
EEVA LAURILA

Novel Regulators of Pancreatic Cancer Cell 
Growth and Mobility

ACADEMIC DISSERTATION
To be presented, with the permission of

the board of the Institute of Biomedical Technology of the University of Tampere,
for public discussion in the Auditorium of Finn-Medi 5, Biokatu 12, Tampere, 

on December 7th, 2012, at 12 o’clock.

UNIVERSITY OF TAMPERE



Reviewed by
Docent Kristiina Iljin
Oregon Health & Science University 
USA
Docent Pia Vahteristo 
University of Helsinki
Finland

Distribution
Bookshop TAJU
P.O. Box 617
33014 University of Tampere
Finland

Tel.  +358 40 190 9800
taju@uta.fi
www.uta.fi/taju
http://granum.uta.fi

Cover design by
Mikko Reinikka

Acta Universitatis Tamperensis 1788
ISBN 978-951-44-8987-7 (print)
ISSN-L 1455-1616
ISSN 1455-1616

Acta Electronica Universitatis Tamperensis 1263
ISBN 978-951-44-8988-4 (pdf )
ISSN 1456-954X
http://acta.uta.fi

Tampereen Yliopistopaino Oy – Juvenes Print
Tampere 2012

ACADEMIC  DISSERTATION
University of Tampere, Institute of Biomedical Technology and BioMediTech
Tampere University Hospital
Tampere Graduate Program in Biomedicine and Biotechnology (TGPBB)
Finland

Supervised by
Professor Anne Kallioniemi
University of Tampere
Finland

Copyright ©2012 Tampere University Press and the author



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Basically, I'm not interested in doing research and I never have been.  

I'm interested in understanding, which is quite a different thing. 

 
– David Blackwell 
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YHTEENVETO 

Haimasyöpä on harvinainen mutta erittäin aggressiivinen syöpätyyppi, johon 

sairastuu Suomessa vuosittain noin tuhat henkilöä. Vaikka haimasyövän osuus 

uusista syöpätapauksista on vain hieman yli 3%, se on kolmanneksi yleisin 

syöpäkuolemien syy niin miehillä kuin naisillakin. Haimasyövän ennuste on siis 

huono. Suurin syy tälle on se, että keinoja haimasyövän diagnosointiin ja hoitoon on 

todella vähän, ja hoidot ovat usein tehottomia. Tämän työn tarkoituksena oli tutkia 

haimasyövässä toistuvasti monistuvia kromosomialueita sekä kartoittaa ns.  

mikroRNA:iden ilmenemismuutoksia ja siten löytää uusia mahdollisia kohdegeenejä 

niin diagnostisiin kuin hoidollisiinkin tarkoituksiin.  

Kromosomimuutokset ovat tyypillisiä suurimmalle osalle kiinteitä syöpä-

kasvaimia, kuten haimasyövälle. Toistuvasti monistuvilla kromosomialueilla 

sijaitsee suurella todennäköisyydellä geenejä, joilla on vaikutusta sairauden syntyyn, 

ja jotka siten voisivat toimia myös kohdegeeneinä syövän diagnoosissa tai hoidossa. 

Tässä työssä tutkittiin 7q21-q22 kromosomialueen monistumaa haimasyövässä ja 

pyrittiin siten löytämään uusia kohdegeenejä. Kyseistä monistumaa todettiin 

esiintyvän n. 25% sekä haimasyöpäsolulinjoista että haiman primäärikasvaimista, ja 

se johti useiden monistuman ydinalueella sijaitsevien geenien yli-ilmentymiseen. 

Jatkotutkimukset kohdistuivat kolmeen monistuneeseen geeniin, ARPC1A, ARPC1B 

ja KPNA7, ja osoittivat, että näiden toiminta vaikuttaa haimasyövän ominaisuuksiin.  

ARPC1A ja ARPC1B koodaavat ARP2/3 proteiinikompleksin ARPC1-

alayksikköä. ARP2/3 proteiinikompleksi toimii soluissa aktiinin polymerisaatiossa 

ja siten osaltaan säätelee solujen liikkumista. Näiden kahden geenin hiljentäminen 

haimasyöpäsoluissa vähensi huomattavasti solujen migraatiota ja invaasiota, 

todennäköisesti ARP2/3 proteiinikompleksin toiminnan häiriintymisestä johtuen. 

KPNA7 puolestaan kuuluu alfa-karyoferiinien proteiiniperheeseen ja toimii 

tumakuljetusreseptorina. KPNA7:n ilmentymisen hiljentäminen vähensi 

dramaattisesti haimasyöpäsolujen kasvua. Kasvun hidastuminen johtui p21-

proteiinin lisääntymisestä ja siitä seuranneesta solusyklin osittaisesta pysähtymisestä 



 6 

G1-vaiheeseen. Nämä tulokset viittaavat siihen, että 7q21-q22 monistuma-alueella 

ei olisi yhtä ainoaa kohdegeeniä, vaan ennemmin useamman geenin joukko, jotka 

kaikki ovat monistuneita ja yli-ilmentyneitä ja yhdessä vaikuttavat syöpäsolujen eri 

ominaisuuksiin. Sekä ARPC1 että KPNA7 toimivat tärkeissä solun toimintaan 

vaikuttavissa tehtävissä, ja ovat siten potentiaalisia uusien syöpähoitojen kohteita.  

MikroRNA:t ovat lyhyitä yksijuosteisia RNA-molekyylejä, joilla on tärkeä 

tehtävä geenien ilmentymisen säätelyssä. Myös niiden ilmentyminen on usein 

häiriintynyt syövässä. Mikro-RNA:iden ilmentymistä tutkittiin haimasyöpä-

solulinjoissa sekä normaalista haimasta peräisin olevissa näytteissä, ja tarkoituksena 

oli tunnistaa sellaiset mikro-RNA:t, joiden ilmentyminen oli muuttunut syövässä. 

Työssä löydettiin 72 mikro-RNA:ta, joiden ilmentymisen perusteella voitiin erottaa 

syöpänäytteet normaaleista näytteistä. Näiden joukosta valittiin miR-31 tarkempiin 

toiminnallisiin kokeisiin sen erityisen mielenkiintoisen ilmentymistavan vuoksi. 

Yllättäen sekä miR-31:n ilmentymisen estäminen että lisääminen johtivat 

haimasyöpäsolujen migraation vähenemiseen, mistä voidaan päätellä, että miR-31:n 

toiminnan kannalta ratkaisevaa on sen määrä solussa. Useissa tutkimuksissa miR-

31:n on todettu olevan tärkeä solujen liikkumisen säätelijä monissa eri syövissä. 

Tämä tekee siitä erityisen houkuttelevan kohteen syövän etäpesäkkeisiin 

kohdistuville hoitomuodoille.  

Yhteenvetona voidaan todeta, että tässä tutkimuksessa osoitettiin kolmella 

7q21-q22 monistuman kohdegeenillä olevan onkogeenisiä ominaisuuksia 

haimasyövässä. Kaikki nämä kolme geeniä, ARPC1A, ARPC1B ja KPNA7, olivat 

yli-ilmentyneitä haimasyöpäsoluissa ja niiden toiminta osaltaan vahvisti näiden 

solujen pahanlaatuisia ominaispiirteitä. Lisäksi miR-31:n todettiin yli-ilmentyvän 

osassa haimasyövistä, ja sen osoitettiin olevan tärkeä syöpäsolujen liikkumisen 

säätelijä. Tämä tutkimus tarjoaa uutta tietoa haimasyövän patogeneesin geneettisestä 

taustasta.  
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ABSTRACT 

Pancreatic cancer is a rare but very aggressive malignancy affecting yearly 

approximately 1,000 individuals in Finland. Although it accounts only for a little 

over 3% of all new cancer cases, it is the third leading cause of cancer deaths for 

both genders. The main cause for the poor prognosis is the fact that the diagnostic 

and therapeutic tools for pancreatic cancer are truly limited and inefficient. This 

study aimed to characterize both recurrently amplified chromosomal regions as well 

as microRNA expression patterns in pancreatic cancer and thus to identify novel 

putative targets for diagnostic and therapeutic purposes.  

Large chromosomal aberrations are typical for most solid tumors, including 

pancreatic cancer. Recurrently amplified regions are likely to contain genes which 

contribute to the development of the disease and might thus serve as targets for early 

detection or treatment of the disease. Here, a detailed characterization of the 

7q21-q22 amplicon in pancreatic cancer was performed in order to identify novel 

target genes. The amplification was found to exist in 25% of both pancreatic cancer 

cell lines and primary tumors and to result in overexpression of several genes within 

the amplicon core. Further functional studies on three of the amplified genes, 

ARPC1A, ARPC1B, and KPNA7 confirmed that these genes do contribute to the 

pathogenesis of pancreatic cancer.  

ARPC1A and ARPC1B both encode for the ARPC1 subunit of the ARP2/3 

protein complex which participates in actin polymerization and thus regulates cell 

mobility. Silencing of these two genes in pancreatic cancer cells resulted in a 

significant reduction of cell migration and invasion, presumably due to defective 

function of the ARP2/3 complex. KPNA7 belongs to the karyopherin alpha protein 

family of nuclear import receptors. Silencing of KPNA7 expression dramatically 

decreased the growth of pancreatic cancer cell lines via a p21 induced G1 arrest. 

These data suggest that rather than a single target gene, the 7q21-q22 amplicon 

contains a set of genes which are all amplified and overexpressed and together 
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contribute to different features of the cancer cells. Both ARPC1 and KPNA7 have 

important cellular functions and might serve as potential novel therapeutic targets.  

MicroRNAs are short single-stranded RNA molecules which have a crucial role 

in regulating gene expression, and are also widely misregulated in cancer. The 

expression levels of miRNAs in a panel of pancreatic cancer cell lines and normal 

samples were screened to identify miRNAs that are aberrantly expressed in 

pancreatic cancer. A set of 72 differentially expressed miRNAs was found to 

provide a molecular signature discriminating the cancer and normal samples. Of 

these, miR-31 was further functionally studied based on its unique on-off expression 

pattern. Interestingly, both inhibiting and inducing miR-31 expression decreased the 

migration of pancreatic cancer cells, indicating that not only the presence but also 

the amount of miR-31 is important for its function. The role of miR-31 as a 

regulator of cancer cell mobility has also been established in various other cancers, 

making it a tempting target for anti-metastasis therapy.  

To conclude, three target genes of the 7q21-q22 amplicon, ARPC1A, ARPC1B, 

and KPNA7 were shown to have oncogenic properties in pancreatic cancer, as they 

were all overexpressed and promoted the malignant properties of the disease. 

Furthermore, miR-31 was shown to be overexpressed in a subset of pancreatic 

cancers and to regulate cancer cell mobility. Overall, this study provides novel 

information on the genetic background of pancreatic cancer pathogenesis.  
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INTRODUCTION 

Cancer is a large heterogeneous class of diseases of uncontrollable cell overgrowth. 

Common to all these diseases is that they all arise from accumulation of genetic 

alterations in the cells (Vogelstein and Kinzler 2004, Chin and Gray 2008, Stratton 

et al. 2009). A certain number of genetic changes need to occur for a normal cell to 

become a cancer cell, and a number of additional changes are needed for that single 

cancer cell to be able to grow to a large tumor, and later on to invade into 

surrounding tissues. This process, which leads to the transformation of a normal cell 

to a malignant tumor, starts with a series of random mutations. Most of these 

mutations are either irrelevant or lethal, but some alterations may be beneficial for 

the cell. Accumulation of advantageous mutations in a single cell may lead to clonal 

expansion and eventually development of cancer. The genes involved in 

tumorigenesis have been traditionally classified in three groups: oncogenes, tumor 

suppressor genes and stability genes (Vogelstein and Kinzler 2004). Oncogenes and 

tumor suppressors are genes which in normal cells regulate cell growth - oncogenes 

can be described as the gas pedal of the tumor and tumor suppressors as the brakes. 

The third class is so-called stability genes, which do not directly contribute to the 

tumor growth but are needed to maintain genomic integrity, and thus mutations in 

them leads to increased mutation rate in other genes. Moreover, additional genes 

have been identified, which do not fit into any of these classes but do play a role in 

tumorigenesis by for example enabling the formation of new blood vessels. As the 

result of these genetic mutations, initially normal cells acquire advantageous 

characteristics, eventually transforming them to malignant cancer cells (Vogelstein 

and Kinzler 2004, Chin and Gray 2008, Stratton et al. 2009). 

In two famous reviews, Hanahan and Weinberg specified the hallmark properties 

of cancer cells which distinguish them from normal cells (Hanahan and Weinberg 

2000, Hanahan and Weinberg 2011). Probably the most characteristic feature of 

cancer cells in contrast to normal cells is their ability to divide and grow 

unlimitedly. In normal tissue, cell growth is strictly controlled but cancer cells have 
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become independent of external growth factors and also are able to ignore anti-

proliferative signals. Mutations in members of the growth control pathways, such as 

KRAS, may lead to continuous downstream signaling, even with no stimulus from 

outside the cell. Similarly, the pathways mediating the antigrowth signals, such as 

the Rb pathway, are usually defective. Furthermore, the lifespan of a normal cell is 

restricted and they can undergo only a limited number of cell divisions. In cancer 

cells the telomers used as the “counting mechanism” are faulty and the cells can 

continue dividing endlessly. Cancer cells have also acquired the ability to avoid 

apoptosis, and so the normal balance between cell division and cell death is lost. In 

order to the single cancer cell to evolve to a metastasizing tumor, it has to gain 

additional features to be able to invade into surrounding tissues and eventually also 

to metastasize to other organs (Hanahan and Weinberg 2000). The ability to activate 

the invasion- metastasis cascade is the most distinctive feature of malignant cells, 

and in fact, the major difference between malignant and benign tumor cells 

(Lazebnik 2010, Hanahan and Weinberg 2011). Furthermore, to continue growing 

the malignant tumors also have to acquire mechanisms for example to avoid 

immune destruction (Hanahan and Weinberg 2011).  

Pancreatic cancer is an extreme aggressive malignancy, which typically is 

diagnosed at late stages when the disease has already gained all the hallmarks 

described above, and is not curable anymore (Bilimoria et al. 2007, Hidalgo 2010, 

Bond-Smith et al. 2012). Despite enormous efforts, no effective therapeutic targets 

or tools for early diagnosis have been found.  This study was carried out to increase 

the understanding of pancreatic cancer genetics. Characterization of a specific 

chromosomal amplification and microRNA expression patterns were performed to 

identify novel target genes which might be eventually used as diagnostic, prognostic 

and therapeutic tools for pancreatic cancer.  
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REVIEW OF THE LITERATURE 

1. Pancreatic cancer 

1.1. Epidemiology and clinical factors 

Pancreatic cancer is one of the deadliest malignancies in Finland as well as the rest 

of the western world. In 2010, there were a little over 1,000 new pancreatic cancer 

patients in Finland (Finnish Cancer Registry, http://www.canceregistry.fi). The age-

adjusted incidence rates (new cases per 100,000 individuals) of pancreatic cancer in 

Finland were 6.7 for females and 9.6 for males, making it the ninth and tenth most 

common cancer in females and males, respectively. The corresponding mortality 

rates were 6.2 for females and 9.4 for males, which adds up to approximately 1,000 

deaths per year, and results in pancreatic cancer being the third most common cause 

of cancer deaths for both genders (Finnish Cancer Registry, 

http://www.canceregistry.fi). These rates are very similar to those in other western 

countries (Bilimoria et al. 2007, Siegel et al. 2012).  

