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Abstract

As the amount of information is increasing all the time, information modelling and

analysis have become essential areas in information management. Storing and retrieving

data have earlier been the main functions in databases but the importance of deeper

understanding of data has increased during the recent years. The nature of data has also

become more complex. Therefore, powerful modelling methods are needed for the data.

In addition, the methods have to be user-friendly since the users of data oriented

applications are not often database-professionals. The general aim of this work is to

develop methods to make database design and management easier and more efficient for

all users, both database professionals and people with no prior experience with

databases.

We have studied methods to support logical design of OLAP (On-Line-Analytical

Processing) cubes. The methods give a good basis for implementing software tools that

partly automate the logical design process. These methods are needed since it is

commonly noticed that logical design of OLAP cubes is a complex process that requires

good knowledge on both application area and databases. Good logical structure of an

OLAP cube is important, because a bad design can lead, for example, to an extremely

sparse cube and to such a need for storage space that is not possible to achieve in

practice. As a solution, we give a method for estimating the structural sparsity of OLAP

cubes and a normal form to reduce sparsity risks. Moreover, synthesis and

decomposition algorithms for producing normalised OLAP cubes are developed.

Hierarchical dimensions, which enable the user to analyse data on different levels of

aggregation, are essential for OLAP. Hierarchies can arise from the attribute hierarchy

(e.g. day, month, year) or from the relationship between the instances of two attributes

(e.g. employee, manager). We study what kinds of hierarchy structures are desirable

with respect to correct aggregations and efficient calculations. To represent logical

OLAP schemata, a dependency-based modelling method has been developed. This

method enables the user to describe concepts and their relationship to each other

explicitly. The OLAP cube should be complete and minimal with respect to the user’s

queries. To define what data should be taken into account when constructing an OLAP

cube, we give two methods based on query information. One applies the intensional

concept theory and a query method based on it. The other uses MDX queries that the

user poses against a base cube representing the contents of the data warehouse. If real

queries are available, they can be used as input.
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1  Introduction

Until recently, research in the database field has concentrated more in storing and

retrieving methods than information modelling and analysis of the data. However, two

new trends can be recognised. Firstly, information systems are a part of one’s everyday

life in modern society and they are needed to accomplish many common tasks. This

implies that more user-friendly data management methods are needed. Secondly, recent

systems are able to store large amounts of data, which sets new requirements for the

analysis methods.

The primary aim of this work is to provide methods for improving logical design and

querying of multidimensional databases used in On-Line Analytical Processing

(OLAP). The term “On-Line Analytical Processing” was introduced by Codd et al. in

1993 [CCS93], but the idea itself and even implementations of the idea date back to the

1960’s. OLAP is a methodology for analysing data stored in large data warehouses

using multidimensional structures called OLAP cubes. Especially, OLAP is useful in

situations where raw data on measures such as sales or profit needs to be analysed at

different levels of statistical aggregation. The OLAP methodology is often used in

business environments but it is usable in many other fields, too. The idea in OLAP is to

represent the database as a multidimensional cube with hierarchical dimensions (see

Figure 1 as an example). This structure enables users to analyse the data from different

viewpoints and on different levels of details. For example, using the cube in Figure 1

the user can try to find out why certain owner-car combinations have higher repair cost

than the others. First the user can study the repair costs of some owner-car combination

on the year level and then drill-down to the month and finally to the day level. From the

day level the user can roll-up back to the month level and/or change the owner-car

combination at hand.
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owner

car

time

cost

daymonthyear

Figure 1. A three dimensional OLAP cube about repair costs of cars

In the analysing process described above, the structure of the OLAP cube is essential.

To help users in logical design of OLAP cube schemata we provide automated design

methods. These methods help the user to design better OLAP schemata with respect to

efficiency, correctness of calculations, and ease of use. Since OLAP users, like database

users in general, are mostly non-professionals in the database field, these methods

should be intuitive and easy to use and yet have great expressive power.

Secondly, in the field of conceptual modelling, the aim of this work is to study

conceptual modelling methods in order to improve their usability and expressiveness

and to provide a query language operating purely on the conceptual level. In conceptual

modelling, there is a lack of intuitive and formal design methods. Graphical methods,

like the Entity-Relationship model [Che76], are practical but suffer from the lack of

exact formalism. In addition, using most of these methods does not help the user to

think about concepts and their relationships very deeply. This can sometimes lead to

over-simplification of the application area. The purpose of the use also affects the

required properties of the modelling method. For example, in OLAP modelling,

presenting the dependency information is important. Further, the common

general-purpose query languages are often too complicated for occasional use since

users need to learn them beforehand. In such applications as the so-called information

kiosks, this is seldom possible. The same kinds of problems occur when

non-professionals in database field, for example, business-oriented people, analyse data

using OLAP methods.

There are several reasons why efficient design methods for OLAP cubes are needed.

In OLAP, the queries are made against multidimensional OLAP cubes. The OLAP cube

has often been seen as a static storage structure for data warehouse data and the cube

design has been based on the knowledge of the application area. The types of queries
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that the users are expected to pose should be also taken into account. It is a common

practice to update the data in the OLAP cube quite seldom, for example once a week.

However, in many applications, the OLAP cube has to be much more up-to-date. In

practice, a company may often change its own internal organisation. Thus, realignment

of data warehouse schemata is needed quite often in order to keep the model faithful to

reality. Especially, dimensions and their hierarchies can change even regularly

[HMV99, ZuSi99]. Some users may want to speculate about the effects of, for example,

changing the way their company has arranged its organisation. Also, there may be

requirements to analyse data in ways, which were not anticipated at the time when the

OLAP cubes were designed. Thus, the users may want to change the organisation of the

cube even if the actual data have not changed. For these reasons, the design of OLAP

cubes cannot only be the responsibility of database professionals, but the end users must

also be able to design customised cubes which are suitable for their current analysis

tasks.

