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Abstract

The interactive knapsack problems are generalizations of the classical knap-
sack problem. Three different new NP-complete decision problems, interactive
knapsack heuristic decision (IKHD), interactive knapsack desicion (IKD), and
multi-dimensional interactive knapsack (MDIK), are presented for the interact-
ive knapsack model. The interactions occur between knapsacks when an item
is put into a knapsack. We identify several natural interaction types. Interact-
ive knapsacks with one item are closely related to the 0-1 multi-dimensional
knapsack problem.

By using interactive knapsacks we model various planning and scheduling
problems in an innovative way. We show interactive knapsacks to have several
applications, for example, in electricity management, single and multiprocessor
scheduling, and packing of two, three and n-dimensional items to different
knapsacks. Many natural problems related to interactive knapsacks are NP-
complete. IKD and MDIK are shown to be strongly NP-complete.

IKHO and IKO are introduced as optimization versions of IKHD and IKD,
respectively. IKHO and IKO are shown to be APX-hard. Further, we describe
special cases of IKHO and IKO solvable in polynomial time; given an instance
parameterized by k, the solution can be found in polynomial time, where the
polynomial has degree k. A similar construction solves a special case of the 0-1
multi-dimensional knapsack and the 0-1 linear integer programming problems
in polynomial time. We extend the 0—1 multi-dimensional knapsack solution
to 0—n multi-dimensional knapsack problems and to 0-n integer programming
problems. Our algorithms are based on the resource bounded shortest path
search: we represent restrictions efficiently in a form of a graph such that each
feasible solution has a path between given source and target vertices.

We apply interactive knapsacks to load clipping used in electricity mana-
gement. Specifically, we implement several heuristic methods, dynamic pro-
gramming, enumerative, and genetic algorithms for solving direct load control
problem. The enumerative method and dynamic programming are slow while
the heuristics and genetic algorithms are faster. The dynamic programming
gives best results in reasonable time. Heuristics, however, are several times
faster than the other methods.
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Chapter 1

Introduction

The interactive knapsack (IK) problem is a generalization of the classical knap-
sack problem: an instance of the interactive knapsack problem consists of
several knapsacks connected somehow together. These connections are imple-
mented by the various kinds of interactions we shall study. We mainly use
two of them, cloning and radiation, since they appear in several applications.
In applications the knapsacks often model discrete time, cloning models some
control or task, and radiation models the additional activity caused by the
control or task.

In the IK model we have an ordered group of knapsacks, also called a
knapsack array. By cloning we mean a situation where inserting an item
into a knapsack causes the item to be cloned or copied to some near laying
knapsacks (in the standard interpretation, clones are identical to the inserted
item). Radiation, in turn, does not necessarily make identical copies, but
rather takes some proportion of the item to nearby knapsacks.

In other words, when an item j is put in a knapsack i, it is copied into
knapsacks i+1,...,i+¢ (¢ > 0). The inserted item and its copies together are
called a clone. When an item radiates, some portions of it are copied around
the item and its copies into knapsacks i —u,...,i—1and i+c+1,...,14+c+u
(u > 0). This behavior (copying to form clone and radiation) can model, for
example, the controls made in the electricity management, like in load clipping
[1, 2, 3, 6]. We allow the same item to be inserted several times in the knapsack
array but not into the same knapsack. In load clipping, this corresponds the
situation where we can make several controls with the same utility.

It is not crucial that the copies of items are identical. The main distinction
between cloning and radiation is in the restrictions of the optimization prob-
lems. Some (real life) problems need both of these interaction types, while some
other problems modellable by interactive knapsacks do not conventionally use



CHAPTER 1. INTRODUCTION

both of them. Interactions can, however, bring new insights to these problems
and the ways they can be applied.

Most of this work is based on [1, 2, 3, 4, 5, 6]. We introduce the IK
model, problems defined in it, complexity analysis of problems and the current
boundary between instances solvable in deterministic polynomial time and the
NP-complete cases. Further, we study, how the defined problems are related
to existing well-known problems, and how we can apply the IK model.

Interactive knapsacks were introduced in [1, 2]. The main motivation was
(and it still is) to study the computational properties of load clipping, which
has a number of real life restrictions. By simplifying the load clipping problem
(and model), we obtain a problem (and model), which is easier to analyze. By
adding new features to the simple problems, we approach the load clipping
problem. At the same time, the simple problems and their extensions enable
us to connect our results to existing combinatorial optimization theory.

The knapsack problem and its variants are much studied combinatorial
optimization problems with numerous applications sharing both practical and
theoretical interest. We study, how different IK problems are related to other
knapsack problems. For instance, both multi-dimensional and interactive
knapsack problems involve n items and m knapsacks (which are filled diffe-
rently). The multi-dimensional knapsack problem (MDKP) is closely related
to a 1-item IK optimization problem (that is, to IKHO, interactive knapsack
heuristic optimization). MDKP has many applications; for example in situ-
ations where different periodic resource requirements must be satisfied over
several periods (see [68]), or in query optimization (see [46], and the refer-
ences of [22]). Lin [68] presents a survey of some well-known nonstandard
knapsack problems including MDKP. Many integer and combinatorial optimi-
zation problems are formulated as general linear integer programming prob-
lems. There exist several monographs devoted to (linear) integer programming
(TP) and they describe several applications. For a general introduction, see for
example [79].

The model can and should also be presented in stochastic framework be-
cause random variables and processes are used in many applications, like sto-
chastic scheduling [78, 88]. Stochastic interactive knapsacks, however, are not
covered in this work.

We assume that the readers are familiar with algorithms and complexity
analysis. Basic notions and definitions with a few pointers to literature are
covered in Chapter 2. Introduction to NP-notation and concepts of complex-
ity analysis is given in Sections 2.1 and 2.2. We follow generally accepted
terminology about knapsacks and related problems. This terminology with



literature pointers is recalled in Section 2.3. Especially, we define and discuss
the basic properties of several knapsack problems and other problems related
to interactive knapsack problems. Section 2.4 gives an introduction to the
longest and shortest path problems.

The model of interactive knapsacks along with different types of interactions
is introduced in Chapter 3. This is the main innovation of the work. We also
discuss some variants of the model. Many problems connected to interactive
knapsacks are NP-complete.

Chapter 4 studies the complexity of different interactive knapsack problems.
First, we present a basic interactive knapsack problem and discuss about the
number of solutions. Next, we present decision problem IKD (interactive knap-
sack decision), which is strongly NP-complete. After introducing the decision
problem, we introduce the corresponding optimization version, namely IKO.

One possible approach to avoid computational difficulties is to restrict the
problems to use one item at a time leading to IKHD (- heuristic decision) and
IKHO problems, which are also shown to be NP-complete. IKHO can be seen
as a special case of 0-1 MDKP (more on MDKP in Section 2.3), although
IKHO equals 0-1 MDKP [2] (see Section 4.4). In Section 4.4 we show that
IKO is APX-hard. IKD is later generalized to the multi-dimensional interactive
knapsack decision (MDIK) problem, which is also strongly NP-complete (see
Chapter 7).

After giving the hardness results, we study some special cases in Chapter 5.
We show that a number of instances can be solved in polynomial time by giving
constructive proofs. Our methods are based on extensive use of the resource
bounded longest paths. Our method codes some of the restrictions into the
sets of vertices, and some into the weights of the edges, while the profits are
coded into the lengths of the edges. The graphs to be constructed are directed
and acyclic. These longest path instances can be solved efficiently with the
methods developed for the shortest path problem (see Section 2.4).

The reason for using the longest path problems is that their algorithms
are easier to apply than to construct the dynamic programming solutions di-
rectly to IKHO and IKO. We use the term longest path instead of the shortest,
because the use of the term “longest” is more natural in the context of max-
imizing. We apply the one resource bounded longest path problem in Sections
5.1 and 5.2, and the several resource case in Sections 5.3 and 5.4, while we
need them both in Section 5.5.

Section 5.1 gives polynomial time instances to IKHO, where radiation is
not used. Section 5.2, in turn, handles polynomial time instances for IKHO,
where both the radiation and clone part have nonzero length. The instances
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CHAPTER 1. INTRODUCTION

are connected to the cases, where the length of clone and radiation is at most
logarithmic with respect to the length of the knapsack array. In load clipping,
this corresponds to the case, where the control length is at most logarithmic
with respect to the optimization time interval.

After one item case, we turn to IKO in Sections 5.3 and 5.4. First we
consider the case with no radiation, and then we handle the restricted length
of radiation. The results in this section are generalizations of the corresponding
results obtained for IKHO.

The presented techniques are applied to 0—-1 MDKP (and 0-1 IP) in Section
5.5. We obtain polynomial time algorithms for the cases, where the restriction
matrix is a band matrix and the bandwidth of the matrix is at most logarithmic
with respect to the size of the matrix. We also show, how to efficiently solve
instances with variables ranging between 0 and 2" — 1, where n is fixed, thus
giving algorithms for 0-n MDKP (and 0-n IP).

We neglect the question of the sizes of instance parameters (that is, the
sizes of weights, profits and knapsack sizes); in the case of load clipping, for
instance, we may assume that every parameter including the optimal solution
fits into a single memory word. However, the detailed analysis for the MDKP
and IP instances should be made. We have checked that the results will not
change tremendously, and leave the exact running times open.

In a way, these logarithmic size bounds on structures (the problem still
being polynomial time solvable) are the best we can hope, since now some of
the parameters of the problems can grow with the other instance parameters.
Note that we describe instances for 0—-1 MDKP, where both the number of
items and the number of knapsacks grow, which, in general, is an APX-hard
case. From the practical point of view, the situation is similar to 0—1 IP: if
we have an instance with m x m bandwidth restriction matrix of fixed width
w (that is, w = O(1)), we can solve the instances in time bounded linearly
by mlog(m) and w2*" by using the methods to be presented. However, by
applying the dynamic programming solution presented in [96, pp. 264-265],
or in [85] to these instances, we end up with much larger graphs and slower
running times.

Dynamic programming solution to the 0-1 knapsack problem has been
interpreted as a shortest path problem [96, pp. 261-263], or as a maximum-
weight path problem [79, pp. 420-422]. The shortest paths have been applied
to IP problems as well [96, pp. 264-265]. See also [104] and the graphs therein.
The novelty in our results is that we give an efficient transformation of the
described instances to a simpler graph problems.

Figure 1.1 summarizes some of the results obtained. For instance, it shows
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how IKHO and IKO are related to 0-1 MDKP and generalized assignment
problem (GAP). A link shows the restriction, if the number of items n or
the number of knapsacks m is set to one, or if the problem changes to other
(GAP is obtained from IKO by setting ¢ = v = 0). Otherwise, the essential
restrictions are in the boxes containing the problem names. Note that MDKP
is otherwise the same as IP but in MDKP all parameters are nonnegative.

Chapter 6 demonstrates that some known problems are closely related to
interactive knapsacks. Since IKHO and IKO are general problem formula-
tions, they can express several other problems, like 0—-1 MDKP and GAP do.
In some cases, the methods of Chapter 5 may give efficient solutions to the
closely related problems. For example, knapsack arrays can simulate time in-
tervals of any length partitioned into slots of appropriate length [65, 95]. Many
scheduling and planning problems involve decisions in this kind of domain (see
Chapter 6), like load clipping (see Chapter 8). Moreover, some assignment
problems can be presented in a space formed by interactive knapsacks (see
Chapter 7). We give several examples on how to apply the interactive knap-
sacks.

Application of interactive knapsacks to load clipping is presented in detail.
This contains the application of the model, algorithms, test runs and compar-
isons of the algorithms (Chapters 8-10). The implemented algorithms include
dynamic programming, several heuristics, enumerative method, and genetic
algorithms.

Electricity suppliers can use load clipping in load management. There is
a need to limit the load, when the electricity consumption rises above the
level the supplier can produce. The supplier has another option: to buy the
needed extra electricity from an outer supplier, but this is expensive [6]. The
supplier can form controllable groups or loads from its customers that behave
in a similar way when the electricity supply is limited. By controlling these
groups, the supplier can lower the peak load for a period, and the objective
is to minimize the losses caused by buying electricity from other suppliers,
see [6, 27, 102]. Each control corresponds to a clone. There are also other
problems in load management that can be modeled with interactive knapsacks.
(See Chapter 8.)

Payback (also called strikeback) is a phenomenon caused by the consump-
tion peak after the control of customers devices, like electricity heaters or air
conditioners [29, 102]. At the control time, the houses cool down (or warm up
in the case of air conditioners). The payback means the house temperature sta-
bilization: heaters use more energy right after the control period. The energy
storage capability [91] is similar to payback, but it occurs before the control.

5
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Figure 1.1: Some relationships between the problems considered.



The paybacks and energy storage capabilities are modeled with radiation.

The objective of the supplier is to put items (to decrease consumption
by making controls) into the knapsack array (given the energy demand) and
take into account the radiation (payback phenomenon of customer devices) in
order to appropriately fill the knapsacks (to make the electricity stand while
maximizing the profits).

Figure 1.2 depicts a sample control of a controlling utility in realistic and
theoretical situations. The control period is seen as a decreased load corres-
ponding to the clone, and after the control period, consumption increases for
awhile. This corresponds to the radiation (and to the payback).

Chapter 9 contains different methods for load clipping. Load clipping and
some other scheduling and planning problems are often used as “almost real
time software”. By using previous results calculated, say, ten minutes ago,
we can save calculation time with genetic algorithms. Dynamic programming
and some other methods, like the heuristics presented in this work, or branch
and bound methods, cannot easily take into account the “time window” in
which we operate (make control plans). However, genetic algorithms can use
earlier outputs given by the algorithm: we just drop away genes describing
the solution of the time slots passed out from window, move genes as much as
time window moves, and make new random genes for the added time slots (see
Chapter 9 and Section 9.5). Tests of the methods are presented in Chapter 10.

To summarize, we will give reasons with this work that it is arguable to
study IK model, define optimization problems for it and study their complex-
ity properties, and to find out efficient algorithms and applications for the
problems.

Py

overload
overload

time

Figure 1.2: A control made in realistic and theoretical load clipping situations.






Chapter 2

Preliminaries

In this chapter we shortly introduce the concept of NP-completeness (Sec-
tion 2.1), approximability and fixed parameter tractability (Section 2.2), basic
knapsack problems and their relatives (Section 2.3), and the resource bounded
longest path problem (Section 2.4). An introduction to design and analysis of
algorithms can be found, for instance, in [30], and to complexity analysis in
[30, 45]. Martello and Toth [72] study extensively different knapsack problems
and we follow mainly their notations when describing optimization problems.
When we are talking about decision problems, we mainly follow the notations
given in [45] (names of decision problems are written in upper case).

N denotes natural numbers {0,1,2,...}, and Z, Q and R denote the sets
of integers, rationals and reals, respectively. Empty set is denoted by (), and
the cardinality of set N is denoted by |N]|.

2.1 Complexity analysis and NP-completeness

We usually analyze time consumption as a function of the input size. We
define the time complexity function to give the maximum time needed by
the algorithm to solve a problem instance of certain size. First we define
asymptotic notions to give upper and lower bounds for the worst case running
times of our algorithms.

Consider functions f : N —+ R and g : N — R We say that function f
is O(g), if there exist positive constants ¢ and ng such that |f(n)| < c|g(n)|,
when n > ng. Further, f is Q(g), if there exist positive constants ¢ and ny
such that |f(n)| > ¢|g(n)|, when n > n,.

If f(n) is O(n*) (k € N) we say that f is a polynomial function. If f(n) is
not O(n¥), for any k € N, we say that f is exponential (this definition includes,
for instance, n'°", which is not normally regarded as an exponential function).

9



CHAPTER 2. PRELIMINARIES

If the time complexity function of an algorithm is of order O(p(n)), where
p is a polynomial function, then the algorithm is a polynomial time algorithm.
The class of problems solvable in polynomial time is denoted by P. There are,
however, inherently more difficult problems than the problems contained in P.

If the time complexity of an algorithm cannot be bound by any polynomial
p(n), that is, the time complexity is not of order O(p(n)) for any polynomial
p(n), then the algorithm is an exponential time algorithm.

We have problems for which we do not know any deterministic polynomial
time algorithm which would solve the problem. Some of these problems con-
stitute a subclass consisting of problems for which we have nondeterministic
polynomial time algorithms. This subclass of problems is denoted by NP.
Assuming that P # NP, we call a problem NP-hard, if we can transform a
problem in NP\ P to it in polynomial time. For these problems, we may not
know any nondeterministic polynomial time algorithm.

Further, we call a problem NP-complete, if it belongs to NP and if it is
one-to-one transformable to an NP-complete problem in polynomial time. If
we can solve one problem in that class in polynomial time, then we can solve
all the other problems in polynomial time by using the transformations.

Efficient solutions to NP-complete problems do not necessarily help us to
solve efficiently the NP-hard problem at hand. The other way works: knowing
how to solve an NP-hard problem efficiently would give us a way to solve the
NP-complete problems efficiently.

Every problem with a polynomial time algorithm belongs to the class of
NP-problems. The question about the inequality P # N P is an open problem.
As an example of NP-complete problems, consider the PARTITION problem [45],
which is needed later in this section.

PARTITION
Instance: A finite set N and a size s(n) € Z* for each n € N.
Question: Is there a subset N/ C N such that

Zs(n) = Z s(n)?

neN’ neEN\N'

To show that a problem II is NP-complete, we have to show that II €
NP, to select a known NP-complete problem II' € NP, and to construct a
polynomial transformation f from I’ to I1. There are mainly three techniques
to show that a polynomial transformation exists between problems [45]. These
are restriction, local replacement and component design.

In restriction we show that a problem contains a known NP-complete prob-
lem as a special case. In local replacement we pick some basic units from a

10



2.1. COMPLEXITY ANALYSIS AND NP-COMPLETENESS

known NP-complete problem and obtain the corresponding instance of the
target problem by replacing the basic units with appropriate structure of the
target. In component design we use constitutes of the target problem instance
to design “components” that can be combined to “realize” instances of a known
NP-complete problem. (See [45].)

We use restriction and local replacement. As an example of restriction,
suppose that PARTITION is the known NP-complete problem and that we are
to show that the SUBSET suM problem is NP-complete ([45]). First we define
the SUBSET SUM problem:

SUBSET SUM

Instance: A finite set N, a size s(n) € Z" for each n € N and a positive integer
B.

Question: Is there a subset N’ C N such that the sum of the sizes of the
elements in N’ is exactly B?

SUBSET SUM can be seen as a restricted knapsack problem (see Section
2.3). To show that SUBSET SuM is NP-complete by restricting it to PARTI-
TION, we have to show first that SUBSET SuM belongs to NP. We do that by
constructing a nondeterministic polynomial time algorithm, which guesses the
answer and verifies it, both in polynomial time (see Figure 2.1).

Next, we have to add some restrictions to SUBSET SUM so that the resul-
ting problem is identical to PARTITION, or, that there is an “obvious” one-
to-one correspondence between the problems [45]. This correspondence is
enough to provide the transformation from PARTITION to SUBSET SUM. We
restrict SUBSET SUM to instances where B = ) . s(n)/2. Hence, in SUB-
SET SUM we have to find a subset N’ such that ) ., s(n) = B. However,
B =3"cns(n)/2 =3 cnn s(n). Hence, if we can solve SUBSET SUM with
the specified restriction in polynomial time we have also a polynomial time
solution for PARTITION.

PARTITION and SUBSET SUM as given above are decision problems. We
can state these problems also as optimization problems. For example, the

Input: A SUBSET SUM instance (N, s(n) € Z* for each n € N, and
B e ZY)
Output: A subset N’ solving the instance, if such a subset exists

(1) Guess N' C N

(2) Verify that >\, s(n) = B and return N’ if it is correct

Figure 2.1: A nondeterministic algorithm solving the SUBSET SUM problem.

11
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SUBSET SUM optimization problem has the same instance as the corresponding
decision problem but now we maximize the sum of the chosen elements without
exceeding B, that is, we

If we could solve this optimization problem in polynomial time, it would
give us a polynomial time method to find the answer to the decision version
of the SUBSET SUM problem. Hence, the optimization version of SUBSET SUM
is NP-hard.

We can exactly solve the SUBSET SUM optimization problem with dynamic
programming in O(B|N|) time [72]. Thus, SUBSET SUM is solvable in polyno-
mial time of two variables B and |N|. The exponential instances occur when
B is much greater than |N|.

We also establish results concerning NP-completeness “in the strong sense”.
Before defining it, we need the concepts of a pseudo-polynomial time algorithm
and a number problem. First we define two functions, Length : Dy — Z*
and Max : D — Z™T, where Dy is the set of all instances of problem II.
The function Length corresponds to the number of symbols used to describe
I € Dy under some reasonable encoding scheme for problem II. The function
Max, in turn, is intended to map instance I to an integer corresponding to the
magnitude of the largest number occurring in I. (See [45, pp. 92-95].)

For example, in SUBSET SUM we may set Length[l] = |N| + logB +
> logs(n) and Max[/] = B. We may drop items larger than B from each
instance, in which case B is polynomially related to max{B,s(n) : n € N}.

Definition 2.1. Let I be an instance of I1. An algorithm is pseudo-polynomial
time algorithm if its time complexity function is bounded above by a polynomial
function of the two variables Length[I] and Max[I].

Each polynomial time algorithm is also a pseudo-polynomial time algorithm:
the running time is polynomially bounded by Length[/] alone. An algorithm
runs in pseudo-polynomial time, if its running time is a polynomial function
of the length of the data encoded in unary (a one-symbol alphabet) [79, p.
137]. The dynamic programming for the SUBSET SUM optimization problem is
a pseudo-polynomial time algorithm, because its time complexity function is
polynomially bounded above by B and |N| (as already said, we may remove
large items from a problem instance so that B is the largest number) [45].

12
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Definition 2.2. A decision problem 11 is a number problem if there exists no
polynomial p such that Max[I] < p(Length[I]) for all I € Dry.

Let II, denote the subproblem of II obtained by restricting II to only those
instances I that satisfy Max[I| < p(Length[/]) and hence, II, is not a number
problem. If we can solve II by a pseudo-polynomial time algorithm, then II,
is solvable by a polynomial time algorithm.

SUBSET SUM is a number problem, because Max can be exponential over
Length by increasing B. Moreover, all instances having B < p(|N|) are solvable
in polynomial time, because now B|N| < p(|N|)|N| is polynomially related to
|N| and hence, the time complexity of dynamic programming O(B|N|) <
O(p(|N|)|N|) gives a polynomial time (in |N|) upper bound.

Definition 2.3. A decision problem 11 is NP-complete in the strong sense if
IT belongs to NP and there exists a polynomial p over the integers for which
IL, is NP-complete.

If IT is NP-complete in the strong sense, it cannot be solved by a pseudo-
polynomial time algorithm unless P = N P. Intuitively, a problem is strongly
NP-complete, “if a problem remains NP-complete even if any instance of length
n is restricted to contain integers of size at most p(n), a polynomial” [86, p.
204].

Next we give the sequencing with release times and deadlines (sequencing
within intervals) problem, which is NP-complete in the strong sense [45].

SEQUENCING WITH RELEASE TIMES AND DEADLINES

Instance: Set T of tasks and, for each task ¢ € T, a length [(t) € Z*, a release
time 7(t) € Zg, and a deadline d(t) € Z*.

Question: Is there a one-processor schedule for 7" that satisfies the release time
constraints and meets all the deadlines, i.e., a one-to-one function o : T' — Z,
with o(t) > o(t') implying o(t) > o(t') + I(t'), such that, for all ¢t € T,
o(t) > r(t) and o(t) + 1(t) < d(t)?

In the above definition we require that ¢ is executed after r(t), stops before
d(t), and does not overlap with other task t' € T. We use this sequencing
problem to show that IKD is strongly NP-complete in Section 4.3.

To show that a problem II € NP is NP-complete in the strong sense, we
have to construct a pseudo-polynomial transformation from a known strongly
NP-complete problem IT' to 1. Suppose that Max and Length are defined in
I1. A pseudo-polynomial transformation is a function f : Dy — Dy such that

13
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1. for all instances I of IT', f preserves the “yes” answer,

2. f can be computed in polynomial time in the two variables Max'[I] and
Length'[I],

3. there exists a polynomial ¢; such that, for all instances I € Dy,

q1(Length[f(I)]) > Length'[I],

4. there exists a two-variable polynomial ¢, such that, for all instances
I € Dy,
Max[f (I)] < g2(Max'[I], Length'[I]).

Intuitively, if II is strongly NP-complete, that is, II,, is NP-complete for some
polynomial p, we can construct a polynomial p’ by using the polynomials ¢
and ¢ and properties 3 and 4 giving Max'[f([)] < p'(Length’[f(I)]). The first
and second properties with II, imply that f is a polynomial transformation.
Thus II, is strongly NP-complete. (See [45, p. 101].)

2.2 Other complexity issues

If a problem is NP-complete, we often want to know, whether we can approxi-
mate the problem. Another question of interest is, if the problem is fixed

parameter tractable. A solution given by algorithm A for an instance [ is
denoted A([).

Definition 2.4. A polynomial time algorithm A is said to be an e-approzi-
mation algorithm if for every maximization problem instance I with an optimal
solution value OPT(I),

A(I) > OPT(I)/e.

Definition 2.5. A NP-complete problem belongs to the class APX, if it has
an e-approximation algorithm, where € is constant.

Note that only optimization problems can have an es-approximation al-
gorithm. The approximation ratio is bigger than or equal to 1 by definition.
For example, the optimization version of SUBSET SUM has 2-approximation
algorithm, in which we order the elements and then choose items in order, the
largest first [72]. Hence, SUBSET suM belongs to APX.

Definition 2.6. Given an instance I and error bound € > 1, a polynomial
time approxzimation scheme (PTAS) is an e-approzimation algorithm A such
that the running time of A is bounded by a polynomial in Length(I).

14
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SUBSET SUM is in PTAS [72]. In the next definition we require the algorithm
to be bounded by a polynomial 1/(¢ — 1) (that is, one has more chances to
tune the error).

Definition 2.7. Given an instance I and error bound e > 1, a fully polynomial
time approzimation scheme (FPTAS) is an e-approzimation algorithm A such
that the running time of A is bounded above by a polynomial in Length(I) and

1/(e - 1).

SUBSET SUM is also in FPTAS [72]. There are problems that do not belong
to PTAS nor FPTAS. Problems that are NP-complete (or NP-hard) in the
strong sense may belong to PTAS but do not belong to FPTAS.

Theorem 2.8. [/5, pp. 140-141]. A strongly NP-complete problem does not
belong to FPTAS.

Approximation classes are considered in greater detail for instance in [9, 32].
Arora and Lund [8] review techniques for deriving lower bounds on approxima-
tions and give inapproximability results for several classes of problems. (See
also [7, 31].)

Definition 2.9. LetII and IT' be two mazimization problems. A gap-preserving
reduction from I1 to TI' with parameters (c,p) and (¢',p') is a polynomial-time
algorithm f. For each instance I of 11, algorithm [ produces an instance I' =
f(I) of II'. The optima of I and I', say OPT(I) and OPT(I'), respectively,
satisfy the following properties:

e}

OPT(I)>c¢ = OPT(I')>¢,

/

Q

;-

OPT(I)<§ = OPT(I') <

3

We can show inapproximability results by composing reductions [8]. Sup-
pose that we have a polynomial time reduction g from an NP-complete prob-
lem, say PARTITION, to Il that ensures, for every instance I that

I € PARTITION = OPT(g9(I)) > ¢,

I ¢ PARTITION = OPT(g(I)) < <
p
If we want to prove the inapproximability of I, composing g with the reduction
of Definition 2.9 gives a reduction f o g from PARTITION to IT' ensuring

I € PARTITION = OPT'(f(9(I))) >,

CI

I ¢ PARTITION = OPT'(f(9(I))) < o

15
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In other words, f o g shows that achieving an approximation ratio p’ for I is
NP-hard. (See [8].)

Next we define the concept of fixed parameter tractable problem [37, 41].
Let F(I) denote the set of feasible solutions of an instance I. Suppose also
that a parameter k is independent of Length(7).

Definition 2.10. Mazimization problem 11 is fixed parameter tractable, if there
1s some deterministic algorithm A, given I, such that

A(I) = OPT(I),

if F(I) # 0; otherwise, the algorithm may loop forever. The running time of
A should be bounded by f(k)p(Length(l)), where f is some arbitrary function
and p is some polynomaial.

Function f is typically some exponential function. Idea behind the above
definition is that some problems have natural instances, where we can assume
k to be small, so that f(k) will be a small constant. For examples, see [37, 42].

Fixed parameter tractable problems constitute class FPT. Downey and
Fellows [37] define a problem classes W|1] and conjecture that the containment

FPT C W[1]

is proper. We do not define W[1] here, but only note that the question FPT =
W1] is somewhat similar to the question P = N P; there are several problems
that are hard for W[1], and which are used to show other problems to be hard
for W([1]. (See [37].)

For instance, SIZED SUBSET SUM is the SUBSET SUM problem with the
additional requirement that the sublist L that we are looking for is of size k.
Downey and Fellows [37] show that SIZED SUBSET SUM is not fixed parameter
tractable, unless F'PT = W|[1]. We say that SIZED SUBSET SUM is W[1]-hard,
or, that SIZED SUBSET SUM does not belong to FPT.

2.3 Knapsack problems

The knapsack problem (KP) of size n can be described with the size b of a
knapsack and three sets of variables related to the objects: decision variables
X1,--.,%,, positive integers wi,...,wy,, and py,...,p,, where, for each ¢ =
1,...,n, x; is either 1 or 0, integer w; is the weight of ¢ and p; is the profit of
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1. In the single knapsack problem the objective is to

n
max ijxj (2.1)
j=1
n
subject to ijxj <'b, (2.2)
j=1
zj=0orl, j=1,...,n. (2.3)

This problem is also known as the 0-1 knapsack problem (or 0-1 KP). As an
example, consider items given in Table 2.1. If b = 30, we can choose items 1, 5
and 7 and the total weight is 30 and the corresponding value is 45. We achieve
a better solution by choosing items 1, 2, 3 and 4, which gives total weight 27
and value 46. If we replace item 4 by item 7, the total weight is 29 and value
51.

The 0-1 knapsack problem above is in the optimization form, and the
NP-completeness of the corresponding decision version can be shown as in
the example concerning SUBSET SUM in Section 2.1. Optimization version of
SUBSET SUM, also called the value independent knapsack problem [72] (because
p; = w;), is an NP-hard special case of 0—1 KP, which is enough to show that
0-1 KP is NP-hard. The other knapsack problems to be introduced in this
section are also NP-hard.

Martello and Toth [72] give an account of different exact and approximation
methods to 0-1 KP before 1990. Methods include among others, (greedy) heu-
ristics, branch and bound, and dynamic programming. New efficient methods
are given in [89]. See also [71].

Suppose the set of objects {1,...,n} is partitioned into subsets. If we im-
pose an additional constraint that at most one object per subset is selected, we
have the multiple-choice knapsack problem. By assuming that several objects
of type j can be selected, we have the bounded (if restricted by some constant)
or unbounded (no restriction) knapsack problem.

In the 0-1 multiple knapsack problem we have m knapsacks of capacity

Table 2.1: Example of 0-1 knapsack problem with n = 7.

item [1 2 3 4 5 6 7
w; |1 5 8 13 14 14 15
pi |1 10 10 25 14 19 30

17
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b; (i =1,...,m) with decision variables x;;, where z;; is 1 if the object j is
selected for knapsack 7 and 0 otherwise. Further, if the profit and weight of
each object can vary depending on the knapsack for which they are selected,
we have the generalized assignment problem (GAP)

m n
max Z Zpijxij (24)

i=1 j=1
n
subject to Zwijxij S bi, 1= 1, e,y (25)
j=1
m
D my <, j=1,...,n, (2.6)
i=1
xij =0or 1, i=1,....m, j=1,...,n. (2.7)

Here p;; and w;; are the profit and weight of object j if inserted in knapsack
. In other words, the profit and weight of an item depend on the knapsack,
and an item is selected to a knapsack. This problem is generally considered
as assigning n jobs to m machines, where p;; is profit, if machine ¢ having b;
resource available is assigned a job j requiring resource w;;. Notice that all
values p;;, w;; and b; are positive integers.

For a survey of GAP, see, for example, [72, 73]. Contrast to our approach,
most of the literature handling GAP assume that restriction (2.6) is equality:
> it xij = 1. The problem with inequality is called LEGAP in [72] and GAP
in [23].

Table 2.2 contains an example of GAP. There are tables for profits p;;,
weights w;; and knapsacks b;, where ¢+ = 1,2,3 and j = 1,...,5. Here n = 5,
m = 3 and hence, we have 15 decision variables. By (2.6), we can choose j
to belong to any of the knapsacks ¢ only once. This means that each column
contains only one nonnull variable x;;.

We cannot put all items in the same knapsack, because the total weights
52, 50 and 58 will exceed the given bounds 35, 20 and 25, respectively. If we

Table 2.2: Example of GAP with m = 3 and n = 5.

Pij J W J bi
18 27 13 4 15 1 8 10 14 9 35

1 |21 12 15 2 16 1 6 15 10 4 15 20
30 8 20 14 17 20 5 14 9 10 25
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put items 1, 2, and 3 to the first knapsack (profit 58 and weight 29) and items
4 and 5 to the second knapsack (profit 18 and weight 19), our total profit is 76
and we have fulfilled the restrictions (2.5)—(2.7). This solution is not optimal.
If we change the first item from the first knapsack to the third knapsack, our
profit will be 88. (We do not present the optimum.)

In the multi-dimensional knapsack problem (MDKP) [80, 103], selection of
an item means that we add an amount to every knapsack, as opposite to GAP,
where the contents of items are inserted in separate knapsacks. In 0-1 MDKP
we are to

n
max ij$j (28)
j=1
n
subject to Zwijxj < b;, i1=1,...,m, (2.9)
j=1
zj =0or1, j=1,...,n. (2.10)

The parameters are nonnegative integers. In 0—-k MDKP equation (2.10) is
replaced with 0 < z; < k and with the requirement that x; is an integer.

Figure 2.2 has a sample 0-1 MDKP (a) and GAP (b) instances. Selected
items bear some weight to every knapsack in 0—-1 MDKP, while in GAP, we
insert an item in a specific knapsack. In this example, we have x;1 = 29 = 1 in
0-1 MDKP, and z41 = 291 = 1 in GAP.

The formulation of linear integer programming (IP) is otherwise the same
as MDKP, but now we allow negative parameters as well. Thus, p;, w;;, and
b; € Z. If we use restriction z; = 0 or 1 for each item, we call the problem 0-1
IP.

MDKP and IP (and 0-1 MDKP and 0-1 IP) have several exact and heuristic
algorithms, see [79, 96]; dynamic programming [80, 103] and genetic algorithms

@) (b)

Figure 2.2: Two items selected in 0-1 MDKP (a) and two items inserted in
two knapsacks in GAP (b).
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[56], to name few. Osorio et al. [84] give an overview of MDKP referencing
several paradigms, including branch and bound, enumeration, different relaxa-
tion techniques with branch and bound, like Lagrangean, surrogate, composite
and linear programming, and different heuristics like tabu search and genetic
algorithms, to solve the problem. Other extensive surveys can be found in [68],
[17] and [26]. Population heuristics include some of the above methods [11].
Hill climbing is considered in [57]. Further, Dyer et al. [39] consider the num-
ber of solutions to MDKP. Thesen [100] studies 0-1 MDKP with constraint
(2.11). Note that 0-1 MDKP and 0-1 IP have enumerative pseudo-polynomial
time algorithms running in O(mn2") time (see [79, p. 125|, and [85]). (The
dynamic programming algorithms are the most relevant to our work.)

A fixed parameter algorithm for the classical 0—1 knapsack problem has
been considered in [41]. Based on the fact that SIZED SUBSET SUM is not in
FPT, Caprara et al. [18] argue that a k-item KP is not fixed-parameter trac-
table. A k-item knapsack problem is (2.1)—(2.3) with an additional constraint
on the number of items:

» w<k (2.11)
j=1

We use (2.1)-(2.3) with (2.11) in Section 4.4 to show that IKHO and IKO are
not fixed parameter tractable. Note that k-item KP is a 0-1 MDKP, where
m = 2, and hence, 0-1 MDKP is not in FPT [18].

If m is fixed, 0-1 MDKP is in PTAS [21, 44, 69]. Chekuri and Khanna [22]
show that 0-1 MDKP is hard to approximate within a factor of Q(m®/(LBl+1)=¢),
for every fixed e, where B = min; ;. Srinivasan [98] shows how to obtain
Q(tB/(B-1)) solutions in polynomial time, where ¢t = Q(z*/m'/?) and 2* is the
optimal solution (and B > 1). GAP is APX-hard, but it can be 2-approxi-
mated [23, 97]. The APX-hardness is shown for a very restricted case of GAP
[23]. We show that IKHO and IKO are APX-hard in Section 4.4.

An extension of the knapsack problem is the 0-1 collapsing knapsack prob-
lem, where we allow the capacity of the knapsack to depend on the number of
items it contains [87]. Restriction (2.2) has now the form

zn:wjxj < b(i@-).
j=1 j=1

We can extend the objective function of the knapsack problem similarly
and define the added value knapsack problem by changing objective (2.1) to

be . .
maXZpi ( Z‘ZU) .
=1 j=1
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Here we let the profit of the items in knapsack ¢ to depend on the number of
the items. Still another possibility is to define

i=1 j=1

so that the profit of knapsack 7 depends on the total weight of the items it
contains. We call also (2.12) added value knapsack objective: in this work
there is no need to distinguish between these two objectives. The author is
not aware of any references in the knapsack literature for the two added value
objectives given above. If they are new, at least the latter is not artificial,
because it is used in load clipping.

2.4 Resource bounded longest path problem

Most of the polynomial time instances we describe in Chapter 5 are based on
the longest path methods. Let G = (V, E) be a graph, where each edge e € E
has length [, € N and weight w, € N. The longest weight-constrained path
problem is to find the longest path P between given vertices such that the
weight constraint is not violated: Zpe pwp < K. Note that the longest and
shortest weight-constrained path problems are not equivalent in general; for
example, while they both are NP-complete, they do not have similar special
cases solvable in polynomial time [2], which is demonstrated at the end of this
section.

Fortunately, the graphs that we consider are acyclic and directed. Hence,
the longest weight-constrained path problem can use the methods of resource
bounded shortest path problem, which is an extensively studied problem. Neg-
lecting the resource constraints, the shortest path is always well-defined for
acyclic directed graphs as they will not contain any negative cycles [30, p. 515].

Let I, < 0 be the minimum edge length in a graph G. We can form a new
instance by adding |l.| to each length. Now the instance has nonnegative edge
lengths and the original resource bounded shortest path instance corresponds
to this new one. They will give the same path as the result. To see this,
consider min(M + [)z = min(Mz + lz), where = denotes the 0-1 vector of
selected edges, M the added length and [ the vector of lengths. Now the Mz
part does not contribute to the choice of x. If the original problem was to
find the longest weight-constrained path, we can multiply every length by —1
and then use the above transformation and a resource bounded shortest path
method. We do not have to change the weights.
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Other names used in the literature for the resource bounded shortest path
problem are the restricted shortest paths and the shortest weight-constrained
paths. The shortest weight-constrained path problem (with one weight con-
straint) is in FPTAS [53]. Lagrangean relaxation, k-shortest paths, and dy-
namic programming have also been applied, see [38] for an overview. Ziegel-
mann [108] gives a survey of the constrained shortest paths. We start with the
following restricted special case.

