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Tiivistelmä 

Aikuisen kantasolut ovat erilaistumattomia soluja, joilla on rajoittunut 

jakaantumiskyky. Viisaudenhampaasta eli kolmannesta poskihampaasta peräisin 

olevat hampaan kantasolut ovat uusi solutyyppi käytettäväksi regeneratiivisessa 

lääketieteessä. Hampaan kantasoluja saadaan pulpasta eli hammasytimestä, 

hampaan follikkelista sekä periodontaaliligamenttikudoksesta. Hampaan pulpan 

kantasolut ovat hyvin saatavilla oleva solutyyppi useisiin kudosteknologian 

sovelluksiin. Nämä solut ovat monikykyisiä kantasoluja, jotka voivat erilaistua mm. 

rusto-, rasva-, luu- ja lihassoluiksi sekä hermokudoksen solutyypeiksi. Viimeaikoina 

luukudosteknologia on kehittynyt yhdeksi lupaavimmista kudosteknologian 

muodoista. Solujen käyttöä kudosteknologiassa haittaa kuitenkin eläinperäisten 

aineiden, kuten naudan seerumin tarve solujen viljelyssä. Naudan seerumin kohdalla 

ongelmina ovat mm. vaihtelu eri valmistuserien välillä, eläinperäisten 

tartuntatautien välittyminen sekä immunologiset reaktiot. Näiden syiden takia tässä 

väitöskirjassa tarkasteltiin korvaavia vaihtoehtoja naudan seerumille hampaan 

kantasolujen ylläpidossa. 

 

Tässä väitöskirjassa tutkittiin hampaan pulpan, follikkelin ja 

periodontaaliligamentin kantasolujen erilaistamista luusoluiksi. Töissä käytettiin 

mm. kasvutekijöitä kuten luun morfogeneettinen proteiini 2 ja 6 (BMP-2 ja -6), 

glukokortikoidi dexamethasonia (DEX) sekä D3-vitamiinin metaboliitteja 25-

hydroksivitamiini D3 (25OHD3) ja 1α,25-dihydroksivitamiini D3 (1α,25(OH)2D3). 

Tulokset osoittivat että BMP-2 ja -6 lisäävät periodontaaliligamentin kantasolujen 

luuerilaistumista vain jos ne yhdistetään muihin luusolujen muodostusta tukeviin 

tekijöihin, kuten dexamethasoniin, askorbiinihappoon ja β-glyserofosfaattiin. 
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Lisäksi havaittiin että D3-vitamiinin metaboliitit ovat tehokkaampia kuin 

perinteisesti käytetty dexamethasoni pulpan ja follikkelin kantasolujen 

erilaistumisessa luusoluiksi. 

 

Naudan tai ihmisen seerumia sisältäviä sekä seerumittomia ja eläinperäisistä 

ainesosista vapaita (SF/XF) soluviljelyelatusaineita vertailtiin pulpan kantasolujen 

viljelyssä. Ihmisen seerumin tai SF/XF-olosuhteiden käyttö mahdollistaisi solujen 

turvallisemman käytön soluhoidoissa. Lopulta tutkimme kliiniseen käyttöön 

soveltuvan solu-biomateriaali-yhdistelmän käyttöä luukudosteknologiassa. Tulosten 

mukaan pulpan kantasolut kiinnittyvät, säilyvät elinkykyisinä, jakaantuvat ja voivat 

erilaistua luusoluiksi käytettäessä kolmiulotteista β-TCP/P(LLA-CL) (β-tricalcium 

phosphate/Poly L-Lactic acid- caprolactone) biomateriaalitukirakennetta. 

 

Tutkimuksen johtopäätöksenä on että hampaan pulpan kantasolut ovat 

monikykyisiä, helposti saatavilla olevia soluja tutkimustarkoituksiin. D3-vitamiinin 

metaboliitit ovat tehokkaita pulpan ja follikkelin kantasolujen luuerilaistuksessa. 

Ihmisen seerumia sisältävissä elatusaineissa pulpan kantasolut jakaantuivat nopeasti 

ja erilaistuivat rasva-, rusto- ja luusoluiksi ja siten ihmisen seerumi voisi toimia 

naudan seerumin korvaavana ainesosana hampaan pulpan kantasolujen 

kasvatuksessa. Lisätutkimuksia kuitenkin tarvitaan SF/XF-olosuhteista, sillä 

kantasolujen jakaantuminen näissä olosuhteissa oli hidasta ja erilaistumiskyky oli 

heikko verrattuna muihin olosuhteisiin. Tämän väitöskirjan tutkimustuloksia 

voidaan hyödyntää tulevissa kudosteknologiaa ja hampaan kantasoluja 

hyödyntävissä hoitomuodoissa. 
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Abstract 

Adult stem cells are undifferentiated cells found in tissues or organs that are 

renewable with limited replicative capacity. Dental stem cells (DSCs) derived from 

impacted third molar teeth are considered a new source of stem cells that could be 

used for regenerative medicine. The DSCs can be obtained from the dental pulp 

tissue, dental follicle tissue and periodontal ligament tissue. Dental pulp stem cells 

(DPSCs) are an accessible stem cell source with therapeutic applicability in repair 

and regeneration of damaged tissues. DPSCs exhibit a multipotent character as they 

can differentiate into chondrocytes, adipocytes, osteoblasts, myocytes, and neuronal 

cells as reported in the literature. Recently, bone tissue engineering has emerged as 

most promising approach to develop biological bone substitutes to restore, maintain 

and regenerate bone tissue function. However, the methods adopted for culturing 

and harvesting cells is a major downside due to usage of fetal bovine serum (FBS). 

The scientific problems encountered due to the presence of FBS are batch to batch 

variability, risk of possible contamination with virus, prions, bacteria, and 

immunogenic response to the FBS cultured cells may lead to anaphylactic or arthus 

like immune reaction in patients. Therefore, in this thesis alternative to animal 

serum for DPSCs culture was studied for its potential clinical availability. 

 

Additionally, in this thesis, manipulation of culture condition for directing the 

differentiation of various DSCs such as DPSCs, Dental follicle stem cells (DFSCs) 

and periodontal ligament derived cells (PDLCs) to form bone forming cells was 

studied. The effect of growth factors and metabolites described in this work are 

bone morphogenetic proteins (BMP-2 and -6), vitamin D3 metabolites 25-

hydroxyvitamin D3 (25OHD3) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and 

dexamethasone (DEX). There are potential merits of the combined use of BMP-2 or 

BMP-6 and osteogenic supplements (OS; DEX, ascorbic acid (AA), and β-
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glycerophosphate) for osteogenic differentiation of human periodontal ligament 

cells (PDLCs). The vitamin D3 metabolites 25OHD3 and 1α,25(OH)2D3 as a 

substitute to DEX in the osteogenic supplements were found to be more effective in 

differentiating DPSCs and DFSCs into osteogenic lineage.  

 

Furthermore, FBS, human serum (HS) and serumfree/xenofree (SF/XF) culture 

media for expansion of DPSCs was tested. By expanding DPSCs in SF/XF or in HS 

media, the problems including possible infections and severe immune reactions can 

be eliminated to use cultured stem cells safely in clinical therapies. Lastly, the 

appropriate combination of biomaterial, DPSCs and specific differentiation factors 

for functional bone tissue engineering was tested in vitro. Based on our findings, 

DPSCs cultured in HS medium attached, remained viable, proliferated and 

differentiated osteogenically when seeded on β-Tricalcium phosphate/Poly L-Lactic 

acid- caprolactone (β-TCP/P (LLA-CL)) 3D biomaterial scaffold. 

 

In conclusion, DPSCs were found to be multipotent, easily procurable and 

anatomically accessible to use for our research work. DPSCs and DFSCs can be 

efficiently differentiated into osteogenic lineage under the influence of vitamin D3. 

DPSCs isolated in HS proliferate more homogenously; differentiate into adipogenic, 

osteogenic and chondrogenic lineages. Thus, HS could serves as a safer alternative 

to FBS for DPSCs culture. However, further research is required for expansion of 

cells in SF/XF-M, as observed in our study the cells proliferated at a very slow rate 

and with minimal multilineage differentiation. These findings are essential for the 

future applicability of DSCs for bioengineering tissues for regenerative therapies.  
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1. Introduction 

Tissue engineering from cultured adult stem cells is a novel approach to restore lost 

tissue. Progress in cell culture techniques can give rise to a new approach for 

reconstruction of bone defects (Kimelman et al., 2006). Regenerative treatments for 

bone reconstruction require integration of inductive morphogenetic signals (such as 

Bone morphogenetic proteins; BMPs or Vitamin D3 metabolites), responding stem 

cells and biomaterial scaffold (Seo et al., 2004).  It is known that mesenchymal stem 

cells (MSCs) derived from impacted third molar teeth such as, dental pulp stem cells 

(DPSCs), periodontal ligament stem cells (PDLSCs) and dental follicle stem cells 

(DFSCs) have the ability to undergo osteogenic, chondrogenic and adipogenic 

differentiation, as reported in previous studies (Iohara et al., 2004; Shiba et al., 

2001; Yao et al., 2008). Lately, DPSCs have attracted much interest for bone tissue 

engineering, Laino, Papaccoio and colleagues have shown that human DPSCs were 

capable of differentiating into bone, which was well woven and vascularized 

(d'Aquino et al., 2007; d'Aquino, De Rosa, Lanza, et al., 2009; Papaccio et al., 

2006). However, they differentiated the DPSCs in basal culture medium 

supplemented with fetal bovine serum (FBS) which is an animal derivative, leading 

to risk of transmission of infection to the cells through the culture media (Brunner et 

al.). FBS is a cocktail of various factors required for cell attachment, growth and 

metabolism. It will always be an ill-defined mixture of components; hence, results 

in lot-to-lot variability leading to varying data. Therefore, from cell biology point of 

view the development of xenofree cell culture system is essential. Recent advances 

in stem cells based therapies necessitate the demand of serum free or xenofree 

alternatives of human origin for autologous cell expansion and clinical grade tissue 

engineering.  

Another aspect is the exposure of progenitor cells to inductive morphogens or 

hormones in appropriate biomaterial scaffold which will enable their future 

application in bone tissue engineering. BMPs play a critical role in tooth 

morphogenesis and were originally identified as proteins that induce bone formation 
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at extra- skeletal sites; BMP-2 induces alveolar bone formation and BMP-6 

regulates osteogenic differentiation of cells (Chen et al., 1997; Chen et al., 2004). 

However, the effects of BMPs have been demonstrated to be inconsistent, it is 

therefore essential to establish a potent exogenous growth factor to induce 

osteogenesis. Apart from BMPs, the glucocorticoid, dexamethasone is another 

commonly used osteogenic inducer in combination with ascorbic acid and β-

glycerophosphate (Hayami et al., 2007). Considering the possibility of 

glucocorticoid induced osteoporosis in vivo (Pierotti et al., 2008), the need for an 

alternative  osteogenic inducer remains. It is also known that Vitamin D3 controls 

the formation of mineralized tissue through regulation of the expression of various 

proteins involved in bone formation. Its role as a potential osteogenic inducer for 

MSCs has not been explored extensively (Shiba et al., 2001). Taken together, in this 

work we have studied the xenofree isolation, proliferation, and osteogenic 

differentiation and cell adhesion of DPSCs within a medical grade biomaterial. 

Hopefully, the results of our study would guide us to the future applicability of 

dental stem cells.  
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2. Review of the literature 

  

2.1 Stem cells 

The human body has a remarkable capacity to regenerate. Epithelial and 

hematologic tissues continually renew themselves even in late stages of individual’s 

life. During histogenesis, the embryonic stem cells are responsible for tissue 

development as they are capable of differentiating into any cell type. Stem cells are 

also found in adult tissues. These cells have the ability to self renew and repair 

tissues. Based on these considerations, cell therapies seem to be a promising 

treatment option for regenerative medicine. Application of stem cells for blood 

disease, bone fractures, and cartilage degeneration are already in clinical use. The 

usage of stem cell systems as a tool for tissue engineering has great potential. Stem 

cells are cells that have the potential to develop into many different or specialized 

cell types. Stem cells are referred to as "undifferentiated" cells because they have 

not yet committed to a developmental path that will form a specific tissue or organ. 

The process of changing into a specific cell type is known as differentiation. Stem 

cells can be classified on the basis of their origin as totipotent, pluripotent and 

multipotent stem cells (Figure 1). Totipotent stem cells are obtained from 1-3 day 

old embryos and each cell has the ability to develop into an individual (Mitalipov 

and Wolf, 2009). Pluripotent stem cells are harvested from the inner cell mass of the 

blastocyst seven to ten days after fertilization. These cells can form any cell type or 

from induced adult stem cells by transfer of genes to generate pluripotent stem cells 

(Takahashi et al., 2007; Thomson et al., 1998). Lastly, multipotent stem cells are 

derived from fetal tissues and adult tissues that have limited differentiation capacity. 

Multipotent fetal stem cells or adult stem cells are derived from the three embryonic 

germ layers (ectoderm, mesoderm and endoderm) that become more and more 
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committed to a particular cell type for regenerating organs and tissues (Kelly et al., 

2004). This review of literature focuses on multipotent adult stem cells of 

mesenchymal origin derived from human impacted third molar teeth for bone tissue 

engineering applications. 

 

Figure 1.  Different sources of stem cells divided into groups according to their 

differentiation capacity totipotent-, pluripotent-, induced pluripotent- and multipotent stem 

cells. Figure modified from pictures made by Bettina Mannerström. The original images 

were made by Catherine Twomey from the National Academies Understanding stem cells: 

An Overview of the Science and Issues, http://www.nationalacademies.org/stemcells. 
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2.2 Human embryonic stem cells 

The first derivation of a pluripotent mouse embryonic stem cells (ESCs) line from 

mouse embryo was reported in 1981 (Evans and Kaufman, 1981). ESCs can be 

derived from the inner cell mass of the blastocyst. These cells have unlimited self-

renewal capacity and can give rise to any cell lineages. Lineage specific 

differentiation of ESCs can be directed under specific culture conditions and by 

manipulating the microenvironment (Robertson, 1990; Valdimarsdottir and 

Mummery, 2005). Recently, considerable attention has been devoted to directing 

ESC differentiation into osteogenic lineage. The results of these researches have 

highlighted the potential use of ESCs in the field of bone tissue engineering 

(Warotayanont et al., 2009; Zhang et al., 2009) 

 

2.3 Induced pluripotent stem cells 

Generation of induced pluripotent stem cells (iPSCs) holds a great promise for 

regenerative medicine and other aspects of clinical applications (Amabile and 

Meissner, 2009). Human dermal fibroblasts are the most extensively studied and 

feasible cell source for iPSCs generation (Takahashi et al., 2007). Other cell types 

which have been reprogrammed include neonatal foreskin fibroblast, mesenchymal 

stem cells (MSCs), amniotic fluid–derived cells, dental pulp stem cells (DPSCs), 

stem cells from exfoliated deciduous teeth (SHED), and stem cells from apical 

papilla (SCAP) (Atari et al., 2011; Atari et al., 2012; Galende et al., 2010; Tamaoki 

et al., 2010). The Four factors namely c-Myc, Klf4, Oct4 and Sox2 or Lin28, Nanog, 

Oct4 and Sox2 are carried by viral vectors for generating iPSCs (Takahashi et al., 

2007). These cells have been shown to maintain a normal karyotype and the 

potential to develop into all three germ layers. However, from the perspective of 

clinical applications, viral vectors for introducing these factors should be removed. 

Several approaches have been suggested to remove the vectors from the cells after 

they have been reprogrammed into iPSCs (Amabile and Meissner, 2009; Nakhaei-

Rad et al., 2012). Due to the safety concerns related to viral vectors, iPSCs are still 

far from clinical use, as the current methods do not meet the GMP standards.  
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2.4 Multipotent stem cells 

 

2.4.1 Bone marrow derived stromal stem cells 

Bone marrow-derived mesenchymal stem cells (BM-MSCs) were first identified by 

Friedenstein and demonstrated that bone marrow plated in fetal calf serum (FCS) 

medium developed fibroblast like colonies (Friedenstein et al., 1966). The 

international society of cellular therapy defines MSCs or BM-MSCs on the basis of 

three main characteristics 1) their adhesion to plastic 2) their expression of a specific 

set of membrane molecules (CD73, CD90, CD105) together with a lack of 

expression of the hematopoietic markers CD14, CD34, and CD45 and human 

leukocyte antigen-DR (HLA-DR) and 3) their ability to differentiate into three 

different lineages such as osteogenic, chondrogenic and adipogenic (Dominici et al., 

2006). Further research on BM-MSCs have shown that they are self-renewable, 

multipotent progenitor cells with the capacity to differentiate into lineage specific 

cells that form bone, cartilage, fat, tendon and muscle tissue, and possess 

immunosuppressive properties (Dimarakis and Levicar, 2006; Miller et al., 2008; 

Puissant et al., 2005). Due to certain shortcomings of obtaining the BM-MSCs that 

includes pain, tissue site morbidity and low cell numbers on harvest. Therefore, 

alternate less morbid sources of MSCs have been sought (Kobayashi et al., 2005; 

Miller et al., 2008).  

 

2.4.2 Adipose stem cells 

Adipose tissue has become an attractive source of stem cells, as it is an accessible 

and abundant adult stem cell reservoir. Adipose tissue can be obtained by suction-
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assisted lipectomy (liposuction). Adipose tissue derived stem cells (ADSCs) are a 

heterogeneous population of cells, which after isolation are called the stromal 

vascularization fraction (SVF) (Gimble et al., 2007). The SVF includes the stromal 

cells, ADSCs that have the ability to differentiate into several lineages such as 

osteogenic, adipogenic, chondrogneic, and myogenic (Gimble and Guilak, 2003; 

Gimble et al., 2011). It has been well shown that ADSCs acts in a similar way as 

BM-MSCs and ADSCs showing very similar expression of the surface marker. 

ADSCs have been shown to be positive for a variety of markers, such as CD13, 

CD29, CD44, CD54 and others (Gronthos et al., 2001; Jurgens et al., 2008; 

Lindroos et al., 2009). Despite the similarity of the surface marker expression with 

BM-MSCs, it has been reported that, unlike BM-MSCs, ADSCs do not express 

STRO-1 (Gronthos et al., 2001; Zuk et al., 2002). Recently, ADSCs have been used 

by many researchers for bone tissue engineering applications. Several research 

reports including those from our laboratory have demonstrated that ADSCs show 

good adhesion, proliferation activity, and homogenous bone-like tissue formation on 

various biocompatible biomaterial scaffolds (Frohlich et al., 2010; Lindroos et al., 

2009).  

 

2.4.3 Origin of the dental stem cells 

Tooth is a complex organ made up of hard and soft tissues namely, enamel, dentin, 

pulp, cementum and periodontal ligament. During the sixth week of embryogenesis, 

after the migration of neural crest cells into head and neck mesenchyme, the 

ectoderm covering the stomodeum begins to proliferate, giving rise to the dental 

laminae (Maas and Bei, 1997; Ten Cate, 1982). The cell differentiation and 

morphogenesis is regulated by the reciprocal interaction between the ectoderm and 

mesodermal layers, which results in the formation of a placode. Following the 

interaction ovoid structures begin to separate and develop into tooth germs (Thesleff 

et al., 1995). The tooth germ is organized into three parts namely enamel organ, 

dental papilla and dental follicle. The dental papilla contains cells that develop into 

odontoblasts, which are dentin-forming cells (Ruch, 1998; Ten Cate, 1967).  

Mesenchymal cells within the dental papilla are responsible for the formation of 



21 

tooth pulp. The dental follicle gives rise to three important entities: cementoblasts, 

osteoblasts, and fibroblasts. Cementoblasts form the cementum covering the root of 

a tooth (Slavkin et al., 1989). Osteoblasts give rise to the alveolar bone around the 

roots of teeth. Fibroblasts develop the periodontal ligaments (PDL), which connect 

teeth to the alveolar bone through Sharpey’s fibres that insert into the cementum 

(Isaka et al., 2001).  

 

DSCs can be removed from an individual’s primary or permanent teeth, expanded, 

and put back into the same individual when repair becomes necessary. This 

autologous transplantation removes the need for immunosuppression. Dental tissues 

are the specialized tissues that do not undergo continuous remodeling as shown in 

bone tissue. Therefore, dental tissue derived stem cells or progenitor cells may be 

committed and restricted in their differentiation capacity. To date dental stem cells 

have been obtained from the following tissues:  human stem cells from exfoliated 

deciduous teeth (SHED), apical papilla, dental pulp, dental follicle and dental 

periodontal ligament tissues (Huang et al., 2009; Morsczeck et al., 2010).  

 

2.4.3.1 Dental pulp stem cells 

The dental cavity encloses a specialized tissue type, dental pulp, that is well 

demarcated from the surrounding tissues and therefore, relatively easy to remove 

(Figure 2). Gronthos et al 2000 was the first one to show that stem cells existed in 

human dental pulp. The dental pulp tissue contains several types of progenitor cells, 

which differ in regards to the rate of proliferation, renewal ability and differentiation 

potential (Graziano et al., 2008; Gronthos et al., 2002). In vitro, DPSCs can 

differentiate into odontoblasts, osteoblasts, endotheliocytes, smooth muscle cells, 

adipocytes, chondrocytes and neurons under the influence of differentiation specific 

supplements (Marchionni et al., 2009; Pierdomenico et al., 2005). DPSCs have 

similar phenotypic characteristics as BM-MSCs based on the expression of the 

mesenchymal stem cell markers CD44, CD29 CD73, CD90, CD105 and  the 

hematopoietic markers CD34, CD45 (Huang et al., 2009; Pierdomenico et al., 

2005). Several studies have demonstrated that DPSCs retain their stem cell 
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properties following cryopreservation (Graziano et al., 2008; Woods et al., 2009; 

Zhang et al., 2006). Moreover, one report suggests that cryopreserving impacted 

third molar teeth for upto one month, maintains the stemness of the dental pulp cells 

(Perry et al., 2008b). Therefore, these finding of stem cells in dental pulp tissue 

leads to a potential stem cell source for banking. In addition, DPSCs have attracted 

much interest for bone tissue engineering. Laino, Papaccoio and colleagues have 

shown that human DPSCs were capable of differentiating into bone, which was well 

woven and vascularized (Laino et al., 2005). 

2.4.3.2 Dental Follicle stem cells  

The dental follicle is a loose connective tissue sac derived from ectomesenchymal 

tissues. It surrounds the developing tooth and plays an important role in 

coordination of tooth eruption. The dental follicle occupies the radiolucent space 

around the crowns of unerupted teeth (Figure 2). It is firmly attached to the surface 

of the crown by the reduced epithelium of the enamel organ. The thickness of the 

dental follicle can reach up to 5.6 mm and still maintain normal structure and 

organization (Morsczeck, Gotz, et al., 2005). Handa et al were the first to report 

stem cells in bovine dental follicle tissue. This tissue contains progenitor cells that 

form the periodontium such as cementum, PDL, and alveolar bone (Handa et al., 

2002). DFSCs stimulated with Enamel matrix derivatives (EMD) or BMP-2 and 

BMP-7 expressed cementoblast markers like cementum attachment protein and 

cementum protein-23 (Kemoun et al., 2007). DFSCs show a typical fibroblast-like 

morphology and express Nestin, Notch-1, collagen type-I, bone sialoprotein (BSP), 

osteocalcin (OCN) and fibroblast growth factor receptor (FGFR) (Morsczeck, 

2006). These cells form low numbers of adherent colonies when released from the 

tissue (Morsczeck, Moehl, et al., 2005).   

2.4.3.3 Dental periodontal ligament derived stem cells 

The periodontal ligament (PDL) connects the alveolar bone to the root cementum 

through its ligaments and sustains the tooth in its alveolus. The periodontal ligament 

tissues can be obtained from the roots of the extracted teeth (Figure 2). The tissue 
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contains progenitor cells that have the potential to form periodontal structures such 

as cementum, bone and ligament (Isaka et al., 2001). The presence of progenitor 

cells in the PDL tissue helps to maintain the homeostasis and regeneration of the 

periodontal tissue (Seo et al., 2004). It has been demonstrated that PDL progenitor 

cells are committed to several developmental lineages such as osteoblastic, 

fibroblastic, and cementoblastic (Murakami et al., 2003; Nohutcu et al., 1997). 

