches to P with d errors. A trivial
change is that the edit distance computation during the DFS should use
the Damerau edit distance. This alone is clearly sufficient with the original
DFS. But with the early cut-off scheme there may be more possible suffix
extensions. Now D[h + 1,1+ 1] = D[h,d] =dif Dlh— 1,1 -1 =d—-1
and Py py1 = (Tj+l..j+l+1)R, and in this case also Tj41. j41—1 0 (Puni1)®o
Prio.m is a possible extended text substring that matches P with d errors.
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Figure 36: The left column shows the average time for searching for 100
patterns from a 10 MB sample of Wall Street Journal articles taken from
TREC-collection. The right column shows the corresponding times in the
case of searching the DNA genome of S. cerevisiae (baker’s yeast).
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Therefore in the case where we want to check the extended text substring
Tj41. 41 © Ph.m, with the Damerau edit distance we will at the same step
also check the extended text substring 7)1 j4;—10 (Py.ns1)® o Phyo.m. We
do not need to change any other details in the process. For example using
the function f’ in avoiding redundant extensions works without any change.

Intermediate Partitioning for the Damerau Edit Distance

In [47] the condition 25:1 d; +j > k + 1 was given for determining the
number of errors d; for each non-overlapping piece P* under the Levenshtein
distance. And as discussed in Section 10.3, it is natural to use the strict
requirement Zgzl d; = k—j+1. We formulate similar rules for the Damerau
edit distance. In the following we assume that we are searching for P with
at most k errors and have j non-overlapping pattern substrings P!, .., PJ.

With the Damerau edit distance one edit operation can cause one error
into two consecutive pieces P'~! and P’ by transposing the last character
of P"~1 and the first character of P?. It is clear that no other kind of
edit operation can affect more than a single piece by more than a single
error. Moreover, as there are j pieces, there can be at most j — 1 different
boundaries between consecutive pieces P'~! and P?.

Assume that P is edited by some sequence of k edit operations under the
Damerau edit distance and let n; denote the number of edit operations in
that sequence that affect exactly ¢ pieces. Naturally nyi + no < k. Now the
total number of errors in the pieces P?, i = 1.j,isn1+2ne < k—ngo+2ny =
k+mny < k+ j— 1. By using a similar argument as was used in [47], the
previous discussion allows us to give the following lemma for determining
the values d;.

Lemma 11.1 Let P!, i = 1..j, be j non-overlapping substrings of the pat-
tern P and B some string for which edp(P,B) < k. Also let each P' be
associated with the corresponding number of errors d;. If 25:1 d; > k, then
one of the pattern substrings P' matches inside B with at most d; errors.

Proof: We use contraposition. Assume that 2521 d; > kandedp(P,B) <k
but no substring P’ matches in B with d; errors. This means that we need at
least d; + 1 errors to match each P*in B. Thus the total number of errors in
the occurrences of P!, .., P/ in Bis at least > 7_, (d;+1) = >_7_, di+j > k+j.
This is a contradiction because, as discussed above, the total number of
errors in the pieces can be at most k + j — 1. (]
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As noted by Navarro [42, 41], the problem that a transposition can alter
two non-overlapping pieces may be avoided by requiring that the pieces
are not consecutive, that is, that they have at least one character between
them. Navarro used this fact with the filtering condition of Wu & Manber
[60] where the pattern is partitioned into k + 1 pieces and each is searched
without errors. The following lemma is a natural extension of this for the
general case of intermediate partitioning. It is almost identical to the one
given for the Levenshtein edit distance in [47].

Lemma 11.2 Let P!, i = 1..j, be j non-overlapping substrings of the pat-
tern P so that no two pieces P* and PY, x,y € [1..j], are consecutive. Also
let B be some string for which edp(P, B) < k and let each P* be associated
with the corresponding number of errors d;. If 25:1 d; > k—j4+1, then one
of the pattern substrings P matches inside B with at most d; errors.

Proof: As now a single edit operation can alter at most one piece, the total
number of errors is k. Assume that > 7_;d; > k—j+1and edp(P,B) <k
but no substring P? matches in B with d; errors. This means that we need
at least d; +1 errors to match each P? in B. Thus the total number of errors
in the occurrences of P!, .., P/ in Bis at least > 7_,(d; +1) = >7_ d;i+j >
k—j+1+j=k+1. Thisis a contradiction because the total number of
errors in the pieces can be at most k. O

Having gaps between the pieces in Lemma 11.2 loses a bit of information
about the pattern. To prevent this we propose the following lemma, which
is slightly stronger. It uses classes of characters, which refers to permitting
a pattern character to match with any character in a given set of characters.
A set of possible matching characters is typically denoted by enumerating its
characters inside square brackets. For example the pattern P = “thes|ei]s”
matches with the strings “theses” and “thesis” as its second-last character
is allowed to match with an ‘e’ or an ‘i’