Theorem 2.11. [/5, p. 214]. Consider a graph G = (V, E) with each edge e
having a length l. and a weight w., where l.,w, € N. If the weights are equal
and the graph is acyclic and directed, the longest weight-constrained path can
be found in polynomial time.

We can relax the assumption of equal weights when we construct algorithms.
(And as already said above, since we suppose that the graphs are acyclic and
directed, we can use the shortest weight-constrained paths methods.)

By redesigning the dynamic programming solution of the knapsack prob-
lem, we can solve the longest weight-constrained path problem in O(K|V|?)
time. We advise the reader to see [96, pp. 261-263] and [79, pp. 420-422].
There the graphs consist of one parameter edges (length) and the second para-
meter (weight) is coded into the labels of the vertices. Other possibility is
to directly form graphs, whose edges have both length and weight, which is
demonstrated below.

However, the shortest weight-constrained path can be solved in O(K|E|)
time, if the weights are positive (see [38] and the references therein). This
holds also for acyclic directed graphs, and therefore the time bound is valid for
the longest weight-constrained paths in acyclic directed graphs. We will use
the O(K|E|) bound later. Note that since the number of edges |E| can be as
large as |V|(]V|—1) in a directed acyclic graph, in general, the space consump-
tion and running time are O(K|V|?) for the longest weight-constrained path
problem in acyclic directed graphs. Hence, we obtain the following result.

Theorem 2.12. Consider an instance of the longest weight-constrained path
problem with a graph G = (V, E), where each edge e has length l, and weight w,,
where l,,w, € N. Suppose further that the weight-constraint K is polynomial
on the number of vertices |V|. If G is acyclic and directed, the longest weight-
constrained path between two vertices can be found in polynomial time.

We also need the longest r-weight-constrained path problem. Let G =
(V, E) be a graph, where each edge e € E has length I, € N and r separate
weights we, - - ., We,. The longest r-weight constrained path problem is to find
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the longest path P between given vertices such that the weight constraints are
not violated: ) .pwe; < Kj, where j =1,...,7.

Because our graphs are directed and acyclic, we can use the shortest r-
weight constrained path problem, which can be solved in O(|V||E|d) time
with dynamic programming [12], where d is the number of distinct resource
vectors. The problem handled by Beasley and Christofides in [12] is slightly
more general than ours (they have resource bounds in vertices as well). Further,
we have d = K", or d = K;---K,, if we use separate bounds for inclusion
times for the items, which means that d is bounded if n is fixed (in our case
each K; will be polynomial on the number of vertices).

We write down a similar folklore result about the running time, which suits
our purposes better, since |V||E| can be larger than |V|? in the graphs we
construct. Further, as will be discussed in Section 5.5, 0-1 MDKP can be
solved by the dynamic programming presented below.

Lemma 2.13. Let G = (V, E) be a graph with weight constraints K1, ..., K, €
N, and with each edge e having length l. € N and weights wey, . . ., Wer € N. If
G is directed and acyclic, the longest r-weight constrained path problem between
given vertices can be solved in O(K; --- K,|V|?) time and space.

Proof. We apply dynamic programming closely following the proof given by
Bertsekas [13, p. 53]. Let {1,...,|V|—1,t} be the set of vertices, and let ¢
be the target vertex. If vertices 7 and j are not incident, then [, = we, = 00,
where k=1,...,r

Let f,(i,k1,...,k;) be the minimum length from vertex i to vertex ¢ in
|V | — p moves with total weights k1, ..., k.. The optimal path having weights
ki, ..., k, from vertex i to tis fi(i, k1, ..., k). Each edge has at most K7 - - - K,
different weight combinations.

Initialize fiy|—1(¢, Wea, ..., Wer) = le, where i =1,...,|V|—1and e = (4,
If there is no e=(i,t) having weights ki, ..., k., then fiy—1(¢, k1, ..., k) =
The shortest distance from i to ¢ in |V| — p moves is

)

fo(i by, ky) :j:1mi\11]/\_1{le + fpi1 (4, k1 + We1, ko + wep, -+ Ky 4 wer) },
where p=1,...,|V| -2 and e = (i, j).

The optimal choice when at vertex 7 after p moves is to continue to a vertex
J* that minimizes lo + fp41(4, k1 +we,1, ko +We 2, - - -, kr +Wer ), Where e = (3, j),
over all j =1,...,|V|—1. The above dynamic programming algorithm solves
the shortest r-weight-constrained path problem. We can ignore the dynamic
program tabulations f,(i, k1, ..., k), where k, > K, for some ¢ =1,...,r
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Next we consider the running time. Because G is acyclic and directed, the
graph has at most |V|(|V| — 1)/2 edges. This is also the maximum length of
a path in G.

To find the longest r-weight constrained path, we can store the longest path
p of each r-weight combination so far found in each vertex. The number of
these combinations is (K; + 1) --- (K, + 1) and we can store the combinations
ina (K;+1)--- (K, + 1) dimensional table contained in each vertex.

If there are two different paths having different lengths but both having
the same r-weight combination, we store the longer one into the table. Hence,
the space consumption is O(K--- K,|V|?). We start from the source ver-
tices and proceed towards the sink vertices. In each vertex, we check every
incoming edge. There are at most |V|? edges, and thus, the running time is
O(K;--- K,.|V]?). O

At the end of this section, we demonstrate that the longest weight-constrai-
ned path instances, in general, cannot use the algorithms of the shortest weight-
constrained path problem. The longest weight-constrained path problem is
defined in decision form as follows.

LONGEST WEIGHT-CONSTRAINED PATH (LWCP)

Instance: Graph G = (V, E), length l(e) € N, and weight w(e) € N for each
e € E, specified vertices s,t € V, positive integers K, W.

Question: Is there a simple path in G from s to ¢t with total weight W or less
and total length K or more?

LWCP is NP-complete (also for directed acyclic graphs), which can be
shown easily with the knapsack problem. Let p; and w; be the profits and
weights and K and W be positive integers. The capacity of the knapsack is
W and we are asking whether there is a set of items fitting in W while the
sum of profits is K or more. We construct a graph containing two set of edges.
Each lower edge between consecutive vertices has length 0 and weight 0, while
the upper set of edges has lengths p; and weights w;. Figure 2.3 shows an
example of the graph. If we are able to find the path between vertex 0 and
m with length K or more and weight W or less, we have solved the knapsack

1
=

X;=1 X,=1 X
. . o o o . &

X,=0 X,=0 X

gt

n

Figure 2.3: Graph construction for 0-1 KP and for 0-1 MDKFP.
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2.4. RESOURCE BOUNDED LONGEST PATH PROBLEM

problem. This graph can be used to solve both the longest weight-constrained
path problem as well as the longest r-weight-constrained path problem (in the
case of 0-1 MDKP). In the latter case the weights w; are r-vectors. Note
that if we are to solve knapsack type problems, the graph can be constructed
differently (as described in the discussion preceding Theorem 2.12).

The following two special cases are solvable in polynomial time for the
shortest weight-constrained path problem [45], while for the longest paths they
are not. Hence, the problems with the shortest and longest paths are essentially
different, in general.

Let w be the common weight of all edges of graph G. Set W' = [W/w] and
w' = 1. Values w and W will give the same answer as values w’ and W’ for
the longest weight-constrained path problem. Hence, we are to find a simple
path of length K or more consisting of at most W' edges. If W' equals to the
number of vertices plus one, this problem is same as the longest path problem
and hence cannot be solved in polynomial time in general.

If, on the other hand, all lengths are equal, we have to find a simple path
having at least K’ = [K/I(e)| edges and having total weight at most W. If
K’ is the number of vertices plus one, this is the Hamiltonian path problem
meaning that this subproblem is not solvable in polynomial time.
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Chapter 3

The model of interactive
knapsacks

In this chapter we describe the model of interactive knapsacks. We discuss
different alternatives to build up the model. The actual choice is made in the
next chapter, when we define problems for the model.

In order to have any interaction between knapsacks we have to have at least
two knapsacks. We suppose that there are m knapsacks. Let the knapsacks
be ordered so that knapsack 7 is before knapsack ¢+ 1 and ¢ + 1 is after 7. We
also say that ¢ is left from ¢ + 1 and ¢ + 1 is right from 7. A set of knapsacks
i,i+1,...,7 (in order) is denoted by interval i, j| of length j — i + 1. Hence,
knapsack ¢ corresponds to interval [i,i]. The ordered set of all knapsacks is
also called a knapsack array.

The idea of interaction can be applied in many ways. The knapsacks can
have some restrictions which make them interactive. Also the application of
decision variables for choosing items into the knapsacks can imply interaction.
In this work we mainly study the former type of interaction. Sometimes,
however, we cannot clearly distinguish different forms of interaction from each
other. Yet, there is a third kind of interaction type: knapsacks can be grouped
into knapsack sets and knapsacks in one set may have identical weights and
profits for an item while different knapsack sets may differ from each other. In
each group, we are interested in the average filling, and calculate the average
profits and weights for the group. An example of the averaging interaction can
be found in Chapter 8.

If we select object j for knapsack 7 we consume the capacity b; of knapsack
7 as in the knapsack problems. The interaction of the selection is a function
Lj - {1,...,m} — Q. Selecting j for 7 has an effect [;;(k) to other knapsacks
k # i and the effect also depends on the “target” of the interaction. Usually
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CHAPTER 3. THE MODEL OF INTERACTIVE KNAPSACKS

I;j(k) gives an amount, either positive or negative, to be added in the knapsack
k. Typically, that amount is some proportion of item j added to knapsack %
affecting knapsack £, that is, we add to the profit and weight of knapsack &
values

peilij(k) and  wyg;l;(k), (3.1)

respectively. Other possibility is to add values
szI”(k) and wz-jfz-j(k), (32)

respectively, or some mixture of the above values. Note that in applications
we usually have I;;(¢) = 1.

Next we give a sufficient condition, when we can form profits or weights
(3.2) from (3.1), and vice verse. Note that an interaction function I for item
j can be presented in matrix form. Without loss of generality, we assume that
I;, p; (corresponds to the values of (3.1)) and I’, p} (corresponds to the values
of (3.2)) are defined for item j.

Theorem 3.1. Assume that Y Il(k) # 0, fori =1,...,m, and that matric
I representing interactions of item j is invertible. The profit indexing (3.1)
prli(k) can be obtained from the profit indexing (3.2) piIl(k), and vice verse.

it

Proof. First, sum over (3.2) is Y -, piI}(k) = pj > II(k), fori =1,...,m. Let
¢ =Y ey Li(k), for i = 1,...,m. Now, the m sums in vector notation is p'g,
where p’ = (p} -+ p,) and ¢ = (q1 - gm).

Sum (3.1) 0" prl;i(k), for i = 1,...,m, is Ip in vector notation, where I
is m X m-matrix and p = (p; --- pl,).

Now, we may set Ip = p'q giving p, = [Ip|;/q;- Hence, we obtain profits
from (3.1) for (3.2), if ¢; # 0. If I is invertible, we have p = I"'p'q, and thus,
we obtain profits from (3.2) for (3.1). O

Theorem 3.2. Similarly, with the assumptions that > Il(k) # 0, for i =
1,...,m, and that matriz I representing interactions of item j is invertible,
the weights in (3.1) and in (3.2) can be obtained from each other, while keeping
the interactions unchanged.

If interaction function I for item j is appropriate, by Theorems 3.1 and
3.2, we may use the indexing best suiting for our purposes (including mixed
indexings).

In some applications interaction I;; is a function of the distance between
the knapsacks ¢ and k. For instance, we may have [;;(k) = 0 when |k —i| > u,
where u is the interaction distance.
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() (b)

Figure 3.1: Example of radiation (a) and cloning (b).

Figure 3.1 (a) illustrates the case where j (in black) is inserted to i. The
gray areas describe the extent of the interaction. Hence, the insertion of an
object affects other knapsacks as well. We denote this interaction as a function
rij(k) : {1,...,m} — Q. Here 7;;(k) =0, when |k — 4| > 5, and hence u = 5.
The amount to be added (gray areas) to profits is py;r;;(k) and to knapsack
contents wy;r;;(k) when |k —i| < 5. We can also use p;;7;(k) and w;;r;;(k)
or a mixture py;r;;(k) and wj;r;;(k), which are used later. The shape of an
interaction can be arbitrary, like in the left side of 7 (in light gray). However,
in practice the shape usually follows some regular pattern like in the right side
of knapsack ¢ (in dark gray).

Figure 3.1 (a) also suggests that we should not apply this interaction scheme
recursively. For example, consider the effect r;_ ;. —1)(k), where k # i —1, of
knapsack ¢ — 1 after the inclusion related to r;;(¢ — 1). The interaction could
be defined in this way but known applications do not derive advantage from
recursive interactions.

The interaction r described above is called radiation. The radiation at
the left side of (knapsack) ¢ (in light gray) is called the left radiation and at
the right side (in dark gray) the right radiation. The knapsacks involved in
radiation caused by object j at knapsack ¢ are denoted by R;; = [i — u,i —
1JU [z + 1,7 + u]. Note that there is no reason why we could not use negative
radiation; indeed, in applications we need negative radiation. For radiation
rij(k), we typically have —2 < r;;(k) < 2.

Next we describe copying, the other basic form of interaction. If we put
item j into knapsack i, the restrictions between knapsacks may imply that we
also have to put j into some other knapsacks. In Figure 3.1 (b) we have an
example of this kind of interaction. By inserting j (in black) into knapsack 1,
we also have to copy j into knapsacks 2+ 1,...,7+ 4 and 7 + 6.

Mathematically, this interaction is similar to I. This time [ is replaced with
a function ¢;;(k) : {1,...,m} — {0,1}. The interaction distance is denoted by
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CHAPTER 3. THE MODEL OF INTERACTIVE KNAPSACKS

c. We could define this in the same manner as we defined radiation, introducing
the left and right copies. However, in applications we mainly need right copies.
If the weight of item j inserted into knapsack ¢ is w;;, we have ¢;;(k) = 1, when
i+ 1<k <i+c, otherwise ¢;;(k) = 0. This means that we add the copies
to knapsacks k, for i +1 < k < ¢ 4 ¢, which we see as py;c;j(k) = px; and
wy;cij (k) = wy; or as p;jc;j(k) = pi; and wijcij(k) = w;j. The other knapsacks
are kept unchanged.

Usually we are more interested in copying patterns without holes, unlike in
Figure 3.1 (b). Reasons for this become clear in the following chapters. Thus,
it is also sufficient to tell the insertion of j for the leftmost knapsack 7 and
the number of copies ¢ € N. Hence, we only have to copy j for knapsacks
14+ 1,...,2 4+ c. We say that the whole set of copies with the inserted item
contained in the knapsacks %,...,7 + ¢ is a clone. Clone refers also to the
knapsacks #,...,7 + c¢. Several clones form a clone family. The knapsacks
involved in copying object j starting at ¢ are denoted by C;; = [i,7+¢|;. Clone
C;; also contains the knapsack into which the insertion was made. A clone
family is denoted by C' meaning

1,

For example, C' = {[1, 5]1, [10, 15]1, [1, 15]2} is a clone family containing three
clones, of which two are of item type 1 (Cy; and Ci1) and one is of type 2
(Ci2).

Hybrid models with both radiation and copying are usual. This time we
assume that radiation spreads around clone Cj; instead of knapsack ¢. This
means that copying is not involved with radiation itself and that we do not
separate the first knapsack 4, into which the insertion is made, from the other
items taking part in copying by applying the radiation only around i. Hence,
the interaction in hybrid models involves knapsacks

IijzcijURij=[i—u,i—1]jU[i,i—|—c]jU[i+c+1,i+c+u]j.

We define the described hybrid model to be the 0-1 interactive knapsacks
model or the 0-1 IK model shortly.

Figure 3.2 has item j inserted into knapsack ¢, for which we have both
a clone (in black) and radiation (in gray). There is also item k in knapsack
i — 4 involving clone [i — 4,7 — 1], (boxed) of length 4 which does not have any
radiation. The early radiation of length 3 (in light gray) of item j is negative:
it has cut down the contents of knapsacks [i — 3,7 — 1]. The back radiation
of length 5 of item j is positive and affects knapsacks [ +4 + 1,7 + 4 + 5].
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Figure 3.2: Radiation and cloning together.

Function r;; is approximately —0.4, —0.5 and —0.55 for 7;(i —3), r;;(: —2) and
ri;(i—1), and 1.5, 1.4, 0.7, 0.4 and 0.3 for r;;(i+5),...,7(i+9), respectively.
We apply radiation with rule w;;7;;(-). The length of clone Cj; = [i,1+4]; is 5.
Here the copying is applied for the resources with rule wj;c;;(k) = w;;, when
ke Cy=1i,i+4].

Clearly, radiation is more general than copying. The approach to divide
interaction to copying and radiation comes from load clipping application (see
Chapter 8), where copying corresponds to the control and radiation to the
payback. This can be seen in the decision and optimization problem formula-
tions in the next chapter; copy part of the clone has its own restrictions. For
example, two copy parts are not allowed to overlap while the radiation parts
are.

The model of the 0-1 interactive knapsacks can be generalized to the 0-n
interactive knapsacks model meaning that the same object ;7 may be copied
into the same knapsack at most n times. Here we have two options for handling
the copies of a clone. We can allow the clones connected to object j to have
different lengths, like in Figure 3.3 (a). Other possibility is that the clones
have equal length as in Figure 3.3 (b). The dotted line separates items from
their copies.

(S S [V— —
(S S [V— [ —

| 1]
(@) (b)

Figure 3.3: Examples of 0-—n interactive knapsacks.
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CHAPTER 3. THE MODEL OF INTERACTIVE KNAPSACKS

Moreover, we may partition the set of objects into subsets and restrict the
selections so that at most one object is selected from any subset. Hence, we
have the interactive multiple-choice knapsacks model.

The added value knapsack objective (2.12) is demonstrated in Figure 3.4.
It contains two versions of the knapsack arrays. Both of these use cloning
and radiation just like knapsack arrays (darker triangles in (a) depicts short
radiation).

We give desired filling rate for knapsacks. The objective level B can be
same for all (a) or it can depend on a knapsack (b), in which case we need
values B;, where 1 = 1,...,m.

If the predefined filling rate is exceeded (b), some penalty is given. Other-
wise, like in (a), the profits are calculated normally. The penalty can be
formalized in several ways. For instance, let a be a positive constant scaling
the disadvantage caused by exceeding B. Now the objective may use profits

z, when x < B,
pi(z) = :
x+ a(B —x), otherwise.

Input of function p; usually depends on the items put into knapsack 7. We
may use the weights (> w;;x;j, as in Figure 3.4 (a) and (b)) or the number of

items put (> ;).

(@) (b)

Figure 3.4: Example of added value objective. We have inserted three items
in (a) and two items in (b).
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Chapter 4

IK problems and their
complexities

We start this chapter with a short description of different kinds of IK prob-
lems in Section 4.1. We restrict ourselves to the basic problems and some
of their variants. At the end of Section 4.1 lower bounds for the number of
solutions is roughly estimated for one item problem. Sections 4.2 and 4.3 show
that decision problems IKHD and IKD are NP-complete. The corresponding
optimization problems IKHO and IKO are introduced at the same time, and
their approximability and fixed parameter tractability are considered in Sec-
tion 4.4. The last section in this chapter studies the relationship of GAP and
0-1 MDKP.

4.1 Deriving the basic problem

Assume that the selection of object j (1 < j < n) for knapsack i (1 <1i < m)

employs ¢ copies to the right from 7. Hence, the selection makes ¢ + 1 copies

from i to i + ¢, that is, clone Cj; = [4,7 + ¢|;. Suppose also that radiation has

the maximum length of u, that is, R;; = [{ —u,i — 1]; U[i + ¢+ 1,4 + ¢ + ul;.

Thus, the interactions occur in knapsacks ¢ —u to i+c+wu. The use of equation
rij(k), when k€ [i —wu,i—1;U[i+c+1,i+c+ ul;,

I;(k) =<1, when k € [i,i+ c;, (4.1)

0, otherwise

makes the following material more readable. The left and right radiation are

given in the first line, and the clone part in the second (radiation is put around

the clone). Analogically, we define I;; ( =1,...,m and j = 1,...,n) to be

the corresponding intervals.
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Our basic problem for m knapsacks and n items is to
i+ctu

max ZZ%; Z Iij(k)pkj (4.2)

i=1 j=1  k=i—u

m n
subject to ZZ$ZJU]”IZJ(Z) < bl, l= 1, e, M, (43)
=1 j=1
zij=0o0r1, i=1,....m j=1,...,n, (4.4)
m
D wy <1, ji=1,....n. (4.5)
i=1

Sum (4.2) counts the profit of selections z;;. It takes into account the effect
of the left and right radiations and the clones by using I;;(k) given in (4.1).
Inequality (4.3) tells that one cannot overload the knapsacks: it takes into
account the effects of the clones and radiations as in (4.2).

Note that this is a mixture interaction type discussed earlier: we use profits
pr; and weights w;;. Some of the results we are going to give may not change,
even if we used for instance wy; in (4.3). This is not surprising in the light of
Theorem 3.1. Reason for choosing py; and w;; comes from load clipping, where
the profits vary on the target moment (knapsack) &, while the weights do not
vary.

Condition (4.4) ensures that each object can be selected only once for a
knapsack. Inequality (4.5), in turn, ensures that each object is selected at
most once for all knapsacks ¢ = 1,...,m. The problem setting (4.2)-(4.5) is
called the basic 0-1 interactive knapsack problem (basic 0-1 IK for short). By
changing condition (4.4) to

zi; €N (4.6)
(condition (4.5) has to be changed accordingly) we have a prototype for the
0—n interactive knapsack problem (0-n IK). By defining 0—n IK in this way
we, at the same time, fix that the clones and radiations of n objects of type
j are identical, like in Figure 3.3 (b). To implement 0—n IK as in Figure 3.3
(a), we need more decision variables. We need more restrictions, if we want to
select each item once, like (4.5), but still choose the amount of the item when
the item is selected, like in (4.6).
We can also extend the problem setting (4.2)-(4.5) by modifying (4.5) to

1=1

and by adding an extra restriction

zg; =0, fori <k <i+c, when z;; =1 (4.8)
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obtaining the 0-1 interactive knapsack problem. Inequality (4.7) allows at
most K clones in a knapsack array. Condition (4.8) is used to prevent the
selection of object j for a knapsack which already has a copy or a part of some
other clone of type j. This means that we do not accept overlapping clones
for the same object in this problem setting. Figure 4.1 on page 41 shows an
example of the case (4.8), where the clones (black boxes) do not overlap.

Basic 0-1 IK has an important special case: u = 0, that is, the case with
no radiation. This special case has applications in scheduling to be described
later. If we further assume that ¢ = 0 (each clone contains one member, the
object itself, in one knapsack), we obtain GAP.

Theorem 4.1. If c =u =0, the 0—1 IK problem is equivalent to GAP.

Proof. Conditions (4.4)—(4.5) are the same for both problems. Neither of them
contain ¢ or u. Substitution ¢ = v = 0 to equation (4.1) gives

1, whenkel[i,i+c]; =
0, otherwise,

I;j(k) = {

because [i,i + c|; = [¢,i]; = ¢, and because [i — u,i — 1]; = [i,i — 1]; =
[i+c+1,i+c+ul; =[i+1,4]; = 0. Hence, sum (4.2) is equal to

i+ctu mon
E E Tij E pk] 2 E Tij E Izg pk] E E LijPij-
i=1 j=1 k=i—u i=1 j=1 i=1 j=1

Note that I;; = [i,4]; = ¢ and [ € I;; implies | = i. Now, in (4.3) index j runs
the objects from 1 to n. This follows from the fact that the length of a clone
is one. Thus, (4.3) turns out to be

n
E Wi < b
i=1

(¢ =1,...,m). Hence, we have shown both (4.2) and (4.3) to be equivalent
with their counterparts in GAP. O

We can extend IK problem settings easily by assuming that the lengths
of a clone and radiation depend on j. So, we introduce ¢; € N and u; € N
for j = 1,...,n. Or, equivalently, we can introduce c¢;; € N and u;; € N, for
1=1,...,mand = 1,...,n. Further, we may use them as decision variables
among the variables z;;, that is, the length of a clone is a decision variable.
With these assumptions we may expose other optimization problems that can
be modeled with the 0-1 interactive knapsacks (and also with other models).
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Appendix B contains examples of optimization problems with variable length
clones.

If we interpret m knapsacks as time line [1,m], we can think that a clone
of object j from i to ¢ + ¢; is a decision (or act, task) j executed (actualized,
realized) on the time interval [¢,i+c;] of length c;+1 (we assume that [i,i+c;] C
[1,m]). Now we can optimize the length, position and the number of decisions
with different criteria. Restrictions concerning these variables are also possible.
Radiation with time has application specific interpretations: the decision j may
have some consequences to the profits and resources before or after (or both)
the specific decision j is executed at period [i,7 + ¢;j]. For example, in load
clipping we may store energy (corresponds to left radiation), before the control
occurs. We could think that the event starts, when energy storing starts, but
the start of the control period is the reason for storing energy (see Chapter 8).

Next we show a result concerning the number of clone families in a knapsack
array. We count here the families consisting of one type. We use the basic
problem that is extended with conditions (4.7)—(4.8). First we recall some
useful combinatorial tools.

Lemma 4.2. (Binomial theorem [52, p. 162].) For a,b € R and n > 0,

(a+b)" = Zn: (Z) ak ",

k=0

Putting £ = m = n in Vandermonde’s identity

(") -2 ()60

(see [52, pp. 169-170]), we obtain identity
2n\ i n\
n) ~\i)

(2: ) N Zi; (7)2 > io (?) =2" (4.9)

by Lemma (4.2). Now we have machinery to show the next theorem.

Note that

Theorem 4.3. Assume the basic problem with conditions (4.7) and (4.8).
The total number of clone families consisting of constant length clones in a
knapsack array of length m is exponential on m.
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Proof. Let ¢ be an arbitrary positive integer and set d = ¢ + 1 (length of a
clone). First consider the amount of k£ clones put in the knapsack array. Let
Vo, V1, - - -, U be nonnegative integers. Integer v; (except the last one) gives
the number of knapsacks having no clones (or part of any clone) before the
(i + 1)th clone. Hence, we can model k clones in the knapsack array as a
sum vy + Zle(d + v;) provided that the sum is equal to m. First integer v
equals the number of knapsacks before the first clone and the last integer vy
equals the number of knapsacks after the last clone. This is the composition
of m into 2k 4 1 pieces. Thus, Zf:() v; = m — dk. Next we count all possible
combinations for integers vy, ..., vr which sum up to m — dk. This gives the
number of compositions of m — dk into k£ + 1 parts. It is the number of clone
families having & clones of length d in the knapsack array of length m.
By [93, p. 190] the number of compositions is

((m - c(iZ)++1§k_+11) — 1) _ (m — l]zd + k)

So, the number of all clone families is

Lmz/dJ (m_]ZdJ’k). (4.10)

k=0

The largest k is |[m/d| (we consider only families that fully fit in the knap-
sack array) and the smallest is zero. In between we find & = m/2d, and by
considering the corresponding term in (4.10), we obtain

(m - l;;d + k) _ (m = m%?gj m/2d> _ ((md ;/Zz) /2d> |

Since d > 1, we have md 4+ m > 2m, and

()

by (4.9). O

Corollary 4.4. When the length of a clone is one (¢ = 0 ord = 1), the number
of different clone families in the knapsack array is 2™, and when the length
is two (c =1 or d = 2), the number of clone families is Fp, 11, the (m + 1)th
Fibonacci number.

Proof. When ¢ = 0, sum (4.10) is of the form
(m—k+k L (m m
()20
k=0 k=0
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by Lemma 4.2. When ¢ =1 (d = 2), we have
m—2k+k\ (m—k
k B k)

m

(") =

k=0

Identity

by [52, p. 289], shows the latter results, because

S-S ()

where the equality holds, since (mk_k) =0, when k£ > m/2. O

Theorem 4.3 and Corollary 4.4 do not tell much about the growth rate of
the number of clone families as a function of the length of the knapsack array.
The strength of Theorem 4.3 is in its simplicity. As Corollary 4.4 suggests, it
is intuitively clear that the number of clone families decreases as the length of
a clone increases, as there will be less room to make different compositions. In
applications we often have some fixed minimum value (> 2) for c.

One should also note that in Theorem 4.3 we have only constant length
clones. If we allow variable length clones (by using variables ¢;), the number
of clone families explodes. We have to count the number of clone families for
each combination, or clone families containing different length clones instead
of constant length clones.

These remarks imply that the enumerative solution to be presented in Sec-
tion 9.1 is not fast enough. Indeed, in practical applications n can grow to
rule out the enumerative (sub)solution, even with effective branch and bound
methods. An approach, where the places of clone types are fixed one at a time
is used also in other methods, like dynamic programming [3, 6] (see Sections
9.1 and 9.2). It also turns out that this approach is NP-complete, in general,
as will be shown in the next section.

4.2 Heuristic approach to IK problems

We show that an important heuristic approach using one item needs exponen-
tial time. The 1-item version is considered because it is much simpler than
the several item version of the problem. Even thought this approach is NP-
complete, all versions of it are solvable in pseudo-polynomial time. Hence,
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there exists polynomial time algorithms when we fix K, one of its parameters.
Some special cases can be solved in polynomial time (see the next chapter).

Let our problem consist of
m, the number of knapsacks,
x; € {0,1}, the decision variables (i = 1,...,m),
pi € N, the profits of item (i =1,...,m),
w; € N, the weights of item (i =1,...,m),
¢, the number of copies (¢ + 1 is the length of a clone),
u, the length of radiations,
I;, interaction functions that map the distance from 7 to a
rational number (1 =1,...,m),
b; € N, capacities of the knapsacks (i =1,...,m),
, a positive integer that gives the upper bound for the
times we can insert an item into the knapsack array.

By using ¢ and u we (usually) mean that I; : {1,...,m} — Q is defined like
in (4.1), that is, I; equals one, for knapsacks 4,...,7 + ¢, and is arbitrary for
knapsacks 2 —u,...,2—1and 2+c+1,...,7i4+ c+ u. For all other knapsacks,
I; is zero. This interpretation is used most of the time, and the exceptions are
pointed out. The main reason for using ¢ and w is restriction (4.13) below,
also shown in Figure 4.1 as overlapping radiations and nonoverlapping clones.
Recall that in load clipping, the controls cannot overlap, while overlapping is
allowed for some of the effects of controls.

The decision problem (interactive knapsacks heuristic decision, IKHD) is

IKHD

Instance: x; € {0,1}, profits p;, weights w;, length of clones ¢, length of
radiations v and functions I; : {1,...,m} — Q, for knapsacks i = 1,...,m,
with capacities b;, and two positive integers P and K.

Question: Is there a distribution of values z; fulfilling the requirements below
such that

i+ctu

Em:xi > Lk)p > P? (4.11)

=1 k=i—u

We require that the knapsacks are not overfilled (4.12), that the clones are
separate (4.13), that item is selected at most once to a knapsack (4.14), and
that there are at most K clones (that is, the maximum number of times an
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item can be put) in the knapsack array (4.15):

> zawili(l) < by, I=1,...,m, (4.12)
i=1
2y =0, fori <k <i+c, when z; =1, i=1,...,m, (4.13)
z; =0or 1, and i=1,...,m, (4.14)
) i <K, i=1,...,m. (4.15)
i=1

The optimization version of IKHD is called IKHO (IK heuristic optimi-
zation) problem. In IKHO we are to

m i+ctu
maXin Z L (k)py (4.16)
i=1 k=i—u

subject to (4.12)—(4.15).

The above formulation of IKHO is closely related to 0-1 MDKP. In this
form, IKHO can be transformed into 0-1 MDKP, and 0-1 MDKP can be
transformed into IKHO [4] (which is also demonstrated in Section 4.4). Hence,
why to study IKHO problem at all? The answer is that IKHO (4.16), (4.12)-
(4.15), among many other problems, can be seen as a special case of 0-1
MDKP. Normally, an IKHO instance uses restrictions (4.13) and (4.15) that
take a special form in 0-1 MDKP. If we transform an 0—1 MDKP instance
to IKHO, these restrictions are not normally used: we will have ¢ = 0 and
K =m.

Another motivation for studying IKHO is that (4.16), (4.12)—(4.15) is the
simplest formulation of the problems in a larger family of IKHO-type optimi-
zation problems of practical interest. Other family members use ¢ and u diffe-
rently: they can depend on the knapsack or ¢ can be a variable for each inserted
clone (and the value of u depends on the value chosen for ¢). There are also
other variants, which can be motivated by the load clipping application.

Figure 4.1 reflects both IKHD and IKHO problems. We have inserted an
item into knapsack 7. The same item is also inserted into knapsack ¢+ 10. The
length of clone is ¢ + 1 = 5 and the length of radiation is 5. In the methods
presented in Section 5.2, we distinguish between left and right radiation: they
are denoted with u; and wu,, respectively. In the case of Figure 4.1, we have
u; = 3 and u, = 5. Define £ to be the total length of the clone, and left and
right radiations together. Hence, the total length in the example of Figure 4.1
is¢{=3+5+5=13.
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Figure 4.1: A sample clone inserted in knapsacks 7 and ¢ + 10.

If the knapsacks were larger, we could insert the item third time into knap-
sack 7+ 5: restriction (4.13) says that the parts drawn in black cannot overlap
while the radiation (parts drawn in grey in Figure 4.1) can overlap.

When we take into account the radiation, IKHD turns out to be NP-
complete, in general. Hence, the radiation makes IKHD hard to solve. Unfor-
tunately, radiation is needed in many applications.

Theorem 4.5. IKHD s NP-complete, when u > 0 and ¢ = 0.

Proof. Let u = m, that is, the radiation spreads to the last knapsack from each
knapsack. Note that restriction (4.13) is only for clones and not for radiation.
Knapsack m will have radiation 7" z;w;1(m), which is restricted above by
by, (restriction (4.12)). Let each p; be positive. Hence, every knapsack will have
item if the radiations fit into the knapsack m. With objective (4.11) we have
the normal 0-1 knapsack problem in knapsack m, consisting of m quantities
(m — 1 quantities from radiation and one from the item which we insert into
the last knapsack). The 0-1 knapsack problem is NP-complete [72]. O

In Section 4.4 we show, how 0-1 MDKP can be transformed into IKHO
problem.

Corollary 4.6. IKHD is NP-complete (1) for variable v and ¢ = 0, (2) for
variable u and ¢, and (3) for uw >0 and ¢ > 0 (depending on m).

Proof. These problems contain instances handled in Theorem 4.5 as special
cases. In (3), ¢ > 0 decreases the number of items k& (< m) in the obtained
0-1 KP instance. However, k£ can still depend on m. O

If in Theorem 4.5 and in Corollary 4.6 we have a fixed K, IKHD can be
solved in polynomial time by enumerative methods. To see this, consider the
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proof of Theorem 4.3. The running time of this enumerative method is at most
K K
m—kc+c m
<
S (M) =2 (h)
k=0
K K
k=0

k!

IA
M=
S?T‘

I
S
3
Z

where K > 0 is fixed, as each step in the enumeration can be done in poly-
nomial time. Hence we have a pseudo-polynomial time algorithm for IKHD.

Note also that
m—kc+c K m— Ke
>E
( k >_ ( k )
0 k=0

(m—Ke)im—Ke—1)---(m—Kec—k+1)
k!

WE

k

Il

I
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bl
Il
o

(m—K(c+1))*/K!

WE

bl
[==]

= Q(m"),

holds, when K is fixed. Although it is not very practical, the enumerative
method will be given in Section 9.1 (in load clipping there are instances, where
K is not fixed, and instances where K is large).

In practice we need variable ¢;’s and sometimes even variable u;’s. Variable
clone lengths as well as radiation itself may give new directions for scheduling
problems, and at least in load clipping the variable clone lengths are essential.

4.3 IKD is NP-complete

IKHD discussed in the previous section is enough for showing that IKD is also
NP-complete. In IKD we have many items to be handled at the same time
and IKD is a direct generalization of IKHD. IKO, the optimization version of
IKD is otherwise the same as IKHO, but with n items.

In Theorem 4.1 we established a link between basic 0—1 IK and GAP, which
is NP-complete in the strong sense [72]. IKD is almost the same as basic 0-1
IK, and hence, reduction to GAP is also possible. In this section we first give

42



4.3. IKD IS NP-COMPLETE

the corresponding decision problem IKD, and then some results concerning
special cases not allowing GAP to occur. We suppose that items have their
own clone lengths ¢;.

IKD

Instance: x;; € {0,1}, profits p;;, weights w;;, lengths of clones ¢;, lengths of
radiations u; and functions I;; : {1,...,m} — Q, for items j = 1,...,n, and
knapsacks ¢ =1, ..., m with capacities b; and two positive integers P and K.
Question: Is there a distribution of values z;; fulfilling the requirements below
such that

i+cjtuj
szm > Lyj(k)pe; > P? (4.17)
=1 j=1 k=i—u;

We require that the knapsacks are not overfilled (4.18), that the clones are
separate (4.19), that an item is selected at most once to a knapsack (4.20) and
that there are at most K clones in the knapsack array (4.21) (that is, K is the
maximum number of times an item can be put in the knapsack array):

=1 j=1
2k; =0, fori <k <i+4c¢;, when z;; =1 (4.19)
T = 0 or 1, (420)
i=1

where [ =1,...,min (4.18),i=1,...,m in (4.19)—(4.20), and j =1,...,nin
(4.19)—(4.21).

In IKO our aim is to

i+cj+u;
max ZZ.??Z] Z (k) pr; (4.22)
=1 j=1 k=i—u;

subject to (4.18)—(4.21) with appropriate bounds on indices.

Both IKHO and IKO have (practical) versions, where the length of clone
is variable and the length of radiation depends of the length of clone. Usually,
we refer to the problems (4.16), (4.12)—(4.15) and (4.22), (4.18)—(4.21), but
when talking about variable clone lengths, the corresponding problem should
be adjusted. (See Appendix B for examples.)

We already know that IKHD, a special case having only one clone type
(n = 1) is NP-complete. Similarly, if there is only one knapsack (m = 1)
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implying that ¢; = u; = 0 for the items considered, IKD reduces to the 0-1
knapsack problem. Thus, IKD is NP-complete also in this special case.

Theorem 4.7. IKD with fized c; > 0, and IKD with variable c;’s (and variable
u;’s) are NP-complete problems in the strong sense.

Proof. We show that SEQUENCING WITH RELEASE TIMES AND DEADLINES
reduces to IKD with fixed ¢;; > 0. The variable clones contain the fixed length
clones as special case.

Let our sequencing problem consist of 7 tasks, with release times r(t),
deadlines d(t), and lengths [(t), where ¢ € T. Our problem is to find a feasible
schedule for 7. In other words, t is executed after r(t¢), stops before d(t) and
does not overlap with other task t' € T.

The knapsacks simulate time such that the first knapsack is moment 1 and
the last one is moment m, where m = maxr(t) + >_I(t) (so that every task
can be positioned into the knapsack array). The set of tasks T corresponds
to the set of items, which are numbered j = 1,...,n (and hence, |T| = n).
Weights for each item are 1, and each knapsack capacity b; is 1. This entails
that only one item can be put into a knapsack at a time (restriction (4.18)).
At the same time this means with restriction (4.19) that no item will overlap
and that in the sequencing problem two tasks will not overlap.

