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Abstract

This dissertation deals with the local prediction of protein secondary structure from the

viewpoint of rare secondary structures. Protein three-dimensional structures are needed in

the biomedical field because structures indicate something about the functions of proteins,

and functions are almost everything that happens in a living cell. Unfortunately, it is

difficult to ascertain the structure of a protein, because the details of the structure are located

at the level of atoms. However, an amino acid sequence is fairly easy to solve and can also

be produced from a DNA sequence. This could be a shortcut to the structure and function of

proteins. We searched for ways to better understand the prediction challenge of secondary

structures. Our research started with polyproline type II secondary structure prediction. The

results showed that a neural network behaved well when the learning and test sets had a

uniform class distribution. However, the identification of amino acid sequences that

represent a rare class was difficult with class distribution of the real world. In this context,

prediction was hampered by imbalanced class distribution. We developed spectrum and

response analysis for the neural network which reveal the reasons for a certain decision. The

frequencies of prolines affected a major part of decisions and this was almost all that a

neural network could learn from the data. Apparently input sequences can take the

evolutionary pre-information to the learning process. With the polyproline II structure this

was a promosing idea and aroused interest in using the method with other structures and

other pre-information types. With hyperspheres we developed a learning algorithm that

achieved excellent prediction accuracy with all known secondary structure types.

Unfortunately, the method leaves cases unclassified - if uncertain generalization is reduced,

hyperspheres can achieve better prediction accuracies. Finally, for all secondary structure

types we analyzed the space used and found explanations for how the structure types behave

in the sequence space. The results showed that polyproline II is an exception among other

types because of its sensitivity to the amino acid proline.  We were able to show that for half

of sequences the nearest case seek its one's way to the distance as cases were randomly

generated. Therefore, in the sequence space there are no large clusters. Rather, around the

individual case (sequence) there is a sphere with high probability of achieving the same

secondary structure type.

Keywords: secondary structure prediction, neural network, machine learning
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1. Introduction

1.1. Machine learning

Machine learning algorithms have a great practical value. They are very useful in the area of

data mining, domains where humans may not have the knowledge or understanding to

develop effective algorithms and domains where a computer program must dynamically

adapt to changing conditions [Mit97].

Machine learning concerns the question how to construct computer programs that

automatically improve with experience [Mit97]. On the other hand, artificial intelligence is

based on the questions what is intelligence and how we can model it [CHK93]. The basic

task of machine learning is more practical and the role of artificial intelligence can be seen

as a support to the machine learning field. Machine learning research also utilizes

knowledge from statistics, philosophy, information theory and biology etc. [Mit97].

The basic idea behind machine learning is that an object can be described by the values of

its attributes [Gar01]. The aim of the methods is to find an unknown function that can

correctly classify the given examples by using only attribute information. Learning involves

searching, at the worst, through a space of all possible hypotheses to find the hypothesis that

best fits the available training examples [Mit97].

We can make several lists that include central machine learning methods. Mitchell presents

methods that seem to be important. His book includes methods on concept learning,

decision trees learning, neural networks learning, Bayesian learning, instant based learning,

genetic algorithm, learning sets of rules, and reinforcement learning [Mit97]. In addition to

this list there could be Markov models that are useful with temporal learning tasks [BB98],

and support vector machines that draw an optimal hyperplane in a high dimensional feature

space [DD01].
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The first four papers in this dissertation describe how a neural network accomplished a

difficult learning task. Therefore neural networks are next reviewed. They are popular tools

that provide useful information in the area of artificial intelligence and machine learning.

Researchers in the field of artificial intelligence assume that artificial neural networks allow

us to understand how biological neural networks work. In the machine learning field,

researchers are interested in neural networks because they make it possible to build more

intelligent machines and models [And97].

The history of artificial neural networks started in 1943 when McCulloch and Pitts [MP43]

built models based on ideas of actual neurons. The first models were simple networks that

used binary decision units. Two decades later Rosenblatt with some colleagues [Ros62]

constructed a weighted neural network model with perceptron units.  The efficiency of

neural models was increased when it was realized that networks can be built with hidden

layers. With hidden layers and a Werbos backpropagation learning algorithm, the networks

achieved more and more complicated models [Tay97]. One very important property of

multilayer perceptrons is universality, which means their capacity to approximate any

function at any desired accuracy [Alm97].

Modern models of neural networks are composed of simple parallel elements (see Figure 1).

Models for elements (neurons) are based on the biological nervous system [DB98]. In

general, a simple neuron may have several details, but most of them have many numerical

input lines (i.e. input attributes) and one output line (i.e. value for performed function)

[Mic97]. A transformation function that is inside an individual neuron may be one of the

several functions. A function takes every input signal into account and performs a

transformation operation. The topology of neural networks represents how individual

neurons are connected to each other and the external world. Topology plays a crucial role in

the functionality and performance of the network [Fie97].

The function of neural networks is largely made up of connections between elements.

Learning can be achieved by modifying the weight of connections [DB98]. There are three

major classes of artificial learning types: supervised, unsupervised and reinforcement
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Figure 1. Feed forward multilayer perceptron neural network and its basic elements.

learning. Supervised models (as in Figure 1) assume that a training set is available which

contains both input patterns and the corresponding desired output patterns [Alm97].

Unsupervised learning resembles feature extraction models and there is no external teacher

to oversee the learning process [Hay94]. Reinforcement learning is between supervised and

unsupervised models [Wer97], where a process maximizes a performance index called

reinforcement signal [Hay94].

1.2. On protein structures

The genetic information (i.e. instructions for construct) of a living organism is stored in a 1-

dimensional code in DNA. The code is dissolved in the synthesis of proteins that takes place

at the surface of ribosomes in any cell of a living organism [UTY98+]. In each type of

protein the polypeptide chain is folded into a specific three-dimensional structure [Leh79]

and the function of a protein is determined by its three-dimensional structure [CB00].
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Proteins cause almost all the events in the cells of a living organism. Therefore, there are

urgent requirements to determine the three-dimensional structures of proteins.

The structure of a protein has different levels and it has an energially and structurally

optimized form [Tur97]. The primary structure is the amino acid sequence of the protein

and can be presented by a sequence with 20 letters, where each letter indicates an individual

amino acid. The secondary structure describes the areas in the primary structure where

secondary structure elements occur in the backbone of the protein. In the backbone there are

also locations where there are no regular secondary structures [SO97]. The tertiary structure

is the three-dimensional structure of a single protein chain. The quaternary structure is the

three-dimensional native structure of complex of several chains [CB00, MKV89]. Figure 2

presents several viewpoints to the three-dimensional structure of a Calcium/Phospholipid-

Binding Protein (the Protein Data Bank (PDB) code is 1AOW).