The 5-year survival of pancreatic cancer is only a little over 5% and the median 

survival less than 6 months, and there has been very little improvement in the 

survival rates for the last decades (Bilimoria et al. 2007, Siegel et al., 2012). The 

extremely poor prognosis is mostly due to rapid and aggressive progression of the 

disease and lack of methods for early detection, which result in pancreatic cancer 

typically not being detected until late stages of the disease where no curative 

treatment is available. More than 50% of the pancreatic cancers are at stage IV 

(metastasized cancer) at the time of diagnosis (Bilimoria et al. 2007). Moreover, 

although the patients with locally advanced disease have a slightly better prognosis 

when compared to those with metastasized cancer, the survival rates are still rather 

poor (median survival 10 vs. 2.5 months, respectively) (Bilimoria et al. 2007).  

Early diagnosis of pancreatic cancer remains a challenge since the first symptoms 

of the disease typically are non-specific, including weight loss, abdominal pain, and 
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nausea (Hidalgo 2010, Bond-Smith et al. 2012). Even the more severe symptoms, 

such as abnormalities in the liver function, appear usually not until the later stages, 

and are dependent on the location of the tumor (Hidalgo 2010). The majority of the 

tumors are located at the head of the pancreas (Bilimoria et al. 2007) and often 

cause jaundice because the bile duct is blocked (Hidalgo et al. 2010).  

Treatment methods of pancreatic cancer are rather limited and also widely 

dependent of the disease stage. Tumors either localized within the pancreas (stage I) 

or locally invasive tumors (stage II) are usually resectable whereas locally advanced 

(stage III) and metastasized (stage IV) tumors cannot be operated. Since most of the 

patients are diagnosed with advanced disease, only 15% of patients are eligible for 

surgery (Bilimoria et al. 2007, Hidalgo 2010, Bond-Smith et al. 2012). Operative 

treatment options include several types of pancreatectomy (surgical removal of the 

entire or part of the pancreas), the most common of those being 

pancreatoduodenectomy or “the Whipple procedure” where the head of the pancreas 

is removed along with parts of the stomach, duodenum, bile duct and the gall 

bladder (Bond-Smith et al. 2012). Both chemo- and radiotherapy are commonly 

used with or without surgery, but unfortunately pancreatic cancer is widely resistant 

to these (Hidalgo 2010, Bond-Smith et al. 2012). For advanced pancreatic cancer, 

the treatment is mostly palliative (Hidalgo 2010) and the need for novel therapeutic 

options is evident. Targeted molecular therapy by delivery of drugs targeting 

specific proteins or pathways is used, and several novel drugs are in clinical trials 

(Herreros-Villanueva et al. 2012). Also immune therapy by boosting the patient’s 

immune system is already partially in use, and pancreatic cancer vaccines are 

currently studied in clinical trials (Koido et al. 2011).   

 

1.2. Risk factors and genetic predisposition 

Since early detection of pancreatic cancer is challenging, efforts have been made to 

identify those individuals with higher risk for the disease. Screening of the high-risk 

individuals might result in the diagnosis being made at earlier stages when the 

disease is still curable (Sakorafas et al. 2012). Several risk factors, both 

environmental and genetic, have been identified, but still the challenge remains 
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mainly unsolved. Medical history plays a major role since some diseases have been 

proven to be associated with increased risk for pancreatic cancer. Patients with 

chronic pancreatitis have up to 13 times increased risk of pancreatic cancer 

(Lowenfels et al. 1993, Lowenfels and Maisonneuve 2004, Hassan et al. 2007, 

Raimondi et al. 2009) and diabetes has been proven to at least double the risk of 

pancreatic cancer (Chari et al. 2005, Hassan et al. 2007, Maisonneuve et al. 2010). 

Environmental factors have been widely studied but only few have been shown to 

actually cause increased risk for pancreatic cancer. Cigarette smoking is known to 

be a major risk factor for pancreatic cancer, as well as many other malignancies 

(Hassan et al. 2007, Bond-Smith et al. 2012, Pandol et al. 2012). Heavy alcohol 

consumption can increase the risk for pancreatic cancer and alcohol drinking is also 

associated with chronic pancreatitis (Lowenfels and Maisonneuve 2004, Hassan et 

al. 2007). Dietary factors have been studied but no association has been confirmed 

(Lowenfels and Maisonneuve 2004). However, obesity does increase the risk for 

pancreatic cancer (Bond-Smith et al. 2012). Finally, the risk for pancreatic cancer 

strongly increases with age and the majority of the patients are elderly (Bardeesy 

and DePinho 2002, Finnish Cancer Registry 2012).  

Approximately 10% of all pancreatic cancers have an underlying hereditary 

component, either a germline mutation or another disorder which results in an 

increased risk of developing cancer (Bardeesy and DePinho 2002, Lowenfels and 

Maisonneuve 2004, Raimondi et al. 2009, Shi et al. 2009). Some of these factors are 

associated with a hereditary genetic syndrome, which predisposes the affected 

person to different tumor types. Hereditary syndromes associated with pancreatic 

cancer include Peutz-Jeghers syndrome (Giardiello et al. 2000), hereditary 

nonpolyposis colorectal cancer (HNPCC) syndrome (Kastrino et al. 2009), 

hereditary pancreatitis (Lowenfels et al. 1997), hereditary breast and ovarian cancer 

(The Breast Cancer Linkage Consortium 1999), familial atypical multiple mole 

melanoma (FAMMM) (Vasen et al. 2000, Bartsch et al. 2002, Goldstein et al. 

2004), familial adenomatous polyposis (FAP) (Giardiello et al. 1993), Li-Fraumeni 

syndrome (Kleihues et al. 1997) and cystic fibrosis (Maisonneuve et al. 2007). The 

relative risk of pancreatic cancer in these syndromes vary from only a slightly 

increased risk of hereditary breast and ovarian cancer syndrome to more than 100-

fold risk in Peutz-Jeghers syndrome (Hruban et al. 2010, Klein 2012). The genes 

affected in these syndromes are typically tumor suppressor genes, such as CDKN2A 
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in FAMMM, BRCA1, BRCA2, and PALB2 in hereditary breast and ovarian cancer 

and DNA mismatch repair genes MLH1 and MSH2 in HNPCC (Erkko et al. 2007, 

Raimondi et al. 2009, Klein 2012). However, the majority of the pancreatic cancers, 

which appear to be of familial background, are due to factors that are still unknown 

(Raimondi et al. 2009, Shi et al. 2009, Klein 2012).  

1.3. Pathology of pancreatic cancer 

The pancreas is a gland located in the upper abdomen, between the stomach and the 

small intestine. The pancreas can be divided into two separate compartments: the 

endocrine and the exocrine pancreas, which have completely separate functions 

(Bardeesy and DePinho 2002, Hezel et al. 2006, Balic et al 2010). Exocrine 

pancreas accounts for the vast majority (80%) of the organ mass and appears as a 

branched network of acinar and duct cells. Acinar cells which produce multiple 

digestive enzymes, are organized into clusters at the end of ducts and cover the 

majority of the exocrine pancreas. Ductal cells form the pancreatic duct network, 

add mucous and bicarbonate into the enzyme mix and finally merge into the main 

pancreatic duct releasing the enzymes into the duodenum (Bardeesy and DePinho 

2002, Balic et al. 2012). Endocrine pancreas exists as cell clusters called the Islets of 

Langerhans, which are embedded in the exocrine pancreas. The islets consist mainly 

of α- and β-cells which secrete insulin and glucagon, hormones responsible for 

regulating glucose metaboly (Bardeesy and DePinho 2002, Balic et al. 2010).  

Pancreatic cancer is a group of different tumor types, originating from both 

endocrine and exocrine parts of the pancreas. However, usually the term refers to 

pancreatic ductal adenocarcinoma (PDAC), which is the most common malignancy 

of the pancreas accounting for 85% of all pancreatic cancers and more than 90% of 

malignancies of the exocrine pancreas (Winter 2006, Bond-Smith et al. 2012, 

Samuel and Hudson 2012). Other, more uncommon types of pancreatic cancers of 

exocrine origin are for example acinar cell carcinomas and intraductal papillary 

mucinous neoplasms (Bond-Smith et al. 2012). Cancers arising from the endocrine 

pancreas, such as insulinomas and gastrinomas are far more rare and represent 

completely different tumor types (Bond-Smith et al. 2012). In this study, the term 

pancreatic cancer is used to refer to pancreatic ductal adenocarcinoma.  
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2. Genetic changes in pancreatic cancer 

2.1. Progression model of pancreatic cancer 

Development of pancreatic cancer is a stepwise process. A progression model for 

pancreatic cancer development was first suggested a little over ten years ago 

(Hruban et al. 2000) and has been later on shown to be rather accurate. The model 

describes how the normal pancreatic epithelial cells gradually accumulate genetic 

changes in crucial genes and eventually progress to invasive carcinoma through a 

series of intermediate stages (Hruban et al. 2000) (Figure 1). These stages, 

pancreatic intraepithelial neoplasias (PanINs) are microscopic, histologically 

separable, and are graded 1-3, according to increasing histological abnormalities 

(Hruban et al. 2000, Hezel et al. 2006, Koostra et al. 2008). Numerous genetic 

changes in key cancer genes have been associated with specific stages of the 

pancreatic cancer progression model. The most common genetic alterations have 

been shown to take place already in the earliest PanIN lesions (Kanda et al. 2012).  

The KRAS oncogene is the most commonly altered gene in pancreatic cancer, 

being mutated in 95% of the cases, most often in codon 12 (Almoguera et al. 1988, 

Hruban et al. 1993, Maitra et al. 2006, Jones et al. 2008). KRAS has been found to 

be mutated already in over 90% of the PanIN lesions, indicating that KRAS mutation 

is one of the earliest genetic events in pancreatic carcinogenesis (Feldmann et al. 

2007, Kanda et al. 2012). These mutations in KRAS make it permanently active, 

leading to the activation of multiple molecular pathways, such as the RAF/ERK 

pathway which has a major role in transcriptional regulation, and the PI3K pathway 

which is involved for instance in cell cycle progression (Malumbres and Barbacid 

2003, Hezel 2006, Mihaljevic et al. 2010). Moreover, pathways downstream of 

KRAS are often mutated when KRAS itself is not affected (Jones et al. 2008, Hong 

et al. 2011). In addition, overexpression of the epidermal growth factor receptor 

ERBB2, often due to gene amplification, is a frequent early event in pancreatic 

cancer (Hruban et al. 2000).  
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Figure 1. The stepwise progression model of pancreatic cancer. The genetic changes 

gradually accumulate during the progression from normal duct via PanIN lesions 

to pancreatic ductal adenocarcinomas (PDAC).  

 

Besides the KRAS mutation and ERBB2 activation, three tumor suppressor genes 

are commonly inactivated at the early stages of pancreatic cancer development, 

resulting in the loss of cell cycle control (Ottenhof et al. 2011). Of these, 

p16/CDKN2A (INK4A) is altered, either deleted, mutated or hypermethylated, in 

more than 95% of pancreatic cancers and often already in PanIN-2 lesions (Caldas 

et al. 1994, Schutte et al. 1997, Ueki et al. 2000, Ottenhof et al. 2011). The p16 

protein plays an important role in the negative regulation of the cell cycle as it binds 

to the cyclin dependent kinases CDK4 and CDK6 and thus inhibits progression of 

the cell cycle at the G1/S checkpoint. In cells where p16 is lost, the G1/S transition 

of the cell cycle is not properly regulated which may lead to uncontrolled cell 

growth (Mihaljevic et al. 2010, Ottenhof et al. 2011). Another very commonly 

inactivated gene is TP53 which is altered in at least 50% of pancreatic cancers, 

typically by mutations in the DNA binding domain (Rozenblum et al. 1997). The 

p53 protein is often described as “the guardian of the genome”, highlighting its 

crucial role in the cell. It prevents the cell from continuing the cell cycle with 

damaged DNA, and loss of p53 might be one of the reasons for the vast genomic 

instability commonly observed in pancreatic cancer (Vogelstein and Kinzler 2004, 

Mihaljevic et al. 2010). Third tumor suppressor commonly inactivated in pancreatic 

cancer is SMAD4/DPC4, which is non-functional in 55% of the cases, typically in 
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later stages of carcinogenesis. SMAD4 acts in the TGF-β pathway which regulates 

normal cell growth and loss of SMAD4 may thus lead to uncontrolled growth (Hahn 

et al. 1996, Wilentz et al. 2000, Iacobuzio-Donahue et al. 2004). Mutations of TP53 

and SMAD4 are typically found in the PanIN-3 lesions which are already in 

transition to invasive growth (Ottenhof et al. 2011).  

In the last decade, several mouse models of pancreatic cancer have been 

produced by using this knowledge of the genetic changes behind the disease 

(Herreros-Villanueva et al. 2012). Since KRAS is mutated in almost all pancreatic 

cancers, it is usually the basis of the transgenic models, accompanied by mutations 

or deletions of different genes, including SMAD4 and TP53. These mice show a 

variety of pancreatic cancer phenotypes, many of those progressing via PanIN 

lesions to invasive and metastatic cancer (Herreros-Villanueva et al. 2012).  

2.2. Chromosomal aberrations 

In addition to mutations affecting single genes, large chromosomal aberrations, such 

as amplifications and deletions, are also very common in pancreatic cancer.  

Pancreatic cancer karyotypes are usually extremely complex, with enormous 

amount of gains, losses and translocations (Bardeesy and DePinho 2002, Karhu et 

al. 2006, Samuel and Hudson 2012). For example, Kowalski et al. (2007) reported 

several cases where the tumor cells had a total of over 70 chromosomes, with some 

chromosomes being presented in four or five copies, some completely absent and 

many having abnormal structures. Telomere shortening as well as mutations in the 

key regulators of the cell cycle are likely to be the main contributors to the 

formation of these chromosomal rearrangements (Hezel et al. 2006, Campbell et al. 

2010).  

Most of the chromosomal changes are considered to be totally random and solely 

reflect the genetic instability of the disease (Bardeesy and DePinho 2002). However, 

some chromosomal changes have been shown to be recurrent, suggesting that genes 

in these regions might play a crucial role in the disease pathogenesis (Hezel et al. 

2006, Samuel and Hudson 2012). To identify such genes, different array based 

methods have been used to search for recurrent genomic gains and losses in 

pancreatic cancer. In addition to the chromosome and array CGH (comparative 
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genomic hybridization) studies, also SNP (single nucleotide polymorphism) arrays 

and sequencing technologies have been utilized (Karhu et al. 2006, Samuel and 

Hudson 2012). Based on these analyses, the most common chromosomal aberrations 

in pancreatic cancer are the losses at the chromosomes 6q, 9p, 13q, 17p, and 18q, 

and gains at the chromosomes 7q, 8q, 11q, 17q, and 20q (Karhu et al. 2006, 

Campbell et al. 2010, Gutiérrez et al. 2011, Samuel and Hudson 2012). Frequencies 

of these aberrations vary largely from one study to another (~15-90%), depending 

on the platform and the sample set. Overall, losses appear to be more frequent than 

gains, and gains typically cover smaller regions (Karhu et al. 2006, Gutiérrez et al. 

2011). However, all the aberrations mentioned above have been recurrently 

observed both in pancreatic cancer cell lines and primary pancreatic tumors.  

Chromosome 7q is one of the regions recurrently amplified in pancreatic cancer. 