OLAP design differs quite a lot from the design of operational databases. The main

goal in operational databases is usually to ensure efficient transaction processing for

simple updates and queries. Thus, for example, avoiding redundancy in data storage is

very important, because, in addition to the need for extra storage space, redundancy also

imply that updates may need to be performed in several places. The OLAP databases

are mostly used for large queries and updated quite seldom. Therefore, avoiding

redundancy in data storage is not very important. Instead, redundancy can often increase

query performance. OLAP queries are often large aggregations of data. The OLAP cube

can be represented as a (hyper) cube. Figure 1 illustrates a three-dimensional cube

having time, geography, and product as dimensions and profit as a measure. The cube

structure also leads to a problem with missing measure values. It is common that every

combination of dimension values has no measure value. This is not a bad problem when

storing data but can be a serious problem while storing pre-calculated aggregation

values. Thus, controlling sparsity is one of the most important design goals in OLAP.

Functional dependencies or other constraints can imply sparsity but sparsity highly

depends on the actual data. This makes controlling sparsity difficult in logical design,

when actual data is not available or the volume of data is too high.

Although there is some research done about the design goals for OLAP cubes, this

research is far from complete and many important design issues still require further

attention. To date, the research has concentrated on physical design issues such as

indexing and clustering. Some work is done about the conceptual level description of
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OLAP applications using, for example, ER diagrams [Che76]. Nevertheless, logical

OLAP design has received little attention. The star schema approach is the most used,

but it is not strictly on the logical level and there is no proper design methodology for it

[Dat00]. Logical cube design, however, has an essential role in the efficiency and the

usability of the OLAP system. Especially, controlling sparsity, that is, the relative

proportion of empty cells in a cube, is necessary since sparse raw data with many

dimensions and precalculated aggregation values can expand the need of the storage

space too much to be handled by increasing the storage capacity [Ped00]. Estimating

and reducing sparsity are complicated tasks but they can be automated quite well.

The relational database theory [Cod70] is the main formalism used in this work.

Especially, the functional dependencies [Cod72a] have an essential role in our

modelling methods for OLAP cubes. To design logical database schemata, especially

logical OLAP schemata, we give a dependency based modelling method that explicitly

shows dependencies between concepts. For logical OLAP design itself, we have further

developed normal forms for OLAP cubes. The non-sparse normal form guarantees that

no structural sparsity may exist in a cube. Both synthesis and decomposition algorithms

are given to produce OLAP cubes in certain normal forms. Finally, the dimension

hierarchies are classified to attribute hierarchies and data hierarchies, and the properties

of these different hierarchy structures are studied. If a hierarchy is transitively

anti-closed, then no redundant aggregation paths can exist. A balanced and non-ragged

hierarchy having consistent level identifiers (i.e. the level identifiers totally correspond

to the actual levels of the nodes) guarantees complete aggregations on each level in a

hierarchy. As mentioned earlier, in OLAP, the analysis is performed by posing queries

against an OLAP cube. The structure of the OLAP cube is important for successful

analysis but the cube must also contain all the relevant information. It is also desirable

that the cube contains only the relevant information for current analysis requirements.

We have developed two methods for applying the query information in order to

construct complete but not too large OLAP cubes. The methods are based on the

intensional query method [NiNu01] and the use of MDX queries [Mic98].

The rest of this work is organised in the following way. Section 2 contains a review

of logical OLAP design that is the main contribution of this work. In Section 3, the

conclusions are given. Section 4 contains a brief introduction to the publications. The

publications itself are the last part of this work.
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2 OLAP Design

OLAP cube design can be divided into three phases: conceptual modelling, logical

design, and physical design. The borders between them are not very clear, however, and

the phases are different from their counterparts in traditional database design.

Conceptual modelling includes describing and analysing the concepts and their

relationships. The result of the conceptual modelling is a conceptual schema, which

explicitly represents concepts and their relationships. The starting point of conceptual

modelling varies. It may be a pre-existing data warehouse, an operational database, or it

is possible to start designing the cube first and then design and implement the data

warehouse for that cube. Figure 2 illustrates the OLAP and data warehouse design

processes as we treat them in this work.

Data
warehouse

Operational
database

Logical
OLAP
schema

Logical OLAP
design

Physical
OLAP
schema

Physical
OLAP design

Data warehouse
design

Figure 2. OLAP design process

Next, some essential terms are explained. A database is a collection of data that is

stored in a computer more-or-less permanently and will be used in the application

system of an organisation [Ull80, Dat00]. In the database context, data are meaningful

facts that can be represent and stored by the computer. There are several different

logical database models, for example relational and object oriented. Databases can be

classified according to their use, too. An operational database is a database used to

store and retrieve data in operational real-time applications. On-Line Transaction

Processing (OLTP) is the most important task that is why updating, adding, and simple

querying must be efficient. The database should be optimised to avoid update anomalies

and redundancy. To avoid these problems several normal forms and other design

principles are developed for relational databases [Cod72a, Cod74, Fag77, Num95]. A

data warehouse is a database containing data for some analysis purposes. The data are

often copied from operational databases to the data warehouse. Usually some operations
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are performed to the data. For example, the data can be consolidated or summarised. A

data warehouse is seldom as up-to-date as an operational database, because the data are

imported, for example, once a week. Since the update operations are not usually as

critical in data warehouses as in operational databases, data warehouses can be

optimised for queries. Queries can be large and they often concern summarised data.