Therefore, they are a desirable source of cells for regeneration of a functional 

periodontal apparatus. Periodontal ligament derived stem cells (PDLSCs) have the 

potential to form collagen fibres and generate cementum/PDL-like structures in vivo 

(Pitaru et al., 2002). However, the clinical application of autologous PDL-derived 

cells is restricted due to several limitations, that is, insufficient cells availability, 

difficulties in harvesting, limited success and predictability of procedures developed 

to date. 

 

 

Figure 2: Anatomical location to obtain dental tissues from extracted impacted third molar 

tooth. 
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2.5 Growth factors and hormones  

2.5.1 Bone morphogenetic proteins  

Growth factors are biologically active polypeptide hormones that affect the immune 

function as well as the differentiation of cells from the epithelium, bone, and 

connective tissue. A major focus of periodontal research has evaluated the impact of 

growth factors on periodontal tissue engineering (Ripamonti, 2007). The most 

commonly used growth factors for periodontal tissue regeneration are Platelet 

derived growth factor (PDGF), Fibroblast growth factor (FGF), Transforming 

growth factor-beta (TGF-β) and Bone morphogenetic proteins (BMPs). BMPs have 

been used in preclinical and clinical trials for the treatment of large periodontal and 

intrabony defects around the dental implants (Blumenthal et al., 2002; Lynch et al., 

1989; Nevins et al., 2005; Ripamonti and Petit, 2009) and for the regeneration of 

large segments of resected mandibles (Moghadam et al., 2001; Clokie and Sándor, 

2008). Bone morphogenetic proteins (BMPs), originally identified as proteins that 

induce bone formation at extra-skeletal sites, are multifunctional growth factors that 

regulate the growth, differentiation, and apoptosis of various cell types, including 

osteoblasts, chondroblasts, neural cells, and epithelial cells (Urist 1965; Hogan 

1996; Groeneveld and Burger 2000; Xiao et al. 2007). Currently, there are 14 

subsets of BMPs which belong to the transforming growth factor-β superfamily. 

Four of them (BMP-2, -4, -6, and -7) are known as inducers of osteogenic 

differentiation (Lavery et al. 2008). BMP-6 has been reported to be one of the potent 

inducers of osteogenic differentiation in mesenchymal stem cells (MSCs; Friedman 

et al. 2006; Nohutcu et al. 1997; Hayami et al. 2007).  However, BMP-2 is one of 

the most extensively studied BMPs and the combined use of BMP-2 and osteogenic 

supplements (OS; L-ascorbic acid-2-phosphate + β-glycerophosphate) have been 

shown to be able to accelerate the osteogenic differentiation of human MSCs (Jager 

et al. 2008). Moreover, Mizuno et al. reported that the response of BMP-2 on human 

MSCs varied between donors, resulting in inconsistent effect of BMP-2 on in vitro 

osteogenic differentiation of human MSCs (Mizuno et al. 2009). Similar 

inconsistent results have been reported between patients in clinical studies of bone 

regeneration by BMP-2 (Govender et al. 2002; Groeneveld and Burger 2000).    
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2.5.2 Dexamethasone 

Dexamethasone (DEX) a glucocorticosteroid, in combination with OS is the most 

commonly used osteogenic inducer for human mesenchymal stem cells (MSCs) 

such as adipose tissue derived (Lee et al., 2009) and bone marrow derived stem cells 

in vitro (Beloti and Rosa, 2005). Studies have shown that human dental stem cells 

differentiate into osteoblasts like cells when induced by DEX (Morsczeck, Moehl, et 

al., 2005; Morsczeck, 2006). However, long term glucocorticosteroid exposure has 

deleterious effects on bone in vivo, resulting in glucocorticoid- induced osteoporosis 

(Pierotti et al., 2008). 

 

2.5.3 Vitamin D3 metabolites 

There are some studies where 1α,25(OH)2D3 in addition to OS has been used for 

osteogenic differentiation of MSCs (Feng et al., 2010; Gupta et al., 2007; Zhou et 

al., 2006). Moreover, the role of 1α,25(OH)2D3 in tooth formation is well known 

from in vivo and clinical studies, deficiency of 1α,25(OH)2D3 results in 

hypocalcification of the dentin and enamel leading to unmineralized dental structure 

(Barron et al., 2008). Excessive doses of 1α,25(OH)2D3 cause hypercementosis, 

formation of pulp stones and hypercalcification in dental tissues (Giunta, 1998). 

Additionally, 1α,25(OH)2D3 has been reported to promote the function of 

osteoclastogenesis in the periodontium (Tang and Meng, 2009). Differentiation of  

MSCs such as those derived from adipose tissue, bone marrow tissue or from dental 

tissue into osteoblast like cells is induced in vitro by treating the cells with DEX, 

ascorbic acid and β- glycerophosphate as reported in many studies (Huang et al., 

2006; Morsczeck, Moehl, et al., 2005). It has been reported that 1α,25(OH)2D3 may 

be superior to dexamethasone as an agent that induces osteogenic differentiation in 

human adipose derived cells (Gupta et al., 2007; Halvorsen et al., 2001; Zhou et al., 

2006). However, it is essential to further elucidate the safest and most effective 

hormones for clinical use. 
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2.6 Culture media 

The supplementation of basal culture media with animal serum or serum of any 

different origin is essential for cell growth, metabolism, and to stimulate 

proliferation. As stems cells are currently cultured in media containing fetal bovine 

serum (FBS), there is a theoretical risk of transmission of infection to the cells 

through the culture media (Heiskanen et al., 2007; Spees et al., 2004). In addition, it 

is difficult to maintain the MSCs in culture using serum, because serum contains 

growth factors that drive the cells to differentiate. Serum is always an ill defined 

mixture of components for culturing cells (Shahdadfar et al., 2005). Development of 

antibodies to FBS components has been demonstrated to occur in vivo. Metabolic 

uptake of nonhuman sialic acid Neu5Gc by cultured human cells from the FBS in 

culture medium, against which many humans possess circulating antibodies that 

might lead to complement activation and cell death in vivo after transplantation 

(Dimarakis and Levicar, 2006). We therefore need to further explore optimal culture 

conditions for maintaining and expanding the stem cells. The use of autologous or 

allogenic human serum (HS) eliminates the problem of xenogenic antibodies into 

patient (Aldahmash et al., 2011; Komoda et al., 2010). Furthermore, recent advances 

in stem cells based therapy necessitate the invention of serum-free alternatives of 

human origin for autologous cell expansion, reimplantation and clinical tissue 

engineering (Aldahmash et al., 2011; Bieback et al., 2009). Figure 3 shows the 

comparison between the HS and SF/XF media alternatives to FBS. Hence, before 

the successful widespread clinical use of DPSCs for bone tissue regeneration, 

xenofree media such as HS or SF/XF needs to be tested for successful proliferation, 

with multilineage differentiation potential and at the same time maintains the 

stemness of cells. 
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Figure 3: Comparative analysis between fetal bovine serum, human serum and                         

serumfree/xenofree cell culture media. 

2.7 Biomaterial 

The gold standard to stimulate bone growth and to replace lost bone tissue is 

autologous bone grafting, which is the most trusted treatment modality. However, 

harvesting procedures involve high donor site morbidity and limited amounts of 

bone are available for autografting (Laurie et al., 1984). Allografts are readily 

available from bone banks that eliminate the pain and potential infection associated 

with the second surgical site necessary for autograft procedures. Large bone grafts, 

such as a femur for the leg or humerus for the arm, would not be possible without 

allografts, since such grafts cannot be obtained from the patient’s own body (Calori 

et al., 2011). It is known that some bone grafts are osteoinductive, meaning they 

“signal” the patient’s body to begin making new bone, promoting faster healing and 

better surgical outcomes (Kolk et al., 2012). But with allografts the complication 
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rate is high with the risks of graft-versus-host disease, transmission of infectious 

disease and graft failure (Forrest et al., 1992). Therefore, alternative methods 

including those using stem/progenitor cells have been investigated and human trials 

have been successfully carried out (Mesimaki et al., 2009; Sittinger et al., 2004). 

Human cells require interactions with the microenvironment to survive, proliferate 

and function, which is largely composed of the extracellular matrix proteins. In 

tissue engineering, these three -dimensional (3D) structures are initially provided to 

the stem cells by the use of  biocompatible scaffolds (Lutolf et al., 2009). With the 

purpose of distribution of cells and osteoconductivity within a biomaterial, porous 

β-tricalcium phosphate (β-TCP) with good bone bonding properties is preferred 

(Wang et al., 2006). But, due to poor mechanical strength, β-TCP is used for bone 

regeneration at non-loading sites or to fill bone voids (Barrere et al., 2006). From a 

tissue engineering point of view, a biomaterial should have sufficient strength 

initially to withstand the stresses of mastication until the newly regenerated bone 

takes over (Sittinger et al., 2004). Moreover, the structural integrity is also crucial 

for the long-term success of implants in the bone (Misch, 2011). In order to achieve 

desirable mechanical strength for bone tissue engineering, synthetic polymer based 

biomaterials such as poly-L-lactic acid (PLLA) or poly caprolactone (PCL) are 

combined with osteoconductive bioceramics (Guarino et al., 2008; Nof and Shea, 

2002). Therefore, it is important that scaffolds should be designed to provide 

structural integrity for the cells used in tissue engineering until newly formed tissue 

becomes autosustainable. 
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3. Aims of the study  

The aims of this project were to isolate, to culture and study the osteogenic 

differentiation potential of dental stem cells derived from extracted human impacted 

third molar teeth induced by growth factors or hormones. Depending on the 

anatomic location, ease of availability and differentiation potential, DPSCs were 

chosen to be appropriate cell source for consecutive studies. In order to make 

DPSCs clinically accessible, human serum and serum free/ xenofree alternatives 

were tested for cultivation of the cells instead of animal derived serum. Finally, a 

clinical grade osteoconductive biomaterial was used to assess the ability of DPSCs 

to proliferate and differentiate into osteoprogenitors cells within the material.  

 

The aims of the study included the following: 

 

1) To study the effect of BMP-2 and BMP-6 on osteogenic differentiation of 

human periodontal ligament cells, with and without the addition of 

dexamethasone, ascorbic acid, and beta- glycerophosphate (I). 

2) To study the influence of vitamin D3 metabolites on osteogenic 

differentiation of human dental pulp and human dental follicle cells (II). 

3) To study the characterization, growth and differentiation of human dental 

pulp cells in fetal bovine serum, human serum and serum free/xenofree 

media (III). 

4) To study the osteogenic differentiation capacity of human dental pulp stem 

cells cultured in human serum medium on β-TCP/P (LLA-CL) biomaterial 

(IV). 
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4. Materials and methods 

4.1 Isolation and culture of dental stem cells 

 

Human impacted third molars were obtained with informed consent from Finnish 

Student Health Services, Tampere, Finland. The Ethics Committee of the Pirkanmaa 

Hospital District, Tampere, Finland (R06009), approved the collection of stem cells 

from teeth samples. Human dental pulp explants (II, III, IV), human dental follicle 

explants (II) and human periodontal ligament explants (I) were obtained from 

partially or completely impacted third molar teeth of the patients as shown in 

(Figure 2), patients aged 21–26 years (23 ± 2.5 years). The dental tissue explants 

were brought from the health centre to the laboratory in Dulbecco’s Phosphate 

buffered saline (DPBS; BioWhittaker Lonza, Verviers, Belgium) containing 2% 

antibiotics/antimycotics (a/a; 100 U/ml penicillin, 0.1mg/mL streptomycin and 0.25 

μg/mL amphotericin B; Life Technologies, Paisley, Scotland, UK). The dental tissue 

fragments were minced by using sterilized scalpels and were then digested in 

collagenase type I 3mg/ml (Invitrogen) and dispase 4mg/ml (Invitrogen) for 1 hour 

at 37ºC. Once digestion was completed the obtained cell pellet was suspended in 3 

ml of Fetal bovine serum medium (FBS-M) (I, II) or suspended in 600 µl of DPBS 

(III, IV). The suspension was passed through a 100µm cell strainer (Falcon, BD 

Labware, Franklin lakes, NJ, USA). The isolated dental periodontal cells (PDLCs) , 

dental follicle stem cells (DFSCs) and dental pulp stem cells (DPSCs) were cultured 

in Dulbecco’s modified Eagle medium (DMEM)/F-12 1:1 (Gibco Life 

Technologies, Paisley, UK) supplemented with 1% l-analyl-l-glutamine (Gluta-

MAX I; Life Technologies), 1% a/a and 10% Fetal bovine serum (FBS; Invitrogen, 

Paisley, UK) (FBS-M) (I, II, III). In Study III, IV, DPSCs were cultured in (2) 

(DMEM)/F-12 1:1 supplemented with Gluta-MAX I , 1% a/a and 10% allogenic 

Human Serum (HS; PAA Laboratories GmbH, Pasching, Austria) (HS-M) Further, 

DPSCs cultured and expanded in HS-M were used for testing StemPro® 



32 

Mesenchymal stem cells (MSC) Serum free/Xeno Free medium (SF/XF-M) (III), 

culture wells were coated with CELL start (Life Technologies) to assist in cell 

attachment (Figure. 4). PDLCs, DFSCs and DPSCs expanded in FBS-M were 

harvested using 1% trypsin (Lonza/BioWhittaker, Verviers, Belgium) (I, II, III). 

The DPSCs isolated and cultured in HS-M and SF/XF-M were harvested using 

TrypLE Select or Express (Life Technologies) for XF detachment of cells (III, IV). 

Cell culture plates and T-75 culture flasks (Thermo Fischer, Nunc, and city) were 

monitored daily for cell growth, with medium changes taking place thrice a week.  

 

 

 

 
 

Figure 4: Flowchart showing the effect of cell culture media on proliferation (III). 
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4.2 Flow cytometry (III, IV) 

DPSCs cultured in FBS-M, HS-M (III, IV) and SF/XF-M (III) and were analyzed 

for cell surface antigen expression by flow cytometry (fluorescence-activated cell 

sorting; FACS; FACSAria®; BD Biosciences, Erembodegem, Belgium). 

Monoclonal antibodies (MAb) against CD29-Allophycocyanin (APC), CD44-

Phycoerythrin (PE), CD90–APC, CD45–APC, CD146-PE (BD Biosciences), 

CD105–PE (R&D Systems Inc., Minneapolis, MN, USA), CD31– fluorescein 

isothiocyanate (FITC) (Immunotools GmbH, Friesoythe, Germany), and major 

histocompatibility class II antigen (HLA-DR)–PE (Immunotools) were used. FACS 

Analysis was performed on 100,000 cells/sample and the positive expression was 

defined as the level of fluorescence greater than 99% of the corresponding unstained 

cell sample. 

 

4.3 Preparation of the biomaterial (IV) 

Beta-tricalcium phosphate; β-TCP/Poly; P (L-Lactic acid; LLA/ caprolactone; CL) 

(ChronOS™) was kindly provided by (Synthes®, Oberdorf, Switzerland); the 

material is accepted for clinical use as a bone graft substitute. The biomaterial was 

supplied in sterile strip form with a size of 2.5 cm x 5 cm, two 3 mm thick strips and 

three 6 mm thick strips were provided. For the experiments, the strips were cut into 

1cm x 0.8 cm pieces with scalpels in sterile conditions under the laminar flow hood 

as shown in Figure 5. Further, the cell-seeded scaffolds were treated with osteogenic 

medium (OM) containing vitamin D3 (OM-VD) or DEX (OM-DEX) and control 

were cultured in human serum medium (HS-M). 
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Figure 5:  Representative schematic diagram showing the preparation of the biomaterial, 

cell seeding and treatment conditions (IV). 

4.4 CyQUANT
®
 Cell Proliferation Assay (IV) 

 

In Study IV, CyQUANT® Cell Proliferation Assay Kit (CyQUANT; Molecular 

Probes, Invitrogen) was used according to the manufacturer’s protocols to assess the 

cell numbers at 1, 7 and 14 days. Briefly, 500 µl of 0.1% Triton X-100 (Sigma) was 

pipetted through the cell seeded scaffolds and the lysed cells suspension were 

freezed until analysis. The CyQUANT® cell proliferation assay is based on the 

green fluorescence dye, CyQUANT® GR dye, which intensifies when it binds to the 

nucleic acid of DNA. The fluorescence, which is directly proportional to the number 

of cells in the sample, was measured at 480/530 nm using a microplate reader 

(Victor 1420 Multilabel Counter; Wallac, Turku, Finland). 
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4.5 WST-1 (I, II, III) 

 

PreMix WST-1 Cell Proliferation Assay System was used to assess the cell 

proliferation activity. This colorimetric assay enables the measurement of the cell 

viability and proliferation. The assay is based on cleaving the tetrazolium salts by 

succinate tetrazolium reductase, which exists in the mitochondrial respiratory chain 

and is active only in viable cells. The enzyme activity leads to the production of 

formazan dye; the quantity of formazan dye is directly proportional to number of 

metabolically active cells. The cells were seeded on a 24-well plate at a density of 

10000 cells/well (I, II) and 5000 cells/well (IV), and the cell proliferation was 

assessed at 1, 7 and 14 days (I, II) and 1, 4, 7, 11 and 14 days (IV). Cell 

proliferation (WST-1 absorbance) was analyzed according to the manufacturer's 

protocol. Briefly, WST-1 reagent was added to each well containing fresh medium 

(50 μl of WST-1/ 500 μl of medium in each well of 24-well plate), incubated for 

60 min at 37ºC, the absorbance was measured at 450 nm using a microplate reader 

(Victor 1420, Finland). 

 

4.6 Quantitative alkaline phosphatase activity (I, II) 

Alkaline phosphatase (ALP) activity was analyzed with a commercially available p-

nitrophenyl phosphate tablet set (Sigma, St. Louis, Missouri, USA). Briefly, each 

well was washed twice with PBS and p-nitrophenyl phosphate solution was added 

(400 μl/ well for 24-well plates). After 10 min of incubation at 37°C, conversion of 

p-nitrophenyl phosphate into p-nitrophenol by cellular ALP was stopped with the 

equivalent amount of 3 N NaOH and the absorbance of p-nitrophenol was measured 

at 450 nm using a microplate reader. Alkaline phosphatase-specific activity is 

expressed as p-nitrophenol absorbance (OD; 405 nm)/ WST-1 absorbance (OD; 450 

nm), which is designed to assess the ALP activity/no. of viable cells. 
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4.7 Alkaline phosphatase staining (II, IV) 

In Study II and IV, in vitro osteogenic differentiation capacity of the DPSCs, 

DFSCs at day 14 was determined by using a leukocyte ALP kit according to Sigma 

procedure 86 (cat. number 86R-1KT). Briefly, cells were fixed with 4% 

paraformaldehyde solution (PFA) for 2 mins. ALP staining solution was added 

following the fixation. After 15 mins of incubation in the dark, the ALP staining 

solution was removed and the wells were washed to remove excess stain. 

Thereafter, digital images were taken of the ALP stained and unstained cells. 

 

4.8 In vitro multilineage differentiation analysis (II, III) 

DPSCs (n = 4) were examined for their ability to differentiate toward the 

adipogenic, osteogenic and chondrogenic lineages. Briefly, for osteogenic and 

adipogenic differentiation analysis cells were seeded at a density of 5000 cells/well 

on a 24 well plate. After 24 hours, the differentiation media such as osteogenic 

medium (OM) and adipogenic medium (AM) comprising of FBS, HS or SF/XF 

culture conditions was added (Table 1). The chondrogenic differentiation of DPSCs 

was assessed by micromass cell culture method. Briefly, 100000 cells were seeded 

on a 24 well plate in a 10 µl volume of FBS-M, HS-M and SF/XF-M, that were left 

to adhere for 3 hours in an incubator prior to the addition of chondrogenic 

differentiation medium (CM) as described in  (Table 1). For all the analysis the 

control cultures were maintained in FBS-M, HS-M or SF/XF-M. The SF/XF-M 

culture wells were pre-coated with CELLstart for osteogenic and adipogenic 

differentiation while for chondrogenic micro mass aggregate formation; the culture 

wells were not coated. All cultures were maintained for 21 days for the 

differentiation analysis.  
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4.8.1 Alizarin red staining (I, II, III) 

In vitro mineralization was analyzed by alizarin red staining. For Alizarin red S 

staining, cells were fixed with ice-cold 70 % ethanol for 60 min at -20 ºC. Then, 

cells were washed twice with distilled water and stained with 40 mM Alizarin red S 

solution (Sigma) for 10 min at room temperature. The pH value of the solution was 

adjusted to 4.2 with 25% ammonium hydroxide prior to staining. After staining, 

excess dye was washed with distilled water and digital images of stained mineral 

deposits were taken. 

  

4.8.2 Alcian blue staining (III) 

After 21 days of culture, the chondrogenically induced micro masses were fixed in 

4% paraformaldehyde (PFA) for 60 mins. The micro masses were then embedded in 

paraffin, and sectioned at a thickness of 5µm for histological evaluation. The 

undifferentiated and differentiated micro masses sections were stained with 0.5% 

Alcian blue stain and counterstained with Nuclear Fast Red solution (Biocare 

Medical, Concord, MA, USA). The stained micromass sections were viewed under 

the microscope to evaluate the proteoglycan content.  

4.8.3  Oil O Red staining (II, III) 

To detect adipogenic differentiation, the cells were stained with 0.3% Oil Red O-

solution to detect the accumulation of extracellular lipid droplets. Briefly, cells were 

fixed with 4% PFA for one hour. Further the cells were rinsed with distilled water 

and incubated in 60% isopropanol for 5 mins. Thereafter, the cells were stained with 

Oil O red solution for 15 mins at room temperature. Following the staining the wells 

were washed thoroughly to remove the excess stain and microscopic images were 

taken.  
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4.9 Quantitative real time- polymerase chain reaction (I, 

II, III, IV) 

The total RNA was extracted by using Eurozol (Euroclone S.p.A, Pero, Italy). First-

strand cDNA syntheses were performed by a High Capacity cDNA Archive Kit 

(Applied Biosystems, Warrington, UK). Quantitative RT-PCR was conducted using 

RPLP0 (human acidic ribosomal phosphoprotein) as the house keeping gene and 

lineage specific primers such as for osteogenic differentiation: osteocalcin (OCN), 

osteopontin (OPN) and RUNX2, chondrogenic differentiation; SRY (sex 

determining region Y)-box 9 (SOX9) and Type X collagen alpha-1 (COL10A1) and 

adipogenic differentiation; fatty acid binding protein4 (aP2) and human peroxisome 

proliferator-activated receptor gamma (hPPARG) and stemness markers; octamer-

binding transcription factor (Oct3/4) 3/4, SRY (sex determining region Y)-box 

(Sox2)  and Nanog and  vitamin D regulating enzymes; VDR (vitamin D receptor), 

CYP24 (24 hydroxylase) and 25OHD3-1α-hydroxylase (1α-hydroxylase, 

CYP27B1) (Table II). To exclude signals from contaminating DNA, the forward 

and reverse sequence of each primer were designed on different exons. The Power 
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SYBR Green PCR Master Mix (Applied Biosystems) was used for quantitative PCR 

reactions according to the manufacturer’s instructions. The reactions were 

performed with AbiPrism 7300 Sequence Detection System (Applied Biosystems) at 

95 ºC 10 min, and then 45 cycles at 95 ºC /15 s and 60 ºC /60 s. The Ct values were 

normalized to that of the housekeeping gene RPLP0, as described elsewhere (Pfaffl, 

2001).   

 

 

 

4.10   1, 25 hydroxy vitamin D Enzyme immunoassay (II) 

The 1, 25-Dihydroxy Vitamin D3 EIA kit (Immunodiagnostic Systems Ltd, Boldon, 

UK) was used to measure the conversion of 25OHD3 into 1α,25(OH)2D3  by 1α-

hydroxylase in hDPCs and DFSCs in  Study II. The cells were cultured in BM + 
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25OHD3 (500 nM) and BM + 25OHD3 (500 nM) + inhibitor (ketoconazole; 10µM) 

for 24 hours. The control samples were maintained in BM without the addition of 

vitamin D3 metabolites and inhibitor. 10,000 cells/well were seeded on a 6 well 

plate and after overnight incubation at 37ºC in a 5% CO2 humidified atmosphere 

different metabolites were added. After 24 hours the culture media for all the 

samples were taken for immunoextraction following quantitation by enzyme 

immunoassay as per manufacturer’s protocol. Samples were obtained from three 

different patient samples for both the tissues, which were tested independently. 

