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OPTIMAL DESIGNS IN LINEAR
REGRESSION MODELS

Arto Luoma

ABSTRACT

The thesis consists of five papers and a summary. It has two main themes in
the area of experimental design. Firstly, optimal designs for estimation, predic-
tion and inverse prediction are developed in random coefficient linear regression
models. Mainly first-degree models are dealt with. The results can be applied in
repeated measurements situations.

Secondly, a relatively new design criterion, the distance optimality criterion, is
introduced. Its properties are studied and some results in estimation and prediction
problems deduced. The criterion can be used to find optimal designs or to improve
designs in polynomial regression models. It has interesting relations to traditional
D- and E-optimality criteria.

Key words and phrases:repeated measurements, information matrix, stem curves,
variance components, regression model, Schur-concavity, polynomial designs, A-
, D- and E-optimality, distance optimality.
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Preface

I had my first contact with the subject of my thesis in summer 1994 when professor
Bikas Sinha from the Indian Statistical Institute visited our department. He had
already cooperated with my supervisor Erkki Liski in experimental design and
I had a joy to read one of their joint articles. They also welcomed me in their
research group. They had developed optimal designs in growth curve models with
intraclass correlation structure and a natural extension to their study were random
coefficient linear regression models.

There was also another reason why we started developing optimal designs in
such models. In our department we had the project ”Developing an integrated
system for forest harvesting”, financed by the Ministry of Education, and we were
therefore concentrating on forest applications. We had received from Kajaani-
automatiikka lots of tree stem data collected by forest harvesters and somebody
had observed that variation in tree stems could be nicely modeled using random
coefficient regression models.

In summer 1994 the preliminary drafts of the three first papers of the thesis
were written. They provided a basis on which some future work could be done. It
was a credit to Sinha that he was able to formulate the problems in such a form that
they could be dealt with. However, it was not easy to find complete solutions to
some problems which seemed simple at the outset. There was also a third person
to join our research group, Dr. Nripesh Mandal from Calcutta University, who
visited our department twice.

Professor Sinha had many short visits in our department and three times he
presented us the DS optimality criterion which he had discovered. He suggested
that we would study the use of this criterion in the theory of experimental design.
Finally, in summer 1997, during his visit to our department, some preliminary
work was done and a draft of the fourth paper of the thesis was born.

It was Dr. Alexander Zaigraev from Nicholas Copernicus University of Toruń
with whom Liski and I continued the study of the DS criterion after Sinha’s depar-
ture. I had obtained his address from professor Fellman after giving a presentation
in one graduate seminar, and we had started scientific correspondence. Since in
our department there was a project ”Statistical methods in developing an inte-
grated control system for forest harvesting”, financed by the Academy of Finland,
Zaigraev could visit us during the autumns 1997 and 1998. The results of our
cooperation are found in the fifth article of the thesis.
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rience some mathematical adventures during our intensive cooperation and who
also provided me an example of scientific work. I thank Dr. Mandal from whom
I have also learned something. We also obtained inspiration from our contacts in
the area of forestry. I warmly thank the referees of the thesis, professors Friedrich
Pukelsheim and Kirti Shah, as well as my opponent Johan Fellman for their con-
tribution.

I owe thanks to Robert MacGilleon, who kindly checked the language of the
thesis.

I am grateful to Tampere Graduate School in Information Sciences and Engi-
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1 Introduction

The first three papers included here deal with optimum designs in random coeffi-
cient regression models (RCR-models); the other two study the distance optimal-
ity criterion.

The set of possible experimental conditions is called theexperimental domain
or experimental region. The thesis deals mainly with cases in which the experi-
mental conditions may assume values continuously on a given interval. In paper
[1], however, only integer values on a given interval are accepted and in paper
[5] there is an example in which the experimental domain is a ball or cube in
m-dimensional Euclidean space.The experimental designis defined by a finite
number of values, called support points, which belong to the experimental do-
main, and by the proportions of observations assigned to them.

Random coefficient regression models are used in situations when repeated
measurements are taken on several individuals. The design may vary from indi-
vidual to individual and the overall design must include allocation of observations
to each individual.