On-Line Analytical Processing (OLAP) techniques are used to achieve more efficiency

and expressive power [CCS93]. Data warehouses often contain data from several

sources and also historical data for long periods, hence the size of the OLAP cube

representing the data warehouse can be extremely large. A technique to speed up

calculations is to pre-calculate aggregation data, but this also increases the need for the

storage space.

Formally, the OLAP cube is a relation over the relation schema C = D1 ∪ D2 ∪ ... ∪

Dn ∪{M}, where each Dk is a set of attributes called a dimension schema and M is the

measure attribute. If D is a dimension schema, then a relation d over D is called a

dimension. The OLAP cube can be seen as a conventional relation having some special

constraints. The most important of these is that the dimensions must be as coordinates

for the measure value. Table 1 illustrates an OLAP cubes as a relation.

Table 1. An OLAP cube as a relation

DIMENSIONS ATTRIBUTES

dimension 1 dimension 2 dimension 3 MEASURE

Owner Car Day Month Year Cost

Jones ABC-124 12-1-2000 1-2000 2000 1500

Smith DFG-125 10-2-2001 2-2001 2001 2000

Smith QWE-456 5-4-2001 4-2001 2001 400

Tailor RTY-789 17-4-2001 4-2001 2001 800

2.1 Logical OLAP Design Goals

Logical design starts from the conceptual schema and its result will be an OLAP schema

which is a description of cubes with dimensions and their hierarchies. What we call

logical design is sometimes referred to as conceptual design. Logical design is needed,

because there are various different ways in which the users may want to arrange the

OLAP cube, depending on the nature of the queries they intend to pose. Different

designs vary significantly in terms of efficiency and practicality. For example, for a
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given set of raw data, a cube can be extremely sparse in the sense that many of the data

items are missing, or zero, because of the nature of the data. Some other designs can be

problematic for query formulation as they may, for instance, produce incorrect

aggregations.

Logical design should be independent from the implementation method chosen for

the cube. In contrast to traditional database design, designing logical database schemata

is not included in logical OLAP design but physical design. The aim of physical design

is to find an efficient implementation for the desired data cube. Physical design also

contains optimisation of the chosen storage structure, for example building indexes.

Relationally implemented OLAP system is called ROLAP (Relational OLAP). The

ROLAP system uses a relational database for storing the data. The relational database

schema can have an unnormalised star structure or a normalised snowflake structure. To

improve the efficiency of the system, multidimensional storage methods have been

implemented. This is called MOLAP (Multidimensional OLAP). The Hybrid OLAP is a

combination of the both storage methods. Its aim is to use the multidimensional storage

method when it is more suitable than the relational one and vice versa.

The aim of logical design is to produce a ‘good’ schema for an OLAP cube or a set

of cubes. A desirable OLAP cube should be such that the user’s queries can be:

1) constructed easily: The system should be easy to use and the user should be able to

construct complex queries easily.

2) answered correctly: The user gets a correct and relevant answer to the query.

3) evaluated efficiently: The query can be evaluated quickly using minimal amount of

resources.

As a general rule, it can be said that a cube should have as many dimensions as

possible and as little sparsity as possible. Increasing dimensions increases the expressive

power but also the need for the storage space. Moreover, if the dimensions are not

orthogonal, the resulting cube will be sparse. These are studied in more detail in the

following subsections.

2.1.1 Controlling Sparsity

The sparsity of an OLAP cube is the ratio (the number of empty cells) / (the number of

all cells). Thus, sparsity is one if all cells are empty and zero if all cells are occupied.

Naturally, sparsity depends on actual data but functional dependencies may imply

structural sparsity. For example, if we have city and zip code in different dimensions

and no two cities can share the same zip code. Figure 3 illustrates a two-dimensional
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table of cars and their owners with a functional dependency car → owner. The measure

attribute is the price of the car. The dependency car → owner implies sparsity, because

a car can have only one owner. The sparsity of the table, that is, an OLAP cube, is 8/12

= 2/3.

Owner

B-2

D-4

SailorSmith

C-3

Tailor

15000

25000

85000

Car
A-110000

Figure 3. A functional dependency Car→Owner implies sparsity

It is not straightforward to give the exact amount of structural sparsity, since it highly

depends on data. Instead, we can say what kinds of functional dependencies imply

structural sparsity. First, we give two definitions. Let C = D1 ∪ D2 ∪ ... ∪ Dn, ∪ M be

an OLAP cube schema, where D1...Dn are dimension schemata and M the set of measure

attribute, and let K1,K2,...,Kn be the respective dimension key attributes. A dimension is

said to be redundant if  ({K1,…,Kn}\{K i}) → Ki. Further, we say that C contains key-

RHS-intersection, if there exists an attribute A∈C, and two sets of attributes

X⊆{K 1,K2,...�Kn} and Y⊆{K 1,K2,...�Kn}, such that X�Y, X A and Y A, where 

indicates a full dependency. The following theorem indicates when structural sparsity

exists. The proof can be found in [NNT01a].

Theorem 1 Let C = D1 ∪ D2 ∪ ... ∪�Dn, ∪�M be an OLAP cube schema, where D1...Dn

are dimension schemata and M the set of measure attribute, and let K1,K2,...�Kn be the

respective dimension key attributes. Let c be an OLAP cube over C, and assume that for

each B∈C, |v(B)| > 1 in c. Then c is structurally sparse if and only if (i) C has a

redundant dimension, or (ii) C contains RHS-intersection.

Storing empty cells is not meaningful hence efficient techniques for storing sparse

data exist. The solution for the sparsity problem, however, is not that straightforward,

since the need for the storage space can increase more than exponentially in situations
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with sparse raw data and many pre-calculated aggregation values [Ped00]. As an

example, in Figure 4 there are only three cells of original data but we need seven cells to

store aggregated values although no hierarchies exist.