X-ray diffraction (crystallography) methods for obtaining protein structure information may

be accurate, but some steps are uncertain [QS88]. Moreover, X-ray crystallography methods

require that a protein can be crystallized, however, this is not always the case. Proteins

cannot be brought into a sufficiently concentrated solution for liquid-state nuclear magnetic

resonance (NMR) spectroscopy [Eth02] and the result of an NMR study is not as detailed

and accurate as that obtained crystallographically [PDB]. However, the NMR method

provides useful information on the dynamic properties of molecules. Electronic microscopy

can also provide three-dimensional information from biochemical molecules. Unfortunately,

all these methods are time-consuming and they need much pure protein data, which may be

very difficult to procure.

The fact is that the primary structure information is much easier to get than information of

higher level structures. These are the practical reasons that compel us to predict three-

dimensional structural properties using primary structure information.
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Figure 2. Four views of three-dimensional structures of protein. In the upper left corner, the atoms are modelled with

spheres, in the upper right corner there is a protein backbone, in the bottom left corner each bond is presented, and

finally in the bottom right corner secondary structures are highlighted.
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The main dogma motivating protein structure prediction is that the three-dimensional

structure of a protein is determined by its sequence [HSS92+] and its environment, without

any great effect from external factors (i.e. chaperones and enzymes). Secondary structure

prediction is a major part of obtaining some structural information from any newly-

determined sequence [Ste96].

Why do we need to develop more efficient structure prediction methods? It is important

because the sequence-structure gap is constantly increasing and current methods are not

accurasies enough. Large scale genome sequencing projects produce a huge amount of

sequence data, but structure determination techniques fail to keep up with this sequence

production [Rost97].

1.3. Secondary structures

In the protein chain, two amino acids are connected via a peptide bond, where a carboxyl

group of the previous amino acid reacts with the amino group of the next amino acid and

thus forms the backbone in proteins. Using the peptide bonds, long chains of amino acids

can be generated (see Figure 3). The peptide bond is inflexible, but flexibility for rotation is

placed around the α-carbon (called the φ-angle and the ψ-angle, which together form the

φψ-space). Combinations of angles φ and ψ  are restricted to small regions in natural

proteins. A protein can fold into a specific three-dimensional structure by using this freedom

of rotation [CB00]. Regular behaviour in the combination of φ and ψ angles is a

requirement for a regular structure, i.e. a regular secondary structure element in the protein

backbone. However, not all secondary structures are regular. The appearance of a certain

secondary structure type in the place of certain amino acid depends slightly on amino acid

itself and the amino acid context.

What is the meaning of secondary structures in a protein in a biological environment? At

least it is known to be a major factor determining a three-dimensional fold [MBJ01], and

three-dimensional information can then provide information for the functions of proteins

[BG01].
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Figure 3. Peptide bonds and torsion angles. Only the bonds around of alpha carbon (Cα) can rotate; the C-N single

bonds of the planar peptide groups (broken line) are rigid [Leh79].

For example, the secondary structure α-helix has 3.6 amino acids per turn and appears

around point φ= -57° and ψ = -47° in the φψ space (see bottom right corner of Figure 2,

where there are many α-helix structures in the backbone). In the same way the other

structure types appear in the protein backbone by forming structure elements. Every

secondary structure has some role for the whole three-dimensional structure of the protein.

See Figure 4 and Table 1, listing all secondary structure types in our data set.
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Table 1. Names, symbols and definitions for seven secondary structure types.

SYMBOL T E H G S B PPII

NAME H-bonded turn extended strand alpha-helix 3-10-helix bend residue in polyproline
participates isolated type II

in beta-ladder beta-bridge
TYPE regular regular regular regular irregular irregular regular

phi  psi many -139  +135 -57  -47 -49  -26 many -78  +149
phi  psi -119  +113 

In this dissertation the polyproline type II secondary structure (PPII) plays a major role and

therefore needs detailed examination. The PPII structure forms left-handed triangular

helices and forms a cluster with φ and ψ at points -75° and 145°, respectively [AS93]. The

length of PPII elements is typically 4-8 residues [AS94]. The PPII structure is rare

(frequency 1.26%), but it has special biochemical properties; for example, it has an

important role in several signalling pathways [Sho95, SK98, WWS98, Bud99, and McP99].

In theory, a right-handed polyproline I is also possible, but was never detected in nature

[Sza97].

Figure 4. Behaviour of protein backbone with different secondary structure types.

1.4. Machine learning in bioinformatics and secondary structure prediction of

proteins

The computational analysis of biological sequences has completely altered the nature of

biochemistry since the late 1980s. The new term bioinformatics has been used instead of

computational molecular biology for some time now. Basically, bioinformatics is the
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analysis of biomedical data. More precisely, bioinformatics conceptualizes biology in terms

of molecules and applies informatics techniques to understand and organize the information

associated with these molecules on a large scale [LGG01].

Computational tools have become essential components of the research process in the area

of bioinformatics. The majority of biological data are inherently noisy. Models must

therefore be probabilistic. The methods classify sequences, detect weak similarities,

separate protein coding regions from DNA, predict the structure and function of molecules,

and reconstruct the evolutionary history etc. [BB98]. All these tasks need efficient

computational tools designed to solve specific problems.

The essential theoretical tools in bioinformatics are probabilistic models and information

theory. Frequently used algorithms include dynamic programming, gradient descent,

expectation maximization, Markov chains, simulated annealing, and genetic algorithms etc.

Machine-learning techniques are excellent for the task of discarding and combining

redundant sequence information. Currently, widely used machine learning methods in

bioinformatics are neural networks, hidden Markov models, several hybrid systems,

stochastic grammars and trees. We cannot forget the major role of the Internet, which can

provide a huge amount of data and modern tools for analyzing this data over the World

Wide Web [BB98].

Neural networks have many uses in bioinformatics. Neural networks are used to predict

properties or structures of molecules [e.g. QS88, BBF99+, FC96, RS94, Ros97b, RSR93,

SGT99] and are used for biological sequence analysis [e.g. ASB99, FA97, HR96, JS00,

PBB90+, SS97, CEB00, OAX97+, CDK00+] and many other purposes [e.g. CC95,

KSM92].

The whole three-dimensional structure of a protein can be predicted with the threading

method (i.e. fold recognition methods). The technique is based on searching for similar

sequences (two similar sequences having the same or relative sequences or subsequences

when similarity is high) from a database where there are already structurally known proteins
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[RSS97, RE97]. Another method to predict the whole three-dimensional structure is

homology modeling. The method is based on searching for a shared evolution history

(homology). Similar and homology sequences also provide useful information for secondary

structure prediction. Unfortunately, new sequences do not always have similar or homology

sequences in the set of structurally known proteins.

Given the crucial role of secondary structures, it is important to review their prediction

methods in detail. Early secondary structure prediction methods were based on either simple

stereochemical principles (chemical properties of the amino acids and principles of protein

architecture [KI02]) or statistics [Jon99]. One of the most widely used, the Chou-Fasman

method [CF78] uses an individual statistically defined parameter for every amino acid and

for every predicted structure type [PF90].