We set ¢; = I(j) and u; = 0, for j = 1,...,n. Further, we set p;; = 0,
if i < r(j), that is, the profits are 0 for items which are scheduled before
their release time. Similarly, set p;; = 0, if ¢ > d(j), and p;; = 1, for r(j) <
i < d(j). Moreover, we have (the standard interpretation) [;;(I) = 1, when
l=1,...,14¢;.

If item j is put (task is scheduled) inside its feasible region, the profits will
be S0 L (k)pry = S°09 1 = 1(5). If, on the other hand, item j is put (task
is scheduled) partially or totally outside of its feasible region, the profits will
be less than [(j) for j.

Let P =3, l(t). Now we ask, whether we can put items into the knap-
sack array such that the total profit is P or more and such that restrictions
are not violated. If the tasks are feasibly scheduled, the profit is exactly P.

It is clear that this transformation fulfills the requirements for pseudo-
polynomial transformation. The case of variable ¢;’s is contained in the above
case, and hence the claim. O

Figure 4.2 shows two tasks put into the knapsack array. The first item
gives profit of 4, but the second only 1. Thus, this solution does not give a
solution to the sequencing within intervals problems.

44



4.4. ON THE APPROXIMABILITY AND FIXED TRACTABILITY

GAP is NP-complete in the strong sense and IKD is a generalization of
GAP. However, in applications we are given some minimum for integers ¢; > 0
(j =1...,n) and GAP does not cover that case, neither the case of variable
¢;'s. The above proof also illustrates the close relationship between sequencing
problems and interactive knapsacks.

r(1) ¥ r@d@d@ @

L P ] PEE ] ]

Figure 4.2: Two tasks put into the knapsack array. Task 1 is feasibly scheduled
but task 2 continues after its deadline.

4.4 On the approximability and fixed tractab-
ility
Since IKO is a generalization of GAP, it is also APX-hard and is not included
in PTAS. IKHO is closely related to 0—-1 MDKP, where m is not fixed, and
hence, IKHO is also APX-hard.
We reduce a highly restricted version of GAP (RGAP) to IKHO. As shown

in [23], RGAP is APX-hard even on the instances of the following form, for all
positive 9:

e p;; =1, for all 7 and 7,
e w;jj =1orw;=1+4, for all j and 7, and
e b; = 3, for all i.

The APX-hardness of RGAP means that there exists € > 0 such that it is
NP-hard to decide whether an instance has an assignment of 3m items or if
each assignment has value at most 3m(1 — ¢) (see [23] and Definition 2.9). In
the sequel, we suppose that u = m.

Theorem 4.8. IKHO is APX-hard.

Proof. Given an instance of RGAP (having m knapsacks and n items), we
create an instance of IKHO as follows.
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If z;; =1 in RGAP, then m;z = 1 in IKHO. In IKHO we have knapsacks

Ji,---,jm for each item j, and knapsacks b}, ...,b/, similar to the knapsacks
in RGAP.
Interaction [ is defined in such a way that knapsacks ji,...,7i, ..., jm will

be full when item j; is chosen (that is, when we set ), = 1). Hence, item j can
be put at most once into the knapsack array of IKHO. Moreover, interaction
for knapsack b, is such that the weight w;; of RGAP will be put into knapsack
bi. Other knapsacks are left intact. We need only radiation (that is, ¢ = 0)
defined as:

w;; when k =¥,

Lk =41 when k€ [ji, jnl, (4.23)

0 otherwise.

The capacity of knapsacks b},...,b 1is 3, while the capacity of knapsacks
Jis--+,Jm is 1, for each item j. We set p;, = 1, for each j, and p;, = 0, for each
J and ¢ # 1, and py, = 0, for each 4, because a nonzero interaction involves
m + 1 knapsacks. Hence, the profit given by radiation equals 1. Further, we
set w;, = 1, for each item and knapsack 14,...,n,,. For knapsacks b},...,b;,
the weight is 4, to prevent z; =1, for all s.

Three items can be put into a knapsack ¢ in RGAP if and only if three
items can be fitted into a knapsack b, through interaction. If RGAP has a
full assignment of value 3m, the corresponding IKHO instance has the same
value and knapsacks b} are full. Otherwise, in RGAP the value is at most
3m(1 —¢) as well as in IKHO. Each item in RGAP can be assigned only once
and IKHO behaves similarly. Hence, we have constructed a gap-preserving
reduction complying with Definition 2.9. U

Hence, a polynomial time approximation scheme for IKHO would contra-
dict the fact that RGAP is APX-hard. Figure 4.3 shows the knapsack structure
used in Theorem 4.8. It corresponds to a situation where we set z;; = 1 in
RGAP, that is, we put the first item into the first knapsack. In IKHO we set
x1, = 1 and radiation takes care that knapsacks 1,,...,1,, are full so that
the first item of RGAP cannot be put into any other knapsack any more.
Moreover, to handle the normal RGAP knapsack restriction, the interaction
puts to the first corresponding knapsack b; in IKHO the same amount than in
RGAP. In this example, weight wy; in RGAP is 1 + 6.

Theorem 4.8 considers the special case of IKHO where ¢ = 0, u = m and
K = m. We can also reformulate IKHO so that it equals a special case of
0-1 MDKP. Thus, we can use the algorithms designed for 0-1 MDKP [44, 98].
Assume, for a moment that ¢ = 0. The case ¢ > 0 is handled below.
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b, b, 1 1

nl nm

Figure 4.3: RGAP with n items and m knapsacks is mapped into IKHO, which
will have m + nm knapsacks.

First, define p} = ?::Z Li(k)px (i = 1,...,m). This changes our objective
function (4.16) to be > " x;pi. Second, define wi, = w;l;(k), for i,k =
1,...,m. As a result, condition (4.12) turns to be Y " whz; < by (k =
1,...,m). Again, an item in knapsack ¢ means that we add a weight w;,, for
each knapsack k£ = 1,...,m. Condition (4.15) can be seen as an additional
(m + 1)th knapsack restriction.

We have converted our problem into

max Zp;xz (4.24)
i=1

subject to Y wha; <by, k=1,...m+1 (4.25)
i=1

z; =0or 1, i1=1,...,m. (4.26)

Condition (4.25) is equal to Wz < b, where W is an m + 1 X m matrix with
positive elements. The last row of W contains ones and b,,;1 = 1. The above
problem is a special case of 0—1 MDKP containing m + 1 knapsacks and m
items.

As pointed out, 0—1 MDKP with the fixed number of knapsacks is in PTAS
but otherwise, 0—1 MDKP is hard to approximate. Even though IKHO seems
to be easier than 0—1 MDKP with the unfixed number of knapsacks, Theorem
4.8 rules out the possibility of having a polynomial time approximation scheme
for IKHO. Moreover, Chekuri and Khanna [22] show that 0-1 MDKP is hard
to approximate even when m = poly(n) (recall that in our case m = n + 1).

The instances of IKHO with some fixed ¢ > 0 are at least as hard as with
¢ = 0. The number of items is not any more m, but m/(c+ 1). We can write
restriction (4.13) as m separate restrictions (m additional knapsacks in 0-1
MDKP):

k+c
in <1, wherei=1,...,m. (4.27)
i=k

47



CHAPTER 4. IK PROBLEMS AND THEIR COMPLEXITIES

This does not change the hardness of approximating IKHO by using 0-1
MDKP. We have effectively transformed restriction (4.13) to a linear form
so that 0-1 MDKP algorithms based on linear programming relaxation [98]
are still usable. Hence, by the results of [22, 90] we have

Theorem 4.9. For IKHO, we can obtain t = Q(z* /m'/ ) solutions, z* is the
optimal solution, and B s the size of the smallest knapsack.

In our case, B =1 by (4.27), and hence, we cannot use improvements of
[98] to get Q(tB/(B~1) solutions. Theorem 4.9 also holds for the case, where
the clone length depends on the knapsack into which we put an item. (The size
of W remains the same.) Thus, in the problem setting (4.16), (4.12)—(4.15)
we can change every c to be ¢;.

Next we show how 0-1 MDKP can be transformed into IKHO. Let W' be
the integer weight matrix and p’ integer profit vector of 0-1 MDKP. Set w; = 1
and [;(k) = wl.

Now, we should find profits p; such that p; = Z;:c:”;] (k)pg. If we could
set p = W'™!p’ we would have profits p. If W were invertible square matrix,
we would obtain p as above. In this case we should set © = m in order to
calculate profits p’ correctly. If W is not a square matrix, the use of a matrix
pseudo-inverse (see, for example [49]) is difficult, or maybe even impossible. To
avoid the difficulties caused by nonsquare weight matrices we could add some
dummy knapsacks or items to the instance, so that the weight matrix is square
and a solution for the new instance implies a solution for the original instance
of 0—1 MDKP. To avoid the difficulties caused by the noninvertible matrices,
we can remove some of the knapsacks and store the dependency information
so that the solution to the original case would be obtainable.

The above reasoning (somewhat vaguely) argues that IKHO is as hard as
MDKP, also in general, and not only in the case of invertible square weight
matrices. Thus IKHO is no easier than MDKP. In the following, Z PP denotes
the class of polynomial randomized algorithms with zero probability of error.
It is commonly believed that containment P C ZPP C NP is proper. (See
[86, pp. 256 and 272].)

Theorem 4.10. Unless NP=ZPP, IKHO is hard to approrimate to within a
factor of Q(m'/(BI+1)=2) " for any fired ¢ > 0, where B = min, b; is fized.

Proof. See the discussion above and the results of [22]. O

At the end of this section we show that IKHO is not fixed parameter trac-
table. After that we conclude directly that IKO is not in FPT. The proof
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uses kKP (k-item knapsack): if IKHO belonged to FPT, then kKP would also
belong, which is not the case [18], unless F'PT = W/1].

We note that 0-1 MDKP is not in FPT because kKP can be seen as 2-
dimensional knapsack problem (belonging to the class of 0—-1 MDKP problems).
If 0-1 MDKP was in FPT, then also kKP would be in FPT. Because IKHO
equals 0-1 MDKP, we have shown that IKHO is not in FPT.

We also give a transformation from £KP into IKHO. Let profits py, ..., pp,
weights wy, ..., w, and knapsack size b determine a KKP instance. We con-
struct IKHO instance that equals the kKP instance.

Set by = b, and b, = 1, where i = 1,...,n. Hence, in IKHO m = n
(and we have m + 1 knapsacks). Moreover, set p; = p; — w;, and w; = 1, for
i =1,...,n. To calculate the profits correctly, set p = 1. We do not insert
any items directly in knapsack 0, and hence wy = b+ 1. Interaction is of the
form

1, when k =71,
Il(k) =40, whenk #0 and k # i,
w;, when k= 0.

We set ¢ = 0, u = n+ 1, and K = k for restriction (4.15). When we select
item j in kKP, in IKHO we fill the corresponding knapsacks j, and interaction
puts w; in knapsack 0. The profits are the same in both problems:

m i+ctu n n
in Z Li(k)py, = Zﬂﬁz(P; + w;) = Zfﬁzpz
i=1 k=i—u =1 i=1

Figure 4.4 depicts 8 knapsacks. We have selected two items, the fourth and
seventh in KKP. Knapsack 0 has corresponding weights wy, = 5 and w; = 2
of kKP as w)I;(0) = wy and w,I;(0) = w;. Because w) = w}, = 1, we have
I;(0) = 5 and [7(0) = 2. Knapsacks 4 and 7 are full, because wjlj(4) =1 = b}
and w7 (7) = 1 = b,. Further, wjIj(k) = wil;(k) =0 for k =1,2,3,5,6,7,8
for knapsack 4, and for £k =1,...,6,8 for knapsack 7.

b ﬂ'v II,\
W7:2. x X
W,=5| 112 3 4 7

T T ]

Figure 4.4: IKHO structure solving kKP. Items 4 and 7 are selected in kKP.
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4.5 A transformation from GAP into 0-1 MDKP

A direct transformation from RGAP into 0-1 MDKP is also possible by using
a similar construction than the one used in the proof of Theorem 4.8. By using

T = (xll .. xlm . xnl .. mnm)T
(T stands for the matrix transpose) and by adding
0:-01--10--0, (4.28)

N—_——— S——

(jfl)m m ones
for each item j in W, where W stands for the weight matrix, we can ensure that
only one of the values z;,,...,z;, can be one. Ones occur in those positions
in b, which correspond to the rows W described by (4.28) above. RGAP gives
other rows directly:

0 - 0w 0--0wp0 - 0wyp0 --- 0,

for each knapsack 7. Notice that the first nonzero values take place at positions
i mod (m + 1) and the next (rest) nonzero occur after m — 1 zeros. The size
of Wis (m +n) x nm. Vectors p and b are defined in the obvious manner.
Again, the profit gap between the instances of RGAP and 0-1 MDKP is the
same. To summarize, we have W =

wyy 0 e 0 wiy 0 ceveee 0 e 0 wy, O e 0
0 woy 0 e 0 woey 0 v 0 .- 00 wop o+ 0
W1 0 o0 Wmae 0 -+~ 0 0 e 0 Winn,

1 1 1 0 0 0 00 0 ’
0 0 0 1 1 1 0 0 0 0
| 0 0 0 0 0 0 0 0 1 1 1]
and

b=(by --- by -+ by 1 --- DT, (4.29)

where b; =3 (1 =1,...,m) in the case of RGAP, and

p=®1 " P, Puy D) (4.30)

where p; =1 (i = 14,...,ny) for RGAP. (Hence, 0-1 MDKP is APX-hard in
the general case, as already known.)
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4.5. A TRANSFORMATION FROM GAP INTO 0-1 MDKP

If we had a polynomial time approximation scheme for 0-1 MDKP, we
could use it to solve RGAP. Moreover, as the above restriction also works for
the general GAP (with positive values only), GAP would also be in PTAS. As
noted, 0-1 MDKP is in PTAS [44] only in the cases, where m is fixed. In our
transformation an m x n matrix of an instance of RGAP is transformed into
an (m —+ n) X mn matrix of an instance of 0-1 MDKP. The transformation of
RGAP into 0-1 MDKP introduces new knapsacks for each item, and hence,
the number of knapsacks in 0—1 MDKP will not be fixed. Further, we can
conclude the following theorem.

Theorem 4.11. Unless N=NP, there cannot be an approximation preserving
transformation of RGAP into 0-1 MDKP with a constant difference between
the numbers of knapsacks.

Proof. Otherwise, we could use the polynomial time approximation scheme of
0-1 MDKP with fixed number of knapsacks directly for RGAP, which in turn,
is APX-hard. O

We can transform GAP into IKHO similarly. Recall the proof of Theorem
4.8. Because each item has the same profit in RGAP, we can use only one
set of knapsacks j;: we set p;, = 1 for each j and radiation will handle the
rest. We cannot set directly p;, = p;;, since now (4.23) would count too much
profits with the second line. However, we can define another set of knapsacks
Ji and interactions

w;; when k = b,

pij when k = jj,

Iji(k) = .
1 when k € [j1, Jml,
0 otherwise.
Knapsacks j;, can take the radiation, if we set b;.,_, = p;j. The number of

knapsacks in IKHO representing GAP is 2mn + m, while for RGAP we need
mn + m knapsacks. To prevent z;; =1, we set Ly (i) = p;; + 1.
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Chapter 5

Polynomial time instances

After giving the hardness results in the previous chapter, we start looking for
the borderline between intractable instances and instances solvable in polyno-
mial time.

First, we consider one item case without radiation in Section 5.1 and with
radiation in Section 5.2. The several item case without radiation is studied in
Section 5.3 and with radiation in Section 5.4. Some of our constructions can
be applied to other problems, which is considered in Section 5.5.

5.1 IKHO instances without radiation

The several item special case similar to the one handled in Theorem 5.1 is
GAP, which is NP-complete (see Theorem 4.1).

Theorem 5.1. IKHO € P, forc=u = 0.

Proof. By setting ¢ = u = 0, (4.16), (4.12)—(4.15) reduces to

m
max Z TiPk
=1
such that
m
=1

and z; = 0 or 1. We sort profits in O(mlogm) time and select the K largest
positive numbers. If there are no K positive numbers, then all positive profits
are selected. Other z; values are set to be zero. O
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Even though the following theorem also implies that IKHO is solvable in
polynomial time for ¢ = u = 0, the proof of Theorem 5.1 gives us a more
efficient method for solving the problem in that particular special case.

In the following theorem we suppose that c is variable and restricted to
be between a given minimum and maximum length. It means that the prob-
lem setting (4.16), (4.12)—(4.15) has to be fixed accordingly, but the changes
are minor. In load clipping, it is reasonable to assume that some controlling
utilities can have variable controlling lengths [3, 6].

Theorem 5.2. IKHO € P, for u =0 and variable ¢ (cmin < ¢ < cmaz).

Proof. Let G = (V,E) be a directed graph with edge set E and vertex set
V=A{1,2,...,m,m+1}. We insert two subsets of edges, First, edges (i,7+1)
of length 0 and weight 0 correspond to the decision not to select item %, that
is, z; = 0.

The second set of edges corresponds to selecting an item and its length.
Define pj; = Z;;”Z Pr, where cmin < j < cmax. The sum stands for an item
of length j put in knapsack ¢ (and the associated profit of the item and its
clone). An edge (i,i +j + 1), where cmin < j < cmax, has length p; ;, and
corresponds to the item put in knapsack i, where the clone length (c+1) is j.
The weight of these edges is 1. If p;; is negative, an edge is not inserted.

Our choice for j ensures that restriction (4.13) is not violated. An inserted
edge (i,7 + cmin + 1) is always longer than path (7,7 4+ 1,...,7+ cmin + 1) of
length 0.

Now we should find the longest weight-constrained path between vertices 1
and m + 1, where the weight of the path is at most K (to comply with (4.15)).
This can be solved in polynomial time by Theorem 2.12. O

Corollary 5.3. IKHO € P, for u =0 and fized values of ¢ > 0.

Proof. We have cmin = cmax = c¢ in the proof of Theorem 5.2. Only two edges
(4,4 + 1) and (4,7 + ¢ + 1) depart from each i. O

Figure 5.1 illustrates the graph construction for IKHO with v = 0. We
can go from 1 to m + 1 only by using the vertices of length 0 meaning that
no item is inserted in any knapsack (this occurs, for instance, when each p;-j
is negative). We may insert an item into as many knapsacks as it fits (at
most min(K, m/(cmin + 1)) times). Figure 5.1 does not show weights as they
are all 1. Zeros and pj ,,, indicate the lengths (and pj ,,, is the length of
(4,1 + cmax + 1)).
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m+1
0 0 0 0 0 0 0 0
| crlﬁin+1 C cmlax+1

Figure 5.1: The graph constructed in Theorem 5.2. If we insert an item into
the third knapsack, we can next go to the vertices which lay at least cmin + 1
and at most cmax + 1 vertex-pairs to the right.

5.2 TKHO in polynomial time with radiation

Next we show, how to handle the special case of IKHO, where the total length
of the clone and radiation ¢ is O(log(m)). In the proof we construct a graph
with a source and target vertices s and ¢, and sets of vertices divided into
groups. In each group the vertices are identified by bit strings of length /.
The bit string can be interpreted as a selection of items to different knapsacks:
for example, vi9190 corresponds to a situation where £ = 5, z;.9 = Tj40 = 1
(an item is selected for knapsacks ¢ and ¢ + 2) and z;41 = Ti43 = T34 = 0.
The value of 7 depends on the vertex group; two different vertices may share a
subscript if they are in different groups. Notation v, __, means a vertex label
with a bit string of length ¢ while vy¢19¢ refers to a particular bit string of length
5. In what follows, a selection is a bit string of length ¢ and it is interpreted
as above.

Lemma 5.4. Let the maximum total length of the clone and radiation parts
be 0. An item selection vy . 4 (ignoring any other items in the knapsack array)
can be checked against restrictions (4.12) and (4.13) in polynomial time.

Proof. Suppose we put an item in a knapsack. The corresponding interactions
can be calculated in O(¢) time. A selection v; __, can contain at most £ ones
(that is, we can put an item at most £ times in the knapsack array). Hence,
checking (4.12) takes O(¢?) time. Restriction (4.13) ensures that ones in the
selection vy, _, are not too close to each other. One pass of the selection is
enough (in O(¢) time) to check this. O

Consider next a group of all selections of length ¢ containing 2¢ bit strings.
We may conclude directly by the proof of Lemma 5.4 that we need O (£22¢) time
to comply with restrictions (4.12) and (4.13). Yet, by tabulating calculations,
we obtain a better bound.
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Lemma 5.5. Let the mazimum total length of the clone and radiation parts be
. Every item selection vy, (ignoring any other items in the knapsack array)
can be checked against restrictions (4.12) and (4.13) in O(£2%)time.

Proof. We build up a result table having 2¢ entries, each of length £. Each entry
corresponds to ¢ consecutive knapsacks with fillments (fillings) corresponding
to the selections label (bit string).

First, we calculate the effects of including an item for every position in the
selection. That is, first we calculate £ entries in the result table to the following
selections: wy...o1, Vo.-010, Vo--0100, and at last, vig...9, all in O(£?) time.

Next, we form every bit string of length ¢ with the pre-calculated strings,
and construct the rest of the result table. We can combine two bit strings and
the corresponding results to a new bit string (and to a new result entry) in
0O(2¢) time.

There are (ﬁ) bit strings having two ones. The bit string and especially the
entries in the result table can be constructed in

(ﬁ) 0(20)

time. We can use the bit strings having 1 ones and £ — 1 ones to combine
them to a string having k ones. Thus, the result entries corresponding to k
ones need

(f;) 0(20) (5.1)

time. Summing over (5.1) we have

> (,i)O(%) =0(20)) (ﬁ) = 0(20)0(2% = 0(£2%).

i ¢
k=0 k=0
Hence, the total time consumption is O(¢£2) + O(£2%) = O(£2°). O

The calculations of the profits take the same time as checking (4.12) and
(4.13). Thus, to check restrictions and to calculate profits for every selection
of length O(¢), we need O(£2°) time.

Our next step is to construct a graph, which contains every selection so
that each legal (according to (4.12) and (4.13)) item combination is achievable.
Lengths of the edges correspond to profits given by the inclusions of the items
and hence, we want to find out long paths. We construct the graph with the
following three lemmas, which form O(m) selection groups each containing
every selection of length £. Thus, there are totally 2O(m) selections in the
graph. A selection group corresponds to a knapsack.

26



5.2. IKHO IN POLYNOMIAL TIME WITH RADIATION

In each of the following lemmas, let I;, p;, w;, b;, m and K form an instance
of IKHO. Further, we refer with vertex set to the selection group mentioned in
the previous paragraph. When we say that the selections can be constructed
in polynomial time, we mean that the graph with vertices and edges can be
constructed, and the optimal path along with the optimal solution can be
found in polynomial time (on m).

We name the vertices in each vertex set vg,.., ,, where z; - - - x; 1, may have
2¢ different bit combinations.

Lemma 5.6. Suppose that the total length of the clone part and radiation is ¥,
where £ = log(m). Selections (and optimal solution) for the first £ knapsacks
of an instance of IKHO can be constructed in polynomial time.

Proof. We start from vertex s and insert 2 = m outgoing edges to the first
vertex set, which in turn, corresponds to the first ¢ knapsacks.

The vertices in the first vertex set correspond to every item selection com-
bination for the first £ knapsacks. If some combination violates (4.12) or (4.13),
the corresponding edge is not inserted. The checks against (4.12) and (4.13)
can be done in polynomial time (on m) for each candidate edge by Lemma 5.5.
The total time for all m edges is O(£2°) = O(mlog(m)).

To find out the length of an edge, note that £ = u;+c+1+u,, where u; and
u, are the lengths of the left and right radiation, and ¢+ 1 is the length of the
clone part. We take into account only profits of the items that are included in
the first u; knapsacks. Thus, the length of an edge (profit) is

ug i+ct+14+u,

Z Ti Z Ii(k)px.-

k=i—u;

Moreover, the weight of an edge equals to the number of ones in the first w;
positions in its label. If, on the other hand, we do not include the item in the
first u; knapsacks (z; = --- = z,, = 0), the profit and the weight are both
7€ero.

We calculate the profits at the same time when we form vertices and
edges, and make checks against the restrictions. Hence, the time needed is
O(mlog(m)). By using the longest weight-constrained path algorithm, we can
check (4.15) and find out the longest path (optimal solution) in polynomial
time (on m). Our graph construction automatically complies with (4.14). O

As an example, consider an instance, where ¢ = 0, the left radiation has
length 2, and the right radiation has length 4. Now the length of a selection
is { =2+ 1+4 =7 and the vertex set contains 27 = 128 vertices.
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The lengths (or profits) of edges departing from s use the left radiation
parts and the first vertex set corresponds to the inclusions of items into the
first u; knapsacks. Edge (s,1110000) would have length that corresponds to the
inclusion of an item in knapsacks 1 and 2, that is, x1 = x9 = 1. Restrictions, on
the other hand, are checked against the decision made for all seven knapsacks.

The algorithm described in the following lemma is an example of inductive
algorithm design principle [70]. Our induction hypothesis is that every legal
selection can be reached so that the longest weight-constrained path gives the
maximum profits while maintaining the feasibility of the solution.

Lemma 5.7. Suppose that the total length of the clone part and radiation is £,
where £ = log(m). Selections for the first m— (c+u,) knapsacks of an instance
of IKHO can be constructed and the optimal path can found in polynomial time.

Proof. We prove the lemma by induction. By Lemma 5.6, we can construct
the first vertex set for the first ¢ knapsacks and find out the longest weight-
constrained path (the optimal solution) in polynomial time, calculating the
profits for the first u; knapsacks and taking into account restrictions (4.12)-
(4.15) for the first ¢ knapsacks.

The induction hypothesis is that the optimal solution can be found for the
first ¢ knapsacks, where ¢ = u;,...,m — (¢ + u, + 1). In other words, every
legal selection is reached, the profits are calculated for the first ¢ knapsacks
correctly, and the restrictions are checked for the first ¢+ ¢+ 1+ u, knapsacks.
Let g = q¢ —u; + 1. (Now g refers to a vertex set.) In the terms of vertex sets,
Lemma 5.6 proves the claim for the first vertex set, ¢ = 1, and after it, we
have made an induction hypothesis for the first ¢ = 1,...,m — (¢ + u, + 1)
vertex sets.

We construct a vertex set g+ 1 from the vertices of vertex set g by inserting
edges (Vz,.ayy s Vogir-gpes1)s i Vagirayyper 15 @ legal combination not violating
(4.12) and (4.13). There will be at most two edges for each vertex in set g,
because r44¢+1 can have two values. By Lemma 5.5, we can insert edges in
O(mlog(m)) time.

The edges from set g to g + 1 correspond to the choice made for knapsack
g+ w. If x4, =1 (we include an item in knapsack g + v;), the profit is

gtutctur

Z Ig+u1 (k)pk (5'2)

k=g+u;—u;

Moreover, the weight of the edge is one. On the other hand, if z,,,, = 0, the
length and the weight of the edge are zero. Note that the profit for the edge
is defined by the state of the cth bit in the vertex label (the next bit after the
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5.2. IKHO IN POLYNOMIAL TIME WITH RADIATION

left radiation part). The profits can be calculated at the same time when we
check the restrictions.
Suppose that a vertex vy, ,....,,,,, in vertex set g+1 is legal. The vertex has

at most two incoming edges, which can depart from vertices v, and

=0,Tg41-Tgye

Vgy=1,zg41-Tg 40 from vertex set g. Since Uggi1agpopr 15 legal in set g + 1, vertex

Viy=0,24 41244, 11 S€t g has £—1 common knapsacks x4 - - - 244 With the vertex
in set g+1, and since bit z, can be zero, we conclude that vertex v,,

is legal, and therefore, the graph contains an edge (v,

=0,Lg41-Tg4e

=0,Zg+1--Tg40) U$g+1---wg+z+1)

from set g to g + 1. By the induction hypothesis, we can reach every legal
selection in the first g vertex sets, and thus also the vertex vy 0z, ,,, and
further, an arbitrary legal vertex v, p1ezgpeyy 10 VErtex set g + 1.

Now we have a system that contains every selection of length ¢ in the
knapsack array. This contains also the last vertex set m — (¢ + u,). We have
linked selections so that every legal selection is attainable. The number of
these selections in every set is O((m — (¢ + u,))mlog(m)) = O(m?log(m)).

By Lemma 5.6, we can find out the solutions for the first vertex set in
polynomial time. Then, we inductively form the graph that has a polynomial
number of vertices. By Lemma 5.5, we can form each vertex set and the incom-
ing edges (length and weights) in polynomial time. Our graph is acyclic and
directed. By Theorem 2.12, the optimal solution can be found in polynomial
time on the number of vertices in the graph (recall that K < m/(c+1) < m).
Hence the claim. O

The first vertex set (and also the last vertex sets, as we will see) is a special
case, because it may have more than one item giving profits and weights, as
opposite to the profit calculations (5.2) made in the previous lemma.

Suppose that we have formed vertex set g. To obtain another set of vertices,
we drop the first knapsack ¢ and add a new knapsack g + u; +c+ 1 + u, + 1.
Consecutive vertex sets contain £ — 1 common knapsacks. Let the common
subselection be Zg41,..., Loty +ct1+u,- Lhe first item z, can have two values,
zero or one, and the new item Zg44, ct14u,+1 €an also have two values. Hence,
we always have two source vertices as well as two target vertices for each vertex
in every vertex set (except for the first and last vertex sets).

Let us continue the example started before Lemma 5.7. The profits for the
vertices between vertex sets are obtained by using the leftmost position of the
clone part in a selection, that is, the knapsack into which an item is inserted.
In our example, an edge departing from vertex 1110000 in the first vertex set
would have length that corresponds to the profit of choosing x3 = 1. Hence,
it corresponds to the inclusion of the item into the third knapsack, when we
calculate the profits. Other values of the selection are not noticed and one
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may think that an edge from 1110000 is handled like filter “?7177?7?” when
we calculate the profits.

Figure 5.2 gives another example. It demonstrates the case, where ¢ = 4
(¢c=0,u;, =0, and u, = 3). Each vertex set has 16 vertices and we have at
most 32 edges between the vertex sets.

In the example presented in Figure 5.2, the common subscript part between
the first two vertex sets is 234. The first knapsack is moved off and it is replaced
by the fifth knapsack, when constructing the second vertex set. The selection
of an item to the knapsack ¢ (z; = 1 in the leftmost position of the label of
the vertex—the left radiation is not used in this example) is shown by an edge
pointing below the horizontal line. The weight of these edges is one. Note that
only the coming knapsack can make a choice whether to include an item: the
selection is already fixed for the common part. Thus, the profit of including
an item is calculated later than the decision to include the item.

Lemma 5.8. Suppose that the total length of the clone part and radiation of
an instance of IKHO is £, where £ = log(m). Lengths (profits) can be calculated
in polynomial time for the edges departing from the last vertex set m — (c+ u,)
to the target vertex t.

Proof. Vertex t is the target of paths. The restrictions are already checked for
every selection in the last vertex set m — (¢ + u,). Profits (lengths) use the
bits occupying the positions to the right (and including) the cth bit.

By Lemma 5.5, we calculate the lengths (profits) in polynomial time for
each vertex departing from the last vertex set. The weight of an edge equals

group 1 2 3 4 .o m-3
X X X X e P
1234 2345 3456 4567 £ m
0000 0000 0000 0000 0000
0001 0001 0001 0001 0001,
0010. 0010 0010 0010 0010
0011 0011 0011 0011 0011
., 0100 0100 | 0100 | 0100 | . 0100
. 0101. 0101 - 0101 - 0101 - . 0101 ,
* 0110° 0110 ° 0110 ° 0110 ° : 0110 -
0111 0111 0111 0111 0111 ° t
1000 1000 1000 1000 1000
+ 1001+ 1001 - 1001 - 1001 - . 1001
. 1010 1010 - 1010 - 1010 - . 1010
1011 1011 1011 1011 1011
1100 1100 1100 1100 1100
1101 1101 1101 1101 1101

1110 1110 1110 1110
1111—e 1111 =—& 1111 —& 1111 —&

Figure 5.2: The graph structure for Theorem 5.9, when ¢ = 4.
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the number of ones in the bits after the left radiation. O

We continue with the example started before Lemma 5.7. The length of
edge (0001101, ¢) corresponds to the profit of selection z,,, 3 = T2 = 2, = 1
and z,,_4 = 2,1 = 0. If we had z,,_4 = 1, we would calculate it into the
profits.

In the example presented in Figure 5.2 we use every bit in the selection,
when we calculate the profits of edges from the last vertex set to t, because
the length of left radiation is zero.

Theorem 5.9. IKHO € P, when £ = O(log(m)), where m is the number of
knapsacks.

Proof. Let I;, p;, w;, bj, K, and m form an instance of IKHO. Suppose that
the total length of the clone part and radiation is at most ¢, where ¢ = log(m).
We form a graph G with source vertex s and target vertex ¢ in polynomial
time as described in Lemmas 5.6-5.8.

By Theorem 2.12, we find the best set of selections by constructing the
longest weight-constrained path between vertices s and ¢ in polynomial time.
By using weight-constraints, we also check condition (4.15). Because K <
m/(c+ 1) < m, we find the longest weight-constrained path in polynomial
time by Theorem 2.12. O

To analyze the running times, note that we have m — (¢ + u,) = O(m)
vertex sets. Bach set has 2¢ vertices. Hence, the total number of vertices is
2+ (m— (c+u,))2f = O(m2%). Further, we have 2¢ incoming edges to the first
vertex set and as many incoming edges to the vertex ¢t. Other m — (c+wu,) —1
vertex sets have 2 - 2¢ edges. We can construct edges (and vertices) for one
vertex set in time O(£2%). Hence, we need O(m#2%) time to construct the
graph. To find the longest weight-constrained path, we need time O(K|FE|) =
O(Km2°) (in the graph every weight is positive, see [38] and the references
therein for the method). Thus, the total time to construct the graph and to
find the path is

O(me2') + O(Km2') = O((K + £)m2"). (5.3)

If m = 2¢, we can construct the graph and find out the path in O((K +
log(m))m?) time. We can also describe the growth of the running time as the
total length of the radiation and the clone increases. Let £ = log(m*), for
some k € N. Now, we need to consider selections of length 2¢ = m* in (5.3).
The overall running time is O((K + k log(m))m**). Similarly, £ = k +log(m)
implies selections of length m2* in (5.3) and O ((K +k+log(m))m?2¥) running
time.
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Corollary 5.10. Suppose an instance of IKHO with m knapsacks, where the
total length of clone and radiation parts is log(m*) (k € N). This instance can
be solved in time O ((K + klog(m))mF*1). If the total length is k +log(m), the
running time is O ((K + k + log(m))m?2*).

If ¢ = m, then k& = m/log(m) with the first result of Corollary 5.10 or
k = m — log(m) with the second result. We set &k into the second result and
obtain the following asymptotic upper bound for the running time: (K +m—
log(m) + log(m))m?2m~16(m) = (K + m)m?2m-18(m) = (K + m)m2™.

To check the running time, we put £ = m/log(m) into the first result and
obtain (K + (m/log(m))log(m))m!+m/le(m) = (K + m)m!+m/le(m)  Since
m = 2°6(™)  this turns out to be (K + m)(2'98m)m/1o8(mM)m — (K + m)m2™
and hence, both results give the same running times for an instance with £ = m
as expected.

Since K < m, we obtain O(2™m?) running time for an arbitrary instance.
(Note that we always have K < m/(c+1).) Complete brute force enumeration
has the same bound: bit string of length m is enumerated in O(2™) time and
restrictions are checked in O(m?) time. However, if K = m/(c + 1), we do
not need restriction (4.15), because we can insert an item into the knapsack
array as many times as we want. In these cases we can use the shortest path
algorithms designed for directed acyclic graphs. We can compute the shortest
paths from single source in directed acyclic graphs in time O(|V| + |E|) [30].

Corollary 5.11. If K = m/(c + 1) and ¢ = log(m*), an instance of IKHO
can be solved in time O (klog(m)m**!). If K = m/(c+1) and ¢ = k+log(m),
then O((k + log(m))2¥m?) time is enough.

Proof. We need O(mf2%) time to construct the graph, and the number of
vertices and edges is O(m2%). Thus, in the first result the number of vertices
is O(m*™) and the number of edges has the same bound. Constructing the
graph takes O(mklog(m)m*) = O(klog(m)m**!) time. Both constructing
the graph and finding the path together take O (klog(m)m**!) + O (m**™ +
mFtt) = O((2 + klog(m))m**) = O(klog(m)mF*!) time.

In the second result we suppose that ¢ = k + log(m). Thus, the number of
vertices is O(m2%m) and the number of edges has again the same bound. Con-
structing the graph takes O(m(k + log(m))2kt8(m)) = O((k + log(m)2*m?)
time. The construction of the graph and the longest path together take
O((k +1log(m)2tm?) + O (25m? 4+ 2*m?) = O((2+ k +log(m))2¥m?) = O((k+
log(m))2*m?) time. O

Similarly, we can obtain running times for situations, where ¢ is some con-
stant (¢ = O(1)). The upper bound is now given by O((K + £)m2*). Note
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that asymptotically, O((K +€)m25) = O(K'm), which is less than the running
time of the enumerative solution, see page 42.

From the application point of view, the above results describe the running
times well enough. For example, in load clipping heuristics making a control
plan for one item (group) at a time are often approximation algorithms [3, 6]
(see Chapter 8). Typical lengths can be from 6 to 12 for the clone part and
from 9 to 12 units for the radiation. Hence, the total lengths range often
from 15 to 24 units. Note that there exist controlling utilities that have much
longer total lengths. Moreover, some utilities use small K, while some of the
utilities do not need K. For example, street lights or electricity generators
have long total lengths, and K is not needed with the generators. In load
clipping, the number of time units (the total lengths of items) depends on the
granularity of the time interval. A typical value is 5 or 10 minutes, and the
optimization interval (m) can be, for instance, 24 hours divided into 5 minutes
(or 10 minutes) slots.

5.3 IKO in polynomial time without radiation
The next theorem can be seen as a generalization of Theorem 5.2.
Theorem 5.12. IKO € P when n = 0O(1) and u = 0.

Proof. Let ¢, j =1,...,n, be the length of a clone of item j. We construct a
graph as follows: let s be the source vertex and ¢ the target vertex. We form
m sets of vertices each consisting of at most (m+1)" vertices. Hence, the total
number of vertices is at most 2 + m(m + 1)". Each vertex in a set has label

Tky,. kb, Where 0 < k; < ¢;, for each j = 1,...,n. Because ¢; < m, we have at
most (m + 1)" labels.
If ki,...,k, > 0, we insert an edge (Tk,.. k., Tki—1,.k,—1) from set [ to

set [ + 1, where 1 <[ < m —1. If index k;, = 0, for some ¢ = 1,...,n,
we insert two edges from set [ to [ + 1, where 1 < | < m — 1. The edges
are (SCkl,...,kq:o,...,kn,$k1—1,...,kq:o,...kn—1) and ($k1,...,kq:o,...,kn,l"kl—1,...,kq:cq,...,kn—1)-
The latter edge corresponds to the inclusion of item [+1 into the gth knapsack.