Briefly, 100µl of the delipidated samples and controls were added to the 

appropriately labeled immunocapsules in duplicates per sample. Primary antibody 

was added to the immunoextracts and incubated overnight at +4ºC. Next day, 

secondary antibody was added which was followed by the addition of enzyme 

conjugate and tetramethylbenzidine (TMB) substrate. An acidic stop solution was 

added to terminate the reaction, which resulted in the color change from blue to 

yellow. The intensity of the yellow color is inversely proportional to the 

concentration of 1α,25(OH)2D3 . The absorbance was measured within 30 min of the 

addition of the stop solution using a plate reader (Victor 1420) at a wavelength of 

450nm. The results were calculated by measuring the absorbance of the calibrators 

provided with the kit and creating a calibration curve by plotting the percent bind on 

the y axis and the amount of 1α,25(OH)2D3  on the x-axis. The percent bind values 

for the samples were calculated and then interpolated amount of 1α,25(OH)2D3 

using the calibration curve.     

4.11   Immunostaining (III, IV) 

 

For immunocytochemistry in Study III, 2500 cells/ well were plated on 48 well 

plates. After 3 days of culturing, cells were fixed with 4% paraformaldehyde (Fluka, 

Italy) containing 0,2% of TritonX-100. After fixation, cells were stained with 

stemness markers. Briefly, unspecific staining was blocked with 1% bovine serum 

albumin (BSA, Sigma-Aldrich) in PBS for 45 min at room temperature. The cells 

were washed 2-3 times with PBS. Thereafter, the primary antibodies; goat anti-

octamer-binding transcription factor (Oct) 3/4, mouse anti-SRY (sex determining 
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region Y) box-2 (Sox2) and goat anti–Nanog (all: R&D Systems) as well as mouse 

anti-stage specific embryonic antigen (SSEA)-4 (Santa Cruz) in 1% BSA-PBS 

solution were incubated overnight with cells at +4°C. Next day, the cells were 

washed three times with PBS and were incubated in secondary antibodies, Alexa 

Fluor 488 and 568 conjugated to anti-goat and anti-mouse (Molecular Probes, 

Invitrogen) in 1% BSA-PBS for 1 h at room temperature. Finally, cells were washed 

three times with PBS, twice with water and mounted with Vectashield containing 4', 

6-diamidino-2-phenylindole (DAPI, Vector Laboratories, England) to identify 

nuclei. Cell samples were analyzed by using an Olympus IX51 phase-contrast 

microscope equipped with fluorescence unit and an Olympus DP30BW camera 

(Olympus). 

 

In Study IV, after 14 days of inducing osteogenic differentiation in the cell seeded 

scaffolds using OM-DEX and OM-VD, they were immunostained with primary 

antibody anti-human osteocalcin (AbD serotec, immunodiagnostics Oy, Finland). 

The cell-seeded scaffolds cultured in HS-M were used as controls. Briefly, the cell 

seeded scaffolds were fixed with 4% PFA for 10 mins and then blocked against non-

specific antigen binding with 10% normal donkey serum (NDS), 0.1% Triton X-

100, and 1% Bovine serum albumin (BSA) in DPBS. After 45 mins of blocking, the 

cell seeded scaffolds were washed with 1% NDS, 0.1% Triton X-100, and 1% BSA 

in DPBS (washing solution). The primary antibody anti-human osteocalcin was 

diluted to 1:50 in the washing solution. The cells were incubated overnight at +4 °C 

with the primary antibody. The next day, the cells were washed with 1% BSA in 

DPBS and incubated for 1 hr at RT. Thereafter, cells were incubated for 1 hr in 

Alexa Fluor-488 (1:1000, Invitrogen) conjugated anti-mouse secondary antibody, 

diluted in 1% BSA in DPBS.  Then, cells were sequentially washed with PBS and 

phosphate buffer, and mounted with Vectashield (4′, 6-diamidino-2-phenylindole; 

DAPI, Vector Laboratories, and Peterborough, UK). For negative controls primary 

antibody was omitted. Stained DPSCs within the scaffolds were imaged using a 

microscope equipped with a fluorescence unit and camera.  
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4.12   Statistical analysis (I, II, III, IV) 

The statistical analyses of the results were performed with GraphPad Prism 5.01. 

The data is presented as mean ± standard deviation (SD) for all quantitative assays 

and experiments were carried out in triplicate for cells derived from three donor 

samples. All statistical analyses were performed at the significance level p < 0.05 

using one-way analysis of variance (ANOVA) with Bonferroni post hoc test for 

multiple comparisons. 
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5. Results 

5.1 Cell proliferation and morphology 

Dental stem cells derived from dental pulp (II, III), dental follicle (II) and dental 

periodontal ligament (I) were assessed for proliferation and morphology under 

various treatment conditions.  

5.1.1 Cells treated with BMP-2 and -6 (I) 

We investigated the effect of BMP-2+AA, BMP-6+AA, OS, OS+BMP-2, or 

OS+BMP-6 on the osteogenic differentiation of PDLCs. The cells exposed to BMP-

2+AA or BMP-6+AA appeared as more fibroblastic and spindle-shaped. In contrast, 

cells cultured with OS, OS+BMP-2, or OS+BMP-6 were relatively polygonal in 

shape, and they started to mineralize in vitro as observed by phase contrast 

microscopy by day 14 (Figure 6). Cells cultured with BMP-2+AA or BMP-6+AA 

showed relatively greater cell number than control (BM) on day 7, though (P < 

0.001) decrease in cell number was observed on day 21. In contrast, cells cultured 

with OS, OS+BMP-2, and OS+BMP-6 showed (P < 0.001) lower cell numbers on 

day 7. 
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Figure 6. Representative phase contrast photographs of the cells cultured with BMP-2, 

BMP-6, and osteogenic supplements (day 14) Phase contrast microscopy of human 

PDLCs were exposed to (1) induction (-) without additives as control; (2) osteogenic 

supplements (OS: dexamethasone, ascorbic acid, and β-glycerophosphate); (3) BMP-2 

(10ng/ ml) + ascorbic acid (AA); (4) OS + BMP-2 (10ng/ ml); (5) BMP-6 (0.1ng/ ml) + AA; 

or (6) OS + BMP-6 (0.1ng/ ml), and cultured for 14 days. Morphologically, cells cultured 

with BMP-2 + AA or BMP-6 + AA appeared as more fibroblastic and spindle cells in 

shape. Cells cultured with OS, OS + BMP-2, or OS +BMP-6 were relatively polygonal in 

shape, and they started to mineralize in vitro (Black arrow).  Original magnification (x 40) 

 

5.1.2 Cells treated with vitamin D3 (II) 

Time course effects of different concentrations of 1α,25(OH)2D3 (10 nM, 100 nM)  

and  25OHD3 (100 nM, 500 nM)  at days 1, 7 and 14 on proliferation of hDPCs and 
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DFSCs were analyzed. The addition of vitamin D3 metabolites, to hDPCs and 

DFSCs decreased cell proliferation when compared to the cells treated without the 

metabolites. While cell proliferation was significantly inhibited by 1α,25(OH)2D3 

(100 nM) in DFSCs by day 14.   

5.1.3 Cells cultured in FBS, SF/XF and HS (III, IV) 

From day 1 to day 9, DPSCs cultured in HS-M proliferated in colonies and spherical 

clusters. Morphologically, cells mostly appeared spindle shaped and comprised of a 

homogenous cell population when viewed under the phase contrast microscope. 

After first passage, the cells did not proliferate in clusters; rather, cells were more 

spread out and proliferated uniformly. Using phase contrast microscopy, the 

morphology of human DPSCs expanded in FBS-M, HS-M or SF/XF-M was 

compared. Cells cultured in FBS appeared broader and flattened in shape, whereas 

cells cultured in HS-M were more fibroblastic and appeared more homogenous. 

Moreover, cells expanded in SF/XF-M exhibited a more flattened fibroblastic like 

morphology. The effects of FBS-M (10%), HS-M (15%) and SF/XF-M on DPSCs 

growth were analyzed following days 1, 4, 7 and 14. The cells cultured in SF/XF-M 

proliferated slowly in comparison to the cells cultured in FBS and HS medium that 

was observed from day 4. Statistical analysis revealed that cells cultured in FBS-M 

and HS-M proliferated significantly faster than cells cultured in SF/XF-M at day 7 

to day 14 (p < 0.001). Moreover, no significant differences were observed between 

cells cultured in FBS-M and HS-M.  Further, HS concentration gradient effect from 

5% to 20% was evaluated on DPSCs isolated in 20%. Our results suggested that 

DPSCs cultured in 5% HS (p < 0.001) significantly lowered the proliferation in 

comparison to 10%, 15% and 20% HS-M. Furthermore, we decided to study the 

effect of HS as an additive in the concentration of 1% or 5% in SF/XF-M. Our study 

revealed that SF-XF/M+1%HS (p < 0.001) significantly increased cell proliferation 

in comparison to SF/XF-M alone by day 14.  
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5.1.4 DPSCs seeded on biomaterials (IV) 

The cell-seeded scaffolds cultured in HS-M, OM-DEX and OM-VD were assessed 

for increase in cell numbers from day 1, day 7 to day 14.  There was significant 

increase in cell numbers at day 7 (p < 0.01) and day 14 (p < 0.001) time points, 

when cells cultured in OM-VD were compared to the control HS-M at day 7 and 14. 

Though, there was no significant increase in cell numbers when cells were cultured 

in OM-DEX. 

 

 

5.2 Cell surface markers expression (III, IV) 

DPSCs expanded in FBS-M, HS-M and SF/XF-M were analyzed using flow 

cytometry against mesenchymal markers such as CD29, CD44, CD90 and CD105; 

hematopoietic and angiogeneic markers such as CD31, CD45, CD146 and for HLA-

DR. The results showed that DPSCs cultured in different media showed positive 

expression for the mesenchymal marker (>50%) (Fig. 7 a, b), low expression for the 

CD146 marker and lacked the expression for CD31, CD45 hematopoietic markers. 

In addition, DPSCs cultured in FBS-M, HS-M and SF/XF-M lacked the expression 

of HLA-DR (Figure 7 c, d). Also, there were no statistical significant differences 

observed between the expression profile of cells cultured in FBS-M, HS-M and 

SF/XF-M as shown in (Fig. 7 b, d).  
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FIGURE 7 A, B: Flow cytometeric analysis of mesenchymal surface marker expression of 

undifferentiated DPSCs cultured in FBS, HS and SF/XF media (III, IV). 
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Figure 7 C, D: Flow cytometeric analysis of hematopoietic surface marker expression of 

undifferentiated DPSCs cultured in FBS, HS and SF/XF media (III, IV). 
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5.3 Immunostaining 

The expression of stemness markers Oct3/4, Sox2, the stage-specific embryonic 

antigen 4 (SSEA-4) and Nanog were evaluated by immunostaining in Study III. 

Merging the antibody stained DPSCs with the nuclear stained images saw the 

expression of Oct3/4 and Sox2 in 20% HS cultured cells. In addition, Nanog, Oct3/4 

and SSEA-4 were expressed in DPSCs cultured in FBS 15%, HS 20% and SF/XF 

media (supplemental data III) (Figure 8).   

Figure 8: Oct3/4, Nanog and SSEA-4 are expressed in SF/XF, HS and FBS culture 

conditions. Stemness markers were analyzed by immunocytochemistry. 2500 

DPSCs were cultured in SF/XF, 20% HS and 10% FBS medium on 48 well plates 

for 4 days, fixed, stained and analyzed as described in materials and methods. 

Thereafter, cells were stained with primary antibodies: goat anti-octamer-binding 

transcription factor (Oct) 3/ 4 (a, b, c; R&D Systems), goat anti–Nanog (d, e, f; 

R&D Systems) and mouse anti-stage specific embryonic antigen (SSEA)-4 (g, h, i; 

Santa Cruz), secondary antibodies: Alexa Fluor 488 and 568 conjugated to anti-goat 

and anti-mouse (Molecular Probes, Invitrogen). Scale bar =100 µm. 
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5.4 Multipotent differentiation potential of dental pulp 
stem cells (II, III) 

5.4.1 Osteogenic differentiation  

The DPSCs and DFSCs were induced to differentiate towards osteogenic lineage 

with the addition of vitamin D3 metabolites + AA + βGP in Study II as shown in 

Figure 9 A and B. From Study II, the most effective concentration of vitamin D3  

1,25: 100nM was chosen, which was used in subsequent studies for inducing 

osteogenic differentiation. The alizarin red staining results showed that DPSCs 

cultured in FBS-OM and HS-OM formed mineralized matrix under the influence of 

vitamin D3 containing osteogenic medium (OM-VD), however, the calcified matrix 

staining was more pronounced in cells cultured in HS-OM. On the other hand, cells 

cultured in SF/XF-OM did not mineralize in Study III, Figure 9 C. 

 

 

   
 

Figure 9: Osteogenic differentiation of A) DPSCs and B) DFSCs by vitamin D3 metabolites + 

AA + βGP. C) DPSCs cultured in different media induced by OM-VD.   

5.4.2 Adipogenic differentiation (III) 

Differentiation into adipocytes was estimated after 3 weeks of culturing the cells in 

AM by Oil Red O staining. DPSCs cultured in HS-AM had stronger capacity to 

differentiate into adipocytes than cells cultured in FBS-AM and SF/XF-AM. These 
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results were assessed based on the higher number of accumulated lipid droplets. The 

potential of DPSCs to differentiate into adipocytes was also observed when the cells 

were cultivated in HS-M without the addition of adipogenic differentiation 

supplements, however, formed very few lipid droplets (Figure 10). 

 

 

 

Figure 10: Adipogenic differentiation of DPSCs cultured in FBS, HS and SF/XF culture 

media   and then induced by adipogenic medium for three weeks. 

5.4.3 Chondrogenic differentiation 

After 21 days, chondrogenic differentiation was estimated after staining the 

micromasses cultured in CM, with alcian blue stain, which stains the proteoglycan 

rich extracellular matrix. As shown in Figure 11, cells cultured in FBS and HS 

media differentiated more into chondrocytes-like cells as assessed by the stronger 

staining than in SF/XF-CM cultured cells. 
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Figure 11: Chondrogenic differentiation of DPSCs cultured in FBS, HS and SF/XF media 

and differentiated in chondrogenic medium for 21 days. 

5.5 Early osteogenic differentiation potential of dental 
stem cells (I, II, IV) 

ALP is an early marker that indicates differentiation of cells towards osteogenic 

lineages (Stucki et al., 2001). In Study I, to investigate the effects of BMP-2 or 

BMP-6 on ALP activity of PDLCs, first dose-response experiments were conducted 

based on the results, we decided to use 10ng/ml concentration of BMP-2 and 

0.1ng/ml concentration of BMP-6 for the subsequent experiments. Time course 

experiments of cell culture showed that when BMP-2 or BMP-6 was combined with 

osteogenic supplements (OS) containing DEX, ALP activity of PDLCs continued to 

increase from day 7 to 21. Although the greatest ALP activity was observed in cells 

cultured with OS+BMP-2, there were no significant differences in ALP activity 

among cells cultured with OS, OS+BMP-2, and OS+BMP-6 after 21 days.   

 

Furthermore, the effects of vitamin D3 metabolites with or without OS on osteogenic 

differentiation of DPSCs and DFSCs were analyzed by measuring their ALP 
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activities in Study II. Time course experiments showed significant increases in ALP 

activity of DPSCs on day 7 after treatment with OS + 1α,25(OH)2D3 (10 nM), OS + 

1α,25(OH)2D3 (100 nM)  and  OS + 25OHD3 (500 nM) in comparison to cells 

treated without OS and the untreated control. Following day 14, ALP activity was 

significantly increased in cells treated with OS + 1α,25(OH)2D3 (100 nM), OS + 

25OHD3 (500 nM) and OS + DEX (10 nM) in DPSCs. In addition, DFSCs treated 

with OS + 1α,25(OH)2D3 (100 nM),  OS + 25OHD3 (500nM)  at day 7 significantly 

increased ALP activity. Following the 14 days time course, DFSCs expressed 

significant increase in ALP activity in cells treated with OS + 1α,25(OH)2D3 (10 

nM), OS + 1α,25(OH)2D3 (100 nM); though cells treated without OS and OS + 

25OHD3 (100 nM) and OS + DEX (10nM)  did not significantly increase the ALP 

activity of DFSCs. Human DPSCs and DFSCs treated in combination with OS and 

vitamin D3 metabolites showed significant ALP activity. 

 

In Study IV, the ALP activity of cells-seeded on biomaterial and cultured in HS-M, 

OM-DEX and OM-VD was assessed. Interestingly, ALP activity expressed by cells 

cultured in OM-VD was stronger than the cells cultured in OM-DEX. The control 

cells were cultured in HS-M and no ALP staining was detected. 

 

5.6 Gene expression profile (I, II, III, IV) 

The osteoblast genes expression pattern in DPSCs, DFSCs and PDLCs was 

analyzed in Study I, II, III, and IV, which was tested under the influence of BMP 

or vitamin D3. The expressions of osteogenic, adipogenic, chondrogenic and 

stemness marker expression genes were tested in Study III. Vitamin D3 regulating 

genes especially CYP24 expression and VDR were regulated by higher 

concentrations of 1α,25(OH)2D3 (100 nM) and 25OHD3 (500 nM) in DPSCs and 

DFSCs as shown in Figure 12.   
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Figure 12: Relative mRNA expression of CYP24 in hDPCs and hDFCs (A and B) and VDR 

in hDPCs and hDFCs (C and D), cultured in Basal medium containing 1α,25(OH)2D3  (1,25; 

10 nM, 100 nM)  and  25OHD3 (25; 100 nM, 500 nM) at  24, 48 and 72 hour time points. 

Results are reported as change in gene expression relative to untreated control at 24 hours 

time point and normalized to housekeeping gene hRPLP0. Columns represent the mean ± 

SEM of three separate experiments. The difference in relative expression is considered 

statistically significant when *p < 0.05, **p < 0.01, ***p < 0.001.  
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6. Discussion 

In this thesis we isolated stem cells from extracted impacted third molar teeth for 

osteogenic differentiation studies. The dental stem cells were obtained from dental 

pulp, dental follicle and dental periodontal ligament tissues found within and around 

the teeth. We have studied the effect of growth factors and hormones for in vitro 

mineralization ability of DPSCs, DFSCs and PDLCs. Following the growth factor 

and hormones studies; DPSCs were assessed to be most multipotent and therefore, 

were used to study the xenofree culture media such as serumfree/xenofree medium 

and human serum medium. Also, osteogenic differentiation capacity of the DPSCs 

cultured in human serum within a medical grade biomaterial was tested (Figure 13). 

 

Figure 13: Representative flow chart summarizes the four studies conducted for this thesis. 

Periodontal ligament cells (PDLCs), Dental pulp stem cells (DPSCs), Dental follicle stem 

cells (DFSCs), fetal bovine serum (FBS), human serum (HS), SF/XF (serumfree/xenofree), 

Dexamethasone (DEX), ascorbic acid (AA), β-glycerophosphate (β-TCP). 
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6.1 Optimized cell culture and isolation conditions  

The DSCs were enzymatically digested and isolated in FBS-M in Study I, II, and 

III. There are several promising investigations describing the role of human DPSCs 

for mineralized tissue regeneration, advancing their therapeutic relevance as a 

valuable stem cell source (Chadipiralla et al., 2010; d'Aquino, De Rosa, Laino, et 

al., 2009; Mori et al., 2010). Most commonly, DPSCs are cultured in FBS, which 

poses risk of transferring infections and induction of immune reactions upon 

transplantation (Dimarakis and Levicar, 2006; Spees et al., 2004). In order to 

facilitate the translation of DPSCs from basic biology to clinical application, the 

development of appropriate cell culture protocols is a relevant and critical factor. To 

address this clinical concern, in Study III, DPSCs were enzymatically isolated from 

dental pulp tissue of healthy individuals and suspended in PBS. The isolated dental 

pulp cells suspension in PBS was used to test the effect of different media on cell 

culture. We found that the cells directly isolated on carboxyl, CELL start and amine 

coated culture wells in SF/XF medium, did not proliferate. There are reports 

showing the effects of serum free or low serum containing media on DPSCs cultures 

(Hirata et al., 2010; Karbanova et al., 2010). Nevertheless, DPSCs cultured in 

SF/XF medium, has not been reported, so far. Additionally, cells directly isolated in 

10% or 15% HS-M did not proliferate; therefore, cells were isolated in 20% HS-M. 

However, after first passage, 15% HS-M supported DPSCs expansion. Since, there 

is lack of information on the effect of HS in cultivation of DPSCs; Study III 

describes the effects of HS on DPSCs. In addition, cells isolated in 20% HS-M were 

able to proliferate in SF/XF-M, thus, we were able to maintain xenofree conditions 

for cell culture. DPSCs directly isolated in 10% FBS-M proliferated. On the other 

hand, AD-MSCs derived in our laboratory have been reported to proliferate better in 

the same SF/XF-M (Lindroos et al., 2009), this suggests variable response to 

SF/XF-M between different sources of MSCs. With respect to the immuno 

pathogenic risks posed due to addition of FBS in cell culture, our studies suggest 

that HS could be considered as a safer alternative for DPSCs culture. However, 

other SF/XF media alternative composition remains to be studied. Thus, these 

findings propose that HS was equally effective as FBS in supporting DPSCs 

proliferation, similar response has been successfully reported in other studies with 
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BM-MSCs and AD-MSCs (Aldahmash et al., 2011; Komoda et al., 2010; Yilmaz et 

al., 2008).  

  

6.2 Cell surface markers expression  

DPSCs expressed CD29, CD44, CD90 and CD105 mesenchymal markers which are 

involved in MSCs migration, cell-cell matrix interaction and cell adhesion 

(Goodison et al., 1999; Lindroos et al., 2009) and moderately expressed CD45 but 

lacked expression of CD31 hematopoietic markers and HLA-DR (Study III, IV). 

Strikingly, we did not observe high variation in the expression of mesenchymal 

markers in DPSCs cultured in FBS, HS and SF/XF media conditions. This is 

especially important, since slower proliferation and limited multilineage 

differentiation ability of cells cultured in SF/XF-M was observed in Study III. 

Additionally, expression of stemness markers such as Oct3/4 and Sox2 were 

expressed in 20% HS isolated cells. The functional importance of SOX2 and 

NANOG genes in altering the progenitor status has also been clearly demonstrated 

(Hanna et al., 2010; Ratajczak et al., 2008; Takahashi and Yamanaka, 2006; Yu et 

al., 2007; Zuba-Surma et al., 2009). NANOG has been reported to be a key gene for 

maintaining pluripotency, as shown by the capacity for multilineage differentiation 

and perpetual self-renewal of cells expressing this gene. Moreover, SSEA-4 

expression was also analyzed, which is an embryonic glycolipid antigen commonly 

used as a marker for undifferentiated pluripotent human embryonic stem cells and 

cleavage to blastocyst stage embryos, that also identifies the adult mesenchymal 

stem cell population. Oct3/4, Nanog and SSEA-4 were expressed in cells cultured in 

FBS 20%, HS 15% and SF/XF medium.    

 

6.3 Multipotentiality of dental pulp stem cells 

In Study II, DPSCs cultured in FBS medium were tested for their ability to 

differentiate into three lineages. More extensively and comparatively, in Study III, 
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cells were cultured in FBS, HS or SF/XF differentiation media and assessed for 

osteogenic, adipogenic and chondrogenic differentiation potential in vitro. There are 

several studies reporting the mineralization potential of DPSCs induced by DEX 

osteogenic medium supplemented with FBS (Alge et al., 2010; Lindroos et al., 

2008; Pierdomenico et al., 2005; Zhang et al., 2006), as also shown in our 

previously published data (Khanna-Jain et al., 2010). However, in our studies II, III 

and IV, DPSCs were induced to differentiate osteogenically in FBS or HS medium 

containing 1α,25(OH)2D3 instead of DEX as an osteogenic inducer. We have shown 

that mineralized tissue formation was induced by HS-OM supplemented with 

1α,25(OH)2D3, which differentiated DPSCs towards mineral nodule formation 

within β-TCP/P (LLA-CL) biomaterial in Study IV. This was evaluated by ALP 

staining as alizarin red stains the β-TCP particles within the biomaterial scaffold 

used. However, in Study I, II, III, to ensure the osteogenic differentiation of 

DPSCs, DFSCs and PDLCs mineralized matrix was stained with alizarin red, a 

specific stain to qualitatively detect calcification in vitro (Lazcano et al., 1993). 