Nowadays neural networks are very popular tools for predicting the secondary structure of a

protein but there are also other approaches. One can make prediction, for example, with a

library of sequence-structure motifs [ByBa98], local alignments [SaSo97], support vector

machine [HS01], hidden Markov models [LGT98+], linear regression [GGG99+], and

decision trees [SML99]. It is also popular to combine modern methods like position-specific

scoring matrices with neural networks [Jon99], neural networks and Markov chains [BB98],

information theory and pattern recognition [GLG90+], and neural networks with multiple

sequence alignment [Ros97c]. The tradition of using external information to improve

prediction accuracy is fairly long [DR90].  Research is diversified but complete function

between sequence and structure is still missing.

The Critical Assessment of Techniques for Protein Structure Prediction (CASP) is way to

evaluate prediction methods. The center has been set up to provide the means of objective

testing of these methods via the process of blind prediction. In addition to supporting the

CASP meetings their goal is to promote an objective evaluation of prediction methods on a

continuing basis [CASP02]. Unfortunately CASP concentrates only on three-state

predictions (helix, strand and coil) in the secondary structure prediction category. Our

questions consist different class composition.
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Many secondary structure prediction methods build models by using a relatively short input

window of amino acids, centred at the prediction site. It does not use long-range information

and it is therefore a local method [BBF99+].

Neural networks need data in numerical form. Therefore categorical variables need

modification. The direct sequence encoding method preserves positional information,

converts each individual molecular residue into a vector and can only deal with fixed-length

sequence windows. It is also possible to use an indirect sequence encoding method that can

be used with a varying length sequence and can utilize the overall information measure of a

complete sequence string, but at the same time it disregards the ordering information

[WM00]. The first work with neural networks in the secondary structure prediction is that of

Qian and Sejnowski, who used the same encoding (direct and orthogonal) method as in the

NETtalk system. In their network the input layer was arranged in 13 groups. Each group had

21 units, where there were one 1 and twenty 0s. There were 20 units for amino acids and

one for spacers. Spacers replaced sequence position where there was no amino acid (i.e. gap

in a sequence) [QS88].

Since the first prediction methods, the accuracy of the methods has been important.

Prediction accuracy is the number of all cases that get a correct classification divided by the

number of all predicted cases. The correct classification means that the method correctly

predict secondary structure type that lie in the backbone in the place of a certain amino acid.

Today the best single predictors (PSIPRED and PHD [Jon99, PHD02 and Ros96]) are based

on neural network architectures. The secondary structure prediction method is rated at

clearly over 70% average accuracy for (water-soluble globular) proteins, in the three states

helix, strand, and loop. However, the best early statistical methods (Ptitsyn & Finkelstein)

achieved an accuracy of 63%. A method based on sequence similarity (Levin & Garnier)

achieved approximately the same accuracy. Early pattern recognition methods achieved an

accuracy of 64%.
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What actually is a good or bad prediction result? Unfortunately, it is difficult to compare

several prediction results to each other. Sternberg wrote aptly: "How good are secondary

structure prediction methods? Which of the many secondary structure prediction methods is

best? At present there can be no unequivocal answers to these questions, as a number of

methodological problems exist that preclude definitive answer. Because of these problems

the reader is hereby warned that it is dangerous to read a paper about a secondary structure

prediction method, notice its headline accuracy in the abstract, and assume that the method

will produce the same accuracy on the protein you are interested in, and that the method is

necessarily better than another prediction method with a lower headline accuracy" [Ste96].

In the preceding book Sternberg enumerates reasons for his point of view. Researchers may

select widely different subsets of proteins. Test proteins may have an evolutionary

relationship to the learning proteins. Secondary structure definitions may vary. Prediction

studies may consider different types of secondary structure types [Ste96].
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2. Results

2.1 Goals of the research

Throughout this research there have been two main goals: How can better methods be

established to predict secondary structures of proteins? How can difficult machine learning

problems be detected and encountered?

At practical level, the work began with a question as to whether we can predict rare

polyproline type II secondary structures. This was very interesting, because in the literature

there was no report describing the prediction of rare secondary structures.

The second question was, how to obtain information from a taught multilayer peceptron

neural network. This was interesting, because supervised neural networks are understood as

black boxes that cannot give causes for a certain decision. We also consider how we can

detect difficult learning tasks. We encountered this question, because a published method

behaved inappropriately for our results.

Encoding problems are very important in the area of machine learning. We tried to develop

a good encoding method for amino acid sequences that takes chemical properties of amino

acids into account and, at the same time, saves used memory.

Neural networks have problems with rare secondary structures. Therefore, we tried to find

another way to look at the secondary structure prediction problem. The final questions were,

how secondary structure types behave in the space of local sequence information, whether

behaviour explains the prediction problems, and how we can use this information to build

better prediction methods.
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2.2. General issues of the research

The papers in this dissertation describe our work in the area of the protein secondary

structure prediction. The papers look at the area from several viewpoints. We produce

general methods for the machine learning field, we use our methods and already known

methods to produce solutions for bioinformatics, and uncover properties which affect the

context of the protein secondary structure prediction.

Figure 5 presents the structure of the research process. Papers I-IV deal with polyproline

type II (PPII) secondary structure prediction problems. Paper I presents a hard

preprocessing project on the database selection to the prediction task. Paper II presents

details on the neural network prediction work and describes the results. Paper III considers

problems as to whether we can get some information from a taught neural network and how

we can contemplate complicated sequence space and learnability in this way. Paper IV

describes our solutions to the sequence encoding problems. Papers V and VI deal with all

known secondary structure types in the Dictionary of Protein Secondary Structure (DSSP).

Paper V presents a new general algorithm that can make accurate predictions for all

secondary structure types. Paper VI is a description of the work in which we tried to

uncover the behaviour of the secondary structure types in the sequence space.

Every paper in this dissertation can be presented under the claim that it supports the

observations detected in the current research. The claims are given in the titles of the

following subsections.
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Figure 5. Structure of the dissertation. The papers deal with different problems in the field of secondary structure

prediction. The first four papers describe how neural networks behave with PPII secondary structure data, while the last

two papers concentrate on the data with all known secondary structure types.

2.3. A huge amount of data but not enough (Paper I)

Our work with the PPII secondary structure predictions started with a data preprocessing

project. A great amount of protein structure data were available in digital form. In the

protein data bank [PDB, BWF00+] there was structure information for about 8000

macromolecules in autumn 1998.

The database had information on molecules that are not proteins. There was also redundant

information and some proteins with low resolution. Proteins with these properties were not

suitable for our purpose.
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Inside protein families (sets of proteins having the same evolutionary background) there was

still too high sequence similarity (perhaps also high sequence identity), which means that

there was also too high structural similarity. If in the data set there is too high similarity,

prediction accuracy may be distorted. We therefore used the PAM250 substitution table

[DSO78] and the pairwise sequence comparison of Needleman and Wunch [NW70] to

reduce similarity from protein families. Inside the families we compared all sequences

against others and if an identity value was higher than the limit 0.65, we discarded a protein

with lower resolution (i.e. the accuracy of biochemical measurement was lower). For large

families especially, the method was slow, but fast enough for our calculations.

Three-dimensional information of proteins was a suitable format in the DSSP files [KS83].

