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INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) - a disease clinically characterised by

fatal opportunistic infections and malignancies - was first described in 1981 (Gottlieb

et al. 1981, Masur et al. 1981). A few years later, the causative retrovirus was isolated

(Barré-Sinoussi et al. 1983, Gallo et al. 1984) and denominated first as HTLV-

III/LAV, later as human immunodeficiency virus type-1 (HIV-1).

 In the year 2000, more than 36 million people in the world are infected by HIV. As

this infection is lethal, most of them will die within a decade, although considerable

variation exists in the progression time from the non-symptomatic stage to full-blown

AIDS. HIV infection is characterised by a depletion of CD4+ cells (Gottlieb et al.

1981, Fahey et al. 1984) leading ultimately to an aberrant CD4/CD8 ratio. In addition

to the quantitative defects, CD4+ cells are defective in their capability to proliferate

upon antigen or mitogen stimulation (Gottlieb et al. 1981, Lane et al. 1985), and to

produce lymphokines (Murray et al. 1984). Defective NK- and B-cell functions can

also be seen in infected subjects (Lane et al. 1983, Bonavida et al. 1986). This

destruction of the immune system favours opportunistic infections (e.g. Pneumocystis

carinii, cytomegalovirus, Candida albicans, Cryptosporidium, Salmonella,

Toxoplasma).

Given the scale of the AIDS pandemic and the long time required for development

and distribution of an AIDS vaccine, the number of vaccines now in clinical testing is

totally inadequate. After more than 15 years of research on HIV, only one vaccine

concept is being tested for efficacy in humans (Phase III trials). Therefore, constant

efforts to learn more about the immunogenicity of the virus and to develop new

potentially useful immunogens to defeat HIV are needed.

The purpose of this thesis was to investigate the humoral immunogenicity of HIV-1

Nef, Rev and Tat proteins and evaluate their applicability for DNA vaccines.
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REVIEW OF THE LITERATURE

1. HIV-1 – a Trojan horse among viruses

HIV-1 is a member of the Retroviridae family and belongs to the subfamily of the

Lentivirinae, like maedi visna virus (MVV), caprine arthritis encephalitis virus

(CAEV), equine infectious anemia virus (EIAV), bovine immunodeficiency virus

(BIV), feline immunodeficiency virus (FIV) and simian immunodeficiency virus

(SIV). These viruses are non-oncogenic pathogens, and they can persist in the infected

host for years causing slowly proceeding diseases.

HIV-1 has several wily ways to remain persistent and avoid the immune responses of

the host. Firstly, it infects cells of the immune system and disables their normal

function (Laurence 1985, Margolis 1998). Secondly, the HIV-1 genome can stay

within a cell for a long, clinically latent period when the delicate balance between

virus replication and the immune response to the virus determines both the outcome

of the infection and its rate of progression. Furthermore, as activation of HIV-infected

T cells or monocyte/macrophages during normal immune responses results in the

spread of HIV virions, this virus has developed the ability to use normal immune

processes to its own reproductive advantage (Stevenson et al. 1990). Thirdly, through

the high antigenic variation caused by the infidelity of reverse transcriptase (Roberts

et al. 1988), HIV-1 can evade immune attacks against the outer envelope protein

(Watkins et al. 1996). Finally, cell-to-cell fusion seen in HIV infection (Phillips 1994)

allows the virus to spread without entering the extracellular fluid thus escaping the

effects of antibodies.

1.1. Genomic structure of HIV-1

The HIV-1 genome consists of a >9 kb-long RNA molecule encoding nine open

reading frames (Ratner et al. 1985, Wain-Hobson et al. 1985) (Fig. 1). Three of these

encode the Gag, Pol and Env polyproteins, which are subsequently proteolysed into

individual proteins common to all retroviruses. HIV-1 also codes for four accessory

proteins with various functions (Vif, Vpr, Vpu and Nef) and two regulatory proteins

(Rev and Tat) necessary for virus replication (Frankel et al. 1998, Turner et al. 1999).

Two covalently joined molecules of viral genomic RNA are packaged into each viral

particle (Fig. 1)



10

At both ends of the HIV genome there are areas called long terminal repeats (LTR)

which contain the promoters and polyadenylation signals for viral transcription

(Hughes 1983, Starcich et al. 1985). These areas are also needed for integration of

viral DNA into the host cell genome, and they contain regulatory elements mediating

the transmission of cellular activation signals (Al-Harthi et al. 1998).

Gag produces four proteins (Mervis et al. 1988): matrix (MA, p17) lines the inner

surface of the virion membrane and is important for targeting Gag and Gag-Pol

polyproteins to the plasma membrane before viral assembly; capsid (CA, p24) forms

the conical core of virion and has important roles in virion assembly and uncoating;

nucleocapsid (NC, p9) coats the genomic RNA inside the virion core and targets it to

virion assembly, and p6 is responsible for Vpr binding, as well as mediating efficient

particle release (Freed 1998, Frankel et al. 1998, Turner et al. 1999).

The pol open reading frame codes for three viral enzymes: protease (PR), reverse

transciptase (RT) and integrase (IN). These are necessary for cleavage of viral

polyproteins, synthesis of a DNA copy of viral RNA genome and integration of the

viral genome into the host cell genome, respectively (Katz et al. 1994, Frankel et al.

1998, Turner et al. 1999).

Figure 1. Organisation of the HIV-1 genome and virion (adapted from Frankel and

Young 1998).
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Env polyprotein (gp160) can be dissociated into two glycoproteins, gp120 (surface,

SU) and gp41 (transmembrane, TM), which together form the outer membrane of the

virion. SU is a 515 amino acid long protein, and it contains five highly variable loops

(V1-V5); on the average only 66% of SU amino acids are conserved, and in the most

variable regions this percent is only 10 (Starcich et al. 1986, Modrow et al. 1987). The

main function of SU is to bind to the major receptor of HIV, the CD4 molecule,

present on helper T-cells and primary macrophages (McKeating et al. 1989, Wyatt et

al. 1998). Upon binding, conformational changes in SU expose a surface able to bind

to chemokine receptors CCR5, CXCR4 or CCR3, which serve as essential viral co-

receptors (Clapham et al. 1997).

The primary function of TM is to mediate fusion between the viral and cellular

membranes (McKeating et al. 1989, Wyatt et al. 1998). The N-terminus of TM is

needed for initiation of this process whereas the transmembrane region is important

for gp120 anchoring and proceeding of fusion. The intraviral C-terminus interacts

with MA. TM contains no highly variable regions: 80% of its amino acids are

conserved (Modrow et al. 1987).

The accessory proteins Vif, Vpr and Vpu have various functions. Vif is a protein that

enhances the infectivity of virus particles and stability of viral DNA; it also may play

a role in virion assembly (Simon et al. 1996, Cohen et al. 1996). Vpr functions by

transporting viral component into the nucleus, and it may induce G2 cell cycle arrest

preventing the proliferation of HIV-infected cells (Cohen et al. 1996, Frankel et al.

1998). Both Vif and Vpr are located in the virion particle.  Vpu promotes degradation

of intracellular CD4 molecules, thus helping newly synthesized Env molecules to

transfer to the cell membrane for virion assembly. Vpu can also down-regulate MHC

class proteins and stimulate virion release (Jabbar 1995, Frankel et al. 1998).

The structure and function of Nef, Rev and Tat proteins, which play the leading part

in this thesis, are reviewed in more detail in the following three chapters.

1.2. Accessory protein Nef – a story of missing function

The Nef gene found from HIV-1 is unique to primate immunodeficiency viruses. It

codes for a 27-kDa protein which is post-translationally modified by myristoylation
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and phosphorylation (Arya et al. 1986). The myristoylation site in the N-terminus of

Nef is well conserved (Shugars et al. 1993), indicating the important role of

myristoylation in enabling Nef to link the cell membrane and cytoskeleton

(Kaminchik et al. 1994, Fackler et al. 1997). With myristoylation, Nef is able to bind

to CD4, which leads to down-regulation of this receptor molecule (Harris et al. 1994).

Myristoylation is also needed for virion incorporation of Nef (Welker et al. 1998), but

the role and significance of Nef in the viral particles is not currently known. Nef may

be phosphorylated at several Ser or Thr residues by protein kinase C (Bodeus et al.

1995, Coates et al. 1997).  Phosphorylation has been suggested to play a role in the

ability of Nef to regulate transcription factors NF-kB and AP-1 (Bandres et al. 1994),

and in the ability to down-regulate CD4 molecules (Luo et al. 1997); it probably also

has other regulatory effects on Nef function.

Nef is the most abundant viral protein during the early phase of HIV-1 gene

expression. In infected cells, it is expressed as a 27-kDa protein capable of forming

dimers and trimers, which may be the active form of Nef in vivo (Kienzle et al. 1993,

Arold et al. 2000, Liu et al. 2000). In addition, a 25-kDa isoform translated from an

internal start codon 57 bases downstream from the initiation site can often be seen

(Kaminchik et al. 1991). Due to the lack of a myristoylation site, this protein is found

in a soluble cytoplasmic form. Some authors have also claimed that the carboxy

terminus of Nef could be exposed on the outer surface of virus-infected cells, where it

may enhance the cytotoxic response against CD4+ cells as well as target CD4

memory population (Fujii et al. 1996a, Otake et al. 2000). The Nef protein released

from destroyed cells is cytotoxic to uninfected CD4+ cells and, as a matter of fact, the

sera of HIV-1 infected individuals have been reported to contain significant amounts

of soluble Nef, indicating that Nef may participate in helper-T cell destruction in vivo

(Fujii et al. 1996b). Extracellular Nef may also stimulate latently infected cells into

productive HIV infection (Fujinaga et al. 1995).

Virus particles contain 5-70 molecules of core-bound Nef (Pandori et al. 1996,

Welker et al.1996, Kotov et al. 1999). Nef has been shown to enchance the

phosphorylation of MA during virion maturation (Swingler et al. 1997). The majority

of Nef proteins in virions are present as 20-kDa proteins that are formed from the full-

length molecule by cleavage between amino acids 57-58 during the maturation of the
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virion (Gaedigk-Nitschko et al. 1995). Viral protease cleaves the C-terminal core

domain from the membrane-associated N-terminus, but the significance of this

process is not known.

The function of Nef has been obscure. In early studies, it was suggested that Nef acts

as a negative factor in virus replication by repressing the transcription from the LTR

(Ahmad et al. 1988, Niederman et al. 1989), hence it received its acronym “negative

factor”. Further studies revealed that although variations in experimental conditions

may give conflicting results, Nef is able to induce virus replication through T-cell

activation in primary quiescent CD4 cells (De Ronde et al. 1992, Miller et al. 1994,

Spina et al. 1994), is needed for maintaining high virus load in persistent virus

infections (Kestler et al. 1991), is the major disease determinant in transgenic mice

(Hanna et al. 1998) and may contribute to the neuropathogenesis seen in AIDS-

patients (Koedel et al. 1999). These effects are enabled by at least four activities

associated with Nef: induction of CD4 and MHC class I down-regulation,

enhancement of viral infectivity and alterations in cellular signalling pathways.

In CD4-positive cells, Nef is able to down-regulate the expression of CD4 mainly by

enhancing its endocytosis as well as lysosomal degradation, which leads to a decrease

in the half-life of this protein, whereas the synthesis and intracellular transport of CD4

molecules are not affected by Nef (Aiken et al. 1994, Anderson et al. 1994, Rhee et al.

1994, Bandres et al. 1995). A dileucine-based sorting signal (aa 160-165,

E/DXXXLL) in Nef is used to address cellular sorting machinery (Craig et al. 1998).

Nef functions in a multistep process, first by dissociating the CD4-p56lck complex that

leads to the exposition of an endocytosis motif present in the intracellular domain of

CD4 (Rhee et al. 1994, Bandres et al. 1995, Kim et al. 1999). Thereafter, Nef

connects CD4 to clathrin-containing adaptor complexes, which function as vesicle

coat components in different membrane traffic pathways (Greenberg et al. 1997,

Bresnahan et al. 1998, Piguet et al. 1998). Finally, Nef targets internalized CD4

molecules to degradation by connecting CD4 to β-COP protein present in endosomes

(Piguet et al. 1999). Various other cellular proteins, including vacuolar ATPase,

phospatidylinositol-3-kinase and p35 thioesterase may be involved in Nef-induced

CD4 endocytosis (Liu et al. 1997, Lu et al. 1998, Kim et al. 1999). In addition to the
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process described above, Nef is also able to suppress the function of a novel protein

Naf1, which increases the cell surface CD4 expression (Fukushi et al. 1999). At least

when strongly overexpressed in transient transfection systems, extracellular CD4

molecules have been shown to be deleterious for budding virions, either by inhibiting

HIV-1 progeny virion release by binding to Env proteins (Ross et al. 1999) or by

decreasing the amount of Env incorporated, thus making the virions less infective

(Lama et al. 1999). Hence, the purpose of Nef-induced CD4 down-regulation appears

to be to enhance the budding or infectivity of virus particles.