Lemma 11.3 Let P!, i = 1..j, be j non-overlapping substrings of the pat-
tern P that are ordered so that P'T' occurs on the right side of P' in P.
Also let B be some string for which edp(P, B) < k, let each P* be associated
with the corresponding number of errors d; and let strings P', i = 1..5, be
defined as follows:

Pt = P! ifi=j or P' and P do not occur consecutively in P.
P = Pli__‘Pi‘_1 o [PliPi‘PfH], otherwise.
If Zgzl d; >k —j+1, then one of the strings P* matches inside B with at
most d; errors.
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Proof: Let us interpret a transposition of the character pair P;_q ; as an
edit operation that is associated with the single character P;. With this
interpretation each edit operation is associated with at most one piece P
From the proof of Lemma 11.2 we know that if > 7_;d; > k — j + 1 then at
least one piece P’ will be associated with at most d; edit operations in the
string B. The only case where this does not lead into P? matching with at
most d; errors inside B is when P? has been modified also by a transposition
that is not associated with it. The only possible way for this to happen is
that the character P‘ipi| has been transposed with the character Pf“, and

in this case P! o PliJrl matches with at most d; errors inside B. The

1..|Pi|—1 >
preceding is the same as saying that P* matches with at most d; errors inside

B. U

A Note on the Asymptotic Behaviour

In this section we assume that the pattern and the text follow the sym-
metric Bernoulli model where the probability of occurrence is 1/0 for each
character. Typically all string matching algorithms are analysed under this
assumption.

The counting filter (Section 9.2) for the Levenshtein edit distance states
that if an approximate match of the pattern P ends at text position j, then
the text substring T, ;1. j contains at least m —k characters of the pattern.
The condition of the counting filter can be formulated into a more strict
manner by saying that lcs(Tj_m+1.j, P) > m — k, where lcs(A, B) denotes
the length of the longest common subsequence of the strings A and B. It
is straightforward to verify that this rule works also with the Damerau edit
distance: lcs(P, P) = m, and a single edit operation can affect the length of
the longest common subsequence within a window by at most 1.

Let fp(m,k) be the probability that the pattern P matches at a given
text position j with at most k errors under the Damerau edit distance. From
the preceding discussion it follows that fp(m,k) can be upper-bounded by
assuming that P matches at text position j whenever lcs(Tj—pm41.5,P) >
m—k. The probability of the latter happening is < o* (7;)2 Jo™m = (7;)2 Jo™m k.
Here ¢ is the number of all strings of length m, and o* (7;)2 counts in how
many ways we can map a length-(m — k) subsequence from the window of
length m to some length-(m — k) subsequence of the pattern and then fill
the remaining £ unmapped characters from the window with any characters
of the alphabet. Thus we have that fp(m,k) < (Tg)z/am*k.
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The asymptotic analysis of the original hybrid index [45] for the Leven-
shtein edit distance is based on an upper-bounding model that is more com-
plicated but still inherently similar to our model. In fact, a fundamental part
of their analysis is based on analyzing exactly the same term (7,?)2 Jomk,
They proved that (?)Q/Um_k = O(y™), where v < 1if k/m < 1—e/\/0.
Based on this result we may conclude that fp(m, k) = O(«™), where v < 1
if k/m <1—e/y/n.

As in addition Lemmas 11.1 and 11.3 enable us to use intermediate par-
titioning where d; = k/j, there is not much difference between our scenario
and the model that Navarro & Baeza-Yates analysed. If we use Lemma 11.1,
a difference is that we can have d; = [k/j| whereas the original hybrid in-
dex uses d; = |k/j]. We can use d; = |k/j| under Lemma 11.3, but in
that case the DFS has to permit the last characters of P!, .., P~! to match
with two different characters. This does not change the asymptotic cost of
the search as it is clear that this can at most double the cost of the DFS.
Here we have excluded the fact that we use heuristic solutions to accelerate
the DFS, but this does not affect the situation. We can hence claim that
all analytic results stated in [45] hold also in the case of our Damerau edit
distance version of the hybrid index. The most important of these is that
the overall search cost can be made O(n"), where kK < 1 if k/m < 1—e/\/o
and j = ©(m/log,(n)).
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Conclusion

In this thesis we presented a variety of methods for the tasks of computing
edit distance and approximate string mathing under the Levenshtein and the
Damerau edit distances. For most of our methods we also showed empirical
test results to verify that the methods are competitive in practice. As the
obtained results were often quite satisfactory, we believe that the current
work provides a worthwhile contribution.

The current work is by no means complete in that much remains to
be done. We for example plan to compose a more elaborate analysis of
some of the used heuristics, such as two-phase filtering (Section 9.3) and
bi-directional verification (Section 10.5).
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