Information in DSSP files based on amino acids streochemical properties. There was

sequence information, atom coordinates, torsion angles, and several secondary structure

information for known secondary structure types. We used torsion angles as did Azhubei

and Sternberg [AS93, AS94] to locate PPII secondary structures from an amino acid

sequence. By using these files we set the structural conditions for torsion angles that

differentiated PPII and non-PPII cases.

After that, no further use was made of torsion angles and no other structural information;

machine learning techniques must find deviating characters of PPII and non-PPII sequences.

This is absolutely fundamental to the secondary structure prediction.

By using a common windowing technique (see for example [PBB90+]) the global

information disappeared, but there was no other choice because we used neural networks

(multilayer perceptron neural network (MLP)) for the lear ning task and this approach

needed a certain number of input attributes. We used Matlab neural network package to

practical prediction work [DB92, DB98].

Although we found about 4000 rare PPII occurrences for an MLP, the situation was

problematic. Naturally, the remaining windowed sequences (more than 300 000) belonged

to the non-PPII class and the distribution was markedly non-uniform. The MLP needs the
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same number of learning cases for all classes [Swi96]. Therefore, we had few choices to

equalize the sizes of classes [KM97, KHM98]. In this situation it was better to prune either

non-PPII classes or multiply PPII classes. It was reasonable to multiply PPII cases and this

way to take better account of the characters of non-PPII classes (i.e. sample stratification

[CEB00]). Multiplying was impossible, because orthogonal encoding methods [BB98] were

used. Encoding needed 20 input nodes for one amino acid and one sequence needed a vector

whose dimension was 260 (13 times 20). Matrices for both classes would include about 150

- 160 million elements. Thus, the only solution was to prune non-PPII cases. Despite the

pruning work, the matrices that included the whole learning material had over two million

elements, which was enough for Matlab environment. However, the sequence space and,

consequently, the 260-dimensional binary vector space were almost empty. These problems

are the consequence of infrequent PPII occurrences, used neural network implementation

and the huge size of the space.

We measured internal and external distances for PPII structures. The internal distance

means the Hamming measure, where for all PPII cases the distances to the other PPII cases

were measured. In the same way external distances mean distances from the PPII cases to

the non-PPII cases. It showed that inside the PPII class there were only slightly more

relative cases than outside the class.

Amino acid proline greatly affects classifications, as frequencies show. Prolines occur over

4 times more frequently in the middle of PPII sequences than in the middle of non-PPII

sequences. Proline also accumulates around the middle part of PPII sequences.

Swingler provided a method to determine learnability values for the machine learning data

set [Swi96]. The method uses Shannon's information theory. Learnability value can be

understood so that if both classes have identical cases, conditional entropy between classes

is high. Our results showed that data was easy to learn in this sense. Nevertheless, it was not

convincing, since an MLP could not learn perfectly with our learning set. The method did

not take advantage of the situation of the cases in the object space. Therefore, data with high

Swingler's learnability value may be easily learnable or not. Moreover, when a taught MLP
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is tested with a separate test set, the situation is more complicated and data with high

learnability do not tell us how difficult the prediction problem is. On the other hand, poor

learnability is probably a strong message of difficult data. This is not the only criticism of

this method (see for example [VJP01+]). Our solution to learnability value is presented in

paper III.

2.4. Badly distorted distribution causes problems for prediction (Paper II)

Theoretical considerations showed that the distribution between classes in a learning set

should be almost uniform [Swi96, DB91]. This is quite easy to carry out, but unfortunately,

this operation ensures that an MLP learns a uniform distribution. This action does not prove

that the method works with test cases where a naturally rare phenomenon has the natural

distribution. This action only proves that an MLP learns some characters from the learning

set and supposes that it learns some common features that also affect in a test set. Therefore

we used a uniformly distributed test set and achieved quite good prediction accuracy.

However, we also tested MLPs with naturally distributed test sets. MLPs learned from

uniformly distributed learning sets that the PPII class uses about a half of the object space

(the reasons for this become clear in Paper VI). With a test set the method tried to classify

cases with almost the same ratio; the number of false positives increased dramatically and

the prediction accuracy of the small class decreased.

Swingler also considered this problem [Swi96] and gave a solution. His method calculates a

posteriori probabilities for an MLP that were learned from a uniformly distributed learning

set. The method calculates a value that takes network output values, frequencies of the

classes and actual class probabilities into account. The method outputs a posteriori

probabilities for input cases that respect the natural distribution. Unfortunately, the method

did not give improvements. Actually, the sensitivity of the method prevents all PPII

predictions. Therefore all test cases were classified into the non-PPII classes - the method

did not work in this situation.
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After publishing the Paper II we tried our simple frequency compelling solution on PPII

secondary structure prediction. It predicts a test set in a normal way and then arranges

outputs of MLP (and input cases) in ascending order. Suppose that N is the number of cases

in the test set and f is the frequency of the class of interest in the learning set. Then select Nf

cases, thereby obtaining the best prediction values to get classification for the class of

interest. The method worked slightly better than Swingler’s method, but the best prediction

accuracy was only 8.5% and the method found 11% of PPII cases. We can summarize that

there are many cases in the non-PPII class that resemble PPII cases too closely. However,

with uniformly distributed learning and test sets prediction accuracy was 73.7%.

The rule of thumb for the MLPs stated that the number of learning cases should be about ten

times the number of connections inside a network [Bis95]. In the network used with one

hidden layer the size of the input layer was 260 and the number of hidden nodes range

between 2 and 25 (the number 4 gave the best result). With 4 hidden nodes there were 260 ·

4 + 4 · 2 = 1048 connections in the network. Our data set was slightly smaller than that

requirement.

We tested several numbers of hidden nodes and found that an MLP with a relatively small

number of hidden nodes gave the best results. This was surprising, because the data seemed

to be so complicated. Moreover, in the literature there were results that an MLP without

hidden nodes predicted typical protein secondary structures almost as well as a network

with hidden nodes [QS88, RSR93]. We can conclude that there are no strong non-linearities

in data sets for protein secondary structure prediction.

It is clear that PPII structures were difficult to predict, but we found some positive aspects

from this problem. These problems led us to develop a hypersphere machine learning

method (Paper V) that was not disturbed by uniform distributions. We can also point out

that the prediction accuracy relative to the density is higher (2.6 times with the basic MLP

and 6.7 times with frequency compelling method) than, for example, for α-helix in

conventional prediction context.
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2.5. A neural network may explain the causes for decision (Paper III)

Our work with MLPs inspired us to search for explanations for MLP decisions. How can we

find those characters in the input vector that cause a marked effect in the network and

advocate some classification? These are not new questions in the history of MLPs (see

[Swi96]) but we tried to find better and simpler answers.

A spectrum of an MLP shows how strongly each value of a categorical variable affects an

output node of an MLP. The method requires that variables are encoded to a binary vector

as in the secondary structure prediction of protein, i.e. all values of the variables have their

own input nodes. Moreover, all classes need their own output nodes. The algorithm is

simple; the method inputs vectors when there is one 1 and others are 0 to the MLP. Input 1

is delivered to each input node one by one and after every such input the method considers

network output nodes. The spectrum is a set of output values and results are easy to

visualize.