Moreover, SF/XF medium did not support the osteogenic differentiation of DPSCs 

(Study III), although AD-MSCs proliferated and differentiated in SF/XF osteogenic 

medium as reported (Lindroos et al., 2009). The reason for this could be the absence 

of unknown growth factors in the SF/XF medium, essential for DPSCs 

differentiation.  

 

Furthermore, chondrogenic differentiation of DPSCs cultured in FBS (Study II 

supplementary data, III) was exhibited, as shown in previous studies (Alge et al., 

2010; Tomic et al., 2011). We have reported for the first time in Study III that cells 

cultured in HS and SF/XF also have the ability to form chondrocyte-like cells.  

 

In Study II supplementary data, cells cultured in FBS medium differentiated into 

adipocytes. Moreover, it is widely known that DPSCs differentiate into adipocytes 

in FBS adipogenic medium (Gronthos et al., 2000; Zhang et al., 2006), but to our 

knowledge this is the first time that adipogenic capacity of DPSCs has been shown 

in HS and SF/XF supplemented medium. Research in Study III, under the influence 

of HS and SF/XF adipogenic medium resulted in lipid accumulation, but adipogenic 

differentiation was more pronounced in cells cultured in FBS or HS as observed by 

oil O red staining, which revealed intracellular fat droplets (Hopkins et al., 2010).  
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6.4 Effect of BMP-2 and BMP-6 on osteogenic 
differentiation 

BMPs are known to be powerful osteogenic inducers and are involved in tooth 

morphogenesis (Aberg et al., 1997; Xiao et al., 2007). BMPs have failed to induce 

osteogenic differentiation in rat PDL cells (Rajshankar et al., 1998). In contrast, an 

in vivo study reported that BMP-6 increased bone and cementum formation in a rat 

model (Huang et al., 2005). Our results in Study I, however, demonstrated that 

addition of BMP-6 to OS or BMP-6 alone did not enhance osteogenic differentiation 

of PDLCs. The reason for this discrepancy could be due to difference in the 

responsiveness to BMP-6 between species, which needs to be further elucidated. 

Considering the inconsistent response to BMPs, Study I highlights the potential 

merits of OS in osteogenic differentiation of PDLCs. In fact, there are many reports 

showing the osteogenic potential of PDLCs under the influence of OS alone 

(Hayami et al., 2007; Kuru et al., 1999; Nohutcu et al., 1997). The synergistic effect 

of the combined use of OS and BMP-2 in promoting osteogenic differentiation has 

been reported in human MSCs (In Sook et al., 2008; Jager et al., 2008). Our study 

revealed that cells cultured with OS+BMP-6 as well as OS+BMP-2 showed 

relatively greater ALP activity than cells cultured with OS alone at 21 days time 

point, though amongst them there were no significant differences in the in vitro 

mineralization ability (Study I).  

6.5 Effect of vitamin D3 on osteogenic differentiation 

So far studies towards the direct effects of vitamin D3 on osteogenic differentiation 

of isolated human DPSCs and DFSCs have been limited. To confirm osteogenic 

capacity of the DPSCs and DFSCs, ALP expression was studied in Study II. ALP is 

a membrane bound enzyme and is an early marker of osteogenic differentiation 

(Wennberg et al., 2000). It was reported that the addition of 1α,25(OH)2D3 

metabolite to OS + DEX significantly increased ALP activity of DPSCs (Tonomura 

et al., 2007). Here, we have shown that 1α,25(OH)2D3 (10 nM, 100 nM)+ OS and 

DEX +OS  increased the ALP activity in DPSCs. Additionally, for the first time we 

have shown that 25OHD3 (500 nM) also increased the ALP activity in DPSCs and 
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DFSCs. There are several studies reporting the osteogenic potential of DPSCs by 

showing increased ALP activity (Perry et al., 2008a; Tonomura et al., 2007). 

Previous reports regarding DFSCs, suggest that, DEX + OS stimulated ALP activity 

and mineralization (Jin et al., 2008; Morsczeck, Moehl, et al., 2005). However, the 

effect of the vitamin D3 metabolites on ALP activity and mineralization of DFSCs 

was reported for the first time in Study II. Here we report that, DFSCs formed 

mineralized matrix when treated with vitamin D3 metabolites in the presence of OS. 

Interestingly, 1α,25(OH)2D3 had more pronounced effect on mineralization and 

ALP activity than DEX (10 nM) in combination with OS in DFSCs (Study II). 

These results highlight that vitamin D3 could be used as an alternative to DEX for in 

vitro mineralization considering the potential catabolic effects of DEX when used in 

vivo (Pierotti et al., 2008).  

  

 

6.6  The future of dental stem cell for therapies 

Various dental stem cells, such as DPSCs, SHED, PDLCs, and DFSCs have been 

examined in vitro and in vivo for their potential (Huang et al., 2009). Different 

studies in vitro and in vivo have provided evidence that DPSCs have mesenchymal 

cell characteristics based on their ability to differentiate into cartilage, bone, 

adipocytes, muscle tissues and neural cells (De Rosa et al., 2011; Laino et al., 2006; 

Marchionni et al., 2009). Primarily, DPSCs have been reported to have the potential 

to treat several pathologies requiring bone tissue growth and repair in clinics. Dental 

pulp could be considered one of the major sites for collection of mesenchymal stem 

cells, as the process is non-invasive and tissue sacrifice is very low. As reported 

transplantation of new-formed bone tissue obtained from DPSCs led to formation of 

vascularized adult bone and well integrated between the graft and the surrounding 

tissues in vivo (Graziano et al., 2008; Laino et al., 2005; Laino et al., 2006). 

Additionally, DPSCs have been reported to have immuno suppressive activity, 

similar to that found in BM-MSCs (Pierdomenico et al., 2005). While DPSCs will 

play a fundamental role in future for various human tissues regeneration, they will 

also have great potential use in the regeneration of teeth. Autologous DPSCs 
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collected from dental pulp tissue of the permanent teeth have been used for pulp 

tissue engineering. Dental pulp cells were grown on polyglycolic acid (PGA) that 

formed pulp-like tissue both in vitro and in vivo model. However, the implantation 

of stem cells seeded on scaffold into the root canal for pulp tissue regeneration may 

compromise the vitality (Casagrande et al., 2011). Despite the significant interest in 

this field, no clinical trials have been performed for dentin-pulp repair and 

regeneration (Huang et al., 2010; Iohara et al., 2011). Furthermore, several in vivo 

and in vitro investigations have been reported using human PDLCs to regenerate 

target cells like osteoblasts, adipocytes, cementoblasts, chondrocytes, and 

periodontal tissue (Kawanabe et al., 2010; Seo et al., 2004). These cells could also 

be used for engineering a bio-tooth, where DSCs must work together in a spatially 

and temporally controlled manner. Two methods have been described; one is 

application of cells in carrier material in vitro under the influence of a stimulus 

supporting tissue regeneration. Another method is the combination of dental 

epithelial and mesenchymal cells in vivo (Wang and Wang, 2008). However, 

making a bio-tooth with masticatory function and supportive tissues from dental 

stem cells involves several hindrances including stemness maintenance of stem 

cells, dental morphogenesis, tooth type determination, controlled bio-tooth growth 

and eruption, the formation of vascularized pulp with neural tissues and lastly 

overcome the host-graft immunorejection in the jaws (Yu, Jin, et al., 2008; Yu, Shi, 

et al., 2008). Therefore, the usage of DSCs for tissue engineering has great potential. 

However, the outcome of all the tissue engineering approaches using autologous cell 

treatments greatly depends on the patient selection. The identification of appropriate 

indications and selection of patients are important for the evaluation of the outcome 

of the stem cells based treatments. 
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7. Conclusion 

In this thesis, DSCs derived from dental pulp, dental follicle and dental periodontal 

ligament were differentiated into osteogenic lineage using growth factors or 

hormones or combination of both. DPSCs are multipotent and have tremendous 

differentiation potential as reported in the literature. Therefore, DPSCs were 

isolated, cultured and differentiated in xenofree media for their potential clinical 

applications in future. Finally, for functional analysis of DPSCs cultured in HS-M, 

were differentiated in medical grade material β-TCP/P (LLA-CL). 

 

Based on the four studies, the following conclusions can be drawn: 

• Study I, The addition of BMP-2 or BMP-6 growth factors to L-ascorbic 

acid-2-phosphate, dexamethasone and β-glycerophosphate (OS) does not 

enhance the osteogenic differentiation of human PDLCs, however, 

osteogenic supplements alone induced mineral nodule formation. 

 

• Study II, Vitamin D3 metabolites 1α,25(OH)2D3 (10, 100 nM) or 25OHD3  

(500 nM) synergistically with L-ascorbic acid-2-phosphate and β-

glycerophosphate resulted in osteogenic differentiation in the DPSCs and 

DFSCs cultures. Vitamin D3 could be used as an alternative to DEX for in 

vitro mineralization considering the potential catabolic effects of DEX when 

used in vivo. 

 

• Study III, DPSCs can be safely isolated, cultured, differentiated and 

maintain their stemness in medium containing human serum (HS-M), 

therefore, HS could serve as a safer alternative to FBS for cell therapies. 

However, serum free/xenofree-medium needs to be further tested for DPSCs 

isolation, expandability and differentiation efficiency to be available for 

clinical use. 
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• Study IV, DPSCs cultured in HS-M proliferated and differentiated in β-

TCP/P (LLA-CL) scaffolds, and differentiated osteogenically under the 

influence of VD and DEX osteogenic medium. 
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a b s t r a c t

Vitamin D3 metabolites regulate the bone metabolism and 1�,25-dihydroxyvitamin D3 (1�,25(OH)2D3)
is known to play an important role in teeth mineralization. However, little is known about the potential of
vitamin D as an osteogenic inducer in human dental pulp (hDPCs) and dental follicle cells (hDFCs) in vitro.
Therefore, we investigated the effects of vitamin D3 metabolites 1�,25(OH)2D3 and 25-hydroxyvitamin
D3 (25OHD3) on proliferation and osteogenic differentiation of hDPCs and hDFCs in vitro. We also
examined whether vitamin D3 metabolic enzymes were regulated in hDFCs and hDPCs. Cell prolifer-
ation was decreased by both metabolites in hDPCs and hDFCs. Vitamin D3 metabolites increased ALP
ental pulp
ental follicle
steogenic differentiation

-Ascorbic acid-2-phosphate
-Glycerophosphate

activity and induced mineralization when osteogenic supplements (OS; l-ascorbic acid-2-phosphate + �-
glycerophosphate) were added, though the expression of osteocalcin (OC) and osteopontin (OPN) were
regulated without the addition of OS. CYP24 and CYP27B1 expressions were upregulated by vitamin D3

metabolites and 25OHD3 was converted into 1�,25(OH)2D3 in the culture medium. These results confirm
that 1�,25(OH)2D3 (10 and 100 nM) and 25OHD3 (500 nM) can be used as osteogenic inducers synergis-

pple
e abo
tically with osteogenic su
strengthen our knowledg

. Introduction

Vitamin D3 metabolites such as 1�,25-dihydroxyvitamin D3
1�,25(OH)2D3) and 25-hydroxycholecalciferol (25OHD3) are key
egulatory factors of bone metabolism [1–3]. The circulating
5OHD3 metabolite is hydroxylated to 1�,25(OH)2D3 by 25OHD3-
�-hydroxylase (1�-hydroxylase, CYP27B1) in the kidneys and
ther vitamin D target organs [4]. The biological effects of vita-
in D3 can be mediated by the vitamin D receptor (VDR), a
ember of the superfamily of nuclear hormone receptors that func-

ions as a transcription factor or the action of vitamin D3 might
e mediated non-genomically via a different receptors such as
embrane-associated rapid response steroid receptor [5–7]. The
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

ctions of 1�,25(OH)2D3, as well as 25OHD3, are inactivated by
4-hydroxylase (CYP24) in the kidneys and in the other vitamin
3 target tissue. CYP24 is a mitochondrial enzyme which cataly-

es the hydroxylation and thereby inactivates 1�,25(OH)2D3 while

∗ Corresponding author. Tel.: +358 04 1901789; fax: +358 3 35518498.
E-mail address: rashi.khanna-jain@regea.fi (R. Khanna-Jain).

960-0760/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jsbmb.2010.08.001
ments for differentiation of hDPCs and hDFCs. Furthermore, our findings
ut the role of hDPCs and hDFCs as vitamin D3 target cells.

© 2010 Elsevier Ltd. All rights reserved.

25OHD3 is converted to 24,25(OH)2D3 [8]. The expression of the
CYP24 gene has been used as an indicator of transcriptional activity
of vitamin D3 metabolites [9].

Dental tissues derived cells are a source of multipotent mes-
enchymal stem cells that can be differentiated into osteogenic,
chondrogenic, adipogenic and neurogenic cell types in vitro, as
reported in other studies including one from our group [10,11].
These cells can be isolated from impacted human third molar teeth
based on their anatomic locations and expression of stem cell mark-
ers. Human dental pulp cells (hDPCs) reside in the central cavity
of the teeth and are a source of progenitor cells that can undergo
differentiation towards odontoblastic, osteoblastic, neurogenic and
adipocytic cell types in vitro [12]. It has been reported that stem cells
derived from dental pulp are able to differentiate into osteoblas-
toids under high serum conditions and are a potential source of
autologous bone produced in vitro [13,14]. Recent studies have
bolites induce osteogenic differentiation in human dental pulp and
6/j.jsbmb.2010.08.001

identified dental follicle cells (hDFCs) which are isolated from the
connective tissue surrounding the developing tooth germ before
tooth eruption [15]. This tissue contains progenitor cells that give
rise to the periodontium including cementum, periodontal liga-
ment cells (PDL), and alveolar bone [16].

dx.doi.org/10.1016/j.jsbmb.2010.08.001
dx.doi.org/10.1016/j.jsbmb.2010.08.001
http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:rashi.khanna-jain@regea.fi
dx.doi.org/10.1016/j.jsbmb.2010.08.001
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ig. 1. Anatomical location and morphological appearances of human teeth derived
ental pulp (arrow below) tissues and (B) human dental pulp tissue obtained from th
nd (D) hDPCs (scale bar = 100 �M).

Dexamethasone (Dex) a glucocorticosteroid, in combination
ith osteogenic supplements (OS; l-ascorbic acid-2-phosphate +
-glycerophosphate) is the most commonly used osteogenic

nducer for human mesenchymal stem cells (MSCs) such as adi-
ose tissue derived [17] and bone marrow derived stem cells in
itro [18]. Studies have shown that human dental follicle derived
ells differentiate into osteoblasts like cells when induced by Dex
19,20]. Glucocorticosteroid, however have deleterious effects on
one in vivo, resulting in glucocorticoid-induced osteoporosis [21].
here are some studies where 1�,25(OH)2D3 in addition to OS has
een used for osteogenic differentiation of MSCs [22–24]. How-
ver, the effects of vitamin D3 metabolites to induce osteogenic
ifferentiation in hDPCs and hDFCs is not yet clearly understood

n vitro. Moreover, the role of 1�,25(OH)2D3 in tooth forma-
ion is well known from in vivo and clinical studies, deficiency
f 1�,25(OH)2D3 results in hypocalcification of the dentin and
namel leading to unmineralized dental structure [25]. Exces-
ive doses of 1�,25(OH)2D3 cause hypercementosis, formation of
ulp stones and hypercalcification in dental tissues [26]. Addition-
lly, 1�,25(OH)2D3 has been reported to promote the function of
steoclastogenesis in the periodontium [27]. Taken together, we
ypothesized that cells derived from dental tissues when treated
ith vitamin D3 metabolites might optimally induce osteogenic
ifferentiation in vitro.

Therefore, this study was designed to understand the role of
ifferent concentrations of 25OHD3 and 1,25(OH)2D3 on prolifer-
tion and osteogenic differentiation of hDPCs and hDFCs in vitro.
n this series of investigations, we also tested whether vitamin D3

etabolic enzymes in hDFCs and hDPCs were regulated in vitro.

. Materials and methods
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

.1. Cell isolation and culture

Human impacted third molars were obtained with informed
onsent from Finnish Student Health Services, Tampere, Finland.
adiographic image (A) showing anatomic location of dental follicle (arrow above) or
p chamber and canals. Light microscopic appearance of (C) hDFCs (scale bar = 1 mm)

The collection of stem cells from tooth samples was approved by
the Ethics Committee of the Pirkanmaa Hospital District, Tampere,
Finland (R06009). Human dental pulp and dental follicle tissue
explants were obtained from partially or completely impacted third
molar teeth of 12 patients, patients aged 21–26 years (23 ± 2.5
years). The tooth samples were brought from the health centre
to the laboratory in Phosphate buffered saline (PBS; BioWhittaker
Lonza, Verviers, Belgium) containing 2% antibiotics/antimycotics
(a/a; 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 0.25 mg/ml
amphotericin B; Invitrogen, Paisley, Scotland, UK). The dental tis-
sues were isolated in the laboratory under laminar hood; the teeth
were cleaned with PBS before isolating cells. The human dental
pulp and follicle tissue explants were derived from third molar
teeth based on their anatomic location as shown in (Fig. 1A and
B). Dental Pulp tissues were obtained by exposing the pulp cham-
ber of the teeth and dental follicle from the tissues surrounding
the mineralized tooth. Following the dental pulp and follicle tis-
sue extraction, the tissue fragments were minced using sterilized
scalpels. Tissues were then digested in collagenase type I 3 mg/ml
(Invitrogen) and dispase 4 mg/ml (Invitrogen) for 1 h at 37 ◦C. Once
digestion was completed the obtained cell suspension was passed
through a 70 �m cell strainer (Falcon, BD Labware, Franklin lakes,
NJ, USA) and cells were seeded in 6 well culture plates (Nunc,
Roskilde, Denmark) in basic cell culture medium (BM) consisting
of DMEM/F-12 1:1 (Invitrogen), 10% FBS (Invitrogen), l-glutamine
(GlutaMAX I; Invitrogen), and 1% antibiotics/antimycotic (100 U/ml
penicillin, 0.1 mg/ml streptomycin and 0.25 �g/ml amphotericin
B; Invitrogen), and then incubated at 37 ◦C in 5% CO2. After 14
days of culture, cells were detached using trypsin in PBS (Lonza)
and then cells were expanded in 75 cm2 culture flasks (Nunc,
Roskilde, Denmark) containing BM. Cell culture plates and flasks
bolites induce osteogenic differentiation in human dental pulp and
6/j.jsbmb.2010.08.001

were monitored daily for cell growth, with medium changes tak-
ing place three times per week. All assays were performed using
cells between passage 3 and 4 and experiments were repeated
using cells derived from 3 different donors each for hDPCs and
hDFCs.

dx.doi.org/10.1016/j.jsbmb.2010.08.001
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Table 1
Primers sequence for quantitative RT-PCR.

Name 5′-Sequence-3′ Product size Accession number

RPLPO Forward AATCTCCAGGGGCACCATT 70 NM 001002
Reverse CGTTGGCTCCCACTTTGT

Osteocalcin Forward AGCAAAGGTGCAGCCTTTGT 63 NM 000711
Reverse GCGCCTGGGTCTCTTCACT

Osteopontin Forward GCCGACCAAGGAAAACTCACT 71 J04765
Reverse GGCACAGGTGATGCCTAGGA

CYP24 Forward GCCCAGCCGGGAACTC 61 NM 000782
Reverse AAATACCACCATCTGAGGCGTATT
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CYP27B1 Forward TTGGCAAGCGCAGCTGTAT
Reverse TGTGTTAGGATCTGGGCCAAA

VDR Forward CCTTCACCATGGACGACATG
Reverse CGGCTTTGGTCACGTCACT

.2. Cell proliferation assay

Cell proliferation assay was done to measure the viability and
nduction of cell proliferation by the action of vitamin D3 metabo-
ites alone, such as 1�,25(OH)2D3 (Sigma–Aldrich, MO, USA) and
5OHD3 (Sigma) on hDPCs and hDFCs. The cells were treated with
ifferent concentrations of 1�,25(OH)2D3 (1,25; 10 and 100 nM)
nd 25OHD3 (25; 100 and 500 nM) as follows. Human DPCs and
DFCs each were seeded at 10,000 cells/well in 24-well plates in
M with different concentrations of vitamin D3 metabolites. The
ontrol samples were maintained in BM and blank values were also
easured for non-specific binding. The culture media was changed

fter 3 and 4 days for each media concentration. The plates were
ncubated at 37 ◦C in a 5% CO2 containing humidified atmosphere.
ell numbers and viability were quantified at 1, 7 and 14 days time
oints using the colorimetric reagent WST-1 (Takara Bio Inc., Otsu,

apan). The absorbance was measured directly with a plate reader
ictor 1420 (Perkin Elmer life Sciences, Turku, Finland) using wave-

ength of 450 nm.

.3. Alkaline phosphatase activity

To further investigate the combined effect of osteogenic sup-
lements (OS; 50 �M l-ascorbic acid 2-phosphate (AA; Sigma) and
0 mM �-glycerophosphate (Sigma)) and vitamin D3 metabolites
n hDPCs and hDFCs, cells were plated in 24-well plates at a den-
ity of 10,000 cells/well, respectively, and incubated for 24 h in BM.
hereafter, cells were cultured in BM containing 1�,25(OH)2D3
10 and 100 nM) or 25OHD3 (100 and 500 nM) with and with-
ut OS. As a control, cells were cultured in BM and for comparing
he effects of different metabolites cells were cultured in BM con-
aining dexamethasone (Dex) 10 nM + OS. Culture medium was
eplaced with fresh medium every 3 and 4 days. After 7 and
4 days of culture, cell proliferation and alkaline phosphatase
ALP) activity were analyzed with a commercially available p-
itrophenyl phosphate tablet set (Sigma, St. Louis, MO, USA) and
ell proliferation kit (Premix WST-1 Cell Proliferation Assay Sys-
em; Takara Bio Inc., Shiga, Japan), with modifications [28]. Cell
roliferation (WST-1 absorbance) was analyzed according to the
anufacturer’s protocol. Briefly, WST-1 reagents was added to

ach well containing fresh medium (50 �l of WST-1/500 �l of
edium in each well of 24-well plate), incubated for 60 min, the

bsorbance was measured at 450 nm using a microplate reader
Victor 1420, Finland). After WST-1 analysis, each well was washed
wice with PBS and p-nitrophenyl phosphate solution was added
400 �l/well for 24-well plates). After 10 min of incubation at 37 ◦C,
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

onversion of p-nitrophenyl phosphate into p-nitrophenol by cel-
ular ALP was stopped with the equivalent amount of 3N NaOH
nd the absorbance of p-nitrophenol was measured at 450 nm
sing a microplate reader. Alkaline phosphatase-specific activity

s expressed as p-nitrophenol absorbance (OD; 405 nm)/WST-1
75 NM 000785

77 NM 000376

absorbance (OD; 450 nm), which is designed to assess the ALP activ-
ity/no. of viable cells.

2.4. Mineralization assay (alizarin red staining)

The cell culture conditions used were similar as described for
ALP activity. After 21 days of cell culture in 24-well plates, in vitro
mineralization was analyzed by alizarin red staining. For alizarin
red S staining, cells were fixed with ice-cold 70% ethanol for 60 min
at −20 ◦C. Then, cells were washed twice with distilled water and
stained with 40 mM Alizarin red S solution (Sigma) for 10 min at
room temperature. The pH value of the solution was adjusted to
4.2 with 25% ammonium hydroxide prior to staining. After staining,
excess dye was washed with distilled water and digital images of
stained mineral deposits were taken.