High-level amplifications of the 7q21-q22 locus have been observed in several 

array-based CGH studies (Aguirre et al. 2004, Heidenblad et al. 2004, Holzmann et 

al. 2004, Mahlamäki et al. 2004, Bashyam et al. 2005, Gysin et al. 2005, 

Loukopoulos et al. 2007, Suzuki et al. 2008). However, whereas the 8q 

amplifications for example often target the MYC oncogene located at 8q24, the exact 

targets of the 7q21-q22 amplification were not revealed by the array studies. During 

the course of this study, several putative target genes were identified and further 

studied, these including ARPC1A and ARPC1B which are two genes encoding a 

subunit of a protein complex involved in actin polymerization, and a novel nuclear 

import receptor KPNA7.  

Selective increase or decrease of the copy number of a given gene is an efficient 

way of altering its activity (Schwab 1999, Albertson et al. 2006, Myllykangas and 

Knuutila 2006). However, cells do not have a proficient way of actually selecting 

the gene to be amplified or deleted, making the event random. Most of these gains 

or losses just disappear, but some can give the cell a growth advantage and are 

thereby preserved (Albertson et al. 2003). For example, deletions of the tumor 

suppressors CDKN2A and SMAD4 and amplifications of the oncogene MYC are 

beneficial for the cell and thus selectively maintained, making them common 

findings in pancreatic cancer (Jones et al. 2008, Samuel and Hudson 2012).  

Since amplicons often cover large chromosomal regions, they usually contain 

many genes which are co-amplified and subsequently overexpressed. However, all 

of them do not necessarily contribute to the formation of the tumor and are therefore 
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considered as so-called passenger genes. Identification of the driver genes, or 

amplification target genes, which actually promote the tumor development, is 

challenging, since one amplicon may indeed contain dozens of genes which are all 

amplified and overexpressed (Copeland and Jenkins 2009, Stratton et al. 2009, Bell 

2010, Santarius et al. 2010, Eifert and Powers 2012). It is also known that the size of 

the amplified region commonly varies from one tumor to another. Therefore it is 

crucial to identify the minimal region of amplification, also known as the amplicon 

core, which is amplified in most of the samples and thus most likely to hold the 

critical gene (Samuel and Hudson 2012). In an excellent review, Santarius et al. 

(2010) listed 77 amplicon target genes that are likely to have a causal role in cancer. 

Genes were divided in three separate classes based on the amount of evidence on 

their contribution to cancer. All genes summarized in the article are located at the 

minimal region of amplification and also overexpressed. However, hundreds of such 

genes have been identified in genome-wide screens, and thus the 77 putative target 

genes listed in the article were required to have further evidence for causative role in 

cancer. Additional criteria for classification were clinical correlation (expression 

associated with with clinical outcome), knowledge of the gene or the pathway (for 

example, other genes in the same pathway also amplified or mutated), biological 

evidence (overexpression or knockdown causes biological effect), and supporting 

results from animal studies. Three genes, ERBB2, EGFR and AR, were categorized 

as Class I genes, which have the strongest evidence for their involvement in 

tumorigenesis. Most of the 77 genes had evidence of causal role only in one 

malignancy and very few genes, such as ERBB2 and CCND1, were listed in more 

than one cancer type. For pancreatic cancer, three genes, ARPC1A, SMURF1, and 

MED29, were on the list (Santarius et al. 2010). One has to keep in mind that as the 

knowledge of cancer cell characteristics increases (Hanahan and Weinberg 2011), 

also further criteria for defining amplicon target genes could become important to 

consider.  

Despite the above mentioned criteria, functional characterization of the amplified 

genes is absolutely essential to establish which genes actually do have a role in 

tumor development. Knockdown of amplified genes in overexpressing cells and on 

the other hand, forced expression of the same genes in non-expressing cells, 

followed by studies on the functional consequences  of the abnormal expression, is 

an efficient way to separate driver genes from passengers (Santarius et al. 2010, 
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Eifert and Powers 2012). For example, cell proliferation, anchorage independent 

growth and cell migration and invasion are typical features which are altered after 

manipulation of the expression of an amplification target gene.  

2.3. High-throughput sequencing data 

Modern whole-exome sequencing studies provide valuable information on the 

genetic changes in pancreatic cancer and are able to reveal both mutations and larger 

chromosomal changes such as amplifications and deletions. Large-scale analyses of 

several tumors give insight into the frequency of a given mutation and enable the 

evaluation of its significance (The International Cancer Genome Consortium 2010, 

Iacobuzio-Donahue et al. 2012). The first large-scale sequencing study concerning 

pancreatic cancer was done by Jones et al. (2008) and reported the sequencing of all 

exons of protein-coding genes in 24 advanced pancreatic adenocarcinomas. An 

average of 63 genetic alterations was found in these cancers, most of which were 

point mutations. Alterations in the key genes, such as TP53, CDKN2A, SMAD4 and 

KRAS were commonly found, but the study also revealed a number of less common 

mutations, the relevance of which remains to be solved. However, rather than single 

genes, the mutations were found to accumulate in twelve key pathways or cellular 

processes, such as apoptosis, regulation of the cell cycle or KRAS signaling, that 

have been implicated in cancer (Table 1). Six of these pathways were affected in all 

24 samples and the rest in at least 67% of the cases.  

Later on, similar studies with different sample sets and study designs have been 

performed (Jones et al. 2009, Wu et al. 2011, Roberts et al. 2012). In a recent study 

both tumor and germline DNA of one individual (patient with familial pancreatic 

cancer from the study by Jones et al. 2008) were sequenced, and the PALB2 gene 

(partner and localizer of BRCA2, functions as a tumor suppressor gene) was found 

to be recurrently mutated already in the germline, resulting in higher risk for 

pancreatic cancer, as well as other malignancies (Jones et al. 2009). Furthermore, 

germline ATM deletions (ataxia telangiectasia mutated, a cell cycle checkpoint 

kinase) were found from 2 of 16 pancreatic cancer families (Roberts et al. 2012). 

Also pancreatic cysts and pre-neoplastic lesions have been screened and an average 

of ten mutations per sample was found to exist, giving valuable knowledge of the 
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early events of pancreatic cancer development. In fact, some of the genetic 

alterations typical for late stage pancreatic cancer, such as KRAS mutations, were 

found already in these early lesions, supporting the stepwise progression model of 

the disease (Wu et al. 2011). In the future, tumor genome sequencing might become 

a standard for pancreatic cancer patients, and the treatment of the disease may 

depend on the genetic alterations of the tumor.  

 

 
Table 1. Core signaling pathways or cellular processes involved in pancreatic 
cancer. Adapted from Jones et al. 2008.   
 

Pathway or process Examples of altered genes 

Apoptosis 1 CASP10, VCP, CAD, HIP1 

Control of the G1/S phase transition 1 CDKN2A, FBXW7, CHD1, APC2 

DNA damage control ERCC4, ERCC6, EP300, RANBP2, TP53 

Hedgehog signaling 1 
TBX5, SOX3, LRP2, GLI1, GLI3, BOC, BMPR2, 
CREBBP 

Homophilic cell adhesion 
CDH1, CDH10, CDH2, CDH7, FAT, CDH15, PCDH17, 
PCDH18, PCDH9, PCDHB16, PCDHB2, PCDHGA1, 
CDHGA11, PCDHGC4 

Invasion 
ADAM11, ADAM12, ADAM19, ADAM5220, 
ADAMTS15, DPP6, MEP1A, PCSK6, APG4A, PRSS23 

Integrin signaling 
ITGA4, ITGA9, ITGA11, LAMA1, LAMA4, LAMA5, FN1, 
ILK 

JNK signaling MAP4K3, TNF, ATF2, NFATC3 

KRAS signaling 1 KRAS, MAP2K4, RASGRP3 

Small GTPase signaling (non-KRAS) 
AGHGEF7, ARHGEF9, CDC42BPA, DEPDC2, PLCB3, 
PLCB4, RP1, PLXNB1, PRKCG 

TGF-β signaling 1 TGFBR2, BMPR2, SMAD4, SMAD3 

Wnt/Notch signaling 1 MYC, PPP2R3A, WNT9A, MAP2, TSC2, GATA6, TCF4 
1 Pathway was altered in all 24 samples 

 

2.4. MicroRNAs 

MicroRNAs (miRNAs) are short (~22 nucleotides) non-coding RNA molecules 

which have a crucial role in post-transcriptional regulation of gene expression (He 

and Hannon 2004, Bartel 2009, Krol et al. 2010, Pritchard et al. 2012). To date, 

1600 miRNA precursors and more than 2000 mature miRNAs have been identified 

and the number has been constantly increasing (miRBase release 19, 
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http://www.mirbase.org/). Each miRNA can regulate dozens or even hundreds of 

genes, affecting the activity of entire pathways and networks, and one gene can have 

up to 50 miRNA binding sites (Gunaratne et al. 2010, Pritchard et al. 2012). 

Identification of miRNA target genes remains a challenge due to the small size of 

miRNAs and the fact that only partial complementarity is needed between the 

miRNA and its target (Bartel 2009, Krol et al. 2010). A number of softwares have 

been developed to predict putative miRNA targets but all of those produce both 

false negative and false positive results, and thus experimental verification of the 

predicted targets is always needed (Bartel 2009, Iorio and Croce 2012).  

 

 

Figure 2. MicroRNA biosynthesis. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Reviews Genetics, He and Hannon, 2004.  
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MicroRNA biogenesis begins in the nucleus where the miRNA is transcribed by 

RNA polymerase (usually RNA polymerase II) into a long (up to several kilobases) 

hairpin-structured primary molecule called pri-miRNA which may hold several 

miRNA sequences (He and Hannon 2004, Krol et al. 2010, Iorio and Croce 2012). 

Still in the nucleus, an enzyme called Drosha processes the pri-miRNA molecule 

into a ~70 nucleotide long precursor hairpin called pre-miRNA, which is then 

transported into the cytoplasm. In the cytoplasm, the pre-miRNA molecule is further 

processed by another enzyme, Dicer. The miRNA molecule is now a short double-

stranded RNA molecule. One strand is the “passenger” strand (also known as 

complementary miRNA or *miRNA) and is usually quickly degraded, whereas the 

other represents the mature miRNA molecule. The mature miRNA is directed to the 

RNA-induced silencing complex (RISC) by specific Argonaute proteins. The 

miRNA molecule, now attached to the RISC complex, recognizes its target mRNA 

by the sequence (He and Hannon 2004, Krol et al. 2010, Iorio and Croce 2012). The 

miRNA binding sites are typically located in the 3’ untranslated region (3’ UTR) of 

the target mRNA. The sequences of the miRNA and the target mRNA may be only 

partially or fully complementary, leading to translational inhibition or degradation 

of the target mRNA, respectively (Krol et al. 2010, Iorio and Croce 2012). The 

biosynthesis of the microRNAs is illustrated in Figure 2.  

Similar to the traditional protein coding genes, also miRNAs are widely 

deregulated in cancer. A great number of miRNAs have been demonstrated to be 

up- or downregulated in various malignancies, including pancreatic cancer (Lu et al. 

2005, Iorio and Croce 2012). Some miRNAs, such as miR-21 and the let-7 miRNA 

family, show altered expression across many different cancer types, but also more 

cancer-type specific miRNA expression patterns have been found to exist (Lu et al. 

2005). These miRNA expression profiles have been shown to be even more accurate 

in classifying cancer specimens than the traditional mRNA expression profiling 

(Rosenfeld et al. 2008).  Furthermore, miRNAs can be categorized as onco-miRs or 

tumor suppressors, depending on the genes they regulate (Hammond 2006, Iorio and 

Croce 2012). For example, commonly overexpressed miRNAs at the miR-17-92 

cluster typically suppress the expression of several tumor suppressor genes and 

thereby act themselves in an oncogenic fashion (Oliver et al. 2010). On the other 

hand, the members of the let-7 miRNA family normally inhibit the expression of 

oncogenes, and their downregulation in cancer results in increased expression of the 
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target genes (Torrisani et al. 2007, Wang et al. 2012). Generally, downregulation of 

miRNAs seems to be more common in cancer than upregulation (Lu et al. 2005, 

Hammond 2006).  

There is a rapidly increasing number of reports on altered miRNA expression 

patterns in pancreatic cancer (Bloomston et al. 2007, Lee et al. 2007, Szafranska et 

al. 2007, Kent et al. 2009, Olson et al. 2009, Park et al. 2009, Zhang et al. 2009, Ali 

et al. 2010, Bhatti et al. 2011, Mees et al. 2011, Zhang et al. 2011, Donahue et al. 

2012, Hamada et al. 2012, Jiao et al. 2012, Jung et al. 2012, Munding et al. 2012, 

Panarelli et al. 2012, Papaconstantinou et al. 2012, Piepoli et al. 2012, Schultz et al. 

2012). These studies have been made utilizing both clinical tumor samples and 

commercially available cell lines. Many miRNAs commonly misregulated in other 

cancers are aberrantly expressed also in pancreatic cancer. Interestingly, there have 

been shown to be significantly more upregulated miRNAs than downregulated 

(Wang and Sen 2011), a pattern opposite to that observed in most of the other tumor 

types (Lu et al. 2005, Hammond et al. 2006). Nevertheless, all studies have 

identified both up- and downregulated miRNAs in pancreatic cancer but the number 

of miRNAs with altered expression vary by the criteria used to define differential 

expression.  

 

2.4.1. miR-31 

Several reports have revealed aberrant expression of miR-31 in various types of 

cancers, suggesting that it might possess a universal role in carcinogenesis. 

Interestingly, it has been reported to be both up- and downregulated in a wide range 

of different malignancies (Table 2). In pancreatic cancer, miR-31 has been shown to 

be frequently upregulated, already in the early PanIN lesions, and was also recently 

associated with poor prognosis (Szafranska et al. 2007, Jamieson et al. 2012, Yu et 

al. 2012).  

The functional role of miR-31 has been widely studied (studies summarized in 

Table 2). It was first demonstrated to play a crucial role in regulating migration, 

invasion and metastasizing of breast cancer cells, as inhibition of miR-31 induced 

breast cancer metastasis formation (Valastyan et al. 2009). Later on, its role in 
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regulating cell mobility has been supported by several studies in various different 

malignancies, highlighting the significance of miR-31 in cancer (Table 2). For 

example, in mesothelioma, the miR-31 locus is frequently lost and the loss is 

associated with an aggressive tumor type. Re-expression of miR-31 in mesothelioma 

cells suppresses migration, invasion, cell proliferation and clonogenity (Ivanov et al. 

2010). On the other hand, in lung cancer miR-31 is upregulated and inhibition of its 

expression reduces cell growth (via G1 arrest) and tumorigenity both in vitro and in 

vivo (Liu et al. 2010). Several target genes acting in cell adhesion or mobility have 

been suggested for miR-31, and include RDX (radixin, cytoskeletal actin-associated 

protein), WAVE3 (Wiskott-Aldrich syndrome protein family, member 3, acts in 

complex which links actin with receptor kinases), and several integrin family 

members (Valastyan et al. 2009, Augoff et al. 2011, Sossey-Alaoui et al. 2011). 

Furthermore, miR-31 also seems to play a role in the resistance to chemo- and 

radiotherapy, which are characteristics of pancreatic cancer (Bhatnagar et al. 2010, 

Wang et al. 2010, Lynam-Lennon et al. 2012).  