Throughout the thesis, the proportions of observations may assume values
continuously on the interval [0,1]. Usually, this kind of design cannot be realized
exactly with a finite number of observations and is therefore calledapproximate.
The total number of measurements, denoted byN in repeated measurement sit-
uations and otherwise byn, is kept fixed, and the objective of the experimental
design is to find an optimal allocation of them in the experimental domain.

Comparison of designs is based on the dispersion matrix of the unknown pa-
rameter vector. Alternatively, the starting-point may be theinformation matrix,
defined as the inverse of the dispersion matrix. It is equivalent to theFisher in-
formation matrixof the unknown parameter vector, provided that the best linear
unbiased estimator (BLUE) is used and the vector of random terms is assumed to
follow the multivariate normal distribution.

In the case of the classical linear model,(Y,Xβ, σ2I), considerations are
usually based on themoment matrixof the design, defined by

M =
∑
i

ξixix
′
i,

wherexi is a regression vector andξi the proportion of observations assigned to it.
The information matrix is then defined using the moment matrix in such a way that
the matrices are equal in the case of the full paramater system (cf. Pukelsheim, p.
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63). Thus the definition is independent ofn, the number of observations, andσ2,
the variance of error terms.

Comparison of information matrices (or equivalently dispersion matrices) is
made using Loewner ordering. A matrixA is greater than or equal to a matrixB,
denoted asA ≥ B, if A−B is nonnegative definite. Since the Loewner ordering
is only partial, it is not sufficient for comparison of designs. Only in rare cases
can a design be found such that its information matrix is greater than or equal to
the information matrix of any competing design. Hence scalar valued optimal-
ity criteria are needed. These are actually mappings from the set of information
matrices to the real line, such that they preserve the Loewner ordering.

Matrix means provide a fairly large class of optimality criteria. Denote by
λ1, λ2, . . . , λk the eigenvalues of a positive definite matrixC. Then the matrix
meanφp(C) is defined by

φp(C) = (
1

k

k∑
i=1

λpi )
1
p .

Matrix means are used as optimality criteria asp ≤ 1. A definition which covers
all nonnegative definite matrices is to be found in Pukelsheim (Section 6.7). The
classical A-, E-, D- and T-optimality criteria are obtained fromφp as special or
limiting cases asφp is applied to information matrices. Criterionφ−1 is the A-
optimality criterion. Maximizing the criterion is equivalent to minimizing the
trace of the dispersion matrix. Criterionφ−∞ = limp→−∞ φp = λmin, the smallest
eigenvalue of the information matrix, is called the E-optimality criterion andφ0 =
limp→0 φp = (

∏
i λi)

1
k the D-optimality criterion. Maximizing the D criterion

is equivalent to minimizing the determinant of the dispersion matrix. Criterion
ψ1 = 1

k
tr C is called the T or trace criterion.

2 Random Coefficient Linear Regression
Models

In the first three papers of the thesis, random coefficient linear regression mod-
els are addressed. The models are applied in repeated measurement situations,
where one or more measurements are taken on one or more individuals (units).
The observations within an individual are correlated while two observations from
different individuals are uncorrelated.

12



Let yi be theni × 1 response vector for theith individual. Then the RCR
model is of the form

yi = Xiβ + Xibi + εi,

whereXi is theni × k model matrix and the vectorβ contains the fixed effects,
bi the random effects andεi the error terms. The dispersion matrices ofbi andεi
are denoted by

D(bi) = D andD(εi) = σ2I

for everyi = 1, 2, . . . , n. It is assumed thatbi andεi are uncorrelated. Conse-
quently,

D(yi) = XiDX′i + σ2I
.
= Σi.

Since the responses of different individuals are uncorrelated,

D(y) = diag(Σ1,Σ2, . . . ,Σn),

where the vectory = (y′1,y
′
2, . . . ,y

′
n)′ contains the responses of all individuals.

The GLS estimator (which is also BLUE) forβ is given by

β̂ = (
∑
i

X′iΣ
−1
i Xi)

−1
∑
i

X′Σ−1
i yi.