The Nef-induced MHC class I and CD4 endocytoses are separate processes: the

domains involved in the MHC class I down-regulation consists of an N-terminal

alpha-helix (aa 17-26), an acidic stretch (aa 62-66) and a Pro-rich seqment (aa 69-78)

of Nef, whereas CD4 binding and down-regulation is mediated through several

amino-acids in the core region of Nef (most importantly: aa WLE 57-59, GGL 95-97,

RR 105-106, L110, D123, EE 154-155, DD 174-175) (Aiken et al. 1996, Grzesiek et

al. 1996, Wiskerchen et al. 1996, Greenberg et al. 1998, Mangasarian et al. 1999,

Akari et al. 2000, Liu et al. 2000). In addition, Nef targets the MCH I protein to the

trans-Golgi network by connecting the cytoplasmic tail of MHC I to the PACS-1

dependent protein-sorting pathway (Piguet et al. 2000). Decreasing the amount of

MHC class I molecules on the cell surface is one mechanism that HIV-1 uses to

escape the CTL response directed against virus-infected cells (Collins et al. 1998).

Nef protein enhances the infectivity of virions in a producer cell-dependent manner

(Tokunaga et al. 1998a), suggesting that interactions with cellular factors are needed

for this process. One possible counterpart may be the Hck tyrosine kinase, as virus

particles produced in cells expressing mutated Hck are significantly less infectious

(Tokunaga et al. 1998b). In Nef, the Pro-rich sequence (aa 69-78), a conserved RR

motif (aa 105-106) and the dileucine motif (aa 160-165) are needed for optimal viral

infectivity (Wiskerchen et al. 1996, Craig et al. 1998). The proteolytic cleavage of

Nef is not required for the enhanced infectivity (Chen et al. 1998), but association

with the core may play some role in infectivity as chimeric viruses containing mutated

Nef from different alleles connnected to gag-pol regions from different ones showed

variations in infectivity (Ono et al. 2000).
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Nef has several effects on cellular signalling pathways. First, through its well

conserved proline-rich (PxxP)4 motif it is capable of binding to SH3 domains of

several Scr family tyrosine kinases, including Hck, Lyn, Lck, Fyn (Saksela et al.

1995, Collette et al. 1996a, Lee et al. 1996). This interaction with Nef may either

enhance the kinase activity of the enzyme (Hck), have no effect (Lyn, c-Src) or

suppress their function (Fyn, Lck) (Collette et al. 1996a, Greenway et al. 1996, Briggs

et al. 2000). The Hck kinase activation caused by Nef has been reported to cause

malignant transformation of fibroblasts (Briggs et al. 1997); similar transformation

and association with tyrosine kinase has been earlier reported by Du et al. (1995).

Secondly, Nef associates with serine kinases, including various isoforms of protein

kinase C (Smith et al. 1996, Ambrosini et al. 1999), members of the mitogen-

activated-protein-kinase (MAPK) pathways (Greenway et al. 1995, Hodge et al. 1998,

Li et al. 2000, Manninen et al. 2000) and PAK2 (Renkema et al. 1999). Nef may also

have effect on PAKs indirectly by activating their regulators (Lu et al. 1996, Fackler

et al. 1999). Thirdly, Nef may alter Ca2+ homeostasis in a variety of cells (Foti et al.

1999, Zegarra-Moran et al. 1999, Manninen et al. 2000). Finally, the direct binding of

Nef to an important component of T-cell receptors may lead to activation of T-cells

without antigen stimulation, apoptosis due to Fas-ligand induction and T-cell receptor

downregulation (Bell et al. 1998, Xu et al. 1999).

Several other features of Nef may also participate in the enhancement of HIV-1

replication and the pathogenesis caused by it. Within a few hours after infection of

cells, Nef stimulates the reverse transcription of proviral DNA (Aiken et al. 1995,

Chowers et al. 1995, Schwarz et al. 1995). Also, in infected macrophages the

production of MIP1-α and MIP1-β is induced by Nef – a phenomenon which leads to

chemotaxis and activation of resting T lymphocytes and permits productive HIV-1

infection (Koedel et al. 1999, Swingler et al. 1999). In addition, Nef may impair the

Th1/Th2 cytokine balance by repressing the synthesis of Th1 type cytokines (Luria et

al. 1991, Collette et al. 1996b, Haraguchi et al. 1998), although conflicting results

showing increased IFN-γ or IL-2 expression caused by Nef also exists (Koedel et al.

1999, Quaranta et al. 1999, Wang et al. 2000).



16

Taken together, the data gained from several years of intense research has revealed

that instead of being a relatively weak negative repressor, Nef protein is an active

protein which enhances replication and infectivity of HIV and plays a role in many

cellular events taking place in infected cells.

1.3. Regulatory protein Rev – from nucleus to cytoplasm

HIV-1 Rev (regulator of expression of virion proteins) is a 19-kDa phosphoprotein

coded by a gene overlapping with tat in the +1 reading frame (Sodroski et al. 1986).

This protein is essential for HIV replication as it functions by activating the nuclear

export of unspliced viral mRNAs (Feinberg et al. 1986), which are needed as

templates for translation of Gag and Pol genes, as the precursor RNA for production

of diverse subgenomic mRNAs and as viral genome molecules incorporated into new

virus particles.

HIV-1 Rev can be divided into two discrete functional domains. The Arg-rich domain

consisting of amino acids 34-50 (isolate HXB) contains both the nuclear localisation

signal (NLS)  (Malim et al. 1989, Böhnlein et al. 1991) and the RNA-binding region

(Daly et al. 1989, Böhnlein et al. 1991, Malim et al. 1991a). It is flanked on both sides

by sequences that are needed for multimerisation of the protein (Malim et al. 1991a).

The Leu-rich domain, spanning residues 75-83, functions as the effector domain able

to activate cellular proteins intrinsic to nuclear mRNA transport (Venkatesh et al.

1990, Malim et al. 1991b); in addition, it contains the nuclear export signal (NES)

(Fischer et al. 1995, Wen et al. 1995). Rev is phosphorylated at several serine residues

(Cochrane et al. 1989, Meggio et al. 1996). However, there is discrepancy over the

effect of phosphorylation, as disruption of some phosphorylation sites does not appear

to affect Rev function (Cochrane et al. 1989) or seems to be linked to Rev down-

regulation (Meggio et al. 1996).

Rev achieves its effect by binding to a cis-acting target, the Rev-responsive element

(RRE) – a 351-nucleotides-long complex RNA structure that resides within the env

intron and is therefore present in all unspliced or single spliced mRNAs (Mann et al.

1994). The specific sequence in RRE involved in primary Rev binding is surprisingly

limited: NMR studies, in vitro genetic selection assays and crystal structure analysis

have revealed a 34-nucleotides-long RNA hairpin structure binding to Rev amino
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acids 34-50, and identified the points of contact between Rev and RRE (Bartel et al.

1991, Battiste et al. 1996, Hung et al. 2000). The structure in this area is distorted by

the formation of two non-Watson-Crick purine-purine base pairs which allow the α-

helical RNA-binding domain of Rev to enter the major groove and contact specific

nucleotides. The rest of RRE is needed for maximal rev reactivity: it ensures

appropriate folding and presentation of the high-affinity Rev-binding site and

facilitates the oligomerisation of Rev (Mann et al. 1994, Van Ryk et al. 1999).

Rev binds to RRE as a monomer (Cook et al. 1991, Malim et al. 1991), but additional

Rev molecules then bind and multimerise so that eight or more Revs may be bound to

a single RRE (Daly et al. 1993, Mann et al. 1994, Van Ryk et al. 1999). This

oligomerisation stabilises the Rev-binding site in RRE (Charpentier et al. 1997) and is

essential for Rev function (Malim et al. 1991a). Thus, a hypothesis has been proposed

that the latent phase of HIV infection may be a consequence of insufficient amount of

Rev protein leading to delay in the expression of viral antigens (Malim et al. 1991a).

Multimerisation can occur also in the absence of RRE (Olsen et al. 1990, Cole et al.

1993).

Rev has been shown to shuttle rapidly between nucleus and cytoplasm (Meyer et al.

1994), and this shuttling cycle is dependent on cellular import and export pathways

(Görlich et al. 1996). The Arg-rich NLS of Rev is recognised in the cytoplasm by a

transport receptor, importin-β, which interacts directly with nuclear pore complexes

(Henderson et al. 1997) mediating the stepwise transport of Rev-importin-β complex

into the nucleus. Following translocation, the interaction of importin-β with a nuclear

protein, RanGTPase, induces the disassembly and release of Rev into nucleoplasm

(Henderson et al. 1997). Because the Arg-rich NLS of Rev also functions as the RNA

binding domain, dissociation results in Rev becoming available for binding to RRE.

After binding and multimerisation, the Leu-rich NES regions in Rev are still exposed

and capable to bind multiple copies of an export receptor, CRM1/exportin-1

connected to RanGTP (Fornerod et al. 1997, Neville et al. 1997). Additional proteins

(e.g. Rev interacting protein/Rev activation domain-binding protein Rip/Rab,

nucleoporin-like protein1, Nup98, Nup159, Nup214), which are classified as

nucleoporins due to the presence of typical Phe-Gly repeats, may also interact with
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this export complex (Stutz et al. 1996, Neville et al. 1997, Farjot et al. 1999, Floer et

al. 1999, Zolotukhin et al. 1999) or may be necessary in leading the complex out of

the nucleus. Once in the cytoplasm, Rev is released from the complex, perhaps

through displacement by Rip/Rab (Floer et al. 1999) and can be imported again for

further transport cycles.

A number of additional proteins are also capable of interacting with HIV-1 Rev. Two

of them are related to cellular splicing (Tange et al. 1996, Powell et al. 1997): binding

of the Rev/RRE complex to them inhibits splicing, thus giving Rev an additional

method to protect full-length viral mRNA. Rev also binds to a eucaryotic initiation

factor 5A (eIF5A) (Ruhl et al. 1993); as binding is necessary for Rev-mediated

transport (Bevec et al. 1996) and eIF5A can bind also to CRM1 (Rosorius et al. 1999),

this protein may be part of the export complex. Rev also binds to protein B23

(Fankhauser et al. 1991), a nucleolar phosphoprotein whose activities are proposed to

play a role in ribosome assembly. Protein B23 inhibits the aggregation of Rev

(Szebeni et al. 1999).

An additional interesting feature associated with Rev is the finding that the human

endogenous retrovirus K (HERV-K) family can also encode a sequence-specific

nuclear export factor binding to CRM1 and to a viral RNA target (Yang et al. 1999,

Boese et al. 2000). This HERV-K RNA sequence is also recognised by HIV-1 Rev

thus providing evidence for an evolutionary link between HIV-1 and a group of

endogenous retroviruses that first entered the human genome approximately 30

million years ago.

1.4. Regulatory protein Tat – a multipotent troublemaker

All lentiviruses encode small RNA-binding proteins which regulate the transcription

of the viral genome from the LTR of the virus (Tang et al. 1999). In HIV-1, this

nuclear transcriptional activator protein (Tat) is essential for virus replication (Dayton

et al. 1986, Fisher et al. 1986), and it acts as an elongation factor (Kao et al. 1987)

binding to a 59-residue-long transactivation-responsive region (TAR) present in the 5´

end of the nascent RNA molecule (Dingwall et al. 1989). TAR folds a specific stem

loop structure, the configuration of which is essential for transactivation, as mutations

destabilising the TAR stem by disrupting base-paring abolish Tat-stimulated
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transcription (Selby et al. 1989). The binding of Tat to TAR activates a protein kinase

complex (Tat-associated kinase, TAK) which hyperphosphorylates the carboxy-

terminus of RNA polymerase II thus leading to a stabilised form of polymerase able

to proceed transcription (Karn 1999). As Tat can bind to several transcription factors

including TFIID, TFIIB, TFIIH and SP1 (Jeang et al. 1993, Kashanchi et al. 1994,

Parada et al. 1996, Veschambre et al. 1997) it may also have some effect to the

initiation step of transcription (Laspia et al. 1989). For efficient binding and

transcriptional activity in vivo, Tat protein needs to be acetylated by histone

acetyltransferases p300 and p300/CBP-associating factor (Kiernan et al. 1999). In

addition, even though Tat can form also dimers and trimers, only the monomeric form

of Tat is the relevant functional form (Tosi et al. 2000).

HIV-1 infected or tat gene-transfected cells can release Tat via a leaderless secretory

pathway into the culture supernatant (Ensoli et al. 1990, Chang et al. 1997) where

uninfected cells can take it up; this may lead to trans-activation of various cellular

genes (Frankel et al. 1988, Ensoli et al. 1993, Demirhan et al. 1999a). Biologically

significant amounts of Tat have also been detected in the sera of HIV-1 infected

individuals (Westendorp et al. 1995).

In field isolates of HIV-1, Tat is a 14-kDa protein coded by two exons responsible for

residues 1-72 and 73-> , respectively (Sodroski et al. 1985). In laboratory-passaged

virus strains (e.g. LAI, HXB2, pNL4-3), a single nucleotide change in amino acid 87

creates a stop codon leading to the expression of a truncated, 86-amino-acid-long

protein (Myers et al. 1996). According to the nature of its amino acid sequence, Tat

protein can roughly be divided into several domains (Kuppuswamy et al. 1989, Bayer

et al. 1995) with various functional and pathogenic characteristics.