If » > 0 indices are zero, we insert 2" edges. A vertex set contains at most
(m + 1) vertices, and hence, the total number of edges between two sets is
at most 2"(m + 1)". The length is calculated only for these vertices and it
corresponds to the profit obtained by including the r items indicated by the
vertex label. Other edges have zero length. The n-weight vector has ones in
the indices indicated by the r items, other positions have zeros.
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We insert an edge only if it complies with constraint (4.18). If the label of
a vertex contains r nonzero indices, we can check (4.18) in O(r) time, because
we do not have to worry about radiations of the items before or after the items
corresponding to the edge (that is, to the choice made for the knapsack).

We can insert an item into a knapsack only if some index is zero. Combining
this with the edges related to nonzero indices ensures that (4.19) cannot be
violated.

The source vertex s has at most 2" outgoing edges to the vertices of the
first set. Targets of the edges correspond to the different selections of n items
we can make in the first knapsack. Every vertex of the last set has ongoing
edge to the target vertex t.

We have constructed an acyclic directed graph with O(2" 42" (m+1)"(m—
1)+ (m+1)") = O(2"(m + 1)"™') edges. The term 2" is for edges from s to
the first vertex set. Then there are m — 1 vertex sets, where each set contains
(m+1)™ vertices and each vertex has at most 2" ongoing edges. Last, we have
(m+1)"™ edges from the last vertex set to t. The graph has at most 2-+m(m+1)"
vertices. We can construct the graph in O(2"n + 2"(m + 1)"(m — 1)n+ (m +
1)"n) = O(2"(m + 1)"*'n) time. The n’s are for the restriction checks.

Next we seek for the longest n-weight constrained path, where the weight
constraint is K for each item (obtained from restriction (4.21)). Hence, we have
to update (K + 1)" different weight combinations in 2 + m(m + 1)™ vertices.
By Lemma 2.13, this can be done in polynomial time, as K < m/(¢;+ 1) (and
n is fixed). 0

The edges from z(_ o in set | to set [ + 1, where 1 < [ < m — 1, have
the same target vertices as the edges departing from vertex s. This allows,
for example, a solution without any selected item; we just go from s to vertex
Zo,...,0, and go to the vertex with the same label in every vertex set and finally
arrive to t.

Figure 5.3 depicts the graph construction of Theorem 5.12. We have drawn
the source and target vertices s and ¢ as well as the first three vertex sets,
and the last set of vertices. In this example we have three items such that
c1 = 2 and ¢ = ¢3 = 1. The lengths of clones are 3, 2 and 2, respectively.
From the source vertex s we can move, say, to the vertex 322 corresponding
to the choice x1; = z12 = 13 = 1 (all three items are selected into the first
knapsack). Other seven vertices to be chosen are 320, 302, 022, 300, 020, 002
and 000. These eight vertices in set [ (2 < < m) are also the targets of edges
departing from vertex vggg from the previous vertex set [ — 1.

Consider vertex 010 in vertex set 2. We can insert the first and the third
item into knapsack 2 corresponding to set 2. Item two is inserted into knapsack
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group 1 2 3 oo m
X123 X123 X123 s+ X123
322 322 322 322
321 321 321 321
320 320 320 320
312 312 312 312
311 311 311 311:
310 310 310 310.
302 302 302 302
301 301 301 301
300 300 300 °*°** 300
222 222 222 222
221 221 221 221:
220 220 220 220.
212 212 212 212
211 211 211 211
210 210 210 210
202 202 202 202
201 201 201 201
200 200 200 .. 200° ¢
S 122 | 122 122 122-
121 121 121 121
120 120 120 120
112 112 112 112
111 111 111 111
110 110 110 110
102 102 102 102
101 101 101 101,
100 100 100 100-
022 022 022 022°
021 021 021 " °° 021
020 020 020 020
012 012 012 012
011 011 011 011.
010 010 010 010°
002 002 002 002
001 001 001 001
000 000 000 000

Figure 5.3: The graph structure for Theorem 5.12 with three items such that
1 =2,cp=1and c3 =1 (and each u; = 0).
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1, and hence, we can insert it again into knapsack 3. This is shown as four
edges departing from 010. The target vertices are 302, 300, 002, and 000. Note
that the only feasible path to 010 goes through 020 in the first vertex set. By
fine tuning the algorithm, we can take this into account so that we skip some
of the vertices, when we insert edges. The longer the clone lengths, the larger
the savings in running time in the path finding phase.

Similarly, we can go from 320 to the vertices 210 or 212. The first target
corresponds to a situation where item 3 is not inserted to the third knapsack.
The second target, on the other hand, means that the item is inserted.

The rest of this section concerns the complexity of the presented method.
If we neglect the number of edges, the construction of the graph and the search
of the longest path by Lemma 2.13 gives O (2" (m+1)""'n)+O (K" (2+m(m+
1)")2) running time. This is a rough upper bound.

When every index is nonzero, there is only one edge. The number of these
vertices in a set is at most m™, when the number of all vertices is at most
(m + 1)". The number of bit strings with { nonzeros is (7) in a bit string of
length n, and in other strings, a nonzero can have at most m different values.
Thus, the number of strings with n — I zeros is at most (7})m'. When there
are [ zeros, we insert 2! vertices in O(2'n) time (we check restriction (4.18) in
O(n) time). Hence, the number of edges is at most Y, (7)m/2" " = (m+2)"
by binomial theorem 4.2, and we need O(n(m + 2)") time to insert the edges
between two vertex sets.

Thus, the total time to construct the graph is O (n2" 4+ mn(m+2)"+n(m-+
1)) = O(((m+2)"" +2")n). This is much less than O(2"(m+1)"*!n) used
in Theorem 5.12.

When constructing the paths, we can store the n-weight combination tables
of the vertices for one vertex set at a time. We update the longest paths as
we proceed from vertex set to the next one. Each update takes a constant
time, and an update is done for the target of each edge. Thus, the number of
edges give O(m+2)™ for the updates (recall that n is fixed). We also update a
pointer to the longest path. Finally, in the target vertex ¢ we use the pointer
to the longest path in constant time.

Hence, we save some space and time leading to running time O(2”+m(m+
2)"K"+(m+1)") = O(K"™(m+2)""+2") for the longest path. The summands
stand for the edges from s, then m times the edges between the vertex sets,
where we have at most (m+2)" edges, and the edges to ¢, respectively. Hence,
the total time to construct the graph and to find the longest path is O (n((m+
2)"4+27) + O(K™(m+2)"t' +2") = O((K™ + n)(m + 2)"*! + (n+ 1)27).

In the following corollary we suppose that each item has its own clone
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length ¢;, 7 = 1,...,n. We do not prove the corollary here, as the proof
closely resembles that of Theorem 5.12, in which we used the fact that ¢; < m.
However, the interesting instances are those where ¢; is much smaller than m:
we can insert item at most m/(c;+1) times into the knapsack array. Note that
2"(c;+1)---(cy+1) is a rough upper bound for the number of edges between
vertex sets where (¢; +1) - (¢, + 1) is the number of vertices in a vertex set.
Therefore, the total number of vertices is at most 2" + 2"m(c; + 1) -+ - (¢, +
1)+ (1 +1)--- (¢, + 1), which states the time needed for graph construction.
By adding the time used for path we obtain the following corollary.

Corollary 5.13. When u = 0, IKO can be solved in time

O(K"2"m(cy + 1) -+ (ca + 1)).

5.4 IKO in polynomial time with radiation

The results in the previous section have practical implications, at least for the
load clipping problem. Even though some of the previous results are contained
in the following results, we can save some time by using the results given in
the previous section, since we can construct the edges more directly than in
the method to be presented next.

The following theorem is analogical to Theorem 5.9. This time, we have
n items taken into account in the labels of the vertices. Compared to The-
orem 5.9, we have more edges between vertex sets. Additional edges with the
additional restrictions on the weights on edges also affect to the running time
analysis.

Suppose first that the items have identical lengths. The graph to be con-
structed has vertices vg,;...q, e where selection 11, ¢1,..in,...en has 2¢ different
bit combinations. Each vertex corresponds to a selection of n items into ¢
consecutive knapsacks.

Lemma 5.14. Let the maximum lengths of clone and radiation parts be £ for
each item. Every item selection viy,_g.. 1n,..n (ignoring any other items in
the knapsack array) can be checked against restrictions (4.18) and (4.19) in
O(ne2™) time.

Proof. Consider a selection v11,. g1, 1n,..en- We are examining ¢ consecutive
knapsacks: there can at most ¢ ones, and the effects of an item can be cal-
culated in O(f?) time (and at the same time we can check the restrictions).
Because we have n items, a selection vi1,_s1.. 1n,. m can be checked against
(4.18) and (4.19) in time O(nf?).
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Next consider a set of all selections containing 2™ elements of length n/.
Combining two bit strings (and the corresponding results in the knapsacks)
takes O(2nf) time. The rest of the proof closely follows that of Lemma 5.5
and we conclude that the total time consumption is O(nf2m). O

The proof of the following theorem mimics the proofs of Lemmas 5.6-5.8.
Theorem 5.15. IKO € P when n = O(1), £ = log(m).

Proof. Let I;;, pij, wij, bj, K, n, and m form an instance of IKO. We also
suppose that the total length of radiation and clone parts is £ = log(m) for
each item.

We start from the source vertex s and insert at most 2" = m™ outgoing
edges to the first vertex set. (Note that m = 2°) The vertices in the first
vertex set correspond to every combination to select n items into the first
¢ knapsacks. If some combination is impossible, to comply with (4.18) and
(4.19), the corresponding edge is not inserted. By Lemma 5.14, the first edges
take O(nf2") time.

We insert an edge ( between consecutive vertex

Ugij@ive,j vwi+1,j"'$i+l+1,j)
sets, if Vg, gy, 15 @ legal item selection and does not violate (4.18) and
(4.19).

The profit and restriction checks for every vertex between two consecutive
vertex sets is done in O(nf2™) time. We construct the edges between feasible
vertices in O(2"2") time (number of edges times number of vertices). Hence,
the total time needed to make edges between two vertex sets is O((2"+nf)2™).

We use radiations and clone lengths as in the one item case. That is, for
each item, the bit corresponding to the first position of the clone part (right
after u; part) tells, if we should calculate the effects of including the item
(length for the edge).

Also weights are set similarly to the one item case. This time, each item has
its own coordinate in the n-weight vector. If item j is included (244,41, = 1),
the corresponding jth bit in the resource bound of the edge is one, otherwise
it is zero.

Now, we have a system that contains every selection of length ¢ in the
knapsack array with n items. We have linked selections so that every legal
selection is attainable. The number of selections is O(m2™) = O(m"™*!).
This bounds the total number of vertices in the vertex sets. The number
of edges between two consecutive vertex sets is 272" = 2"m" (we have 2"
decisions for selections, and the number of selections is 2" in ¢ knapsacks).
The graph construction takes totally O(nf2" + m(2" + nf)2" + nf2mt) =
O((2" + nlog(m))m™*1) time.
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Next we have to find the best set of selections. Condition (4.21) restricts,
for each item, the number of ones a path can contain. This leads to the n-
weight-constrained longest path problem. Recall that our graph is acyclic and
directed. As K is polynomially bounded (on m), we can form the longest n-
weight-constrained path in polynomial time (on m) by Theorem 2.13 (recall
that n is fixed). O

To obtain the second set of vertices from the first set, we drop the first
knapsack and add a new knapsack £+ 1. As with Theorem 5.9, the consecutive
vertex sets contain £ — 1 common knapsacks. Let the common subselection be
Zj, ..., %y, for j = 1,...,n. The items in the first knapsack z1; as well as
the items in the new knapsack x4, can have 2" value combinations (this is
in line with IKHO), which is also the upper bound on the number of incoming
and departing edges.

We can extend the method to handle individual total lengths ¢; for each
item. Figure 5.4 demonstrates the case n = 2 and ¢; = 3 and ¢, = 2. Each ver-
tex set has 32 vertices and there are 4 edges departing each vertex. Moreover,
we have to consider every 2-weight combination when searching for the longest
path. The size of the combination table is (K + 1). Figure 5.4 also demon-
strates how to handle the last vertex set, when every item has its own total
length ¢;.

As an example, consider vertex 111,11 at vertex set “123,12”, and suppose
that u; = 0. This corresponds to a situation, where we include items 1 and 2
into the first two knapsack and item 1 also to the third knapsack. The length
of edges (s, v111,11) corresponds to the inclusions z1; =1 and z12 = 1. This is
the common length of the four (= 2%) edges departing from vertex set “123,12”
to vertex set “234,23”. Vertex x990 in the second vertex set corresponds to
a situation where item 1 is not inserted into the fourth knapsack and item 2 is
not inserted into the third knapsack. Vertex x;191; corresponds to a situation
where item 1 is not inserted into a fourth knapsack while item 2 will be inserted
into the third knapsack.

To analyze the running time, note that the graph construction takes time
O(m(2" + nf)2™). We have O(m2™) vertices and the number of edges is
O(m2m2™). By Lemma 2.13, we need O(m(2" + nf)2™ + K"|V|?) time, which
equals to O(m(2™ + nf)2™ 4+ K™ (m2™)?) = O(K™m?*m?*) = O(K™m?™+1).

Remark, that because our graph has a special structure, the actual time
consumption is smaller than the above bound given in Lemma 2.13. We can
proceed from one vertex set to the next, and store the n-weight combination
tables of dimension O((K + 1)™) in m™ vertices of the vertex set.
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group 1 2 3 v m-—

— —

| + |

E EE
Hegd g
X123,12 X234,23 X345,34 ... EEEEE

000,0 000,00 000,00 000,0
000,01 000,01 000,01 000,01
000,10 000,10 . 000,10 000,10
000,11 000,11 . 000,11 000,11
001,00 001,00 001,00 001,00
001,01 001,0 001,01 001,01
001,10 -« 001,10 001,10 ... 001,10+
001,11 . 001,11 001,11 001,11.
010,00 010,00 010,00 010,00
010,01 010,01 010,01 010,01
010,10 010,10 010,10 010,10
010,11 010,11 010,11 010,11,
011,00 011,00 011,00 ... 011,00+
011,01 011,01 011,01 011,01°
011,10 011,10 011,10 011,10

011,11 - 011,11 - 011,11 011,11 t

100,00 . 100,00 . 100,00 100,0
100,01 100,01 100,01 100,01
100,10 100,10 100,10 100,10.
100,11 100,11 100,11  *** 100,11°
101,00 101,00 101,00 101,00
101,01 101,01 101,01 101,01
101,10 101,10 101,10 101,10
101,11 101,11 101,11 101,17
110,00 110,00 110,00 110,00
110,01 . 110,01 11001 =~ °° 110,01.
110,10 110,1 110,10 110,10
110,11 110,11 110,11 110,11
111,00 111,00 . 111,00 111,00
111,01 111,01 111,01 111,01
111,10 111,10 111,10 111,10
111,11 111,11 111,11 111,11

Figure 5.4: The graph structure for Theorem 5.15 with two items (n = 2),
where /1 = 3 and /5 = 2. We have m — 1 vertex sets, because the minimum
total length is two units.
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A path contains O(m) vertices, and a vertex set contains m" vertices.
Each vertex contains at most (K + 1)" paths. Hence, the space consump-
tion is O(K"™m™*!). The longest path algorithm now runs in time O(2™) +
O(K"2"2™m) + O(2™) = O(K"2"2"m) = O(K"2"m"*!). The first term
stands for the edges from the source, the second for the path checks with
every weight combination in each vertex, and the last one is for the edges into
the target vertex. Note that the paths in the n-weight combination table need
to be traversed in O(m) time only at vertex ¢ when we seek the longest path.
We can find the longest path in constant time, because we have kept a pointer
to it.

Thus, the total time is O(m(2" 4 nf)2™) + O(K"2"2"m) = O((K"2" +
2" 4+ nl)2"'m) = O((K"2" 4 2" + nlog(m))m"*!). This is much less than the
bound given above and suggested by Lemma 2.13.

We can relax some of the assumptions in the proof. Each item can have
its own maximum number K of inclusion times, and the total length ¢; (that
is, the length of left and right radiation u;; and u;,, and the length of clone ¢;
together). This means that we replace every nf with ¢ + -+ + £,,.

Corollary 5.16. Assume that each item has parameters K; and £;. IKO can
be solved in O((Ky--- Kp2" + 2" 4+ £y + - - + £,) 2005 +)m) time.

In the time bound of Corollary 5.16, K - - - K,, is for filling up the n-weight
combination table, while 2674 is for the number of vertices in one vertex
set. The additional m is the number of vertex sets and 2" is the upper bound
for in and out degree of each vertex in a vertex set. By relaxing ¢ = log(m) to
¢ =log(m*) or to £ = k + log(m), we obtain the following.

Corollary 5.17. If ¢ = log(m*), time O((K"2" + 2" + nklog(m))m"**1) is
enough for IKO. If ¢ = k-+log(m), time O ((K"2"+2"+n(k+log(m)))2"*m™*1)
1s enough for IKO.

Proof. If £ = log(mF), we have 2"%106(m) = mnk and O ((K"2"+2"+nf)2™m) =
O((K™2" + 2" + n + klog(m))m"*+1).
If ¢ = k + log(m), then 2n(kHloe(m) — 2nkmn — Now O((K"2" + 2" +
nl)2"*m) = O((K"2" + 2" + n(k + log(m)))2*m™*1). O
If K =m/(c+1) for each item, we do not use restriction (4.21). In these

cases we can use the shortest path methods (our graph is directed and acyclic),
and the result can be formulated as follows:

Corollary 5.18. Suppose that K = m/(c + 1) for each item. If £ = log(m*),
IKO can be solved in O(((2" + nk)log(m))m™*1) time. If ¢ = k + log(m),
IKO can be solved in O((2" + n(k + log(m)))2™*m™ 1) time.
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Proof. If £ = log(mF), the number of vertices is 2 + m™m = 2 + m™+! and

the number of edges is m™* + 2"m™O(m) + m"* = O(2m™ + 2"m™*1). The
first term is for the edges from s, the next is for the edges between vertex sets,
and the last term is for the edges incident with ¢. Thus, the running time for
the shortest path method is O(|V |+ |E|) = O(2 +m™*! 4+ 2mnF 4 2nmrk+l) =
O(2"m™*1). The construction time together with the path search time gives
O (m(2" + nk) log(m)m™) + O (2"m™+1) = O((2" 4 (2" + nk) log(m))m™+1).

If £ = k+log(m), the number of vertices is 2+ 2"*¥m™m. Thus, the shortest
path running time is O(2 + 2"m™*! + 2% mn 4 2n2"%km™ (m — 1) + 2%m™) =
O((2" + 1)2%mr+) = O(2"F+"m"+1). The terms are obtained as in the
previous paragraph. The total time is O(m(2" + n(k + log(m)))2™m") +
O (2" mmn 1) = O((2" + 2" + n(k + log(m))) 2™ m™*1). O

5.5 MDKP and IP in polynomial time

In this section we present new instances of MDKP and IP that are polynomial
time solvable. Consider an instances of 0-1 MDKP having m items and m
knapsacks b}, profits p;, and weights given by restriction matrix W', which is
a band matrix with bandwidth O(log(m)). (In a band matrix W' we have
wi; = 0, for [ — j| > w, where w is the width.)

We partially transform 0-1 MDKP into IKHO, and form the “selection
graph” used in Section 5.2. We use restrictions normally. We set interactions
I;(k) = wi,, weights w; = 1, and knapsack sizes b; = b. The lengths of edges
are obtained directly from the profits of the present 0—-1 MDKP case (and not
through interactions). Hence, restriction (4.13) is fulfilled, because ¢ = 0, and
(4.15) is not needed as K = m/(c+1) (we may include item into all knapsacks,
if other restrictions allow it).

Bandwidth of w is seen as a clone (with clone and radiation part) of length
¢ = 1+2w. Analogically to Corollary 5.11, we are able to estimate the running
times as a function of the bandwidth.

Corollary 5.19. 0-1 MDKP having band matriz restriction of width w =
k+1log(m) can be solved in time O((k+log(m))2**'m?). Width w = log(m*)
implies time O (klog(m)m?**1).

Proof. As K = m/(c+ 1), we do not need (4.15). Hence, we use Corollary
5.11, which implies O((v + tlog(m))2*m'™) running time with total length
¢ =v+tlog(m). Now, set £ =1+ 2k + 2log(m), (thus ¢ =1+ 2k and v = 2),
giving O((1 + 2k + 21og(m))2'+?%*m?1) = O((k + log(m))2%**1m?). Further,
¢ =1+ 2klog(m) gives O((1 + 2klog(m))2'm*+1) = O(klog(m)m®+1). O
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Recall Theorem 2.13. It can be used to solve 0—1 MDKP instances. The
above case needs O(K™m) time with a graph having m pairs of edges each cor-
responding to either selecting an item or not, each edge having m restrictions,
and K being the largest number (or the largest size of the m knapsacks). (See
also [80].) Further, a brute-force enumeration gives O(m?2™) time [79, p. 125].
Even though we have neglected to consider the lengths of elements of instances,
we dare to say that Corollary 5.19 gives much more efficient algorithm for the
instances considered.

As an example, consider the following 0-1 MDKP instance. Let p] = i
(t=1,...,10), and let the width of the band matrix be 1. Suppose also that
tio1 = Wi = wigr1 = 4. Last, let b} = 30 (hence, every edge will be shown).
Figure 5.5 shows the edges, all directing from left to right. In this example,

w

radiation has length one to the left and length one to the right from the clone
part, whose length is one. Thus, a selection is three knapsacks wide and the
middle knapsack gives the profit for the edges, except for the edges from s (the
leftmost knapsack gives the profit) and to ¢ (the second and third knapsack).

Figure 5.5 shows the length (the profit), if it is not zero. For example, the
edge from s to 110 has length 1, because we take into account the profit of the
inclusion of the first item (u; part). Note that we do not use the weights here,
as we are allowed to make as many inclusions as we want.

We have marked with a small “a” the edges that have nonzero length. For
example, the edge from 011 in the first vertex set to 110 in the second vertex
set has length 2, because the edges from the first to the second vertex set take
into account the profits of the inclusion of the second item. There are two
numbers for each “a”, as there are two edges from each vertex in the vertex
sets, for example, edges (011,110) and (011,111) between each vertex set.

Edges going to the target vertex ¢ have different weights. There we have
to add also the profits of inclusions of the tenth item in addition to the ninth
item.

When we construct the graph, we check restriction (4.12) against every
selection. For example, vertex 111 in the sixth vertex set corresponds to zg =
x7 = zg = 1. If some of the restrictions (4.12) were violated, the corresponding
edges would be missing.

If we want to model the solution where only items 6, 7, and 8 are included,
our path starts from s and goes to the upper most vertex of the first vertex
set. The path continues to 000 in the third set, 001 in the fourth, and 011 in
the fifth. The seventh knapsack has weight 6+7+8=21. The path continues
from sixth set to 110 and to 100, from which it goes to t. Figure 5.5 draws
this path in thicker line.
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group 1 2 3 4 5 6 7 8
X123 %234 Xaus %456 Xsg7  Xg78 X789 %g9,10
000 000 000 000 000 000 000 000
001 001 001 001 001 001 001 001\ 10
010\ )X 010\ Y7 010\ Y7 010 \ X7 010 \ (7010 \ )7 010 \ )X 7010
S 011 011 011 011 011 011 011 011\
100 100 100 100 100 100 100 100
101 101 101 101 101 101 101 1017// 10

11077211077 21107 21107 21107 V1104 31107 1107/ s
1115111 1115 111 111 111 2111 = — 111 1

a=2,2 a=3,3 a=4,4 a=5,5 a=6,6 a=7,7 a=8,8

[ T N =

Figure 5.5: The graph obtained for 0-1 MDKP example. We have 10 x 10
matrix, whose band-width is 1. The thicker line shows a solution path corres-
ponding to z; =0,2=1,...,5,9,10, and x4 = 27 = 23 = 1.

The profits corresponding to the selection z¢ = 27 = g = 1 (and z; = 0,
where i # 6,7,8) are given by the edges (011, 111) with profit six (from fifth
to sixth set), (111,110) with profit seven (from sixth to seventh set), and
(110,100) with profit eight (from seventh to eighth set).

After applying the method designed for IKHO to 0-1 MDKP, we would
like to apply the proof of Corollary 5.3 accordingly. The counterparts of m
restrictions (4.13) of IKHO in 0-1 MDKP are knapsack restrictions z; + - - - +
Tive; < 1,fori =1,...,m, when inserting an item into the knapsack 7 in IKHO.
If we set z; = 1, then z;41 = -+ = x;4, = 0. Knapsack ¢ + ¢; + 1 can take the
next item. When we construct the graph, we draw an edge from (A4;, B¢, +1)
with length p;. As there are m rows, we draw m edges corresponding to the
restriction rows among other edges. Restriction (4.15) of IKHO can be kept
unchanged in 0-1 MDKP. If 0-1 MDKP contains at least one such restriction,
then we use the longest weight-constrained path algorithm. Otherwise, we use
the longest path algorithm. As the graph is directed and acyclic, we use the
shortest path algorithm.

The above application of Corollary 5.3 restricts 0-1 MDKP instances con-
siderable and therefore, it is not as interesting as the result given in Corol-
lary 5.19. Anyhow, the above construction resembles the linear programming
problem, where the restrictions are difference constraints [30]. That is, the
restrictions are of form z; — z; < b;. Difference constraints can be used to
model, for example, relative timing constraints. Shortest paths can be applied
to find a feasible solution for difference constraints [30]. However, if we are to
account profits p;, when z; = 1 (or when z; > 1), the application of shortest
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paths for difference constraints is not so obvious.

Furthermore, the above results raise another natural question at extending
the algorithms of IKO instances. Let an instance of 0-1 MDKP consist of nm
items and m knapsacks, where the restriction matrix W' is a concatenation of
n band matrices: W' = [W{ W, --- W], where W; (i=1,...,n) isan m xm
band matrix with a bandwidth of size O(log(m)).

Let wfj be the weight of position ¢,j of W/. Now we set parameters for
IKO: w;; = 1, interactions I;;(k) = wl, and ¢ = 0, K = m/(c+1) and b; = b}.
Again, we do not map profits from an 0-1 MDKP instance directly to an IKO
instance, but rather use them as lengths in the constructed graph.

Corollary 5.20. 0-1 MDKP with n “concatenated” band matriz restrictions
of width £ = log(m*) can be solved in time O((2" +n+2kn log(m))Qnm%"“),
Width £ = k+log(m) implies time O((2" +n+ 2nk +2nlog(m))2"+2Fm2n+1).

Proof. Because K = m/(c+1), we do not need restriction (4.21). By combining
the results of Corollary 5.18, we obtain that £ = v + tlog(m) implies O((2" +
n(v + tlog(m)))2™m™+1) time. We map /¢ to 1 + 2/, that is, set v = 1 and
t = 2k for the first result and obtain O((2" 4+ n(1 + 2k log(m)))2" ! m™+1).
Set v = 1+ 2k and ¢t = 2 for the second result and now O((2" 4+ n(1 + 2k +
2log(m)))2"(+2K)m2nt) = O((2" + n + 2nk 4 2nlog(m))2"H2km2n+l) . O

Corollary 5.20 solves in polynomial time also a class of instances of 0-n
MDKP, where the weight matrix is an m X m square matrix and has bandwidth
u = O(log(m)), and where each variable can range between 0 and 2" — 1 and
n is fixed. (In 0-n MDKP we are to maximize pz such that Wz < b and
T; € {0,,7’1,})

We form a “concatenated” matrix from n matrices. Each submatrix has a
factor 2!, i = 0,...,n — 1, which is used to multiply the profits and weights.
Now we have a situation in which Corollary 5.20 can be applied. The concat-
enated band matrix restrictions are W"” = [20W' 2'W’ ... 2°=11¥']. Similarly,
the profit vector is p” = [2°p' 2'p' --- 2" 1p/]. Knapsack capacities are the
same. The value of the variable j is obtained by summing appropriately over
the values at each index j of n parts. Because our graphs are directed and
acyclic, the above discussion and results also hold for the 0-1 and 0-—n IP
problems.

For example, suppose an instance of 0—n IP with one band matrix of width
u = 1 and the parameters given as in the 0-1 MDKP example: p, =i (i =
L,...,10), wi; ; = wj; = wi;y1 = 4, and b; = 30. Suppose that each variable
can range between 0 and 7 = 23 — 1.
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Hence, the concatenated band matrix is W"” = [1W' 2W" 4W"] and the
profit vector is p"” = [1p’ 2p' 4p’]. Here W" is a 10 x 30 matrix and p” is a
30 x 1 vector.

The graph has 10 vertex sets, each containing 23% = 512 vertices. Moreover,
we have 2% - 512 edges between two consecutive vertex sets. Vertex s has 512
outgoing vertices and vertex ¢ has as many incoming edges. The profits for
the edges from s are given by the u; part, that is, by the left most knapsack.

For example, vertex 100,110,100 in the first vertex set corresponds the
decision z; = 7, xy = 2, and x5 = 0. The length of the edge (s,v100,110,100) 1S
1-142-1+44-1=7. The first knapsack has weight 1-1+2-14+4-1=7
from the decision z; = 7 and 2 - 2 from the decision zo = 2, totalling 9.

As an another example, consider vertex 011,001,001 in the second vertex
set. This vertex corresponds to the decision o = 0, 3 = 1, and =4 = 7.
Weight of the third knapsack can be calculated: 1-3+7-4 = 31, which is more
than b3 = 30. Hence, there is no incoming edges to this vertex. Note that we
can give some estimations about the weights in knapsacks 2 and 4, but the
exact amount can only be calculated in the vertex sets 1 and 3, respectively. If
the knapsack size of the third knapsack were larger, 011,001,001 would have
incoming edges of length 0, since the edges have to depart from vertices such
that the middle bits are zeros (we see this from the vertex label, the first
positions are zeros).
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Chapter 6

Applications of the IK model

In this chapter we introduce some applications that can be modeled and solved
with interactive knapsacks using IKHO and IKO. In Section 6.1 we give appli-
cations in scheduling, and in Section 6.2 other applications, which also interpret
knapsack array as a time line. An introduction to the scheduling theory and
solution methods is given, for instance, by Pinedo [88].

Because the applied IK model is general, it can be applied to several prob-
lems like, say, 0-1 MDKP or GAP. Usually, the problem specific methods
are most suitable and the general optimization techniques must be tailored to
different problems.

The given applications work as examples in applying IK model to different
problems. We are able to demonstrate the close relationship between different
problems, and in some cases IK model can give new insights in well-known
and much studied problems. For example, if fixed length clones are usually
used, extending the problem to use variable clone lengths or radiation may
give new efficient ways to solve or to extend the problem. Yet, we may find
new applications for the methods of Chapter 5.

6.1 Applications in scheduling

The knapsack array can be interpreted as a discrete time interval. We can
define planning problems as follows: for each task (or act), corresponding to
a clone, find the schedule maximizing the profits so that successive tasks are
disjoint, and that the resources consumed by all of the tasks are not over
exhausted (that is, items fit into the knapsacks).

This interpretation of the model contains different single machine schedu-
ling problems: we have w;; = b;, for each task j, all knapsacks have equal
capacity (b; = by, for ¢ > 1), and hence, only one task at a time can be se-
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lected. We can also restrict the number of times a task is selected; one is a
common bound for the number of possible selections. This is obtained by set-
ting K =1 in IKO in (4.21). Depending on the type of the objective function
(if not using (4.22)) and other additional constraints, this kind of problem may
be NP-complete [45].

Suppose that for all items j, we have 0 < p;; < 1 and p;; = p’ij, for
1 < i < m, or that the profits are of the form p;; = p1;a’~!, where p;; > 0 and
0 < a < 1 is the discounting factor (that is, profits are discounted over time).
Now the optimal solution will place items j = 1,...,n to leftmost positions
available in the knapsack array, because the profits are larger in the left end
of the array. Set K =1 in (4.21) so that each item j will be selected at most
once. Because each selection increases sum (4.22), all items will be selected.
Note that the clones connected to the items are separate because one clone
consumes all the capacity of the knapsacks involved by (4.18) and by the fact
that w;; = b;. The optimal solution is clearly the one which minimizes the
total completion time.

Now we have several options. By adding release times e; and deadlines d;
for items j, that is, by adding constraints

i € [ej,dj], when z;; = 1,

we end up with SEQUENCING WITH RELEASE TIMES AND DEADLINES, a well
known NP-complete problem (see Appendix A.4 and the proof of Theorem
4.7). Actually, we do not have to add these constraints explicitly. We can set
w;; > b, if @ & [e;,d;], not allowing to start the task before release or to stop
after deadline. If this is too restrictive, we may handle these constraints by
using profits appropriately and neglecting the weights. Other single machine
scheduling problems are discussed in [45]. Some of these problems can be
exposed directly with IKO but some need changes to IKO.

On the other hand, instead of considering the release times and deadlines
we may choose m to be Z?Zl cj, where c; is the length of task (clone) j, so that
we cannot have idle time between the tasks. Because each p;; depends on both
task (clone) j and position i, we have a single machine scheduling in the sense
of [59]. In [59] we minimize the objective which is a sum of functions on the
completion time for each task. (The problem setting and different objectives
are given in Appendix A.1.)

Note that we can expose equivalent cost-functions as in [59] without al-
tering the objective (4.22). The weighted sum of earliness and tardiness for
tasks (or jobs) can be calculated by choosing profits p;; appropriately. Let the
profit coefficients of earliness and tardiness be e; and ?;, respectively. Further,
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profits

m

Py
&

d, knapsacks

Figure 6.1: Due date and profits.

let the due date of task j be d; € [1,m]. We turn the minimization of dis-
advantages of misplacement of the task (earliness or tardiness) used in [59] to
the maximization of advantages of appropriate placement of the task. Figure
6.1 contains knapsack d; and two lines corresponding to profits given by the
placement of task j. If the last knapsack used by task j is d;, our profits (4.22)
are maximized.

We achieve this behavior by setting pg; ; = max{(d; — 1)e;, (m — d;)t,},

Pd;—k,j = Pdj,j — €jk, (6-1)

(1<k<d;j—1)and

Pd;+k,j = Pd;,j — ik, (6.2)
(1 < k < m —dj). All profits are positive. Unlike in Figure 6.1, we have
to choose constants e; and t; such that (d; — 1)e; > (m — d;)t;. Actually,
e; has to be so large that objective (4.22)—if item can be freely positioned—
gives the maximum when the end of the clone is at d;. Remembering this, we
can replace (6.1) with any increasing function and (6.2) with any decreasing
function. Another possibility is to use interaction /;;, which takes into account
the distance from d; (so that Iy, ; will give the best results).

Again, knapsacks have capacity for one copy (w;; = b;). Restriction (4.19)
ensures that the clones do not overlap, and hence, we will not violate condition
(4.18).

If e; and t; are as in Figure 6.1, tasks may pass the due date and give at
the same time better profits. Compare the profits given by two equal length
tasks: a task ending at d; (light grey area in Figure 6.1) and a task starting
at d; (dark grey area). The tardiness coefficient is so large that it gives better
profit to item starting at due date than to item, whose clone ends exactly at
due date.

By setting e; = 0 our objective counts the weighted sum of tardiness.

We can use methods given in [59]. The problem, however, remains NP-hard
[45, 50].
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IK model can also be exploited for some multiprocessor scheduling prob-
lems. We first set w;; = w;;, for 1 < j < n and for all ¢ (all items have
equal weight on each knapsack). Then we set b; = Mw;; so that at most M
processors can be used at a time (in Figure 6.2 we have M = 6).

We use the same approach as earlier by discounting profits 0 < p;; < 1
over time (that is, p;; = pij, i=1,...,m). Because the profits are positive, we
add each task to the schedule because it increases the total profit. Because the
profits decrease as ¢ increases, the tasks will be placed to as left as possible.
We choose knapsack sizes to fit in items. Now, in the optimal solution the
completion time of the last task is minimized [65].

This is almost the multiprocessor scheduling problem of [45], a well-known
NP-complete problem. In this setting it is easy to see the number of processors
needed; the problem is to find the correct processors. One interpretation is to
have capacity consumed like in Figure 6.2 (a) identifying at the same time the
processor; the third processor is used even thought the capacities are handled
as in Figure 6.2 (b). This also implies that the tasks have to consume resources
equally, that is, w;; = wy;, for all ¢, j.

However, if processors or tasks are not identical, there may be holes left
like in Figure 6.2 (a) and it is harder to determine which processor is used
for each task. Multidimensional knapsack arrays to be presented in Chapter 7
give a more natural interpretation to multiprocessor problems.

If we have setup or clean-up times [88], we can employ early or back radi-
ation, respectively. Radiation can depend on a task (varying length radiation)
or it can be processor specific (on identical processors constant length radi-
ation for each task). Setup time occurs, for example, if we have to configure a
processor. Clean-up can be thought more naturally in the machine scheduling
context.

(@) (b)

Figure 6.2: Identical processors.
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If we use radiation, we have to modify the use of interaction so that ra-
diation does not affect the profits but only the weights (or at least it affects
differently the profits than the weights). Moreover, radiation can take all or
part of the processors time on setup (that is, 0 < r;;(k) < 1).

6.2 Other applications

Some applications given in this section require modifications to IKO problem
setting. However, the modifications are small and the basic concepts of IK
model, cloning and radiation, are still applied.

By adding extra restrictions of the form

cmin; < ¢;; < cmax; (6.3)

(minimum and maximum lengths for a clone) and some minor application
specific modifications to IKO with variable length clones, we can model energy
management problems, like unit commitment [28] and load clipping [3, 6] (see
Chapter 8). In energy management we often have to use back radiation and
sometimes we can also use early radiation.

Constraints (6.3) can be added to IKO as extra constraints or we can modify
the sum (4.22) by changing the interaction I;;(-). We replace

i+cijtug;

D> Lk

k=i—u;;
with
plcjcij(cij)( Z Cz'j(k)pkj + Z Uij(k))a
keCyj kER;;

where the cloning interaction Cj;(k) = 1, when k € [i + cmin,, 7 + cmax;|, and
0 otherwise. The coefficient Cj;(c;;) = 0, if ¢;; is shorter than cmin; or longer
than cmax;, thus reducing the profits to zero. The sum in constraint (4.18)
will be modified similarly.

We can also try to apply load clipping to “load shedding in the internet-
work” to reshape the traffic loads at communication lines [99, pp. 390-392].
Traffic packets could have priorities based on prices [99], which means that
profits of IK model could be used. Cloning has a natural interpretation: it
is the time we prevent some hosts from sending packets. Radiation is more
interesting: while people try to make connections and do not succeed, they
probably try again later. For instance, if the shaping occurs at the access
point of a company [99] for www-traffic, some people will try again. The time
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after which they try is random but after we release the line, there will be more
consumption than without the load shedding. One can, of course, try to model
the shape of the increased consumption, the shape of back radiation, like in
load clipping [16, 29, 64, 91]. If the company informs its employees about the
control periods, we may also have early radiation.

The same idea can be applied to advertisement and price policies. If people
know that some product can be bought later by discount, they will probably
wait to make their shoppings. The incomes will be affected and can be modeled
with early radiation. The sales will also have its impact to incomes as back
radiation.