In a case where the design for all individuals is the same, the expression forβ̂
can be simplified to the form

β̂ = (X′Σ−1X)−1X′Σ−1ȳ, (1)

whereX and Σ stand for the common matricesXi and Σi, respectively, and
ȳ = 1

n

∑
i yi is the average of the individual response vectors. However, it can be

shown that the GLS estimator (1) is equal to the OLS estimator

β̂OLSE = (X′X)−1X′ȳ,

sinceD(ȳ) = 1
n
Σ has the so-called Rao simple structure with

Σ = XDX′ + σ2I (2)

(cf. Rao 1967). To prove that the GLSE (1) and OLSE are equal, let us choose
a matrixZ such that it has full column rank and its columns span the orthogonal
complement of the column space ofX. Then, using the identity

I = X(X′X)−1X′ + Z(Z′Z)−1Z′,
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Σ can be written in the form

Σ = XΛX′ + ZΩZ′,

where
Λ = D + σ2(X′X)−1, Ω = σ2(Z′Z)−1.

Substituting the expression

Σ−1 = X(X′X)−1Λ−1(X′X)−1X′ + Z(Z′Z)−1Ω−1(Z′Z)−1Z′

in (1) it will be seen that̂β andβ̂OLSE are equal.
The dispersion matrix of the OLS-estimator is

D(β̂OLSE) =
1

n
(X′X)−1X′ΣX(X′X)−1 =

1

n
D +

σ2

N
M−1,

whereM = 1
m

X′X, m being the number of observations within one unit. It is
clear that ifn, the number of individuals measured, is fixed, the problem of mini-
mizing trD(β̂) is reduced to minimizing trM−1, and, consequently, the solution
is the same as in the fixed parameter case. Thus, the dispersion matrix of the ran-
dom vector has no effect on the design, as far as A-optimality is concerned. This
is applied to prediction problems in papers [2] and [3].

If n is not fixed, it would appear profitable to measure as many individuals
as possible to minimizeD(β̂). However, since the total number of observations
N is fixed, the number of observations for each individual,m = N

n
, would be

minimized and usually the optimal allocation of observations within an individual
would not be achieved even approximately. It turns out that the optimal design
depends on the values ofσ−2D. There is an example of this in paper [2], again in
the context of predicton.

If the design is not the same for all individuals, the formulae includingȳ can
no longer be used. This is the case in paper [1] and in one example in paper [2].

3 Distance Optimality Design Criterion

Sinha (1970, pp. 1-20) suggested a new kind of optimality criterion, called the
distance criterion, when he studied the optimal allocation of observations in the
1-way ANOVA model. In papers [4] and [5], the criterion is studied in the con-
text of the classical linear model(Y,Xβ, σ2I), assuming that the error terms are
normally distributed.
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A design is said to be distance optimal, or DS-optimal, where D stands for
’distance’ and S for ’stochastic’, if it maximizes the probability

Pr(‖β̂ − β‖ < ε) (3)

simultaneously for allε > 0, whereβ̂ is the OLS estimator ofβ and‖ · ‖ denotes
the Euclidean distance. Such designs are found when first-degree polynomial fit
models are used. In many situations, however, the distance optimality property is
too strong and there exists no distance optimal design. Then the probability (3),
called the DS(ε)-criterion function, can be maximized for fixedε > 0. When all
valuesε > 0 are taken into account, a class of optimality criteria is obtained.

As is the case with theφp criterion, theDS(ε) criterion can also be expressed
using eigenvalues. TheDS(ε) criterion functionψε(λ) is defined by

ψε(λ) = Pr(
Z2

1

λ1

+
Z2

2

λ2

+ . . .+
Z2
k

λk
≤ nε2

σ2
), (4)

whereZi are independent random variables following the standard normal dis-
tribution, λi are the eigenvalues of the moment matrixM andn is the number
of observations. The classical D- and E-optimality criteria are obtained from the
DS(ε) criterion as limiting cases. Maximizingψε asε → 0 or ε → ∞ is equiv-
alent to maximizingdet M or λmin(M), respectively. The results are proved in
paper [5].

The matrix meansφp(C), p ≤ ∞ are concave functions of positive definite
matricesC (cf. Pukelsheim, 6.13). This is a useful property, and can be applied to
prove that symmetrization improves design in polynomial regression models, for
example (cf. Pukelsheim, 13.1). Unfortunately, the DS criterion does not possess
this property, as is shown in paper [5]. However, it does possess a weaker property,
Schur concavity.