ALL

ALL

1

1

11 3

1

1

Figure 4. Pre-calculating aggregation values rapidly increase need of storage space

This kind of database explosion cannot be avoided using efficient storage methods for

sparse data, because the real amount of data increases due to pre-calculated aggregation

information. Solutions for this problem are to ensure that cubes storing the raw data are

not sparse, cubes do not have too many dimensions, and not too many aggregations are

pre-calculated.

Example 1 Consider a cube with three dimensions: employee, customer, and

product. The measure is the quantity sold of each product. With no FDs, the

structural sparsity is zero. However, if we know that one employee sells only one

product, we get a FD employee →  product. Now, the cube is necessarily sparse

(assuming that there are more than one product), because most product-employee

combinations will have an empty value. If we have 10 employees, 20 customers, and 5

different products, then the size of the cube is 1000 cells. We can slice the cube

according to employees and get 10 slices. Each slice can have at most 20 occupied cells

since an employee can sell only one product but possibly to all customers. Further, the

total number of occupied cells in the whole cube is at most 10x20=200, while the total

number of cells is 1000, thus structural sparsity is 80%. More generally, the structural

sparsity is 1-1 / |v(product)|.

As a general-level rule of thumb, it can be said that creating more dimensions tends

to increase structural sparsity.
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2.1.2 Completeness

Cabibbo and Torlone [CaTo98] mean by completeness that all information stored in

operational databases is incorporated in the OLAP cube. We restrict the concept of

completeness to whether all information needed to answer the user’s queries is

incorporated in the OLAP cube. It is difficult to give general definition for completeness

hence we define attribute-completeness, instead. Let U be the set of desired attributes

for dimensions, given as input for logical OLAP cube design. We say that an OLAP

cube schema C is attribute-complete, if each attribute of U is contained in some

dimension schema. On the other hand, the cube should contain only relevant

information for the user. Not to have too large cubes is also important for the

effectiveness of the system.

As an example, suppose that we have such candidate dimensions D1, …, Dn that the

structural sparsity of a cube C would be 0. Suppose further that we leave out one of the

dimensions, say Dk. Since the structural sparsity of C with Dk included would be 0, the

underlying data warehouse would structurally have valid values for cells in the cube

with dimensions D1, …, Dn. This way, leaving out the dimension Dk will imply that the

OLAP cube is not complete.

As a general-level rule of thumb, we can say that creating less dimensions tends to

lead to non-completeness. This is opposite to controlling sparsity, hence, in this sense,

sparsity and completeness may be conflicting design goals.

2.1.3 Summarizability

Correct summarizability means that the user does not get incorrect or misleading

aggregated values in OLAP queries. There are three necessary conditions for

summarizability [LeSh97]:

1. Disjointness of category attributes. The attributes in dimensions form disjoint

subsets over the elements on a level. For example, assume that some shoes belong to

both summer and winter collections. Now, then the user summarises shoes in both

summer and winter collections, these particular shoes will be summarised twice,

because they roll-up to two categories on the ‘season’ level.

2. Completeness in hierarchies. All elements occur in one of the dimensions and every

element is assigned to some category on the level above it in the hierarchy. For

example, then users summarise sales values on the ‘state’ level, the sales from

Washington D.C. are lost, because Washington D.C. is not in a state. This implies

that the hierarchy is not complete.
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3. Correct use of measure (summary) attributes with statistical functions. This is the

most complex of these requirements, since it depends on the type of the attribute and

the type of the statistical function. Measure attributes can be classified into three

different types, which are flow, stock, and value-per-unit. By knowing the type of an

attribute, we can conclude which statistical functions can be applied to the attribute.

For example, it is meaningful to calculate the sum of daily sales but not the sum of

daily inventories. On the other hand, the mean is a relevant measure for both sales

and inventories.

Figure 5 illustrates the first two items. The leaf level represents customer, the middle

level customers in the same country, and the highest level all customers. If we operate

on the country level or on the ‘all’ level, we obviously want that each customer is to be

included exactly once.

complete and
disjoint hierarchy

complete and not
disjoint hierarchy

not complete and
disjoint hierarchy

customer

country

all

Figure 5. Examples of dimension hierarchies

Without any prior knowledge about the semantics of the attributes, we can force the

completeness and disjointness conditions by requiring a functional dependency from a

lower level to a higher level in the hierarchy.

2.2 Logical OLAP Design Based on Dependencies

In this section we first introduce a dependency based modelling method (Paper II)

[NNT00], then OLAP normal forms and normalisation algorithms (Paper III) [NNT01a]

are studied. The last section discusses dependencies in OLAP hierarchies (Paper IV)

[NNT01b].

2.2.1 Representing Logical OLAP Schema

When using dependency based modelling methods, it is also important to represent

dependencies in the conceptual schema. Our modelling method has two types of

primitives: concepts and dependencies between concepts. A concept is an abstract entity

that represents information. In this model, the intension of the concept, that is, its
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information content, consists of all dependencies affecting the concept. The extension of

the concept is the set of instances actualising the intension of the concept. The

dependencies on the conceptual level are called conceptual or intensional dependencies,

while dependencies among instances are extensional dependencies.

A universal relation with null values is used as the abstract model for the application

area. The universal relation contains all concepts as its attributes. Values of attributes

can be thought of as identifiers of concepts, however, we do not assume the existence of

real object identifiers. Although the universal relation is not a realistic choice for the

database schema, it gives a clear theoretical base by simplifying definitions of

dependencies and derivations of interference rules. The idea is that one row represents

only one dependency between instances. Attributes not participating in the dependency

have null values in the row. A null value means that the value does not exist. A

dependency is valid only if all attributes in the dependency have non-null values. In

addition, we assume that unknown-value nulls do not exist in the application area.