 

Table 2. Studies on miR-31 function in various cancers 

Cancer Expr. Function Putative target 
genes 

Study 

adult T Cell 
leukemia 

down miR-31 locus frequently lost or 
epigenetically silenced, which 
triggers oncogenic signaling. miR-
31 downregulation leads to NF-κB 
activation and apoptosis resistance.  

MAP3K14 
(NIK) 

Yamagishi et al. 
2012 

bladder carcinoma down Low expression in invasive bladder 
carcinoma compared to superficial 
tumors. Overexpression decreases 
bladder cell invasion.  

 Wszolek et al. 
2009 

breast cancer down miR-31 expression inversely 
correlates with metastasis in breast 
cancer patients. Overexpression of 
miR-31 suppresses metastases and 
inhibition induces metastases. No 
effect on viability or cell 
proliferation.  

ITGA5  
RDX  
RHOA 

Valastyan et al. 
2009 

breast cancer down miR-31 suppresses expression of 
several integrins and alters cell 
mobility.  

ITGA2 
ITGA5 
ITGAV 
ITGB3 

Augoff et al. 2011 

breast cancer down Overexpression of miR-31 
suppresses WAVE3 expression, 
leading to inhibition of invasion. 
miR-31 expression gradually 
decreases during breast cancer 
progression.  

WAVE3 Sossey-Alaoui et 
al. 2011 
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cancer-associated 
fibroblasts 

down Overexpression of miR-31 inhibits 
migration and invasion 

SATB2 Aprelikova et al. 
2010 

colon cancer up miR-31 expression induced by TNF-
α and β. Overexpression in colon 
cancer cell lines enhances motility 
and invasiveness.  

TIAM Cottonham et al. 
2010 

colorectal cancer up Inhibition of miR-31 expression 
sensitizes cells to 5-FU and reduces 
cell migration and invasion but does 
not affect cell cycle or colony 
formation.  

 Wang et al. 2010 

esophageal 
carcinoma 

down miR-31 downregulated in 
radioresistant cells. Re-expression 
sensitizes cells to radiation. 
Regulates a set of 13 genes involved 
in DNA repair.  

PARP1 
SMUG1 
MLH1 
MMS19 

Lynam-Lennon et 
al. 2012 

glioma down Re-expression inhibits migration and 
invasion.  

RDX Hua et al. 2012 

head and neck 
squamous cell 
carcinoma 

up Inhibition reduces cell viability and 
migration. Overexpression increases 
proliferation, migration, anchorage-
independent growth and growth in 
nude mice.  

FIH Liu CJ et al. 2010 

Kaposi sarcoma up miR-31 stimulates endothelial cell 
migration 

FAT4 Wu et al. 2011 

lung cancer up Inhibition reduces cell growth (G1 
arrest) and tumorigenity both in vitro 
and in vivo.  

LATS2, 
PPP2R2A 

Liu X et al. 2010 

lung cancer up Cigarette smoke increases miR-31 
expression, resulting in increased 
cell proliferation and tumorigenicity.  

DKK-1 
DACT-3 

Xi et al. 2010 

melanoma down Overexpression inhibits cell 
proliferation and tube formation. 

 Greenberg et al. 
2011 

mesothelioma down miR-31 locus is frequently lost and 
loss is associated with an aggressive 
tumor type. miR-31 overexpression 
suppresses migration, invasion, cell 
proliferation and clonogenity.  

 Ivanov et al. 2010 

ovarian cancer down miR-31 overexpression in cells with 
mutant p53 pathway leads to growth 
inhibition. 

STK40 
CEBPA 
E2F2 

Creighton et al. 
2010 

prostate cancer down Expression sensitizes prostate cancer 
cells to chemotherapy-induced 
apoptosis.  

E2F6 Bhatnagar et al. 
2010 

prostate cancer down Overexpression inhibits cell 
proliferation, invasion and migration  

 Fuse et al. 2012 
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3. ARP2/3 complex 

3.1. Actin cytoskeleton 

The actin network determines the shape of the cell. However, the cell is not static or 

fixed but the shape is constantly changing as the cell is growing or moving, meaning 

that the actin network also needs to be very dynamic (Pollard and Borisy 2003, 

Revenu et al. 2004, Goley and Welch 2006). The actin cytoskeleton is not only a 

structural element of the cell but it also acts in a variety of cellular events from cell 

migration and vesicle trafficking to endocytosis and cell division (Pollard and Porisy 

2003, Gourlay and Ayscough 2005, Goley and Welch 2006). Dynamic regulation of 

actin filaments by a large group of actin binding proteins (ABPs) is required for the 

proper execution of these cellular processes and changes in the structure of the cell 

(Revenu et al. 2004, Goley and Welch 2006).  

The actin cytoskeleton consists of polymeric actin filaments which are futher 

arranged to form large networks. Monomeric globular actin (G-actin) is an ATP-

binding protein which easily is self-arranged into polymeric filaments (F-actin) 

forming helical structures (Pollard and Porisy 2003, Nurnberg et al. 2011). 

Spontaneous actin polymerization is a cellular event which occurs very rapidly in 

vitro and must be strictly regulated in vivo by a great variety of proteins (Nürnberg 

et al. 2011). However, the initiation of new actin filaments, called nucleation, needs 

to be triggered by specific proteins and is the rate-limiting step of actin 

polymerization (Goley and Welch 2006). Different classes of actin nucleation 

regulators have been identified. For example, formins promote nucleation of new 

unbranched filaments whereas the ARP2/3 protein complex acts in nucleating new 

actin branches from existing filaments (Kovar 2006, Goley and Welch 2006, 

Chhabra and Higgs 2007, Campellone and Welch 2010).  

Polymeric actin filaments are polarized, the fast-growing end known as the plus 

or the barbed end, and the other as the minus or the pointed end (Pollard and Porisy 

2003, Revenu et al. 2004). To prevent further elongation of the filament as well as 

dissociation of the actin monomers, capping proteins bind to the filament ends and 

thus regulate the length of the actin polymers. Tropomodulins bind to the minus end 

and CapZ to the plus end to stabilize the filaments (le Clainche and Carlier 2008, 

Nürnberg 2011). However, often actin filaments are constantly recycled so that the 
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elongation of the barbed end and the depolymerization of the pointed end are in 

balance, keeping the length of the filament rather stable. This phenomenon, 

sometimes called actin treadmilling, enables dynamic and rapid modifications of the 

actin cytoskeleton (le Clainche and Carlier 2008).  

Polymeric filaments are further organized to bundles, branched networks and gels 

to increase their strength and stability and to serve in various cellular functions. For 

example, filamins cross-link actin fibers to loose networks and α-actinin binds the 

filaments into parallel bundles (le Clainche and Carlier 2008, Nürnberg 2011). Also 

the cutting, debranching and depolymerization of actin filaments are regulated by 

proteins like cofilin and gelsolin (Revenu et al. 2004, Nürnberg et al. 2011). 

Furthermore, the regulators of actin are also themselves strictly controlled, and 

dependent for example on pH and Ca2+ concentration, providing additional levels 

of control for actin dynamics (Revenu et al. 2004).  

In addition to being the structural element of the cell, actin also has a central role 

in cell migration and adhesion (Goley and Welch 2006, le Clainche and Carlier 

2008). The barbed ends of actin branches are usually at the leading edge of the cell, 

towards the movement or growth (Pollard and Borisy 2003, Arjonen et al. 2011). 

Rapid reassembly of actin at the leading edge enables the formation of protrusions 

and promotes cell migration (le Clainche and Carlier 2008, Nürnberg 2011). In 

addition to cell shape and mobility, actin network has a central role in endocytosis 

and vesicle trafficking, together with the motor protein myosin (Gourlay and 

Ayscough 2005, Cingolani and Goda 2008, Arjonen et al. 2011). Moreover, during 

apoptotic cell death, caspases target actin filaments and cleave off small actin 

fragments which further accelerate apoptosis (Gourlay and Ayscough 2005). 

Abnormalities in all roles described for actin interfere with key cellular functions 

and may thus promote tumorigenesis (Arjonen et al. 2011, Nürnberg et al. 2011).  

3.2. Structure and function of the ARP2/3 complex 

One of the regulators of actin polymerization is the ARP2/3 protein complex which 

was first described in 1994 and has been later established to control branching of the 

actin filaments (Machesky et al. 1994, Pollard and Beltzner 2002, Padrick et al. 

2011). The human ARP2/3 protein complex consists of seven subunits and is the 
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key regulator of actin branching (Figure 3) (Mullins et al. 1997, Goley and Welch 

2006, Chhabra and Higgs 2007, Campellone and Welch 2010). The subunits ARP2 

and ARP3 (actin related protein 2 and 3) are structurally similar to actin and form 

the actin binding core of the protein complex. The other parts of the complex are 

more diverse and are named ARPC1-5, referring to actin related protein complex 

1-5 (Pollard and Beltzner 2002, Goley and Welch 2006, Nurnberg et al. 2011).  

 

 

 

Figure 3. Structure and function of the ARP2/3 complex in nucleating new actin branches 

from existing filaments. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Reviews Molecular Cell Biology, Campellone and Welch, 2010.  

 

The ARP2/3 complex acts in nucleating new branches from existing actin 

filaments as illustrated in Figure 3 (Goley and Welch 2006, Campellone and Welch 

2010). It binds to the side of the existing mother filament and initiates the growth of 

a lateral daughter filament (le Clainche and Carlier 2008). The structural core of the 

ARP2/3 complex is formed by ARPC2 and ARPC4 subunits, which are critical for 

the integrity of the complex and which attach the ARP2/3 complex to the mother 

filament (Gournier et al. 2001, Rouiller et al. 2008). The ARP2 and ARP3 subunits 

of the complex are believed to mimic an actin dimer, providing a template for the 

new branch (Mullins et al. 1998, Rouiller et al. 2008). The three other subunits, 

ARPC1, ARPC3, and ARPC5, participate in the activation of the nucleation 

function of the complex (Gournier et al. 2001, Rouiller et al. 2008). Activity of the 

ARP2/3 complex is ATP-dependent and regulated by several nucleation-promoting 

factors (NPFs), including the WASP and WAVE protein family members (Goley 

and Welch 2006, Campellone and Welch 2010, Padrick et al. 2011). The NPF 
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proteins bind to the ARP2/3 complex via a specific WCA domain, causing a 

conformational change which enables the nucleation of a new actin filament. The 

NPF proteins also assist in recruiting actin monomers to the nucleation site (Goley 

et al. 2004, Campellone and Welch 2010).  

 

3.3. ARPC1A and ARPC1B 

ARPC1A and ARPC1B are structurally highly similar proteins which both act as the 

ARPC1 subunit of the ARP2/3 protein complex (Goley and Welch 2006). ARPC1 is 

41 kDa in size (and was thus previously named p41) and consists of seven WD 

repeats which form a seven-bladed β-propeller protein (Welch et al. 1997, Goley 

and Welch 2006). The exact function of ARPC1 in the complex is uncertain but it 

has been suggested to be needed for the structural organization of the nucleation site 

(Winter et al. 1999). Also a role in the regulation of the activity of ARP2/3 has been 

proposed, possibly through binding of nucleation promoting factors (Winter et al. 

1999, Gournier et al. 2001, Kelly et al. 2006). ARPC1 binds directly to WASP 

which is a regulator of ARP2/3 activity, suggesting that ARPC1 might have a 

regulatory role. Moreover, it has been shown to interact with PAK1 (p21 activated 

kinase 1, functions in the regulation of cell mobility and morphology; Vadlamudi et 

al. 2004) and bind and activate Aurora A which is a kinase needed for cell cycle 

progression (Molli et al. 2010). Gene disruption studies in yeast showed that the 

ARPC1 subunit is essential for cell viability (Winter et al. 1999). Based on 

functional studies, ARPC1A and ARPC1B have been suggested to have slightly 

different functions (Molli et al. 2010) but the exact roles of these two proteins 

remain still to be found.  
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4. Nuclear transport 

4.1. Mechanisms of nuclear transport  

In eukaryotic cells, the nuclear membrane divides the cell into two separate 

compartments, the nucleus and the cytoplasm. Transporting RNA, proteins and 

other molecules to their correct locations, both in and out of the nucleus, is crucial 

for normal cell function (Kau et al. 2004, Mosammaparast and Pemberton 2004, 

Pemberton and Paschal 2005, Faustino et al. 2007). For instance, RNA is 

transcribed in the nucleus and needs to be transported into the cytoplasm to be 

translated. At the same time, nuclear proteins, such as histones and transcription 

factors, are produced in the cytoplasm and are then transported into the nucleus 

(Kau et al. 2004). Bidirectional trafficking between these two cellular compartments 

is needed for various cellular events, from regulation of gene expression to control 

of the cell cycle. Thus, it is evident that this transport machinery is a key player in 

the maintenance of cellular homeostasis. Malfunction of nuclear import or export 

results in incorrect localization of RNA and proteins, which might subsequently lead 

to a variety of diseases, including cancer (Faustino et al. 2007).  

Both import and export of molecules occurs via nuclear pore complexes (NPC) 

which are cylindrical structures on the nuclear membrane, connecting the nuclear 

and cytoplasmic compartments (Strambio-De-Castillia et al. 2010). Transport of 

proteins through the nuclear membrane can be roughly divided into two categories, 

passive diffusion and active transportation (Faustino et al. 2007). However, recently 

also a third mechanism was suggested for nuclear export, as ribonucleoprotein 

particles were shown to be transported out of the nucleus via nuclear envelope 

budding (Speese et al. 2012).  

Passive diffusion through the nuclear pore complexes is possible only for small, 

maximum of 40 kDa proteins (Faustino et al. 2007, Stewart 2007). Larger molecules 

need to be actively transported through the membrane. The proteins which are 

aimed to be transported to the nucleus, contain a nuclear localization signal (NLS) 

in their amino acid structure (Pemberton and Paschal 2005, Faustino et al. 2007). 

There are different types of NLS sequences, which can be recognized by diverse 

import proteins (Stewart 2007). Although different import pathways exist, the 

classic and most common import pathway is the karyopherin-mediated import via 
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nuclear pore complexes as illustrated in Figure 4 (Kau et al. 2004, Mosammaparast 

and Pemberton 2004, Pemberton and Paschal 2005, Stewart 2007). The import cycle 

begins by the recognition of the cargo protein NLS by karyopherin-α (importin-α / 

KPNA), which binds to the cargo protein. Alpha karyopherin acts as an adaptor 

protein and is the link between the cargo and the karyopherin-β (importin-β / 

KPNB), which is the actual transporter. Once formed, the cargo:KPNA:KPNB 

complex is docked to the nuclear pore complex and can now enter the nucleus via 

the NPC. In the nucleus, RanGTP binds to the karyopherin-β, resulting in 

dissociation of the trimeric protein complex and subsequent cargo release. The 

RanGTP-bound karyopherin-β is recycled back to the cytoplasm, and karyopherin-α 

binds to RanGTP-bound CAS (cellular apoptosis susceptibility protein) which is its 

export receptor (Kau et al. 2004, Mosammaparast and Pemberton 2004, Pemberton 

and Paschal 2005, Stewart 2007).  