An acidic N-terminal region (aa 1-20) forms a stable structure sandwiched between

glutamine-rich and core regions (Bayer et al. 1995). It has been shown to bind to T-

cell activation marker CD26 and inhibit its dipeptidyl peptidase IV activity (Wrenger

et al. 1997), which is necessary for regulation of immune responses (Kähne et al.

1999). Thus, the amino terminus may be responsible for the reported Tat-mediated

inhibition of antigen- and mitogen-induced proliferation of PBMCs and T-cell clones

(Viscidi et al. 1989, Benjouad et al. 1993, Chirmule et al. 1995, Zagury D et al. 1998),
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as well as for the detected impairment of T-cell functions in HIV-infected individuals

(Miedema et al. 1988). Also, the amino terminus enhances viral reverse transcription

by an as yet unknown method (Ulich et al. 1999).

The Cys-rich region  (aa 21-37) contains seven highly conserved cysteine molecules,

most of which are essential for virus replication (Sadaie et al. 1990). This region is

responsible for the intramolecular disulfide bond formation of Tat (Koken et al.

1994), and it induces HIV replication and participates in TAR-dependent trans-

activation (Boykins et al. 1999). Furthermore, it can bind to cell surface reseptors on

monocytes and has chemotactic activity on them (Albini et al. 1998a); it also triggers

angiogenesis (Boykins et al. 1999), which in part enhances the formation of KS

attributed to Tat (Ensoli et al. 1990, 1994).

The core region (aa 38-48) composes a conserved and rigid α-helical structure shown

to enhance the binding of Tat to TAR sequence in LTR (Churcher et al. 1993, Bayer

et al. 1995). Together with the Cys-rich region, it has chemotactic activity on

monocytes (Albini et al. 1998a). Amino acids 1-48 all together have been suggested

to circumscribe the minimal activation domain of Tat (Carroll et al. 1991).

The basic region (aa 49-59) is also highly conserved and contains an RKKRRQRRR

motif needed for TAR RNA binding (Dingwall et al. 1989, Weeks et al. 1990) and

nuclear localisation through a novel import pathway (Hauber et al. 1989, Truant et al.

1999). In addition, this domain can act as a chemo-attractant for dendritic cells and

monocytes (Benelli et al. 1998), and it is involved in the uptake of protein from

extracellular space (Chang et al. 1997, Vives et al. 1997), in angiogenesis leading to

KS (Albini et al. 1996) and in neurotoxic effects of Tat (Sabatier et al. 1991, Weeks et

al. 1995).

The Gln-rich region (aa 60-76) forms a rigid structure that pairs with three nucleotides

in the TAR loop, thus providing an additional motif in Tat to recognise TAR RNA

(Loret et al. 1992).
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The C-terminal region (aa 77-101) of Tat was initially considered functionally

dispensable as full transactivation capacity was observed with a truncated Tat protein

coded by the first exon (Sodroski et al. 1985). However, this C-terminal part has

many non-transcriptional effects: it contains an RGD sequence shown to act as a

chemo-attractant for dendritic cells and monocytes (Benelli at al. 1998), and it is

involved in the integrin-mediated cell adhesion of Tat (Brake et al. 1990b), neuron

disorganisation (Kolson et al. 1993, Orsini et al. 1996) and impairment of dendritic

cell function (Zocchi et al. 1997). Furthermore, the Tat second exon can hyperactivate

human PBLs by inducing IL-2 production (Ott et al. 1997) and bind to a human

translation elongation factor leading to the reduced translation of cellular, but not

viral, mRNAs (Xiao et al. 1998). The second exon is also needed for Tat-induced

apoptosis in T-cell lines and primary CD4 T cells (Bartz et al. 1999).

In addition to the activities described above, Tat has several cellular functions not yet

located to any particular domain of the protein. Extracellular Tat can trigger an

intracellular signalling cascade by activating various kinases, including c-Jun N-

terminal and Src kinases (Ganju et al. 1998, Kumar et al. 1998), phosphatidylinositol

3-kinase (Borgatti et al. 1997), mitogen-activated protein kinases (Ganju et al. 1998,

Oshima et al. 2000) and protein kinase C (Borgatti et al. 1998). Some of these effects

may be mediated by a T-cell receptor binding protein, p56lck (Manna et al. 2000). Tat

can also block L-type Ca2+ channels (Poggi et al. 1998) thus leading to impairment of

several functions dependent on Ca2+ entry. In addition, Tat may cause a significant

decline in total intracellular GSH content, which leads to a condition of oxidative

stress (Opalenik et al. 1998, Choi et al. 2000). In dopaminergic rat cells, Tat inhibits

the expression of tyrosine hydroxylase, the rate-limiting enzyme for the dopamine

biosynthetic pathway, as well as release of dopamine into the culture medium (Zauli

et al. 2000).

The expression of many cytokines is modulated by Tat: upregulation of TNF, IL-1,

IL-2, IL-6, IL-8, IL-10, MCP-1, PAF, TGFβ-1 and FGF-1 by Tat has been detected in

various cell lines (Buonaguro et al. 1992, Westerdorp et al. 1994, Blazevic et al. 1996,

Conant et al. 1998, Ott et al. 1998, Sawaya et al. 1998, Del Sorbo et al. 1999, Nath et

al. 1999), whereas levels of MIP1-α and IL-12 are downregulated by Tat (Sharma et
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al. 1996, Ito et al. 1998, Poggi et al. 1998).  Extracellular Tat also enhances the

expression of chemokine receptors CCR5 and CXCR4 on lymphocytes or

monocytes/macrophages, thus rendering bystander cells more susceptible to infection

with M- or T-tropic viruses (Huang et al. 1998, Secchiero et al. 1999). In addition, Tat

shares homology with CC chemokines and is able to activate chemokine receptors

CCR2 and CCR3 by binding to them (Albini et al. 1998b).

2. Humoral immune response against HIV

Primary virus infection often induces detectable antibody and cytotoxic T-lymphocyte

(CTL) responses as well as activation of innate immune cells. CTL responses occur

early (in 7-10 days) and decrease after resolving virus infection, usually within 2-3

weeks post-infection (Whitton et al. 1996). The antibody response usually peaks later

than CTL (in 2-4 weeks), but detectable levels may be found for a lifetime (Whitton et

al. 1996). Humoral and cellular responses have different but symbiotic tasks in

defending the host in virus infection: antibodies reduce the load of extracellular

infectious units, thereby decreasing the number of infected cells that T cells have to

deal with, and T cells kill cells soon after infection ensuring that the amount of virus

released is minimised thus easing the work of antibodies (Whitton et al. 1996).

2.1. Antibodies against structural proteins of HIV

Antibodies to various HIV-1 proteins appear usually within 1-4 weeks, but cases of

seroconversion have been described up to six months after infection (Ranki et al.

1987b, Horsburgh et al. 1989). The appearance of HIV-spesific antibodies is slow as

compared to other virus infections. The most immunogenic proteins are gp120, gp41

and p24, and antibodies recognising them may be found during all clinical stages of

the infection. Although cell-mediated immune response is needed to destroy HIV-

infected cells, humoral immunity may also play a critical role in preventing and

modulating infections. Chimpanzees vaccinated with gp160 or V3 peptides were

protected against an intraclade challenge, and antibody titer to the V3 loop of gp120

as well as neutralising antibody titers were shown to be correlates of protection

(Girard et al. 1995). Furthermore, protection in non-human primates was achieved

using passive immunisation of immunoglobulins collected from the serum of HIV-

infected individuals or monoclonal antibodies (Prince et al. 1991, Emini et al. 1992,

Shibata et al. 1999, Baba et al. 2000, Mascola et al. 2000). Protection was efficient
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whether monkeys were challenged intravenously or intravaginally. Similarly, studies

in mice constituted with human peripheral blood mononuclear cells exhibiting severe

combined immunodeficiency syndrome showed that pre- and post-exposure

protection against HIV infection was achieved using immunisations of murine or

human monoclonal antibodies (Safrit et al. 1993, Gauduin et al 1997). All studies

were performed with antibodies directed against gp120 or gp41. As the tested

monoclonal antibodies were specific for the principal neutralisation determinants of

HIV, neutralisation is propably needed for protection.

2.2. Neutralising antibodies

Virus neutralising antibodies are antibodies capable of reducing infectivity in vitro in

the absence of other inactivating factors. Their HIV-neutralising capacity can be

measured by assessing syncytium formation or p24 production in cells infected with

antibody treated virus. Neutralising antibodies can be found in the sera of HIV-

infected individuals in various disease categories and in the sera of healthy,

seropositive homosexuals (Robert-Guroff et al. 1985, Weiss et al. 1985). However,

the antibody titers in these individuals, as well as in vaccinated animals, are often low,

and cross-clade neutralisation of primary isolates is weak (Poignard et al. 1996).

Furthermore, the emergence of mature antibodies with heterologous neutralising

activity requires time (Moog et al. 1997, Cole et al. 1998). Instead, certain

monoclonal antibodies have strong neutralising activity against a broad spectrum of

primary isolates (Poignard et al. 1996).

Consistent with other retroviral systems (Steeves et al. 1974, Grant et al. 1983,

Clapham et al. 1984), the envelope glycoproteins are the targets for neutralising

antibodies (Rusche et al. 1987, Weiss et al. 1988). A multitude of mechanisms are

used in neutralisation: antibodies may decrease virus infectivity before virion

attachment to CD4-cells, probably by perturbing some property of the envelope that is

required for entry (McDougal et al. 1996), antibodies specific for gp120-CD4 binding

site inhibit virion attachment (Ugolini et al. 1997) and antibodies against gp41 act at

post-attachment step of infection (Sattentau et al. 1995, Ugolini et al. 1997).

Antibodies may also neutralise various virions at later steps by inhibiting uncoating

and transription of the virus (Dimmock 1984, Virgin et al. 1994), and in fact,

antibodies against internal structures have also been shown to mediate neutralisation
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in HIV infection  (Sarin et al. 1986, Papsidero et al. 1989, Ferns et al. 1991). In these

cases, neutralisation may be a consequence of sequence homology between the

internal protein and membrane-associated or secreted proteins (Sarin et al. 1986,

Buratti et al. 1997)

2.3. Antibody-dependent cellular cytotoxicity (ADCC)

Antibodies may participate in the killing of infected cells by bridging infected cells to

non-immune effector cells (eg. NK cells of macrophages), which are not antigen-

specific. Antibodies capable of inducing this antibody-dependent cellular cytotoxicity

(ADCC) can be found in the majority of HIV-infected individuals, but their titers

decrease as the disease progress (Rook et al. 1987, Goudsmit et al. 1988). However,

ADCC may be critical to the control of viral replication in acute infection (Connick et

al. 1996), as well as to the maintenance of the latent phase in non-progressors (Baum

et al. 1996). In addition to ADCC, antibody-dependent complement-mediated

cytotoxicity has been shown in HIV-infected individuals (Sullivan et al. 1996), and

recent studies have revealed that an antigenic domain of Nef exposed on the surface

of HIV-1-infected cells may be one component that induces this complement-

mediated cytotoxicity (Yamada et al. 1999).

ADCC needs three components: target cells that express components of the pathogen

on their surface, IgG-class antibodies recognising the pathogen and effector cells

bearing the Fc gamma receptor (Ahmad et al. 1996). In HIV-infected individuals, Env

proteins are the main targets of ADCC (Evans et al. 1989), although antibodies

against p24 also correlate with ADCC (Rook et al. 1987).

At present, there is not much evidence about the participation of Nef-, Rev- or Tat-

specific antibodies in the classical mechanisms of humoral dependent virus

destruction (e.g. neutralisation and ADCC), yet these antibodies have several effects

both in vitro and in vivo. These are described in the following sections.

2.4. Antibodies against HIV-1 Nef

Nef-specific antibodies arise early in the infection and may occasionally precede the

occurrence of antibodies toward HIV-1 structural proteins (Ranki et al. 1987a,

Ameisen et al. 1989). Nef is highly immunogenic: around 70% of HIV-1-infected
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individuals have antibodies against it (Franchini et al. 1987, De Ronde et al. 1988,

Sabatier et al. 1989, Cheingsong-Popov et al. 1990, Chen et al. 1999), and high initial

levels of Nef-specific antibodies early after infection are associated with a lack of

rapid progression to AIDS, thus indicating that Nef antibodies may serve as a clinical

marker of disease progression (O´Shea et al. 1991, Reiss et al. 1991, Chen et al. 1999,

Yamada et al. 1999). However, conflicting results showing no clear correlation with

viral latency or with disease progression also exist (Franchini et al. 1987, Kirshhoff et

al. 1991, Cheingsong-Popov et al. 1990, Ranki et al. 1990). These conflicting results

may be a consequence of several factors: some of the studies were done using

longitudial follow-up and others by evaluating the antibody titers in groups of patients

at various disease stages, the amount of sera tested varied (14 versus 267), and the

extent and appearance of antibodies during the course of infection also varied

considerably between individual  patients or animals.