Before defining Schur concavity, the concept of vector majorization is given.
Denote byx[1], x[2], . . . , x[k] the elements of a vectorx in decreasing order and by
x(1), x(2), . . . , x(k) the same elements in increasing order. A vectora ∈ Rk is said
to be majorized byb, denotea ≺ b, if

j∑
i=1

a[i] ≤
j∑
i=1

b[i], j = 1, 2, . . . , k − 1

k∑
i=1

a[i] =
k∑
i=1

b[i],
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or equivalently,

j∑
i=1

a(i) ≥
j∑
i=1

b(i), j = 1, 2, . . . , k − 1

k∑
i=1

a(i) =
k∑
i=1

b(i).

It can be shown (Muirhead, 1903; Hardy, Littlewood, and Polya, 1934, 1952, p.
47; see also Marshall and Olkin, Lemma 2.B.1) thatb can be obtained froma by
making at mostk − 1 transformations of the type

anew = (a1, . . . , ai−1, λai+(1−λ)aj, ai+1, . . . , aj−1, λaj+(1−λ)ai, aj+1, . . . , ak),
(5)

where0 ≤ λ ≤ 1.
Majorization implies weak supermajorization. A vectora is said to be super-

majorized weakly byb, denotea ≺w b, if

j∑
i=1

a(i) ≥
j∑
i=1

b(i), j = 1, 2, . . . , k.

Using induction, it can be shown that ifa ≺w b, then there exists ac such that
c ≤ a (no element ofc is greater than the corresponding element ofa) andc ≺ b
(Marshall and Olkin, 5.A.9.a). Furthermore, it can be shown thata ≺w b iff

k∑
i=1

f(a(i)) ≤
k∑
i=1

f(b(i))

for all continuous decreasing convex functionsf (Tomić, 1949; see also Marshall
and Olkin, 4.B.2).

A real-valued functionf defined on a setA ∈ Rk is said to beSchur concave
if x ≺ y onA implies f(x) ≥ f(y). By Schur concavity of theDS(ε) crite-
rion we mean thatψε(λ) is a Schur concave function ofλ. To prove the result,
we assume thatλ ≺ µ and show thatψε(λ) ≥ ψε(µ). Sincef(x) = − lnx
is a continuous decreasing convex function ofx, it follows from the weak super-
majorizationλ ≺w µ that lnλ ≺w lnµ, wherelnλ = (lnλ1, . . . , lnλk)

′ and
lnµ = (lnµ1, . . . , lnµk)

′. Sinceψδ(λ) is an increasing function of the elements
of λ, it is sufficient to show thatlnγ ≺ lnµ implies ψε(γ) ≥ ψε(µ), where
lnγ = (ln γ1, . . . , ln γk)

′ is a vector such thatlnγ ≤ lnλ andlnγ ≺ lnµ. The
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vector lnγ is obtained fromlnµ using transformations (5), which change two
elements of the vector at a time. Thus it suffices to prove the claim in the case
k = 2. This is actually done in paper [4], Lemma 2.

Schur concavity can be used to prove that in polynomial regression models the
DS(ε)-optimality criterion functionψε increases if the design is symmetrized.
There is a proof in paper [5], but to render the role of Schur concavity more
transparent, an alternative proof is given.

Assume that the experimental domain is the interval [-1,1] and we have thedth
degree polynomial fit modelyx = β0 +β1x+ . . .+βdx

d+ εx. The original design
is described by a functionτ(t) from [-1,1] to [0,1], which gives the proportions
of observations at the support points of the design and is zero otherwise. The re-
flected designτR is described by the functionτR(t) = τ(−t) and the symmetrized
design bȳτ = 1

2
(τ+τR). The moments of the original design areµi =

∑
j τ(tj)t

i
j,

wheretj are the support points of the design. The even moments of the reflected
design are equal to the corresponding moments of the original design, while the
odd moments carry a reversed sign. SinceM(τ̄) = 1

2
[M(τ) + M(τR)], where

M(·) denotes the moment matrix of a design, it is clear that in the symmetrized
design the even moments are equal to the corresponding moments of the original
design and the odd moments vanish. SinceM(τR) is obtained fromM(τ) by the
similarity transformation