In our model, conceptual dependencies are relationships among concepts. The set of

all dependencies is a binary relation among the set of concepts. More specialised

dependencies are sub-relations of it. The dependency relation is reflexive and transitive.

A dependency on the conceptual level denotes that if there is a database instance, then

the instance must obey the dependency.

The dependencies used in this work can be classified into four subtypes: functional

(FD), key (KD), is-a, and structure (SD) dependencies. A key dependency is a

symmetric functional dependency. The idea of the structure dependency comes from the

hierarchical structure of the conceptual schema. The dependency denotes a connection

between concepts, which cannot be expressed by functional or inclusion dependencies.

The functional structure dependency is used to cover non-unary functional

dependencies. Dependencies of the conceptual model have a one-to-one mapping into

the dependencies of the relational model:

1. The conceptual functional dependency corresponds to the functional dependency.

2. The key dependency to the symmetric functional dependency.

3. The is-a dependency to the inclusion dependency.

4. The structure dependency denotes other kinds of dependencies.

The dependency information can be represented by a graphical schema. The

dependency types are presented in Figure 6. A simple arrow always denotes a functional

dependency, a two head arrow a key dependency, a triangle head arrow an is-a

dependency, and an arrow with a diamond and a bold arrow head the structure
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dependency. If an arrow has a diamond ending and the head of the arrow is simple, it

denotes a functional structure dependency.

company

product

component

locationc_name employee

person empl_id

name comp_num

product_numsalary

ssn

is-a SD

FD

FD
FD

FD

FD

KD

KD

KDKD

KD

Figure 6. Example on conceptual schema of a company

We get the following dependencies from the schema in Figure 6:

Functional dependencies:

company→location

employee→company, salary

product→company

person→name

Key dependencies:

c_name company

product_num product

ssn person

comp_num component

empl_id→employee

Is-a dependencies:

employee is-a�person

Structure dependencies:

product SD component

In our OLAP examples, we use a schema drawing technique simplified from the one

presented above. Concepts or attributes are represented by text boxes and functional

dependencies between attributes by arrows. A two-head arrow denotes a symmetric

functional dependency, that is, the key dependency. Transitive dependencies are not

drawn. Dimensions are presented by drawing an ellipse around the attributes of the

dimension. The measure-id attribute is drawn with a bold rectangle. By the measure-id

attribute we mean the attribute that represents and identifies the object whose properties

or values are analysed. Attributes representing those particular values are called

measure attributes. The measure-id attribute functionally determines all other attributes

in the schema but the measure attribute does not. This is clear since, for example, for
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one selling event there has to be exactly one product that is sold, one profit got from the

product, one customer who bought the product, etc. The same profit can, of course, be

related to many different selling events. When analysing the dependencies for cube

design, the dependencies related to the measure-id attribute are not relevant. Therefore

those dependencies are drawn with a dashed line. The actual value to measure is drawn

by a bold rectangle. In some works measures are treated as dimensions. The measure

still has a different role in OLAP thus we prefer to handle it separately from real

dimensions in the graphical schema.

2.2.2 OLAP Normal Forms

Relational normal forms are hardly suitable for OLAP cubes, because of different goals

in operational and OLAP databases. The main goal of the relational normal forms is to

avoid update anomalies, while in OLAP the efficiency of queries is the most important

issue. More specifically, the goals of OLAP normal forms are to ensure both minimal

amount of sparsity and correctness of aggregations, but we mostly concentrate on

controlling sparsity in this work.

In what follows, we study different kinds of dependency sets and their properties in

the spirit of Nummenmaa [Num95]. It is known that certain types of dependency sets

lead to bad relational database schemata. For example, it is impossible for certain

dependency sets to construct an acyclic, functional dependency preserving, and lossless

relational database schema in Boyce-Codd [Cod74] normal form. Now, we apply some

of these ideas in OLAP design. The analogy to OLAP design is that for all dependency

sets it is impossible to construct a non-sparse OLAP cube without loosing in

expressiveness.

The problematic dependency combinations in traditional database design relate to

three situations:

1. intersecting right hand sides (RHS-intersection),

2. intersecting nonredundant left hand sides (LHS-intersection), and

3. splitting, which is defined as follows. A left-hand side X splits a left hand side Y, if

Y X→�  and we do not have X→Y.

Respectively, we can find four types of problematic dependency sets for OLAP cubes:

1. functional dependencies between two dimensions,

2. functional dependencies between three or more dimensions,

3. RHS-intersecting dependencies between dimensions, and

4. dependencies having participating  attributes from different dimensions.
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Following Lehner et al., a general principle in OLAP design is that dimensions should

be independent (multidimensional normal form), and inside a dimension there should be

a single attribute key for the dimension (dimensional normal form) [LAW98]. It is also

desirable that there exists only one measure value for each combination of dimension

values similarly as the first normal form of relational database theory [Cod70]. While

the aim of the dimensional normal form is to guarantee completeness in aggregations,

the multidimensional normal form is mostly used in controlling sparsity of the OLAP

cubes.