Table 1. B-cell epitopes of Nef

Human epitopes (aa)

Ameisen et al. (1989) 45 - 69, 148 - 161
Sabatier et al. (1989)  1 - 66, 171 - 205
Kienzle et al. (1991) 1 - 33
Schneider et al. (1991) 26 - 44, 51 - 67, 122 - 135, 143 - 176
Yamada et al. (1999) 87 - 101

Mouse epitopes (aa)

Schneider et al. (1991) 11 - 24, 28 - 43, 60 - 73, 78 - 103
Ovod et al. (1992) 21 - 41, 31 - 50, 51 - 71, 61 - 80, 151 - 170, 161 - 180
Otake et al. (1994)                  1 - 33, 148 - 157, 158 - 206, 192 - 206

Primate epitopes (aa)

Bahraoui et al. (1990) 17 - 35, 52 - 66, 65 - 146, 185 - 205
Putkonen et al. (1998)             165 - 210

                                                 Single-chain antibody epitopes

Chang et al. (1998)                  194 - 206
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Nef-antibody assays are often hampered by false positive results, and certain Nef-

monoclonals can stain tissue samples taken from uninfected individuals. These non-

HIV-derived positive results probably arise from immunological cross-reactivity

between Nef and some cellular/viral proteins or contaminants of the antigen (Ranki et

al. 1990, Cheingsong-Popov et al. 1990, Parmentier et al. 1992, Scheider et al. 1993).

In fact, Nef has been shown to be homological at least with IL-2 receptor and various

protein kinases (Samuel et al. 1987), with human thyrotropin receptor (Burch et al.

1991), with a human spumaretroviral gene (Maurer et al. 1987) and with certain

neuroactive proteins interacting with K+ channels (Werner et al. 1991). Therefore,

many investigators have tried to identify actual Nef-specific B-cell epitopes that are

recognised only by the sera of HIV-infected individuals (Ameisen et al. 1989,

Sabatier et al. 1989, Kienzle et al. 1991, Schneider et al. 1991, Yamada et al. 1999),

by sera of chimpanzees or cynomolgus monkeys immunised with HIV-antigens or

plasmid DNA (Bahraoui et al. 1990, Putkonen et al. 1998) or by monoclonal or

single-chain antibodies (Schneider et al. 1991, Ovod et al. 1992, Otake et al. 1994,

Chang et al. 1998). Overlapping synthetic peptides of varying lengths as well as

fusion proteins were used for this purpose. Several linear antigenic regions were

characterised (Table 1), and many of the human epitopes were shown to totally or

partially overlap with the mouse and non-human primate epitopes. In general, all parts

of Nef protein contain antigenic regions capable of inducing antibody synthesis in

vivo (Table 1).

2.5. Antibodies against HIV-1 Rev

The immunogenicity of Rev has been demonstrated both in HIV-infected humans and

immunised animals (Chanda et al. 1988, Dairaku et al. 1989, Reiss et al. 1989a, Reiss

et al.1989b, Devash et al. 1990, Kreusel et al. 1993, Pardridge et al. 1994, Ranki et al.

1994, Orsini et al. 1995, Hinkula et al. 1997). A large variation in the prevalence of

Rev antibodies is seen between different human studies: according to Dairaku et al.

(1989) Rev antibodies can be seen in all HIV-seropositive individuals, whereas other

groups have detected Rev antibodies in less than 40% of seropositive individuals

(Chanda et al. 1988, Reiss et al. 1989b, Devash et al. 1990). In longitudinal studies,

Rev antibodies could be found either persistently, transiently or intermittently in the

follow-up period (Reiss et al. 1989b), but a lower prevalence of Rev antibodies was
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seen in sera from patients with AIDS, compared with patients with ARC and

symptom-free HIV-1 infected individuals (Reiss et al. 1989b, Devash et al. 1990).

Interestingly, both intracellular single-chain anti-Rev antibodies and chemically

modified (cationized) antibodies capable of entering cells via endocytosis can

significantly inhibit HIV-1 replication in various cell lines and in PBMC (Pardridge et

al. 1994, Wu et al. 1996). Inhibition is seen with antibodies recognising functionally

important domains of the protein (eg. amino acids 34-50 containing both the nuclear

localisation signal and the RNA-binding region, amino acids 70-84 containing the

activation domain and the nuclear export signal), but also with an antibody

recognising amino acids 96-109 having no known function (Pardridge et al. 1994, Wu

et al. 1996).

In Rev, antigenic epitopes recognised by human sera, mouse monoclonal antibodies,

rabbit sera or single-chain antibodies have been mapped with synthetic peptides or

protein footprinting analysis (Dairaku et al. 1989, Kreusel et al. 1993, Pardridge et al.

1994, Ranki et al. 1994, Orsini et al. 1995, Pilkington et al. 1996, Wu et al. 1996,

Henderson et al. 1997, Jensen et al. 1997) (Table 2). The Arg-rich region of Rev,

containing both the nuclear localisation signal (NLS) and the RNA-binding sequence,

and the Leu-rich activation domain are clearly the most antigenic regions. Also, the

carboxy-terminus of the protein is immunogenic, at least in mice.
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Table 2. B-cell epitopes of Rev

                                                Human epitopes (aa)

    Dairaku et al. (1989) 33 - 48

Mouse epitopes (aa)

   Kreusel et al. (1993) 69 - 82
   Ranki et al. (1994) 33 - 48
   Orsini et al. (1995) 38 - 44, 90 - 116
   Henderson et al. (1997) 32 - 50, 72 - 91, 102 - 116
   Jensen et al. (1997)              5 - 15, 65 - 85, 95 - 105

Rabbit epitope (aa)

   Pardridge et al. (1994) 35 - 50

                                                Single-chain antibody epitopes (aa)

  Pilkington et al. (1996)         52 - 64, 75 - 88
  Wu et al. (1996)                    70 - 84, 96 - 109

2.6. Antibodies against HIV-1 Tat

Several reports have demonstrated the immunogenicity of Tat in HIV-1 infected

humans (Aldovini et al. 1986, Barone et al. 1986, Franchini et al. 1987, Krone et al.

1988, McPhee et al. 1988, Reiss et al. 1989b, Demirhan et al. 1999b) and in mice

immunised with recombinant protein (Brake et al. 1990a, Ranki et al. 1994, Tosi et al.

2000) or plasmid-DNA (Hinkula et al. 1997). In HIV-infected patients, the reported

prevalence of antibodies to Tat varies from less than 30 to 100 percent, and

longitudinal studies reveal that the antibody response is either constantly or

occasionally detectable. Interestingly, significantly lower levels of Tat antibodies

were seen in patients with Kaposi´s sarcoma (Demirhan et al. 1999b), and there is a

correlation of low or absent antibody response to Tat with p24 antigenemia and

progression to AIDS (Reiss et al. 1991, Rodman et al. 1993, Re et al. 1995, Zagury J-

F et al. 1998, Cohen et al. 1999), indicating that a humoral response against Tat may

have protective effects. Conflicting results show no significant differences in Tat



29

antibodies in various disease stages and even increased levels of Tat antibodies in

AIDS (Aldovini et al. 1986, Franchini et al. 1986, McPhee et al. 1988).

In vitro, relatively low levels of extracellularly-added anti-Tat antibodies clearly

inhibited HIV-1 replication in various cell lines and in PBMC cultures in a

concentration-dependent manner (Steinaa et al. 1994, Re et al. 1995, Tosi et al. 2000),

and were able to counteract the HIV-1 induced immunosuppression of T cells, as well

as the HIV-1 induced generation of suppressive T cells (Lachgar et al. 1996, Zagury

D et al. 1998). Also, Tat-specific antibodies were shown to be responsible for

minimisation of chronic plasma viremia in vaccinated rhesus macaques (Goldstein et

al. 2000). Thus, extracellular Tat antibodies may inhibit the paracrine activation

pathway shown to be one feature of the extracellular Tat protein (Ensoli et al. 1993).

Furthermore, lipidated anti-Tat antibodies capable of entering the cells, as well as

intracellular single-chain antibodies, can also inhibit Tat-mediated transactivation of

HIV-1 LTR, replication of HIV-1 or intracellular trafficking of Tat (Mhashilkar et al.

1995, Cruikshank et al. 1997, Poznansky et al. 1998).

Tat-reactive IgM-class antibodies have been found in the sera of non-HIV-infected

individuals (Rodman et al. 1992, Rodman et al. 1993), and certain monoclonal

antibodies against Tat react with various tissues from uninfected individuals

(Parmentier et al. 1992), suggesting that this protein contains epitopes closely

reminiscent of a cellular protein capable of inducing natural antibodies. Tat shares

homology with CC chemokines, but no other cellular homoloques of Tat have been

described so far.

Several antigenic epitopes have been localised using mouse monoclonal antibodies,

human sera, cynomolgus monkey sera or single-chain antibodies (Krone et al. 1988,

McPhee et al. 1988, Brake et al. 1990, Ranki et al. 1994, Mhashilkar et al. 1995,

Pilkington et al. 1996, Putkonen et al. 1998, Demirhan et al. 1999b, Tosi et al. 2000)

(Table 3). In Tat, the amino terminus as well as the Arg-rich region containing the

TAR-binding motif are most often recognised by specific antibodies. Interestingly,

sera from patients having KS differ from the sera of asymptomatic patients not only in

the lower prevalence of Tat-specific antibodies, but also in a different epitope

recognition pattern (Demirhan et al. 1999b). The antibody profile in KS sera was
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limited to only a few epitopes, and none of the sera exhibited antibodies against the

TAR-binding region, which was always recognised by sera from asymptomatic

patients.

Table 3. B-cell epitopes of Tat

Human epitopes (aa)

Krone et al. (1988) Amino terminus
McPhee et al. (1988) 71 - 83
Demirhan et al. (1999) 11 - 24, 36 - 50, 41 - 54, 46 - 60, 52 - 60, 56 - 70

Mouse epitopes (aa)

Brake et al. (1990) 5 - 22, 44 - 63
Ranki et al. (1994) 1 - 16
Tosi et al. (2000) 1 - 9, 52 - 55, 81 - 86

                                                Primate epitope (aa)

   Putkonen et al. (1998)          31 - 65

                                                Single-chain antibody epitopes (aa)

Mhashilkar et al. (1995)          2 - 21
Pilkington et al. (1996)           22 - 33

2.7. Humoral immune dysfunctions in HIV infection

The most prominent dysfunctions seen in HIV infection are the polyclonal or

monoclonal activation of B-cells, hyperimmunoglobulinemia affecting all isotypes,

elevated autoantibody titers, poor response to antigens or mitogens and the

development of B-cell lymphomas (Lane et al. 1983, Knowles et al. 1988, Terpstra et

al. 1989, Daniel et al. 1996, Lopalco et al. 2000). Some of these abnormalities can

precede the CD4+ T-cell defects or can be seen in purified B-cell cultures indicating

that they are at least partly intrinsic to B-cells (Pahwa et al. 1986, Terpstra et al.

1989).
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Several mechanisms are involved in B-cell dysfunction. Firstly, the gradual

destruction of CD4+ helper T cells will lead to impairment of B-cell function as well.

Secondly, biased or restricted antibody V-region gene usage may limit the available

repertoire of antibodies against HIV-1 and opportunistic infections (Berberian et al.

1991, Muller et al. 1993). Thirdly, the elevated level of B-cells bearing the IL-6

receptor in HIV-infected subjects, together with enhanced production of IL-6 (Boue et

al. 1992, van der Meijden et al. 1998), can contribute to the

hypergammaglobulinemia. Finally, the decreased level of CD70, a TNF-related trans-

membrane protein induced by the activation of lymphocytes, on B-cells from HIV-

infected subjects is involved in the low IgG production after T-cell dependent antigen

stimulation (Wolthers et al. 1997). Changes in the expression of other cytokines and

cytokine reseptors may also contribute to the destruction of humoral response.

3. Vaccination studies with Nef, Rev or Tat

3.1. The clinical importance of immune response against Nef, Rev and Tat

The regulatory proteins Rev and Tat, as well as the accessory protein Nef, belong to

proteins expressed early in the life cycle of the virus, soon after virion entry into the

cell. Thus, an immune response directed against them may prevent later steps in the

HIV life cycle and inhibit the release of progeny virus particles. In fact, an immune

response against these early proteins has been shown to correlate with protection or

attenuation of the disease (O´Shea et al. 1991, Reiss et al. 1991, Rodman et al. 1993,

De Maria et al. 1994, Langlade-Demoyen et al. 1994, Re et al. 1995, Van Baalen et al.

1997, Chen et al. 1999, Yamada et al. 1999). The facts that HIV-1 strains with low

pathogenicity have deletion in these proteins (Deacon et al. 1995, Iversen et al. 1995,

Yamada et al. 2000), and that a shift from predominantly spliced regulatory viral

mRNA patterns to a predominantly unspliced pattern is associated with disease

progression (Michael et al. 1995) further underline the essential role of these proteins,

and the beneficial effects an immune response against them may provide.

3.2. Previous vaccination strategies

Early vaccination studies mainly focused on using gp160 subunits (recombinant

proteins, peptides) and viral, bacterial or DNA vectors carrying env-genes as the

immunising antigen. With these vaccine candidates, an antibody response, as well as

cell-mediated immune responses, may follow, but in humans neither total protection
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nor suppression of disease, virologic measures or progression to AIDS has been

observed (Connor et al. 1998, Evans et al. 1999, Goebel et al. 1999, Sandström et al.