M(τR) = QM(τ)Q,

whereQ = diag(1,−1, . . . , (−1)d), it has the same eigenvalues asM(τ).
The sum

∑j
i=1 z′iM(τ)zi, where the vectorszi are orthonormal, is maximized

by choosing aszi the eigenvectors corresponding toj largest eigenvalues ofM.
(Proof for Hermitian matrices is given in Fan, 1950; see also Marshall and Olkin,
20.A.2.) Denote byλ = (λ1, . . . , λd+1) andµ = (µ1, . . . , µd+1) the eigenvalue
vectors ofM(τ̄) andM(τ), respectively. We observe that

j∑
i=1

λi =
j∑
i=1

z′iM(τ̄)zi =
1

2

j∑
i=1

z′iM(τ)zi +
1

2

j∑
i=1

ziM(τR)zi ≤
j∑
i=1

µi

for j = 1, 2, . . . , d. Since trM(τ) = tr M(τ̄), we have
∑d+1
i=1 λi =

∑d+1
i=1 µi.

Thusλ ≺ µ, and the Schur concavity of theDS(ε) criterion implies that the
symmetrized design is better.
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4 Summaries of papers

4.1 Optimal Designs in Random Coefficient Linear
Regression Models

The paper deals with a repeated measurements situation, in which individuals are
measured at the integer time points belonging to the interval

− k,−k + 1, . . . , k − 1, k. (6)

The measurements must beconsecutive; thus the design−2,−1, 0, 1 is allowed
for an individual while−2,−1, 1 is not. The first order RCR-model

yij = (β0 + b0i) + (β1 + b1i)tj + εij, (7)

where the parametersβ0, β1 are fixed andb0i, b1i random effects, is adopted for
theith individual. The random termsb0i, b1i andεij are assumed to be uncorrelated
for all i andj. Their variances, denoted byσ2

0 = V (b0i), σ2
1 = V (b1i) andσ2

ε =
V (εij), are assumed to be known.

In the paper, two design problems are solved. Optimal designs are found to
1) estimate the slope parameterβ1 and 2) predict at the time points (6). In both
cases, symmetrization improves design. Considerations are therefore restricted to
three types of symmetric design: 1) singleton designs, 2) single-run designs and
3) two-run designs. In singleton designs, each individual is measured only once.
A proportionp (≤ 1

2
) of measurements is taken at both time points−n andn,

1 ≤ n ≤ k, and a proportion1− 2p at 0. In single-run designs, all individuals in
the experiment are measured at the time points

−n,−n+ 1, . . . , n− 1, n.

In two-run designs, half of the individuals are measured at the points

m,m+ 1, . . . , n− 1, n,

where−k ≤ m ≤ n ≤ k, and the second half at

−n,−n+ 1, . . . ,−m− 1,−m.

In slope parameter estimation, analytic solutions for singleton and single-run
cases are found. The solutions depend onk and the ratiosγ =

σ2
0

σ2
ε

andδ =
σ2

1

σ2
ε
.
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When different design types are compared, either singleton or two-run designs are
optimal. Single-run designs are always improved by choosing the two-run design
which has the same run length. For comparison of singleton and two-run designs,
a method is suggested in which the two-run design is approximated using the
corresponding single-run design. Tables are also given which indicate the optimal
design.

In the prediction problem, the trace of the dispersion matrix is minimized for
the predictor. Thus, the A-optimality criterion is used. It turns out that the sym-
metric singleton design with the support points−k andk is always optimal. If the
values ofk, δ andγ satisfy the relation (3.6) (in the paper), the solution is also
unique; otherwise there is an infinite number of optimal singleton designs.

The result that the singleton design is optimal is not proved in detail, since it
is lengthy and demands only simple calculus. The claim in the proof stating that
(3.8) is an increasing function ofγ does not hold for all values ofk, δ and∆.

Finally, an example motivated by our forest applications is given to illustrate
the results of the paper.