2.5. Real-time quantitative PCR

Next, we analyzed the time course effect of the vitamin D3
metabolites without OS at mRNA level. Human DPCs and hDFCs
were seeded at a density of 10,000 cells/well in 6 well plate with
different concentrations of 1�,25(OH)2D3 (10 and 100 nM) and
25OHD3 (100 and 500 nM) in BM. The control samples were main-
tained in the BM. The Total RNA was extracted at 24, 48, 72 h
time points by Eurozol (Euroclone S.p.A, Pero, Italy). First-strand
cDNA synthesis were performed by a High Capacity cDNA Archive
Kit (Applied Biosystems, Warrington, UK). Real-time quantitative
PCR (qRT-PCR) was conducted using osteocalcin (OC), osteopon-
tin (OPN), and RPLP0 (human acidic ribosomal phosphoprotein),
VDR (vitamin D receptor), CYP24 (24-hydroxylase) and 25OHD3-
1�-hydroxylase (1�-hydroxylase, CYP27B1) primer sequences as
shown in (Table 1). To exclude signals from contaminating DNA,
the forward and reverse sequence of each primer was designed on
different exons. The Power SYBR Green PCR Master Mix (Applied
Biosystems) was used for Quantitative PCR reactions according
to the manufacturer’s instructions. The reactions were performed
with AbiPrism 7300 Sequence Detection System (Applied Biosys-
tems) at 95 ◦C 10 min, and then 45 cycles at 95 ◦C/15 s and
60 ◦C/60 s. The Ct values for OC, OPN, VDR and CYP24 were nor-
malized to that of the housekeeping gene RPLP0, as described
elsewhere [29].

2.6. 1,25-Dihydroxy vitamin D3, enzyme immunoassay (EIA)

The 1,25-dihydroxy vitamin D3 EIA kit (Immunodiagnostic Sys-
tems Ltd, Boldon, UK) was used to measure the conversion of
bolites induce osteogenic differentiation in human dental pulp and
6/j.jsbmb.2010.08.001

25OHD3 into 1�,25(OH)2D3 by 1�-hydroxylase in hDPCs and
hDFCs. The cells were cultured in BM + 25OHD3 (500 nM) and
BM + 25OHD3 (500 nM) + inhibitor (ketoconazole; 10 �M) for 24 h.
The control samples were maintained in BM without the addi-
tion of vitamin D3 metabolites and inhibitor. 10,000 cells/well were

dx.doi.org/10.1016/j.jsbmb.2010.08.001
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ig. 2. Effect of 1�,25(OH)2D3 and 25OHD3 on cell proliferation. Cell numbers were
ean ± SEM (n = 3). Statistically significant difference when treated samples were c

eeded in 6 well plate and after overnight incubation at 37 ◦C in a
% CO2 humidified atmosphere different metabolites were added.
fter 24 h the culture media for all the samples were taken for

mmunoextraction following quantitation by enzyme immunoas-
ay as per manufacturer’s protocol. Samples were obtained from
hree different patient samples for both the tissues which were
ested independently. Briefly, 100 �l of the delipidated samples
nd controls were added to the appropriately labeled immunocap-
ules in duplicates per sample. Primary antibody was added to the
mmunoextracts and incubated overnight at +4 ◦C. Next day, sec-
ndary antibody was added which was followed by the addition
f enzyme conjugate and tetramethylbenzidine (TMB) substrate.
n acidic stop solution was added to terminate the reaction which
esulted in the color change from blue to yellow. The intensity of
he yellow color is inversely proportional to the concentration of
�,25(OH)2D3. The absorbance was measured within 30 min of the
ddition of the stop solution using a plate reader (Victor 1420) at
wavelength of 450 nm. The results were calculated by measuring

he absorbance of the calibrators provided with the kit and creating
calibration curve by plotting the percent bind on the y-axis and

he amount of 1�,25(OH)2D3 on the x-axis. The percent bind values
or the samples were calculated and then interpolated amount of
�,25(OH)2D3 using the calibration curve.

.7. Statistical analysis

The statistical analyses of the results were performed with
raphPad Prism 5.01. The data is presented as mean ± standard
rror of the mean (SEM) for all quantitative assays and experiments
ere carried out in triplicate for cells derived from three donor sam-
les. All statistical analyses were performed at the significance level
< 0.05. One-way analysis of variance (ANOVA) with Dunnett’s post
oc test for multiple comparisons was used for the analysis.

. Results

.1. Cell morphology

Human DPCs and hDFCs were isolated by enzyme-digestion
ethod. Both cell types exhibited initial triangular, stellate or spin-

le shape cell morphology after initial plating. The time required to
orm confluent cell cultures varied from 1 to 2 weeks for hDPCs and
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

DFCs. The hDFCs appeared spindle or stellate in shape as observed
nder phase contrast microscope (Fig. 1C). After first passage, the
DPCs appeared stellate in shape or some cultures formed pat-
erns of net like structure as shown by phase contrast microscope
Fig. 1D).
zed in (A) hDPCs and (B) hDFCs at 1, 7 and 14 days time periods. Columns represent
red to the control of each time point, *p < 0.05.

3.2. Cell proliferation effect (days 1, 7 and 14)

Time course effects of different concentrations of 1�,25(OH)2D3
(10 and 100 nM) and 25OHD3 (100 and 500 nM) at days 1, 7 and 14
on proliferation of hDPCs and hDFCs were analyzed. The addition
of vitamin D3 metabolites, to hDPCs and hDFCs induced decrease
in cell proliferation when compared to the cells treated without
the metabolites, as shown in (Fig. 2A). While cell proliferation was
significantly inhibited by 1�,25(OH)2D3 (100 nM) in hDFCs by day
14 (Fig. 2B).

3.3. Osteogenic differentiation

3.3.1. Alkaline phosphatase activity (days 7 and 14)
The effects of vitamin D3 metabolites with or without OS on

osteogenic differentiation of hDPCs and hDFCs were analyzed by
measuring their ALP activities. Time course experiments showed
significant increases in ALP activity of hDPCs on day 7 after
treatment with OS + 1�,25(OH)2D3 (10 nM), OS + 1�,25(OH)2D3
(100 nM) and OS + 25OHD3 (500 nM) in comparison to cells
treated without OS and the untreated control. Following day
14, ALP activity was significantly increased in cells treated with
OS + 1�,25(OH)2D3 (100 nM), OS + 25OHD3 (500 nM) and OS + Dex
(10 nM) in hDPCs, as shown in (Fig. 3A and B).

In addition, hDFCs treated with OS + 1�,25(OH)2D3 (100 nM),
OS + 25OHD3 (500 nM) at day 7 significantly increased ALP activ-
ity. Following the 14 days time course, hDFCs expressed significant
increase in ALP activity in cells treated with OS + 1�,25(OH)2D3
(10 nM), OS + 1�,25(OH)2D3 (100 nM); though cells treated without
OS and OS + 25OHD3 (100 nM) and OS + Dex (10 nM) did not signif-
icantly increase the ALP activity of hDFCs (Fig. 3C and D). Human
DPCs and hDFCs treated in combination with OS and vitamin D3
metabolites showed significant ALP activity.

3.3.2. Mineralization
Treatment with vitamin D3 metabolites in combination with

OS promoted biomineralization of hDPCs and hDFCs as shown in
(Fig. 4A and B). Human DFCs and hDPCs exposed to 1�,25(OH)2D3
(10 and 100 nM) and 25OHD3 (100 and 500 nM) without OS did not
induce matrix mineralization (data not shown). There were differ-
ences in the intensities of alizarin red staining between cells derived
from different donors.
bolites induce osteogenic differentiation in human dental pulp and
6/j.jsbmb.2010.08.001

3.3.3. The expression of bone markers at mRNA level (24, 48 and
72 h time points)

To observe the time course effect of vitamin D3 metabolites
on bone markers such as OPN and OC at mRNA level qRT-PCR
was done. OC expression was up regulated by all the concentra-

dx.doi.org/10.1016/j.jsbmb.2010.08.001
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Fig. 3. ALP activity of cells cultured in 1�,25(OH)2D3 and 25OHD3 in the presence of osteogenic supplements (OS; l-ascorbic acid-2-phosphate + �-glycerophosphate) in
comparison to cells cultured in Dex. ALP activity of hDPCs (A and B) and hDFCs (C and D) was assessed after 7 and 14 days of differentiation. Columns represent mean ± SEM
(n = 3). Statistically significant difference when treated samples were compared to BM of days 7 and 14, *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 4. Alizarin red staining of mineralized deposits after exposure to vitamin D3 metabolites and Dex. Human DPCs (A) and hDFCs (B) were cultured in (1,25) 10 and 100 nM,
(25) 500 nM and (Dex) 10 nM with osteogenic supplements (OS; l-ascorbic acid-2-phosphate + �-glycerophosphate) for 3 weeks. Data are representative of one cell culture
(n = 3).

dx.doi.org/10.1016/j.jsbmb.2010.08.001
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Fig. 5. Expression of bone markers were quantified by qRT-PCR. Relative mRNA expression of OC in hDPCs and hDFCs (A and B) and OPN in hDPCs and hDFCs (C and D) at 24,
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8 and 72 h were analyzed. Data are normalized to housekeeping gene RPLP0. Resul
M) at 24 h time point. Columns represent mean ± SEM (n = 3); *p < 0.05, **p < 0.01,

ions of vitamin D3 metabolites used except for 25OHD3 (100 nM)
etween 48 and 72 h time course in hDPCs (Fig. 5A), wherein,
�,25(OH)2D3 (100 nM) alone significantly increased the expres-
ion of OC at 48 h time point in hDFCs (Fig. 5B). OPN expression
as significantly upregulated by 1�,25(OH)2D3 (100 nM) in hDPCs

nd 25OHD3 (500 nM) in hDFCs at 24 h. Thereafter, downregulation
n the expression was seen from 48 to 72 h in both hDPCs (Fig. 5C)
nd hDFCs (Fig. 5D).

.4. Expression of VDR, CYP24 and 1˛,25(OH)2D3 production

Vitamin D3 regulating genes especially CYP24 expression was
ignificantly upregulated by 1�,25(OH)2D3 (100 nM) and 25OHD3
500 nM) but there was down regulation seen by 25OHD3 (100 nM)
n hDPCs (Fig. 6A) and hDFCs (Fig. 6B). In addition, the expression of
DR was low at 24 h time point for both hDPCs and hDFCs. The VDR
RNA expression increased significantly following 48–72 h time

oint in the cells treated with 1�,25(OH)2D3 (10 and 100 nM) in
oth hDPCs (Fig. 6C) and hDFCs (Fig. 6D). The VDR mRNA expression
as significantly upregulated by 25OHD3 (500 nM) concentration

n hDPCs while expression was minimally regulated by 25OHD3
100 nM) in both hDPCs and hDFCs. The activity of the CYP27B1
nzyme was confirmed by evaluating the conversion of 25OHD3
nto 1�,25(OH)2D3 in hDPCs and hDFCs by enzyme immunoassay.
5OHD3 (500 nM) was converted into 1�,25(OH)2D3 at pM concen-
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

ration by both hDPCs (Fig. 7A) and hDFCs (Fig. 7B). The conversion
as significantly inhibited by cells cultured in the presence of the

nhibitor. Subsequently, the mRNA expression of CYB27B1 was ana-
yzed which was upregulated only by the higher concentration of
5OHD3 in both hDPCs (Fig. 7C) and hDFCs (Fig. 7D).
reported as change in gene expression relative to untreated control (basic medium;
0.001.

4. Discussion

Our study shows that osteoblast differentiation in hDPCs and
hDFCs was stimulated by both 1�,25(OH)2D3 and 25OHD3. In addi-
tion, the current study provides evidence that 25OHD3 can be
converted into 1�,25(OH)2D3 in vitro by hDPCs and hDFCs. Dif-
ferentiation of MSCs such as those derived from adipose tissue,
bone marrow tissue or from dental tissue into osteoblast like
cells is induced in vitro by treating the cells with Dex, ascorbic
acid and �-glycerophosphate as reported in many studies [19,30].
Interestingly, it has been reported that 1�,25(OH)2D3 may be
superior to dexamethasone as an agent that induces osteogenic
differentiation in human adipose derived cells [23,24,31]. Con-
sidering the previous reports it was reasonable to confirm the
effects of vitamin D3 metabolites such as 1�,25(OH)2D3 (10 and
100 nM) and 25OHD3 (100 and 500 nM) with or without the addi-
tion of osteogenic supplements (OS; l-ascorbic acid 2-phosphate
and �-glycerophosphate) on proliferation and osteogenic differen-
tiation of hDPCs and hDFCs. Osteogenic differentiation of MSCs in
vitro is normally characterized by early expression of ALP activity,
extracellular matrix mineralization and expression of osteoblasts
associated genes.

Vitamin D3 is also reported to function locally by binding
with the VDR to inhibit proliferation of certain cell types such as
osteoblasts and osteoclasts [32]. Our study revealed that, the addi-
bolites induce osteogenic differentiation in human dental pulp and
6/j.jsbmb.2010.08.001

tion of vitamin D3 metabolites to hDPCs and hDFCs did not increase
cell proliferation. Moreover, 1�,25(OH)2D3 (100 nM) inhibited cell
proliferation in hDFCs. Our results are consistent with a recent
study conducted on hMSCs, wherein, 1�,25(OH)2D3 inhibited cell
proliferation of hMSCs [22]. These results also suggest that when

dx.doi.org/10.1016/j.jsbmb.2010.08.001
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ig. 6. Expression of vitamin D3 regulating genes were quantified by qRT-PCR. Re
DFCs (C and D) at 24, 48 and 72 h were analyzed. Data are normalized to housekee
ontrol (basic medium; BM) at 24 h time point. Columns represent mean ± SEM (n =

ells are differentiating osteogenically, cell proliferation will be
nevitably suppressed.

So far studies towards the direct effects of vitamin D3 on
steogenic differentiation of enzymatically isolated hDPCs and
DFCs have been limited. To confirm osteogenic capacity of the
DPCs and hDFCs, ALP expression was studied, which is membrane
ound enzyme and is an early marker of osteogenic differentiation
33]. It was reported that the addition of 1�,25(OH)2D3 metabo-
ite to OS + Dex significantly increased Alp activity of hDPCs [34].
ere, we show that 1�,25(OH)2D3 (10 and 100 nM) and Dex in
ddition with OS increased the ALP activity in hDPCs. Addition-
lly, for the first time we have shown that 25OHD3 (500 nM) also
ncreased the ALP activity in hDPCs and hDFCs. In correlation with
he ALP expression, the initiation of osteogenesis resulted in pro-
ression of mineralized matrix formation when cells were cultured
n 1�,25(OH)2D3 (100 nM) and 25OHD3 (500 nM) in hDPCs. Fur-
hermore, we observed difference in response to the treatments
etween patient samples in forming calcified nodules in vitro. The
ost likely reason for this could be associated with donor variabil-

ty in response to various treatments. Whereas for hDFCs, previous
eports suggest that, Dex + OS stimulated ALP activity and mineral-
zation [19,35] when cells were cultured for 4 weeks [20]. However,

e could not observe increase in ALP activity when cells were
ultured with Dex for 2 weeks and weak response to mineraliza-
ion was seen when hDFCs were cultured for 3 weeks, contrary to
hat is known. This discrepancy in our results can be explained

y referring to the long term cultures made to observe increase
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

n ALP activity and mineralization in the reported literature and
ariability between patient samples. Moreover, effect of the vita-
in D3 metabolites on ALP activity and mineralization of hDFCs

as not been yet elucidated. Here we report that, hDFCs formed
ineralized matrix when treated with vitamin D3 metabolites in
mRNA expression of CYP24 in hDPCs and hDFCs (A and B) and VDR in hDPCs and
ene RPLP0. Results are reported as change in gene expression relative to untreated
< 0.05, **p < 0.01, ***p < 0.001.

the presence of OS. Interestingly, vitamin D3 metabolites had bet-
ter effect on mineralization than Dex (10 nM) in combination with
OS in hDPCs and hDFCs. These results highlight that vitamin D3
could be used as an alternative to Dex for in vitro mineralization
considering the potential catabolic effects of Dex when used in vivo
[21].

The studies on osteoblastic cells in vitro have shown that
1,25(OH)2D3 increases alkaline phosphatase activity [36] and stim-
ulates the expression of some of the non-collagenous proteins of
bone such as OC, which is a small protein found in abundance
in bone, cementum, and dentin [36,37]. 1,25(OH)2D3 has been
observed to play an essential role in synthesizing OC in hDPCs and
bone cells in vitro [37,38]. The correlation between decreased OC
production and hypocalcified dentin formation due to vitamin D
deficiency has also been reported in hDPCs [37]. Our results ver-
ify that OC expression was upregulated by 1�,25(OH)2D3 in hDFCs
and hDPCs. The expression of other non-collagenous protein such
as OPN, which promotes bone resorption and stimulation of bone
deposition [39], is also regulated by 1,25(OH)2D3 in osteoblast cells
[40]. It has been shown in clonal rat dental pulp cells that OPN
produced by pulp cells by action of 1�,25(OH)2D3 causes miner-
alization to form reparative dentin and pulp stones [41]. Our data
shows that 1�,25(OH)2D3 (100 nM) upregulated expression of OPN
in hDPCs at 24 h and following 72 h time course showed gradual
down regulation. Moreover, the induction of OPN expression in
hDFCs by 25OHD3 has not been reported previously.

From in vivo observation it is concluded that 1�,25(OH)2D3 is
bolites induce osteogenic differentiation in human dental pulp and
6/j.jsbmb.2010.08.001

important in mineralization of dental tissues, as shown by the
presence of VDR in human dental tissues such as ameloblasts
and odontoblasts in mouse model [7,42]. We report here that
addition of 1�,25(OH)2D3 (10 and 100 nM) upregulated VDR
expression in hDPCs and hDFCs. Moreover, 25OHD3 has also been

dx.doi.org/10.1016/j.jsbmb.2010.08.001
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Fig. 7. Enzymatic activity and expression of CYP27B1 in hDFCs and hDPCs. Enzyme immunoassay showed the conversion of 25; 500 nM into 1�,25(OH)2D3 in (A) hDFCs
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nd (B) hDPCs. The conversion was evaluated as 1�,25(OH)2D3 (pM) concentration
ample and 25; 500 nM treated sample was compared with 25; 500 + inhibitor. Rel
re reported as change in gene expression relative to untreated control (basic med
**p < 0.001.

eported to show biological activity through VDR, but the response
s 500–1000 fold lower than 1�,25(OH)2D3 [43]. In this study,
igher concentration of 25OHD3 upregulated VDR expression in
DPCs. Furthermore, the metabolic conversion of 25OHD3 into
�,25(OH)2D3 by hDPCs and hDFCs suggested that both of these
ell types express functional CYP27B1 enzyme. Further evidence
f the effect of vitamin D3 metabolites on hDPCs and hDFCs, can
e described by the upregulation of CYP24, which metabolizes
itamin D3 and thereby inactivates the conversion 25OHD3 into
�,25(OH)2D3 [44]. The present study shows that higher concentra-
ions of 1�,25(OH)2D3 (100 nM) and 25OHD3 (500 nM) upregulated
YP24 gene expression in hDPCs and hDFCs. These results confirm
he regulation of synthesis and inactivation of 1�,25(OH)2D3 in
DPCs and hDFCs is similar to as shown in cells derived from bone
arrow and bone cells [45,46].
A recent study reported that vitamin D3 deficiency was
Please cite this article in press as: R. Khanna-Jain, et al., Vitamin D3 meta
human dental follicle cells, J. Steroid Biochem. Mol. Biol. (2010), doi:10.101

reated with 25OHD3 which resulted in effective bone turnover
n haemodialysis patients [3]. It is worthwhile to note that our
tudies were performed in cultures treated with 25OHD3 (500 nM),
hich resulted in osteogenic differentiation in vitro. Considering

he report and our results we can conclude that 25OHD3 metabo-
results were considered significant when BM was compared to 25; 500 nM treated
RNA expression of CYP27B1 in hDPCs and hDFCs (C and D) was analyzed. Results
M) at 24 h time point. Columns represent mean ± SEM (n = 3); *p < 0.05, **p < 0.01,

lite could be considered as a potential clinical osteogenic inducer
for bone tissue engineering. This research also shows the potential
of hDPCs and hDFCs as an alternative to other MSCs, obtained from
extracted human third molars (i.e. wisdom teeth) with no tissue
site morbidity, often discarded tissue that may be valuable source
of cells for future research.

In summary, vitamin D3 metabolites regulated the expression
of vitamin D3 regulating and bone marker genes at mRNA level in
the hDPC and hDFC cultures, while increase in ALP enzyme activity
was mediated by the presence of l-ascorbic acid-2-phosphate or
�-glycerophosphate. This research also indicates the essentiality
of the synergists to achieve osteoblastic differentiation in addition
to vitamin D3 and thereby assisting mineralization in vitro.
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Introduction 
Adult mesenchymal stem cells (MSCs) isolated from bone marrow 

(BM) have been an important source of stem cells for stem cell based 
therapies for the past several years [1,2]. Besides their regenerative 
capacity, there are certain limitations associated with BM-MSCs such 
as tissue site morbidity, low cell numbers and painful procedure for 
procuring the tissue [3,4]; therefore, several alternative sources of 
MSCs have been sought. MSCs have been expanded from adipose 
tissue [5], skeletal muscle [6], umbilical cord [7], amniotic fluid [8], 
dental pulp tissue [9] and numerous other tissues [10]. 

Dental pulp stem cells (DPSCs) have been reported to exhibit 
multipotent differentiation capacity into various cell lineages such 
as adipocytes, osteocytes, chondrocytes, and myocytes in vitro [11]; 
including in vivo studies showing differentiation of DPSCs into 
odontoblasts [12], neural cells [13], and in cardiac repair by improving 
angiogenesis [14]. Moreover, there are several animal studies reporting 
the potential of DPSCs in regenerating bone [15,16,17] and one clinical 
study showing the successful use of DPSCs in bone augmentation in 

tooth extraction sockets [18]. Apart from their osteogenic regenerative 
potential, it has been reported that DPSCs display increased 
immunosuppressive activity when compared with BM-MSCs [19]. 
Because of the multipotent nature and immunomodulatory properties 
of DPSCs [20], they may be an important source of MSCs for stem cell 
based therapies. 

Furthermore, for cell based therapies, experimental concerns 
caused due to current cell culture protocols comprising of animal 
derived components needs to be eliminated. There are several 
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Abstract
Introduction: Dental pulp stem cells (DPSCs) are an accessible cell source with therapeutic applicability in 

regeneration of damaged tissues. Current techniques for expansion of DPSCs require the use of Fetal Bovine Serum 
(FBS). However, animal-derived reagents stage safety issues in clinical therapy. By expanding DPSCs in serumfree/
xenofree medium (SF/XF-M) or in medium containing human serum (HS-M), the problems can be eliminated. 
Therefore, the aim of our study was to identify suitable cell culture media alternatives for DPSCs. 

Methods: We studied the isolation, proliferation, morphology, cell surface markers (CD29, CD44, CD90, 
CD105, CD31, CD45 and CD146), stemness markers expression (Oct3/4, Sox2, Nanog and SSEA-4) and in vitro 
multilineage differentiation of DPSCs in HS-M or SF/XF-M in comparison to FBS-M. 

Results: DPSCs expressed the cell surface and stemness markers in all studied conditions. The proliferation 
analysis of cells cultured in different HS concentrations revealed that cells isolated in 20% HS-M and passaged in 
10% or 15% HS-M supported the cell growth. Direct isolation of cells in SF/XF-M did not support cell proliferation. 
Therefore, cells cultured in 20% HS-M were used for further SF/XF-M studies. However, proliferation of DPSCs 
was significantly lower in SF/XF-M when compared with cells cultured in FBS-M and HS-M. In addition, proliferation 
of DPSCs in SF/XF-M could be enhanced by addition of 1% HS in cell culture medium. There were differences in 
osteogenic, chondrogenic and adipogenic differentiation efficacy between cells cultured in FBS, HS and SF/XF 
differentation media. More pronounced adipogenic and osteogenic differentiation was observed in HS differentiation 
medium, however, in FBS-M cultured cells more effective chondrogenic differentiation was detected. 