 

 

Figure 4. Nuclear import of nuclear localization signal (NLS) containing proteins and 

recycling of the karyopherin alpha and beta import receptors. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Reviews Cancer, Kau, 2004.  
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4.2. Karyopherin alpha protein family 

The human karyopherin-α protein family consists of seven highly conserved 

members (Goldfarb et al. 2004, Kelley et al. 2010). The basic molecular structure of 

all karyopherin-α proteins is similar, and consists of ten Armadillo (ARM) repeats 

which form the body of the curved shape protein. The N terminus of the 

karyopherin-α acts as the importin-β binding (IBB) domain and in the inner curve 

are located the two NLS binding sites. The major site is located at the ARM repeats 

1-4 and the minor site at repeats 6-8 (Conti et al. 1998, Conti and Kuriyan 2000, 

Fontes et al. 2000, Stewart 2007). The IBB domain also has an important role in 

regulating cargo binding, as its amino acid sequence mimics NLS sequence and it 

can also bind the NLS binding site, competing with the NLS containing cargo 

(Stewart 2007). When karyopherin-α is not bound to karyopherin-β, the IBB domain 

is bound to the NLS binding site, allowing only proteins with stronger affinities to 

bind to it. As the karyopherin-β binds to the IBB domain, the NLS binding sites are 

revealed and open for cargo proteins also with lower affinity to bind.  The IBB 

domain thus also exhibits an autoinhibitory role and regulates cargo binding in the 

cytoplasm as well as cargo release in the nucleus (Kobe 1999, Matsuura and Stewart 

2004).  

The cargo proteins are recognized by the transporters by their NLS sequence 

which can be either monopartite (based on one amino acid cluster) or bipartite (two 

clusters separated usually by a ~10-12 amino acid spacer) (Stewart 2007). 

Monopartite NLS sequences usually bind to the major site of karyopherin-α, 

whereas bipartite NLS sequences occupy both binding sites (Stewart 2007). Many 

cargo proteins also bind directly to karyopherin-β, and are transported without 

karyopherin-α. However, karyopherin-α is an adaptor protein and cannot act alone 

but always needs to bind karyopherin-β to enter the nucleus (Pemberton and Paschal 

2005, Stewart 2007).  

Although the basic mechanism of cargo binding is known, there is very little 

knowledge of the roles of different karyopherin-α proteins. The human genome 

encodes seven karyopherin-α genes, whereas the yeast S. cerevisiae genome only 

has one single karyopherin-α gene (Goldfarb et al. 2004). Although all seven 

karyopherin-α proteins are structurally similar, they are likely to have different roles 

in terms of time and context as well as cargo specificity. There is evidence of 
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different karyopherin-α proteins acting at different tissue and cell types at different 

times during development, and some karyopherin-α proteins have been shown to 

have specific roles in embryogenesis (Tsuji et al. 1997, Kamei et al. 1999, Köhler et 

al. 2002). In adult tissues, different expression patterns of KPNAs have also been 

observed (Kamei et al. 1999) but information on the possible cargo specificity is 

truly limited. KPNAs have also been shown to bind cargoes with different affinities, 

suggesting another level of diversity in nuclear import (Kelley et al. 2010).  

  

4.3. KPNA7 

Karyopherin alpha 7 (KPNA7) is the newest member of the karyopherin-α family, 

and was first identified in 2010 (Kelley et al. 2010). It is structurally most closely 

related to KPNA2 but shows significant sequence similarity also to the other 

members. As the other karyopherin-α proteins, KPNA7 also consists of ten ARM  

repeats with the NLS binding pocket, and N terminal IBB domain (Stewart 2007, 

Kelley et al. 2010).  

 Expression of KPNA7 orthologs has been studied in various animals, 

including bovine, porcine and mouse tissue (Tejomurtula et al. 2009, Hu et al. 2010, 

Park et al. 2012). In all these studies, KPNA7 expression has been linked to 

embryogenesis and fertility. Both in mouse and cattle, when screening diverse adult 

tissues, KPNA7 expression was found predominantly in the ovary (Tejomurtula et 

al. 2009, Hu et al. 2010). Furthermore, in all three animals, KPNA7 expression was 

found in oocytes or early stage embryos, and in mouse cells the protein was 

localized in the nucleus (Hu et al. 2010). In human HeLa cells, KPNA7 was shown 

to be predominantly expressed in the nucleus (Kelley et al. 2010) but the function of 

the human KPNA7 still remains completely unknown. Whether KPNA7 has a 

specific role in human fertility, remains to be solved.  
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AIMS OF THE STUDY 

The aim of this study was to characterize both a recurrently amplified chromosomal 

region as well as microRNA expression patterns in pancreatic cancer in order to 

identify novel putative targets for diagnostic and therapeutic purposes. The specific 

aims were the following:  

 

 

1. To delineate the 7q21-q22 amplicon in pancreatic cancer and identify the 

putative amplification target genes.  

2. To functionally characterize the amplification target genes and evaluate their 

significance in pancreatic cancer.  

3. To screen microRNA expression patterns in pancreatic cancer, and to 

functionally characterize differentially expressed microRNAs.  
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MATERIALS AND METHODS 

1. Cell lines (I, II, III) 

Sixteen human pancreatic cancer cell lines were used in the study (Table 3). 

Thirteen of those, AsPC-1, BxPC-3, Capan-1, Capan-2, CFPAC-1, HPAC, HPAF-

II, Hs 700T, Hs 766T, MIA PaCa-2, Panc-1, SU.86.86, and SW1990, were 

purchased from the American Type Culture Collection (ATCC, Manassas, VA). 

DAN-G, HUP-T3, and HUP-T4 were obtained from the German Collection of 

Microorganisms and Cell Cultures (Brunswick, Germany). The normal pancreatic 

ductal cell line hTERT-HPNE was obtained from the ATCC. All cell lines were 

authenticated to avoid misidentification and were grown under recommended 

culture conditions.  

 

Table 3. Properties of the pancreatic cancer cell lines used in the study.  

Cell line Distributor Origin Age of donor Gender 

AsPC-1 ATCC 1 Ascites 62 F 

BxPC-3 ATCC n.a. 61 F 

Capan-1 ATCC Liver  40 M 

Capan-2 ATCC n.a. 56 M 

CFPAC-1 ATCC Liver 26 M 

Dan-G GCMCC 2 n.a. n.a. n.a. 

HPAC ATCC n.a. 64 F 

HPAF-II ATCC n.a. 44 M 

Hs700T ATCC Pelvis 61 M 

Hs766T ATCC Lymph node 46 M 

Hup-T3 GCMCC n.a. n.a. n.a. 

Hup-T4 GCMCC n.a. n.a. n.a. 

MIA PaCa-2 ATCC n.a. 65 M 

Panc-1 ATCC n.a. 56 M 

SU.86.86 ATCC Liver 57 F 

SW1990 ATCC Spleen 56 M 
1 ATCC: American Type Culture Collection 
2 GCMCC: German Collection of Microorganisms and Cell Cultures 
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2. RNA samples (I, II, III) 

Normal pancreatic RNA samples were obtained from commercial sources (Ambion, 

Austin, TX; Biochain, Hayward, CA; and Clontech, Mountain View, CA). The 

panel of normal tissue RNA samples was purchased from Ambion.  

 

 

Table 4. Clinicopathological data of the pancreatic cancer speciments on the tissue 
microarray slide used in Study I. 
No Sex Age Histology Grade TNM Stage 

1 M 51 Adenocarcinoma G1 - 
2 M 70 Adenocarcinoma G1 - 
3 M 39 Adenocarcinoma G1 - 
4 M 58 Adenocarcinoma G3 T3N0M0(IIA) 
5 F 60 Adenocarcinoma G3 T3NxM0(IIA) 
6 F 42 Adenocarcinoma G1 - 
7 M 63 Adenocarcinoma G2 T3N1M0(IIB) 
8 M 60 Adenocarcinoma G2 - 
9 F 58 Adenocarcinoma G3 - 
10 M 66 Adenocarcinoma G3 T3N0Mx(IIA) 
11 F 54 Adenocarcinoma G2 - 
12 F 72 Adenocarcinoma G2 T3N1M0(IIB) 
13 M 41 Adenocarcinoma G2 T3N1M1(IV) 
14 M 53 Adenocarcinoma - T2N1M1(IV) 
15 M 64 Mucinous adenocarcinoma - T3N0M0(IIA) 
16 M 60 Adenocarcinoma G2 T2N0M1(IV) 
17 F 75 Adenocarcinoma G2 T2N0M0(IB) 
18 F 64 Adenocarcinoma G2 T3N1M1(IV) 
19 M 64 Adenocarcinoma - T3N0M1(IV) 
20 F 62 Mucinous adenocarcinoma - T3N0M0(IIA) 
21 M 62 Adenocarcinoma G2 T3N1M0(IIB) 
22 M 62 Adenocarcinoma G2 T3NxM1(IV) 
23 M 58 Adenocarcinoma G2 - 
24 M 72 Intraductal papillary mucinous carcinoma - - 
25 M 41 Neuroendocrine carcinoma - - 
26 M 62 Adenocarcinoma G2 T3N1M0(IIB) 
27 F 47 Adenocarcinoma G2 - 
28 M 81 Adenocarcinoma G2~3 - 
29 F 64 Carcinoma - - 
30 F 53 Anaplastic carcinoma, papillary adenocarcinoma G4 T3N1M1(IV) 
31 M 44 Adenocarcinoma G2~3 T3N1M1(IV) 
32 M 55 Adenocarcinoma G3 T3N1M1(IV) 
33 M 49 Adenocarcinoma G3 - 

34 M 51 Non-neoplastic - - 
35 M 70 Non-neoplastic - - 
36 M 60 Non-neoplastic - - 
37 F 58 Non-neoplastic - - 
38 M 62 Non-neoplastic - - 
39 F 47 Non-neoplastic - - 
40 M 81 Non-neoplastic - - 
41 M 49 Non-neoplastic - - 
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3. Tissue microarray (I) 

Commercially available AccuMax A207 (III) tissue microarrays were purchased 

from Petagen Incorporation (Seoul, Korea). The tissue microarrays contained 33 

pancreatic cancer specimens in duplicate and eight non-neoplastic pancreatic tissue 

samples. The clinicopathological features of the samples are detailed in Table 4.  

4. Genomic clones (I) 

Fourteen bacterial artificial chromosome (BAC) or P1 derived artificial 

chromosome (PAC) clones were selected to cover the 3 Mb amplicon area at 7q21-

q22 (Table 5). The BAC and PAC clones were selected using the public genome 

databases, NCBI (National Center for Biotechnology Information) Map Viewer 

(http://www.ncbi.nlm.nih.gov/mapview) and UCSC (University of California Santa 

Cruz) Genome Browser (http://genome.ucsc.edu). Clones were obtained from 

CHORI (Children’s Hospital Oakland Research Institute, Oakland, CA). 

Chromosome 7 centromeric probe (p7alphaTET) was used as a reference.  

 

Table 5. BAC and PAC clones used in fluorescence in situ hybridization 

Clone Type Start (bp) End (bp) Size (bp) 

RP11-94N7 BAC 96 033 106 96 170 067 136 960 

RP11-525A11 BAC 96 327 722 96 426 137   98 415 

RP11-172J11 BAC 96 424 137 96 510 872   86 735 

RP11-356B17 BAC 96 607 609 96 714 001 106 392 

CTB-94H21 BAC 96 794 459 96 919 295 124 836 

RP5-1090P18 PAC 97 047 406 97 169 536 122 130 

RP5-1111F22 PAC 97 216 826 97 354 933 138 107 

RP11-177C9 BAC 97 449 432 97 565 939 116 507 

RP11-725M1 BAC 97 740 402 97 906 781 166 379 

RP5-1186C1 
a
 PAC 98 088 214 98 201 066 112 846 

RP11-62N3 
a
 BAC 98 187 801 98 361 362 173 562 

RP11-405I21 
a
 BAC 98 334 645 98 473 080 138 435 

RP4-550A13 PAC 98 512 376 98 591 892   79 516 

RP11-136B3 BAC 98 676 638 98 760 751   84 113 
a Clone was included in the contig probe 
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5. Fluorescence in situ hybridization (I) 

Fluorescence in situ hybridization (FISH) was performed on interphase nuclei of the 

pancreatic cancer cell lines to carry out copy number analysis of the 7q21-q22 locus. 

BAC and PAC clone DNA was extracted using the standard alkaline lysis method 

and the probes were labeled with Spectrum Orange dUTP (Vysis, Downers Grove, 

IL) by the random priming method. Chromosome 7 centromeric reference probe 

was labeled with fluorescein-12-dUTP (Perkin-Elmer, Boston, MA). The labeled 

probes were then purified using the BioSpin P6 columns (Bio-Rad, Hercules, CA).  

Dual-color FISH on interphase nuclei of the sixteen cell lines was performed as 

previously described (Bärlund et al. 2000) and the signals were analyzed using the 

Olympus BX50 fluorescence microscope (Olympus, Tokyo, Japan). For all probes, 

control experiments on normal lymphocytes were performed to verify correct 

localization of hybridization signals. Fifty intact nuclei were analyzed for each 

probe and cell line, and the relative copy number was counted as the ratio of locus 

specific probe versus control probe. A relative value above 1.5 was considered 

increased copy number.  

FISH on tissue microarray was done as described (Alarmo et al. 2006). A contig 

of three overlapping BAC/PAC clones covering the 7q21-q22 amplicon core (RP11-

1186C1, RP11-62N3, and RP11-405I21) was used as a hybridization probe. Control 

experiment on normal lymphocyte nuclei was performed to ensure that the probe 

contig gave a single hybridization signal. Hybridization signals from at least twenty 

nuclei were counted and the absolute mean copy numbers were determined.  

6. Quantitative RT-PCR 

6.1. mRNA expression (I, II, III) 

Real-time quantitative RT-PCR was used to quantify the mRNA expression levels 

of the ten genes located in the 7q21-22 amplicon (I), and the nine putative miR-31 

target genes (III). All gene expression analyses were performed using the 

LightCycler instrument (Roche, Mannheim, Germany). Total RNA was extracted 

from the cells using the Trizol reagent (Invitrogen, Carlsbad, CA) and first-strand 
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cDNA synthesis was performed using the SuperScript III First Strand Synthesis kit 

(Invitrogen).  

 

Table 6. Sequences of all primers used in the qRT-PCR experiments.  