IKO can be also applied to the capacity expansion problem. Saniee [95]
and Laguna [65] apply the time-dependent knapsack problem for multi-period
capacity expansion. The time-dependent knapsack model is a variant of normal
discounted knapsacks where the objective is to

m n
min Z ijxijai_l
i=1 j=1
i n
subject to ZZ’UJjJ?kj > bi, 1< < m,
k=1 j=1

.T]chN, j=1,...,n, k=1...m,

where ¢ is a discount factor (0 < a < 1). We can rewrite this as

m n '
max ZZ(—pj)xijaz_l

i=1 j=1
i n
subject to ZZ(—wj)xkj < —b, 1<i<m, (6.4)
k=1 j=1
Trj €N, j=1...,n, k=1...m.

This is our basic IK problem with only one constraint, provided that we allow
the weights, profits and knapsacks to have negative capacity in (4.22) and
(4.18).

Restriction (4.18) is equal to (6.4) in capacity expansion problem if we set
cij = m — 4. This means that after insertion every clone lasts to the end of the
knapsack array (varying clone lengths). Figure 6.3 shows an example with five
items, added at times (knapsacks) 1, 2, 3 and 4. At first knapsack we have
added two items.

Demands in capacity expansion (values b;) can be of any size, thus leading
into a situation where we might have some capacity allocated but not needed
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Figure 6.3: Capacity expansion.

(dark areas). If we allow variable clone lengths and use objective (4.22) and
condition (4.18), we can optimize capacity expansion and also take into account
the time intervals where we have extra capacity (knapsacks 6-8 for the topmost
item and knapsack 8 for the other items).

Another possible application is dispatching of hard real-time tasks. In this
problem we do not know the actual lengths of tasks until those tasks are run
[48]. This introduces random variables ¢;; to the IKO problem.

Moreover, IKO can be used to find optimal task lengths by using variable
clone lengths. Now we can use back radiation naturally: we may know how
task j of certain length has influence to the profits and resources following
task j. For example, we can approximate the effects of a task (or control) of
certain length to knapsacks following the task in load clipping used in energy
management (see Chapter 8). Intuitively, load clipping is similar to capacity
expansion: we do better, if we can fulfill the restriction with smaller set of
items and shorter clones.

The questions about optimal clone lengths are near to discrete optimal
control problems but techniques arosing in optimal control are not covered in
this work.
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Chapter 7

Multi-dimensional interactive
knapsacks

The knapsack array can be generalized to knapsack space, which is done in Sec-
tion 7.1. We present a few basic concepts and discuss, how to add restrictions
similar to the ones we have used with IKHO and TKO.

After presenting the model, we give applications in Section 7.2. The mo-
tivation given at the start of Chapter 6 also applies here. In some cases our
applications are somewhat controversial and speculative: there are models or
approaches that work better with the given applications. However, we want
to emphasize that features peculiar to IKs may give new insights.

Furthermore, we will show to transform a multi-dimensional IK into a re-
laxed IKO in Theorem 7.1. This means that the applications can be represen-
ted as IKO problems, which are maybe easier to handle than the applications
(and multi-dimensional IKs) in more general form. For instance, IKO methods
may work as starting point for development of heuristics.

We leave it open to find a problem that can be posed naturally with multi-
dimensional knapsacks. If such a problem is found, we may ask, whether we
can further extend the methods of Chapter 5.

7.1 0-1 MDIK is strongly NP-complete

Suppose that we have M (€ N) 0-1 knapsack arrays that interact together
just like the knapsacks interact together in 0—1 IK model. Again we suppose
that knapsack arrays are ordered so that we can talk about left, right, earlier
and later arrays when compared to some other knapsack array. Thus, we reuse
the ideas of interactive knapsacks to knapsack arrays. Figure 7.1 clarifies this
approach.
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X —item ]

Pl

Figure 7.1: A sample IK array of order 2.

Now the object j can be inserted into an array [ (1 <[ < m;) where we can
choose a knapsack h (1 < h < my). Hence, the decision variable is z;,;. Here
we have two kind of natural interactions: those internal to [ and interactions
between different arrays, that is, between the neighbors of [.

Next we give examples of k-dimensional knapsack spaces and after that, we
give a formal definition for k-dimensional knapsacks. The first dimension, lines
in space, was discussed in Chapters 4-5. The sample multi-dimensional IK in-
stance in Figure 7.1 is 2-dimensional (it is “in the plane”). A 0-dimensional IK
instance is reserved for the traditional 0—1 knapsack problem and corresponds
to a “point in the space”.

To define the model precisely, we need ¢ indices %; ...,1,, where each 7 €
{1,...,mg}, for k = 1,...,q. We denote J, = {1,...,mg}, for k =1,....¢
and J = J; X --- x J,.

We change the definitions of I;; (an interval) and [;;(k) (a function from I;;
to Q) a bit. Intuitively they will remain the same: I;; will hold the knapsacks
involved with clones and radiation and function operates similarly in those
knapsacks. We suppose that I;; C J x {1,...,n}. We also have I;;(k) :
Iij x J — Q, where s € J and j = 1,...,n. Function I;;(k) gives the effect of
item j put in knapsack ¢ to knapsack k£ € J. The sets involved with cloning and
radiation are denoted by Cj; and R;j, respectively, and hence, I;; = C;; U R;;.

When we put item j into a knapsack, the number of knapsacks, where the
copies are inserted in each dimension can be fixed for all items and knapsacks.
It can depend on a knapsack, or it can be a variable. Further, the number can
be equal for all or some dimensions. In applications it is comfortable to allow
copies to be positioned in nonconvex way, for instance, to have “holes” in the
clones.

We sort the knapsacks with the first dimension as the main key, the second
dimension as the second key and so on. This is consistent with the ordering
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introduced for the one dimensional arrays.

Adding item j to knapsack 7 in the finite knapsack space J causes some
interactions. We suppose that the copies C;; will be positioned so that 4 is the
first knapsack of C;; in the ordering of the knapsacks. The radiation spreads
around the copies.

The radiation is bounded in an obvious way: when knapsack k£ € .J is far
enough from the clone positioned at ¢ (|¢ — k| > u), we have I;;(k) = 0, and
I;j(k) € Q, when |i — k| < u, for some u € N. Hence, the interactions of item
j occur inside a g-dimensional ball of radius u centered at ¢ in the knapsack
space. Note that the clone formed by interactions is not necessarily a ball.
Figure 7.2 contains a clone (dark grey squares, each describing a knapsack)
having the “first” knapsack in black. The radiation is in light gray.

In the 0-1 multi-dimensional interactive knapsack optimization problem
(MDIK) our objective is to

max Z inj Z IZ](k)ka (71)

ied j=1 k€I

subject to Z mewzj[m(l) S bl, l e J, (72)
i€ j=1
zi; =0or1, ied, j=1,...,n, (7.3)
D ay <1, j=1,...,n.  (7.4)
i€J

Now we can formulate the decision problem for 0—1 multi-dimensional inter-
active knapsacks as follows.

MDIK
Instance: A finite Cartesian set J = J; X - - - X Ji, n items giving n|J| integers
for profits p;; and weights w;;, |.J| integer capacities for knapsacks b;, for ¢ € J,

]
~——

\J

Figure 7.2: An example of a nonconvex clone and its surrounding ball.
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and a positive integer P.
Question: Is there a distribution of n|J| values z;; giving profit P or more,
such that the constraints (7.2)—(7.4) are satisfied?

We modify constraint (7.4) to

inj <K, for each j. (7.5)

ied
Further, we add an extra restriction

zy; =0, for k € Cj;, when z;; = 1. (7.6)
Now an item can be put several times into the knapsack space but the repres-
entations may not overlap.

If we have more than one dimension, we may use other generalizations as
well. For example, consider index sets

Z inj <K'  foreach jandi' € J/J, (7.7)

i:(’i',i”) j=1

where 7 is a combination of 7' and i" (denoted shortly by i = (¢',4") in (7.7))
and index set J' = J; X Jg, X --- X Jo,, 1 < d <k, and a, # a, for each s
and t. Equation (7.7) counts the clones of type j occurring in subspace J' and
restricts the sum by K'. Note that i = (¢',7") sums over 7' and can be true for
several copies in the same clone but we count each clone at most once. With
K we can handle each item separately.

Figure 7.3 has three clones and they are projected into space spanned by
J'" and one dimension of J/J', say “time”. Suppose that K’ = 2. We count the
clone in the middle only once at moment t. (We could formulate this exactly
by using existential quantifier in the sum.) In ¢ + 1 the sum is three. Note
that the items for clones (where x;;’s equal one) do not have to map into this
subspace.

Further, we can specify the number of clones allowed in the subspace con-
sisting of d dimensions letting at the same time more clones to be positioned
in other dimensions. By adding constraints of type (7.7) we obtain individual
constraints to different knapsack subspaces. Restriction (7.6) can also be gene-
ralized to allow overlapping in some knapsack subspaces but not in all.

The rest of this section concerns the relationship between MDIK and IKO
and the complexity of MDIK. In the following theorem, we can transform a
g-dimensional space to an array.
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Theorem 7.1. A knapsack array can simulate a q-dimensional knapsack space
(g € ZT).

Proof. Consider a ¢g-dimensional knapsack space J = J; X - - - x J,, where each
Je={1,...,my}, k =1,...,q. We can establish one-to-one mapping f from
a knapsack i € J to an 1-dimensional array of length (|Ji| + 1)|Ja| - - - |J,|. If
i = (i1,...,1x), we have

F6) = i ()i = 1) - (1 Y my) g — 1),

which can be constructed in polynomial time. Every (1 + m;)th knapsack
works as a separator having zero capacity. This prevents us to put clones
into the space so that their shape will be interpreted wrongly. (We can add
separators to other dimensions as well without affecting the polynomiality of
the construction.) O

If we are to use the above transformation, interactions, cloning and radi-
ation have to be applied in the simulations in a more versatile way than de-
scribed in the earlier chapters. We have to allow nonconvex clones (clone may
consist of different intervals). Similar transformation maps multi-dimensional
integer programming to 0-1 MDKP, 0-1 IP, or to GAP. However, the restric-
tions need some extra attention.

Theorem 7.2. MDIK is NP-complete in the strong sense.

Proof. We show that function f defined in the proof of Theorem 7.1 is a
pseudo-polynomial transformation from IKD to MDIK. Suppose that [ is an in-
stance of IKD. Functions Length'[I] and Max'[I] are for IKD and Length[f (I)]
and Max[f(I)] for MDIK. Max'[I] is polynomially related to Max[f([)] and
Length[/] is polynomially related to Length[f(I)] by Theorem 7.1. Hence,
one-to-one transformation between MDIK and IKD given in Theorem 7.1 is

oot |

! f | time

Figure 7.3: Restricting number of clones in subspaces.
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pseudo-polynomial: by using separators we can ensure that all constraints are
satisfied and hence, the ‘yes‘ answers are preserved (property 1 of the defini-
tion of the NP-completeness in the strong sense, page 13), f can be computed
in polynomial time for both Length’[I] and Max'[I] (property 2). There also
exist polynomials ¢; and ¢y such that properties 3 and 4 are satisfied because
of the polynomial relationships of Max’s and Length’s. O

7.2 Applications of 0—1 MDIK

Next we informally present applications for 0—1 multi-dimensional IK model
and MDIK. The first application is related to assigning tasks and the next three
to packing objects. At the end we discuss about two scheduling applications.

Miller and Franz [75] study the multi-period assignment problem, in which
n employees are to be assigned to one of m tasks during 7" periods (see Ap-
pendix A.2). This corresponds to MDIK of order two with extra constraints
and small modifications. We have J = J; x Jy, where one dimension corres-
ponds to m tasks (J;) and the other to T time periods (J2). The length of
each clone is one knapsack and there is no radiation. A clone corresponds to
an employee and it is of variable size and shape.

Miller and Franz allow more than one item of a type in the knapsack space,
but exactly one in the task dimension. This means that one task is needed in
each period for an employee. This is achieved with small modification (equality
relation) of constraint (7.7). Thus, we have

Z T =1, for each i" € Js,

i'eJy

where 7 = (¢',4"), thus allowing many clones in the time axis. An employee will
serve the required number of periods for all tasks by adding new constraints

\Cij| = K, for each j.

The necessary manpower for each task during all time periods is ensured
with (7.2) where all weights equal 1. The same holds for [ in the copy area.
To obey all the constraints of Miller and Franz we have to add some extra
constraints similar to (7.2) differing only in the relation required: = or >.

By using clones we can define some constraint more naturally than in the
multi-period assignment problem given in [75]. For example, the constraints
relating an employee to work continuously can be obtained by requiring that
clones do not contain holes in dimension J, (time). The radiation has no
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obvious interpretations for assignment problem. We may conclude that 2-
dimensional MDIK is related to the multi-period assignment problem.

Milenkovic [74] examines the translational containment problem (see Ap-
pendix A.3). The objective is to determine a set of translations for & poly-
gons that place them in a nonoverlapping configuration inside a polygonal
knapsack. This problem, again, can be simulated to a given accuracy by a
two-dimensional knapsack array. In MDIK presentation we need numerous
knapsacks in order to discretize the vertices of a polygon to a required accur-
acy. This implies that the clones are also rather large.

We let the weight of each item and knapsack to be 1, including copies
used in the clones. Radiation is not used. The profit is 1 for each item and
knapsack but for copies the profit is zero. Each knapsack has a capacity of
1 inside the “knapsack area” and 0 elsewhere. In [74] each polygon has a set
of translations. Each translation corresponds to a possible value of a variable
clone. The “displacement” constraints have to be added separately for MDIK.
We do not have to touch the MDIK objective in the case of kNN and £CN
(see Appendix A.3) because if we can insert all k items into the knapsack we
have maximized profits. To handle (r, £)NN and (r, £)CN problems, we need
to modify our objective so that we search for all clone sets giving predefined
profit £.

Another version of containment and packing problems is the strip packing
problem [33]. In strip packing a list of rectangles (h;,v,), 1 < j < n, with
given height h; and width v;, where 0 < h;,v; < 1. The objective is to place
this list into a vertical strip of unit width and to minimize the total height
needed. This is almost identical to the translational containment problem
but translations are not allowed here. Therefore, we have fixed clones when
using 2-dimensional MDIK. The number of the knapsacks in both dimensions
depends on the heights and widths: the greatest common divisor determines
the number of knapsacks needed. In order to do that, we have to fix the
precision and scale of the heights and widths so that they all are integers.
To minimize the total height we use similar approach for profits as in the
scheduling problems (discounted profits).

A third kind of packing problem is to pack items in three dimensions con-
sidered for example in [77]. We have a rectangular box (which can be gene-
ralized to a knapsack of any shape) into which we put boxes (which can also
be generalized to any shape).

We arrange the knapsacks in MDIK to have unit capacity; each item and
each copy of the item in the clone consumes the whole capacity of the knapsack.
Thus, two boxes cannot overlap.
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If each knapsack has the amount of profit equal to one for each item, the
profits are maximized if we can put maximum amount of items into the box
(knapsack subspace) in question. We do not need radiation or variable sized
clones (unless the items are made of rubber or are somehow flexible or change-
able). Variable clones can be used, however, to put items in different positions
into the box.

MDIK can also be applied to some multiprocessor scheduling problems,
as we noted in Section 6.1. Here we use two dimensions, one for time and
the other for processors: the profits are discounted over time. Suppose that
there are K processors. Then cardinality of K + 1 is used for processors,
since we use one “dummy processor” to obtain the constraint that at most
M processors can be selected at a time. Each task sent to a processor will
radiate 1 to the dummy processor, which has capacity M. Other knapsacks
modeling the processors have equal amounts and just enough capacity to take
one task at a time. This is the multiprocessor scheduling case of [45] or [88]
(see Appendix A.4). Figure 7.4 schedules a task for the second processor in
the second moment. Its radiation is shown at the (K + 1)th row. Two tasks
on the first and Kth processor radiate twice as much in the fourth moment.

By adding one more dimension to the above setting, we obtain shop schedu-
ling problems. In shop scheduling, each job j is divided into tasks. Each task
has to go through a different processor and each job has to be done. Again,
profits are positive, discounted over time, and hence we can ensure that all
jobs will be done. Each task has positive profit only on a specific processor,
but on the other processors the profit is zero or even negative, so that they
would not be selected. This behavior can also be achieved with capacities.

The extra dimension is used as “constraint dimension”: each task has a slot
there. When we schedule one task of a job to a processor, we radiate a task
to the constraint dimension into a slot reserved for this task. The constraint

4 processor

ket| [T B T ]
JEEEE BR

2 LRI
1 _time

Figure 7.4: Example of multiprocessor scheduling. Dummy processors are on
the top row. There is a task in the second moment and two in the fourth.
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dimension consists of knapsacks with capacities equal to the task weight, one
for each processor and for each time point. By filling appropriate time points
for each processor in the constraint dimension, we can ensure that this task
cannot be processed on any other processor at the same time, because it would
entail overflows in the knapsacks.

Figure 7.5 clarifies this idea. On the left there is the space for multipro-
cessor scheduling without the “dummy processor”. We have put one item
somewhere in the middle of it and the item consumes all the capacity the
corresponding knapsacks have. This models a task to be performed on some
specified processor taking certain amount of time. On the right there is only
one slice of the corresponding “constraint dimension”. The gray area describes
the radiation connected to the task, preventing this task to be done on some
other processor at the same time.

Note that in this way we would allow many tasks to be processed at the
same processor at the same time. This can be prevented by using similar
constraint as on the right, not allowing the processing of all the other tasks at
this particular processor at the same time. Graphically, it would be a vertical
slice having gray upright rectangle on the left in Figure 7.5. If we want to deny
a task to be processed twice or more times on the same processor, we just add
gray vertical slice between dotted lines on the right in Figure 7.5.

$ task

% time

/time

processo

<o

processor

Figure 7.5: Example of constraint handling in shop scheduling.
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Chapter 8

Application in load clipping

The chapter describes a real life application of the IK model. We present load
clipping introduced in [3, 27, 29], which is a simplification of the model given
in [6]. Section 8.1 introduces load clipping and in Sections 8.2 and 8.3 we set
the model and its parameters. The next chapter contains methods for load
clipping and the comparisons of methods can be found in Chapter 10.

8.1 Introduction to load clipping

Shortage of electricity may cause a supplier to use load clipping; the supplier
may turn off the electricity from some of its customers or may start generators
to meet the demand. The goal is to minimize the losses caused by buying
(expensive) electricity from other suppliers to cover the demand after load
clipping. Some customers have a consumption profile containing payback. A
typical example of a control group with payback is a residential appliance like
electricity heaters or air conditioners. A consumption peak appears after the
control period when the devices go back to their normal state [6].

Load clipping is used in connection with energy management systems.
Other related terms are demand side management (DSM), load management,
direct load control (DLC), (peak) load control, load leveling, (peak) load shap-
ing, valley filling, and interruptible load (control), to name few. See www-links
given in Appendix C.1 for general descriptions about energy and demand side
management. See also the references given in this section.

Demand side management, energy management, and load management
refer to general areas containing several different methods and policies for
somewhat similar objectives, which are connected to reducing the energy con-
sumption. Some of the strategies are connected to the direct control of cus-
tomers appliances also containing load clipping directly or indirectly.
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Load clipping has been solved by using various algorithms. Typically, ob-
jectives, models and methods differ from paper to paper. Some of these met-
hods might be applicable to IKHO and IKO problems presented in this work.
To be able to perform load clipping tasks, we have to forecast the load con-
sumption [107]. The optimization methods work on these expected values and
most of them consider the forecasts as exact values.

Objectives include load reduction minimization [27, 29, 102], peak load
minimization [64, 67], minimizing production costs [29, 102], and maximization
of profits [81].

Two much used groups of algorithms for load clipping are enumeration
methods and methods based on dynamic programming (DP) [27, 102]. These
methods are optimal or nearly optimal but their major drawback is long ex-
ecution time [3, 6, 29, 102] (see also Section 9.1). DP has also many other
applications in electricity framework [28, 105], some of which are potential
application areas of interactive knapsacks.

Fuzzy versions of DP have been developed for integrated load clipping and
unit commitment [16, 58]. Unit commitment, however, contains some restric-
tions not included in our model and fuzziness increases the state space of DP.
Caves and Herriges [20] use stochastic DP, where the future prices of electricity
are unknown. We assume that prices (buying and selling rates) are given. The
buying and selling rates are used to obtain the profits p;; in IKO.

There are also methods based on linear programming (LP) [64, 81] and
on hybrid models using LP and DP [67]. The plain LP is hard to use with
our load clipping model, because we optimize the clone lengths, which makes
the problem essentially nonlinear. Laurent et al.’s [67] approach differs from
ours in the time-of-use rates (buying and selling rates) and in the constraints.
However, our DP, unlike our heuristics, is not applicable to as large systems
as Laurent et al.’s method.

Chen et al. [24] present a two-phase optimization technique, where the
first phase identifies candidate schedules for items (“control patterns”) and
the second phase determines the optimal schedule for an item (“control plan
for a group”) from the candidates. Chen et al. report that their results are
approximately as good as in Cohen et al. [29]. By using an extra variable, we
can achieve better results [6]. Heuristics are considered in [6, 14].

Genetic and evolutionary algorithms are widely considered in many appli-
cations [76], including the multiple knapsack problem [60], project scheduling
[25] and many problems related to electrical framework, for instance, unit
commitment [34, 36] and unit maintenance scheduling [61, 66]. We present
genetic algorithm for load clipping in Section 9.5. An introduction to genetic
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algorithms can be found, for instance, in [76].

Unit commitment and maintenance scheduling differ a bit from load clip-
ping but the ideas can be easily adopted to load clipping, as well as the ideas
from [25, 60]. Kim et al. [61] develop simulated annealing and tabu search
methods for unit maintenance scheduling.

Furthermore, load clipping is often combined with unit commitment and
economic dispatch, and the applied methods include DP [15] (fuzzy DP [16, 58],
stochastic DP [20]), binary network flow formulation [24], and evolutionary
strategies [47]. Yan and Luh [106] consider unit commitment with “purchasing
emergency power with very high prices”, a similar motivation as we have. See
also [105].

Our DP is somewhat similar to that of [27, 29], and our model has some
key ideas common with [81]. We have earlier [6] developed the models and
methods of [27, 29] by adding new properties to the models and new states
to DP. DP given in [29] is not optimal, if applied to a group at a time and if
the loads are evened out on hourly bases [6]. New state variables improve the
results. Moreover, DP of [27] optimizes several groups at a time and therefore
needs too large state space to be practical in our case.

Our solutions determine the number of controls needed, and a starting time
with a duration and resting time for each control (we use 5 minutes precision).
Number of controls can also be used as a restriction. Our solutions can be
used as a successive optimization method.

Our objective is “in between” the minimizing of load reduction and the
minimizing of peak load and is different from the objectives presented in other
studies. Purchase transactions of electricity and own production give optimum
level to be resold at each hour, while load over the optimum level has (very)
high price. If demand is higher than our predefined level, we want to cut
(expensive) “over loads” and at the same time minimize the losses caused by
decreased sales. We also use purchasing and reselling prices (time-of-use rates)
in the formulation of the objective.

Furthermore, our solution can use different objectives without major modi-
fications of the method. The same holds for the prices, if one needs more
complex price structures, and for the energy storages of [91, 94].

8.2 Basic model

In this section we settle the basic load clipping model. We provide terms from
both interactive knapsacks and load clipping theory domains. (We do not
specify item j as a subscript except in the last formulation of this optimization
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problem at the end of this section.)

The set of items of type j and clones related to them is called a control
plan and one clone is a control for group j corresponding to item. An interval
[a,b] is the set a,a+1,...,b (a < b) of knapsacks. The length of an interval
[a,b] is b — a + 1. A clipping situation s is a vector sg, S, ..., Sn (m > 0) of
reals representing the difference between electricity demand and production in
time interval [0,m]. We may think that values s; tell how the knapsacks are
already filled.

Domain [0,m] is called the optimization interval and values s; are called
either overload or underload. Overload represents a situation, where demand
is higher than combined production and electricity purchases (s; > 0), while
underload represents a situation, where combined production and purchases of
electricity is above the level of consumption (s; < 0). The knapsack 4 in [0, m]
is called a time point. Interval [i,] also corresponds to knapsack i and to time
point %.

Vector s represents knapsack array, and an element of s represents the filling
state of the knapsack. Overload means that the knapsack is not full enough
and underload that the knapsack is too full. In electricity management the
terms are used in an opposite way: overload means that an hour has too
much consumption and underload means that the consumption level is not
high enough. Vector s also determines the absolute goal level.

The size of knapsacks is determined by the electricity suppliers financial
state. A wealthy supplier can buy extra electricity, or enlarge the knapsacks,
in the case of overload. In the beginning the knapsacks contain some substance
(or undetermined items) corresponding to some electricity consumption levels
discretized into equally sized time slots (for example, five minutes).

Figure 8.1 contains an example of a clipping situation used in electricity
management (a) and its representation with interactive knapsacks (b). The
goal level is drawn as a horizontal zero line. Both figures show the same
situation where we have one overload interval in time slots 3-5.

By saying that a knapsack is not full (or is too empty) we mean that filling
state has not reached the goal level. Knapsacks 3-5 are not filled enough in
(b), that is, the goal level is not reached. Further, the fifth knapsack is totally
empty (in (a) we see that it has maximum amount of overload). On the other
hand, the first two knapsacks in (b) are too full, or they have underload as
can be seen from (a). The seventh knapsack in (b) is totally full, that is, there
is no electricity consumption in (a) at the seventh time slot. The goal level
giving the best result is achieved in the sixth knapsack in (b) or in the sixth
time slot in (a). We say that the sixth knapsack is full or filled enough.
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$ overload 4 underload

3 6 _ 3 6 .
time ] | time

(a) (b)

Figure 8.1: Clipping situation in electricity management (a) and its knapsack
representation (b).

Note that a clipping situation and its representation are mirror images of
each other determined by the goal level in Figure 8.1. One could avoid this
confusing juxtaposition by using some other terms in the case of overload and
underload, or by allowing items to have negative weights. However, the use
of new terms would lead to nonstandard terminology (in the point of view of
electricity management).

Another way to approach this problem is not to use the “undetermined”
items (pre-filled knapsacks). First, nobody gets electricity, and then, we start
to allocate electricity to customers until we obtain the goal level. This leads
to larger instances, though.

Every time point 7 with overload has a positive real P; called the price
factor (buying price of electricity). If at time point ¢ there is underload, the
positive real R; is the revenue factor (selling price of electricity). The overload
interval is an interval [a,b] C [0, N] such that at every time point i € [a, ]
there is overload.

The clipping situation (knapsack array that is partially filled) is partitioned
into knapsack sets, or hours 0 = a;,as,...,a,11 = m of equal length, that is,
a;y1—a; = a;—a;_1 (2 < i< n). The length a;1; —a; +1 of an hour is denoted
by h. Hour i refers to the interval [a;, a;41 — 1]. Moreover, overloads (or
underloads, referring to the filling situation), income factors and price factors
do not change during an hour, that is, s; = s;41, P; = Pj41 and R; = R4,
where j € [a;,a;41 — 1]. When a clone only partly overlaps an hour, we divide
the effects caused to the overlapped knapsacks equally to all knapsacks in that
particular hour. This is an example of the third interaction type mentioned
earlier.

Table 8.1 shows sample quantities for overloads (the second line, referring
to the filling situation of the knapsacks), price factors (the third line) and
income factors (the fourth line). Intervals [0, 4] and [5, 9] present the first and
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Table 8.1: An example about overloads, prices and incomes.

1 0 1 2 3 4 ) 6 7 8 9
s —105 —-1.05 —-1.05 —-1.05 —1.05 05 05 05 05 0.5
P 950 250 250 950 950 230 230 230 230 230
R 40 40 40 40 40 10 10 10 10 10

the second hours, respectively. In the first hour (knapsacks [0,4]) there is
no overload (knapsacks are filled enough), but in the second hour there is an
overload interval [5,9] (knapsacks are too empty).

The total loss is

T(s)= Y pilsi), (8.1)

1€[0,m]
where
—P;s;, it s; >0,
i\Si) = . 8.2
pilsi) { R;s;, otherwise. (8:2)

Hence, we always have p;(s;) < 0. If there is underload (knapsacks are too
full), we lose income and if there is overload (knapsacks are too empty), we
have to pay some extra. Sum (8.1) counts the money lost, so its best possible
value is 0. The case in Table 8.1 gives by (8.1) the total cost of —785 (the unit
is not fixed).

Sum (8.1) corresponds to the profit given by the partially filled knapsack
array (clipping situation). Note that (8.1) corresponds to an added value ob-
jective (2.12) which depends on the total capacity of groups (weight of items).

Consider now a situation, where we have a group (an item that can be put
to a knapsack), by which we can lower the overload by making a control (fill
knapsacks by inserting the item into a knapsack). A control of a group is made
in an interval Cj; = [4,7 + ¢] = [a, b] (corresponds to a clone, [a, b] is used for
clarity in the following). The controlling capacity of a group, denoted by w, is
the amount by which the group can lower the load in a time point (corresponds
to the weight). The controlling capacity is the same for all time points for a
group (item), but different groups have different capacities (weights).

The hours [a;, @, iy1, ..., a;-1,b,a;], where a; < a < a;41 and a1 < b < q;
(and a < b), have to be taken into account for control on [a,b]. The total
influence of a control is called the control amount (space reserved for the item
and its clone) and it is the product of the control capacity w and the control
length b — a + 1 (hence, the weight is the same for all copies of an item in a
clone). The control amount of an hour is denoted by W. We have W = wh;
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this product is used to implement the third type of interaction mentioned. We
call W as the average clone weight (as opposite to the weight of a clone, w).

Function
aj+1—1
g(lai,a,b,a5,8) = > prlsk— Wlaws — 1 —a+1)/h) +
k=a;

j72 ak/+1—1

> D mls—W)+

k'=i+1 k:akl

aj—1

> prlsk—W(a;—1—b+1)/h)

k=a;_1

shows the calculation of the profit change of a control [a, b].

8.3 Payback, restrictions, and goal function

Function u : N — N maps the control length b—a+1 to the length of a payback
(back radiation). This differs a bit from our former, static use of u. Function
r: N x N — R describes the amount of the payback (radiation) of a control of
length b—a+1 at time (knapsack) i. Moreover, we always have r(b—a+1,7) > 0,
where i € [b+1,b+u(b—a+1)], and otherwise r(b—a-+1,47) = 0. The paybacks
are obtained from control capacities (radiation depends on weight): amounts
r(b—a+1,1) are calculated beforehand for each item, or dynamically if there
are many different control lengths b — a + 1. In practice, we have

> r(b—a+1,k) <wb—a+1). (8.3)
ke[b+1,b+u(b—a+1)]

Constraint (8.3) simply says that a payback (radiation) does not exceed the
control amount (capacities the clone consumes from knapsacks). We use the
hours much in the same way with paybacks as with controls.

Next we show the impact of a control [a,b] and its payback to clipping
situation s as a function I (functions I" and I"” used in I are defined below).
The hours to be affected are [a;,a,b,a;,b+ u(b—a+ 1), q]. By function

Sk, if0<k<a; or qq <k <m,
+ I'([a, b]) (k), ifa, <k<a;_q,
I([a,b,s) (k) = { ** S[a ])( ) L=t (8:4)
s+ (I'+1") ([0, b)) (k), if aj_1 <k < aj,
sk + 1" ([a, b)) (), ifa; <k <aq
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(0 < k <'m) we obtain the total influence (all interactions) of a control (clone)
[a, b] into the clipping situation (knapsack array and its filling situation). The
first line leaves the unaffected hours as they are. The second line calculates
the effects for hours where the control (clone) is. The third line is for both
the control and payback calculation, and the fourth line calculates the effects
of payback. By I([a,b|,s) we mean the new clipping situation obtained after
control [a, b].
Effects of a control (the clone part) are calculated with I":

—W(aiz1—1—a+1)/h, ifa; <k<ay,
I,([a’7 b])(k) = _W lf Ai+1 S ]{ < aj—l; (85)
—W(aj — b)/h, if aj—1 S k< aj.

The second line is for the hours between the starting and stopping hours, if
any. The first and the third lines handle the hours where the control (clone)
starts and stops. These hours may have partial control (in contrast to a full
control lasting the whole hour). Controls decrease the overload (items and
their clones fill the knapsacks). Paybacks (the radiation part) are calculated
with I":

( aj—l
b— 1,k
Z T( ah+ ’ ), if aj—1 S k < ag,
k'=b+1
, “AT a1,k i <K <1
(o)) =94 S TEEEERE), (56)
k= and ap <k < a1,
“’Z‘l r(b—a+1,&) if a_y <k
\ k! =b+1 h ’ <b+u(b—a+1)

The payback (radiation) starts in the first line, and in the third line we calculate
the last moments having payback. (Both may involve partial hours.) The
second line calculates the payback for hours, where each time point will get
some payback (knapsacks get radiation). The payback increases the overload
(radiation makes room into the knapsacks). Hence, we use negative back
radiation.

It would simplify formulas (8.4)—(8.6) a bit if we were not to hourly even
out the affects. Another alternative is to let the overloads and underloads vary
within the hours and even out the loads when calculating the results. If the
control starts and stops in the same hour, we cannot directly apply (8.4). In
this situation we calculate the effects for the first hour with

aj—1
sg—W(h—a+1)/h+ Z r(b—a+1,k")/h, when a;_; <k <aj, (8.7)
K'=b+1
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and the rest of the payback is calculated with the second line of I”. If the
payback (back radiation) starts and stops in the same hour, we have to make
a correction similar to (8.7).

Figure 1.2 on page 7 shows two examples of a control (clone). The left
one describes a control (clone) in a realistic situation and the right one in
a theoretical situation. The vertical lines denote hours. The dotted line is
a clipping situation (knapsack array and its filling situation) without control
(clone) and the plain line is a clipping situation with control (knapsack array
with item and its clone). The left picture shows the advantage of a control
(clone): if a group (item) has payback (radiation), we can “move” the overload
to the next hour where the overload is cheaper (to fill knapsacks giving better
profits).

The effects of all controls C' (clones) of a group can be calculated recursively
by the function

E(C — [a,b],I([a,b],s)), where [a,b] € C (#0),

8.8
S, if C =10. 8.8

E(C,s) :{

When all controls (clones) have been calculated, we can use (8.1) to find out the
value of the new clipping situation (knapsack array and its filling situation).

Next we consider the constraints. First, the controls (clones) must be
separate such that for all [a, b], [a/,0] € C we have

[a,b] # [a', 0] = [a,b] N [d, 0] = 0. (8.9)

Further, during the resting time it is not allowed to start a new control (in-
sert a new clone to the knapsack array). Function L : N — N is increasing
and it maps the length of a control (length of a clone) to the length of the
corresponding resting time. So, for all [a, b], [c, d] € C, we have

[a,b]N[a, 0] =0=[b,b+ L(b—a+1)|N[a,b]=0. (8.10)

This with (8.9) is equivalent to (8.15). Here [b,b + L(b — a + 1)] denotes only
the interval used for the resting time.

Note that a new control can be started even if the payback still occurs if
the resting time does not overlap with the new control. Usually, the resting
time is used to prevent a new control to start in the beginning of payback,
when the need for extra electricity is the largest. If we start a new control
at the end of payback, the change in the payback of new control is so small
that it is not usually taken into account. We could also modify equation (8.4)
to take into account the previous control (or controls) and its (their) possible
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potency to the payback of the present control, when using too short resting
time.

We call resting time as a safety area in interactive knapsacks. This is taken
into account in (8.15). We also need the minimum and maximum control
lengths (clone lengths) cmin and cmax (we are using variable length clones),
respectively, and hence

cmin < ¢ < cmax. (8.11)

Note that ¢ + 1 is the length of a control [i,7 + ¢]. Sometimes we also restrict
the number of control times (number of clones) >, ;.1 by some positive
integer K. This is achieved by constraint (8.17).

We can suppose that at every time point (knapsack) 4 prices P; are larger
than revenues R,;. By making controls (inserting clones) C;; we can affect the
clipping situation, and make a control plan C'. Now, the optimization problem
for several items can be given in the form

max szﬁpﬁ (E(C,s)(3)) (8.12)

CijEC =0 j—1
subject to Z Z xz]wzjfw([z,z + Cij]a S) (l) S bl, (813)

i=1 j=1
cmin; < ¢;; < cmax;, (8.14)
Ty = 0, fori <k <i+ Cij + Lj(cij)a when Ti; = 1, (815)
z;; = 1 when ¢;; > 0, otherwise 0, (8.16)
Zfﬂz‘j < Kj, (8.17)

i=1

where, for free j’s and ¢’s, we have j = 1,...,n and ¢ = 0,...,m. The

sum D" >7F | Tiipij (E(C,s)(i)) indicates the income lost and its theoretic
maximum is 0. Note that our decision variables are ¢;;’s from which we obtain
clones (controls) C;; and integers z;; by the identities C;; = [i,i + ¢;;] and
z;; = 1, if ¢;; > 0 (we may suppose that cmin > 1), and the set of clones C.

In the following chapters we mostly talk about clones and back radiation
without the application specific terms. In some places, the application specific
terms, however, are more convenient to use.

104



Chapter 9

Methods for load clipping

We have implemented several methods for load clipping [1, 3, 6]. Sections
9.1, 9.2, and 9.3 present methods for the heuristic approach, where we make
decisions for one item (group) at a time. This corresponds to IKHO. Section
9.1 implements a method based on integer composition and Section 9.2 derives
DP solution.

The DP approach is further analyzed in Section 9.3, where we build up a
hierarchy of solutions so that it is possible to trade between speed and accuracy.
Moreover, we show how the number of wait states needed can be diminished
to be about half of the number used in Section 9.2. This speeds up the whole
optimization process approximately by the same factor. State space can also
be decreased with multi-pass DP of [102], but then one should be able to relax
some constraints. We also show how to add a fourth state variable into DP.

In Sections 9.4 and 9.5 we present methods that try to position several
items to a knapsack array at a time. Section 9.4 considers greedy heuristics
and Section 9.5 genetic algorithms. Load clipping with several control groups
corresponds to IKO.

Extensive testing is reported in Chapter 10, supporting the hypothesis that
we need wait and the mentioned fourth state in order to get good results with
DP.

9.1 Integer composition

In this section we present a heuristic solution to the load clipping problem
by positioning and deciding the length of each clone separately for an item at
a time. This approach corresponds to IKHO. Thus, we do not use the item
index in this section. First we give a general description of the method, and
then show some results.
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The composition algorithm has three input parameters: the length of the
whole time interval m, number K of clones we want to compose into a plan,
and the set of allowed lengths (feasible control lengths) F' = {co,...,c,} of
clones (¢ € N). This algorithm is based on a composition algorithm given
in [93]. Few minor modifications, however, are needed. For convenience, we
summarize the symbols to be used in this section in Table 9.1. Some of the
symbols are used in other meaning than before.

The idea is to compose m into 2K + 1 integers stored in vector I and hence,
to interpret each composition as a set of clones containing exactly K separate
clones. We achieve this by interpreting 2K + 1 integers in [ in the following
way: each even position has its integer from the set of the allowed lengths
F' and each odd position has free nonnegative choice for its value as long as
the sum of all integers is m. Vector I can be interpreted as a k-digit number
with some restrictions on digits. The ordering of compositions is based on this
interpretation.