As expected, amino acid proline had a strong influence on the PPII classification (as in

[AS93, AS94]). It is somehow surprising that there are several amino acids in an exact place

that resists the appearance of a PPII structure decision. The method does not give much

more information on the data than a simple frequency consideration. However, deviations

between the frequency and spectrum could be an indication of a nonlinear relation between

input variables. See the half mirror (“puolipeili” in Finnish) example in [Sie99].

The response analysis of the MLP is more advanced than the spectrum analysis. The MLP

with one or more hidden layers can form non-linear classification surfaces in the variable

space. There may be situations where certain values of certain variables jointly affect

classification greatly, but not alone. The response analysis tries to find these variables and

certain values of variables by means of the MLPs learned. These variables and values are

possibly the generators of the phenomenon that we are interested in.
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For the MLP we used a binary vector input that can be transformed into the natural amino

acid sequence of a certain length (called permitted input). The method with a genetic

algorithm generates permitted inputs to the MLP and, for every input, checks the values of

the output nodes. If the output nodes showed strong classification, the input was accepted

for refinement (switch off state in the original algorithm). The refinement tries to elucidate

the phenomenon by eliminating unimportant inputs.

The method showed that a strong PPII decision comes out of the MLP almost exclusively

due to proline. Therefore, we can conclude that the PPII structure can originate in the

backbone, when there are prolines in and around the middle part of the sequence. This was

already known, but a new observation was that remote (four residue) amino acid S slightly

strengthens the appearance of PPII.

Swingler describes Pilkington’s method of capturing information from an MLP [Swi96]. He

suggests that non-linearities can be expressed by calculating the correlations between each

input value and the sensitivity of each output unit at each point in the variable space. If

calculations produce non-zero correlations, there are non-linearities in the data.

Swingler criticized Pilkington’s method, because for a non-linear relationship it is possible

to lead to a zero correlation. After that he presented his own solution to solve the problem

why a certain classification was done on an individual input vector. The method was based

on the variance of the partial derivatives of each output unit with respect to each input unit

as random input patterns were presented to the network. The method can tell why certain

output value was given, can help in altering the inputs to achieve a desired output, can tell

about decision boundaries and provide extra confidence in a network output by providing an

explanation of how that output was produced [Swi96].

To summarize, Swingler’s method is based on using a difference in certain output units

relative to a difference in certain input units and helps to find areas of the input space where

there is high or low non-linearity. A difference between Swingler’s and our methods is that

without the derivative and other such considerations, our methods concentrate on finding if
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there are values of certain variables that strongly affect the classification (i.e. generators of a

phenomenon).

2.6. Scattering is a learnability indicator that takes the positions of cases into

account (Paper III)

How can we recognize difficult learning tasks? Swingler’s information theoretical method

considers whether the learning cases are identical and belong to different classes [Swi96].

On the other hand, computational learning theory concentrates on different questions. How

many training examples does a learning system need to converge to a successful hypothesis,

how much computational effort does a learning system need to converge to a succesful

hypothesis and how many training examples will a learning system misclassify before

converging to a successful hypothesis [Mit97]?

The preceding methods do not take into account positions on the cases in the variable space.

We believe that positions of cases are especially important for prediction accuracy when

learning methods generalize decision rules throughout the whole variable space and then try

to predict unseen query cases. For these problems we developed a new method to measure

the learnability of the dataset; we call it a scattering value. This simple method takes into

account information theoretically problematic learning tasks and also positions of cases in

the variable space. We can consider the results via the parameter and linechart that uncover,

for example, clusters of a single class.

More specifically, our technique considers whether the classes are easily separable in

variable space. If so, the generalization is more reliable. In other words, our methods

recognize situations which require a complicated function from variable space to the set of

classes. Swingler’s method considers a number of positions in spaces where a certain point

is mapped to several classes but does not pay attention to the complexity of the function.

First, the method randomly selects a case from the dataset, removes it, and starts to build a

queue in which to put the class label of the case. Second, it selects the nearest case (used
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distance concept in PPII secondary structure predictions is the number of amino acids that

differ at the same positions) from the previous one, removes it and still continues to build

the queue until there are no cases in the set. If there are several nearest cases, it randomly

selects one from among them. Third, the technique calculates a learnability value from the

queue. The algorithm reads the queue from begining to end and compares a current class

label to the previous one and sums all situations where labels deviate. The learnability value

is the number of changes between classes in queue divided by the number of the theoretical

maximum of changes. The algorithm could travel through the variable space several times,

but is almost independent of the starting point (i.e. reliable indicator).

We computed a scattering value of the data that includes PPII and non-PPII cases and used

the Hamming distance metric. The results showed that the classes are badly mixed with

each other, because in the learning set the scattering value was 0.38, which for uniformly

distributed classes is 0.5. We also tested cases which the MLP classified as PPII cases (true

positive and false positive). For these cases the scattering value was 0.71 - they were totally

jumbled together.

We also performed the scattering process for every known secondary structure type from

the data set (same data set as described in Papers V and VI). The result, as expected, was

quite bad. The scattering ratio was 0.53, which means that the nearest case came more

probably from a class other than its own - the situation concerning our data set was very

problematic.

The scattering method is common in the machine learning field and gives valuable pre-

information on a data set.

2.7. A space-saving method that may include external information (Paper IV)

It is quite surprising that the original orthogonal coding method for MLPs [QS88] is so

popular. The orthogonal encoding method uses 21 or 20 input nodes for one amino acid.

However, this grows markedly along with the number of connections in the network.
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Wu and McLarty presented several sequence encoding methods in [WM00]. There are

methods available that do not need so many input nodes for one amino acid as does

orthogonal coding. The methods simplify amino acid information by using lower

dimensional vectors to present, for example, hydrophobity categories. They even use

evolutionary information via the PAM substitution table [DSO78]. The use of the

substitution table is fairly reasonable, because it includes information on how common

replacement of amino acid i by amino acid j is in a natural amino acid sequence [BB98].

We designed new methods to include several kinds of information for the sequence

encoding task. The method was tested with evolutionary information from the PAM250

substitution table [DSO78]. It could be reasonable to use several types of pre information,

because it helps to generalize, i.e. it may bring remote sequences closer in the huge,

muddled and almost empty space.

Our real value encoding method requires amino acid distance values in some sense (for

example, evolutionary distances). We tested the real value coding method with evolutionary

information for the PPII secondary structure prediction task. In a way, the word “real” refers

more to the property of the natural presentation than to real values (from R 1, R 2, R 3, …).

The substitution table PAM250 [DSO78] includes relational evolutionary information

instead of distances. Therefore, we transformed the relations to the distances using a genetic

algorithm. The fitness function of the genetic algorithm [Gol89] maximizes negative

”correlation” between the PAM250 matrix [DSO78] and (randomly initialized) distance

matrix. Another condition for the fitness function is that amino acid distance to itself must

be zero.