Gene Primers (5’->3’) Study 

APBB2 CCTGGTGATCCATGTCAGAA 
TCGGAGGTTAAGGGTGTTTG 

III 

ARID1A GTCAGTATGGCCCACAAGGT 
GGCACCCATGGGGTTTAT 

III 

ARPC1A CAGAGTGTTTTCTGCCTACATT 
ACTTAGGAGCGGCAGGA 

I 

ARPC1B GTTATTTCGAGCAGGAGAATGAC 
GTAGGCTGAAAAGATCCGACA 

I 

BUD31 AAAAGATGACCGTGACCTTGAAC 
TGTGGGTCAGGTTGTACGCT 

I 

KPNA1 GACTTGTGGAACTGCTGATGC 
TCCCCTGTGACAATGTTTCC 

II 

KPNA2 GTTATCCTGGATGCCATTTCA 
AGCCTCCACATTCTTCAATCA 

II 

KPNA3 TGAGCCATCAGGAAGTCAAA 
CGGTGCCAGTCACTATGTTG 

II 

KPNA4 GGCAGAAACCATAGGCAATCT 
TCATTTTCATGATTTTGAAGTTGTTC 

II 

KPNA5 TGGCTAAAAAGGGTAGCTTCA 
CATGATATTTTTCCTCTTGGCATA 

II 

KPNA6 GAGGAACCCCTGAGCAGAT 
AGCAAGTCACATAGGGGTTTG 

II 

KPNA7 CGGTGATGGCCCAGAGT 
GCGGAGAGAAGGAGTCAAGAC 

I 

KPNA7 CCAGTCAATATGCCGACCTT 
AGACTGACCGCCATCCTCT 

II 

LATS2 AACTGGTGAACGCAGGATG 
CCCATCTTGCTGATGTACTCC 

III 

MAP4K5 CAGACCATGGCGATGTAAAA 
TCGTTTTGCAATGGTAGCTG 

III 

NPTX2 CAGACCCTCAAGGACCG 
AGGCAGCGTCTTCTTGAT 

I 

PDAP1 GACCCCAAAAAGGAGAAGAAAT 
TCTCTTCTCGTTCTCTCCTCGAA 

I 

PPP2R2A GGTGGTAGAGTTGTCATCTTTCAA 
TCTCCTCTGCTATGAGACTGGA 

III 

PTCD1 GCAACTACACGGTGCTGATTG 
ACTCGGCACAGACGTTGAAC 

I 

RHOA GGGAGCTAGCCAAGATGAAG 
GTACCCAAAAGCGCCAATC 

III 

RSBN1 GGGGTTTGACTGGCAGAGT 
GGTTATGCGAGGTTGGTCAC 

III 

SMURF1 AAGAAATCTTTGAGGAGTCTTACC 
CATTTCATGGCACAGCAAGTA 

I 

TACC1 AAGACGGGTCCACTGTGC 
CTCCACAGGACACCGACAC 

III 

TACC2 CCCCACTATTCGCTCAGAAA 
AGGGCTTCTATCCGCATGAT 

III 

TBP CATGACTCCCATGACCC 
TGGTTCGTGGCTCTCTTA 

I 

TMEM130 AAAAGATGACCGTGACCTTGAAC 
TGTGGGTCAGGTTGTACGCT 

I 

TRRAP TGCTGCGTCTGCTGAAC 
GGGGTTGTCATGCTCGAT 

I 
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For the 7q21-22 amplicon genes, the PCR primers and probes were purchased 

from TIB MolBiol (Berlin, Germany). For the miR-31 target genes, probes from the 

Universal Probe Library (Roche) were used along with primers from Sigma (St. 

Louis, MO). All primers used in the qRT-PCR experiments are listed in Table 6. All 

gene expression levels were normalized against a house-keeping gene, either TBP 

(TATA-box binding protein, Study I), HPRT (hypoxanthine phosphoribosyl-

transferase, Study III), or GUSB (glucuronidase beta, Study II). TBP primers and 

probes were obtained from TIB MolBiol and GUSB and HPRT reference gene 

assays were purchased from Roche.  

6.2. MicroRNA expression (III) 

TaqMan microRNA assays (Applied Biosystems, Carlsbad, CA) were used to 

quantify miRNA expression levels for the microarray data validation. Twenty-five 

nanograms of total RNA was reverse transcribed using TaqMan MicroRNA Reverse 

Transcription Kit and quantitative RT-PCR was performed as instructed using the 

LightCycler instrument (Roche). All miRNA expression levels were normalized 

against RNU48.  

7. Transfections 

7.1. Transfection of siRNAs (I, II) 

Gene-specific siRNAs were used to study the functional roles of ARPC1A, 

ARPC1B, and KPNA7 in pancreatic cancer. All gene-specific siRNAs were designed 

using the siRNA Selection Program of the Whitehead Institute, Cambridge, MA 

(Yuan et al. 2004). For ARPC1A and ARPC1B, the siRNA molecules were 

purchased from Proligo (Paris, France) and for KPNA7, four gene-specific siRNAs 

were purchased from Dharmacon (Lafayette, CO), and a pool with equal 

concentrations of each of the four was prepared. For all cell lines, 30 000 or 150 000 

cells per well were plated on 24- or 6-well plates, respectively. Twenty-four hours 

after seeding the cells were transfected with 10 nM siRNA or siRNA pool, using the 
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Interferin reagent (Polyplus-Transfection, San Marcos, CA) according to the 

manufacturer’s instructions. A siRNA targeting the firefly luciferase (LUC) gene 

(Sigma, St. Louis, MO) was used as a control in all experiments. Efficient gene 

silencing was verified each time by qRT-PCR and with either TBP or GUSB as a 

reference gene.  

 

7.2. Transfection of miRNA inhibitors and precursors (III) 

Functional consequences of abnormal miR-31 expression were studied by transient 

transfection of anti-miR-31 inhibitors or pre-miR-31 precursors and their 

corresponding controls (Ambion) into AsPC-1, HPAF-II, and MIA PaCa-2 cells. 

Cells were plated either on 24- or 6-well plates using following cell numbers: AsPC-

1 and HPAF-II 30 000 or 150 000 cells per well, and MIA PaCa-2 10 000 or 80 000 

cells per well, for 24- or 6-well plates, respectively. Twenty-four hours after seeding 

the cells were transfected with a final concentration of 30 nM miRNA precursor or 

inhibitor using the Interferin reagent (Polyplus-Transfections). The efficacy of miR-

31 silencing or expression was verified each time using qRT-PCR and with the 

housekeeping gene RNU48 as a reference.  

8. Functional assays 

8.1. Cell proliferation (I, II, III) 

Cell proliferation assays were performed on 24-well plates and the cells were 

counted 24-96 hours after siRNA or miRNA transfection using the Coulter Counter 

instrument (Beckman Coulter, Fullerton, CA). All assays were done in six replicates 

and repeated at least twice.  
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8.2. Cell cycle analyses and apoptosis assays (I, II, III) 

In the cell cycle analyses and apoptosis assays, cells were grown on 6-well plates, 

collected at the designed time point after siRNA or miRNA transfection, and 

suspended in 500 µl of hypotonic propidium iodide staining buffer (0.1 mg/mL 

sodium citrate tribasic dehydrate, 0.03% Triton X-100, 50 µg/µL propidium iodide, 

2 µg/mL RNase A). For the apoptosis assay the Annexin V FITC Apoptosis 

Detection Kit was used (Calbiochem, Nottingham, UK). The cell cycle distributions 

and the number of apoptotic cells were analyzed using the Accuri C6 flow 

cytometer (Accuri Cytometers, Ann Arbor, MI) and the ModFit LT software (Verity 

Software House Inc, Topsham, ME). All experiments were performed in six 

replicates and repeated at least twice. 

8.3. Migration and invasion assays (I, II, III) 

Cell migration and invasion studies were performed using 8.0 µm BD Falcon 

migration chambers or BD BioCoat Matrigel invasion chambers (BD Biosciences, 

CA) according to the manufacturer’s instructions. Cells were placed in the chamber 

48 hours after transfection, and a 1% vs. 10% FBS gradient was used as a 

chemoattractant. After 22 hours, the migrated and invaded cells were fixed with 

methanol and stained with toluidine blue. Stained cells were photographed with 

Aperio ScanScope XT microscope (Aperio Technologies, Vista, CA) and the total 

area of cells from four images per insert was analyzed using the ImageJ software 

(Abramoff et al. 2004).  

 

8.4. Colony formation (II) 

Potential for anchorage independent growth was assayed by growing cells on 0.35% 

agarose on six-well plates. After 14 days, twelve images per well were captured 

with the Olympus IX71 microscope (Olympus Corporation, Tokyo, Japan) using the 

Capture Pro 6.0 program. The number, size and total area of colonies were 

quantified using the ImageJ software (Abramoff et al. 2004).  
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9. MicroRNA array (III) 

9.1. Sample preparation and array hybridization 

The miRNA array hybridizations were performed according to manufacturer’s 

instructions using Agilent’s miRNA labeling and hybridization kit (Agilent, Santa 

Clara, CA). Briefly, 100 ng of total RNA was dephosphorylated, denatured, and 

labeled with pCp-Cy3 dye. Labeled RNA was purified using the Micro BioSpin 6 

columns (Bio-Rad, Hercules, CA). Samples were denatured and hybridization was 

allowed to occur at 55°C for 20 hours. Each microarray slide contains eight identical 

subarrays. The normal pancreas samples were pooled and hybridized to each slide to 

allow comparison of the data between the slides. Post-hybridization washes were 

performed as recommended. Arrays were scanned by using Agilent DNA 

microarray scanner (Agilent). 

9.2. Data analysis 

For the data analysis, the miRNA array images were transformed to spot intensity 

data with Agilent Feature Extraction Software (version 9.5.1.1). The Limma 

package of Bioconductor (Gentleman et al. 2004, Smyth et al. 2005) was used for 

both preprocessing of the data and the actual data analysis. In preprocessing, 64 

viral RNAs on the array were excluded. Also control spots and spots that were 

flagged as saturated, nonuniformity outliers, or population outliers were omitted. 

The background of the data was first corrected using the normexp method with 

offset 50 (Ritchie et al. 2007) and the data were normalized with quantile 

normalization (Pradervand et al. 2009). The mean value of the replicate probes in 

log2 scale was used for each miRNA in each sample, resulting in altogether 470 

miRNAs in the actual analysis. In the differential expression analysis, the group of 

16 cancer cell lines was compared with the group of four normal samples and the 

pooled normal samples. Differentially expressed miRNAs were identified utilizing 

empirical Bayes linear model and the Benjamini–Hochberg adjustment for the P-

values with the Limma package (Smyth et al. 2005). The miRNAs with adjusted P-

value below 0.05 and fold change over 1.5 between the groups were considered as 
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differentially expressed. Further, the relationships between the samples were 

revealed using the hierarchical clustering method with correlation distance and 

average linkage within each sample.  

9.3. miRNA target gene analysis 

Predicted target genes for selected miRNAs were identified using GOmir 

application (version 9/2009), which combines data from four different miRNA 

target prediction databases, TargetScan, PicTar, miRanda, and RNAhybrid, and 

allows the comparison of the results (Roubelakis et al. 2009).  

10. Western blot (II, III) 

Total protein from the cell lines was collected by first washing the cell monolayer 

twice with PBS and then lysing the cells into RIPA buffer (1% PBS, 1% non-idet P-

40, 0.5% sodium deoxycholate, and 0.1% SDS) containing Complete mini protease 

inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany).  

Nuclear and cytoplasmic protein fractions were collected as described earlier, 

with minor modifications (Abmayr et al. 2006). Shortly, cells were collected and 

resuspended in hypotonic buffer containing protease inhibitors and incubated 15 

min on ice. Cytoplasmic protein fraction was collected after centrifugation (3300g 

15 min 4°C). Next, the pellet was resuspended in low-salt buffer and high-salt buffer 

was carefully added. Solution was incubated on ice for 30 min and nuclear fraction 

was collected after intense centrifugation (25 000g 30 min 4°C). For all protein 

extractions, the protein content was measured using the Bradford reagent (Sigma-

Aldrich Chemie GmbH, Steinheim, Germany).  

40 or 50µg of protein extract was used for western blot analyses. Gel-

electrophoresis and blotting were done as described previously (Alarmo et al. 2009). 

Shortly, proteins were separated by SDS-PAGE on 12% polyacryleamide gel and 

transferred onto polyvinylidene difluoride (PVDF) membrane (Roche Diagnostics 

GmbH) using a Trans-blot SD Semidry transfer apparatus (Bio-Rad Laboratories). 

After blotting, the membrane was blocked overnight followed 1 hour incubation 

with primary and secondary antibodies. All antibodies used in western blot analyses 
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are summarized in Table 7. Finally, proteins were visualized by using the BM 

Chemiluminescence Western Blotting Kit (Mouse/Rabbit) (Roche Diagnostics 

GmbH) according to manufacturer’s instructions.  

11. Immunofluorescence (III) 

Immunofluorescence was performed as earlier described (Kallio et al. 2011). 

Briefly, cells were first fixed with 4% paraformaldehyde for 30 min and rinsed with 

PBS. Cells were pretreated with BSA-PBS solution (1% BSA, 0.05% saponin in 

PBS) for 30 min. Incubations with primary antibody (diluted in BSA-PBS, dilutions 

are summarized in Table 7) and Alexa-Fluor 488 or 568 secondary antibody (diluted 

1:200 in BSA-PBS, Molecular Probes, Eugene, OR) were performed for 1 hour, 

both followed by 3 x 5 min washes in BSA-PBS. Phalloidin was purchased from 

Invitrogen (Carlsbad, CA). Immunostained cell were photographed with the 

Olympus IX71 microscope (Olympus Corporation, Tokyo, Japan) using the Capture 

Pro 6.0 program. All antibodies used in immunofluorescence are summarized in 

Table 7. 

 

Table 7. Antibodies and dilutions used in western blot and immunofluorescence. 

 Dilution used in  
Antibody Western blot Immunofluorescence Manufacturer 
APBB2 1:1000 - Abcam, Cambridge, UK 
β-actin 1:10 000 - Molecular Probes, Eugene, OR 
Caspase-3 - 1:500 Cell Signaling, Danvers, MA 

CDK2 1:200 - 
Santa Cruz Biotechnology, Santa 
Cruz, CA 

CDK6 1:200 - Santa Cruz Biotechnology 
Cyclin A 1:200 - Santa Cruz Biotechnology 
Cyclin E 1:200 - Santa Cruz Biotechnology 
E-cadherin 1:1000 1:500 Abcam 
Histone H3 1:200 - Santa Cruz Biotechnology 

KPNA7 1:500 1:1000 
GenWay Biotech, San Diego, 
CA 

KPNA7 1:500 1:1000 
LifeSpan Biosciences, Seattle, 
WA 

KPNA7 1:500 1:1000 Sigma, St. Louis, MO 
p21 1:100 - Santa Cruz Biotechnology 
p27 1:500 - Santa Cruz Biotechnology 
RSBN1 1:1000 - Abcam 
Tubulin 1:20 000 - Sigma 
Vimentin 1:1000 1:500 Sigma 
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12. Statistical analyses (I, II, III) 

The Mann-Whitney test was used to compare the medians of the test and control 

groups in all functional studies as well as in amplicon gene expression analyses in 

Study I. All p values are two-sided.  
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RESULTS AND DISCUSSION 

1. Detailed characterization of the 7q21-q22 amplicon 
in pancreatic cancer (I) 

Gene amplification is a common mechanism for oncogene activation in solid tumors 

(Albertson et al. 2003, Vogelstein and Kinzler 2004, Albertson 2006). In pancreatic 

cancer, a great number of recurrently amplified regions have been identified but 

only very few target genes have been functionally verified and characterized 

(Santarius et al. 2010, Samuel and Hudson 2012). Functional analysis of the genes 

within the amplicons is needed to evaluate their significance for the disease and 

possibly reveals novel diagnostic or therapeutic targets. Earlier studies have 

highlighted several genes which are frequently amplified in cancer and the 

amplification is associated with for example poor survival rates or drug resistance. 

For example, MYCN amplification in neuroblastomas has been associated with more 

aggressive disease and poor survival, and amplifications of MYC, ERBB2, CCND1, 

EGFR, and MDM2 in breast cancer are associated with high tumor grade (Al-

Kuraya et al. 2004, Vogelstein and Kinzler 2004, Albertson 2006). This study aimed 

to perform a detailed characterization of the 7q21-q22 amplicon, which one of the 

chromosomal regions recurrently amplified in pancreatic cancer.  

 

1.1. Fluorescence in situ hybridization delineates a 0.77 Mb 
amplicon core region (I) 

Previous array CGH studies by us and others have revealed pancreatic cancer cell 

lines and primary tumors to have a ~3 Mb commonly amplified chromosomal region 

at 7q21-q22 (Aguirre et al. 2004, Heidenblad et al. 2004, Holzmann et al. 2004, 

Mahlamäki et al. 2004, Bashyam et al. 2005, Gysin et al. 2005, Loukopoulos et al. 