We obtain the set of clones (set of control plans) in the following way from
I. The first clone starts at I; and is of length Iy, the second clone starts at
I; + I, + I3 and is of length I;, and so on. Here we have included the safety
area in the length which have to be excluded from I, and I, to get the right
clone length. By inserting the safety area also to vector F' we avoid the need
to check explicitly the safety area.

The conversion of vector I into a set of clones is shown in Figure 9.1. This
is line (12) in Figure 9.5. The algorithm in Figure 9.1 calculates the result of
the plan contained in I (with equation (8.12)) and stores the best plan and
its value. By L~! we mean the only choice for the safety area when inserting
a clone of a certain length. Note that L~=! can be calculated beforehand into
an array, which we traverse in linear time on the number of feasible control
lengths g. Note that K = (k — 1) /2.

Lemma 9.1. The objective is calculated in O(K) time for a set of clones stored
in 1.

Table 9.1: Symbols used in this section.

Element vector e = [eg,e1,...,e;] Index of the last element in I k

Integer composition I = [Iy,I1,...,I;] Set of feasible control lengths F

Time interval m Number of feasible control lengths ¢
Number of controls K
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9.1. INTEGER COMPOSITION

Inputs: I and &
r=0,C=0

Form a new clone C; = [r + Ip; 1, 7+ Ip; 1 + Io; — L7 (I5;)]

(1)
(2)
(3)
(4) r=r+ Iy 1+ Iy
(5)
(6)
(7)

6) Count the objective for C' = {C,...,Cu_1)/2}
Store C' and the result, if it is better than any earlier result

Figure 9.1: Converting a composition of an integer into a clone set (plan) (line
(3) of the algorithm in Figure 9.5).

As an example, let F = {4,6,8}, k = 2, and m = 12. A composition
[006 04 2] sums up to 12 and corresponds to a clone, whose first moment
starts at 6, and whose length with safety area is 4. There are two moments
after the clones safety area till the end of the optimization interval. (We also
show the value of the position with index zero.)

Next we consider the initialization of the integer composition procedure
given in Figure 9.2. Vector I has 2K + 2 different elements of which 2K + 1
are used as a storage for a composition. We set index k = 2K + 1 in the first
line. The value of Ij is used as a halting criterion (in line (2) in Figure 9.5).
Array e contains 2K + 1 elements and each element corresponds to an index
for the set F'; we need only half of the elements of e. In the initialization phase
only even indices of I take values from the set F' = {c, ..., ¢}

Because we are constructing the compositions in lexicographic order, we

Inputs: m, K and F' = {co, ..., ¢4}

9) od
(10) r=m—a, e, =0

1) a=0k=2K+1,1,=0
(2) fori=1to k—1do

(3) if 7 is even then

(4) I =cy,a=a+cy
(5) else

(6) I; =0

(7) end

(8) €; = 0

(9)

10)

Figure 9.2: Initialization of the integer composition (line (1) in Figure 9.5).
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initialize the even indices with ¢y and Iy with 0. The last value I} is initialized
with m — 2K ¢y so that the sum over I is m, that is,
I= [O,Q, ¢o, 0, o, - -, 0, ¢o, 0, co,m — 2K ¢y,

~
k—1 positions

since a = Zfz_ll co = (k—1)cy = ke — ¢ and 2K = k — 1. We cannot decrease
any of the values at positions Iy, ..., Ix_1, because they are already minimal.
Value m — 2K ¢y can be decreased, but because the sum of the values has to
be m, we should increase some value at Iy, ..., Ip_1.

Each e; is 0 because in each even position we have value ¢q. Value «a
represents the time without controls (that is, the number of knapsacks without
a clone). Hence, we have shown the following lemma.

Lemma 9.2. Initialization stops in O(K) time and I contains the lexicograph-
tcally minimal number representing the integer composition of m.

We continue the example started after Lemma 9.1. The first composition
(lowest 6-digit number) is [0 0 4 0 4 4]. It corresponds to two clones of length
4 (with safety area). The safety area contains the only moments between the
clones. The first two 4’s cannot be decreased: they are minimal in F'. At the
end, there are four “un-used” moments.

We need to form the lexicographical minimum for the elements at [;, ..., I
in Figure 9.5. Figure 9.3 shows how to initialize the minimum composition in
lexicographic order. We use values I;, ..., Ij.

The algorithm consists of a loop gathering the values to a temporary vari-
able ¢ and initializing everything by the way to the lowest feasible value sim-
ilarly as in the initialization procedure. Vector e is also initialized to point to

Inputs: 7 is the starting element and £ is the last index of I and e.
t=0
while 7 < k do

[N

(1)
(2)
(3) if 7 is odd then
(4) t=t+1;, ;=0
(5) else
(6) t=t+IL—cye;=0,1=c
(7) end
(8) i=1i+1
(9) od
(10) I =t

Figure 9.3: Forming the minimum (line (12) in Figure 9.5).
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the corresponding indices. The last position is not restricted by F', and hence,
we set Iy, to be t. This routine takes time O(K), since k = O(K).

Lemma 9.3. The lexicographical minimum is formed in O(K) time to I;, . .., Iy
of 1.

Let us assume that we have a nonfeasible composition [0 2 51 4 0] and that
we are to construct the minimum starting at index 2. Thus, 5 is restricted to
F, and hence, it becomes 4, in the third index 1 is changed to 0, and hence we
put 2 to the last index 5. The composition is now [0 2 4 0 4 2].

The algorithm in Figure 9.4 starts from the right end of I and moves index
1 to the left as long as I; is 0 at odd indices and ¢y at even indices, that is,
when these values are the lowest possible. After that the index points to the
first position from right end which is neither zero nor ¢y. If ¢ — 1 is odd, we
are done in line (5), because we can always add to positions not restricted by
F. If we did not return in line (5), we continue to line (6), and we know that
t — 1 1is even and 7 is odd.

The first condition in line (6) ensures that we can add to I; ; by checking
that it is not the maximal item ¢, of F'. The second condition ensures that
the value of I; is big enough, because we have to add to I;_; the difference
between successive items in F. Hence, line (6) ensures that we can add to
position 7 — 1 by checking that there is room and that we can decrease position
¢ by the required amount.

However, if we cannot add to position 7 — 1 and the one of the conditions
in line (6) does not hold, we know that any amount can be added to position
1 — 2, because that position is odd. In this case the index to be returned is
1 — 1. It is possible that decreasing I;_; leads to infeasible solution. But in the
main algorithm in Figure 9.5, i — 2 is odd, and we go to line (6), after which
to line (12). Line (12) in Figure 9.5 organizes I; 1, ..., I} to a feasible partial

1
2
3

i =
wh11e (i is odd and I; = 0) or (i is even and I; = ¢;) do
1=1—1

(@3

if i — 1 is odd then return 7 end
ife,_y <qgand I; > c,,_,+1 — c.,_, then return i end
return z — 1

6
7

AAA/E"\/—\A

)
)
)
) od
)
)
)

Figure 9.4: Returning an index to the rightmost position, where the next
position to the left can be increased (line (4) of the algorithm in Figure 9.5).
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solution. Recall that it was possible to decrease I; at least by one, which is
the amount we increase I; 5.

In Figure 9.4, lines (2)—(3) take time O(K) and the rest takes time O(1).
Hence, line (13) of the Algorithm in Figure 9.5 can be performed in O(K)
time. Hence, we have the following lemma.

Lemma 9.4. Position that can be increased is found in O(K) time.

We used a nonfeasible composition [0 2 5 1 4 0]. The composition leading
toit is [0 1 6 1 4 0]. In the algorithm of Figure 9.4, after the while-loop, we
are in line (5) and 7 = 3 is odd. The condition in the line does not hold. Thus,
we continue to line (6). But 1 is smaller than 8 — 6, and the second condition
does not hold in line (6). Hence, we return ¢ — 1 = 2. This means that we
increase the first 1 and decrease 6 by one in line (6) in Figure 9.5. The next
thing after line (6) is to construct the minimum in line (12). Therefore, after
[016140], we have [0 24 04 2]. Note that there is no composition between
these two compositions in lexicographic order.

Note that when handling the last composition, the algorithm in Figure 9.4
will return 7 = 1 in the line (6), because the only element not containing the
minimal value including [ is I;, and we can always add to even index 0 and
decrease the maximal element at I;. In all other cases the index to be returned
is larger than one. The last composition in our example [0 4 4 0 4 0].

We will prove next that the algorithm in Figure 9.5 works correctly and
produces all compositions in lexicographical order. In line (3) we start with
the initialized situation. The last composition in lexicographic order is

I =1[0,m—2Kcy,co,0,c,.--,0,co,0, co, 0].

This can be shown by a contradiction: we cannot decrease any of the positions
Iy, ..., I; in order to increase the value at I;, and when the first position I is
changed, we stop. In the example, we cannot decrease neither of the last two
fours in [0 4 4 0 4 0], because they belong to F.

The value of the current composition is calculated in line (3) in O(K) time
by Lemma 9.1. After finding the correct index (line (4)), we decide how much
to increase I;_; in lines (5)—(11). If 4 — 1 is odd, we increase [;_; by one in
line (5). This can be done, because at odd indices there is no restrictions on
values, as long as they are nonnegative and everything sums up to m. Note
that updated I; may be nonfeasible. After line (5), we form the lexicographical
minimum to [;, ..., I in line (12). After that, I; will have some feasible value
obtained from F' so that [, ..., Iy is minimal.
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On the other hand, if i — 1 is even, we set a temporary variable a to equal
Ce; 141 — Ce; , in line (8). This amount is added to I;_; and removed from
I;. The value at I; ; is feasible, because index i is chosen in line (4) so that
I;_1 can be increased by decreasing I;. Thus, we update e;_; to point to the
correct value in the set of feasible lengths F. Note that I; can be decreased by
a, because i is odd, and line (4) has already checked that I; > a.

If the current composition is the last one, we must have i = 1 after line (4),
since only I; can be decreased (and I increased). The position 0 is even, and
hence, we increase I, and decrease I;. Then after line (12), we exit the loop
by condition at line (2), and the algorithm halts.

The change I; to I;_; is the smallest possible: it is either 1, or c.;,_,+1—¢;_,,
which is the smallest feasible increment of I;_;, when 7 — 1 is even. Note that
after line (4), none of I;,1, ..., I} cannot be decreased so that the next index
to the left could be increased, if 7 is odd. If 7 is even, then none of I;,,, ..., I}
cannot be decreased, while for I;,; it may be possible. If it were possible to
increase I; by the same amount /;,; can be decreased, we would have returned
index pointing to /;;1 and not I;. Hence, there cannot be any number between
the previous composition and the composition obtained in line (12).

What if there are several values I, ..., I such that we can decrease many
of them a little and then increase I;_; by a (in the case i — 1 is even)? Let
the rightmost index be j such that I; can be decreased. By the discussion
preceding Lemma 9.4, we know that either j —2 or j —1 can be increased and

Inputs: m, K and F' = {co, ..., ¢4}
) Initialize variables with the method given in Figure 9.2
) while I, =0 do
) Count the objective from I
) Get the index 7 — 1 of I to be increased
) if 1 — 1 is odd then
) L 1=L_+1land ;=1;—1

7) else
)
)
)
)
)
)

8 Q= Cei_1+1 — Cej_,y
9 L =1 14+aand I; =1, — a
(10 ei—1=¢€;1+1
(11 end
(12 Construct the lexicographical minimum to 7;, ..., .
(13) od

Figure 9.5: The integer composition.
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line (12) will put the minimum feasible value to the right end of I.

Therefore, at each round in lines (3)—(12), we increase “the k-digit number”
and eventually arrive to the last composition after we have performed enough
rounds. Thus, the algorithm starts from the first composition, produces all
compositions in lexicographic order and eventually halts. We have shown that
the algorithm given in Figure 9.5 constructs each composition in lexicographic
order meaning that our integer composition works correctly.

Theorem 9.5. The algorithm in Figure 9.5 constructs each integer composi-
tion in linear time.

Proof. Initialization takes O(K) time by Lemma 9.2, as well as line (3) by
Lemma 9.1, line (4) by Lemma 9.4, and line (12) by Lemma 9.3. Lines (5)-
(11) take O(1) time. Hence, the time consumed between each composition is
linear on K. O

Theorem 9.5 shows that enumerative solution is a pseudo-polynomial time
algorithm for IKHO, if K is fixed. (See the discussion after Corollary 4.6.)

Table 9.2 lists 30 compositions produced, when F' = {4,6,8}, k = 2, and
m = 12. Note that between any two consecutive compositions, there cannot
be any other composition.

Table 9.2: Integer compositions, when F' = {4,6,8}, k = 2, and m = 12.

1004044 7:[004260] 13:[006240] 19:[014241] 25:[024141]
004062 8:[004341] 14:[008040] 20:[014340] 26:[024240]
:[004080] 9:[004440] 15:[014043] 21:[016041] 27:[026040]
[ ] ] ] [ ]
[ ] ] ] [ ]
[ ] ] ] [ ]

S U W N

:[004143] 10:[006042] 16:[014061] 22:[016140] 28:[034041
:[004161] 11:[006060] 17:[014142 23:[024042] 29:[034140
1004242 12:006141] 18:[014160] 24:[024060] 30:[044040

9.2 Dynamic programming

The problem posed by equations (8.12)—(8.17) can be solved with dynamic
programming (DP) [3, 6, 29, 105]. In [6] we show that an extra state variable
is needed for the solution of [29], and in [3] we deepen the results thus obtaining
faster DP (or more accurate, if wished). We follow here mainly [3] and give
its main results. We consider similar approach as in the previous section: we
optimize only one item (or group) at a time.
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One way to apply DP is to use very large state space to find optimal set of
clones (a control plan) C, for example

D,(C,s) = I[rclleg( D,(CU]a,bl, E(CU]a,b],s)), (9.1)

where the program is started with D;((),s). Note that F(),s) = s by (8.8). In
(9.1) the different clones form the state space and the number of control times
(inclusions of an item) form the stages. This solution enumerates different
clones, and the state space is far too large. Moreover, this solution is sub-
optimal (as well as the method to be presented). The dynamic programming
formulation (9.1) at stage n is equal to the optimization problem

Dy(C,s) = 1[112?(. i .{ng]x Dy(C', E([a,b]; U---U]Ja,bl,,s)), (9.2)

where C' = CUJa, b];U- - -Ula, b],. This solution can always prune a part of the
clone sets with n different clones (index n at [a, b],, means the nth clone of the
same type as opposite to a clone of item n). At the first stage we have to check
approximately (cmax—cmin)m states, where cmax is the maximum and cmin
is the minimum length of a clone and m is the length of the knapsack array (the
number of time points in the optimization interval). At the second stage, when
forming the second clone, we have to find a connection to all (cmax—cmin)m
states. The connections can point to approximately (cmax—cmin)m states,
so we should check about (cmax—cmin)?m? states, which is too much to be
repeated O(n) times.

We could try to use only the best states from the previous stage. If we
check only 20 states, we need approximately 20(cmax—cmin)m checkings for
each clone after the first clone. In practice 20 best states is not enough, if we
want to get quickly good economic results with equation (9.2). For example,
the fifth clone would need approximately 4 - 20(cmax—cmin)m state checkings
plus the initial calculations for (cmax—cmin)m states. Our DP uses less than
5-11(cmax—cmin)m states and we can half this state space by Theorem 9.8 in
the next section.

Note that if we have first found optimal five controls giving clipping situ-
ation s’ and then find other five controls being optimal against s’, the global
optimum is not necessarely found. We may achieve better results by using
only nine controls having no common control with the previous two sub plans.
Principle of optimality (see [13]) is not fulfilled. The reason is the averaging
used in I in (8.4): a control may affect the prices and revenues of another
control in the same hour. We demonstrate this at the end of this section.

Cohen and Wang [29] use two state variables, the number of clones and the
clone length. Our tests [3, 6] indicate that two state variable systems are so
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fast that we can add at least one state variable (see [13, pp. 30-34]) to improve
the results. (See the end of this section.)

We use the state variables number of clones k, wait states d and clone length
c. As a result, we have a slower but more accurate system than those with
two state variables [3]. The wait states are used to delay the start of a control
while k£ and ¢ have obvious meaning. There are many realistic situations where
the extra variable d gives more accurate results with economic significance,
although, our three variable system (k,d,c) is not optimal (recall the NP-
completeness results in Chapter 4 and see the example at the end of this
section).

In the state space we need the clone length, so that the DP can form
the optimal clone length and at the same time consider the restriction (8.11)
(minimum and maximum clone lengths). State variable ¢ contains the con-
trol’s length obeying conditions (8.9)—(8.11), and the safety area of the control.
Without the number of clones k£, DP will find only one clone. With these state
variables we define one state of stage 7 € [0, m] as a triple

(k, d, c) (3). (9.3)

A system in state (k,d,c) is defined to be the kth clone (control) of length c,
of which start is delayed d time points. Our tests also demonstrate the fact
that the three variable (k,d, ¢) solution does not give the optimal solution in
every situation, especially if there is payback (see Chapter 10).

The phrase “stage i” refers to a knapsack (or time point). In practice we
have to determine an upper bound for the number of wait states d by Theorem
9.8, when the item does not have radiation. If the item does have radiation,
we assume that d can have h — 1 (h is the length of an hour) different values
(we also test other amounts, see Chapter 10).

We denote S = (k,d,c) and S' = (k',d’, ). The variables with primes are
“new” ones and the variables without primes “old” ones, when forming the
connections from “new” stage i + 1 to “old” stage 7. Function

0, when (9.7)-(9.10),

—P. h 9.11
D'(s,S,Si+1)={ when (9.11), (9.4)

T(E([i — ¢,i],s)) —T(s), when (9.12),

—00, otherwise,

0 < i < m, gives the change in the value, when moving from state (k,d, c) of
stage 7 into state (k', d’, ¢') of stage ¢ + 1. The first line is used, when the value
does not change. The second line is needed, when we make a decision about
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the best clone. The third line is used, when we start to place a new clone. In
these situations we add to the value cost P of making a clone. The last line is
used with every other values of S and S’. They are impossible since they do
not have any reasonable real world interpretation.

The dynamic forward recursion equation is

D(s,S"i+1) = mgxxD(s, S,i)+ D'(s,S',S,i+1) (9.5)
and
T henk=d=c=0
D(s, (kyd,),0) = { (o), when k=d=c=0 (0.6
—o00, otherwise.
When
E=k+1, d=c=0, 0<d<t , and (9.7)

cmax + L'(k,d,cmax + 1) — 1 < ¢ < cmax + L(cmax),

we interpret that the clone at stage i and in state (k, d, ¢) is constructed, which
in turn increments the number of clones (k' = k + 1). The next clone starts
in the state (k',0,0) at the stage i + 1. The function L'(k,d, cmax + 1) gives
the minimum safety area ¢ — (cmax + 1) stages ago for state (k, d, cmax) (see
also condition (9.12)). We do not use the bottom line of (9.7) nor (9.12) in
the cases of clone lengths with safety area one, but we rather directly use the
last condition of (9.12). In (9.7) we restrict the number of wait states by ¢ — 2.
Recall that a wait state can get t — 1 different values.

Moreover, it is possible that an “old” optimal set of clones at stage ¢ does
not change (be better) when we move to stage i + 1, and so

k' =k, d=d=0, and d=c¢=0. (9.8)

This is the only case with conditions (9.7) and (9.12), when DP can make
choices about the optimal path. If two paths give the same result, we choose
in (9.5) the one with a later clone. This does not have any impact on the result,
but in practice we usually want to position the clones as late as possible. Figure
9.6 shows the state structure. Conditions (9.7) and (9.8) are shown on the left.
There we have several states, from which we choose the maximum.
When
kK =k, d=d+1, and d=c=0, (9.9)

we “move some information from the past” to new stage i + 1. With this
information we can check what result can be achieved, if we choose the best
path d stages ago instead of some other path with the last clone started in
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the interval [i — d, 4]. Figure 9.6 shows this in the middle, where is one control
time. The first positions of clones are connected. When

K=k d=d d=c+1, and (d#1,c # cmax+1), (9.10)
we increase the clone length (the clone started ¢ knapsacks ago). When
kK =k, d =d, and l=d=c+1, (9.11)

we have started a new clone. In this situation we add to the result the posi-
tioning cost of clone P. When

K=k, d=d ¢ =cmax+1, and cmin < ¢ < cmax, (9.12)

we can calculate the impact of a correct clone on the knapsack array. Clone
length c also determines the safety area L'(k,d,cmax+ 1) = L(c) (0 < L' <
L(cmax)), which is stored as long as it has its effect to the control. Figure 9.6
shows conditions (9.10)—(9.12) in the right. Condition (9.8) gives the first and
the last arrow (the horizontal ones). The next arrow means a new control and
this is connected to (9.11). The next three arrows are given by (9.10). In the
first resting time position we can select the maximum with (9.12). Condition
(9.10) gives the next arrow. The two arrows pointing across control times are
connected to (9.7): the left side of Figure 9.6 does not show that there can be
several arrows to a control time.

For each state (k,d,c) and for each stage k > 0, we save the connection
referring to some state at the previous stage. The connections form a path.

When we have the values
D(s, (k,d,c),m)

wait state 1 L _ L _ . clone length 0 |
wait
clone .
. - - \— —| state 1 wait
set size wait state 3 — N clone length 2 L state 1
L — L — | wait L on clone set
wait state 5 | _ | _|state2 Clonelength4 | of size 0
\ safety state 1 |
clone L L —| wait safety state 2 [ |
; L | _| state 3
set size ]
— Sr L — L _ | wait
- - - —| wait L _ | _|state 1
L L _|state 4 on some
clone T I~ ~ | other clone
) \ m - ~|setsize
set size J L _ L _ L L

Figure 9.6: The structure of state space.
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with appropriate values in k, d and ¢, we can construct the set of clones C
by traversing the path formed by the connections. The path is optimal with
respect to the state space used (but not with respect to the problem). Note
that functions D and D' in equations (9.4)—(9.6) obey conditions (8.9)—(8.11).

Till the end this section, we consider the necessity of wait states d. At the
same time, this works as an example of the DP solution. First, we omit all
references to wait states from DP (9.5)—(9.6). This means that condition (9.9)
is not used at all.

Let [1, m = 99] be the optimization interval and let a; (1 <i < 10:a; = 1+
10(¢—1)) be the first moments of hours in the interval. Let s,, = 1, s,, = 4 and
Sq; = —1 (i # 1, 3). The time points define also the loads of the corresponding
hours (knapsack fillings). In the same way we define the prices and revenues:
P,, = 3000, P,, = 1000 (i # 3) and R,, = 10 (i < ¢ < 10). Before any clones
the result 7'(s) is —(1- 101000 + 4 - 10 - 3000 +1- 10 - 8 - 10) = —130800.

Moreover, we suppose that the length of the payback is zero, weight w = 5,
the cost of a clone P = 5, minimum length cmin = 4, maximum length
cmax = 10, and the safety area L(c) =2 (m < ¢ < M). At stage 0 the value
of state (0,0) is T'(s) = —130800.

We trace the behavior of the states (k,cmax+1)(i), for 1 < i <mand 0 <
k < K, and the states (k,0), for 1 < k < K, as long as it is necessary. Because
the condition (9.9) is not in use, the recursion formula (9.5) can choose only
between the path giving maximum by condition (9.12) and the two complete
paths in conditions (9.7)-(9.8). In all other states the algorithm is unable to
choose between different paths.

At stages 1 < k < m the value of state (0,1)(k) is always —130800 — P.
The states (0,cmax + 1)(¢) (1 < 7 < 4) have —oo as their value, because
these states are impossible by condition (9.10). At stage 5 we have our first
value in state (0, cmax + 1) with equations (9.5)—(9.6), and (9.12). This value
is —130800 — P + 9900 = —120905. Note that the overload of 1 turns to
underload of —1, so that the “penalty” of —10000 turns to be lost of income
of —100.

At stage 7 in state (0, cmax+ 1) we can choose between three clone lengths
of 4, 5 and 6, which have started at time points 2, 1 and 0, respectively. The
corresponding values are —120905, —120955 and —121005, respectively. From
these [3, 6] is chosen, because it is the latest of the three alternatives of length
four. At stage 8 for state (1,0) clone [4,7] of length four is chosen instead of
clones [1,4], [2, 5] and [3, 6]. By the same way at stage 13 clone [9, 12] is chosen
as optimal for state (1,0)(14), since we need only 2 time points for cutting the
overload (filling the knapsacks). The result is of course same as with [1, 4].
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Before stage 20 the best result is in state (1,0). The second clone (the
value of state (2,0) and the clone set corresponding to it) is not profitable,
because an additional P and some amount of underload would be added to
the result. However, at stage 22 where state (0, cmax+ 1) chooses between six
different clone lengths, we gain result —115955 with the shortest clone [18, 21].
(The underload increases in every time point in hour 2 by 1.5 and the overload
decreases in every time point in hour 3 by 0.5.)

For state (1,0)(23) we choose a path with clone [18,21]. Also the value
of state (2,0)(23) will be —106060 and its path contains [9,12] and [18, 21].
Table 9.3 has the values of state (1,0) at different stages. At stages 31,32, ...
the result in the state (1,0) would not be better. The clone will just move to
place [23, 30] without changing its length.

Table 9.4 has values of state (2,0) at different stages. Because at stage
23 clone [18,21] is the best among the first clones, it has to be used when
forming the second clone after stage 23. This is shown in states (2,0)(29) and
(2,0)(30). The results will be worse than with one clone; Table 9.3 shows that
with one clone at stages 29 and 30 we cut hour 3 less than at the same stages
with two clones as shown in the Table 9.4. At stages 31 and 32 the both will
cut as much the hour 3, and the only difference is the unnecessary clone.

The optimal clone set is [9,12],[23,30], and its result is —995. Now we
cannot obtain as good result with two clones without wait states. If we use
three clones, we can obtain near optimal result with states (k, ¢). The difference
is more than a cost P of a clone. This means that the optimal solution is not
achieved without the wait states.

The reason for the above phenomenon is the combined use of hours and
averaging (8.4)—(8.6). This feature also shows up with the method given in the
proof of Theorem 5.2. We conjecture that the two state variable DP equals
the method of Theorem 5.2.

Table 9.3: The values of state (1,0) in stages 23-30 with clones.

23 24 25 26 27 28 29 30

—115955 —100905 —85855 —70805 —55805 —40805 —25805 —10805
[18,21]  [19,22] [20,23] [21,24] [21,25] [21,26] [21,27] [21,28]
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Table 9.4: The values of state (2,0) in stages 23-30 with clones.

23 24 25 26 27 28 29 30
~106060 —91010 —75960 —60910 —45910 —30910 —55960 —40910
[9,12]  [9,12]  [9,12]  [9,12]  [9,12]  [9,12] [18,21] [19,22]
[18,21] [19,22] [20,23] [21,24] [21,25] [21,26] [24,27] [25,28]

9.3 Properties of dynamic programming

Next we consider the properties of the dynamic recursion formula (9.5)—(9.6).
First we study how many wait states is needed when there is no payback and
after it, we embed additional state variables into our state space.

Consider stage i. A local clone (control) for state (k + 1,0,0) is a clone
formed after kth clone, stopped at stage j > i+ L(cmax), and using the clone
set formed at stage i for state (k,0,0). Stages s > i do not belong to the local
clone, provided that we do not use the clone set of state (k,0,0)(i) at stage s.
This means that the wait states are not used when forming a local clone.

In the next theorem we suppose that all references to wait states have been
omitted from the conditions (9.7), (9.8), (9.11), and (9.12).

Theorem 9.6. With the state space (k,c) we will find, for each stage i, the
best local clone following stage 1.

Proof. Consider the clones starting after stage i from state (k,0) and using
clone set C determined by 7 and (k,0). Conditions (9.7) and (9.8) choose the
best clone for the state (k+1,0)(j), according to the equation (9.5). Condition
(9.7) gives the maximum because of the conditions (9.11) and (9.12). O

Corollary 9.7. State (1,0,0)(m) gives the best possible clone set having one
clone.

Note that the length or the amount of radiation (payback) do not have
any consequences in the case of Theorem 9.6. As demonstrated at the end of
the previous section, state space (k, c) gives sub-optimal results, which can be
improved with wait states (still being sub-optimal).

Let C;,Ciy1,-..,C, be the clone sets having k clones, and stages (time
points) 4,7 4+ 1,...,a, respectively, i being the first time point of an hour.
In the next theorem we show that it is enough to choose between clone sets
C;,Cit1, ..., C,, when forming [a,b]. This refers to the situation in condition
(9.7) of DP recursion (9.5), where we check how well the clone set of states
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(k,0,0)(), (k,0,0)(i+1),...,(k,0,0)(a) work with the clone starting at time
point a.

Intuitively, the next theorem is based on the property that if the last clone
of some clone set stops with safety area (resting time) in the “previous hour”,
it will not have any impact on the clones in the “present hour”.

Theorem 9.8. Suppose there is no radiation (payback). Suppose further that
from stage a we start a new kth clone, which will stop at stage b locally maz-
imizing clone set C,. Let v be the first moment of the hour containing a.
Now it is enough to choose (with the wait states) from the set of clone sets
Ci,Cit1, ..., Cq, when forming a new clone [a, b].

Proof. We show that it is not necessary to reach time points earlier than the
start of the present hour. To do so we consider situations where it is possible
to choose between clone set C;_; of time point 7 — 1, some earlier clone set
Ci_n (n > 1) and clone sets C;, Ciyq, ..., C,, when forming [a, b].

Consider kth clone [a, b] started at time point a. To derive contradiction
we suppose some clone set C;_,, (n > 0), when deciding the proper clone set
for [a,b]. It follows that at least one of the clone sets C;_p1,-..,C; gives at
least as good result at stage 7 than C;_,,, because DP (9.5) chooses always the
maximum. We can suppose that the clone set in question is Cj, since the result
of C; improves when j increases (not necessarily monotonically). If we choose
some of clone sets C;_,,...,C;_1 to be used with a clone that starts from a,
we obtain better result with clone set C;. ]

Note that the absence of radiation is crucial in the above proof, and the
fact that the safety area is coded into the state space. The above theorem lets
us to conclude that we need one wait state at the first time point of an hour,
two at the second time point and finally h —1 at the last time point of an hour
(h is the length of an hour). In other words, we need on the average (h —1)/2
wait states at each time point. (In the previous section we used h — 1 wait
states at each time point.)

Even though we showed in Theorem 9.8 that the results do not improve by
increasing the number of wait states, the state space (k, d, ¢) does not achieve
optimal result when the length of radiation is nonzero. We need at least one
more state variable A into the state construction (see [13, pp. 30-34]) to be
able to form a better path. With variable A we check the paths, which are not
maximums according to (9.5) for the three state variable system.

A local alternative of stage i is a clone, which stops at stage ¢ including the
safety area and which is not chosen into the clone set by the previous equations
and conditions. A three variable system chooses the best alternative among
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several, as shown in the left side of Figure 9.6. We set this to be alternative
state one. In the alternative state two, we choose the second best path from
clone sets of size k for the first state (k+1)th clone. The third alternative state
uses the third best path found so far and so on. Now our state is S = (k, A, d, ¢)
and " = (k', A',d', ). Instead of (9.4) we use

D'(s, S, S,i+1) =

0, when (9.7)-(9.10),

—P, when (9.11), (9.13)
T(E([i — ¢,i],s)(1)) —T(s), when (9.12) or (9.14),

—00, otherwise.

When

K'=k+1, d=c=0 and

9.14
d and c such that D(s, (k, A,d,c),7) isthe A’th best state, (9.14)

we choose the A’'th best path the clone set of size £ and set it to the first
state of the A'th alternative state corresponding to the clone set of size k + 1.
We allow A to vary in its range, when we are looking for the A’th best path.
Condition (9.14) can be taken into account in the implementation of dynamic
forward recursion formula (9.5). When we are looking for the best path, we can
easily cater the required amount of paths to find the A’'th path. Moreover, the
solution given by condition (9.8) has also to be checked when we are looking
for the number of best paths.

Starting configuration (9.6) and transition conditions (9.7)-(9.12) work
with alternative states without major modifications. Starting solution is cal-
culated only for the first alternative state and conditions (9.7)-(9.12) work
inside an alternative state as in the case of three variable system.

Now we have applied alternative states to a situation where we choose
between different control plans. We could also apply the alternative states in
the clone length decision (condition (9.12)).

9.4 Heuristics

This section is based on the work reported in [6]. We develop four heuristic
methods for optimization. At the same time we give two different ways to pri-
oritize the items, which are used to choose items in some order, especially when
optimizing one item at a time. In the tests we show that these algorithms are
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much quicker than methods based on dynamic programming and enumerative
methods. The heuristics are called “Direct action”, “Long is nice”, “Big first”
and “Expensive down”.

All heuristics use “Count” parameter by which the user can give an upper
bound for the number of iterative steps the algorithm in question can take. The
“Direct action” and “Expensive down” algorithms use parameters by which
one can control how these algorithms choose the items and knapsacks having
too much empty space (overload moments). “Long is nice” and “Big first”
algorithms have also two other parameters affecting to the selection of the
items to be used. These are later explained in greater detail. We use the
phrase empty space interval when referring to an interval having too empty
knapsacks, that is, overload intervals.

The algorithms have some common initial actions to be performed before
optimization. These are shown in Figure 9.7. First we extend controls (clones)
that have been started but not yet finished. This is connected to a production
system, which takes into account the controls made. The extension is made
only when it increases the sum (8.12). If there are already some clones, then
we might be able to fill the knapsacks with this extension and so, we might
manage without new clones. Recall that small overfill is much cheaper than
small under fill in the knapsacks. In the next lines we check if in the current
hour there are under filled knapsacks. The calling time of a heuristic may
restrict the current hour going on, and so we optimize it separately with a
variant of “Direct action”. Note that in the heuristics, by s; we mean the
overload of hour ¢ and not the overload of a knapsack .

In Figure 9.8 we show how “Direct action” works. The number of hours is
denoted by m; and it depends on the length of optimization interval m. In the
first line we seek the first hour ¢ with under filled knapsacks and in the second
line we divide items {1,...,n} into two sets: to those that can be positioned
to the knapsack ¢t and to those that cannot. If we do not find any item to be
placed, then in lines (3)—(6) we try to find an hour to which we can place some
items.

(1) Extend clones C; of items j € N = {1,...,n}, if it improves the result
(2) Find the smallest 7 (hour), for which s; > 0

(3) if i =0 then

(4)

(5)

Optimize the current hour
end

Figure 9.7: “Initial actions for each heuristics.”
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If we can put a clone into hour ¢ in the knapsack array and if we have
iteration steps left, then we perform lines (8)—(18). In line (8) we sort the
items by the clone weights (control amounts) and the amount of the space
W; (i) clone j fills in hour ¢. Then in line (9), we choose the clones from the
list in ascending order until the sum of the total weight is more than the under
filling of the knapsacks (overload in the hour). If the sum is less than s;, we
select the items that can be selected for hour 7. We also check the profits here:
if we are able to select items such that the sums is over s;.

After we have chosen enough items, we have to choose the right starting
and halting times for each new clone [a,b] € C;, where 1 < j < n. These
clones start in some knapsack at hour ¢ (or very near before it), since the
halting times are, at first, set to the end of hour ¢ (lines (10)—(11)). When we
choose starting times, we obey the constraints concerning the minimum clone
lengths. The knapsack might be over filled (there is underload) with the used
items. This choice is moved by postponing clones [a, b], that is, by increasing
both @ and b (line (12)).

After these operations we update the knapsacks with the clone weights (line

1
2

Find the first hour %, for which s; > 0
Choose items N' C N = {1,...,n} that can be placed into hour i
while s; > 0 and N' = () do

Find the next hour 7 < m, such that s; > 0

Choose items N’ C N that can be placed into hour 7

~N O =~ W
=}
(oh

while s; > 0 and N’ # () and Count > 0 do
Sort items j € N' by W;(i)
Choose items N” C N such that . v» W;(i) > s
Set the first knapsack (start) a for each clone j € N”
Set the last knapsacks (stop) b to the end of hour ¢
Postpone each clone [a, b] if it fills empty knapsacks
Update the knapsacks at hour s; with W;(7)
Choose the last knapsack b for each clone j € N”
Update the conditions, N = N U N'U N"
Extend clones C; of items j € N
Perform the lines (1)—(6)
Count = Count — 1

== N N S S S NS~
= W N = © oo ot

AN AN AN AN N AN AN S S
—_
o ~J O Ot ==}
e e T e e e e e e e N N e e N N N S N
o
o}

—_
Nej

Figure 9.8: “Direct action.”
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(13)) and then try to postpone the halting times. This depends on each item’s
maximum length cmax;, on the length of the under filled knapsack interval,
and on the parameter indicating appropriate overfilling level.

In line (15) we update the conditions, and in the next line (16) we extend
clones, if it improves the result. This is needed, because some new clones with
radiation may make the extending of some old clones profitable.

In “Long is nice” (see Figure 9.9) we first look for the longest interval of
under filled knapsacks and check if some clones can be placed into this interval.
If not, lines (3)—(6) are executed. We start the optimization in chronological
order. When we find an interval where we can place a clone, we jump to line

(8)-

1) Find the longest interval with empty space [r,t] C [0, m], out = false
Choose items N' C N = {1,...,n} that can be placed into hour r
while s, > 0and N' =0 do

Find next empty space interval [r,t] C [0,m]:r > 7' set 7' =7

Choose items N’ C N that can be placed into hour r

~ O =W N
=}
(o8

while s, > 0 and N’ # () and Count > 0 and not out do
if t —r =1 then
One iteration step with “Direct action”

oo

=N N S S S S S S
e (S

V]
[\

Extend clones C; of items j € N
Perform the lines (1)—(6)
Count = Count — 1

[\]
w

[\ —
IS w
N’ N’ N N N v e v v N e N v N e v v e e S e S N N N

o
o

(10 else

(11 Sort the items j € N’ by the maximum length cmax;
(12 Find the fullest knapsacks, giving hour u from interval [r, ]
( Choose the first j € N', for which Ls, < W; < Bs,,
(14 Choose the location of clone [a, b] of j according to u
(15 Update knapsack array s

(16 Update the conditions, N = N U N’

(17 if s did not change then

(18 One iteration step with “Direct action”

(19 if s is still the same then out = true end

(20 end

(21 end

(

(

(

(

DN
ot

Figure 9.9: “Long is nice.”
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If the length of the interval of under filled knapsacks is only one hour, then
we optimize it with “Direct action” (line (9)). Otherwise, we execute lines
(11)—(20). We first sort the items by the maximum lengths cmaxy. In the
next two lines (12)—(13) we look for an item that can be placed to the fullest
knapsack in the interval inside the region determined by user’s parameters
L and B (little and big). By looking the fullest knapsack we try to avoid
unnecessary overfilling. Overfilling could occur if we use some other hour and
choose items which cut that hour efficiently.

When the appropriate item is found, we choose the exact location for it in
line (14). If it is possible to place clone j over an hour then we check here
whether it is better to extend clone [a, b] before or after hour u. Moreover, we
check if there is a need to cover the whole hour u by a clone. After this we
update knapsack array s and conditions with equation (8.8) (lines (15)—(16)).
In lines (17)—(20) we check if s changed. If not, the iteration halts.

In the end of the algorithm (lines (22)-(23)) we just extend some clones,
provided that it is profitable. After that we prepare for the next iteration step.
This algorithm extends clones very often, because the clones are not (usually)
handled in chronological order. This increases time consumption, since the
algorithm has to correct its actions rather often.