Our non-sparse normal form is an extension to Lehner’s multidimensional normal

form since the non-sparse normal form covers non-unary and RHS-intersectiong

dependencies, too. The schemata in Figure 7 and in Figure 8 are in Lehner’s

multidimensional normal form, but they are not in our non-sparse normal form because

of the dependency employee product → country in Figure 7 and the RHS-

intersecting dependencies customer → office and employee → office in

Figure 8.

product_sold

customer

country

employee

product

profit

Figure 7. A non-unary dependency between dimensions customer, employee, and product

product_sold

customer office

employee

profit

Figure 8. RHS-intersecting dependencies between dimensions customer and employee

2.2.3 Producing Normalised OLAP Schemata

Two different situations can be recognised in logical OLAP design. In the first one, the

dimensions are known, and they will be decomposed based on FDs. In the second one,
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only a conceptual schema with the dependency information exists and the dimensions

need to be built. In the first case, it is natural to use a method based on relational

decomposition and in the second case a method based on relational synthesis.

Our synthesis algorithm [NNT01a] first forms equivalence classes of attributes based

on functional dependencies. Two attributes belong to the same equivalence class, if they

participate in the same dependency. An attribute participates in a dependency if it exist

in the left or the right hand side of the dependency. An equivalence class can form a

dimension if it is in dimensional normal form. If only a composite key exists, the

algorithm constructs an artificial attribute to represent the key.

Example 2 Figure 9 illustrates example input and output for Algorithm 1. The measure

value is profit and potential dimensions are time, customer, and

product_lot. Employee cannot be a dimension of its own, because the

product_lot functionally determines it. We want to measure the profit of sold

products, i.e. the product_sold is the concept to measure and profit the actual

value to measure.

product sold

product
lot

own_priceemployee

empl_id e_name

prod_num

time

p_name

prod_group

profit

customer

c_namecus_id

Figure 9. An OLAP schema of a company

Our second algorithm, the decomposition [NNT01a], works as follows:

1. Dimension decomposition. The dimensions are first constructed based on the idea

that there has to be a single attribute key for a dimension. This is ensured by placing

attributes A and B in different dimensions if there does not exist an attribute that

functionally determines both A and B.

2. Cube decomposition. The dimensions constructed in Phase 1 are given as input. If

there is a conflict against the desirable normal form between two dimensions,

multiple cubes are constructed by placing the conflicting dimensions in different

cubes. The process is repeated until all cubes are free from conflicts.
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The extreme case is that the cubes will become one-dimensional. This, of course, is not

desirable and it is better to allow a sparse result and to stop the process earlier.

Example 3 Normalising the schema in Figure 8 gives the OLAP schema illustrated in

Figure 10. In the schema the measure is product_sold. Possible dimensions are:

product, employee, customer, and office. Further, the relevant dependencies

are: customer → office, and employee → office.

product_sold

office

employee

profit

product product_sold

customer

office

profit

product

Figure 10. A normalised OLAP schema

2.2.4 OLAP Hierarchies

Hierarchical dimensions are an essential part of OLAP. The hierarchical structure

allows the user to study facts in different levels of details. Good hierarchical structures

ensure correct and efficient calculation of aggregation functions: consistent and

coherent structure of hierarchies decreases logical errors while efficiency of calculation

is increased, for example, by decreasing redundancy in rollup paths. Logical modelling

methods of these hierarchies differ from the methods used in database design. Thus,

dependencies used in database design are not enough for modelling OLAP hierarchies.

We have studied which kinds of dependencies would be needed to get aggregation

hierarchies more desirable for OLAP. In addition to the functional dependencies, three

new dependency classes are given for data hierarchies. The anti-closure dependency

prevents calculating redundant aggregation values by disallowing “shortcuts” in

hierarchies, while non-raggedness and balance dependencies ensure complete

aggregations on each level in a hierarchy.

Aggregation hierarchies can be divided into attribute hierarchies and data hierarchies.

In attribute hierarchies, the attribute labelling a column in a dimension table will

correspond to a level in the aggregation hierarchy of the corresponding cube dimension,

and data values occurring in that column of the dimension table will become the

members of the corresponding level. The data hierarchy arises when there is a
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relationship between two attributes, like employee-manager. Attributes do not

determine the hierarchy levels but the actual data do. In addition, a data hierarchy

schema can contain an additional attribute used as a level identifier, for example a job

grade. Table 2 and Figure 11 illustrate this.

Table 2. An example relation on management hierarchy

EMPID MGRID GRADE

1 NULL A

2 1 B

3 1 B

4 1 C

5 2 C

5 1 C

3 2

1

45

Figure 11. Directed acyclic graph representing the relation in Table 2

For the OLAP use, we have discovered six types of hierarchies that can be classified

according to their generality. Figure 12 presents the hierarchy of these hierarchies. The

most general is the acyclic digraph and the strictest is the balanced and non-ragged tree.
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acyclic digraph

balanced,
non-ragged

transitive anti-closed
digraph

tree

balanced,
ragged

non-ragged,
unbalanced

Figure 12. Hierarchy of dimension hierarchies

As Figure 12 indicates, we have six different kinds of hierarchies that have the

following properties related to OLAP hierarchies:

(1) Acyclic. This is the most general class. It allows the day-month-quarter-year; day-

year structure, where the day-year could be called a "direct shortcut". A direct

shortcut means redundant aggregation paths. (Figure 11)

(2) Transitive anti-closed digraph. This is an acyclic graph with no direct shortcuts. If

no direct shortcuts exist, then no redundant aggregation paths are possible. (Figure

13)

3 2

1

45

Figure 13. A transitive anti-closed graph

(3) Tree. Unique aggregation paths are guaranteed, that is, there is only one path from

each node to the root node.

(4) Unbalanced but non-ragged or balanced but ragged. The available levels of

aggregation may not  be equal. (Figure 14 and Figure 15)
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3 2

1

4

Figure 14. Unbalanced but non-ragged

2

1

45

Figure 15. Ragged but balanced tree

(5) Balanced and non-ragged. Equal levels of aggregation are available. (Figure 16)

3 2

1

Figure 16. A non-ragged and balanced tree

In general, it can be said that a stricter hierarchy makes it easier to get correct

aggregations. When a data hierarchy is balanced and non-ragged with consistent level

identifiers, aggregations are complete on every level in the hierarchy. By consistent

level identifiers we mean that the identifiers correspond to the actual level of a node.