1999). One possible mechanism for this may be the ability of HIV-1 to rapidly mutate

and generate new quasispecies differing on the envelope sequences.

Other widely tested vaccine candidates have been the live attenuated virus constructs,

which contain either mutated or totally deleted HIV or SIV genes (Daniel et al. 1992,

Quesada-Rolander et al. 1996, Igarashi et al. 1997, Cranage et al. 1997).  In animals

vaccinated with attenuated SIV, immune responses may be elicited owing to the

endogenous expression of native SIV proteins and/or antigen presentation in the

native replication site of virus.  The live attenuated vaccines prepared from SIV have

provided the most long-lasting and impressive protection against SIV so far

(Hulskotte et al. 1998): protection is seen against heterologous SIV strains and against

challenge via intravenous, mucosal or oral route. However, the replication-competent

viral vaccines raise safety concerns for clinical trials in humans, especially because

deleted vaccine strains can evolve into fast-replicating variants by multiplication of

remaining sequence motifs (Berkhout et al. 1999), and because SIV constructs with

multiple gene deletions can be pathogenic in new-born monkeys (Baba et al. 1995).

Furthermore, the level of protection may be dependent on the time-point of challenge

(Hulskotte et al. 1998).

As the accessory and regulatory proteins Nef, Rev and Tat are more conserved than

Env, they have become important targets for the design of vaccines. All three proteins

have been used in immunisation studies either as recombinant proteins, peptides or

corresponding genes cloned in various bacterial, viral or DNA vectors.

3.3. Antigen-specific immune responses in vaccinated individuals

Nef has been shown to induce antibodies in animals immunised either with

recombinant protein (Bahraoui et al. 1990, Schneider et al. 1991, Ovod et al. 1992,

Otake et al. 1994) or DNA plasmids with or without protein boosting (Hinkula et

al.1997, Putkonen et al 1998, Moureau et al. 1999, Billaut-Mulot et al. 2000). In

humans, the antibody responses after DNA vaccination were of low magnitude

(Calarota et al. 1999), but a Nef-lipopeptide immunisation induced antibodies in the

majority of vaccinees (Gahery-Segard et al. 2000). Nef raised proliferative and/or
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CTL responses in animals immunised with various DNA plasmids (Asakura et al.

1996, Hinkula et al. 1997, Putkonen et al. 1998, Ayyavoo et al. 2000, Billaut-Mulot et

al. 2000) and bacterial vectors (Winter et al. 1995). A Nef-specific cell-mediated

response was also detected in humans immunised with DNA plasmids (Calarota et al.

1999), lipopeptides (Gahery-Segard et al. 2000) and viral vectors (Evans et al. 1999).

However, the DNA immunisation of treatment-naive HIV-infected patients caused no

significant decrease in viral load or increase in the CD4+ lymphocyte counts (Calarota

et al. 1999), nor were DNA-primed/protein-boosted monkeys having both antibody

and proliferative responses against Nef, Rev and Tat protected against intravenous

challenge with SHIV (Putkonen et al. 1998), a chimeric SIV expressing env, rev and

tat genes of HIV-1.

Also, Rev induced antibody production in immunised mice and rabbits (Kreusel et al.

1993, Pardridge et al. 1994, Ranki et al. 1994, Orsini et al. 1995, Henderson et al.

1997, Hinkula et al. 1997, Jensen et al. 1997), but in DNA-vaccinated HIV-infected

patients, as well as in DNA-immunised and protein-boosted cynomolgus monkeys,

antibody response against Rev was low (Putkonen et al. 1998, Calarota et al. 1999).

Transient Rev-specific CTL and proliferative responses were induced by DNA

vaccination in these patients and in seronegative volunteers receiving an env/rev DNA

vaccine (Boyer et al. 2000). A transient proliferative response, but no CTL activity

was induced in monkeys. As earlier indicated, these responses provided neither

protection nor reduction in the viral load or enhancement in CD4+ lymphocyte

counts. However, recent studies in cynomolgus monkeys showed that vaccination

with SIVmac Rev and Tat genes cloned in recombinant Semliki Forest virus (SFV)

and recombinant vaccinia virus (MVA) could protect monkeys against challenge with

SIV (Osterhaus et al. 1999), but the immunological parameters correlating with this

protection are still unclear.

Immunisation with Tat-protein or peptides induced high levels of Tat-antibodies in

various animals (Brake et al. 1990a, Ranki et al. 1994, Cafaro et al. 1999, Goldstein et

al. 2000, Pauza et al. 2000, Tosi et al. 2000); also DNA immunisation raised antibody

production, albeit often at lower levels if no protein boosting was given (Hinkula et al.

1997, Putkonen et al. 1998, Caselli et al.1999). The Tat antibodies detected in the sera

of immunised animals were capable of neutralising the effect of extracellular Tat on
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HIV-1 replication (Cafaro et al. 1999, Caselli et al. 1999). In seronegative humans,

immunisation with chemically modified Tat protein induced high levels of circulating

antibodies (Gringeri et al. 1999), but DNA vaccination caused no enhancement in

antibody titers in HIV-patients having a very low Tat-antibody response before

immunisation (Calarota et al. 1999). A T-cell proliferative response to Tat protein has

been detected in humans (Calarota et al. 1999, Gringeri et al. 1999), monkeys

(Putkonen et al. 1998, Cafaro et al. 1999, Pauza et al. 2000) or mice (Caselli et al.

1999) immunised either with Tat protein or DNA constructs. Low level CTL

responses towards Tat have been reported in DNA-vaccinated humans (Calarota et al.

1999) and in protein-immunised monkeys (Cafaro et al. 1999).

Even though the first DNA vaccination studies using plasmids containing non-

structural genes showed no protection upon challenge (Putkonen et al. 1998), the

recent vaccination studies using non-structural whole proteins seem promising.

Protection was seen in the majority of cynomolgus monkeys immmunised with Tat-

protein (Cafaro et al. 1999) and a significant attenuation of disease (e.g. lower vRNA

copies and p27 levels in plasma, lower chemokine receptor expression on circulating

CD4+ cells, higher CD4 count) was detected in rhesus macaques immunised with

chemically modified Tat-protein (Pauza et al. 2000). Furthermore, live viral vectors

carrying Rev and Tat genes protected cynomolgus monkeys (Osterhaus et al. 1999).

However, the immunological responses needed for protection are still unclear. Some

studies showed that both the humoral and cell-mediated responses were needed for

attenuation of infection (Pauza et al. 2000), while in other reports the neutralisation

titers did not correlate with protection (Cafaro et al. 1999). Future studies

investigating the role of various immunological parameters (including cytokine

levels) in protection, as well as new ways to improve immunogenicity of vaccines,

still wait to be done.
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AIMS OF THE PRESENT STUDY

The regulatory proteins Rev and Tat, as well as the accessory protein Nef, belong to

proteins expressed early in the life cycle of the virus, soon after virion entry into the

cell. Thus, an intracellularly acting immune response directed against them may

prevent later steps in the HIV life cycle and inhibit the release of progeny virus

particles. Furthermore, as these proteins are more conserved than highly variable

membrane proteins of HIV-1, they are possible candidates for vaccine development,

and possible targets for specific immunotherapy in HIV-1 infected patients. The

present work was undertaken to study the antigenicity of these proteins, as well as the

usefulness of these proteins as vaccine components.

The specific aims of this study were:

1. To investigate the prevalence of antibodies against these proteins in HIV-1-

infected individuals.

2. To map the B-cell epitopes of Nef, Rev and Tat recognised by human sera.

3. To generate DNA vaccine constructs containing genes for Nef, Rev or Tat.

4. To test the immunogenicity of these constructs in mice, and analyse the humoral

immune response raised against Nef, Rev and Tat.



36

MATERIALS AND METHODS

1. Study population

The HIV-positive sera used in Study I, II and III were collected from voluntary

German or Finnish HIV-infected individuals. In Study I, HIV-negative but Nef-

positive sera were also analysed. These sera were collected from homosexual men

belonging to the HIV-risk group or from voluntary dermatological patients. Sera from

healthy laboratory workers and medical students were used as negative controls.

In Study IV and V, Balb/c mice (5-8 weeks old) were used in immunisation

experiments. Mice receiving only the plain vector without HIV-1 genes cloned in

were used as negative controls.

2. Detection of humoral immune response

The antibodies against whole Nef, Rev or Tat proteins were detected either with

Western blotting or ELISA. In these assays, recombinant proteins (isolate BRU) were

used as antigens. Nef was obtained either from Prof. V. Erfle (GSF, Germany), from

Dr. M-P. Kieny and Dr. J-P. Lecocq (Transgene, France) or from Dr. M. Harris (MRC

AIDS Directed Programme Reagent Project, United Kingdom). Recombinant Rev and

Tat proteins were from Intracell, American Biotechnologies Inc or from AIDS

Research and Reference Reagent Program, NIAID, NIH.

2.1. Western blotting

In Studies I, II, III, IV and V antibodies to Nef, Rev or Tat protein were detected by

Western blotting (Towbin et al. 1979) as follows: purified recombinant protein was

boiled in sample buffer containing 1% SDS and 1% 2-mercaptoethanol, then run on

10% or 12.5% polyacrylamide gel and subsequently transferred onto 0.45 µm

nitrocellulose paper. Strips were first blocked with 2% BSA-1% normal goat serum in

5% nonfat milk-TBS, and thereafter incubated with diluted sera (1:100) overnight.

After each incubation step, unbound proteins were removed by washing strips three

times with TBS - 0.05% Tween-20 and twice with water. Binding of

immunoglobulins was detected by incubating strips with biotinylated anti-human IgG

(Vector) followed by horseradish peroxidase conjugated avidin (Vector). As the

substrate, 4-chloro-1-naphtol (Sigma) was used.
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2.2. Protein ELISA

In the protein ELISA (Study III, IV and V) Nunc Maxi-Sorp plates were coated in an

overnight incubation with Nef, Rev or Tat protein in PBS (50-100 ng/well). Plates

were blocked with 1% BSA - 1% normal rabbit serum in phosphate-buffered saline

(PBS) and incubated with diluted (1:100) human or mouse sera overnight. After

washings, plates were incubated 2 h with diluted (1:500) secondary antibody,

peroxidase conjugated anti-mouse IgG (DAKO) or anti-mouse IgG1, IgG2a, IgG2b,

IgG3 or IgM  (Caltag). Colour intensity produced from the substrate (2,2´-azino-

bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in phosphate-citrate buffer was

measured at 405 nm using Labsystems Multiscan Plus ELISA-plate reader.

When analysis of the HIV-infected human sera was performed (Study III), serum was

defined to be positive if its absorbance was higher than background + 3 standard

deviations (SD). At the time point when analysis of DNA-immunised mouse sera was

performed (Studies IV and V), polyclonal sera from protein-immunised mice were

available to be used as a positive control mouse serum, and a more quantitative value

(EIU) for each serum could be obtained using the following formula: EIU = (ODmouse

serum - ODnormal mouse serum ) x 100/(ODpositive control mouse serum - ODnormal mouse serum)

(Miettinen et al. 1989). An EIU value above 10 was considered positive. In Study V,

the IgG1/IgG2a ratio for each Nef-antibody positive mouse was calculated from the

corresponding absorbance values measured against whole protein.

3. Characterisation of epitopes

3.1. Epitopes recognised by human sera: Pepscan method

The epitope characterisations of human antibodies (Study I, II and III) were done

using the Pepscan method (Geysen et al. 1984). In this method, overlapping peptides

spanning the whole sequence of the protein of interest are synthesised on tips of

polyethylene pins which are arranged in the shape of a 96-well microtiter plate, and

the binding of antibodies is detected with ELISA. In peptide synthesis, preactivated

Fmoc amino acids and corresponding Fmoc chemistry were used according to the

instructions given by the manufacturer of the Epitope Scanning Kit (Cambridge

Research Biochemicals). The size of the peptides varied: a rough epitope mapping

was done using 8-9 amino acid long peptides (Study I and III), whereas further
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epitope characterisation was done using smaller, down to 3 residues long peptides

(Study II).

After synthesis, pins were blocked by incubating them in 1%ovalbumin - 1 %BSA -

1% Tween-20 in PBS for 1 h at room temperature. After blocking, pins were

incubated with diluted (1:500-1:1200) serum samples for 2 h at room temperature

(Study I) or overnight at +4 oC (Study II and III). To remove unbound proteins after

each antibody-incubation step, the pin plates were washed by shaking them heavily

three times for 5 min in 1% Tween-20 in PBS and once in water. Pins were then

incubated for 1 h at room temperature with the secondary antibody, peroxidase-

conjugated rabbit anti-human IgG in blocking media, washed and substrate (2,2’-

azino-bis-3-ethylbenzthiazolinesulphonic acid (ABTS) in phosphate-citrate buffer)

was added for 30-45 min. The photometric determination was carried out in an ELISA

reader at 405 nm. Bound antibodies were removed from the pins between each test by

sonicating pin plates once for 30 minutes in a water bath containing 1% SDS - 0.1%

2-mercaptoethanol in 0.1 M NaH2PO4, twice for 10 minutes in water and finally for 3

minutes with methanol. Typical reactivity patterns of patient and control sera against

synthesised Nef peptides are shown in Figure 2.