2007, Suzuki et al. 2008). However, at the time this study was started, the CGH 
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studies only provided a rough overview of the amplicon with rather poor resolution. 

More detailed studies are always needed to delineate the amplicon core region and 

to identify the putative target genes.  

Fluorescence in situ hybridization using thirteen evenly distributed BAC/PAC 

probes was performed on 16 established pancreatic cancer cell lines to determine the 

more exact structure and boundaries of the 7q21-q22 amplicon. Increased copy 

number (relative copy number >1.5-fold) was found in four cell lines out of the 

sixteen. The AsPC-1 cell line harbored high-level amplification with the relative 

copy numbers reaching up to 8.7-fold, whereas in the other three cell lines, Capan-1, 

Hs700T, and HPAF-II, lower level gains were detected (relative copy numbers up to 

1.7-, 2.9-, and 2.3-fold, respectively). The copy number profiles of the three cell 

lines with lower level gains were rather uniform across the entire 7q21-q22 

amplicon. However, the AsPC-1 copy number profile had a clear peak of high level 

amplification at the distal end of the amplicon, which was used to define the 

amplicon core region. This minimal region of amplification was 0.77 Mb of size, 

stretching from the end of the BAC clone RP11-725M1 to the start of the clone 

RP11-136B3 (Figure 5). All clones between these two demonstrated a high level 

amplification (relative copy number over 8-fold) in the AsPC-1 cell line.  

The existence of the 7q21-q22 amplicon was verified also in 32 primary 

pancreatic tumors in order to evaluate its clinical significance. A contig of three 

overlapping BAC probes (RP5-1186C1, RP11-62N3, and RP11-405I21; Figure 5) 

representing the amplicon core region were used as the probe. Increased copy 

numbers were detected in 7 out of 29 tumors (24%), where the hybridization was 

successful. Unfortunately we were unable to link the amplification to any of the 

clinicopathological characteristics of the samples, but this is likely to be at least 

partially because of the rather small sample size.  

To summarize, the 7q21-q22 amplification was found to exist in ~25% of both 

pancreatic cancer cell lines as well as in primary pancreatic tumors, indicating that it 

does have relevance to the disease rather than being just a cell culture artifact. In 

addition to pancreatic cancer, the 7q21-q22 amplification has been also found in 

other malignancies, including gastric, esophageal and hepatocellular carcinomas, 

and melanoma (Balazs et al. 2001, Riegman et al. 2001, Morohara et al. 2005, Sy et 

al. 2005), further indicating that the amplicon actually has significance beyond 



 56 

pancreatic cancer. However, no target genes for the 7q21-q22 amplification had 

been suggested at the time of this study.  

 

1.2. Amplification of the 7q21-q22 locus leads to 
overexpression of a specific set of genes (I) 

One of the main criteria for the definition of an amplification target gene is that the 

increased copy number leads to overexpression of the corresponding gene. To 

address this issue, two public genome databases, NCBI Map Viewer 

(http://www.ncbi.nlm.nih.gov/mapview) and UCSC Genome Browser 

(http://genome.ucsc.edu) were used to identify the genes within the 0.77 Mb 

amplicon core region, and altogether ten transcripts were identified. Genomic 

locations of the genes within the amplicon core are shown in Figure 5, and a 

summary of the ten amplified transcripts and their functions are shown in Table 8. 

Recently, one microRNA, miR-3609, has also been localized in the amplicon core. 

However, since this data was not available at the time of the study, the research was 

focused on the gene transcripts.  

 

 

Figure 5. Genomic locations of the BAC/PAC clones, gene transcripts and microRNAs 

located at the 7q21-q22 amplicon core. Arrowheads indicate the transcription 

direction of the genes and microRNAs. 
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First, the expression of these ten transcripts was studied using regular RT-PCR in 

the AsPC-1 cell line. Two genes, NPTX2 and TMEM130, were excluded from 

further studies since they had very weak expression or were not expressed at all in 

this cell line with the most intense amplification and were thus not likely to be the 

target genes of the amplification. Interestingly, NPTX2 has been reported to be 

frequently hypermethylated at the promoter region, possibly explaining its low 

expression in the AsPC-1 cells (Park et al. 2007, Zhang et al. 2011, Zhang et al. 

2012). The expression of the remaining eight genes was comprehensively studied 

using quantitative RT-PCR in the same panel of sixteen pancreatic cancer cell lines 

used in the copy number analyses. Four commercially available samples of normal 

pancreatic RNA were also included in the panel.  

 

 

Table 8. Gene transcripts located at the 7q21-q22 amplicon core region.  
Gene symbol Gene name Function 

NPTX2 Neuronal pentraxin II Participates in synapse formation and synaptic 
remodeling (Bjartmar et al. 2006, Koch and Ullian 
2010) 

TMEM130 Transmembrane protein 130 No known function.  

TRRAP Transformation/transcription 
domain-associated protein 

Large protein which acts in transcription and DNA 
replication and repair by recruiting histone 
acetyltransferase (HAT) complexes to chromatin 
(Murr et al. 2007) 

SMURF1 SMAD specific E3 ubiquitin 
protein ligase 1 

E3 ubiquitin ligase which induces the translocation of 
TGFβ pathway inhibitor SMAD7 into the cytoplasm, 
and promotes destruction of SMAD4 (Ebisawa et al. 
2001, Morén et al. 2005) 

KPNA7 Karyopherin alpha 7 Nuclear transport receptor which acts in the import of 
proteins into the nucleus (Kelley et al. 2010) 

ARPC1A actin related protein 2/3 complex, 
subunit 1A 

One of the seven subunits of the ARP2/3 protein 
complex, which acts in actin polymerization. 
Alternative to ARPC1B (Goley and Welch 2006).  

ARPC1B actin related protein 2/3 complex, 
subunit 1B 

One of the seven subunits of the ARP2/3 protein 
complex, which acts in actin polymerization. 
Alternative to ARPC1A (Goley and Welch 2006). 

PDAP1 PDGFA associated protein 1 Phosphoprotein which associates with PDGFA which 
may be involved in regulating fibroblast growth 
(Fischer and Schubert 1996) 

BUD31 BUD31 homolog (S. cerevisiae) Yeast Bud31 acts in spliceosome assembly and 
promotes mRNA splicing (Masciadri et al. 2004, 
Saha et al. 2012) 

PTCD1 Pentatricopeptide repeat domain 1 Mitochondrial matrix protein, participates in the 3’ 
end processing of tRNAs (Rackham et al. 2009, 
Sanchez et al. 2011) 
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For each gene, the expression levels in the four amplified cell lines were 

compared to those in the non-amplified cell lines and the normal pancreas. Three 

genes located at the most distal end of the amplicon, PDAP1, BUD31, and PTCD1, 

did not show any significant association between amplification and overexpression, 

with the most important finding being that they were not overexpressed in the most 

intensely amplified AsPC-1 cells. In fact, PDAP1 and PTCD1 even had lower 

expression in the AsPC-1 cells than in the normal pancreas. The remaining five 

genes, TRRAP, SMURF1, KPNA7, ARPC1A, and ARPC1B, all had a clear 

association between amplification and overexpression and thus represent the 

putative 7q21-q22 amplification target genes. The median expression levels of the 

groups of the amplified and non-amplified cell lines showed a statistically 

significant difference (p<0.05) and they all were also extremely highly 

overexpressed in the AsPC-1 cells.  

 

 

Figure 6. Expression of five putative 7q21-q22 amplicon target genes, ARPC1A, ARPC1B, 

KPNA7, SMURF1, and TRRAP  in the groups of amplified and non-amplified cell 

lines. 

 

The focus of this study was on functional evaluation of the roles of ARPC1A, 

ARPC1B, and KPNA7 in the pancreatic carcinogenesis. All five genes are located at 
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the centre of the amplicon core region and have a strong association between gene 

amplification and overexpression (Figure 6). Of these, ARPC1A had the highest p 

value for the association between amplification and overexpression, and ARPC1B 

was selected based on its functional similarity. Moreover, KPNA7 had an extremely 

interesting expression pattern with almost absent expression in normal pancreas, and 

was therefore included in the functional studies. However, SMURF1 and TRRAP 

have also been suggested to be the targets of the 7q21-q22 amplicon in pancreatic 

cancer (Suzuki et al. 2008, Kwei et al. 2011). Inhibition of SMURF1 and TRRAP 

expression reduced cell proliferation and induced SMURF1 expression significantly 

increased colony formation (Suzuki et al. 2008). Furthermore, SMURF1 

amplification and subsequent overexpression has also been shown to increase the 

invasiveness of pancreatic cancer cells (Kwei et al. 2011). Several studies have 

shown that rather than one single amplification target gene, amplicons often have a 

set of genes that are concurrently amplified, overexpressed, and together cause the 

malignant phenotype (Yang et al. 2006, Pärssinen et al. 2007, Brown et al. 2008, 

Carvalho et al. 2009, Wu et al. 2012). Interestingly, the famous review by Santarius 

et al. (2010) listed only three amplification target genes with good evidence on their 

role in pancreatic cancer, and both ARPC1A and SMURF1 were on the list. It 

appears evident that the 7q21-q22 amplicon is also likely to contain several target 

genes.  

 

2. Functional evaluation of the putative 7q21-q22 
amplicon target genes (I, II) 

2.1. ARPC1A and ARPC1B regulate cell migration and 
invasion in pancreatic cancer (I) 

The ARPC1A and ARPC1B genes are successively located at the 7q21-q22 

amplicon, highly similar to each others, and both encode for the p41 subunit of the 

human Arp2/3 protein complex (Welch et al. 1997). They were selected for further 

studies based on their function and gene expression data. Functional consequences 

of abnormal ARPC1A and ARPC1B expression were studied by silencing the genes 
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both individually and simultaneously, using RNA interference (RNAi). Two gene 

specific siRNAs were designed for both genes and efficient (at least 80%) 

downregulation of mRNA levels was verified in all studies. Also the gene 

specificity of the siRNAs was verified by confirming that ARPC1A siRNA did not 

silence ARPC1B, and vice versa.  

The effects of ARPC1A and ARPC1B silencing on cellular functions were studied 

by multiple different assays in AsPC-1 cells harboring high-level amplification and 

overexpression of both genes. Non-amplified Panc-1 cells were used as a control in 

each experiment. Silencing of ARPC1B did not alter the growth of the AsPC-1 cells 

but silencing of ARPC1A resulted in small yet statistically significant decrease in 

AsPC-1 cell proliferation at 96 hours after transfection (12% decrease as compared 

to the LUC control, p<0.005), and the same phenomenon was observed with both 

ARPC1A siRNAs. As expected, silencing of ARPC1A or ARPC1B did not alter 

Panc-1 cell growth or any other features studied further on. Next, the consequences 

of silencing on cell mobility were assessed. Interestingly, silencing of ARPC1A and 

ARPC1B resulted in a dramatic reduction of cell migration (Table 9). Simultaneous 

silencing of both genes also led to significantly reduced migration but did not 

produce any additive effect. Moreover, silencing of ARPC1A, either individually or 

together with ARPC1B, significantly decreased the invasion ability of AsPC-1 cells, 

while silencing of ARPC1B alone did not have an effect.  

 

Table 9. Effect of ARPC1A and ARPC1B silencing on AsPC-1 cell migration and 
invasion.  
 

siRNA name siRNA identifier Migrationa Invasiona 

siLUC - 100 % 100 % 

siARPC1A 489   25 % **   55 % ** 

 196   48 % **   55 % * 

siARPC1B 446   55 % ** 106 %  n.s. 

 272   59 % *   85 %  n.s. 

siARPC1A + siARPC1B 489 + 446   31 % **   54 % ** 
a Percentage (%) of siLUC control 
* p<0.05, ** p<0.005 
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ARPC1A and ARPC1B genes both encode for the p41 subunit (ARPC1) of the 

ARP2/3 protein complex which regulates actin polymerization and thus cell 

mobility  (Goley and Welch 2006). Although the exact function of the ARPC1 is not 

fully understood, it has been shown to be essential for cell viability, indicating an 

central role in the protein complex (Winter et al. 1999, Gournier et al. 2001). 

ARPC1 has been suggested to act as the regulatory subunit of the ARP2/3 protein 

complex, as it is phosphorylated by the p21 activated kinase 1 (PAK1) and the 

phosphorylation is required for cell mobility (Vadlamudi et al. 2004). This study 

shows that silencing of both ARPC1A and ARPC1B impairs the migration ability of 

pancreatic cancer cells, most likely via incorrect function of the ARP2/3 protein 

complex. Overexpression of the entire ARP2/3 protein complex or some of its 

subunits has been found in several malignancies, including breast, colorectal, and 

gastric cancers (Otsubo et al. 2004, Wang et al. 2004, Semba et al. 2006, Zheng et 

al. 2008). Moreover, coexpression of the ARP2 subunit of the complex and one of 

its activators, WAVE2, has been linked to poor prognosis in breast, colorectal, and 

lung cancer because of increased risk of metastases (Semba et al. 2006, Iwaya et al. 

2007a, Iwaya et al. 2007b).  

Interestingly, the pancreatic cancer cells overexpressing both of these genes 

appear to be more dependent on ARPC1A, since ARPC1A seems to be capable of 

compensating the lack of ARPC1B, but ARPC1B cannot fully cover the loss of 

ARPC1A expression. This suggests that the proteins encoded by these two genes 

either have slightly different roles in the Arp2/3 complex, or the cells may under 

certain conditions become more dependent on one protein than the other. In breast 

cancer, silencing of ARPC1B but not ARPC1A reduced the proportion of cells 

entering the G2/M phase of the cell cycle, and ARPC1B was shown to be involved 

in the Aurora A kinase activation, a cellular process needed in proper progression 

through mitosis (Molli et al. 2010). However, in our study silencing of ARPC1B did 

not alter pancreatic cancer cell growth, but the phenotypes in tissues of diverse 

genetic background are known to vary a lot, which may explain these differences 

(Moore et al. 2001, Deer et al. 2010). Further studies are needed to reveal the 

possible preferences in the expression of ARPC1A and ARPC1B in different 

tissues, cell types and cellular conditions, and to find out the exact functions of these 

two proteins. Also studies on the function of the six other subunits of the ARP2/3 

protein complex are needed to truly understand its role in both pancreatic and other 



 62 

cancers. Recently, miR-133a mediated silencing of ARPC5 was demonstrated to 

inhibit cell migration and invasion in head and neck squamous cell carcinoma 

(HNSCC) (Kinoshita et al. 2012).  The suggested role for the ARPC1 subunit as the 

regulator of the ARP2/3 complex makes it an exceptionally interesting drug target in 

cancer.  

 

 

2.2. Overexpression of KPNA7 promotes the malignant 
phenotypes of pancreatic cancer (II) 

 

The KPNA7 gene is located in the middle of the 7q21-q22 amplicon core and was 

highly overexpressed in several pancreatic cancer cell lines as the result of gene 

amplification, whereas in normal pancreas KPNA7 expression is nearly absent. Due 

to this interesting expression pattern, together with the literature lacking almost any 

information about KPNA7 expression, a qRT-PCR screen in a panel of 20 additional 

normal human tissues was performed. Also in these, KPNA7 expression levels were 

very low, with only marginal expression detected in ovary and trachea. The KPNA7 

expression levels in primary pancreatic tumors were queried from the several 

microarray databases but almost no data was available. Only a single cervical cancer 

dataset demonstrating at least 2.5-fold increase in KPNA7 expression in 

approximately 25% of the samples was found (http://www.ncbi.nlm.nih.gov/geo/; 

accession number GSE20167). This scarcity of information can be mainly explained 

by the fact that until very recently, KPNA7 was only a hypothetical protein 

predicted by sequence similarity. The KPNA7 gene was originally isolated from 

LNCaP prostate cancer cells and was shown to be expressed in HeLa cervical cancer 

cells (Kelley et al. 2010) as well as in BT-474 breast cancer cells (unpublished 

data), suggesting that it is indeed expressed in a subset of cancer samples. 