2.3 Logical OLAP Design Based on Queries

We give two methods to define the data to be taken into the OLAP cube. The first

method is based on the intensional concept theory (Paper V) [NNT01c] and the second

on MDX queries (Paper VI) [NNT01d]. The aim of both methods is to enable the end

user to produce easily good OLAP schemata with respect to sparsity, summarizabily,

and completeness.

In this approach, it is assumed that a new OLAP cube is constructed for new analysis

purposes, because one cube cannot be good for all kinds of queries. The ideal cube

contains all information and only the information that is relevant for the user’s queries.

The methods require that actual data warehouse data are stored independently and the

data are available for populating OLAP cubes. The aim is to reduce the level of

technical knowledge that a user needs in order to construct an OLAP cube. It is

meaningful to think that an OLAP query returns an OLAP cube. This gives a natural

reason to combine the cube design and query construction.
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2.3.1 Method Based on Intensional Query Method

The first method uses the algebraic representation of the intensional concept theory with

a graphical conceptual schema [Kan93, Kau67, Nie00, NiNu01] and the information

about the functional dependencies between the attributes of the data warehouse

[NNT01a].

The algebraic representation of the intensional concept theory [Nie00] is based on

the concept operations. In Figure 17, a conceptual schema and some resulting concepts

of concept operations are shown. The most important concept operations, namely the

intensional product (denoted by ), and its dual operation, the intensional sum (denoted

by ) are binary operations in the set of concepts. In terms of lattice theory, the product

is the greatest lower bound and the sum is the least upper bound [DaPr90]. Therefore,

the intensional sum D E� is the least concept containing all concepts which D or E or

both contain, while the intensional product D E contains all concepts contained in both

D and E. We assume that the concept system has a lattice structure, that is, the sum and

product exist for all pairs of concepts.

FLYING BOAT

BOAT

FLOAT VEHICLE

DEVICE MOVE

AIRCRAFT

FLY

BOAT AIRCRAFT

BOAT AIRCRAFT

FLYING BOAT FLY

Figure 17. A Conceptual schema and the resulting concepts of some intensional concept operations.

(The concept above intensionally contains the concept below it.)

The basic relationship between concepts is the intensional containment relation that

is defined as follows: a concept D intensionally contains a concept E, denoted by D E,

if and only if D E� �D. The intensional containment is an abstract relation that can be

illustrated in a following way: if a concept D intensionally contains a concept E, then the

intension of E is a part of the intension of D, and E can be called a characteristic of D

[Kau67, Kan93].

The intensional query method [NiNu01] is based on intensional concept definition.

While in traditional conceptual query systems the user generally defines a query using

the existing concepts without actually forming new concept definitions in the

conceptual schema, in our approach the query construction is equal to defining new

concepts. This way, the query formulations also increase the conceptual information.
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When using the method, the user can choose an existing concept or form a new concept

by using the concept operations. These new concepts can be further used to construct

new queries, namely new concepts. The approach is very strongly user oriented and

produces declarative queries. In the respective database perspective, the expressive

power of the approach is that of the project-join queries. In most cases, this is adequate

when defining information for constructing an OLAP cube.

The OLAP design method based on the intensional query method has the following

steps:

1. A high level conceptual schema of the data warehouse is shown to the user.

2. The user uses the intensional concept operations to construct the concept that

represents the information of the OLAP cube under design.

3. The system constructs a normalised OLAP schema that contains the basic concepts

contained in the given concepts as dimensions or in dimension hierarchies.

4. An OLAP cube will be shown to the user who can accept it or change it. For

example, some attributes can be added or removed.

5. The final OLAP cube is presented as a graphical conceptual schema to the user who

can pose queries against it using the same intensional query method.

2.3.2 Method Based on MDX Queries

The second method uses MDX (Multidimensional Expressions) queries. MDX is a

declarative query language for multidimensional databases designed by Microsoft

[Mic98]. The MDX query produces an OLAP cube (actually, a tabular presentation of a

cube) given dimension specifications as input. A simple MDX select statement has the

following form:

SELECT <axis specification> [, <axis specification>, ...]

FROM <cube specification>

WHERE <slicer specification>

Each axis specification describes how to produce one of the dimensions (axes) in the

result. This includes specifying the point in the dimension hierarchy at which

aggregation should be performed. The slicer specification allows the user to eliminate

unwanted dimensions from the answer. In Example 4, a simple MDX query concerning

sales data can be seen. The query is used in analysing how day, product group, and

customer affect the profit got from products during the year 2000.
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Example 4 An MDX query concerning a sales cube.

SELECT day, product group, customer id

FROM sales
WHERE profit, year.[2000]

In the select statement, the axes are associated with rows, columns, pages, etc. This

facilitates presenting the result of a query in a tabular form. The axis or dimensions are

specified by giving a set of members. MDX has several ways of performing it. The

basic possibilities are to list the members or use MEMBERS, CHILDREN, or

DESCENDANTS functions. An example about other features is the FILTER command

that can be used to filter out member values of a dimension. The MDX language also

contains a WITH clause but we ignore it in this work. The WITH clause can be used to

construct member properties to give additional information on dimension members. For

example, the product can have its colour as a member property. Member properties can

be expressed as dimensions of their own or dimension levels but it is not efficient.