4.2 Optimal Designs for Prediction in Random
Coefficient Linear Regression Models

In this paper there is once more a repeated measurements situation. The first-
degree RCR model (7) is used with the same assumptions on the random terms
as in paper [1]. The measurements are taken on the interval[0, h] and predictions
made on(h,H]. The problem originated from the situation where diameters of
trees can be measured up to heighth and should be predicted up to heightH.
Also the situation is tackled where the predicted region includes the experimental
region.

First it is necessary to define what is meant by prediction. Denote by

xH−h = (h+ 1, h+ 2, . . . , H)′

the points at which the predictions are made and by

XH−h = (1 xH−h)

the corresponding model matrix. Assume that we have measuredn individuals on
the interval[0, h]. Then the object of prediction can be

(i) the response of thenth individual on(h,H],
yH−h,n = XH−h(β + bn) + εH−h,n,
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(ii) a new individual,yH−h,n+1 = XH−h(β + bn+1) + εH−h,n+1,

(iii) the expectation of observations,yH−h = XH−hβ,

(iv) the average of the individuals measured,ȳH−h = XH−h(β + b̄) + ε̄H−h
whereb̄ = 1

n

∑n
i=1 bi andε̄H−h = 1

n

∑n
i=1 εH−h,i.

Case (i) is not dealt with in the paper. In case (iii), it is clear that the optimal
predictor (BLUP) isŷH−h = XH−hβ̂, whereβ̂ is optimal forβ. As was men-
tioned in Section 2 of this summary,β̂ is equal toβ̂OLSE, if the design is the same
for all individuals. In case (ii), the optimal predictor is the same as in (iii), since
the expectation ofyH−h,n+1 is yH−h and the random termsbn+1 andεH−h,n+1 are
uncorrelated with the measurements. In Section 3.1 of the paper it is shown that
the predictorXH−hβ̂ is also optimal in case (iv) if the design is the same for all
individuals.

Three types of design are investigated. Firstly, it is assumed that all individ-
uals have the same design andk, the number of measurements per individual, is
fixed. The result is that all observations should be taken at the extremes 0 andh.
The proportion of observations at 0 depends onh andH but not on the variance
components, which could have been deduced in the way pointed out in Section 2
of this summary.

In the second type of design, all individuals have the same design, butk is
no longer fixed. It emerges that the design depends on the ratiosδ0 =

σ2
0

σ2
ε

and

δ1 =
σ2

1

σ2
ε
. The optimal design is rather difficult to characterize, since an infinite

number of alternatives should be compared. Usually, only few measurements
should be taken on one individual. Relation (3.15) is given to determine which
one of the alternatives(k1, k2) = (1, 1) and(k1, k2) = (2, 1) is better,k1 andk2

being the numbers of observations taken at 0 andh, respectively.
Thirdly, an optimal singleton design is found in which the design is not the

same for all units. Comparison is made with a design where two measurements
are taken on all units.

The optimality criterion for the predictor is the trace of the dispersion matrix
(A optimality). When studying designs of the first type, also IMSE and minimax
criteria are applied. The problem of prediction at all unobservable data points is
also taken up.

The paper ends with an application to tree stem data collected by a forest
harvester.
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4.3 Optimal Design for An Inverse Prediction Problem under
Random Coefficient Regression Models

The main part of the paper deals with an inverse prediction problem under fixed
first- and second-degree polynomial fit models. The experimental region is[0, h]
and the aim is to predict the valuex = x0 at which the polynomialη(x) attains a
pre-specified levelη0. In forestry applications,η(x) might be a stem curve giving
the diameter of a tree stem at heightx andη0 the minimum diameter of logs.

The valuex0 is estimated by plug-in estimators

x̂0 =
η0 − β̂0

β̂1

and

x̂0 =
−β̂1 −

√
β̂2

1 − 4β̂2(β̂0 − η0)

2β̂2

in the first- and second-degree models, respectively, whereβ̂i are components of
the ordinary least squares estimator.

Since the estimators are not linear inβ̂i, theδ method is used to obtain approx-
imate variances for̂x. Expanding the estimator as a Taylor series about the true
parameter valueβ, we establish that

x̂0 = x0(β̂) ≈ x0(β) +
∂x0

∂β′
(β̂ − β)

for small differenceŝβ − β and, consequently,

V (x̂0) ≈ ∂x0

∂β′
D(β̂)

∂x0

∂β
.