When the distance information between amino acids is known, the real value coding method

can be used. First a dimension for vectors to present one amino acid is selected. We used 2,

3 and 5 dimensional presentations (cf. the orthogonal method uses dimension 20 for one

amino acid). The method randomly selects 20 floating point numbers with a previously
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selected dimension to present each amino acid. Floating point presentations are optimized

with the genetic algorithm to present positions that maintain target distances in the selected

space. The evolutionary information from the PAM250 [DSO78] substitution table is

conflicting. Therefore the target distances generated were conflicting. Thus in the Euclidean

space the method could not achieve positions as the target distances required.

We tested 3 and 5 dimensional encodings to the PPII secondary structure prediction. The

same sets were used as with the orthogonal encoding methods (in Papers I, II and III). First,

sequences were encoded into a new form. Second, an MLP was taught to separate PPII from

non-PPII sequences. Unfortunately the results were not quite so good as with the orthogonal

coding method. Probably the PAM250 [DSO78] does not have enough information for the

rare PPII structure. In the future it will be possible also to include other information such as

electrostatic, hydrophobic, binding etc. (see for example [AF92], [MF98]). Therefore, our

method can be seen as a framework to adjoin different pre-information sources to the

sequence presentation (see for example [NHH00]).

2.8. Increasing of  prediction accuracy has its price (Paper V)

It was already known that high identity (or similarity) between two natural protein

sequences indicates that there is also some similarity between their secondary structures

[Ros97b]. Let a distance between two windowed sequences be a number of amino acids that

differ at the same positions. By using this distance concept we computed the probability that

the same secondary structure would be located in the middle of the sequences. This analysis

showed that there was an area in the sequence space around the point (a natural windowed

amino acid sequence), where the probability of detecting points from the same class is high

and decreases as the distance increases.

This analysis suggests that we can use the sphere around the point to make predictions.

Actually, this leads to a nearest neighbours-like method. The method forms somewhat

similar decision boundaries as a restricted Colomb energy neural network [Jut97]. The

method requires some learning and it can leave query cases without classification. That is a
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consequence of the learning algorithm that determines a radius around each case in the

learning set that extends only halfway from the nearest enemy (i.e. a case that comes from

another class). This procedure may leave unclassified areas in the used space where query

cases cannot have any classifications. The method was called hypersphere, because it builds

spheres over the learning cases according to the radius. Despite being an individual solution,

the hypersphere method is common to all machine learning fields.

Figure 6 illustrates the functioning of the hypersphere algorithm in a two-class case. The

circles represent class 1 and crosses class 2 respectively. At the bottom of Figure 6(a) the

algorithm has detected case c, which is the nearest enemy to the case j.  Next, distance e is

measured and radius r is calculated to form a sphere over case j. Radius r must be a half of

the distance e, because the likelihood of predicting an unknown case correctly is greater

when it is closer than e/2. At the top of Figures 6(a), (b) and (c) there are two cases which

are at the same location, but come from different classes. For both the cases the radius is

zero, because the distance to the nearest enemy is zero.

In Figure 6(b) the algorithm has calculated two hyperspheres which together form a

complex volume in the object space. Finally, algorithm 1 has completed with the class in

Figure 6(c) and a very complex volume has been built over the cases that came from this

class. Every query case that belongs to this volume is classified into class 1. The broken

lines in 2(c) approximate a decision boundary of an MLP (or other machine learning

method). When an MLP method meets two cases at the same location (at the top of Figure

6(c)), with the winner takes all method it has to make a compromise and both cases are

classified into the same class. The hypersphere method avoids decision-making in this area

by restricting generalization.

The data set was different from that of the MLP predictions for the PPII structure. We did

not separate learning and test sets at the level of a protein, but separated test cases from data

after the windowing task. This simplifies a crossvalidation task. Unfortunately it may

increase the number of identical sequences between the test and learning sets if several parts
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Figure 6. Example of how the hypersphere method builds a complex decision volume in 2-dimensional Euclidean

space. Length of radiuses are half of distances to the nearest case that come from another class.

of a protein are in a data set. The fact is that in the PDB there are many proteins that are

made up of several identical parts of sequences and therefore there may be several similar

chains in a protein. We used only the first part of a protein in the data.

The hypersphere prediction results had special properties and cannot be directly compared

to the prediction results of ordinary methods. The method can leave query cases without a

class label. With protein sequence data, the method leaves about 70% of cases without the

classification. If classes are easily separable in the variable space, the hypersphere method

probably does not leave any cases without classification. However, only one noisy case in

the condensation of classes can disturb the method and affect the “enemy area” in the wrong

place. All in all, this property is very useful with protein sequence data, because excessive
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generalization affects the decreasing of the prediction accuracy. Therefore, the prediction

accuracy with this method was excellent if we are interested in the certainty of the

classification. Haykin wrote that MLPs construct global approximations and can therefore

generalize in regions of the input space where little or no training data are available

[Hay94]. It is clear that the prediction accuracy of MLPs decreases in such regions.

Therefore, it is advisable to avoid generalization just as hyperspheres do, but the penalty is

that cases could be left without classifications.

There is some correlation between the sizes of classes and the prediction accuracy (see

results from Paper V and Figure 7). Only PPII does not belong to the regression line. Our

hypothesis for correlation is that noisy enemy points decrease the prediction accuracy and

this occurs to a more considerable extent in small classes. The hypothesis for the behaviour

of the PPII structure is that the structure is sensitive to amino acid proline and therefore it is

more scattered over the sequence space than others are.

Despite the fact that the prediction results are not quite comparable, we have a method that

is accurate and can be used with all secondary structure types. In other words, the method is

not disturbed by skew distributions. Average prediction accuracy approached 90%

(weighted prediction accuracy Q8 was 93.5%), which is high. Missing rate results also show

that in the test set there are only few cases that are situated in the “enemy area” - only PPII

sequences caused some exceptions. To summarize, the results showed that there can be

some way to raise prediction accuracies above the pointed upper limit  (see upper limit

consideration for α-helix from [HC92]).
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Figure 7. Scatter plot for size of secondary structure sets versus prediction accuracy. See Table 1 for full names of

secondary structures.

2.9. Sequences of a certain length build a huge space that is almost empty and very

disordered with secondary structure types (Paper VI)

Baldi and Brunak wrote: “The set of all amino acid segments of length 13, where the central

residue is in a helical conformation, is scattered over a very large part of the sequence space.

The same holds true for other types of protein secondary structures like sheets and turns.”

They continue: “The different structural categories are typically not found in nicely

separated regions of sequence space; rather, islands of sheets are found in sequence regions

where segments preferably adopt a helical conformation, and vice versa.”[BB98] Thus,

incoherence between secondary structure types was realized in the prediction attempts.