Figure 9.10 shows “Big first” heuristic. In the first two lines we seek for
the pair of consecutive hours with the emptiest knapsacks and check if they
can be filled. If in the clipping situation there is some single hour with empty
knapsacks which are emptier than in any other pair of consecutive knapsacks,
then we start with it.

Next we sort the items by their weights (line (4)). Then we choose items
that fit to the parameters L and B given by the user (line (5)). If there is no
items chosen (line (6), N” = @), we try “Direct action” in line (13) with all
items /N. If no more changes are made, we halt the algorithm.

On the other hand, if we have items to be used (N” # ), in line (7) we
form a clone for each item just once. For each item j € N”, we find out the
largest overload pair s; + s;;1 the item j can cut. Some items j € N” cannot
be placed into the hour pair, because of the constraints. If the knapsack array
is kept unchanged, we try “Direct action” and if the clipping situation is still
the same, we halt the algorithm.

“Big first” algorithm uses the extending activity quite often. Anyway, it is
quicker than “Long is nice”, because it tends to allocate clones so that they
overfill knapsacks more than “Long is nice” algorithm. This means that if
radiation is going to affect some already filled hour, radiation does not cause
that hour to have empty knapsacks again as often as in “Long is nice”.
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“Expensive down” heuristic is shown in Figure 9.11. This is the only heur-
istic in which we directly take into account the prices of the empty space
intervals. This algorithm is based on “Direct action” and “Long is nice” heu-
ristics.

“Expensive down” first looks for the most expensive hour where we can
place a clone (lines (1)—(2)). If we do not find any items that can be placed
into the most expensive hour, then we start seeking as expensive hour as
possible in lines (3)—(6).

In line (7) we seek the borders of the whole empty space interval which
includes hour ¢ found earlier. If no ¢ is found, then this line does nothing. If
there is an interval where we can place a clone, then we perform lines (8)—(24).

First in line (9) we sort the items by the clone weights each clone can have
for hour ¢ (restrictions might prevent some). Then we choose items like in
“Direct action” heuristic, that is, if possible, so that the sum of the clone
weights is more than the empty space in the knapsacks of this most expensive
hour (line (10)). Otherwise we choose every applicable item. The place for

(1) Find hour 4, for which Y’ =Y; + Y, is the largest, out = false

(2) Choose items N' C N ={1,...,n} that can be placed into hour ¢

(3) while s; > 0 and Count > 0 and not out do

(4 Sort the items j € N by weights w;,

(5 Choose items N” C N’ for which j € N": Ls; < W; < Bs;

(6 if N" # () then

(7 Use each item in N once

(8 if s did not change then

(9 One iteration step with “Direct action” with NUN'UN"
10 if s did not change then out = true end

else
One iteration step with “Direct action” with N U N’ U N”
if s did not change then out = true end

end

N=NUNUN"

Extend clones C of items j € N

Perform the lines (1) and (2)

Count = Count — 1

)
)
)
)
)
)
)
)
)
)
11) end
)
)
)
)
)
)
)
)
)

e e e e e e e e e
[a—
(S

Figure 9.10: “Big first.”
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each clone is formed like in “Long is nice” heuristic in lines (11)—(15). Line
(15) is needed for checking if the borders of the empty space interval have
changed. At the end (lines (17)—(23)) we perform the same tasks as in the
other heuristics.

The heuristics may be used directly as they are shown above or with ad-
ditions that take into account the priorities one might want to have with the
items. We give two simple heuristics for dealing with priorities.

The first one sorts the items by priorities. All items in the first prior-
ity level are optimized. Then, if there are still usable items and hours with
empty knapsacks, the items from the next level are used. This continues until
the empty knapsacks are filled or all usable items are handled. This priority
method is called “start” in the tests.

(1) Find hour 4, for which P;s; is the largest
(2) Choose items N' C N ={1,...,n} that can be placed into hour ¢
(3) while s; >0 and N' =0 do
(4) Find an unhandled hour ¢ with the largest P;s; value
(5) Choose items N’ C N that can be placed into hour i
(6) end
(7) Find the borders r,u of empty space intervals, i.e. i € [r,u], out = false
(8) while s; > 0 and Count > 0 and not out do
9) Sort the items j € N by W;(7)
(10) Choose items N" C N’ such that 3. x» W;(i) > s
(11) for j=1to |[N"| do
(12) Choose the location of clone [a, b]; according to ¢
(13) Update knapsack array s; with W;(7)
(14) Update the conditions, N = N U {j}
(15) Find borders r, u of empty space intervals, i.e. i € [r, u,
(16) od
(17) if s did not change then
(18) One iteration step with “Direct action” with N U N' U N”
(19) if s did not change then out = true end
(20) end
(21) Extend the clones C; of items j € N
(22) Perform the lines (1)—(7)
(23) Count = Count — 1
(24) od

Figure 9.11: “Expensive down.”
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Some items with low priorities may not optimize some hours as well as items
with high priorities. In these cases the earlier used items become unnecessary
in certain hours and their space filling capacity can be better used somewhere
else. This phenomenon is similar to the cases where radiation changes the
knapsack array.

The second method with priorities is similar to the first one, except that
when moving from one priority level to the next, we start the whole optimi-
zation process from scratch. This means that we do not use the already made
set of clones, and at the same time, we do not need to check for the unnecessary
items so often. We call this method “extending” in the tests. This method
runs in time proportional to the square of the number of items while linear
time is sufficient for the first heuristic.

9.5 Genetic algorithms

Genetic algorithms (GAs) are efficiently used with many different and note-
worthy difficult combinatorial problems [60, 76, 92]. As we have already poin-
ted out, GAs are also used with unit commitment and other problems related
to electricity management [34, 36, 61, 66].

The basic idea behind GA is taken from the evolutionary biology [76].
Figure 9.12 contains the fundamental structure of a simple GA. Usually one
codes an individual as a bit vector, initializes it in line (1) and applies different
“evolutionary” operators for it in line (3) in order to produce an offspring.
Typical operators are mutation and crossover. Individuals form a population.
In line (4) we select from population some individuals that survive to the next
generation with selection operator.

An individual consist of genes: in the case of bit vector, the genes are bits.
A simple crossover operation swaps the tails of two individuals at random
places after which the mutation flips each gene at a time from both offsprings
with a given probability. The usual assumption in GA is that an individual

(1) Initialize population

(2) while not termination do

(3) Produce new individuals by means of evolutionary operations
(4) Select new individuals into the population
()

(6)

Report the results

Figure 9.12: Structure of simple GA.
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consists of tightly connected, larger parts, that is, genes form “building blocks”
[76] having desirable properties. After some good blocks have been formed
to different individuals the crossover should be able to find the individuals
combining all the good aspects the parents have.

We produce offsprings from the old population until we have reached the
new population. If we are using tournament selection children do not necessar-
ily replace their parents; individuals are compared and better ones will survive
with some probability.

We may also select some of the best individuals directly to the new popula-
tion; this selection is called elitist. The best individual is found by examining
the fitness values of individuals. The fitness is calculated with the objective
function in question. Each iteration of lines (2)-(5) forms a new generation.

The termination is determined with fitness values calculated for each indi-
vidual. We may terminate, for example, if average fitness does not change for
several generations, if we have passed some predefined number of generations,
or if some given amount of time has been used for optimization. There are
several different operators for mutation, crossover and selection for different
problems. (See [76].)

Instead of bit vector coding, we use similar data structure for GA as de-
scribed for the enumerative solution in Section 9.1. Each gene has, for a clone,
an integer pair (z,y), where z is the number of knapsacks before the clone
containing no other clones, and y is the length of clone. As opposite to integer
composition, the length of clone is the second number. This integer pair cod-
ing has the advantage that we can automatically keep some of the restrictions
in order, like the safety area. Table 9.5 contains twelve genes as an example.

An individual is either a set of clones of one type (IKHO) or a class of
clone sets (IKO or MDIK). Table 9.5 has six individuals for IKHO. We may
interpret each gene pair as an individual, the upper genes 1, 3, and 5 being
of type one and the genes 2, 4, and 6 on the bottom of type two in the case
of TKO. Or, for IKO there could be three individuals, left 1 and 2, center 3
and 4, and right 5 and 6 genes. In load clipping problem we test only IKHO
approach (see Chapter 10).

First we describe the methods implemented for the IKHD problem where

Table 9.5: Example of an individual.
1:(5,10) (15, 5) 3:(5,20) (15,5) 5: (5,10) (15,5)
2:(10,5) (5, 5) 4: (30,5) (15,5) 6 :
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CHAPTER 9. METHODS FOR LOAD CLIPPING

each individual is a set of clones. We implemented two different crossovers. In
the first one we randomly select the swap point (number of genes from start),
and swap the tails of two parents. As soon as the first tests started we noticed
that this approach leads to difficulties because it affects too strongly to the
clones in the tails of individuals. If the tail on the second parent is ideally
placed, the different head of the first parent causes the tail to move away from
its ideal place, hence reducing the fitness value.

Consider the rows of Table 9.5 describing two individuals. Let the crossover
operation occur between the second and the third genes. We see that the
crossover point changes the tails and produce individuals totally different from
their parents. Before crossover they had equal total lengths of 115 but after
the operation the top line is 20 longer than the bottom line. If the last three
clones were on the optimal place before crossover, they are in nonoptimal place
after the crossover.

In the second version of crossover operator we also select a random swapping
point but this time from the whole optimization interval, which is [1,115] in
the example in Table 9.5. Then we interpret the clones so that when one
knapsack contains a clone, in the time line we have a bit on, otherwise off.
We swap the tails of bit vectors on the time-line and map the situation back
to the clone set representation. This way we often split a clone and offend
some conditions, usually the minimum or maximum clone length, like point
34, forming a clone of length one into the second offspring in Table 9.5. We
decided to remove all illegal clones from offsprings through the bit mapping
and hence keeping the tails on their places. However, the removed copies of
clones are sometimes quite valuable and this also tends to hinder the progress,
but not so much as the first version in general.

We have not tested a version, where we extend (or suppress) the illegal
clones in order to make them legal again in the second version of crossover.
This resembles the tabu search methods.

Mutation operator has similar problems in load clipping as the crossover
has and we ended up with two different mutations. In both versions we traverse
through the genes and before each gene a random choice is performed about
adding a new gene (that is, a new clone). Without adding new genes, the
number of genes in population tends to decrease, because we remove illegal
genes in the crossover. After that a random choice about removing the gene
(clone) in question is done. Thus, our individuals are of different length.

Tests made it evident that the crossover does not easily move tail of an
individual nor change the lengths of clones. Without moving the tail, GA
may produce individuals, where every clone (genes in an individual) are sys-
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tematically too early or late, and the crossover has difficulties overcoming this
problem. Thus, if a gene is not removed, we randomly choose between in-
creasing or decreasing either the first or the second number in the gene. This
corresponds to the move of tail or changing the length of a clone (and hence
moving the tail), respectively.

The first version of mutation has the same problems as the first crossover:
one change in the beginning of the individual has too large impact on the last
genes. Hence, we implemented the second version where we tried to keep the
tails in their places as well as possible through the mapping to bit vectors and
back. The behavior of different combinations of genetic operations is discussed
in greater detail in Chapter 10.

As selection we have tournament selection and the elitist selection with
tournament. In the tournament selection both of the two parents compare
to the offsprings and better ones will survive with some probability, typically
0.75. In the elitist selection we order the population by fitness and then choose
a given amount of the individuals directly to the next generation. The amount
is the elitism parameter in the tests. The rest of the offspring will be generated
just like in the tournament selection. The termination is after a given number
of generations: we do not use any limiting values to quit earlier.

It is also possible to mutate and crossover the parameters affecting the prob-
abilities by inserting the parameters controlling the probabilities of individuals
into the individuals. This increases the number of different combinations to
test. We noticed rather soon, however, that static parameters work best.

Note that we have considered load clipping as static and stationary optimi-
zation problem in other methods presented so far. However, load clipping is
essentially nonstationary because the clipping situation changes as time passes
by. In practice we even have some additional restrictions related to the time of
day not presented in this work. Genetic algorithms for nonstationary function
optimization are considered in [35, 50, 82].

Because the nonstationarity is a consequence of the time flow, we can drop
unnecessary parts from the beginning of the individuals. After that we continue
the normal operation by making new generations. Dropping the items can be
justified by the fact that electricity consumption forecasts are fairly good for
the first hours in the optimization interval while the larger errors tend to
occur at the last hours [107]. Hence, the head of the individual is good for the
optimization problem with high probability. This dropping scheme does not
assume anything about the clipping situation at the last hours leaving it all to
GA and evolution. And after the time arrives to a moment when we have to
give a new control plan (set of clones of each type), the first moments in the
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old plan are already in the past.

The parallel GAs [51] are very helpful when taking into account the sto-
chastic and nonstationary nature of load clipping problem. We can at the same
time evolve several populations with a bit different clipping situations. When
we get some new data about the actual clipping situation we have much of the
calculations done.

Parallel GAs can also help in our problem in other ways. If a population
gets stuck into a local minima, we can make a few crossovers between different
populations that are meant for different situations in hope that we move away
from local minima. However, we have not tested parallel GAs.
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Chapter 10

Experiments

We made extensive experiments with the methods given in the previous chapter.
Each method was implemented but we made comparisons only between heu-
ristics, dynamic programming, and genetic algorithms. The integer composi-
tion algorithm was soon left out as an unpractical method.

First, Section 10.1 presents the comparisons made to find out if there are
some easy instances for the heuristics. After that, Section 10.2 presents our
experiments on harder instances. We also made tests on real life instances (see
Section 10.3). Section 10.4 contains experiments with the state structure of
DP to confirm the results of Section 9.3.

In the experiments we tested the following seven hypotheses. We did not
apply statistical tests. The hypotheses are a bit vague but some assumptions
and explanations can be found below. The hypotheses refer to the economic
results except the second one.

— Hy: Each heuristic has instances that are natural for them.

— H,: Heuristics are quick.

— Hj: GAs are better than the heuristics.

— Hj: Longer running time improves the performance of GAs.

— Hjy: DPs are the best among the presented methods.

— Hg: DPs with alternative states are better than three variable DPs.
— Hy: Results improve as the number of alternative states is increased.

Heuristics were designed with certain kinds of instances in mind. The
first hypothesis is based on the assumption that each heuristic has instances
(or sets of instances) where they work the best. Because we have several
heuristics, at least one should obtain a good (or tolerable) result. Hypothesis
H, is for the running times. Another design criterion for heuristics was that
they can be applied even if there would be only a couple of seconds time. As
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a general purpose methods, the heuristics should not work as well as GAs.
The evolution should overcome the local optimums more often than heuristics,
thus Hz. Giving more time to the evolutionary operations, the results should
improve H,, because of the stochastic nature of GAs. Even thought DPs
do not do full search space exploration, the assumption behind Hj is that
DPs do extensive search. The new state variable, that is, the alternative
states should help in the search Hg. Because we can add alternative states
for each subsolution found, this widens the number of explored solutions, and
therefore H;. We discuss the validity of hypotheses and give conclusions of the
experiments in Section 10.5.

For each problem instance we present the clipping situation, items, and
obtained results. Appendix C contains exact data, while some of the data
is presented graphically in this chapter. For each instance, we calculated a
starting value and a value that only sums up the losses of revenues neglecting
the overload hours. The latter value is called ideal. If a method gets solution
value near the ideal, the method works very well for that particular instance.

Each clipping situation has 25 hours, which totals up to 300 knapsacks with
5 minute slots. Thus, hour consists of 12 knapsacks. Recall that weights are
averaged in each hour. All tests were driven in 450MHz Pentium with Linux.

Table 10.1 contains summary of the methods with abbreviations we used.
If the sorting method is priority, it is the primary key and item weight is the
secondary key. If the sorting method is (item) weight, we do not use priorities
at all. The priorities column refers to two methods (“start” and “extending”)
presented at the end of Section 9.4. There are two cleaning methods that
try to improve the results: if there are several items optimized one at a time,
an item can cause a clone to be too long or unnecessary. In the cleaning we
simply test, for each clone, whether it can be removed or made shorter. Last
column gives the maximum number of generations for each version of genetic
algorithm. (Alike DPs, GAs use similar approach to several items: optimize
successively one item at a time. Although GAs could be extended to optimize
several items at a time, we have not tested it.) All methods implement an
extra restriction, which is the sum of clone lengths (cumulative clone length).

Besides the number of generations, the other GA parameters are: tourna-
ment parameter 0.85, elitism 65, size of population 120, crossover probability
0.05, and mutation parameters 0.05 for adding or deleting a clone and 0.2 for
the length changing (there is two lengths for a clone: length before start of a
clone and length of the clone itself). We did not let GA change its paramet-
ers and both the mutation and crossover operator use the mapping to binary
vector and back.
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Table 10.1: Method abbreviations.

Name Method Priorities Sorting Cleaning Max gener.
DA1 Direct action start

DA2 Direct action extending

LIN1 Long is nice  start

LIN2 Long is nice  extending

ED1 Exp. down start

ED2 Exp. down extending

BF1 Big first start

BF2 Big first extending

DP1 DP priority

DP2 DP weight

DP1C DP priority yes

DP2C DP weight  yes

GA2000P GA priority 2000
GA2000W  GA weight 2000
GA2000PC  GA priority yes 2000
GA2000WC GA weight  yes 2000
GA1000P GA priority 1000
GA1000W  GA weight 1000
GA1000PC GA priority yes 1000
GA1000WC GA weight  yes 1000
GAbL00P GA priority 500
GA500W GA weight 500
GA500PC GA priority yes 500
GAS00WC  GA weight  yes 500
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The GAs were tested also separately to find these parameters. We tried
all the six combinations of the mutation and crossover operators implemented.
The best combination found used mapping to bit vector both in the mutation
and crossover.

The combination with both the mutation and crossover operated directly
with compact individual representation was clearly the worst. The main prob-
lem was that if a small change happened in the head, the tail changed accord-
ingly. If the tail was in its optimal position, the change moved it away. This
is against the “building block hypothesis” [76]: the optimal tail should not
move on a local change to somewhere else. The crossover can also have a large
impact on tails.

Other combinations usually did find a locally optimal solution. When the
elitism parameter was decreased, the average scores tend to become worse. The
local optimum, however, was almost always found. The tournament parameter
did not have a crucial impact on finding the local optimum nor on the average
scores. The application of mutation and crossover to the parameters of GA
led only to situation, where the parameters were converging to zero and the
average sCOres were poor.

We mainly used eight items with weights between 0.2 to 7.0 given in Table
C.2 in Appendix C.2. The eight item data set was obtained from a Finnish
electricity supplier. Also variants of the given set were used.

In tests the price was 7000 and the revenue was 50 for each hour. With
different prices and incomes in different hours, DPs, GAs, and “Expensive
down” would give different results, while heuristics would give the same results.
In the tables, the results concerning GAs are averages of ten test runs. Further,
column K counts the number of clones times ten representing the cost of a clone
set (control plan).
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10.1 Instances good to heuristics

Next three instances are depicted in Figure 10.1. The grey line indicates the
best solution found. Horizontal ticks describe 1 MW load (the lines in the last
hour are not in correct positions). Figures 10.2, 10.3, and 10.4 contain the clone
sets for each item giving the best solution. Exact values of initial situation,
item descriptions, and the best solutions are in the tables in Appendix C.2.

The first test contained five overload (empty space) intervals with different
lengths and with relatively small overloads. The radiation (payback) could
cause new overloads after the second, third or fourth overload interval. The
results show that heuristics are very fast, and DPs and GAs are fast enough.
All results are close to the ideal. Note that DPs are able to make better
results than the ideal: they do “valley filling”. DP sorted by clone weights
with cleaning gives the best solution. It used four of the eight items.

The second test was favorable for “Long is nice” heuristic. It contained
a short overload interval in the beginning of optimization interval and longer
in the middle. With the given item set, the other heuristics tend to use their
long clones to the first overload interval while it should have been saved for the
longest overload interval. “Long is nice” reached almost the ideal result, while
two DPs gave even better results. On average, GAs outperformed heuristics
(except “Long is nice”). DP sorted by clone weights with cleaning also gives
the best solution for this instance. It used all five items. The overloads have
been used to increase the profits with radiation.

The third test was similar to the second one. This time, there were three
items and only one clone for each item was allowed. The first overload interval
was shorter while the second was as long but a bit larger. The only heuristic
performing well was “Big first”. The other heuristics waste their resources
in wrong places. It is noteworthy that this time BF found the best result.
Heuristics and DPs used all the three items. GAs had severe difficulties with
this test. Somehow, GAs were able to explore only a small portion of the
search space. For example, GA2000WC, GA1000WC and GA500WC returned
the same solution in all test runs, thus explaining the same averages.

Cleaning usually improved the results of DPs and seemed to improve the
results of GAs as well (although, with ten test runs the randomness plays a
role in the results). We expected to obtain the result within 5 minutes (which
is the same time as the time represented by a knapsack). Thus, every method
was fast enough with the given item sets used in the test.
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Figure 10.1: The first set of test instances.
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Figure 10.2: Clones for items (control plans) for the best solution found in the
first test.
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Figure 10.3: Clones for items (control plans) for the best solution found in the
second test.
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Figure 10.4: Clones for items (control plans) for the best solution found in the
third test.
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Table 10.2: Results for the first test.

10.1.

INSTANCES GOOD TO HEURISTICS

Starting result is —60670 and the ideal

is —960.
Alg. Result K Time Alg. Result K Time
DA1 -979 -110 0.1 GA2000P —-1102 —-68 129
DA2  -1016 —90 0.1 GA2000W  —1328 —-163 164
LIN1 —998 —130 0.2 GA2000PC —-1072 =73 134
LIN2 —-1012 —-90 0.1 GA2000WC —-1131 —-159 162
ED1 -974 -90 0.1 GA1000P —-1113  —69 66
ED2  —-1013 —-90 0.1 GA1000W  —1313 -—160 85
BF1 —1036 —100 0.1 GA1000PC —-1119 —65 65
BF2  -1029 -80 0.1 GA1000WC —-1182 —-166 81
DP1 —885 —180 54 GA500P —1127  —69 32
DP2 —745 —240 45 GA500W —1305 —156 45
DP1C  —-855 —170 53 GA500PC -1119 64 32
DP2C  —698 —230 44 GA5S00WC  —1137 —147 37

Table 10.3: Results for the second test. Starting result is —96400 and the ideal

is —1200.
Alg. Result K Time Alg. Result K Time
DA1  —18459 -110 0.1 GA2000P —5919 —100 180
DA2  -26694 —110 0.1 GA2000W  —-3246 —-110 188
LIN1 —1214 —100 0.2 GA2000PC —-3316 —87 183
LIN2 —1414 —100 0.1 GA2000WC —=5777  —91 186
ED1  —15859 —110 0.2 GA1000P —7310 —100 89
ED2 —8489 —110 0.1 GA1000W  —5048 —106 94
BF1 —31488 —110 0.2 GA1000PC  —5646  —83 90
BF2 —26510 —110 0.1 GA1000WC —-6679  —92 93
DP1 —4443 —-110 13 GA500P —6788 —101 45
DP2 —1186 —110 15 GA5S00W —6945 —106 46
DP1C  —-3690 -110 13 GA500PC —3457 =90 46
DP2C —-1128 -110 15 GA5S00WC  —4921  —95 47
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Table 10.4: Results for the third test. Starting result is —99350 and the ideal
is —1350.

Alg. Result K Time Alg. Result K Time
DA1  —68920 -30 0.1 GA2000P —40592 -30 90
DA2  —68920 -30 0.1 GA2000W  —40500 —-20 83
LIN1T  —31529 —-30 0.1 GA2000PC  —40544 —-30 91
LIN2 —36453 —-30 0.1 GA2000WC —40481 —-20 84
ED1  —68929 —-30 0.1 GA1000P —40592 —30 45
ED2  —41873 -30 0.1 GA1000W  —40502 —-20 41
BF1 —21852 —-30 0.1 GA1000PC  —40544 —-30 45
BF2  —68920 -30 0.1 GA1000WC —40481 -20 42

DP1 —22015 -30 6 GA500P —40596 —-30 23
DP2 30182 -30 6 GA500W —40506 —20 21
DP1C —22015 -30 6 GA500PC —40544 —-30 23
DP2C —-30149 -30 6 GA5S00WC  —40481 -20 21
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10.2 Difficult instances

Next two instances are depicted in Figure 10.5. Exact values are in the tables
in Appendix C.3. While the second test was artificial, the first could occur
in practice when an electricity supplier tries to cut down the loads by buying
electricity beforehand (that is, “deciding the sizes of knapsacks”). Because
DPs did not use the restriction described in Appendix C.2, they had a small
advantage over the other methods.

In the first test we had a difficult clipping situation. There was overload in
every hour (knapsacks are under filled). However, the overloads could be cut
down quite well. Note that the sum of the weights of the first two items was
approximately 1.8, meaning that after these items there were two peaks left,
which the rest of the items can handle.

The execution times for GAs with 2000 generations were just a little bit
too long, but one may buy some extra time with quick heuristics and then use
GAs. However, GAs did not give good results with this instance. Heuristics
perform well: either the “start” or the “extending” way to handle priorities has
obtained almost the ideal solution. The sorting of items affected the results
of DPs. Here we had time to try all DPs in the given 5 minute maximum
execution time (the solution can be saved before performing cleaning, hence
saving time). If neglecting the cost of clone set, DPs gave better than the ideal
solution.

Some of the differences in the results can be explained with the items that
were used in the end of the optimization interval. DPs utilized the radiation
while heuristics used this only by chance.

The second hard instance could not be cut with the given items. DPs
outperformed the other methods and were fast enough. GAs outperformed
the heuristics and GAs with 500 generations were fast enough. In both tests,
GAs seemed to improve the results with the increase of generations. In this
test DPs let some of the items to break the “cumulative length” restriction
(see Appendix C.2).

Note that the third item was hardly used at all. The reason for this was
that the radiation for item 3 was larger than the clone weight. Hence, item 3
did not comply with (8.3) (we do not require it to comply, even though items
used in electricity management usually do). This means that every clone of
type 3 increases the total consumption of electricity. Since there were overload
in every hour except the in the last one, the use of item 3 was useless.
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Figure 10.5: Difficult test instances.
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Figure 10.6: Clones for items (control plans) for the best solution found in the
first hard instance.
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Figure 10.7: Clones for items (control plans) for the best solution found in the
second hand instance.
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Table 10.5: Results for the first hard instance. Starting result is —324600 and

the ideal is —500.

Alg. Result K Time Alg. Result K Time
DA1 —680 —290 0.6 GA2000P —17395 —564 523
DA2  —12594 —470 0.8 GA2000W  —10274 —473 466
LIN1 —2605 —390 2 GA2000PC  —10788 —451 523
LIN2 —11035 —370 2 GA2000WC  —6165 —443 452
ED1 —594 —350 1 GA1000P —22894 —553 259
ED2 —674 —450 2 GA1000W —8498 —437 216
BF1 —4313 —360 1 GA1000PC  —16384 —470 260
BF2 —639 —420 1 GA1000WC  —6282 —449 227
DP1 —-304 =530 103 GA500P —25561 —551 126
DP2  —-12078 —610 106 GA5S00W —9230 —445 108
DP1C —268 =520 103 GA500PC —14856 —446 121
DP2C —-12082 —-600 107 GA5S00WC  —10332 —436 108

Table 10.6: Results for the second hard instance. Starting result is —5040500
and the ideal is —500.

Alg. Result K Time Alg. Result K Time
DA1  —4625050 —400 0.8 GA2000P —4544249 —-606 579
DA2  —4625050 —400 0.5 GA2000W  —4547330 —-609 577
LIN1  —4578900 —440 3 GA2000PC  —4546253 —600 585
LIN2  —4618620 —450 1 GA2000WC —4547927 —597 586
ED1 —4621010 —430 2 GA1000P —4552078 —615 292
ED2  —4623660 —440 1 GA1000W  —4554737 —619 290
BF1  —4625050 —400 1 GA1000PC  —4554199 —598 286
BF2  —4625050 —400 1 GA1000WC —4550034 —-602 288
DP1  —4468947 —700 154 GA5H00P —4553593 —618 141
DP2  —4468947 —700 153 GA500W —4554650 —602 140
DP1C —4469354 —690 158 GA500PC  —4552940 —602 142
DP2C —4469354 —690 157 GAS00WC  —4552002 —584 138
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10.3 Normal instances

In this section we describe three tests: a morning peak, an afternoon peak,
and one containing both morning and afternoon peaks. The three instances
represent normal problem instances occurring in load clipping.

In the morning peak DP with cleaning and items sorted by weights gave
the best solution. The overloads were cut down well and the radiation was
utilized to increase the revenues.

Item 3 and its radiation (which is larger than clone weight) was used in
the afternoon peak instance. Since the consumption was below the zero-level,
we could increase the revenues by using item 3. Heuristics did not see this
behavior while DPs and GAs did. The afternoon overloads could be cut well.
Heuristics gave results near the ideal. They cut the overloads well but did
not increase the revenues, which is not bad at least from the view point of an
electricity supplier, since they usually do not want to make controls, unless
there is overload.

With both peaks, item 3 was not used as much as with the afternoon
instance. Now the second item is used to cut down the first peak and its
radiation increased the revenues. Item 2 moved some of the consumption into
the valley. Again, overloads were cut down well.

GAs almost achieved the ideal result on average in the morning peak in-
stance. Moreover, they did almost as well as heuristics, also in the morning
and afternoon peaks instance. However, in the afternoon peak, and morning
and afternoon peaks instances there were much more divergence than in the
morning peak instance. DPs gave the best results, as usual. Each method was
sufficiently fast.

morning peak afternoon peak morning and afternoon peak
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Figure 10.8: Morning and afternoon peaks.
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Figure 10.9: Clones for items (control plans) for the morning peak.
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Figure 10.10: Clones for items (control plans) for the afternoon peak.
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Figure 10.11: Clones for items (control plans) for the morning and afternoon
peaks.
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Table 10.7: Morning peak results. Starting result is —36300 and the ideal is
—1300.

Alg. Result K Time Alg. Result K Time
DA1  -—-1340 —-20 0.1 GA2000P —-1377 —41 119
DA2  —-1340 —-20 0.1 GA2000W  —1432 -91 131
LIN1 —-1340 —20 0.1 GA2000PC  —1350 —42 122
LIN2 —1340 —20 0.1 GA2000WC —1357 —-80 129
ED1  —-1334 50 0.1 GA1000P —1382 —41 60
ED2  —-1340 -—20 0.1 GA1000W  —1411 —-82 59
BF1 —1349 =50 0.1 GA1000PC —1351 —42 62
BF2 —1340 -20 0.1 GA1000WC —1347 —76 62
DP1  —1150 -150 54 GA500P —1375 -39 29
DP2 —913 —280 67 GA500W —1414 76 28
DP1C —-1164 —140 55 GA500PC —1351 —42 31
DP2C  —896 —260 69 GA5S00WC  —1365 —T76 28

Table 10.8: Afternoon peak results. Starting result is —58000 and the ideal is
—1300.

Alg. Result K Time Alg. Result K Time
DA1  -1310 -80 0.1 GA2000P —4114 —-142 168
DA2  —-1325 70 0.1 GA2000W  —1688 —119 127
LIN1T —-1317 -90 0.1 GA2000PC —1345 —54 153
LIN2 —1352 80 0.1 GA2000WC —1349 —-106 145
ED1  —1334 —-50 0.1 GA1000P —8094 —120 78
ED2  —-1327 —80 0.1 GA1000W  —1440 —-102 66
BF1 —1352 —60 0.1 GA1000PC  —2098 —64 79
BF2  —-1335 —-50 0.1 GA1000WC —-1335 87 72
DP1 —595 —540 110 GA500P —-1716 —121 39
DP2 —8564 —320 80 GA500W —1507 —105 34
DP1C 576 —530 116 GA500PC —1357 =55 35
DP2C —-731 —-310 83 GA500WC  —1325 —93 29
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Table 10.9: Morning and afternoon peaks results. Starting result is —85050
and the ideal is —1100.

Alg. Result K Time Alg. Result K Time
DA1  -1113 -90 0.1 GA2000P —7931 -—-124 167
DA2  -1074 —-90 0.1 GA2000W  —1161 —137 158
LIN1T —1058 —170 0.2 GA2000PC —-1113 -91 148
LIN2 —1085 —120 0.1 GA2000WC —-1110 —146 169
ED1  —1115 —-80 0.1 GA1000P —-1730 —-114 78
ED2  —-1081 —80 0.1 GA1000W  —1230 —143 78
BF1 —-1116 —-110 0.1 GA1000PC  —1755 —102 92
BF2  -1084 70 0.1 GA1000WC —-1110 -129 72
DP1 -394 —430 82 GA500P —4897 —108 39
DP2 —681 —250 56 GA5S00W —1219 —149 43
DP1C  —367 —420 84 GA500PC -1108  —87 39
DP2C  —624 —240 57 GA5S00WC  —1099 —138 40
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10.4 DP state structure

We tested the running times of DPs and compared the accuracy of results.
The running time comparison was made against the maximum clone length
cmax. We compared two DP implementations, one with and another without
the wait state saving described in Theorem 9.8. We used the first item of Table
C.2 in Appendix C.2, and let cmax to vary from 20 to 200 (from 100 minutes
to 1000 minutes). This item did not have radiation.

On the left side of Figure 10.12 is the clipping situation: 23 hours have
0.5 overload and the last two ones do not. Each hour is discretized to twelve
points. Hence, with clone of length 8 (40 minutes control) one gets 0.53 cutting
capacity (clone weight).

Both DPs gave the same set of clones containing twelve clones each cutting
two hours at a time with clones of length 16 (80 minutes control). The clone set
is shown in Figure 10.13. After controls, there remained 0.03 MW underload
in each hour (shown as the grey area in Figure 10.12), except the last two.
In both cases the obtained result was —1590. (In the beginning the value is
—1139400 and the ideal value was —900.)

Only the running times were different between DPs. The right side of
Figure 10.12 shows the running times for old DP with full state space and for
the new one with half state space. DP with new state space was about twice
as fast as the old one, which is consistent with the theory. The number of
wait states was 11, because the length of an hour was 12 (see page 114 and
Theorem 9.8).

Next we made experiments involving radiation. Wait states were used to
overcome the difficulties with the hourly averages, and the radiation could
affect hours not directly involved with the clone. We assumed that radiation
affects the accuracy and that by increasing the number of wait states we were
able to improve the accuracy.

Intuitively, the wait states starting from point b can only “look up” that far

§ overload 180 & seconds
0.5

0.0

_0.5..

20 60 100 140 180

Figure 10.12: Clipping situation and running time on maximum clone length.
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Figure 10.13: Set of clones cutting the overloads of Figure 10.12.

later on at moment a. So if b is the beginning of an hour, we “do not see” into
the previous hour at moment a and cannot affect decision made before, that
is, make the choice between different clone sets. When there is no radiation,
the number of wait states equaling to the number of time points after a start
of an hour is enough by Theorem 9.8, because a clone finished in the previous
hour does not affect the present hour to be cut. (This does not mean that the
system is optimal. All we know is that there is no need to increase the number
of wait states.)

However, when we are using radiation, we have to be able to look further
into the previous hours in order to increase the accuracy. We have two ways
to increase the number of wait states.

By Theorem 9.8 the number of wait states is @ mod b in current time point
a, where b is the length of one hour and «a is the current time point. Now, we
can increase b, or, on the other hand, we can directly increase the number of
wait states to ¢ + (@ mod b).

Increasing b does not improve the solutions much. The reason is that a
mod b divides the time line into the disjoint intervals of length . We cannot
“see” into the previous interval and basically, our problem remains. The time
line is still divided into disjoint areas and the optimum is easily lost, because
radiation can arbitrarily affect the next interval.

By adding ¢ states we improve the ability to see to earlier hours (or into
earlier intervals of length b). We were tempted to think that increasing ¢ will
improve the solution. Our tests, however, show that while this is mostly true,
there are exceptions.

Again, each hour is discretized into twelve time points. The item we used
is shown in the upper left corner in Figure 10.14. The black line indicates the
radiation for a maximum length clone (cmax = 12, hour) and the gray line for
the minimum length clone (cmin = 6, thirty minutes). Clone weight W = 1.2
(control capacity is 1.2 MW, or 0.1 for five minutes), safety area is 2, and the
number of clones is not restricted.

We tested the item with 14 clipping situations, of which 10 were quite
artificial, while 4 (tests 6-9) could be normal clipping situations occurring
in reality. Tests 6-9 were similarly shaped and contained the morning and
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Figure 10.14: Radiation used in the tests and the test cases.

afternoon consumption peaks. The shapes were at different levels giving test
cases of different difficulty. Test 11 contained only morning peak while test 12
contained afternoon peak. Other tests were artificial.

In the first test we could have been cut the overload from each overload hour
exactly with the presented group with clones of length 5 (25 minutes controls),
if there were no radiation. Radiation, however, affected the underload hours
(improving the result at the same time) as well as the next hour to be cut
(increasing the amount to be cut), because the radiation was two hours long.
One MW price for overload is —99000 and revenue (underload) was —900.
Starting values (total losses without clones) are given in Table 10.10.

Figure 10.15 contains running times (in seconds) for the old DP solution and
for DPs with ¢ = 0,1,2,3,5 and 11 (horizontal axis). Moreover, b = 12 = h.
The running times increase almost linearly on the number of wait states.

Table 10.11 contains the results. If a solution is presented only for the old
DP, other DPs with different values for ¢ achieved the same result. The results
improved when the number of wait states was increased. Note that the old
DP has fixed number of wait states, while the new DPs number of wait states
depends on time: it is ¢ + (@ mod h), where a is the time point. The space
usage for one wait state is determined by h - (cmax + 2) for the old DP. The
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Table 10.10: Starting values of the tests 1-14.

Test 1 Test 2 Test 3 Test 4 Test 5
—1141200 —1402200 —852300 —3418200 —1839600

Test 6 Test 7 Test 8 Test 9 Test 10
—699 480 —341100 —1499400 —797 310 —228 600

Test 11 Test 12 Test 13 Test 14
—550980 —550980 —1639800 —550800

new DPs use more space in one hour, when ¢ > 5 .

In the seventh test, however, increasing the number of wait states decreased
the result between DPs with ¢ = 3 and ¢ = 5. This somewhat nonintuitive
result follows from the fact that our DP solutions do not fulfill the optim-
ality principle usually stated for dynamic programming solutions, because of
radiation and averaged hours (see [13, p. 16]).

The optimality principle is lost because we cannot guarantee that optimal
solution at stage i (time point 7) entails optimal solution for the rest of the time
line. Reason for this is the radiation: it can affect later hours and decisions.
This information should be available at the moment when we are deciding the
length of a clone. Similarly, if we can first find the best clone, we cannot be
sure that the second clone—even if optimal after the first one—gives optimal
solution for the whole optimization problem.

In the seventh test, DP with ¢ = 5 found in one crucial time point a better
solution than DP with ¢ = 3. It turned out that the locally better solution was
worse for the rest of the optimization in this case. Larger number of additional
states handled the situation correctly.

We did not use the alternative states in the test series reported in Table

seconds

test 8

12}
=]
c
o]
(8]
Q
(2]

test 14

test 1040 test 13

test9 test 11

test 12

Figure 10.15: Running times.
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Table 10.11: Solutions without alternative states (empty means the solution
given by old DP).