After some calculations it will be seen that

V (x̂0) ≈ 1

β2
1

x′0D(β̂)x0

or

V (x̂0) ≈ 1

(β1 + 2β2x0)2
x′0D(β̂)x0

in the cases of the first- and second-degree models, respectively. Herex0 denotes
the regression vector evaluated atx0. It is unknown, but the expectation matrix
Ex0x

′
0 is assumed to be known as prior information.
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The design problem is reduced to minimizing the linear optimality criterion

L(M−1) = tr M−1B,

whereM is the moment matrix of the design andB = Ex0x
′
0. The equivalence

theorem of the linear criterion states that a nonsingular moment matrixM0 is
optimaliff

f ′(x)M−1
0 BM−1

0 f(x) ≤ tr M−1
0 B

for all x belonging to the experimental interval. In the case of optimality, the
equality is obtained at the support points of the design. The regression vector
is given byf(x) = (1 x x2)′ in the second-degree model. The proof of the
theorem is found in Fedorov(1972, Section 2.9) and Silvey (1980, Section 1.3). It
also follows from the equivalence theorem for matrix means in the monograph by
Pukelsheim (1993, Sections 7.20, 9.8).

The equivalence theorem is used to show that in the second-degree model,
the optimal design has three support points, two of which are at the extremes of
the experimental interval. As third support point the middle point of the experi-
mental interval is chosen, although it is not exactly optimal. Regression vectors
f(l), f(m) andf(u) at the support pointsl, m andu, respectively, and vectors
orthogonal to two of them are used to deduce the optimal weights for the design.

Finally, the inverse prediction problem is taken up in the context of RCR mod-
els. It is shown that the optimal design is the same as in the case of the classical
linear model.

4.4 Pitman Nearness, Distance Criterion and Optimal Regres-
sion Designs

The DS Criterion was already defined in Section 3 of this summary. Pitman near-
ness is in a sense a predecessor of the distance criterion. It is used for comparing
estimators, while the distance criterion is applied in the design of experiments.

In the paper, the first-degree regression model

yx = α + βx+ εx

is assumed, wherex ∈ χ = [−1, 1]. For the error term it is assumed thatEεx = 0,
V (εx) = σ2 andCov(εx, εx′) = 0 for all x 6= x′.

Distance optimal designs are found for estimation ofα andβ separately and
jointly. The distance criterion function for estimating the parameters jointly is the
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probability
Pr[(α̂− α)2 + (β̂ − β)2 ≤ ε2].

In all cases, the designd0n, which assigns equal weight to observations on the
extremes -1 and 1, is found to be optimal.

Several natural variants of the distance optimality criterion are introduced for
predictionin the intervalχ:

(I) max
dn

Pr[ max
x∈χ
|ŷx − yx| < ε],

(II) max
dn

min
x∈χ

Pr[ |ŷx − yx| < ε ],

(III) max
dn

Pr
[∫ +1

−1
(ŷx − yx)2dx < ε

]
,

(IV) max
dn

E(L(dn)),

whereL(dn) is the length of the interval inχ under designdn for which |ŷx−yx| <
ε.

In cases (II) and (III) it is shown that the designd0n is optimal. In case (I), it
is shown that the lower limit

(I)′ max
dn

Pr[max
x∈χ
{|y − α− βx̄|+ |β̂ − β||x− x̄|} < ε]

is obtained byd0n. Case (IV) is the most difficult and is studied using simulation.
When proving the optimality ofd0n in the estimation case, Okamoto’s lemma

(Okamoto 1960, see also Marshall and Olkin, 11.E.8.b) in the casek = 2 is useful.
Okamoto’s lemma states that

Pr
(Z2

1

a1

+
Z2

2

a2

+ . . .+
Z2
k

ak
≤ 1

)
≤ Pr

( χ2
k

(
∏
ai)

1
k

≤ 1
)
, (8)

whereZi are independent random variables following the standard normal distri-
bution,χ2

k follows the chi squared distribution withk degrees of freedom andai
are positive constants.