Paper VI introduced computational and theoretical methods to reveal how the protein

secondary structure types behave in a sequence space (i.e. amount of incoherence). The size

of volume can be seen as an indicator of incoherence of a class. The simplest method to

consider the size of volume is to compute the sum of the internal distances inside the
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individual classes. For every class the algorithm sums distances from every case to the

others. Two other methods for the size of volume are Gaussian kernels [Jut97] and

hyperspheres. The methods capture a part of the sequence space around cases and compute

the size of this part for every secondary structure type by using a simple numerical

integration method. The theoretical methods described in Paper VI also show how our data

set behaves in the sequence space. The methods are: expectation values of the distance

inside of class and the theoretical distances to the nearest case. The methods utilize a

technique where we study whether some interesting phenomenon is randomly formed. This

is investigated by generating an artificial random process (formula).

The theoretical expectation value of distances inside classes gave information on what the

average distance is inside a class if cases are uniformly distributed over the sequence space.

The results showed that in nature average distances deviate only slightly from the situation

in which cases are uniformly distributed in the space.

Results with the nearest case analysis showed something interesting: in the natural data set

many of the nearest cases seek their way to the distances that can be achieved when the

cases are scattered uniformly over the sequence space. Only roughly half of cases come

closer than the theoretical value - many cases behave as if they were generated by chance.

Measured volumes gave more information about the structures of the classes in the space

and also gave some explanation as to why the prediction work is so difficult. The clear

evidence of the problems in the prediction work is that the sequence space of length 13 is

almost empty and this is very problematic if the cases are almost uniformly distributed. In

the database there were about 324,000 cases. Neverthless, there was approximately 75% of

unused space.

The computational methods look at the space from different viewpoints. Therefore, the

results deviate slightly from each other. The greatest difference is that the internal distance

of PPII is the smallest, but it used the most space when a volume was measured with

Gaussian kernels and hyperspheres. This discrepancy needs an explanation. We speculate
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that the difference is a consequence of our distance concept and the structural sensitivity of

amino acid proline. For PPII it is not so important where the sequence is in the space. It is

important that the prolines are in the middle of a sequence or around the middle part. The

high frequency of the proline also affects weak closeness between PPII sequences and

therefore internal distances are the smallest. On the other hand, PPII sequences are so far

from each other that the methods with numerical integration cannot detect this weak

closeness.

Other secondary structure types behaved more normally than PPII. The results of structure

B (residue in isolated β-bridge) were good; probably it would be the best structure to predict

if test and learning sets are uniformly distributed. Unfortunately, structure type B is rare and

therefore the major classes inhibit its prediction. The secondary structures H (α-helix) and E

(β-strand) are almost equally compact. Therefore, we can conclude that well known

difficulties in predicting structure E (in conventional three-state prediction) are partly

caused by its frequencies (see next chapter).

For the windowed protein data and secondary structure classes it seems clear that there is no

strong organisation of the classes related to the whole space (i.e. higher level organization).

Rather, we demonstrated in Paper VI that the organisation of the classes in the

neighbourhoods of individual natural sequences (lower lever organisation) is strong. This

situation is problematic for conventional prediction methods that construct a global

approximation over the input space.

In conventional secondary structure predictions α, β, and coil structures are included in the

learning set and the frequencies of this classes are roughly 30%, 20%, and 50%

respectively. Conventional prediction results can be understood as we presented in Paper

VI. Approximately 50% of the cases are within the theoretical distance (as shown in the

nearest case analysis) and, therefore, they follow lower level organisation (we can suppose

the same ratio between test and learning sets). These 50% of the cases can be predicted

correctly. The remaining 50% do not follow either higher or lower level organization and

the correct classification of these cases depends only on chance (described in the next
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section). The conventional method correctly guesses 25% of coil cases from among cases

that do not lie inside the theoretical distance (by guessing the accuracy is 0.52) and in the

same way 9% (0.32) for type α and 4% (0.22) for type β. Therefore, the method correctly

predicts 38% of cases that do not follow the lower level organization. The prediction

accuracy is then 50% + 0.38 · 50% = 69% for the whole test set. This explanation is

appropriate for the accuracy of the conventional prediction methods if we suppose that they

use local sequence information, form a global decision surface over the input space, and do

not use external information (for example, alignment information).
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3. Basic perspective on the prediction

Upper limit considerations of the prediction accuracy of some secondary structure types are

considered in the literature (see for example [HC92]). The secondary structure prediction

accuracy depends on data, definitions and structure types. In addition we contend that the

lowest limit is also important. With class frequencies it is possible to calculate the lowest

limit for prediction accuracy. The term lowest limit refers here to what is obtained by

guessing classifications for the query cases. When we know the lowest limit, it is easier to

consider how good the prediction method actually is. This is useful not only with secondary

structure prediction, but also with other classification and prediction tasks.

Consider the situation where we have a data set of cases from classes C1, C2, …, Cn and the

frequencies of the classes are f1, f2,…, fn, respectively. Symbol |Ci| refers to the number of

cases that belong to the class Ci, where i goes from 1 to n. What is the prediction accuracy if

we guess classification for all cases in the data set? Select arbitrary |Ci| cases to belong to

class i and other cases belong to the other classes. The number of correct guesses for class

Ci is fi|Ci| (we can suppose it to be independent of other classes and guessing order).

Therefore, the total accuracy and theoretical lowest limit lw in percents is

This consideration offers some useful results for this dissertation. For example, the lowest

limit for two classes whose sizes are the same is 50%. For the natural distribution in the

PPII structure prediction the lowest limit is about 97.52%, because the majority class is

quite easy to predict with high accuracy, but for the PPII class guessing decreases accuracy

down to 0.016%. For the original three-state prediction, α-structure (30% of data), β-

structure (20% of data), and coil (50% of data) the lowest limit is 38%. Our hypersphere
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prediction with eight classes gave a lowest limit of 20%. In the prediction task where the

method tried to separate α-helix from the others [HC92], the lowest limit was 58%.

It is not easy to find an upper limit of the prediction, because with several "tricks" we can

increase accuracy (for example leaving cases without any classification). However, there

always exists the theoretical lowest limit that could very easily be achieved and should be

taken into account as an individual learning task into account, when we consider the

efficiency of the prediction methods. It should be noted that if we try to get below the

theoretical lowest limit, we must use the information that can also be used to exceed the

lowest limit.

We can “put the methods on the same line” and calculate the prediction efficiency value.

Let a be an achieved accuracy. Furthermore, lw is the lowest limit and 1 is a correct

prediction. Then the prediction efficiency value ε is

The ratio falls within the interval [0,1]. Values that are near 1 describe good efficiency and

numbers that are near value zero mean low efficiency. Hyperspheres yielded an efficiency

value of 0.87. The original three state predictions (used prediction accuracy was 75%) gave

an efficiency value of 0.60. Our best MLP prediction result for PPII gave a value of 0.26.

.
1 lw

lwa
−
−=ε
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4. Discussion and current understanding

During the process of this dissertation the opinions of the author have matured regarding the

interpretations, meanings of our methods, results achieved and also the whole secondary

structure prediction challenge. This section concerns the present state of things.