Conclusions: Our results indicate that HS is a suitable alternative to FBS for the expansion of DPSCs. The 
composition of SF/XF-M needs to be further optimized in terms of cell expandability and differentiation efficiency to 
reach clinical applicability.
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problems encountered by expanding and differentiating cells in 
Fetal Bovine Serum (FBS) which are associated with possible allergic 
reactions caused by FBS proteins internalized in the stem cells and 
risks of transmitting viruses, prions, bacteria, yeast or endotoxins upon 
transplantation [21,22,23]. Also, the concentration of growth factors or 
bulk proteins in complex FBS may vary between lot to lot [24], hence 
leading to difficulty in maintaining a consistent cell culture protocol. 
To address these problems, various alternatives have been explored 
by several investigators to maintain proliferation and differentiation 
of MSCs. Among these are human blood derived alternatives such 
as autologous human serum (autoHS), allogenic Human Serum 
(alloHS) [25], human platelet lysates [26], umbilical cord blood serum 
[27] and autologous plasma derived from bone marrow (AP) [28]. 
There are several investigations on the efficacy of alloHS, autoHS and 
AP as an option to FBS for BM-MSCs culture [29,30] but none for 
DPSCs. However, conflicting data on the use autoHS and alloHS has 
been reported, where the BM-MSCs proliferated at a slower rate and 
diminished differentiation capability was observed [31,32]. Conversely, 
autoHS and alloHS have been reported to maintain the proliferation and 
differentiation of MSCs as effectively as FBS [33,34,35]. Most recently, 
a study conducted in vitro and in vivo showed that HS was as efficient as 
FBS in supporting proliferation and differentiation of BM-MSCs [30]. 
In order to overcome the inconsistent performance associated with HS, 
a robust serumfree/ xenofree medium (SF/XF-M) for MSCs culture has 
to be developed. The use of chemically defined SF/XF-M could result in 
eliminating lot to lot variability issues, possible immune reactions and 
associated complications [36]. Interestingly, a study from our group 
has shown the ability of adipose tissue derived mesenchymal stem cells 
(AD-MSCs) to maintain the multipotent differentiation capacity and 
to proliferate better in SF/XF conditions in comparison to HS and FBS 
culture conditions [37], whereas, there are lack of reports related to the 
response of SF/XF medium on DPSCs. However, the effect of different 
serum free media comprising of xenogenic growth factors on DPSCs 
proliferation or colony formation have been reported [38]. 

Taken together, it is important to elucidate the effect of HS and 
SF/XF media on DPSCs isolation and expandability before using them 
for clinical therapies. In this study, DPSCs were expanded in HS or 
SF/XF media by using xenofree supplements to limit the possibility of 
xenogenic contaminations. We studied the morphology, cell surface 
marker expression and proliferation rate of the DPSCs cultured in FBS, 
HS or SF/XF media. Subsequently, we studied expression of cell surface 
stage-specific embryonic antigen (SSEA)-4 as well as intracellular 

stemness markers octamer-binding transcription factor (Oct3/4), SRY 
(sex determining region Y) box-2 (Sox2) and Nanog to further analyze 
the stemness of DPSCs cultured in different media. Moreover, we 
investigated the multilineage differentiation potential of DPSCs into 
osteogenic, adipogenic and chondrogenic lineages in different culture 
conditions. 

Material and Methods
Cell isolation and culture

Human impacted third molars were obtained with informed 
written consent from Finnish Student Health Services, Tampere, 
Finland. The Ethics Committee, of the Pirkanmaa Hospital District, 
Tampere, Finland (R06009), approved the collection of stem cells 
from tooth samples specifically for this study. Human dental pulp 
explants were obtained from partially or completely impacted third 
molar teeth of 4 patients, aged 21-26 years (23 ± 2.5 years). The pulp 
tissue explants were brought from the health centre to the laboratory 
in Dulbecco’s Phosphate buffered saline (PBS; BioWhittaker Lonza, 
Verviers, Belgium) containing 2% antibiotics/antimycotics (a/a; 100 U/
ml penicillin, 0.1 mg/mL streptomycin and 0.25 µg/mL amphotericin 
B; Life Technologies, Paisley, Scotland, UK). The dental pulp tissue 
fragments were minced by using sterilized scalpels and digested 
in collagenase type I 3 mg/ml (Invitrogen) and dispose 4 mg/ml 
(Invitrogen) for 1 hour at 37°C. Once digestion was completed the 
obtained cell pellet was suspended in 600 µl of PBS and was passed 
through a 100 µm cell strainer (Falcon, BD Labware, Franklin lakes, NJ, 
USA). The isolated dental pulp stem cells (DPSCs) were cultured in two 
different media (1) Dulbecco’s modified Eagle medium (DMEM)/F-12 
1:1 (Gibco Life Technologies, Paisley, UK) supplemented with 1% 
l-analyl-l-glutamine (Gluta-MAX I; Life Technologies), 1% a/a and 
10% fetal bovine serum (FBS; Invitrogen, Paisley, UK) (FBS-M) and 
(2) (DMEM)/F-12 1:1 supplemented with Gluta-MAX I, 1% a/a and 
20% allogenic Human Serum (HS; PAA Laboratories GmbH, Pasching, 
Austria) (HS-M).

Further, DPSCs expanded in HS-M were used for testing 
StemPro® MSC xenofree, serumfree/xenofree medium (SF/XF-M; 
Life Technologies), where culture wells were coated with CELLstart 
(Life Technologies) to assist in cell attachment (Table 1). Initially, 
DPSCs were directly cultured in SF/XF-M on carboxyl, amine (BD 
Biosciences) or CELLstart coated culture plates but cells did not 
proliferate; therefore, cells cultured in HS-M were later cultured in SF/

Medium Abbreviation Basal Serum Xenofree Coating Supplementation
medium

Fetal FBS-M DMEM/F 10% No No 1% GlutaMAX,
Bovine -12 FBS 1% a/a
Serum-
Medium
Human HS-M DMEM/F 20% Yes No 1% GlutaMAX,
Serum- -12 HS 1% a/a
Medium
Serum Free/ SF/XF-M Stem No Yes CELLstart Stem Pro® MSC
XenoFree- Pro® (Life SFM Xeno Free
Medium MSC Technologies) supplement, 1% a/a
(Stem Pro® SFM
MSC SFM xenofree
XenoFree)

Table 1: Different culture media to test the growth of DPSCs. Dulbecco’s modified eagle medium (DMEM/F-12) containing fetal bovine serum (FBS-M), human serum 
(HS-M) and serumfree/xenofree (SF/XF-M).
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XF medium for all the experiments, as described in (Figure 1). DPSCs 
isolated and expanded in FBS-M were harvested using 1% trypsin 
(Lonza/BioWhittaker, Verviers, Belgium). The DPSCs isolated and 
cultured in HS-M and SF/XF-M were harvested using TrypLE Select 
(Life Technologies) for XF detachment of cells. Cell culture plates and 
T-75 culture flasks (Thermo Fischer, Nunc; Roskilde, Denmark) were 
monitored daily for cell growth, with medium changes taking place 
three times per week (Table 1). All assays were performed using cells 
between passage 3-4 and experiments were repeated using DPSCs 
derived from 4 different donors.

Immunocytochemistry
For immunocytochemistry, 2500 cells/ well were plated on 

48 well plates. After 3 days of culturing, cells were fixed with 4% 
paraformaldehyde (Fluka, Italy) containing 0.2% of TritonX-100. After 
fixation, cells were stained with stemness markers. Briefly, unspecific 
staining was blocked with 1% bovine serum albumin (BSA, Sigma-
Aldrich) in PBS for 45 min at room temperature. The cells were 
washed 2-3 times with PBS. Thereafter, the primary antibodies; goat 
anti-octamer-binding transcription factor (Oct) 3/4, mouse anti-SRY 
(sex determining region Y) box-2 (Sox2) and goat anti–Nanog (all: 
R&D Systems) as well as mouse anti-stage specific embryonic antigen 
(SSEA)-4 (Santa Cruz) in 1% BSA-PBS solution were incubated with 
cells at +4°C, overnight. Next day, the cells were washed three times 
with PBS and were incubated in secondary antibodies, Alexa Fluor 488 
and 568 conjugated to anti-goat and anti-mouse (Molecular Probes, 
Invitrogen) in 1% BSA-PBS for 1 h at room temperature. Finally, cells 
were washed three times with PBS, twice with water and mounted with 
Vectashield containing 4’, 6-diamidino-2-phenylindole (DAPI, Vector 
Laboratories, England) to identify nuclei. Cell samples were analyzed 
by using an Olympus IX51 phase-contrast microscope equipped with 
fluorescence unit and an Olympus DP30BW camera (Olympus).

Flow cytometric surface marker expression analysis
DPSCs cultured in FBS-M, HS-M and SF/XF-M and were analyzed 

for cell surface antigen expression by flow cytometry (FACSAria®; 
BD Biosciences, Erembodegem, Belgium). Monoclonal antibodies 
(MAb) against CD29-Allophycocyanin (APC), CD44-Phycoerythrin 
(PE), CD90-APC, CD45-APC, CD146-PE (BD Biosciences), CD105-
PE (R&D Systems Inc., Minneapolis, MN, USA), CD31-fluorescein 
isothiocyanate (FITC) (Immunotools GmbH, Friesoythe, Germany), 
and major histocompatibility class II antigen (HLA-DR)-PE 
(Immunotools) were used. FACS analysis was performed on 100,000 
cells/sample and the positive expression was defined as the level of 
fluorescence greater than 99% of the corresponding unstained cell 
sample.

Cell proliferation assay
This assay was done to measure the viability and induction of 

DPSCs proliferation when cultured in FBS-M, HS-M in different serum 
conditions (5%, 10%, 15%, 20%), SF/XF-M or SF/XF-M with 1 or 5% of 
HS. The DPSCs (n=4) were seeded on a 48 or 24-well plate at a density 
of 2500 or 5000 cells/well, depending on well format. The SF/XF-M 
culture wells were pre-coated with CELLstart. Cell proliferation was 
quantified at 1, 4, 7 and 14 days using the colorimetric reagent WST-
1 (Takara Bio Inc, Otsu, Japan) for comparing the effect of FBS-M, 
15% HS-M and SF/XF-M cultured cells. Briefly, WST-1 reagent was 
added to each well containing fresh medium (50 μl of WST-1/ 500 μl 
of medium in each well of 24-well plate), incubated for 60  min. For 
HS serum concentration gradient (5%, 10%, 15%, 20%) growth assay 
(Figure 5B) and for comparative SF/XF and SF/XF+HS (1% and 5%) 

growth assay (Figure 5C) cells were washed with PBS and 20 μl of 
WST-1 reagent in addition to 200 μl PBS was added to each well. The 
plate was incubated for 4 hours at 37°C prior to the measurement. The 
absorbance was measured at 450 nm using a microplate reader Victor 
1420 (Perkin Elmer life Sciences, Turku, Finland).

In vitro multilineage differentiation analysis
DPSCs (n = 4) were examined for their ability to differentiate toward 

the adipogenic, osteogenic and chondrogenic lineages by quantitative 
real time-polymerase chain reaction (qRT-PCR) and lineage specific 
stainings. Briefly, for osteogenic and adipogenic differentiation 
analysis cells were seeded at a density of 5000 cells/well on a 24 
well plate in FBS-M, HS-M or SF/XF-M. After 24 hours, osteogenic 
differentiation medium (OM) and adipogenic differentiation medium 
(AM) were added for each serum culture condition as stated in Table 
2. The chondrogenic differentiation of DPSCs was assessed by using 
micromass cell culture method. Briefly, 100,000 cells were seeded on 
a 24 well plate in a 10 µl volume of FBS-M, HS-M or SF/XF-M, that 
were let to adhere for 3 hours in an incubator prior to the addition of 
chondrogenic differentiation medium (CM) as described in Table 2. 
For all the analyses the control cultures were maintained in FBS-M, 
HS-M or SF/XF-M. The SF/XF-M culture wells were pre-coated 
with CELLstart for osteogenic and adipogenic differentiation while 
for chondrogenic micro mass aggregate formation, the culture wells 
were not coated. All cultures were maintained for 21 days for the 
differentiation analysis. 

Alizarin red staining 
In vitro mineralization was induced by FBS-OM, HS-OM or SF/

XF-OM and was analyzed by alizarin red staining after 21 days. Briefly, 
cells were fixed in ice-cold 70% ethanol for 60 min at -20°C. Then, cells 
were washed twice with distilled water and stained with 40 mM Alizarin 
red S solution (Sigma) for 10 min at room temperature. The pH value 
of the solution was adjusted to 4.2 with 25% ammonium hydroxide 
prior to staining. After staining, excess dye was washed with distilled 
water and digital images of stained mineral deposits were taken.

Alcian blue staining 

After 21 days of culture, the chondrogenically induced micro 
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Enzymatically digested
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Serum (FBS)
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(PS)
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 medium

Human
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Figure 1: Flowchart representing effects of different cell culture 
media on isolation of dental pulp stem cells (DPSCs) and showing the final 
experimental settings.
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masses were fixed in 4% paraformaldehyde (PFA) for 60 mins. The 
micro masses were then embedded in paraffin, and sectioned at a 
thickness of 5 µm for histological evaluation. The undifferentiated and 
differentiated micro masses sections were stained with 0.5% Alcian 
blue stain and counterstained with Nuclear Fast Red solution (Biocare 
Medical, Concord, MA, USA). The stained micromass sections were 
viewed under the microscope to evaluate the proteoglycan content. 

Oil O Red staining 

DPSCs were stained with 0.3% Oil Red O-solution to detect the 
accumulation of extracellular lipid droplets after 21 days of culture in 
FBS-AM, HS-AM and SF/XF-AM. Briefly, cells were fixed with 4% 
PFA for 60 mins. Further the cells were rinsed with distilled water 
and incubated in 60% isopropanol for 5 mins. Thereafter, the cells 
were stained with Oil O red solution for 15 mins at room temperature. 
Following the staining the wells were washed thoroughly to remove the 
excess stain and microscopic images were taken. 

QRT-PCR

The cell culture conditions were same as described above in in vitro 
multilineage differentiation analysis. The total RNA was extracted at 21 
days time point by Eurozol (Euroclone S.p.A, Pero, Italy). First-strand 
cDNA syntheses were performed by a High Capacity cDNA Archive 
Kit (Applied Biosystems, Warrington, UK). Quantitative RT-PCR was 
conducted using RPLP0 (human acidic ribosomal phosphoprotein) 
as the house keeping gene and lineage specific primers such as for 
osteogenic differentiation: osteocalcin (OCN) and osteopontin 
(OPN), chondrogenic differentiation; SRY (Sex determining Region 
Y)-box 9 (SOX9) and Type X collagen alpha-1 (COL10A1) and 
adipogenic differentiation; fatty acid binding protein4 (aP2) and 
human peroxisome proliferator-activated receptor gamma (hPPARG) 
and stemness markers; Oct3/4, Sox2 and Nanog (Table 3). To exclude 
signals from contaminating DNA, the forward and reverse sequence of 
each primer were designed on different exons. The Power SYBR Green 
PCR Master Mix (Applied Biosystems) was used for quantitative PCR 

reactions according to the manufacturer’s instructions. The reactions 
were performed with AbiPrism 7300 Sequence Detection System 
(Applied Biosystems) at 95°C 10 min, and then 45 cycles at 95°C /15 
s and 60°C /60 s. The Ct values for OCN, OPN, SOX9, COL10A1, 
AP2 PPARG, Oct3/4, Sox2 and Nanog were normalized to that of the 
housekeeping gene RPLP0, as described elsewhere [39]. 

Statistical analysis

The statistical analyses of the results were performed with GraphPad 
Prism 5.01. The data is presented as mean ± standard deviation (SD) for 
all quantitative assays and experiments were carried out in triplicate for 
cells derived from three donor samples. One-way analysis of variance 
(ANOVA) with Bonferroni post hoc test for multiple comparisons was 
used for the statistical analysis. All statistical analyses were performed 
at the significance level p < 0.05.

Results

Derivation of DPSCs in different culture conditions

DPSCs were enzymatically isolated from dental pulp tissue of 
healthy individuals and suspended in PBS. The isolated dental pulp 
cells suspension in PBS was used to test the effect of different media 
on cell culture. We found that the cells directly isolated on carboxyl, 
CELLstart and amine coated culture wells in SF/XF medium, did 
not proliferate. Additionally, cells directly isolated in 10% or 15% 
HS-M did not proliferate; therefore, cells were isolated in 20% HS-M. 
However, after first passage, 15% HS-M supported DPSCs expansion. 
In addition, cells isolated in 20% HS-M were able to proliferate in SF/
XF-M medium, thus, we were able to maintain xenofree conditions for 
cell culture. DPSCs directly isolated in 10% FBS-M proliferated. Based 
on these findings, isolated dental pulp cells suspended in PBS were 
directly divided and cultured in 1) 10% FBS and 20% HS-M. Further, 
20% HS-M cultured cells were expanded in 2) 15% HS-M and in 3) SF/
XF-M constituting of our final experimental settings as described in 
(Figure 1). 

Medium Basal Media Serum Supplementation

Control DMEM/F-12, SF/XF-M 10% FBS or None
(FBS-M, HS-M, SF/XF- 15% HS or no
M) serum
Osteogenic Medium DMEM/F-12, SF/XF-M 10% FBS or 50 µM L- ascorbic acid (Sigma),  10
(OM; FBS-OM, HS-OM, 15% HS or no mM beta glycerophosphate (Sigma),
SF/XF-OM) serum 100nM 1,25 hydroxy Vitamin D3

(VD; Sigma), 1% a/a, 1% GlutaMAX
Adipogenic Medium DMEM/F-12, SF/XF-M 10% FBS or 33 µM biotin (Sigma) 1µM
(AM; FBS-AM, HS-AM, 15% HS or no dexamethasone (Sigma), 100 nM
SF/XF-AM) serum insulin (life technologies), 17 µM

pantothenate (Fluka), 1% GlutaMAX,
and 1% a/a. Upon seeding of cells,
250 µM of isobutylmethylxanthine
(IBMX; Sigma) was added for 72
hours

Chondrogenic Medium DMEM/F-12, SF/XF-M No serum Insulin Transferrin-Selenium+1
(CM) (Sigma), 50 µM L- ascorbic acid,

55µM sodium pyruvate (Life
Technologies),  23 µM L-proline
(Sigma), 1% GlutaMAX and 1% a/a.
TGF-β1 (Sigma)

Table 2: Lineage specific differentiation induced by media supplements.
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Stemness marker expression
DPSCs isolated in 20% HS culture medium were analyzed by 

immunocytochemical staining with Oct3/4 and Sox2 markers (Figure 
2). Oct3/4 and Sox2 were equally expressed in all samples depicting 
the stemness potential of DPSCs cultured in HS-M. Additionally, 
when nuclear (Dapi) and stemness markers (Oct3/4, Sox2) stainings 
were merged they resulted in nearly complete overlap, indicating that 
majority of DPSCs are Oct3/4 and Sox2 positive (Figure 2A-F). The 
expression of stemness markers Nanog and SSEA-4 was also studied in 
SF/XF, HS and FBS culture conditions by immunostaining and results 
indicate that DPSCs also express Nanog and SSEA-4 (Supplementary 
Figure 1).

The mRNA expression of Oct3/4, Sox2 and Nanog were analysed 
in cells cultured in SF/XF, HS and FBS media by qRT-PCR. Results 
shown in Figure 2G suggest that stemness markers were expressed at 
mRNA level; however, Oct3/4 was significantly upregulated (p < 0.05) 
in FBS and HS media cultured cells when compared with SF/XF-M 
cultured cells. Moreover, no significant differences in Sox2 and Nanog 
expression were observed between different cell culture conditions. 

Morphological differences
The morphology of human DPSCs expanded in FBS-M, HS-M or 

SF/XF-M was compared by using phase contrast microscopy. Cells 
cultured in FBS appeared broader and flattened in shape, whereas 
cells cultured in HS-M were more fibroblastic and appeared more 
homogenous. Moreover, cells expanded in SF/XF-M exhibited a more 
flattened fibroblastic like morphology (Figure 3). Similar morphological 
differences were observed by FACS analysis, DPSCs cultured in FBS-M, 
HS-M or SF/XF-M differed in cell size and granularity as assessed by 
the forward and side scatter (Figure 4A). The cells cultured in FBS-M 
displayed larger cell size and greater heterogeneity. On the other hand, 
cells cultured in HS-M and SF/XF-M were more homogenous and 
smaller in cell size. 

Cell surface marker expression 

Furthermore, DPSCs expanded in different culture media were 
analyzed using flow cytometry for mesenchymal markers CD29, 
CD44, CD90 and CD105; hematopoietic and angiogeneic markers 
CD31, CD45, CD146 and for HLA-DR. FACS analysis displayed 

that DPSCs cultured in different media showed positive expression 
for the mesenchymal marker (>50%) and for CD146 perivascular 
marker (Figure 4A and 4B). However, results related to CD146 marker 
expression varied between patient samples. Moderate expression 
(<30%) of CD45 was observed but DPSCs lacked the expression for 
CD31 hematopoietic marker. In addition, DPSCs cultured in FBS-M, 
HS-M and SF/XF-M lacked the expression of HLA-DR (Figure 4C and 
4D). Also, there were no statistical significant differences (Figure 4B 
and 4D) observed between the expression profile of cells cultured in 
FBS-M, HS-M and SF/XF-M due to variability between patient samples. 

Cell proliferation

The effects of FBS-M, HS-M and SF/XF-M on DPSCs growth were 
analyzed following days 1, 4, 7 and 14. The cells cultured in SF/XF-M 
proliferated slowly in comparison to the cells cultured in FBS and HS 
medium, which was observed from day 4. Statistical analysis revealed 
that cells cultured in FBS-M and HS-M proliferated significantly faster 
than cells cultured in SF/XF-M at day 7 to day 14 (p < 0.001) (Figure 
5A). Moreover, no significant differences were observed between cells 
cultured in FBS-M and HS-M.

In Figure 5B, we have shown the effect of 5%, 10%, 15% and 20% HS 
concentrations on passaged DPSCs proliferation after initial isolation 
of cells in 20% HS. At day 7, the cells cultured in 10%, 15% and 20% 
showed significant increase (p < 0.001) in cell numbers when compared 
with 5% HS cultured cells. Interestingly, on day 14 there was significant 
increase in cell proliferation in cells cultured in 15% HS (p < 0.001) 
when compared with 10% HS, and even higher cell proliferation was 
observed in 20% HS cultured cells (p < 0.001). Moreover, proliferation 
of cells cultured in 5% HS concentration was significantly slower in 
comparison to 10%, 15% and 20% (p < 0.001).

Furthermore, as shown in Figure 5A, SF/XF-M resulted in slower 
cell proliferation in comparison to the FBS-M and HS-M. Therefore, we 
speculated to see better cell proliferation by the addition of HS in the 
SF/XF-M. The results in Figure 5C, show that at day 4 the cells cultured 
in SF/XF-M + 5% HS significantly increased proliferation (p < 0.001) 
in comparison to other two conditions. However, SF/XF-M + 1% HS 
significantly increased cell proliferation following day 7 (p < 0.001) and 
14 (p < 0.05), in comparison to SF/XF-M alone and SF/XF-M + 5% HS.

Table 3: Primers sequence for quantitative RT-PCR.