If a dimension is not mentioned in the axis definition, it is assumed to be a slicer

dimension and the cube will be sliced according to the default member of the

dimension. The slicer dimensions with the members to slice can also be given explicitly

using the WHERE statement. For example, the user may be interested only in the sales

of a particular year. The measure values to be viewed are also selected using the

WHERE statement.

Data
warehouse
(relational
database)

Information
demands

OLAP cube(s) Example
queries

Real queries

General OLAP
cube

Figure 18. The basis of the method

In the OLAP design method, the idea is to construct equivalence classes of MDX

queries and then construct an OLAP cube for each equivalence class. Two queries

belong in the same equivalence class if they share attributes directly or transitively.

Additionally, it can be required that the queries operate on the same hierarchy level.

Figure 18 illustrates the method having the following steps:
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1. The data warehouse is presented as a general base cube to the user.

2. The user constructs queries using the general data cube.

3. The system constructs an OLAP cube that corresponds to user’s queries. The cube

construction method is based on the use of functional dependency information.

4. An OLAP cube will be shown to the user and it can be accepted, modified, or

rejected. The modifications can be done by giving more queries or changing the

cube directly, for example, some attributes can be added or removed.

5. The system analyses the changes and informs the user about the goodness of the

cube.

The resulting cube will be used in actual data analysis.
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3 Conclusions

We have studied methods for improving logical OLAP design. The presented methods

give a good basis for implementing software tools that can partly automate the OLAP

cube construction process. We have recognised three aims for OLAP design: minimal

amount of sparsity, completeness, and summarizability. However, the design process is

not straightforward, because reducing sparsity and maintaining completeness may be

contradictory goals.

Our methods are based on the relational dependency theory and the intensional

concept theory. To improve logical design of OLAP cubes, we have developed a

method to estimate the structural sparsity of OLAP cubes implied from functional

dependencies. For controlling structural sparsity of OLAP cubes, a new OLAP normal

form has been defined based on the idea that if an OLAP cube schema is in non-sparse

normal form, it is known that its structural sparsity is zero. To produce normalised

OLAP cubes synthesis and decomposition methods have been developed. The methods

return a normalised OLAP schema given attributes and functional dependencies as

input. The normalisation algorithms constructs dimensions with their hierarchies based

on functional dependencies. Since the structure of dimension hierarchies can be

complex, the attribute and data hierarchies have been identified and different kinds of

hierarchical structures have been studied. Moreover, new dependencies for hierarchical

OLAP dimensions have been developed.

To enable all users, despite of their level of expertise in OLAP, to design desirable

OLAP cubes, we have given two design methods based on the use of query information.

The first method, based on the intensional concept theory, combines database modelling

and querying. The method operates on the conceptual level using the concepts of the

application area in a graphical conceptual schema. This makes the method both intuitive

and easy to use. The second method uses MDX queries posed against a general base

cube representing the contents of a data warehouse. The user defines his/her information

requirements by constructing MDX queries as examples of the information

requirements. The method is also capable to use real queries when the user wants to

improve existing cubes.
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4 Overview of Publications

This thesis consists of six publications in the field of conceptual data management. The

first two publications are background studies for the last four studies of logical OLAP

design.

The first paper, “A query method based on intensional concept definition”, contains

an application of the intensional concept theory for query purposes. In the intensional

concept theory, the concepts are treated as algebraic objects to which algebraic

operations can be applied [Kau67, Nie00]. The intensional query method, presented in

the paper, combines conceptual modelling and query construction. The idea is that the

user can use the same methodology in both of them. In this way, defining new queries

also increases the intensional information in the application area. As a basis for data

storage, we use the relational database model [Cod70], which also gives a clear and

well-studied base to the data manipulation. The user can accomplish all tasks from

database design to queries on the conceptual level, since the system takes care of all

technicalities.

The second paper, “Applying dependency theory to conceptual modelling”, presents

a modelling method based on the dependency information among concepts. A problem

in many modelling techniques has been the lack of a formal theory. The basic elements

of the models are entities and relationships between them. However, relationships do

not have exact meaning, partly because they are usually described using natural

language. We will give a formal basis for our modelling method by applying the well-

studied relational dependency theory. The use of formal dependencies makes it possible

to derive inference rules that enable us to derive new dependencies or new concepts.

This is a clear benefit compared to many conventional modelling methods. The

dependency based conceptual schema is also easy to transform into a database schema

or use as an input for the OLAP design algorithms.

The third paper, “Normalising OLAP Cubes for Controlling Sparsity”, presents how

functional dependencies can be applied in logical OLAP design. The main aim is

controlling sparsity. New normal forms for OLAP cubes are defined and synthesis and

decomposition algorithms to produce normalised cubes are given.
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The fourth paper, “Logical multidimensional database design for ragged and

unbalanced aggregation hierarchies”, contains a study on modelling hierarchical OLAP

dimensions. Hierarchical dimensions have an essential role in OLAP and badly

structured dimensions can easily lead to incorrect aggregations or redundancy in

calculations.

In the fifth paper, “Applying intensional concept theory to OLAP design and

queries”, the intensional query method is applied to logical OLAP design and OLAP

queries. When using the presented method, the user can employ a graphical conceptual

schema to define the concepts taking into the OLAP cube schema. After that the system

generates a normalised OLAP schema and shows it to the user using the same graphical

formalism. Then the user can define queries using the graphical schema that follows the

same formalism as the original conceptual schema. The method is intuitive and does not

require learning complex query languages.

In the sixth paper, “Constructing OLAP cubes based on queries”, the use of MDX

queries in designing OLAP cubes is studied. The method is based on the use of example

queries against a data warehouse that is represented by a general OLAP cube. If real

queries are available, they can be used to optimise existing cubes.
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