The extent of the difficulty in secondary structure prediction depends on the relation, how

much torsion angles reflect on the amino acid chain, or how much a single amino acid or

amino acid context determines what the torsion angles in the backbone are. We already

know and it is a well known fact, that proteins are structurally similar if the sequence

similarity is high, but they may have structurally similar parts even when the sequence

similarity is low [BB98]. This situation simply tells us that if we find similar sequences, the

structures are similar. Conversely, it tells us nothing if the sequences are not similar. With

small data set this compels us to generalize somehow, but at the same time, generalization is

a step into the unknown.

We can also consider the effect and meaning of regularization conditions for torsion angles.

In PPII prediction work we check the torsion angles for false positive test cases. There are

many cases where torsion angles are within to the permitted area for a PPII structure, but the

regularization conditions (conditions for torsion angles to get the similar values in single

secondary structure element) are not fulfilled. Obviously, some amino acids or certain

amino acid contexts were determined for torsion angles to be the permitted area of PPII, but

somehow the angles did not behave in a regular way. Thus, the effect of regularization

conditions for torsion angles decreases prediction accuracy. Another and more important

question is whether the secondary structures still work in a biological way even if

regularization conditions are not fulfilled, but torsion angles are within PPII area - this

remained open.

The first prediction results in the natural distribution of the PPII structure revealed the

“character of Nature”. Without any balancing method a large class was easy to predict
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accurately, but a small one was “hidden” behind the majority class. The posterior

probability of Swingler was too sensitive for the rare class and did not give any PPII

classifications because there are no large PPII clusters in the sequence space. The frequency

compelling method forced an MLP to classify as many PPII cases as the frequency imposes.

Accuracy was over 8%, but not as much as we expected. The results showed that the classes

are extremely difficult to separate in input space. Therefore, we can conclude that an MLP

does not work well with rare secondary structure types.

One can conceive of MLPs as black boxes. We showed that it is possible to “ask” them

what the input level reasons are for making some classification. The orthogonal sequence

encoding method allows us to input every sequence that can be formed in the sequence

space. With the genetic algorithm we found that prolines in the middle and around the

middle part of sequences greatly affect PPII classification. There can also be seen some

indicators that amino acid S, from three or four residues away, could favour an occurence of

the PPII structure.

The scattering value pays attention to the situations of cases in the variable space. Markedly

separate classes obtain low scattering values in range [0,1] and vice versa. Our data set for

the PPII prediction task had a high scattering value. Thus, a great part of cases of the

secondary structure classes was scattered over the sequence space. We also detected this

fact in the prediction work.

The next attempt to improve the prediction results was to concentrate on sequence encoding

problems: how can a categorical variable be changed to the numerical forms that take

properties from nature into account? We produced the real value coding method. The

prediction results for the PPII structure with a uniformly distributed test set achieved almost

as good prediction as with orthogonal coding method. This was a positive surprise and led

us to assume that the method works even better in another sequence presentation context.

Tests showed that if we draw nearer to some natural sequence of a certain length, the

probability of representing the same secondary structure type increases. It is easy to form a
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sphere around the case, and this way capture some part of the space as do our hyperspheres.

It should be pointed out that in Paper V there are also prediction results for the 1-nearest

neighbour algorithm in a naturally distributed test set with eight classes. This arrangement

produced much better prediction results for PPII than did our best MLP. Our explanation is

that the 1-nearest neighbour algorithm is more independent of frequencies than is an MLP.

It was a little surprising that the old and simple methods work better than the newest and

most advanced one. This situation also allows us to hypothesize that if we iterate the n-

nearest neighbour method and increase n at every iteration, we find fewer and fewer cases

of rare classes. Hypersphere learning exploits exactly this property to achieve a good

prediction accuracy for rare classes, too.

Many of our results (scattering, nearest case, volumes) let us conclude for the windowed

protein data and secondary structure classes that the higher level organization (i.e.

organization of classes related to the whole space) in the sequence space is weak, but the

lower lever organization (i.e. organization of classes in neighbourhoods of individual

natural sequences) is strong. This situation is very problematic for methods that construct a

global approximation over the input space, but can be in control with local methods that

avoid excessive generalization.

The results of conventional secondary structure predictions (i.e. α, β, and coil, frequencies

30%, 20%, and 50% respectively) can be understood by means of the nearest case analysis

(in Paper VI), lowest limit equation (Chapter 3) and previous organization consideration.

The nearest case analysis showed that approximately 50% of the cases are within the

theoretical distance. We can suppose the same ratio between the test and learning sets. Thus,

these 50% of the cases (type A) follow the lower level organization with the other cases and

can be predicted correctly. The other 50% (type B) do not follow either higher or lower

level organization and correct classification for these cases depends only on chance.

Therefore, the method can correctly predict approximately 69% of the whole test set. This

consideration leads to the same level of accuracy as the average accuracy of the prediction

methods that use local sequence information, form a global decision surface over the input

space, and do not use external information.
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The sequence space of a certain length has special properties that do not appear in the

Euclidean space. For example, if we move from the position (sequence) S1 to the position

(sequence) S2 in the space and the distance between S1 and S2 is greater than 1, there are

two or more different shortest paths to walk this route (i.e. a way to change S1 to S2).

Therefore, the direction is a more complex concept in this context than in the Euclidean

space.

The methods developed can be used in a great part of the machine learning field and in the

field of bioinformatics. For example, we planned to build a server that provides hypersphere

predictions via the Internet. We expect that the method will be useful in the protein structure

prediction context and also help biochemists in experimental structure solving work.

It is time to ponder over the more profound questions that deal with Nature itself. Local

sequence information does not provide final answers for protein function prediction,

structure prediction or even secondary structure prediction. Future systems should

understand more about the biochemical conditions pertaining in the protein folding process.

They must understand more about forces at the atomic level. Then we would be in a better

position to predict three-dimensional structures of macromolecules that would allow us to

make better predictions for the function of proteins. This may enable the development of

better drugs, and we may even face an organism reconstruction problem (see [Kan98]).

To summarize, this dissertation presented several viewpoints on the secondary structure

prediction problem. The original arrangement (rare PPII secondary structure and neural

network) led to a more profound question of dealing with a neural network, learnability,

sequence encoding, machine learning, and behaviour of all secondary structures in the

sequence space. Neural networks seem to obey too slavishly the laws of frequencies. They

worked with PPII secondary structure prediction in the case where the learning and test sets

were artificially balanced. Neural networks with the genetic algorithm can reveal nonlinear

interaction between input variables. Sequence encoding methods called real value coding

can include much pre-information. We tested it for PPII with a neural network as secondary
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structure prediction with evolutionary knowledge. We developed a new machine learning

algorithm that also accurately predicts rare secondary structure types. This simple method

was accurate because in the sequence space, secondary structure types do not form large

clusters. Rather, around an individual case (sequence) there is a sphere with a high

probability area for the same secondary structure type. The sequence space of a length of 13

seems to be almost empty and the organization of classes related to the whole space is weak.

Therefore, machine learning methods have problems especially in predicting rare structure

types.
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