Gene Name 5’-sequence-3’ Product size Accession number
RPLP0 Forward AATCTCCAGGGGCACCATT

Reverse   CGTTGGCTCCCACTTTGT 70 NM_001002
OCN Forward AGCAAAGGTGCAGCCTTTGT

Reverse  GCGCCTGGGTCTCTTCACT 63 NM_000711
OPN Forward GCCGACCAAGGAAAACTCACT

Reverse  GGCACAGGTGATGCCTAGGA 71 J04765
SOX9 Forward AAAGGCAACTCGTACCCAAATTT

Reverse  TGATTGGCCACAAGTGGGTAA 75 NM_000346
COL10A1 Forward CACGCAGAATCCATCTGAGAATAT

Reverse  GTTCAGCGTAAAACACTCCATGAA 92 NM_000493
PPARG Forward CAGTGTGAATTACAGCAAACC

Reverse ACAGTGTATCAGTGAAGGAAT 100 NM_015869
AP2 Forward GGTGGTGGAATGCGTCATG

Reverse CAACGTCCCTTGGCTTATGC 71 NM_001442
OCT3/4 Forward GACAGGGGGAGGGGAGGAGCTAGG

Reverse CTTCCCTCCAACCAGTTGCCCAAAC 118 NM_002701
SOX2 Forward GGGAAATGGGAGGGGTGCAAAAGAGG

Reverse  TTGCGTGAGTGTGGATTGGTG 125 NM_003106
NANOG Forward AAAGAATCTTCACCTATGCC

Reverse GAAGGAAGAGGAGAGACAGT 111 NM_024865
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Osteogenic differentiation

The DPSCs were induced to differentiate towards osteogenic 
lineage with the addition of vitamin D3 in the osteogenic medium for 
21 days. The alizarin red staining results showed that DPSCs cultured 
in FBS-OM and HS-OM formed mineralized matrix, however, the 
calcified matrix staining was more pronounced in cells cultured 
in HS-OM. On the other hand, cells cultured in SF/XF-OM did not 
mineralize and the cell proliferation was also very slow as observed 
upon microscopical analysis (Figure 6A). Afterwards, the osteoblast 
genes expression pattern for OCN and OPN in DPSCs cultured in FBS-
OM, HS-OM and SF/XF-OM were analyzed at mRNA level (Figure 6B 
and 6C). Similar to the staining results, the cells cultured in FBS-OM (p 
< 0.05) and HS-OM (p < 0.05) upregulated OCN levels when compared 
with cells cultured in FBS-M. Cells cultured in SF/XF-OM regulated 
OCN expression at a very low level non-significantly. Moreover, OPN 
expression was upregulated by cells cultured in FBS-OM (p < 0.01). 
Even though OPN levels were upregulated by cells cultured in HS-OM, 
the results were non-significant due to variability in expression levels 
between patient samples. 

Chondrogenic differentiation

Chondrogenesis was estimated after staining the micro masses 
cultured in CM after 21 days, with Alcian blue stain, which stains 
the proteoglycan rich extracellular matrix. Cells isolated in FBS, HS 
or SF/XF media differentiated into chondrocytes-like cells when they 
were cultured in chondrogenic medium, however, more pronounced 
proteoglycan rich matrix was produced by cells isolated in FBS-M 
(Figure 7A). Following the staining, the mRNA expression of cells 
cultured in CM was analyzed. DPSCs isolated in FBS significantly 
upregulated SOX9 expression (p < 0.001), when the aggregates were 
differentiated in CM in comparison to undifferentiated aggregates 
cultured in FBS-M (Figure 7B). Moreover, expression of hypertrophic 
cartilage marker; Type X collagen was significantly increased in cells 
cultured in FBS (p < 0.001) and HS (p < 0.05) when they were induced 
with chondrogenic medium (Figure 7C). 

Adipogenic differentiation

Differentiation into adipocytes was analyzed after 21 days of 
culturing the cells in AM by Oil Red O staining. DPSCs cultured in 
HS-AM had stronger capacity to differentiate into adipocytes than cells 
cultured in FBS-AM and SF/XF-AM. These results were assessed based 
on the higher number of accumulated lipid droplets. The potential 
of DPSCs to differentiate into adipocytes was also observed when 
the cells were cultured in HS-M without the addition of adipogenic 
differentiation supplements; however, DPSCs formed very few lipid 
droplets. Evident morphological differences were observed in cells 
differentiated in SF/XF-AM showing lipid vacuoles and rounded cell 
shape in comparison to cells cultured in control SF/XF-M (Figure 
8A). Subsequently, the mRNA expression of adipogenic markers AP2 
and hPPARG were analyzed and the results showed that although 
expression of both the markers were upregulated by cells cultured in 
FBS-AM, no statistically significant difference was found in comparison 
to cells cultured in FBS-M (Figure 8B and 8C). Moreover, DPSCs 
cultured in HS-AM significantly up regulated the expression of both 
AP2 and hPPARG (p < 0.001, p < 0.01) in comparison to cells cultured 
in FBS-M. On the other hand, cells differentiated in SF/XF-AM and 
undifferentiated cells in SF/XF-M showed similar expression of both 
the markers despite of morphological differences.

Discussion
DPSCs obtained from impacted third molar teeth have been studied 

extensively for their excellent proliferation and multipotentional 
differentiation capacity [13-15,40,41]. There are several promising 
investigations describing the role of human DPSCs for mineralized 
tissue regeneration, advancing their therapeutic relevance as a valuable 
stem cell source [42-44]. However, in order to facilitate the translation 
of DPSCs from basic biology to clinical application, the development of 
appropriate cell culture protocols is a relevant and critical factor. Most 
commonly, DPSCs are cultured in FBS, which poses risk of transferring 
infections and induction of immune reactions upon transplantation 
[23,24]. With respect to the immuno pathogenic risks posed due to 
addition of FBS in cell culture, HS has been considered to be a safer 
alternative excluding the transfer of animal derived infections and 
related immunogenic reactions. But results related to MSCs cultured in 
HS are contradictory, some studies have reported successful isolation 
and differentiation of MSCs [30,35], whereas, others have observed 
slower cell proliferation or even growth arrest [22,31]. However, there 
is lack of information on the effect of HS in cultivation of DPSCs. In 
addition, other culture conditions comprising of chemically defined 
SF/XF media have been researched that might serve as a better 
alternative and would bring about effective proliferation without 
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Figure 2: Stemness markers Oct3/4, Sox2 and Nanog are expressed 
in DPSCs. Immunostainings of intracellular stemness markers Oct3/4 (A), 
Sox2 (D) indicator of nuclei DAPI (B, E) and merged images of Oct3/4 and 
Dapi (C) and Sox2 and Dapi (F). Scale bar =200 µm. Gene expression of 
stemness markers were analyzed by qRT-PCR in different media, SF/XF-M, 
HS-M and FBS-M (G). Data represents the mean ± SD and are normalized 
to housekeeping gene RPLP0. (n = 4, *p < 0.05, **p< 0.01 ***p< 0.001).

Figure 3: Morphology of DPSCs culture in (A) FBS-M were broader and 
flattened in shape (B) in HS-M cells appeared spindle-shaped and (C) in 
SF/XF-M cells appeared flattened fibroblastic. Scale bar =100 µm. DPSCs: 
dental pulp stem cells; FBS-M: fetal bovine serum medium; HS-M: human 
serum medium; SF/XF-M: serumfree/xenofree medium.
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altering the cellular phenotypic features. There are reports showing the 
effects of serum free or low serum containing media on DPSCs cultures 
[38,45]. Nevertheless, DPSCs cultured in SF/XF medium, has not 
been reported, so far. Therefore, to safely produce DPSCs for clinical 
applications, in this present work we evaluated the response of FBS, 
HS or SF/XF media on isolation, expansion, morphology, phenotype, 
growth and multilineage differentiation potential of DPSCs. 

In this study, we first sought to investigate the influence of FBS, 
HS and SF/XF media directly on cell isolation and proliferation. The 
cells isolated and cultured in FBS showed consistent proliferation, 
as reported in several publications [46,47]. Here, we have shown for 
the first time that 10% HS did not support the isolation of DPSCs, 
whereas, 20% HS supported the direct isolation and whereas, further 
expansion of the DPSCs was possible in lower HS concentrations 
10% and 15%. Intriguingly, in our study, DPSCs directly isolated in 
SF/XF-M and cultured on coated plates did not proliferate. Hence, 
cells isolated in 20% HS-M were used to expand the cells in SF/XF-M 

which resulted in cell proliferation but at a very slow rate. However, in 
our study we elucidated the role of HS in SF/XF-M for increasing the 
cell proliferation. Interestingly, SF/XF-M + 1% HS showed increased 
DPSCs proliferation in comparison to SF/XF-M alone or SF/XF-M + 
5% HS. Therefore, its important to note that SF/XF-M alone may not be 
sufficient for DPSCs growth, however, AD-MSCs have been reported 
to proliferate better in the same SF/XF-M [37], suggesting variability in 
responsiveness to SF/XF-M between different sources of MSCs. To our 
knowledge, this response to SF/XF-M and addition of HS has not been 
reported, however, other SF/XF-M compositions remains to be tested. 
Nonetheless, FBS and HS media cultivated DPSCs showed increased 
proliferation. Thus, these findings propose that HS was equally effective 
as FBS in supporting DPSCs proliferation, similar response has been 
successfully reported in other studies with BM-MSCs and AD-MSCs 
[30,48,49]. 

Further, after assessing the adherence and proliferation, DPSCs 
cultured in different media were evaluated for cell surface markers 
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Figure 4: Surface marker expression of DPSCs cultured in FBS-M, HS-M and SF/XF-M was analyzed by flow cytometry. (A,C) Histograms demonstrating the 
forward and side scatter, relative cell count (y-axis) and fluorescence intensity (x-axis), with unstained control cells (empty histogram) and cells stained with antibodies 
against the surface proteins (filled histogram). (B,D) Column graph of flow cytometry data of surface marker expression levels, the bars represent the mean ± SD 
(n = 4). DPSCs: dental pulp stem cells; FBS-M: fetal bovine serum medium; HS-M: human serum medium; SF/XF-M: serumfree/xenofree medium.
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expression established to define them as MSCs [50]. DPSCs expressed 
CD29, CD44, CD90 and CD105 mesenchymal markers which are 
involved in MSCs migration, cell-cell matrix interaction and cell 
adhesion [37,51] and moderately expressed CD45 but lacked expression 
of CD31 hematopoietic markers and HLA-DR. Strikingly, we did not 
observe high variation in the expression of mesenchymal markers 
in DPSCs cultured in FBS, HS and SF/XF media conditions. This is 
especially important, since we have seen that cells cultured in SF/XF-M 
showed slower cell proliferation in comparison to FBS and HS. In view 

of the result, it is reasonable to speculate that serum is essential for cell 
attachment and proliferation of DPSCs, as suggested in a report [52]. 
However, the effect of other serum free/ xenofree media alternative 
needs to be elucidated further to delineate a definitive response on 
DPSCs. Furthermore, it is previously suggested that DPSCs originate 
from perivascular niche [53]. In view of the perivascular marker CD146 
expression, we observed highest variability between four patient DPSCs 
samples tested which were cultured in the FBS-M, HS-M and SF/XF-M. 

Recent findings have proposed that cell surface antigen SSEA-
4 as well as intracellular stemness markers Oct3/4, Sox2 and Nanog 
can be used as specific markers to detect DPSCs with high multipotent 
differentiation potential [13,54,55]. Studies in hESCs has revealed 
that the regulatory loop between Oct3/4, Sox2 and Nanog genes are 
uncoupled, allowing the expression of Sox2 in the absence of Nanog 
and Oct3/4; and similarly, expression of Oct3/4 in the absence of Sox2 
and Nanog. It has been proposed that each factor controls specific 
cell fate and lineage commitment [56]. Nevertheless, the expressions 
of these genes are indicative of indefinite stem cell division, with 
unaffected differentiation potential or the capacity for self-renewal [57]. 
Our immunostaining and QRT-PCR results indicated, Oct3/4, Nanog, 
Sox2 and SSEA-4 markers to be expressed in cells cultured in all media 
conditions (SF/XF, HS and FBS). This suggests that cells in our study 
did retain the stemness and multilineage differentiation potential and 
maintained their self-renewability regardless of serum conditons.

Eventually we investigated the last criteria to define DPSCs as MSCs 
[50]; cells cultured in FBS, HS or SF/XF differentiation media were 
assessed for osteogenic, adipogenic and chondrogenic differentiation 
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Figure 5: Response of FBS-M, HS-M and SF/XF-M on DPSCs 
proliferation assessed by WST-1 proliferation assay at day 1, 4, 7, 
11 and 14. Cell proliferation in FBS-M, HS-M increased significantly from 
day 7 to 14 in comparison to cells cultured in SF/XF-M (A). Comparative 
analysis of DPSCs proliferation in varying concentrations of HS serum 
5%-20%.The significant increase in proliferation was observed in serum 
concentration 10%, 15%, 20% at day 7 and 14 in comparison to 5%HS-M 
(B). Cell proliferation in SF/XF-M+1%HS increased significantly from day 4 to 
7 in comparison to SF/XF-M (C). The bars represent the mean ± SD (n = 4, 
asterisks indicate significant differences, *p < 0.05, **p< 0.01, ***p< 0.001). 
DPSCs: dental pulp stem cells; FBS-M: fetal bovine serum medium; HS-M: 
human serum medium; SF/XF-M: serumfree/xenofree medium.
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Figure 6: The osteogenic differentiation analysis for DPSCs cultured 
in FBS-OM, HS-OM and SF/XF-OM. Alizarin red stained the calcified 
mineralized matrix (A) and qRT-PCR analysis of osteogenic differentiation 
related gene expression for OCN (B) and OPN (C). Data represents the 
mean ± SD and are normalized to housekeeping gene RPLP0. (n = 4, 
*p < 0.05, **p< 0.01 ***p< 0.001). (Online version in colour).
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Figure 7: Chondrogenic differentiation analysis for DPSCs cultured 
in chondrogenic differentiation media in comparison to cells cultured 
in FBS, HS and SF/XF media. Histological staining by Alcian blue stain 
of DPSCs micromasses showing chondrogenic differentiation with more 
proteoglycan content in FBS isolated cells (A) (Scale Bar=100 µm) and 
qRT-PCR analysis of chondrogenic differentiation related gene expression 
for SOX9 (B) and COL10A1 (C). Data represents the mean ± SD and are 
normalized to housekeeping gene RPLP0. (n = 4, *p < 0.05, **p< 0.01 ***p< 
0.001). (Online version in colour).
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potential in vitro. There are several studies reporting the mineralization 
potential of DPSCs induced by osteogenic medium supplemented with 
FBS [11,19,58,59], as also shown in our previously published data [46]. 
However, in our previous study, DPSCs were induced to differentiate 
osteogenically in FBS medium containing 1α25-dihydroxyvitamin D3 
(VD) instead of dexamethasone as an osteogenic inducer. Similarly, 
here we have shown that mineralized tissue formation was induced by 
HS-OM supplemented with VD which differentiated DPSCs towards 
mineral nodule formation. To ensure the osteogenic differentiation, 
mineralized matrix was stained with alizarin red, which is a specific 
stain to qualitatively detect calcification in vitro [60]. Additionally, 
upregulation of OPN (intermediate osteogenic differentiation marker) 
and OCN (late maker of osteogenic differentiation) expressions were 
observed which are associated with matrix synthesis and mineralization 
[61,62] by DPSCs cultivated in FBS-OM and HS-OM at mRNA 
level. Furthermore, DPSCs cultured in FBS exhibited the capacity to 
differentiate towards chondrocytes-like cells, as shown in previous 
studies [20,58]. Here, for the first time we have reported that cells 
cultured in HS and SF/XF also have the ability to form chondrocyte-like 
cells. However, in our study SF/XF-OM failed to induce any osteogenic 
differentiation of DPSCs. As reported in the literature, StemPro® SF/XF 
medium supported the multipotent differentiation of AD-MSCs [37], 
the reason for the discrepancy in our results could be attributed to the 
absence of unknown growth factors in the SF/XF medium, essential 
for DPSCs differentiation. However, SF/XF-AM did result in lipid 
accumulation, but adipogenic differentiation was more pronounced in 
cells cultured in FBS or HS as observed by oil O red staining, which 
revealed intracellular fat droplets [63]. In addition, adipogenic specific 
markers AP2 and PPARG which are mainly expressed in fat tissue [64] 

were upregulated in FBS and HS supplemented cultures. Moreover, 
it is widely known that DPSCs differentiate into adipocytes in FBS 
adipogenic medium [9,11], but to our knowledge for the first time our 
investigation has reported adipogenic capacity of DPSCs in HS and SF/
XF supplemented medium.

In summary, our results showed that HS-M supported isolation, 
expansion, expression of cell surface markers and stemness markers 
and retained multipotent differentiation capacity of DPSCs similar to 
FBS-M. Therefore, the use of pooled HS may serve as a safer alternative 
to FBS for cell therapies. However, the variability in results due to less 
number of patient samples is the limitation of this study. Nevertheless, 
these findings are essential for the future clinical studies of DPSCs 
for their use in stem cell based therapies to bioengineering tissues. 
Additionally, the composition of SF/XF medium needs to be further 
optimized for DPSCs culture in terms of cell isolation, expandability 
and differentiation efficiency to reach clinical applicability. 
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Introduction

Considerable bone loss due to trauma, periodontitis, resorp-
tion of edentulous maxillary ridge, and delayed healing of 
the extraction sockets compromises placement of dental 
implants.1,2 It is known that sufficient bone augmentation is 
a prerequisite for placement of dental implants to achieve 
functionality and long-term treatment outcomes.3 
Traditionally, for repairing such defects, autogenous or 
allogenic bone grafts are harvested and implanted into the 
affected areas.4 However, due to the clinical drawbacks 
including donor site morbidity and risk of transmitted dis-
eases, there is a need for alternative solutions such as tis-
sue-engineered bone grafts.5 Tissue engineering is an 
interdisciplinary approach to repair damaged tissue. This 
approach regenerates the tissue through the use of biode-
gradable implants combined with in vitro cultured stem 
cells and differentiation factors.6,7 Mesenchymal stem cells 
(MSCs) are a unique and easily isolated source of cells for 
bone tissue engineering. Various sources for MSCs have 

been reported, including the bone marrow (BM), cord 
blood (CD), and adipose tissue (AD), and their potential in 
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bone regeneration has been studied extensively in vitro8–10 
and in clinical applications.2,6

Recently, there has been emerging inclination toward 
studying another source of MSCs obtained from teeth such 
as dental pulp tissue for its ability to regenerate bone.11 
Dental pulp stem cells (DPSCs) can be isolated from the 
dental pulp tissue, which is obtained from the impacted 
third molar teeth with ease and minimal tissue site morbid-
ity. The dental pulp tissue is a loose connective tissue that 
provides nutritional and sensory properties to dentin and 
has reparative capacity to form tertiary dentin; therefore, it 
is believed to possess stem/progenitor cells.12 Several 
research reports have shown clonogenic ability, rapid pro-
liferative rate, and multiple differentiation ability of DPSCs 
including two studies from our group.13–15 Most commonly, 
osteogenic differentiation potential of DPSCs has been 
induced by dexamethasone (DEX), which is a synthetic 
glucocorticosteroid.16 Another osteogenic inducer, 1α,25-
dihydroxyvitamin D3 (vitamin D3 (VD)), in combination 
with β-glycerophosphate and ascorbic acid has been 
reported as more potent than DEX for DPSC differentiation 
in our previous study14 and in another study for AD-MSCs 
differentiation.17 Apart from the osteogenic inducers, high 
fetal bovine serum (FBS) concentration has been shown to 
induce osteogenesis, wherein a subpopulation of DPSCs 
were capable of forming woven bone in vitro.18 Intriguingly, 
in a clinical study, it was shown that DPSCs isolated in FBS 
containing medium seeded onto collagen sponge scaffolds 
and implanted in the tooth extraction socket hastened the 
process of bone regeneration.19 Nevertheless, there are con-
cerns regarding the use of FBS and other animal-derived 
supplements in culturing cells for clinical therapy due to 
risk of transmitting zoonoses in humans.20,21 Thus, alterna-
tive serum supplementation is needed; the possible choice 
would be autologous or pooled allogenic human serum 
(HS), which can be tested for human pathogens before 
use.22,23

A range of biomaterials have been studied to investigate 
the MSC attachment, growth, and osteogenic differentia-
tion.24,25 Collagen sponge in combination with DPSCs has 
been successfully used to regenerate bone in tooth extrac-
tion sockets.19 However, it has been shown that collagen 
sponge as a scaffold has poor mechanical strength and high 
dimensional changes.26 On the other hand, osteoconductive, 
bioresorbable, bioceramic material β-tricalcium phosphate 
(β-TCP) has been used for bone tissue engineering applica-
tions in clinics for years but this material has poor mechan-
ical strength.27,28 To overcome the mechanical strength 
drawback of bioceramics, combination of β-TCP and 
poly(l-lactic acid) (PLLA) or polycaprolactone (PCL) has 
been fabricated, which allows defining the shape and main-
tenance of the structural integrity of the tissue-engineered 
bone graft in load-bearing applications.25,29 PLLA and PCL 
are polymeric synthetic composite materials, they are bio-
compatible and degradable by the process of hydrolysis.30 

As a prerequisite, scaffold should degrade at the same time 
as bone regenerates; however, PCL has an extended degra-
dation rate31 and PLLA has higher degradation rate.32 In 
order to tune the degradation rate, a novel PCL/PLLA com-
posite scaffold was devised for bone tissue engineering.30 
Taken together, we hypothesized that the combination of 
osteoconductive properties of β-TCP and the mechanical 
strength of PLLA and PCL fabricated medical-grade bioma-
terial by Synthes® may mimic the characteristics of a natural 
bone extracellular matrix (ECM).25,29,30,33

Thus, the aim of this study was to assess DPSC adhe-
sion, proliferation, and osteogenic differentiation within 
β-TCP/P(LLA/CL) three-dimensional (3D) scaffolds in 
clinically applicable conditions by using HS as a medium 
supplement to replace FBS. Furthermore, the osteogenic 
differentiation of the DPSCs within the β-TCP/P(LLA/CL) 
biomaterial scaffold induced by VD or DEX was compared 
under xeno-free conditions.

Material and methods

Cells isolation and culture

Human-impacted third molars were obtained with informed 
consent from Finnish Student Health Services, Tampere, 
Finland. The collection of stem cells from tooth samples 
was approved by the Ethics Committee of the Pirkanmaa 
Hospital District, Tampere, Finland (R06009). Human den-
tal pulp explants were obtained from partially impacted 
third molar teeth (Figure 1(a)) of three patients aged 21–26 
years (23 ± 2.5 years). The pulp tissue explants (Figure 
1(b)) were transported to the laboratory in Dulbecco’s 
phosphate-buffered saline (DPBS; BioWhittaker; Lonza, 
Verviers, Belgium) containing 2% antibiotics/antimycotics 
(a/a; 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 
0.25 µg/mL amphotericin B; Life Technologies, Paisley, 
Scotland). The dental pulp tissue fragments were minced 
by using scalpels and were then digested in collagenase 
type I (3 mg/mL; Invitrogen) and dispase (4 mg/mL; 
Invitrogen) for 1 h at 37°C.[AQ: 5]Once digestion was 
completed, the obtained cell pellet was suspended in 500 
µL of DPBS and was passed through a 100-µm cell strainer 
(Falcon; BD Labware, Franklin lakes, NJ, USA). The iso-
lated DPSCs were cultured and expanded in Dulbecco’s 
modified Eagle’s medium (DMEM)/F-12, 1:1 mixture 
(Gibco Life Technologies, Paisley, UK) supplemented with 
1% l-alanyl-l-glutamine (GlutaMAX I; Life Technologies), 
1% a/a, and 20% allogenic HS (PAA Laboratories GmbH, 
Pasching, Austria) (human serum medium (HS-M)). DPSCs 
isolated and expanded in HS-M were harvested using 
TrypLE Select (Life Technologies) for xeno-free detachment 
of cells.

After initial passaging, the concentration of HS was 
reduced to 15% in the culture medium. Cell culture plates 
and flasks were monitored daily for cell growth, with 
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medium changes taking place three times per week. All 
assays were performed using cells between passages 2 and 
4, and all experiments were repeated using DPSCs derived 
from three different donors (n = 3).

Flow cytometric surface marker expression analysis

DPSCs cultured in HS-M were analyzed for cell surface 
antigen expression by flow cytometry (fluorescence-
activated cell sorting (FACS); FACSAria®; BD Biosciences, 
Erembodegem, Belgium). Monoclonal antibodies 
(MAb) against CD90-Allophycocyanin (APC), CD105-
phycoerythrin (PE) (R&D Systems Inc., Minneapolis, 
MN, USA), CD31-fluorescein isothiocyanate (FITC) 
(Immunotools GmbH, Friesoythe, Germany), and CD45-
FITC (Miltenyi Biotec, Bergisch Gladbach, Germany) 
were used. Antibodies were added to 100,000 cells/sam-
ple and then incubated for 30 min at 4°C in the dark. 
After incubation, cells were washed and then analyzed by 
flow cytometry.