Test old DP c=0 c=1 c=3 c=25 c=11
1. —3091
2. —532670
3. —11288
4. —1323150
5. —483773 —484248 —484248 —483773 —483773 —483773
6. —144.478
7. —15603 —15662 —15662 —15662 —15778 —15603
8. —368665 —371296 —370238 —368665 —368665 —368665
9. —174490 —175668 —175668 —175668 —175668 —174490
10. —8874 —-9131 —9131 —-8990 —8874 —8874
11. —68059 —-70494 —-69657 —68059 —68059 —68059
12. —68059 —-70494 —-69657 —68059 —68059 —68059
13. —366 669
14. —9860

Table 10.12: The best solutions with alternative states (empty means the
solution given by old DP).

Test old DP c=0 c=1 c=3 c=5 c=11
1. -3091 -3091 -3091 —-2975 —-2975 —-2975
2. —-532670

3. —10823 —10823 —10823 —10823 —10823 —10707
4, -1323150

5. —483773 —483773  —483773 —483705 —483705 —483705
6. —144478

7. —15603 —15662 —15662 —15487 —15487 —15487
8. —-368373 —369069 —-368046 —368162 —368278 —368373
9. —174490 —-175668 —175543 —174398 174398 174490
10. —8410 —7365 —7365 —7713 —8202 —8177
11. —67827 —69242 —68613 —67827 —67827 —67827
12. —67827 68778 —68613 —67827 —67827 67827
13. —366669

14. —8956 —8336 —8351 —8186 —7742 —7538
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10.11 and Figure 10.15. We run the same tests using 2, 5, 10 and 15 alternative
states. Table 10.12 contains the best solutions found among all the test series.
Results are remarkable: results were improved in the most cases. Moreover,
improvements were relatively high (much over 10% in some tests) and even
the old DP solution was improved in some cases.

Test 14 demonstrates informatively the improvement as the number of wait
states or alternative states (or both) increases. Test 14 has 0.5 MW overload
in every other hour and the rest have the same amount of underload (in the
middle, there are two underload hours, 9 to 11, see Figure 10.14). Results and
running times of the test 14 are shown in Figures 10.16 and 10.17.

Starting solution (no clones) was —550800. DPs with one and two altern-
ative states built up similar set of clones till stage 81 (that is, 6 hours 45
minutes after the beginning). The best result found so far gave —355171 with
clones [1,6], [19,29], [43,53] and [67,77]. At the stage 82, DP with two altern-
ative states found a set of clones giving —355089.2 with clones [1,5], [9,13],
[23,31], [47,57], and [67,77]. By choosing the second best clone set ([1,5], [9,13],
[23,31], and [47,57] with —405807.7) at the stage 66 we have found better set
of clones than by using the locally best alternative ([1,6], [19,29], [43,53] with
—404157.9).

The second best clone set at stage 66 cut overload more accurately (there
were not so much underload than with the best clone set). It also incurred more
radiation into the seventh hour so that the result was not the best (overload
costs much more than underload). This increase caused by the radiation was
less than the amount of clone being one moment longer, which, in turn, also
caused the seventh hour to be cut more precisely with the second best path
than with the best. By increasing the number of alternative states to 15, the
first different stage was 56. Similarly to the previous case, the old clone set
at phase 42 ([1,6] and [19,29]) was locally better than [5,9], [21,30] (at least
15th best) but after clone [43,53] at the stage 56 the worser set of clones at
the stage 42 gave better result than the best clone set.

We also tried DPs with 30 and 100 alternative states. System with 30 states
improved the result first time from 15 state system at stage 80 and system with
100 states improved the result first time from 30 state system at stage 61.

DP with 15 alternative states gave —8 336, with 30 states —7 872 and with
100 states —7 214, which was better than the solution given by 15 alternative
and 11 additional wait states (see Table 10.12). Our conclusion is that a
clipping situation with many overload intervals most likely benefits from the
use of alternative states.

We also studied with the same problem instance, how alternative states and
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Figure 10.16: Wait and alternative states, results for test 14. #c is the number
of additional wait states and #A is the number of alternative states.

wait states improve the results together and how they affect the running times.
The left hand side of Figure 10.16 contains results for different alternative state
amounts (1, 2, 5, 10 and 15). As the number of wait states is increased, the
results improve in general. There are few exceptions, however. A few wait
states may do worse than DP with ¢ = 0 (see lines for A5 and A15). Most of
the time 11 additional states to wait states gave better results than less wait
states. By using only one alternative state (corresponds to a system, where no
alternative state usage is implemented), the number of used additional wait
states was irrelevant for this instance.

On the right side the same data is plotted for five different additional wait
state amounts as well as for the old DP system. We conclude that the number
of alternative states is much more crucial for the results than the number of
wait states. Both state variables are needed, though. Alternative states also
improve the results of DP system with fixed amount of wait states, which is
the case in old DP. We did not try to find the best combination for the number
of alternative and wait states as we wanted to keep the running times tolerable

° Al5 @ c=11
S S old DP
5007 & 5001 &
] A10 @ c=5
400 400 c=3
300 300 c=1
A5 c=0
200 200
100 A2 100
AL
3 6 9 #C 2 4681012 *#A

Figure 10.17: Wait and alternative states, running times for test 14. #c is the
number of additional wait states and #A is the number of alternative states.
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for the test runs.

Figure 10.17 contains running times for test 14. Execution decelerates
almost linearly as the number of alternative states is increased. The same also
holds for the number of wait states.

The number of wait states in one hour is Zz;é (c+(a mod h)) = ch+h(h—
1)/2 (where ¢ = 0,...,h — 1 and a is the moment). Hence, the increase of ¢
by one gives h — 1 additional wait states for one hour. This is proportionally
less than the increase brought by the increase of the number of the alternative
states by one, which is the number of wait states in one hour. This explains why
the increase of the number of alternative states decelerates more the running
times than the increase of the number of wait states.

10.5 The validity of hypotheses

The first hypothesis (H;) seems to be valid. We are able to characterize the
heuristics by suitable problem instances. The only exception is “Direct action”
in these experiments. Although it is also possible to find instances were this
method is the best, it is harder to characterize “Direct action” with instances.
At least one of the heuristics obtained tolerable (near the ideal) result or results
near the best. “Big first” gave the best result once (see Table 10.3). On the
second difficult test the heuristics performed badly (see Table 10.6).

Hypothesis H, is valid. Most of the time, one second was enough for
heuristics and in a couple of tests the heuristics needed more. The maximum
time was three seconds which is in the bounds given, and which is much less
than the time used by GAs and DPs. We have time to try all heuristics in the
time consumed by GAs and DPs.

GAs do not seem to be clearly better than the heuristics in the experiments.
Hence, we conclude that Hj is not valid. Usually, at least one of the heuristics
gave better solution than GAs. In some test, all heuristics performed better
or at least as well. Only on the second difficult test GAs were better than the
heuristics (see Table 10.6). The reason for bad behaviour maybe lies in the
difficulties to maintain the “building block” hypothesis. Another reasons can
be in the problem modeling by GAs (in the solution representation) and in
the fine tuning of the solutions. Nevertheless, we think that by working out
the above problems, it is possible to build GAs so that they outperform the
presented heuristics.

The fourth hypothesis (H,) seems to be valid. In most cases, 2000 gener-
ations gave the best results, although, in some easy instances the additional
generations did not guarantee the better performance. Now, the results are
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averages among 10 test runs. We could also do the test runs until we obtain
an acceptable result and use the average number of test runs. This way, we
would obtain some estimates, how many times GAs should be run (to be sure
that a tolerable solution will be found).

The fifth hypothesis (Hj) is clearly valid. Usually, DPs gave the best or
near the best results. In three tests, only two of the DPs were the best or
near the best, see Tables 10.2, 10.3 and 10.5. The next hypothesis (Hg) is also
valid which is shown by Table 10.12. By using alternative states, results were
improved in ten out of fourteen tests.

Finally, the last hypothesis (H;) seems to hold by test case 14. Larger
number of alternative states also improved the performance in three other tests
(tests 5, 9, and 10). In other test cases, the alternative states either did not
have any impact or the improvement was given directly with two alternative
states. We also noticed that while the additional alternative states improved
the results, the number of wait states (¢ part) needed for the best solution
varied as the number of alternative states changed.

Some of the above conclusions need further exploration if we are to fully
reject or accept them: more test cases and test runs, and statistical tests should
be applied. Especially, the current experiments are not extensive enough for
hypotheses H, and H;.
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Conclusion

We have developed the basic theory for interactive knapsacks including the
model of interactive knapsacks, complexity results, and relations to some well-
known NP-complete optimization problems. As a main application we intro-
duced the load clipping problem used in electricity supply and management.
IK model, the problems defined for it and their complexity properties, appli-
cations, and the presented methods with the experiments are new, although,
most of the results have already been published in [1]-[6]. Additionally, a lot
of corrections are presented in this work.

We have considered three decision problems, IKHD, IKD and MDIK and
two optimization problems, IKHO and IKO. These have further variations: for
example, the clones may have fixed lengths, varying or variable lengths. The
model was represented with two interaction types: radiation and copying. In
the larger load clipping application we presented a third interaction type.

The above five IK-problems were shown to be NP-complete, and IKD and
MDIK (and IKO) to be strongly NP-complete. IKHO is W/[1]- and APX-hard,
and hence, so are the other problems. Moreover, IKHO was shown to equal
0-1 MDKP.

After these negative results, we turned our attention to the cases, which
can be recognized in polynomial time. We have constructed polynomial time
algorithms for special cases of IKHO, IKO, 0-1 MDKP (and 0-1 IP) and 0-n
MDKP (and 0-n IP), n fixed, which have easily recognizable weight structure
on the item weights. The structures have a size parameter that characterizes
the running times of different instances. Eventually, we can even characterize
the classes of instances, where the size parameter is not fixed. Similarly, the
growth in n in the problems with several items is described as well.

We have left some problems open. For instance the running time ana-
lysis handling the sizes of instance parameters concerning individual weights,
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profits, and knapsack sizes. In some applications this is not crucial and we
may assume that parameters fit into a single memory word and can be read
and written in constant time. Obviously, this assumption does not hold in all
applications.

We have given several applications for our model. Some of the presented
applications are a bit theoretical in nature, but they emphases the close rela-
tionship between different problems. A real life application, load clipping, is
used by electricity suppliers. We have not presented nor used all the restric-
tions electricity suppliers use [3, 6].

Load clipping was solved with four heuristics, several versions of DPs and
GAs. The results of our experiments show that the implementations are suit-
able for the task they were designed. Heuristics, DPs, and GAs can be further
developed.

In DP, the properties of the state space have been analyzed, and quicker
optimization algorithms are formed without sacrificing the accuracy of the
results when payback is not used. Moreover, we have found practical ways to
improve the results by increasing the state space when payback is used. We
have presented detailed DP solutions with three and four state variables. Our
DPs are sub-optimal. If the result accuracy is not crucial, one can drop wait
states away, arriving to a faster two state variable solution of [29].

Next we list some fruitful research directions. Starting with the IK model,
we have bypassed the stochastic interactive knapsacks. Many problems con-
nected to interactive knapsacks are of stochastic nature, including the knap-
sack problem [54, 62], the multi-dimensional knapsack problem [40], scheduling
[78, 88], and load clipping [20], among others. The load clipping problem con-
sidered in this work can be presented as stochastic optimization problem taking
into account the unknown price and income factors as well as the uncertainty
in the consumption forecast.

We also intend to study the properties of interactive knapsacks with respect
to the other complexity classes presented in the literature. These include, for
instance, the classes #P, Opt P, Max P, Mid P, Gap-P, Med P and Max
FSLIP (for definitions and further directions for listed classes, see [101] and
[10]). Another theoretical direction is to study, if it is possible to verify locally
optimal solutions [63] or to test optimality [19].

A question related to load clipping application is the variable clone length.
Some of the controllable utilities have minimum and maximum control lengths
and the optimization method should determine the number of controls (clones),
and their starting times and lengths. The problems (4.16), (4.12)—(4.15) and
(4.22), (4.18)—(4.21) can be easily modified to allow the decision of the clone
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length. The proof of Theorem 5.2 describes a special case, where the utilization
of the variable clone length is easy and efficient.

We leave it open to incorporate the variable clone lengths to the other
methods presented in Chapter 5. Especially, we would like either to redesign
the method given in the proof of Lemma 5.7, or to design a completely new
method. If neither of the approaches works, we could establish some hardness
results showing the inefficiency of the case handled in Theorem 5.9.

Another line of possible improvements is connected to the clone length: in
the method of Theorem 5.2 we are able to jump several knapsack at a time
while the other methods do not allow that. The reason is radiation. Even
though we do not use radiation in Theorem 5.12, the method does not use long
jumps. Further, it may be possible to replace the method behind Theorem 5.9
so that longer jumps based on the clone length are possible and at the same
time the radiation is handled correctly.

We can also pose open some other natural questions related to the methods
presented in Chapter 5. Now the weight matrices have special structure that
contains shape (band matrix, length of radiation and clone). The band matrix
restrictions can be easily generalized to use the left and right radiation as
lower and upper diagonals, but we would like to establish that the shape is
not essential as long as there are not too many knapsacks. We also know that
the shape cannot be relaxed too much, since for instance two variables per
inequality are enough to make the problem NP-complete [55].

0—n MDKP in Section 5.5 uses the same bounds for each decision variable.
To enhance the usability of the presented approach, we would like to have
separate ranges for each decision variable.

The presented methods (of Chapter 5) may work well with some other
models and methods. For example, difference constraints of the form z; —
z; < by, can solve problems containing relative timing constraints [30] (in
polynomial time by using shortest path methods, see also [43]). In a way,
we can interpret difference constrains as giving a minimum and maximum
lengths for controls (minimum and maximum ¢ of a clone), which are pairs
of consecutive variables: z; gives end time and z, the start time. We can
also state that two consecutive clones (controls) cannot overlap by making
restrictions x3 — xo > 0.

If we want to use some objective function, the application of difference con-
straints is not straightforward. Moreover, the use of some extra constraints
(knapsack capacities, for example) is not easy to model with difference con-
straints. It would be interesting to see, if one can efficiently add difference
constraints to the presented methods, and thus broaden the class of problems
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that can be solved in polynomial time.

By choosing appropriate interaction functions I, profits p, weights w and
knapsack capacities b, we can imitate some scheduling problems, like “sequen-
cing with release times and deadlines on one processor” or “single machine
scheduling” (see Chapter 6 and Section 7.2). Can we utilize the methods
presented in this paper to those problems? And of course, we want to find out
other problems, in which the presented methods work well.

Contrary to the above line of thought, we may also ask, how general is the
applied approach of coding restrictions into the vertex sets and then search
the path. It may be directly applicable to a large class of problems without
using the IK model or MDKP in between. We may try to obtain restriction
matrices with desired properties, or to code restrictions directly to a similar
graph we used.

Methods presented in Chapter 5 may be used in the design of heuristics.
There are at least two approaches: we may try to reduce either the size of the
vertex sets or the number of sets (and somehow ensure that the we comply with
the problem restrictions). Another approach is connected to the applications:
we may decrease their solution space somehow and then apply the presented
methods to give exact solutions for the reduced instance.

Sometimes the application may imply a natural way to reduce the number
of vertex sets. For example, in load clipping there may be time intervals, when
there is no need to optimize. Even though we can recognize those intervals
easily in load clipping, we have to be prepared to optimize the whole time
interval. The running time analyses can be utilized here. If the actual optimi-
zation interval can be reduced enough, we may use the method presented for
IKHO. Otherwise we may use larger set of controlling utilities (that is, use
larger n in IKO). The decision is dynamic and cannot be tested beforehand,
as opposite to comparing the running times beforehand to help the choice of
an appropriate method.

The shortest resource bounded methods we utilized to achieve the given
results are also interesting. The use of shortest paths is a much studied subject
and we have efficient solutions for the directed acyclic graphs. Since our graph
constructions are highly symmetric, it may be possible to find out the shortest
paths more efficiently. Furthermore, we can save space by updating the paths
at the same time as constructing graphs so that only a vertex set is kept in
memory. It may give faster solutions (which is the case, for example, in the
discussion preceding Corollary 5.16). Other possibility is to form paths depth
first (see, for example, [13, pp. 62-81]) and apply, say, branch and bound.

Some special cases may impose efficient algorithms for IK problems IKHO
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and IKO, or for load clipping, like convex or concave profits p;;. Orlin [83]
study knapsack problems with convex and concave profits which might give
some directions, although the 1K problems are quite different from the plain
knapsack problems.

Load clipping also raises some possible research directions. When we
made comparisons, state variable k£ (control count) seemed to behave “softly
enough”, so that we can reduce the number of states used. For example, if we
have just began our optimization or if we are near the end (the current stage
number is near zero or m), we do not need every state in a stage. Moreover,
the control length ¢ may have some properties, by which we can further speed
up the algorithms.

The fine tuning problem of GA can hopefully be solved by combining tabu
search techniques into the GA. Also different codings should be tested: for
example

“000010000200000000100020000”

could describe the first (1) and the last (2) knapsacks corresponding to a
control (or to a clone). Now a crossover is allowed between 2’s and 1’s but not
between 1’s and 2’s. This would prevent us breaking the clones (controls) with
crossover operations and would at least partly maintain the “building blocks”.
A swapping of two near positions may work as a mutation. We also need a
way to easily move a tail one position forward or backward. That could also
be used as a rare mutation type.

We also need a way to add or remove clones (controls). Alternatively, we
could choose to maintain in the population some sets of individuals containing
a fixed number of clones (controls). These subsets in the population would
not be mixed but they rather should operate with the corresponding subsets
in the other individuals.

Dynamic knapsack problems are considered in [62]. IK problems, especially
when applied to load clipping, have very dynamic nature: we first optimize
for one time setting and then after a while, we have to optimize again. GAs
presented in this work are well suited for this kind of situation. In load clipping
the optimization is repeated every hour and the instances do not differ much
between different hours. By forming a couple of nearby instances from the
currently solved instance we have a situation, where at least one solution is
near to the new instance. Now GA has a partial answer and it needs less work
in order to find the solution. We should study, how well other methods can
take into account the partial solutions in dynamic situations.
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Appendix A

Referenced problems

A.1 Single machine scheduling

Ibaraki and Nakamura [59] give the single machine scheduling problem in the
following way. The problem is to determine the optimal sequence of n jobs in
set N ={1,...,n} without idle time on a single machine. Each job becomes
available at time 0, requires integer processing time p; and incurs a cost g;(C;)
if completed at time C}.

The objective is to minimize

> a0,

1EN

the cost of the sequence of n jobs. Cost g;(-) can be nondecreasing, for example,
the weighted sum of tardiness or the weighted sum of earliness and tardiness,

gZ(CZ) = hz max{dz- - CZ', O} + w; maX{Ci - d,’, O},

where d; € Z, is the due date of job ¢ and h;,w; € Z, are the weights of
earliness and tardiness of job 1.
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APPENDIX A. REFERENCED PROBLEMS

A.2 Multi-period variable-task-duration assign-
ment problem

We state the multi-period assignment problem using the notations of Miller
and Franz [75] and follow closely their presentation of the problem. They
consider a multi-period assignment problem in which N employees are to be
assigned to one of M tasks during each of T" periods. Variable X;;; = 1 means
that employee ¢ (1 = 1,..., N) is assigned to a task j (j = 1,..., M) during
period k£ (k=1,...,T). Otherwise X, = 0.

The objectives can be to

min Z Z Z Cijchijlc
max Z Z Z Ciijijka

where Cjji, is the cost or benefit associated with each assignment. Tasks are

or to

covered by necessary manpower by constraints
S Xk Srje forall jand k
: ijk = jk J )
(]

where 7, is the number of employees required for each task j during period k.
Each employee is assigned to on task during each time period

Y Xye=1 foralliand k.
J

Employees serve also the required number of periods for all tasks

ZXijk =Tij for all 7 and j,
J

where 7;; is the number of periods of task j required by employee . Other
constraints might include individuals who must be assigned to a specific task
simultaneously, assigning multi-period tasks to contiguous time periods, or
specifying prerequisite relationships between tasks

Xijk - X,L'lj/kl.
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A.3. MULTIPLE TRANSLATIONAL CONTAINMENT

A.3 Multiple translational containment

Milenkovic [74] studies the multiple translational containment, a NP-hard lay-
out problem and uses the following symbols:

e (C is for a polygonal “knapsack” with n vertices,
e P, 1< i<k, isapolygon with m; vertices to be placed in the knapsack,

e V;, 1 <1<k, is the set of translations of P; that places it in the interior
of C,

o U;;, 1 < i <k, is the set of displacements between P; and P; such that
they do not overlap each other (U;; = —Uj;).

A valid configuration for Py, P, ..., Py inside C is a list of translations (t1, ..., )
such that
t, €V, 1< <k, and tj—tiEUij, 1<i<j<k.

The kNN problem is to find a valid configuration for £ nonconvex polygons
inside a nonconvex knapsack and £CN for £ convex polygons inside a noncon-
vex knapsack. The (r, k)NN problem is to find all subsets of size k out of a set
of r nonconvex polygons such that the £ polygons have a valid configuration
inside a given nonconvex knapsack and (r, k)CN is defined similarly.
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A.4 Some known NP-complete problems

In this appendix we list the NP-complete problems used in this work. Most of
the problems are taken directly from [45].

PARTITION
Instance: A finite set N and a size s(n) € Z* for each n € N.
Question: Is there a subset N’ C N such that

SUBSET SUM

Instance: A finite set N, a size s(n) € Z" for each n € N and a positive integer
B.

Question: Is there a subset N’ C N such that the sum of the sizes of the
elements in N' is exactly B?

SIZED SUBSET SUM

Instance: Like in SUBSET SUM, and a positive integer k.

Question: Is there a subset N’ C N of size k such that the sum of the sizes of
the elements in N’ is exactly B?

KNAPSACK

Instance: A finite set N, a size s(n) € Z* and a profit p(n) € Z* for each
n € N, a size constraint B € Z*, and a profit goal K € Z™.

Question: Is there a subset N’ C N such that

Z s(n) < B and Z p(n) > K?

neN’ neN’

0—1 MDKP

Instance: Finite set X of pairs (z,b), where x is an m-tuple of nonnegative
integers and b is a nonnegative integer, an m-tuple ¢ of nonnegative integers,
and a nonnegative integer B.

Question: Is there an m-tuple y of nonnegative integers such that xy < b for
all (z,b) € X and such that cy > B?

We define similarly 0-n MDKP, 0-1 IP, 0—n IP, and GAP.
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A.4. SOME KNOWN NP-COMPLETE PROBLEMS

LONGEST PATH

Instance: Graph G = (V, E), length l(e) € Z* for each e € E, positive integer
K, specified vertices s,t € V.

Question: Is there a simple path in G from s to ¢ of length K or more, i.e.,
whose edge lengths sum to at least K?

SHORTEST WEIGHT-CONSTRAINED PATH

Instance: Graph G = (V, E), length I(e) € Z", and weight w(e) € Z" for each
e € FE, specified vertices s,t € V, positive integers K, W.

Question: Is there a simple path in G from s to ¢ with total weight W or less
and total length K or less?

In the case of LONGEST WEIGHT-CONSTRAINED PATH, we are to find a path
with total length K or more. In the k-resource bounded problem we have a
k-tuple of weights w(e) and a k-tuple W.

HAMILTONIAN PATH
Instance: Graph G = (V, E).
Question: Does GG contain a Hamiltonian path?

SEQUENCING WITH RELEASE TIMES AND DEADLINES

Instance: Set T of tasks and, for each task ¢t € T, a length [(t) € Z™, a release
time 7(t) € Zg, and a deadline d(t) € Z*.

Question: Is there a one-processor schedule for 1" that satisfies the release time
constraints and meets all the deadlines, i.e., a one-to-one function o : T — Z{,
with o(t) > o(t') implying o(t) > o(t') + ('), such that, for all ¢ € T,
o(t) > r(t) and o(t) + 1(t) < d(t)?

MULTIPROCESSOR SCHEDULING

Instance: Set T of tasks, number m € Z* of processors, length [(t) € Z* for
each t € T, and a deadline D € Z™.

Question: Is there an m-processor schedule for 7' that meets the overall dead-
line D, i.e., a function ¢ : T — Z¢ such that, for all v > 0, the number of
tasks ¢ € T for which o(t) < u < o(t) + I(t) is no more than m and such that,
forallt € T, o(t) + I(t) < D?
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JOB-SHOP SCHEDULING

Instance: Number m € Z™ of processors, set J of jobs, each j € J consisting
of an ordered collection of tasks t;[j], 1 < k < nj, for each such task ¢ a length
I(t) € Z¢ and a processor p(t) € {1,2,...,m}, where p(tx[j]) # p(trs1]s]) for
all j € Jand 1 < k < nj, and a deadline D € Z*.

Question: Is there a job-shop schedule for J that meets the overall deadline,
i.e., a collection of one-processor schedules o; mapping {t : p(t) = 4} into Z,
1 <4 < m, such that o;(t) > o;(t') implies o;(t) > o;(t') + I(t), such that
o(ts1lg]) > o(tk[4]) + 1(tk[j]) (where the appropriate subscripts are to be as-
sumed on o) for all j € J and 1 < k < n;, and such that, for all j € J,
o (tn;[j]) + I(tn;[5]) < D (again assuming the appropriate subscript on o)?
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Appendix B

IK problem repository

We list a number of problems for IK model. Most of the present problems can
be motivated by load clipping. The presented list is demonstrates, what kinds
of problems can be easily presented with IK model. We start from simple
problems and add features to them. Some of the problems are artificial, while
most of them can be motivated by load clipping.

In each following optimization problem we have z;,z;; € {0,1}, profits
Di, Pij, weights w;, wyj, lengths of clones ¢, ¢;, ¢;;, lengths of radiations u, u;, u;;
and functions I, I;; : {1,...,m} — Q, for knapsacks ¢ = 1,...,m and items
Jj =1,...,n, with capacities b;, and a positive integers K, K;.

B.1 Fixed clone and radiation lengths

IKHO (interactive knapsack heuristic optimization problem). Our aim is to

m i+ctu
max >z »  Li(k)p,
i=1 k=i—u
m
subject to szwzlz(l) S bl, = 1, e,y
i=1
2 =0, fori<k<i+4+c whenz; =1, i=1,...,m,

z;=0o0r1, t=1,...,m,

m
i=1

169



APPENDIX B. IK PROBLEM REPOSITORY

IKO (interactive knapsack optimization problem). Our aim is to

n i+ctu

szu Z (K)pr;

i=1 j=1 k=i—u

m n

subject to Z Z-'L'z'jwijfij ) < by, l=1,...,m,
i=1 j=1
zp; =0, fori <k<i+c¢j,whenzy; =1, ¢=1,...,m, j=1,...,n,
z;; =0or1, i=1,....m, j=1,...,n,
m
sz’jSKj, j=1...,n.
i=1

MDIKO (interactive multi-dimensional knapsack optimization problem). We denote
Ji={1,...,mj}for j=1,...,gand J = J; x --- x J;. Moreover, I;; = C'UR for all i and

J, and not Cj; U R;; as for variable case. Our aim is to

max Y Y wi; ¥ Lij(k)p;

ied j=1 kel;;

subject to ZZwijwiinj(l) <b, le,

i=1 j=1
z;; =0or 1, 1e€d, 3=1,...,n,
Z.’UUSK]', j:l,...,n.
i€J

AVKHO (interactive added value knapsack heuristic optimization problem). Let Sj, =
>, iwili(k). Our aim is to

m i+ctu

sz Z Li(k)pr(Sk),

i=1 k=i—u
subject to S; < b;, i=1,...,m,
=0, fori<k<i+c¢ whenz; =1, i=1,...,m,

z;i=0or1, 1=1,...,m,

m
Z.Z‘i S K.
i=1
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B.2. CLONE LENGTHS DEPENDING ON ITEM AND KNAPSACK

AVKO (interactive added value knapsack optimization problem). Let Sy =
iy 2y TijwijIij (k). Our aim is to

n i+ctu

max szw Z I (k)pr; (Sk)

i=1j=1  k=i—u

subject to S; < b;, i=1,...,m,
2y =0, fori<k<i+c whenzy; =1, i=1,...,m, j=1,...,n,
zi; =0or 1, i=1,....m, j=1,...,n,
m
> i < K, ji=1,...,n.
i=1

B.2 Clone lengths depending on item and knap-
sack

The lengths (forms) of clones and radiation can depend on three different entities: item,
knapsack or both. These problems are similar to the ones defined in the previous section.
We still use z’s as our decision variables. In some cases we saw that these problems are as

easy as the fixed clone length variants.

IKHO In IKHO with clone lengths depending on item and knapsack our aim is to

m i+citui

max >z »  Li(k)px,
i=1  k=i—u
m
subject to inwﬂi(l) S bl, = 1, o,y
i=1
2 =0, fori<k<i+c¢,whena; =1, i=1,...,m,
z;=0o0r1, t1=1,...,m,

m
i=1

IKO 1In IKO with clone lengths depending on item and knapsack our aim is to

n i+cijtuij

max z Z.’Ez’j Z I,'j (k)pkj

i=1 j=1 k=i—u;;

m n
subject to Zinjwiinj(l) <b, l=1,...,m,
i=1 j=1
2p; =0, fori <k <i+cy,whenz;; =1, i=1,...,m, j=1,...,n,

z;; =0or 1, 1=1,....m, j=1,...,n,

m
ZIL',']'SKJ', j:l,...,n.
i=1
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B.3 Variable clone lengths

Using variable ¢’s the problems change more than between the fixed and dependent cases.
In applications variable ¢’s are more common but variable u’s also occurs as well as variable
I;;(-)’s. We have several ways to implement variable clone lengths, of which we present one:
we focus only on variable ¢ and radiation u depending on clone length ¢, knapsack and item.

We have added more constraints as they can be naturally introduced to the problems
in question; that is, constraints setting minimum and maximum lengths for c. We also need
constraints linking ¢ and z, and the decided length for interaction function.

IKHO In IKHO with variable clone lengths our aim is to

m i+citui(ci)

max sz Z Ii(k, ci)pr,
i—1

k=i—u;(ci)
m
subject to inwifi(l,ci) < by, l=1,...,m,
i=1
c¢min < ¢; < cmax, 1=1,...,m,

=0, fori<k<i+4c¢,whenz; =1, i=1,...,m,

17 ifCiZO; .
T; = i=1,...,m,
0, ifCi:—].,

m
i=1

IKO In IKO with variable clone lengths our aim is to

m n itcij+uij(cij)
max » Y mi; Y, Lij(k,ci)pr
i=1 j=1 k=i—uij(cij)
subject to Z S I,-jx,-jwijlij(l,cij) <b, l=1,...,m,

i,J

cmin; < ¢;; < cmaxj, i=1,....m, j=1,...,n,

zp; =0, fori <k <i+cy,whenaz; =1, i=1,...,m, j=1,...,n,
1, if Cij Z 0, . .

T; = ] i=1,....m, j=1,...,n,
0, if Cij = —1,

m

ZZL’USKJ' j=1,...,n.

i=1
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Appendix C

Material for load clipping

C.1 Web resources on energy management

General descriptions about energy and demand side management can be found,
for example, through the following www-pages:

— http://dsm.iea.org

— http://www.eia.doe.gov/cneaf/electricity /dsm/dsm_sum.html

— http://www.eren.doe.gov/EE/power_dsm.html

— http://www.peaklma.com

— http://www.transmission.bpa.gov/orgs/opi/Power_Stability /index.shtm.

The last link in the above list contains many links to direct load control.
The glossaries of terms can be found, for example, in the following www-pages:

— http://www.eia.doe.gov/cneaf/electricity /dsm/dsm_gloss.html
— http://www.lanl.gov/projects/cctc/resources/library/glossary/glossary.html.

C.2 Data for the first test set

In the load clipping tables (for instance in Table C.1) positive numbers indicate
under fillings (overload) and the negative ones over fillings (underload). Recall
that each hour consist of twelve knapsacks and these numbers are averaged in
each hour.

In Tables C.2, C.5, and C.8, sa means safety area and sa 2 means the safety
area per cent of the clone length. Cum. m means cumulative minutes, that is,
how much we are allowed to put clones into the knapsack array.

173



APPENDIX C. MATERIAL FOR LOAD CLIPPING

If K is not specified (oo in the table), we obtain K by K = (cum. m)/cmin
for DPs. Heuristics and GAs work well without K while DPs cannot easily
take it into account. This can lead to a nonfeasible solution, if the instance is
hard, because we can insert K clones of maximum length, thus exceeding the
cumulative upper bound. Radiations of the items are given in Figure C.1.

In the following, we first list the clipping situation, then the used items,
and last, the best result, for each instance.

Table C.1: The first instance (starting result —60670, ideal —960).

0.500 -0.530 -0.330 -0.160 0.460 1.040 2.380 1.890 0.640
-0.130  0.100 -0.400 -0.430 -0.310 -0.080 -1.670 0.470
0.390 0470 -0.310 -0.170 -0.040 -0.150 0.190 -14.500

Table C.2: Items used in the first test.

Item Priority w cmin cmax sa sa2 cum.m K
1. 1 0.8 6 120 2 10% oo o0
2. 2 0.972 6 36 12 50% 120 o0
3. 3 0.7 4 6 3 60% 60 s
4. 3 0.7 5 9 4  50% 60 00
5. 3 4.7 6 12 6 60% 60 00
6. 4 7 6 12 4 40% 40 's
7. 4 035 6 12 6 50% 60 s
8. 5 0.5 6 36 6 10% 72 o0

Table C.3: The best solution for the first test.

-0.283 -0.274 -0.055 -0.085 -0.101 -0.320 -0.328 -0.168 -0.278
-0.032 -0.888 -0.051 -0.049 -0.046 -0.058 -0.105 -0.086
-0.082 -0.006 -0.036 -0.123 -0.194 -0.141 -9.959 -9.219
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C.2. DATA FOR THE FIRST TEST SET

item 1 has no radiation 1 item 2 and its radiation N item 3 and its radiation lﬂ item 4 and its radiatio

item 8 has no radiation

) item 5 and its radiation [
5+ \1 7 11
B S EREEEECRPRE ot ‘ ----------- I -- 0-
S - . e
1 2 1 2 1 2

Figure C.1: The radiation patterns of items. Ticks are hours in horizontal axis
and MWs in vertical axis. Black line describes a maximum length clone and
grey line a minimum length clone. Both clones end in the same moment.

Table C.4: The second instance (starting result —96400, ideal —1200).

-1.000 2.000 2.000 -1.000 -1.000 -1.000 -1.000 -1.000  -1.000
-1.000 1.200 1.200 1.200 1.200 1.200  1.200 1.200
1.200 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -10.000

Table C.5: Items used in the second test. Radiations are like for the similar
items in the first instance.

Item Priority w cmin  cmax sa sa2 cum.m K
1. 1 0.8 6 120 2 10% oo 1
2. 2 0972 6 36 12 50% 120 1
3. 3 0.7 5 9 4  50% 60 5
4. 3 4.7 6 12 6 60% 60 2
5. 5 0.5 6 36 6 10% 72 2

Table C.6: The best solution for the second test.

-1.000 -0.019 -0.045 -0.002 -0.496 -1.000 -1.000 -1.000 -1.000
-1.000 -0.017 -0.005 -0.011 -0.073 -0.572 -0.103 -0.176
-0.012 -0.019 -1.000 -1.000 -1.000 -1.000 -1.000 -10.000
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Table C.7: The third instance (starting result —99350, ideal —1350).

-1.000  2.000 -3.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
-1.000 1.500 1.500 1.500 1.500 1.500  1.500 1.500
1.500 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -10.000

Table C.8: Items used in the third test. Radiations are like for the similar
items in the first instance.

Item Priority w cmin  cmax sa sa2 cum.m K

1. 1 0.8 6 120 2 10% oo 1
2. 2 18 6 36 12 50% 120 1
3. 3 4.7 6 12 6 60% 60 1

Table C.9: The best solution for the third test.

-1.000 -0.350 -1.261 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
-1.000 0.000 -0.300 -0.300 0.244 0.591  0.700 0.700
0.700 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -10.000
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C.3 Data for the hard instances

Both hard instances use the items given in Table C.2.

Table C.10: The first hard instance (starting result —324600, ideal —500).

1.500 1.000 1.500 2.000 2.500 3.000 3.000 3.500 2.400
2.000 1.600 1.400 1.000 1.200 2.200 2.000 2.500
3.000 2.500 2.000 1.000 1.500 1.200 0.800 -10.000

Table C.11: The best solution for the first difficult test.

-0.055 -0.179 -0.024 -0.221 -0.013 -0.026 -0.039 -0.006 —0.020
-0.012 -0.015 -0.037 -0.015 -0.064 -0.037 -0.008 -0.109
-0.023 -0.009 -0.003 -0.004 -0.045 -1.420 -0.014 -2.962

Table C.12: The second hard instance (starting result —5040500, ideal —500).

30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000  30.000
30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000
30.000 30.000 30.000 30.000 30.000 30.000 30.000 -10.000

Table C.13: The best solution for the second difficult test.

15.300 29.300 26.900 26.500 26.800 26.200 27.300 28.200 29.500
25.400 28.900 27.500 25.900 29.900 29.900 21.900 32.800
21.600 32.400 27.000 28.500 26.700 28.200 15.900  0.040
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C.4 Data for normal instances

All instances given in this section use the items given in Table C.2.

Table C.14: Morning peak (starting result —36300, ideal —1300).

-1.000 -1.000 0.500  0.500 1.000 1.500 1.000  0.500 0.000
0.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000  -1.000
-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -10.000

Table C.15: The best solution for the morning peak.

-1.162 -0.780 -0.059 -0.205 -0.013 -0.075 -0.236 -0.043 -0.051
-0.056 -0.449 -0.545 -0.040 -1.473 -0.688 -1.358 -0.078
-0.525 -0.665 -0.059 -1.107 -1.618 -0.803 -1.981 -3.856

Table C.16: Afternoon peak (starting result —58000, ideal —1300).

-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
-1.000 -1.000 -1.000 -1.000 -1.000 -1.000  0.500 0.500
1.500  2.000  2.000 1.000 0.500 0.100 -1.000 -10.000

Table C.17: The best solution for the afternoon peak.

-1.516 -0.704 -0.039 -0.449 -0.277 -0.059 -0.592 -0.088 —0.529
-0.399 -0.087 -0.399 -0.983 -0.179 -0.025 -0.033 -0.033
-0.023 -0.001 -0.003 -0.012 -0.014 -0.309 -1.545 -3.223
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C.4. DATA FOR NORMAL INSTANCES

Table C.18: Morning and afternoon peak (starting result —85050, ideal
—1100).

-1.000 -1.000 -1.000 0.500 1.000 1.500  1.000  0.500 0.000
-0.500 -1.000 -1.000 -1.000 -1.000 -1.000 -0.500 0.500
1.500  2.000 2.000 1.000 0.500 -1.000 -1.000 -10.000

Table C.19: The best solution for the morning and afternoon peaks.

-1.805 -0.389 -0.025 -0.033 -0.065 -0.033 -0.004 -0.001 -0.030
-0.320 -0.445 -0.563 -0.144 -0.180 -0.009 -0.011 -0.033
-0.031 -0.001 -0.008 -0.004 -0.549 -0.066 -0.744 -1.846
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