Figure 2. ELISA results of sera against peptides derived from HIV-1 Nef protein. A)

Serum from an HIV-1-infected man. B) Serum from a negative control.
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In order to verify that the epitopes found with peptides bound to polyethylene pins are

also recognised by human sera when expressed as soluble peptides, peptides

representing epitope sequences were synthesised on a Zinsser Analytics SMPS-350

Multipeptide Synthesiser using conventional Fmoc chemistry (Fmoc amino acids, di-

isopropylcarbodiimide [DIC], hydroxy-benzotriazole [HOBt] and Wang-resin) (Fields

et al. 1990), and a peptide ELISA was performed (Study III). Assays to measure the

reactivity of the sera against each peptide were performed similarly as the protein

ELISA, except that the amount of antigen in each well was 5-50 µg. Also, the

background value for each serum was subtracted from the peptide absorbances given

by that particular serum. The absorbance values of the patient group and the negative

control group were compared using the Mann-Whitney U-test.

3.2. Epitopes recognised by mouse sera: Peptide ELISA

At the time point when epitope characterisation using DNA-immunised mouse sera

was done (Study V), Pepscan plates were too old and worn out to be reused, so the

epitope searching was done with peptide ELISA using 15-17 amino acid long, soluble

peptides scanning the whole amino acid sequence of Nef (isolate BRU). The peptides

were received from the European Vaccine against AIDS (EVA) reagent repository.

The protocol followed protein ELISA (Chapter 2.2.), except that the amount of

antigen coated per well was 500 ng. Nine sera from mice immunised with a gene gun

(GG), intradermally (ID) or intramuscularly (IM) giving high EIU values against

whole Nef protein (titers 1:5000 – 1:10 000) were selected for epitope mapping. Their

reactivity against each peptide was indicated with an ELISA value (EIUpep)

calculated similarly as EIU values in Chapter 2.1. An EIUpep value above 10 was

considered positive and to represent an epitope recognised by mouse serum.

3.3. Analysis of minimisation results: Matrix method

In Study II, each epitope was scanned using 3-8 mer peptides. This resulted in tens (or

even over one hundred) of absorbance results each giving information about the same

epitope. To be able to handle these data, a matrix method was developed (Fig. 3).
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Figure 3. Matrix analysis of one patient serum against 3-8 mer peptides scanning

Nef epitope 2.

    Aminoterminal analysis

    Peptide (mer) H G A I T S S N T A A T N A A C A W L E A Q E E

8 - - - - - - - - - - + + + + + + +

7 - - - - - - - - - - - + + + + + + +

6 - - - - - - - - - - - - + + + + + + -

5 - - - - - - - - - - - - - + + + + + - -

4 - - - - - - - - - - - - - - + + + + - - -

3 - - - - - - - - - - - - - - - + + + - - - -

-6-6-6-6-6-6-6-6-6-6-4-2 0+2+4+6+6+5-4-3-2-1

    Epitope                                                                      N A A C A W L E

    Carboxyterminal analysis

    Peptide (mer) H G A I T S S N T A A T N A A C A W L E A Q E E

8 - - - - - - - - - - + + + + + + +

7 - - - - - - - - - - - + + + + + + +

6 - - - - - - - - - - - - + + + + + + -

5 - - - - - - - - - - - - - + + + + + - -

4 - - - - - - - - - - - - - - + + + + - - -

3 - - - - - - - - - - - - - - - + + + - - - -

-1-2-3-4-5-6-6-6-6-6-6-6-6-6-6+6+6+6+4+2 0-2

    Epitope C A W L E A Q E

  Consensus epitope C A W L E
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In the matrix, the x-axis shows the sequence of the analysed region and the y-axis the

size (mer) of the studied peptides. The matrix was filled in by giving the reaction with

each peptide a positive or negative sign (+, -) as follows: a reaction was considered

positive if the absorbance given by the peptide was two times higher than the

absorbance of background. The background for each serum against each epitope was

calculated as the mean of the lowest 40% of ELISA values given by peptides from the

area of the epitope in question. For a positive reaction, a + sign was placed into the

matrix at the point corresponding to the length and starting point of the peptide

(aminoterminal analysis), or at the point corresponding to the length and end point of

the peptide (carboxyterminal analysis). A – sign was correspondingly given to

peptides yielding negative results. At the bottom of the matrix, arithmetical sum

values of signs for each amino acid are given. The analyses (aminoterminal/carboxy-

terminal) were performed in duplicate to ensure that minimal reactive sequences were

detected irrespective of their situation in the amino- or carboxyterminus of the

peptide.

On the basis of these values, an epitope was determined to be the region where the

sum values exceeded zero. This diminished the effect of an incidental positive

reaction due to unspecific binding. As the shortest analysed peptide was three amino

acids long, an additional two amino acids at either the amino or the carboxy terminus

had to be considered as part of the epitope, too. Finally, as an epitope should react

irrespective of its position in a peptide, we deduced the final or consensus epitope to

be the region that was found antigenic in both aminoterminal and carboxyterminal

analyses. This precondition excluded some sequences that were positive when

situated in the carboxy terminus but not in the amino terminus of the peptide. It also

prevented the edges of the matrix containing only few values from giving false

results.

3.4. Homology search and variability index

Homological sequences to the identified epitopes were searched from Swiss-Prot

protein bank by using the homology search program Fasta (European Bioinformatics

Institute, EBI). For each stretch of epitope, the amount of mismatch amino acids was

selected to allow 25% dishomology. A variability index for each amino acid inside the

epitopes was calculated according to the reported sequences of various isolates



42

(Myers et al. 1990). Ten different isolates were compared to the BRU isolate used in

Studies II and III, and the amount of deviant amino acids was summed up to give the

variability index.

4. DNA immunisation experiments

4.1. Construction of DNA vectors

The DNA vaccines used in mouse immunisation experiments (Study IV and Study V)

were vectors based on bovine papilloma virus (BPV) transcription elements, and they

contained the origin of BPV, together with the E1 and E2 genes (pBN-vectors) or E2

alone (pCG-vector). These plasmids were developed and kindly provided by Prof. M.

Ustav, Tartu University, Estonia. The products of the E1 and E2 genes are proteins

necessary and sufficient for self-replication of the plasmid, as well as for

transcriptional activation (Ustav et al. 1991). pCG-plasmids devoid of E1 are not able

to replicate but they show enhanced and prolonged expression of cloned genes.

The nef, rev and tat genes (isolate BRU) cloned under CMV or RSV promoters were

derived from corresponding pC-vectors kindly provided by Dr. B. Cullen. The cloning

and other molecular biology works (DNA purification, transfections, restriction

enzyme digestions, PCR etc.) were done according to appropriate, well-known

methods (Sambrook et al. 1989) as described in Study IV and Study V. Plasmids were

purified using QIAGEN plasmid purification columns, and cloned genes were

sequenced using the Perkin-Elmer ABI 310 automatic sequencer to confirm the

correct sequences of genes. Replication of pBN-based vectors was confirmed in  a

replication assay performed in Tartu University, Estonia.

The expression of the cloned genes in cell lines transfected with the plasmids was

confirmed with Western blotting and immunohistochemical staining (Studies IV, V).

In addition, the Rev and Tat proteins produced by these vectors were shown to be

functionally active in co-transfection assays with Rev-defective SIV, with Gag-

encoding plasmid pNLgagSty330 carrying the rev responsive element (RRE)

sequence, or with plasmid pNLCATw carrying the LTRs from HIV-1. These assays

were done either in Stockholm, Sweden or at Tampere University. They are described

in detail in Study V.
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4.2. Immunisation protocol

Balb/c mice were used for all immunisation experiments. Each mouse received six

injections within two weeks, the total amount of DNA administered being 6 µg for

gene gun immunisation (GG) and 150 µg for intramuscular (IM) and intradermal

immunisation (ID). For gene gun immunisations, plasmid was precipitated onto 1 µm

gold particles following the procedure in the Helios Gene Gun Instruction Manual

(Bio Rad Laboratories). Each cartridge contained 0.5 mg gold and 1 µg DNA. Mice

were immunised on shaved abdominal skin using a helium discharge pressure of 300

psi. For intradermal or intramuscular immunisations, plasmid DNA was dissolved in

sterile saline (25 µg / 20 µl) and injected on dorsal skin or m. quadriceps femoris,

respectively.

4.3. Analysis of immune responses

In experiments, where the immunogenicity of the vectors was tested (Study IV and

Study V), mice were sacrified four weeks after the last immunisation, serum samples

were taken for Western blotting and ELISA, and splenocytes were harvested for the

CTL and proliferation assays. In experiments, where the duration of the immune

response was examined (Study V), first mice were sacrified after four weeks and the

rest were followed up to six months sacrifying two mice/month. Western blotting and

ELISA were performed as described in Chapters 2.1. and 2.2. Cell-mediated immune

responses were performed in our research group according to the methods described

in Study IV and V.

RESULTS

1. Prevalence of Nef-, Rev- and Tat-specific antibodies in HIV-infected persons

Before the start of Study I, the prevalence of antibodies against the accessory protein

Nef among Finnish HIV-infected individuals was evaluated at Tampere University

and Helsinki University using Western blotting (Ranki et al. 1990). Nef-specific

antibodies were found in 54% (29/54) of individuals at any time during a prospective

follow up. However, Nef antibodies were also found in 5% (7/141) of HIV-risk group

individuals, in 5% (5/93) of non-risk dermatological patients and in 11% (4/37) of

uninfected, healthy blood donors. From each of these groups, the most positive sera
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showing the strongest bands in Western blotting were chosen for epitope mapping

(Study I and Study II).

The prevalence of antibodies against the regulatory proteins Rev and Tat were

evaluated in Study III using ELISA and Western blotting. Rev- and Tat-specific

antibodies were found in 12% (10/83) and 18% (15/83) of infected individuals,

respectively. All HIV-1-negative control sera were negative in the ELISA-assay and

in the Western blot. At the early stages of HIV infection (ASX, LAS), anti-Rev

antibody positivity was found in 12% (6/52) of the patients, and at later stages of

infection (ARC, AIDS) 15% (4/26) of patients had anti-Rev antibodies. Likewise, the

anti-Tat antibody positivity was found in 17% (9/52) and 23% (6/26) of patients,

respectively.

2. Characterisation of human B-cell epitopes in HIV-1 Nef

The preliminary study (Study I) determined the antigenic regions in Nef recognised

by sera from HIV-positive/Nef-positive patients, from HIV-negative/Nef-positive risk

group individuals and from HIV-negative/Nef-positive non-risk dermatological

patients or controls. This rough characterisation was done using 9-mer peptides

spanning the whole sequence of three different Nef isolates (BRU, SF2, MAL) and

the polyethylene pin method (Geysen et al. 1984). As the size of the epitopes found

with these 9-mer peptides exceeded the average size of linear epitopes, which is

generally thought to be only from 4 to 6 amino acids (Geysen et al. 1988), the specific

immunogenic structures within these epitopes and flanking amino acids were further

characterised using shorter (3-8 mer) long peptides representing the sequence of

isolate BRU (Study II).

Nine antigenic regions were recognised by sera from HIV-1 infected individuals in

Study I. The majority of sera (6/10) recognised at least 2 of the epitopes, which

consisted of amino acids 8-16 (Epitope 1; SSVVGWPTV), 53-60 (Epitope 2;

NAACAWLEA), 80-90 (Epitope 3a; TYKAAVDLSHF), 97-101 (Epitope 3b;

LEGLI), 115-127 (Epitope 3c; YHTQGYFPDWQNY), 136-147 (Epitope 3d;

PLTFGWCYKLVP), 158-169 (Epitope 4; KGENTSLLHPVS), 180-191 (Epitope 5;

VLEWRFDSRLA), 197-206 (Epitope 6; ELHPEYFKNC) (numbering and sequence

according to isolate BRU). These epitopes were very similar in all three isolates; only
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epitope 4 seemed to be specific for the MAL-isolate. Interestingly, also the majority

(4/6) of sera from HIV-negative individuals belonging to the HIV-risk group

recognised most of these epitopes, whereas sera from the HIV-negative non-risk

group usually did not. The only non-risk group individual, whose serum strongly

recognised the Nef-specific epitopes, was a heterosexual man with no known HIV

exposure, but with a newly recognised autoimmune thyroiditis.