Preparation and evaluation of the 
biomaterial by scanning electron microscope

β-TCP/P(LLA/CL) (ChronOS™) was provided by Synthes 
(Oberdorf, Switzerland); the material is accepted for clini-
cal use as a bone graft substitute. The biomaterial was sup-
plied in sterile strip form with a size of 2.5 cm × 5 cm 
(Figure 2(a)): two 3-mm-thick strips and three 6-mm-thick 
strips. For the experiments, the strips were cut into 1 cm × 
0.8 cm pieces (Figure 2(a)) with scalpels in sterile condi-
tions under the laminar flow hood.

Subsequently, for scanning electron microscope 
(SEM) analysis, the biomaterial samples were rinsed 
with DPBS and dehydrated through a series of ascending 
concentration of ethanol (30%, 50%, 70%, 90%, and 
100%). The samples were then incubated in hexamethyl-
disilazane (HMDS) for 10 min and dried overnight in a 
dessicator. The dried biomaterial scaffolds were cut into 
half and mounted on a double-sided carbon tape. A plati-
num coating was sputtered on the samples before SEM 
observation.

Cell seeding and treatment conditions

The biomaterial scaffold pieces were transferred into 
24-well plates, washed with DPBS, and incubated in HS-M 
at 37°C in 5% CO2 for assisting in attachment of cells 
before cell seeding. After 48 h of incubation, the scaffolds 
were seeded with 300 cells/mm3, and 150 µL of cell sus-
pension was added onto each biomaterial scaffold. Cells 
were allowed to attach within the porous scaffold for 2 h 
before adding 500 µL of the culture or differentiation 
medium. Osteogenic medium (OM), containing HS and 
either of the hormones dexamethasone (OM-DEX; 10 nM) 
or 1α,25-dihydroxyvitamin D3 (OM-VD; 100 nM) in addi-
tion to 50 µM l-ascorbic acid 2-phosphate (AA; Sigma) 
and 10 mM β-glycerophosphate (Sigma) were added for 
inducing osteogenic differentiation in the cell-seeded 
scaffold.[AQ: 6]DPSC-seeded biomaterials in HS-M 
were used as control.

Cell attachment and viability

Cell attachment and viability of DPSCs in biomaterial 
scaffolds cultured in HS-M were evaluated at days 1, 7, 
and 14 using live/dead-cell staining kit (Molecular Probes, 
Eugene, OR, USA) according to the manufacturer’s pro-
tocol. In brief, cell-seeded scaffolds were incubated in 
DPBS-based dye solution, containing 0.5 µM of calcein 
AM (green fluorescence; Molecular Probes) (4 mmol/L) 
and 0.5 µM of ethidium homodimer-1 (EthD-1; red fluo-
rescence; Molecular Probes) (2 mmol/L) for 45 min at 
room temperature (RT). The dye solution was replaced by 
fresh DPBS solution. The viable cells (green fluores-
cence) and necrotic cells (red fluorescence) were exam-
ined using a fluorescence microscope.

CyQUANT® cell proliferation assay

CyQUANT® Cell Proliferation Assay Kit (CyQUANT; 
Molecular Probes, Invitrogen) was used according to the 
manufacturer’s protocols to assess the cell numbers at 1, 7, 
and 14 days. Cell-seeded scaffolds were cultured in 
OM-DEX, OM-VD, and HS-M. In brief, 500 µL of 0.1% 

Figure 1. (a) Representative pictures of extracted human-impacted third molar tooth to obtain (b) dental pulp tissue. (c) After 14 
days, the cell morphology appeared spindle shaped as observed under phase contrast microscope, scale bar = 100 μm.
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Triton X-100 (Sigma) was pipetted through the cell-seeded 
scaffolds and the lysed cell suspensions were frozen until 
analysis. The CyQUANT cell proliferation assay is based 
on the green fluorescence dye, CyQUANT GR dye, which 
intensifies when it binds to the nucleic acid of DNA. The 
fluorescence, which is directly proportional to the number 
of cells in the sample, was measured at 480/530 nm using a 
microplate reader (Victor 1420 Multilabel Counter; Wallac, 
Turku, Finland).

Alkaline phosphatase staining

In vitro osteogenic differentiation capacity of the DPSCs 
induced by OM-DEX and OM-VD was determined at day 
14 by alkaline phosphatase (ALP) staining. The control 
cell-seeded scaffolds were cultured in HS-M. Cell-seeded 
scaffolds were stained by using a leukocyte ALP kit accord-
ing to Sigma procedure 86 (cat. no. 86R-1KT). In brief, 
cell-seeded scaffolds were fixed with 4% paraformalde-
hyde (PFA) solution for 2 min. ALP staining solution was 
added to the scaffolds following the fixation. After 15 min 
of incubation in the dark, the ALP staining solution was 
removed and the scaffolds were washed to remove excess 
stain. Thereafter, digital images were taken of the ALP 
stained and unstained scaffolds.

Immunostaining

After 14 days of inducing osteogenic differentiation in the 
cell-seeded scaffolds using OM-DEX and OM-VD, they 

were immunostained with primary antibody antihuman 
osteocalcin (OCN) (AbD Serotec, Immunodiagnostics Oy, 
Finland). The cell-seeded scaffolds cultured in HS-M were 
used as controls. In brief, the cell-seeded scaffolds were 
fixed with 4% PFA for 10 min and then blocked against 
nonspecific antigen binding with 10% normal donkey 
serum (NDS), 0.1% Triton X-100, and 1% bovine serum 
albumin (BSA) in DPBS. After 45 min of blocking, the 
cell-seeded scaffolds were washed with 1% NDS, 0.1% 
Triton X-100, and 1% BSA in DPBS (washing solution). 
The primary antibody antihuman OCN was diluted to 1 : 50 
in the washing solution. The cells were incubated overnight 
at +4°C with the primary antibody. The next day, the cells 
were washed with 1% BSA in DPBS and incubated for 1 h 
at RT. Thereafter, cells were incubated for 1 h in Alexa 
Fluor-488 (1 : 1000; Invitrogen) conjugated anti-mouse 
secondary antibody, diluted in 1% BSA in DPBS. Then, 
cells were sequentially washed with PBS and phosphate 
buffer and mounted with Vectashield (4′,6-diamidino-
2-phenylindole (DAPI); Vector Laboratories, Peterborough, 
UK). For negative controls, primary antibody was omitted. 
Stained DPSCs within the scaffolds were imaged using a 
microscope equipped with a fluorescence unit and camera.

Quantitative real-time polymerase chain 
reaction

The cell culture conditions were same as described for ALP 
staining. The control samples were maintained in the HS-M. 
The total RNA was extracted at 7 and 14 days using Eurozol 

Figure 2. (a) Representative pictures of the β-TCP/P(LLA/CL) (ChronOS) biomaterial strip and the biomaterial pieces cut into 1 cm 
× 0.8 cm dimension for in vitro analysis. (b) Scanning electron microscope analysis showing β-TCP particles embedded in P(LLA/CL) 
and (c) the fine structure of β-TCP particle, scale bar = 20 and 100 μm.[AQ: 18]
β-TCP/P(LLA/CL): β-tricalcium phosphate/poly(l-lactic acid/caprolactone).
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(Euroclone S.p.A, Pero, Italy). First-strand complementary 
DNA (cDNA) syntheses were performed by a High Capacity 
cDNA Archive Kit (Applied Biosystems, Warrington, UK). 
Quantitative real-time polymerase chain reaction (qRT-
PCR) was conducted using primers for human acidic riboso-
mal phosphoprotein (RPLP0), OCN, osteopontin (OPN), 
and ALP (Table 1). To exclude signals from contaminating 
DNA, the forward and reverse sequences of each primer 
were designed on different exons. The Power SYBR Green 
PCR Master Mix (Applied Biosystems) was used for 
quantitative PCR reactions according to the manufacturer’s 
instructions. The reactions were performed with ABI Prism 
7300 Sequence Detection System (Applied Biosystems) at 
95°C/10 min, and then 45 cycles at 95°C/15 s and 60°C/60 
s were performed. The Ct values for OCN, OPN, and ALP 
were normalized to that of the housekeeping gene RPLP0, 
as described elsewhere.34[AQ: 7]

Statistical analysis

The statistical analyses of the results were performed with 
GraphPad Prism 5.01. The data are presented as mean ± 
standard deviation (SD) for all quantitative assays, and 
experiments were carried out in triplicate for cells derived 
from three donor samples. All statistical analyses were per-
formed at the significance level p < 0.05 using one-way 
analysis of variance (ANOVA) with Bonferroni post hoc 
test for multiple comparisons.

Results

Cell isolation and morphology

From day 1 to day 9, DPSCs cultured in HS-M proliferated 
in colonies and spherical clusters. Morphologically, cells 
mostly appeared spindle shaped and comprised a homoge-
nous cell population when viewed under the phase contrast 
microscope (Figure 1(c)). After first passage, the cells did 
not proliferate in clusters; rather, cells were more spread 
out and proliferated uniformly.

Flow cytometric surface marker expression 
analysis for human DPSCs

Prior to seeding the cells into the biomaterial scaffolds, 
flow cytometric assay was done to define the mesenchymal 
surface marker expression of the cells. The DPSCs were 
strongly positive for MSC markers CD90 and CD105 and 
were negative for hematopoietic lineage markers CD31 and 
CD45 (Figure 3).

Cell attachment and viability

The cell-seeded scaffolds cultured in HS-M were analyzed 
for cell viability. The results revealed that DPSCs were 
viable, attached, and migrated into the pores of the bioma-
terial scaffold following day 1, day 7, and day 14 time 
course, with very few dead cells. Visually, upon viewing 
microscopically, more cells were observed at day 7 and day 
14 in comparison to day 1 (Figure 4).

Cell proliferation

The cell-seeded scaffolds cultured in HS-M, OM-DEX, and 
OM-VD were assessed for increase in cell numbers from 
day 1 and day 7 to day 14. There was significant increase in 
cell numbers at day 7 (p < 0.01) and day 14 (p < 0.001) time 
points, when cells cultured in OM-VD were compared to 
the control HS-M at days 7 and 14 (Figure 5). Though there 
was no significant increase in cell numbers when cells were 
cultured in OM-DEX, the cells numbers increased nonsig-
nificantly. Moreover, there was significant increase (p < 
0.001) in cell numbers cultured in OM-VD when compared 
to OM-DEX at day 14.

ALP staining and messenger RNA expression 
of ALP

ALP is an early marker that indicates differentiation of cells 
toward osteogenic lineages.35 The ALP activity of cells cul-
tured in HS-M, OM-DEX, and OM-VD is depicted in 
(Figure 6(a) to (c)). Interestingly, ALP activity expressed 

Table 1. Primer sequences for quantitative RT-PCR

Name 5′-sequence-3′ Product size Accession number

RPLP0 Forward: AATCTCCAGGGGCACCATT 70 NM_001002
 Reverse: CGTTGGCTCCCACTTTGT  
Osteocalcin Forward: AGCAAAGGTGCAGCCTTTGT 63 NM_000711
 Reverse: GCGCCTGGGTCTCTTCACT  
Osteopontin Forward: GCCGACCAAGGAAAACTCACT 71 J04765
 Reverse: GGCACAGGTGATGCCTAGGA  
Alkaline phosphatase Forward: CCCCGTGGCAACTCTATCT 73 NM_000478.4
 Reverse: GATGGCAGTGAAGGGCTTCTT  

RT-PCR: real-time polymerase chain reaction.
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by cells cultured in OM-VD was stronger than the cells cul-
tured in OM-DEX. The control cells were cultured in HS-M 
and no ALP staining could be detected. Subsequently, similar 
findings were observed when ALP expression was analyzed 
at mRNA level. ALP expression was significantly induced 

at day 7 (p < 0.05) and day 14 (p < 0.05) when the DPSCs 
treated with OM-VD were compared with control sample. 
However, no significant differences were observed when 
cells treated with OM-DEX and OM-VD were compared, 
as shown in (Figure 6(d)).

Figure 3. Surface marker expression of dental pulp stem cells cultured in human serum medium as analyzed by flow cytometry. 
Histograms demonstrating the relative cell count (y-axis) and fluorescence intensity (x-axis), with unstained control cells (empty 
histogram) and cells stained with antibodies against the surface proteins CD90, CD105, CD31, and CD45 (filled histogram).
FITC: fluorescein isothiocyanate; APC: allophycocyanin; PE: phycoerythrin.

Figure 4. Representative images of viable and dead DPSCs seeded on β-TCP/P(LLA/CL) 3D scaffolds at (a) day 1, (b) day 7, and (c) 
day 14 (scale bar = 500 μm). Viable cells stained green and dead cells stained red after calcein AM/EthD-1 staining.  The cells were 
seen to remain viable after day 7 and day 14 of culture in β-TCP/P(LLA/CL) as observed under the fluorescence microscope (n = 3) 
(online version in color).
DPSCs: dental pulp stem cells; β-TCP/P(LLA/CL): β-tricalcium phosphate/poly(l-lactic acid/caprolactone); 3D: three-dimensional.
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mRNA expression and immunostaining for OCN

The deposition of OCN in the ECM was used as a marker 
of osteogenic differentiation of DPSCs within the biomate-
rial scaffold. OCN protein expression was assessed by 
immunostaining (Figure 7(a) to (c)), the cells cultured in 
OM-VD expressed OCN slightly more in comparison to 
OM-DEX. Moreover, cells cultured in HS-M did not 
express OCN. When OCN mRNA expression was assessed, 
the OCN levels were significantly higher (p < 0.001) in 
cells cultured in OM-VD at day 14 in comparison to 
OM-DEX (Figure 7(d)). Also, OCN mRNA expressions 
were significantly (p < 0.001, p < 0.001) upregulated, when 
the control samples at day 7 and day 14 were compared 
with OM-VD cultured cells at day 14.

Consequently, we studied the expression of another late 
osteogenic marker, OPN, at mRNA level. Similar signifi-
cant OPN expressions were observed as OCN in different 
treatment conditions, even though the relative mRNA 
expression levels of OPN were weaker than relative mRNA 
expression levels of OCN. OPN mRNA expressions were 

Figure 5. Cell growth characteristics of DPSCs seeded on 
β-TCP/P(LLA/CL) 3D scaffolds at days 1, 7, and 14 assessed by 
measuring the DNA content.
DPSCs: dental pulp stem cells; β-TCP/P(LLA/CL): β-tricalcium 
phosphate/poly(l-lactic acid/caprolactone); 3D: three-dimensional; SD: 
standard deviation; DEX: dexamethasone; VD: vitamin D3.
The bars represent the mean ± SD and data are presented as relative 
cell numbers (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001).

Figure 6. ALP staining and relative mRNA expression of ALP in DPSCs seeded on β-TCP/P(LLA/CL) 3D scaffolds cultured in (a) HS-
M, (b) OM-DEX, and (c) OM-VD. Weaker ALP staining was observed in scaffolds cultured in (b) OM-DEX than (c) OM-VD at day 14. 
(d) The relative mRNA expression of ALP gene in DPSCs cultured in OM-VD was significantly higher than HS-M at days 7 and 14 time 
points. Results are reported as change in gene expression relative to untreated control (HS-M) set as 1 at day 7 time point.
ALP: alkaline phosphatase; mRNA: messenger RNA; DPSCs: dental pulp stem cells; β-TCP/P(LLA/CL): β-tricalcium phosphate/poly(l-lactic acid/capro-
lactone); 3D: three-dimensional; SD: standard deviation; DEX: dexamethasone; VD: vitamin D3; HS-M: human serum medium; OM: osteogenic medium.
Data represent the mean ± SD and are normalized to housekeeping gene RPLP0 (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001) (online version in 
color).[AQ: 19]
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significantly (p < 0.01, p < 0.001) upregulated, when the 
control samples at day 7 and day 14 were compared with 
OM-VD cultured cells at day 14 (Figure 7(e)). In addition, 
at day 14, cells treated with OM-VD significantly (p < 
0.001) upregulated OPN levels when compared with cells 
cultured in OM-DEX.

Discussion

Reconstruction of the alveolar bone by autografts or 
allografts to place dental implants requires an invasive 
technique to harvest grafts with a number of disadvan-
tages including donor site morbidity, compromised vas-
cularity, or limited tissue availability.36,37 Present 
treatment modalities for bone regeneration by tissue 
engineering necessitate temporarily substituting ECM 
by the use of synthetic porous, osteoconductive biomate-
rials that would assist in cell attachment and osteogene-
sis.25,29 The natural biomaterials such as chitosan and 

cellulose have certain disadvantages including low 
mechanical stiffness, lot-to-lot variability, and may be 
prone to contamination.38,39 Further considering the clin-
ical application of tissue-engineered bone grafts, the use 
of animal-derived components are not recommended, 
because they can elicit an immune response in patients 
upon implantation.21 This is because human cells are able 
to take up animal proteins and present them on their mem-
branes, thereby initiating xenogenic immune response 
leading to failure of the tissue-engineered graft.20,40[AQ: 
8]Therefore, our research concentrated on xeno-free 
alternatives for animal-derived culture reagents and use 
of medical-grade synthetic composite material for bone 
tissue engineering as a step toward translation to clinical 
application. Here, we have described the viability, cell 
attachment, proliferation, and osteogenic differentiation 
ability of the DPSCs within a synthetic biomaterial 
β-TCP/P(LLA/CL) 3D scaffold maintained in xeno-free 
conditions.

Figure 7. Representative immunofluorescence images of OCN expression in DPSCs seeded on β-TCP/P(LLA/CL) 3D scaffolds 
cultured in (a) HS-M, (b) OM-DEX, and (c) OM-VD (scale bar = 200 μm). The relative mRNA expressions of late osteogenic markers 
(d) OCN and (e) OPN in differentiated DPSCs cultured in OM-VD were significantly higher than untreated control (HS-M) and OM-
DEX treated cells. Results are reported as change in gene expression relative to untreated control (HS-M) set as 1 at day 7 time point.
ALP: alkaline phosphatase; mRNA: messenger RNA; DPSCs: dental pulp stem cells; β-TCP/P(LLA/CL): β-tricalcium phosphate/poly(l-lactic acid/capro-
lactone); 3D: three-dimensional; SD: standard deviation; DEX: dexamethasone; VD: vitamin D3; HS-M: human serum medium; OM: osteogenic medium; 
OCN: osteocalcin; OPN: osteopontin.
Data are represented as mean ± SD and are normalized to housekeeping gene RPLP0 (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001) (online version in 
color).[AQ: 20]
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Notably, to our knowledge, this is the first study where 
DPSCs were maintained in xeno-free culture conditions in 
vitro. In the literature, there are abundant reports discuss-
ing the isolation and culture condition for DPSCs.11,15,41 
Nonetheless, in these studies, DPSCs were cultured in 
FBS, which adds to the risk of transferring xenogenic anti-
bodies and transmitting viral/prion diseases upon clinical 
application.19,42,43 Moreover, HS has been explored as a 
possible alternative to FBS for culturing MSCs.23,44 
Furthermore, it was reported that HS could support prolif-
eration and differentiation of human MSCs as efficiently 
as FBS medium in vitro and could maintain their bone 
forming capacity in vivo.22 In this study, DPSCs cultured 
in HS adhered to the cell culture plastic and expressed 
membrane molecules CD90 and CD105 showing the mes-
enchymal origin of the cells and lacked expression of the 
hematopoietic markers CD31 and CD45, fulfilling the 
minimum criteria for defining MSCs.45

Furthermore, the clinical outcome is influenced by many 
different factors. For successful initial approach toward 
bone tissue engineering, the interaction between potential 
osteogenic MSCs, osteoconductive biomaterial, and differ-
entiation factors maintained in xeno-free conditions are the 
most relevant factors to be considered. Our choice of MSCs 
derived from dental pulp tissue was based on their ability to 
proliferate and differentiate osteogenically. Additionally, 
DPSCs are readily accessible and involve no invasive tech-
nique to obtain MSCs, which makes them a good candidate 
for use in bone tissue engineering. In a recent study, it was 
shown that canine DPSCs in combination with platelet-rich 
plasma formed mature bone with neovascularization and 
the response was similar to that of canine BM-MSCs at the 
dental implant site.46 Apart from that, the ability of human 
DPSCs to regenerate into bone has been reported in several 
in vitro/in vivo studies18,42,43 and also in a clinical study.19

In our study, we have shown that DPSCs are attached, 
remained viable, proliferated, and differentiated osteogeni-
cally within β-TCP/P(LLA/CL) scaffolds. With the purpose 
of distribution of cells and osteoconductivity within a bio-
material, porous β-TCP with good bone bonding properties 
is preferred.27 But due to poor mechanical strength, β-TCP 
is used for bone regeneration at nonloading sites or to fill 
bone defects.28 From a tissue engineering point of view, a 
biomaterial should have sufficient strength initially to with-
stand the stresses of mastication until the newly regener-
ated bone takes over.47 Moreover, the structural integrity is 
also crucial for the long-term success of implants in the 
bone.4 In order to achieve desirable mechanical strength for 
bone tissue engineering, synthetic polymer–based biomate-
rials such as PLLA and PCL are combined with osteocon-
ductive bioceramics.30,48 With respect to biomaterial 
properties, β-TCP/P(LLA/CL) 3D biomaterial scaffold was 
preferred for our study; it influenced the adhesion of DPSCs 
onto the biomaterial surfaces and supported osteogenic dif-
ferentiation of the cells within the porous solid structures.

To our knowledge, this is a first study showing the 
osteogenic potential of DPSCs within β-TCP/P(LLA/CL) 
3D biomaterial scaffolds induced by OM-VD or OM-DEX. 
Having shown in our previous study that OM-VD sup-
ported osteogenic differentiation of the DPSCs better than 
the OM-DEX medium in vitro, we next sought to evaluate 
the response of osteogenic media on DPSCs within the 
β-TCP/P(LLA/CL) scaffolds.14 Consequently, to assess 
the differentiation of DPSCs toward osteogenic lineage, 
ALP staining and expression were studied. ALP is a 
known marker for detection of early osteogenic differen-
tiation of cells and is an ectoenzyme involved in the deg-
radation of inorganic pyrophosphate to release phosphate 
for mineralization.35 Importantly, in our study, we 
observed that DPSCs seeded in the scaffolds and cultured 
in OM-DEX and OM-VD expressed ALP activity within 
the biomaterial. Nevertheless, DPSCs induced with 
OM-DEX showed weak ALP activity, and the pattern was 
quite similar in all three patient cell samples. In addition, 
mRNA expression of ALP was observed to be signifi-
cantly increased in the cells cultured in OM-VD. At the 
same time, the expression of OCN which is considered a 
late osteogenic marker49 was evaluated, the levels were 
upregulated when the cells were treated with VD OM. 
Moreover, it is known that OCN is an important osteo-
genic marker that regulates the formation of mineral nod-
ules and hence leads to osteogenesis.50 Therefore, the 
expression levels of OCN are commonly correlated with 
the mineralization ability of the cells. Previously, weak 
levels of OCN have been reported in cells treated with 
OM-DEX.51,52 Similar findings were observed in our 
study. Another important late-stage osteoblast differentia-
tion maker OPN53 was expressed when cells were cultured 
in VD OM. Considering the mRNA expressions of the 
genes, our results indicate that there was osteogenic dif-
ferentiation, and ALP staining results showed that there 
was matrix mineralization in vitro. Based on our findings, 
β-TCP/P(LLA/CL) scaffolds strongly supported the oste-
ogenic differentiation of DPSCs induced by VD OM. 
However, weaker osteogenesis was observed by OM-DEX 
in comparison to VD OM.

In summary, from our results, we can conclude that 
human DPSCs have the ability to survive, proliferate, and 
differentiate into osteogenic lineage within β-TCP/P(LLA/
CL) scaffolds in vitro, which is important before evaluating 
the efficacy in vivo. Furthermore, the animal-derived cell 
culture supplements such as FBS was replaced with xeno-
free supplements and medical-grade synthetic composite 
biomaterial was used. Hence, the outcome of this study can 
be directly applied to perform future clinical trials.
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