When studying the prediction case (III), a generalization of Okamoto’s lemma
is needed in the case wherek = 2. It states that

Pr[l1X
2 + l2Y

2 ≤ 1] ≤ Pr[m1X
2 +m2Y

2 ≤ 1],

X andY being independent standard normal variables andl1, l2, m1 andm2

positive real constants satisfyingmax(l1, l2) ≥ max(m1,m2) andl1l2 ≥ m1m2.
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The paper finally tackles a design prolem in which the predicted region is
beyond the experimental region. As in papers [2] and [3], the experimental region
is [0, h] and the predicted one(h,H]. Using criteria (I)’ and (II) with the modified
experimental and predicted regions, optimal designs are found. The observations
should be taken at 0 andh, but the design is no longer symmetric.

In case (III), the problem can be reduced to maximizing the probability

Pr[(H − h)(Z1 Z2)C(Z1 Z2)′ ≤ ε2], (9)

whereC is a certain positive definite matrix andZ1 andZ2 are independent stan-
dard normal variables. The generalization of Okamoto’s lemma cannot be used,
sincedet C andλmax(C) are not minimized by the same design. Using the results
of paper [5], it is known that minimizingdet C corresponds to the caseε→ 0 and
minimizingλmax(C) to the caseε→∞. Therefore, there exists no design which
maximizes the expression (9) for allε > 0 simultaneously.

4.5 Distance Optimality Design Criterion in Linear
Models

In the paper, a number of properties are established for the DS(ε) criterion. Also
examples are given to elucidate its use as a design criterion.

It is noted that the DS(ε) criterion is isotonic relative to Loewner ordering.
As a consequence, DS(ε)-optimal designs are found among those whose moment
matrices cannot be improved relative to Loewner ordering. These designs are
calledadmissible.

The Schur concavity of the DS(ε) criterion was already discussed in Section 3.
Concavity for the criterion functionψε(λ) on Rk

+ holds only in the casek ≤
2. If k > 2, ψε(λ) is concave on the convex setA(δ) =

{
λ ∈ Rk

+ : λi ∈[
k−2
δ2 ,∞

)
, 1 ≤ i ≤ k

}
, whereδ2 = nε2

σ2 . The result follows from the fact that the
Hessian matrix ofψε(λ) is nonpositive definite onA(δ). In the paper, the proof
is limited to the casek = 2, since a counter-example is found which shows that
ψε(λ) is not concave onRk

+ if k > 2.
An interesting relation of the DS criterion to the T and D criteria is found by

considering the inequalities

ψε(λ) = Pr
(Z2

1

λ1

+
Z2

2

λ2

+ . . .+
Z2
k

λk
≤ δ2

)
≤ Pr

(
χ2
k ≤ δ2λ̃

)
≤ Pr

(
χ2
k ≤ δ2λ̄

)
,

(10)
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whereλi are the eigenvalues of the moment matrixM, λ̃ = (
∏
λi)

1
k and λ̄ =

1
k

∑
λi. The first inequality follows from Okamoto’s lemma (8) and the second

from the arithmetic-geometric mean inequality. In both instances, there are equal-
ities if and only ifλ1 = λ2 = . . . = λk, which means thatM is a multiple ofI.
Thus, if for some design trM or det M is maximized andM is a multiple ofI,
then it is DS optimal.

In the case of them-way first-degree polynomial model

Yij = β0 + β1ti1 + . . .+ βmtim + Eij

such designs are found. Assume that the experimental domain is anm-dimensional
Euclidean ballT√m = {t ∈ Rm : ||t|| ≤

√
m}. Denote byt1, t2, . . . , tl the sup-

port points of a designτ and byp1, p2, . . . , pl the weights connected to them. Then
the moment matrix isM = X′DX whereD = diag(p1, p2, . . . , pl) andX is the
model matrix. For trM we obtain

tr X′DX = tr DXX′ =
l∑

i=1

pi(1 + t′iti) ≤ m+ 1.

From the inequalities (10) it now follows that the designτ is DS optimal ifM = I.
In the case of the minimal support size,l = m+ 1, the condition

I =
1

m+ 1
X′X =

1

m+ 1
XX′

implies that
1 + t′iti = m+ 1, 1 + t′itj = 0

for all i 6= j ≤ m+1. Thus, the support points of a DS optimal design are vertices
of a regular simplex.
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