The minimisation of the previously found epitopes (Study II) showed that epitopes 2,

3d and 6 consisted of linear antigenic stretches (CAWLE, LTFGWC, PEYF,

respectively) whereas epitopes 1, 3a, 3b, 3c, and 5 displayed a more complex reaction

pattern showing reactivity concentrated into several small, down to three aa long

regions. In the MAL-isolate specific epitope 4 clear minimal antigenic stretches could

not be found.  Three stretches in epitope 1 (WSK,VGW,TVRERMRR), two stretches

in epitope 3a (PLRPM, SHFLK), two stretches in epitope 3b (SQRRQD, DLW), three

stretches in epitope 3c (IYHT, QGYFPDWQN, GVR) and two stretches in epitope 5

(EVLEWRFDSR, VAR) were identified. A homology search against sequences in the

Swiss-Prot protein bank revealed that the middle part of the epitope 3c

(QGYFPDWQN), epitope 3d (LTFGWC) and the beginning of epitope 5

(EVLEWRFDSR) seem to be genuinely Nef-specific, whereas several homological

proteins were found to other antigenic parts of the protein. Eight of the found B-cell

epitopes (1, 3a, 3b, 3c, 3d, 4, 5, 6) overlapped totally or partly with the identified T-

cell epitopes of Nef  (Koenig et al. 1990, Cullmann et al. 1991, Hadida et al. 1992,

Goulder et al. 1997, Lieberman et al. 1997, Sandberg et al. 2000). Analysis of the

variability index showed that many of the epitopes were situated in an area with low

variation.

3. Characterisation of human B-cell epitopes in HIV-1 Rev and Tat

The characterisation of Rev and Tat epitopes was done using overlapping, 8-mer

peptides representing the sequences of isolate BRU and patient sera shown to contain

Nef-specific antibodies. In Rev, the two most frequently recognised epitopes were

near the amino terminus of the protein within amino acids 12-20 (LIRTVRLIK) and

38-49 (RRNRRRRWRERQ). The third epitope was mapped around amino acids 55-

62 (ISERILGT) and the fourth around amino acids 78-83 (LERLTL). These latter two
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epitopes were not constantly recognised by all tested sera, but the reactivity,

especially against the fourth epitope, could be very high.

In Tat, four antigenic regions were also found: the most frequently recognised

epitopes, showing also the highest absorbances, were situated in the centre of the

protein and consisted of amino acids 21-37 (ACTNCYCKKCCFHCQVC) and 39-58

(ITKALGISYGRKKRRQRRRA). In addition, a frequently recognised area was

loacated around amino acids 6-10 (PRLEP) in the amino terminus of Tat. Some sera

also recognised a short sequence in the carboxy terminus of the protein around amino

acids 74-82 (TSQSRGDPT).

Using an ELISA based on soluble synthetic epitope-derived peptides, and sera from

HIV-infected and control individuals, the recognition of Rev epitopes 1, 2 and 4, as

well as Tat epitopes 1, 2 and 3, was shown to be either highly specific (p < 0.001) or

specific (p < 0.05) for HIV-infected individuals. Using the variability index, these

epitopes were shown to contain long conserved amino acid sequences. Furthermore,

many of them overlap totally or partially with known T-cell epitopes or predicted

HLA class I peptide-binding motifs of Rev and Tat (Blazevic et al. 1993 and 1995,

van Baalen et al. 1997), as well as with the functionally important regions of these

proteins.

4. Humoral immune responses induced by DNA immunisation in mice

In Study IV, Balb/c mice were immunised with various DNA vectors carrying the Nef

gene of HIV-1. These vectors were in in vitro assays shown to express the

corresponding proteins. Four weeks after the last immunisation mice were sacrified

and the humoral response was analysed.

The majority of mice (14/16) immunised with the replicating pBN-CMV-Nef or pBN-

RSV-Nef constructs developed antibodies within four weeks; a response was detected

already within two weeks in a few mice immunised with pBN-CMV-Nef. The EIU

values in these mice were highly variable, ranging from 16 up to 100.  In contrast,

only a few (2/12) mice immunised with the non-replicating pCG-Nef vector had a

weak antibody response against Nef after four weeks, and no response in any mice
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was seen in two weeks. The majority of mice also developed a CTL response against

Nef, and this response was not dependent on the vector used for vaccination.

In Study V, the immunogenicity of one of the previously tested vectors (pBN-RSV-

Nef) was further evaluated using different DNA delivery methods (e.g. GG, ID, IM).

In addition, the immunogenicity of two other HIV-1 genes (rev and tat) given in that

pBN-vector were characterised. Also, to assess the Th-type of the response, antibody

subclasses in mice immunised with various methods were analysed, and Nef-specific

epitopes recognised by these antibodies were characterised.

In the Nef GG group, all mice developed specific antibodies within four weeks after

the last immunisation; the EIU values for Nef gene gun immunised mice varied

between 25-78 (mean 51). Antibody response could be detected up to six months with

no decrease in EIU values. In the Nef IM group 50%, and in the Nef ID group 75% of

mice showed antibodies against this protein. EIU values in the IM group varied

between 24-75 (mean 43) and in the ID group between 12-100 (mean 56). The titers

of Nef-positive sera varied between 1:100 – 1:10 000, and a clear correlation between

titer and EIU value was seen. In the Rev GG group and the Tat GG group no

antibodies were detected after four weeks. The IgG1/IgG2a antibody ratio was much

higher in the Nef GG group than in the Nef IM group, showing that gene gun

immunisation raised mainly a Th2 type response distinguished by IgG1 class

antibodies (Del Prete et al. 1991). Intramuscular immunisation caused a Th1-type

response where IgG2a class antibodies prevailed. The response in the ID group

seemed to have a mixed character. In gene gun immunised mice IgG1-class antibodies

remained elevated throughout the six months follow-up period, indicating that no

class switching took place later on. Other antibody subclasses tested were not

significantly elevated in any of the Nef groups. None of the control mice had Nef-,

Rev- or Tat-specific antibodies.

In addition to humoral responses, immunisation with Nef-vector induced cell-

mediated responses in mice vaccinated with various methods. Rev vector was also

efficient in raising both proliferative and CTL responses. Tat vector was a poor

immunogen in all respects.
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5. Charaterisation of B-cell epitopes in Nef recognised by DNA-immunised

mouse sera

Three sera from each immunisation group having high EIU values against the whole

Nef protein were selected for epitope mapping done with soluble synthetic peptides.

EIUpep values for each peptide and each serum were measured; these values reflected

the intensity of colour produced by antibodies binding to Nef peptides as compared to

binding to the whole Nef protein. With some sera, peptides were recognised even

better than the whole protein probably due to steric hindrance caused by other

portions of the protein. The N-terminus of Nef contained two antigenic regions that

were recognised by almost all antibodies irrespective of the immunisation method.

These areas were situated between amino acids 9-24 (SVIGWLTVRERMRRAE) and

amino acids 49-64 (AATNAACAWLEAQEEE). In addition, peptide 118-133

(QGYFPDWQNYTPGPGV) was found to be considerably antigenic. Interestingly,

even though all the sera belonging to the GG group showed clear humoral response

against the whole Nef protein, only one out of three recognised well linear epitopes

represented by peptides.

DISCUSSION

We have analysed the humoral immune response against Nef, Rev and Tat - all

proteins interfering not only with the life cycle of the virus but also with several

cellular processes essential for the host cell. The reason for our interest was that an

antibody response against these early proteins could be useful for diagnostic purposes,

for inducing a sterilising immunity against HIV or for inducing an immune response

capable of slowing down an ongoing HIV infection.

1. Prevalence of Nef-, Rev and Tat-specific antibodies in HIV-infected

individuals

All three non-structural proteins have been shown to be immunogenic in vivo, but

large variations ranging from less than 30 to 100 percent exist in the reported

prevalence of antibodies against these proteins. This probably reflects the great

diversity in antibody assays used by different scientists: variation is seen in the actual

method (ELISA vs. Western blotting), in method parameters (incubation times,

buffers, blocking media, cut-off values), in antigens used (recombinant proteins with

varying lengths, peptides, fusion proteins), and in study populations (stage of disease,
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age, route of infection) etc. However, Nef has constantly been shown to be the most

immunogenic of these three proteins. This is somewhat surprising, as one would

expect to see the best response against the extracellular Tat protein and not against the

Nef protein, which is mainly intracellular and has probably only its carboxy terminus

exposed on the cell surface. One explanation for the strong Nef response may come

from gp160 studies of Parren et al. (1997), which showed that the antibody response

in HIV-1 infection is principally elicited by viral debris rather than virions. In

addition, as Nef protein is almost twice as big as Rev and Tat, this characteristic

provides Nef with more antigenic regions capable of inducing both cellular and

humoral responses.

We have also shown that the prevalence of Nef antibodies among HIV-infected

individuals was higher than the prevalence of Rev and Tat antibodies. In our studies,

however, the prevalences of all three antibodies were generally lower than other

groups have reported. This may be a consequence of the method used: we used

Western blotting for antibody detection, as our aim was to further characterise the

linear epitopes recognised by positive sera. In Western blotting the antigen is

denatured and only antibodies recognising linear epitopes react. Thus, sera

recognising only conformational epitopes were not detected in our assay.

A slight increase was detected in Rev and Tat antibody prevalence between

individuals at early stages of infection (ASX, LAS) and individuals having ARC or

AIDS (Study III). However, as the amount of antibody-positive patients was small,

this finding was not statistically significant. In addition, as our study was not a

longitudinal one, no conclusions about the relationship of antibody response and

disease progression can be drawn.

2. B-cell epitopes of  Nef, Rev and Tat proteins

False-positive results are often seen in HIV-antibody assays, not only when antibodies

against Nef, Rev and Tat proteins are measured but also in antibody assays for

structural proteins. These cross-reactions may arise from previous infections,

homological sequences in cellular proteins and from antibodies to endogenous

retroviral gene products, which have been found in a number of infectious, chronic,

and malignant diseases (Lower et al. 1986). Therefore, our preliminary idea was that
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the actual HIV-derived antigen-specific stretches not reacting with sera from non-

HIV–infected individuals could be found by mapping the B-cell epitopes of Nef, Rev

and Tat. Furthermore, as non-structural proteins are expressed soon after the virus

enters the cell and before structural proteins appear (Ranki et al. 1994), antibody

responses against these epitopes were thought to be possible diagnostic markers of an

ongoing HIV infection in individuals belonging to HIV-risk group, but being

seronegative in conventional HIV tests.

Even though several studies had revealed immunogenic areas that were recognised by

animal sera in Nef, Rev and Tat, the characterisation of human epitopes had gained

less attention. Especially poorly characterised were Rev and Tat proteins. Our epitope

mapping using relatively short peptides scanning the whole protein sequences were

among the first ever done, and untill now not many new reports have come out

(Tables 1-3).

Studies I, II and III revealed several antigenic epitopes in Nef, Rev and Tat. In Nef,

the majority of sera from HIV-positive individuals, as well as HIV-negative

individuals belonging to the HIV-risk group, recognised several of the identified nine

epitopes, whereas false-positive sera from the HIV-negative non-risk group did not.

Similarly in Rev and Tat, three epitopes were shown to be specifically recognised

only by HIV-infected individuals. Thus, these epitopes seem to be genuinely HIV-

specific and potentially useful as markers of latent infection. The only non-risk group

individual, whose serum strongly recognised the Nef-specific epitopes, was a

heterosexual man with no known HIV exposure, but a newly recognised autoimmune

thyroiditis. As Nef is homological to human thyrotropin receptor, and as antibodies

generated against a thyrotropin receptor peptide representing this homological region

are cross-reactive with Nef protein (Bursch et al. 1991), the reactivity against Nef

seen with this patient´s serum propably is a consequence of the autoimmune disease.

This observation was done in 1990 when retroviruses in autoimmune thyroid diseases

were unknown; since then HTLV-I and HTLV-II have been connected to these

diseases (Yokoi et al. 1995, Akamine et al. 1996), and a putative nef mRNA has been

isolated from HTLV-I infected cells (Orita et al. 1993). Our observation also revealed,

that by characterisation of the epitopes, most false-positive responses can be
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eliminated, but cross-reaction with antibodies induced perhaps by other retroviruses

may still exist.

In Nef, epitope 1 overlaps with human epitopes found by Kienzle et al. (1989),

epitope 2 with human epitopes found by Ameisen et al. (1989), Sabatier et al. (1989)

and Schneider et al. (1991) and epitope 3a with epitope found by Yamada et al.

(1999); epitope 3b has not been shown to be immunogenic by others; epitope 3c

overlaps with one epitope recognised by Schneider et al. (1991); epitope 3d is shown

by others to be immunogenic in animals; epitope 4 overlaps with epitope found by

Schneider et al. (1991); epitopes 5  and 6 overlap with epitopes found by Sabatier et

al. (1989). Most of these epitopes are also immunogenic in mice or non-human

primates. In Rev, Dairaku et al. (1989) had shown that amino acids 33-48 are

immunogenic in humans, and we also found an epitope at this region. In addition, we

characterised three more epitopes not previously shown to be immunogenic in

humans, but later shown to be immunogenic in mice. In Tat, three of the recognised

epitopes overlap with found human and animal epitopes, and the fourth (aa 21-37)

overlaps with a recently developed single-chain antibody. Taken together, as several

reports confirm our findings, the epitopes we have found represent areas

immunogenic in vivo.

The minimisation procedure performed in Study II revealed an interesting

phenomenon: epitopes found by longer peptides may actually consist of one linear

region or of several, almost adjacent amino acid stretches. Futhermore, these closely

situated stretches may give a positive result to a long peptide mainly consisting of the

intervening, non-immunogenic amino acids and thus give distorted information about

an epitope. As seen in Table 4, when the minimal epitopes of Nef were characterised,

one-stretch epitopes (eg. 2, 3d, 6) were shown to be situated clearly in the middle of

the previously detected longer epitopes, whereas in two- or three-stretch epitopes (eg.

1, 3a, 3b, 3c, 5) antigenic amino acids were also scattered in the flanking regions of

them. Taking together, the matrix analysis allows the borders of the epitopes to be

defined more exactly, so in epitope mapping the use of peptides of varying lengths is

more informative.



52

Table 4. Minimisation of Nef epitopes

  Epitope         Epitopes found                                  Epitopes found

  number              with 9-mer peptides (aa)                       with 3-8-mer peptides (aa)

    1   8 – 16 5 - 7, 11 - 13, 15 – 22

    2  53 – 60          56 – 60

    3a  80 – 90    75 – 79, 88 – 92

    3b  97 – 101             103 – 107, 111 – 113

    3c 115 – 127    114 -117, 118 – 126, 132 – 132

    3d 136 –147                     137 –141

     4 158 – 169 ND*

     5 180 – 191 179 – 188, 195 – 197

     6 197 – 206        200 - 203

*  Not done

3. Applicability of recognised epitopes

As antibodies against HIV-1 structural proteins may appear as late as several months

after the infection, the epitopes of Nef, Rev or Tat and an antibody response against

them were thought to be useful as an early indication of HIV-1 infection. However,

subsequent studies revealed that antibodies against non-structural proteins are only

seldom seen before antibodies against structural proteins. Furthermore, as shown in

Study I, by using epitopes most false-positive responses could be eliminated, but

cross-reaction with antibodies perhaps induced by other retroviruses still existed.

Thus, the diagnostic value of these epitopes remains limited.

On the other hand, many of these epitopes overlap partly or totally with known T-cell

epitopes. This makes them suitable to be used in a vaccine capable of inducing both

humoral and cell-mediated responses. Several neutralising and/or protective peptide
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vaccines have been developed against viruses, eg. foot-and-mouth disease, hepatitis

B, human rhinovirus, human respiratory syncytial virus (DiMarchi et al. 1986,

McCray et al. 1987, Emini et al. 1989, Bastien et al. 1999). Previously these peptide

vaccines needed to be conjugated to carrier proteins, but recently multiepitopic

vaccines have been delivered with DNA immunisation methods (Fomsgaard et al.

1999, Hanke et al. 1999, Ishioka et al. 1999). In addition to raising both humoral and

cell-mediated responses, vaccines based on identified epitopes are safer, as these

relatively short amino acid chains are not capable of inducing all the harmful effect of

Nef, Rev and Tat described in detail in Chapters 1.2, 1.3 and 1.4.

Many of the identified epitopes overlap with functionally important areas of Nef, Rev

and Tat. Thus, antibodies binding to these sites may prevent the correct function of

these proteins, and in such way participate in virus neutralisation. Several reports,

which show that antibodies against Nef, Rev and Tat have protective effects in HIV-

infected individuals (O´Shea et al. 1991, Reiss et al. 1991, Re et al. 1995, Zagury J-F

et al. 1998, Chen et al. 1999, Cohen et al. 1999, Yamada et al. 1999,) and can inhibit

replication in in vitro assays (Pardridge et al. 1994, Steinaa et al. 1994, Mhashilkar et

al. 1995, Re et al. 1995, Wu et al. 1996, Cruikshank et al. 1997, Poznansky et al.

1998, Tosi et al. 2000), support the opinion of their beneficial effects. Furthermore,

passive immunisation of immunoglobulins recognising envelope structures have been

shown to be protective in primates (Prince et al. 1991, Emini et al. 1992, Shibata et al.

1999, Baba et al. 2000, Mascola et al. 2000); passive immunotherapy of Nef, Rev or

Tat antibodies has not been tested, but is worth consideration. Such a therapy could be

especially efficient against Tat, which has been shown to be functionally active

extracellularly, but might also work against Nef and Rev, which are present in cell

debris.

In Nef, antigenic sites overlapping with functionally important areas are in epitope 1

region amino acids 17-26 and partially in epitope 3a region amino acids 69-78

necessary for MCH I down-regulation (Mangasarian et al. 1999); in epitope 2 region

amino acids 57-59 (WLE) responsible for CD4 binding during down-regulation

(Grzesiek et al. 1996); in epitope 3a region PXXP motif binding to SH3 domains Src

kinases (Saksela et al. 1995); in epitope 3b region RR motif needed for CD4 down-

regulation and optimal infectivity (Aiken et al. 1996, Wischerchen et al. 1996, Craig
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et al. 1998); in epitope 3c region D123 required for oligomerisation of Nef (Liu et al.

2000); in epitope 3d region amino acids 132-147 regulating productive HIV infection

from latency (Fujinaga et al. 1995) and in epitope 4 region endocytosis motif

(ENTSLL) needed for CD4 down-regulation and optimal viral infectivity

(Wischerchen et al. 1996, Breshnahan et al.1998, Craig et al. 1998,).

In Rev, the epitope between amino acids 38-49 is located inside the domain

responsible for nuclear localisation and RNA-binding (Malim et al. 1989). The

carboxy-terminal epitope between amino acids 78-83 overlaps with the region shown

to contain the NES (Fuscher et al. 1995, Wen et al. 1995) and to be the effector

domain able to activate cellular proteins intrinsic to nuclear mRNA transport

(Venkatesh et. al. 1990, Malim et al. 1991b).

In Tat, the amino terminal epitope aa 6-10 overlaps with the region shown to be

associated with the inhibition of antigen- and mitogen-induced proliferation of cells

(Wrenger et al. 1997, Viscidi et al. 1989, Benjouad et al. 1993, Chirmule et al. 1995,

Zagury D et al. 1998) and the increment of viral reverse transcription (Ulich et al.

1999). The epitope between amino acids 21-37 overlaps with the region responsible

for intramolecular disulfide bond formation of Tat (Koken et al. 1994), for attracting

and binding to monocytes (Albini et al. 1998a), for inducing HIV replication and

participating in TAR-dependent trans-activation and for triggering angiogenesis

(Boykins et al. 1999). The epitope in aa 39-58 overlaps with minimal activation

domain, with amino acids needed for binding to TAR and inducing nuclear

localisation (Dingwall et al. 1989, Hauber et al. 1989, Carrol et al. 1991), with the

region involved in the uptake of protein from extracellular space and in angiogenesis

and neurotoxic effects of Tat (Sabatier et al. 1991, Weeks et al. 1995, Albini et al.

1996, Chang et al. 1997, Vives et al. 1997). The carboxy-terminal epitope of Tat in aa

74-82 contains the RGD adhesion sequence shown to be involved in integrin-

mediated cell adhesion of Tat (Brake et al. 1990b), to be responsible for aggregation

of neurons and astrocytes, and to act as a chemo-attractant for dendritic cells and

monocytes (Kolson et al. 1993, Benelli et al. 1998) impairing also their function

(Zocchi et al. 1997).
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4. DNA vaccination and humoral response

In Studies IV and V it was shown that with DNA immunisation, antibodies against

Nef were elicited, but the percentage of responding mice was clearly dependent on the

vector used for immunisation. The best humoral response was achieved with the

replicating-competent pBN-plasmids supposed to produce the cloned antigen for a

prolonged period. This vector was also capable of inducing cell-mediated responses in

mice, and immune responses were elicited using different immunisation methods.

However, even though we showed in in vitro assays that pBN-plasmids carrying

either rev or tat genes produced the corresponding functionally active proteins, the in

vivo immune response raised by them was different from the one raised against Nef,

with the lack of an antibody response being the most striking difference. Rev was able

to induce cell-mediated responses, but Tat was inefficient also in this respect. Our

results were consistent with previous DNA vaccination studies with a CMV-based

vector, where it was shown that in the sera of Balb/c mice immunised with HIV-1

regulatory genes, antibodies against Nef were found frequently but antibodies against

Rev and Tat were almost absent (Hinkula et al. 1997). Also, DNA vaccination studies

in humans and primates showed stronger antibody response against Nef than against

Rev or Tat (Putkonen et al. 1998, Calarota et al. 1999).

There may be several reasons for the lack of an antibody response against Rev and

Tat. Firstly, small quantities of antigen (<1 ng) are sufficient to elicit cellular

responses in genetic immunisation, whereas at least a 40-fold higher amount of the

same antigen is required to elicit a high titer antibody response (Barry et al. 1997). In

the case of our plasmids, the Nef construct may be superior to Rev and Tat constructs

in this respect. Secondly, natural Rev and Tat proteins are less immunogenic than Nef

also in HIV-infected individuals, which may be the consequence of the bigger size of

Nef or the different localisation of these three proteins within the cell.

Several parameters associated with the antigen affect the efficiency of DNA vaccines

to induce humoral response. The cellular localisation of the DNA vaccine antigen has

a significant effect on the magnitude but not on the subclass of antibody responses:

humoral response is suboptimal when antigen is cytoplasmic, better with membrane-

associated antigens and best with secreted antigens (Boyle et al. 1997, Drew et al.

2000). In this respect one would expect Tat to be a better antigen than Nef. However,
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it was recently shown that when a signal sequence mediating antigen secretion was

added to a plasmid used for DNA immunisation, the immune response was enhanced

for other proteins tested but not for Tat (Svanholm et al. 1999). This may be due to

the strong nuclear localisation signal within Tat that prevents the protein from

reaching the subcellular secretory pathway, thus weakening its antigenic presentation.

Furthermore, the immunosuppressive function of Tat (Viscidi et al. 1989, Benjouad et

al. 1993, Chirmule et al. 1995, Zagury D et al. 1998) also extends into the inhibition

of antibody production (Cohen et al. 1999).

Depending on the immunisation methods used, different cells may be responsible for

taking up the injected plasmid, and antigen processing and presentation in these cells

may vary, leading to humoral and cellular immune responses towards different

epitopes. In Study V it was shown that regardless of whether the pBN-Nef plasmid is

delivered by gene gun or is injected through intradermal or intramuscular route, the

antibodies directed against Nef recognise two main epitopes between amino acids 9-

24 and 49-64 (SVIGWLTVRERMRRAE and AATNAACAWLEAQEEE,

respectively). These epitopes overlap with the epitopes found in HIV-infected

individuals (Study I and II) and with the epitopes found in mice immunised with

corresponding whole protein (Ovod et al. 1992). Furthermore, in Study V, the

antibody subclasses were characterised in order to see whether any of the

immunisation routes would favour either Th-type 1 or 2 response. The results of the

antibody subclass analysis divided the responses into separate Th1 (IM) and Th2

(GG) pathways, and the detected IgG1 and IgG2a subclass pattern remained stable

throughout the follow-up period. This is consistent with previous findings (Pertmer et

al. 1996), where it was shown that in DNA immunisation, the antibody subclass

pattern is already fixed at the primary immunisation and can not be modulated even

by successive immunisations using other methods.

Taking together, studies IV and V showed that Nef is a potent antigen when

introduced in a DNA vaccine. As Rev and Tat in DNA vaccines have repeatedly been

shown to be poor inducers of humoral response, modifications improving the

antigenicity of them may be necessary. Furthermore, as each of these three proteins

may have severe negative effects on transfected or bystander cells, the safety of
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vaccines should be improved by mutations targeted to functionally important regions

of these proteins or by using multiepitopic amino acid sequences as antigens.

SUMMARY AND CONCLUSIONS

HIV-1 is a retrovirus causing the gradual destruction of immune system in infected

individuals, and ultimately leads to the lethal acquired immune deficiency syndrome

(AIDS). In addition to the structural proteins, HIV-1 codes for accessory and

regulatory proteins necessary for replication of the virus, for maximal infectivity and

for various cellular events enhancing the spreading of the virus. As the accessory and

regulatory proteins Nef, Rev and Tat are more conserved than Env, they have become

important targets for the design of vaccines. This thesis has concentrated on the

humoral immune responses elicited by the accessory protein Nef and the regulatory

proteins Rev and Tat.

The results show that of these three proteins, Nef is the most immunogenic in infected

individuals. It contains nine antigenic regions scattered throughout the protein. Both

Rev and Tat contain four antigenic regions specifically recognised by sera from HIV-

1 infected individuals. Many of the identified human B-cell epitopes either totally or

partially overlap with B-cell epitopes recognised by animal sera, with known T-cell

epitopes and with functionally important areas of the proteins.

New DNA vaccine constructs carrying the whole Nef, Rev or Tat genes were tested

for immunogenicity in mice. The pBN-Nef construct was the most immunogenic,

capable of inducing both humoral and cell-mediated responses that were detectable

throughout the follow-up period. Furthermore, an immune response was elicited

regardless of whether the plasmid was delivered by gene gun or injected through

intradermal or intramuscular route. The Rev construct elicited only a cell-mediated

response, and the Tat-construct was a poor immunogen in all respects. Thus, in future

vaccine studies, modifications/methods improving their antigenicity may be

necessary. Furthermore, as each of these three proteins may have severe negative

effects on transfected or bystander cells, the safety of vaccines should be improved by

mutations targeted to functionally important regions of these proteins or by using

multiepitopic amino acid sequences as antigens. The epitopes characterised in this



58

study are good candidates for this; as they overlap known T-cell epitopes, they might

induce both humoral and cell-mediated responses.
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