Unfortunately all of the commercial KPNA7 antibodies as well as the custom-made 

antibody failed to recognize the KPNA7 protein, allowing the evaluation of its 

expression only at the mRNA level.  

Functional consequences of aberrant KPNA7 expression were studied by 

silencing the gene in the AsPC-1 and Hs700T pancreatic cancer cell lines which 
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both harbor a high-level amplification and subsequent overexpression of KPNA7. 

Panc-1 cells with no amplification and only very marginal expression were used as a 

control. Using a pool of four different siRNAs (siKPNA7), efficient (at least 80% as 

compared to LUC siRNA control) silencing of KPNA7 mRNA levels was observed 

already at 24 hours after transfection and persisted for at least 96 hours. The mRNA 

levels of other alpha karyopherins were also screened to ensure that the siRNAs did 

not alter their expression.  

Silencing of KPNA7 led to a dramatic reduction of cell growth in both AsPC-1 

and Hs700T cell lines. In both cell lines, a trend for slower cell proliferation could 

be seen already at 72 hours after transfection, and at 96 hours a striking and 

statistically significant growth reduction was evident (Table 10). As expected, 

KPNA7 silencing did not alter the growth of Panc-1 cells with low endogenous 

KPNA7 expression. Next, apoptosis and cell cycle analyses were performed to 

determine whether the reduction in cell growth was caused by increased rate of cell 

death or decreased rate of cell proliferation. No differences in the number of 

apoptotic cells were detected but instead, a marked G1 arrest could be seen in both 

AsPC-1 and Hs700T cells after KPNA7 silencing. At 72 hours after KPNA7 siRNA 

transfection, the fraction of cells in the G1 phase was dramatically increased in both 

cell lines (Table 10). To explore the cellular mechanisms of the G1 arrest in more 

detail, the expression of six well-known cell cycle regulator proteins (CDK2, 

CDK6, Cyclin A, Cyclin E, p21, and p27) was assessed in AsPC-1 and Hs700T 

cells after KPNA7 silencing. Since the KPNA7 protein acts in nuclear transport, the 

nuclear and cytoplasmic protein fractions were studied separately, to reveal not only 

changes in the expression levels but possibly also in the subcellular localization of 

the proteins. Interestingly, a clear induction of the p21 protein levels was observed 

in both cell lines and in both nuclear and cytoplasmic protein fractions. For the 

remaining five proteins no significant alterations were detected.  
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Table 10. Summary of the functional consequences of KPNA7 silencing in AsPC-1 
and Hs700T cells.  
 

 AsPC-1a Hs700Ta 

Proliferation (at 96 hours) 37 % ** 54 % ** 

Cell cycle G1 arrest  
G1 fraction 66% vs. 46% ** 

G1 arrest  
G1 fraction 64% vs. 48% ** 

Colony formation 29 % * 79 % *** 

Migration 45 % ** Not altered 

Invasion 29 % n.s. Not altered 

Cell morphology Not altered Change from raft-like to 
fibroblast-like 

aReduction (%) as compared to the LUC control.  
* p<0.05, ** p<0.005, *** p<0.0005 
 

 

Potential for anchorage independent growth was studied by growing siKPNA7 

transfected AsPC-1 and Hs700T cells in soft agar for 14 days. For AsPC-1 cells, the 

total colony area was decreased 29% in siKPNA7 transfected cells as a result of 

decreased of colony size. For Hs700T cells, a dramatic decrease in both colony size 

and number of colonies was observed, adding up to a 79% decreased total colony 

area. Silencing of KPNA7 also reduced migration and invasion ability of AsPC-1 

cells (Table 10) whereas the mobility of Hs700T cells was not altered. However, in 

Hs700T cells silencing of KPNA7 dramatically altered the cell morphology, causing 

the cells normally growing as raft-like structures to acquire a fibroblast-like shape. 

However, despite various experiments assessing apoptosis and EMT (epithelial-

mesenchymal transition) related factors, the underlying reasons for this phenomenon 

could not be discovered. 

The nuclear transport machinery is responsible for carrying various proteins and 

RNA in and out of the nucleus, making it a key player in maintaining cellular 

homeostasis (Pemberton and Paschal 2005). Abnormalities and malfunctions in this 

complex protein network can lead to incorrect localization of proteins and therefore 

cause various diseases, including cancer (Faustino et al. 2007). For example, in 

addition to mutations, the tumor suppressor protein p53 has been shown to be 

inactivated by incorrect localization in the cytoplasm, impairing its proper function 

in the nucleus (Moll et al. 1992). In some cases, the mislocalization was proven to 
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be due to a truncated form of the import receptor alpha karyopherin (Kim et al. 

2000).  

KPNA7 is the newest member of the karyopherin-α protein family and operates 

in nuclear import. This study shows that KPNA7 expression is absent in almost all 

human adult tissues, but overexpression of the gene is a frequent event in pancreatic 

cancer. Studies in several animals have shown that KPNA7 is expressed during 

embryogenesis, suggesting that the gene might normally act during the embryo 

development and is then silenced in adult differentiated cells (Tejomurtula et al. 

2009, Hu et al. 2010, Wang et al. 2012). Molecular pathways normally needed 

during the embryogenesis are known to be frequently activated in cancer, and 

aggressive tumors, such as pancreatic cancer, often overexpress genes that are 

enriched in embryonic stem cells (Miller et al. 2005, Kelleher et al. 2006, Ben-

Porath et al. 2008). These data suggest that KPNA7 mainly functions during 

embryonic development, is normally silenced in adults, but abnormally activated in 

cancer cells.  

Silencing of KPNA7 resulted in a remarkable decrease of cell proliferation as 

well as a great reduction in the anchorage independent growth, both of which are 

key features of cancer cells (Hanahan and Weinberg 2000, Hanahan and Weinberg 

2011). Furthermore, the growth decrease was shown to be caused by a p21 induced 

G1 arrest of the cell cycle. The p21 protein is a cyclin-dependent kinase inhibitor 

which inhibits the G1/S cyclin-dependent kinases, mainly the activity of CDK2–

Cyclin-E complexes (Malumbres and Barbacid 2001, Abbas and Dutta 2009). 

Silencing of p21 as well as other abnormalities in the regulation of the cell cycle are 

very common in all human cancers (Malumbres and Barbacid 2001, Abbas and 

Dutta 2009, Malumbres and Barbacid 2009). In addition to the universal changes in 

cell growth, KPNA7 silencing also caused decreased migration ability in AsPC-1 

cells and changed the morphology of the Hs700T cells. These cell line specific 

phenotypes are likely to be explained by the different genetic and phenotypic 

characteristics of the cells (Moore et al. 2001, Deer et al. 2010).  

Overexpression of other alpha karyopherins, especially KPNA2, has been 

frequently reported in several malignancies, such as bladder, breast, esophageal, 

lung, ovarian, and prostate cancers (Dahl et al. 2006, Gluz et al. 2008, Sakai et al. 

2010, Zheng et al. 2010, Jensen et al. 2011, Mortezavi et al. 2011, Wang et al. 

2011). In breast cancer cells, KPNA2 overexpression induced colony formation and 
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increased cell migration whereas silencing led to opposite phenotypic effects 

(Noetzel et al. 2012). Moreover, in lung and prostate cancers KPNA2 silencing led 

to reduced cell migration, cell viability, and cell proliferation (Mortezavi et al. 2011, 

Wang et al. 2011). Although this study clearly demonstrates that overexpression of 

KPNA7 promotes the malignant properties of pancreatic cancer, further studies are 

still needed to determine the exact function of KPNA7 in embryonic, adult and 

cancerous cells. Moreover, identification of the actual cargoes of KPNA7 is crucial 

to uncover the consequences of its abnormal expression in cancer. However, the fact 

that KPNA7 expression is extremely low in practically all normal human adult 

tissues makes it an especially attractive therapeutic target for both pancreatic cancer 

and other malignancies.  

3. miRNA expression patterns in pancreatic cancer 
(III) 

3.1. 72 differentially expressed miRNAs provide a molecular 
signature for pancreatic cancer (III) 

Agilent miRNA microarrays were utilized to screen the miRNA expression patterns 

in a panel of sixteen established pancreatic cancer cell lines and four normal 

pancreatic RNA samples. The internal control sample (pool of the normal samples) 

hybridized on all microarray slides in the study showed highly similar expression 

profiles, thus indicating good consistency between data derived from different 

microarray slides and allowing slide-to-slide comparison. Hierarchical clustering 

was able to separate the samples into two discrete groups, one containing the four 

normal pancreatic samples and the other all pancreatic cancer cell lines. Although 

the cancer cell lines did fall into a few subgroups, no link between those groups and 

specific cell line characteristics, such as such as site of origin (primary tumor vs. 

metastasis), differentiation or mutation status, could be found (Moore et al. 2001, 

Deer et al. 2010).  

Next, differentially expressed miRNAs between the two sample groups were 

identified using the Bayes method and the Benjamini-Hochberg adjustment. 

Altogether 72 miRNAs with differential expression (at least 1.5-fold expression 
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change, adjusted p-value <0.05) between these two groups were identified, 

approximately half of these being up- and half downregulated in pancreatic cancer 

cells as compared with normal samples. As expected, many of the differentially 

expressed miRNAs, such as the let-7 family and miR-21, have been already shown 

to be frequently altered in multiple malignancies, and the results obtained are in line 

with the literature of miRNA expression in pancreatic cancer cell lines and primary 

tumors (Bloomston et al. 2007, Lee et al. 2007, Szafranska et al. 2007, Kent et al. 

2009, Olson et al. 2009, Park et al. 2009, Zhang et al. 2009, Ali et al. 2010, Bhatti et 

al. 2011, Mees et al. 2011, Zhang et al. 2011, Donahue et al. 2012, Hamada et al. 

2012, Jiao et al. 2012, Jung et al. 2012, Munding et al. 2012, Panarelli et al. 2012, 

Papaconstantinou et al. 2012, Piepoli et al. 2012, Schultz et al. 2012). However, the 

study also identified novel cancer related miRNAs, such as miR-801 that has been 

later on suggested to be a marker for early detection of breast cancer (Cuk et al. 

2012).  

To validate the microarray data, a set of twelve differentially expressed miRNAs 

was selected for qRT-PCR analysis. The selected miRNAs represented different 

expression ranges, varying from very low to very high expression. A median 

correlation of 0.66 (Spearman’s rank correlation coefficient, range from 0.398 to 

0.926) was observed between the two methods, thus confirming the reliability of the 

microarray data. 

One miRNA is capable of regulating the expression of dozens or even hundreds 

of genes (Gunaratne et al. 2010, Pritchard et al. 2012). The GOmir application was 

used to predict the targets for the 20 miRNAs with most significant differential 

expression in this study. GOmir utilizes four different target prediction programs, 

TargetScan, miRanda, RNAhybrid, and PicTar, and thus gives more reliable 

predictions than the use of only a single program. When used individually, the four 

different programs were able to identify tens or even hundreds of possible target 

genes for each miRNA but the number of common target genes was significantly 

lower (range of 0-73 common targets per miRNA, median value 12).  

MiRNA expression signature has been shown to correctly classify cancer and 

normal samples, and to be even more accurate than mRNA profiling (Rosenfeld et 

al. 2008). In this study, the expression profile of 72 miRNAs was sufficient to 

separate the normal and cancer samples. However, for this miRNA signature to have 

actual diagnostic value, several issues must be solved. First of all, the cancer 



 68 

samples used in this study were merely cell lines. It is possible, that some of the 

expression changes observed in this study represent either artefacts related to cell 

culturing or are cell line specific events. Yet, many of the miRNAs with most 

significant differential expression have been shown to be altered also in primary 

pancreatic cancer samples (Bloomston et al. 2007, Lee et al. 2007, Szafranska et al. 

2007, Olson et al. 2009, Zhang et al. 2009, Bhatti et al. 2011, Zhang et al. 2011, 

Donahue et al. 2012, Hamada et al. 2012, Jiao et al. 2012, Munding et al. 2012, 

Panarelli et al. 2012, Papaconstantinou et al. 2012, Piepoli et al. 2012, Schultz et al. 

2012). Second obstacle in using the signature as a diagnostic tool is the number of 

miRNAs. Screening of 72 miRNAs is time-consuming and expensive, and to 

actually have potential in the pancreatic cancer diagnosis, the miRNA signature 

should contain a far smaller number of miRNAs and still to be accurate. Thus, this 

study mainly provides novel information for understanding the pathogenesis of 

pancreatic cancer, but also demonstrates that the commercially available pancreatic 

cancer cell lines indeed provide proper models for studying miRNAs in pancreatic 

cancer.   

3.2. miR-31 regulates migration and invasion in pancreatic 
cancer cells (III) 

Of the 72 differentially expressed miRNAs, miR-31 demonstrated a specially 

interesting expression pattern. In normal pancreas and in six of the cell lines it was 

expressed at very low levels, but in ten cell lines it had strikingly high expression. 

Based on this on-off type expression profile, miR-31 was selected for further 

functional studies where the molecular consequences of both inhibition and 

overexpression of miR-31 were evaluated. miR-31 expression was inhibited in two 

cell lines with high endogenous miR-31 levels (AsPC-1 and HPAF-II) and induced 

in a cell line with almost absent miR-31 expression (MIA PaCa-2). Quantitative RT-

PCR was used to verify efficient miR-31 silencing (over 80% decrease in relative 

expression) and expression (up to 200-fold increased expression). Control 

experiments were performed by silencing miR-31 in non-expressing cells and 

inducing expression in cells with high endogenous expression.  

Inhibition of miR-31 expression resulted in statistically significant cell growth 

reduction at 96 hours after transfection, both in AsPC-1 and HPAF-II cells (12% 
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and 24% reduction compared to control cells, respectively). Interestingly, induced 

expression of miR-31 in MIA PaCa-2 cells also led to reduced cell growth (24% 

reduction at 96 hours after transfection). Despite the similar changes in cell growth 

rates, alterations in the cell cycle were seen only in the MIA PaCa-2 cells in which 

an apparent G1 arrest was detected at 72 hours after transfection. Silencing of miR-

31 also significantly altered migration ability of AsPC-1 and HPAF-II cells and also 

influenced cell invasion although no statistical significance was achieved 

(Table 11). Furthermore, induced miR-31 expression in MIA PaCa-2 cells also 

reduced both migration and invasion ability of the cells (Table 11). In all other 

control experiments no differences in either cell growth or migration and invasion 

ability were detected, but inducing miR-31 expression in AsPC-1 cells, already 

endogenously overexpressing miR-31, surprisingly resulted in dramatic decrease in 

both migration and invasion (Table 11). Although previous studies have shown the 

cellular consequences of both up- and downregulation of miR-31 but none of those 

has reported the phenomenon seen in the AsPC-1 cells in this study. Only in one 

report studying HNSCC, miR-31 expression has been both induced and inhibited in 

the exactly same cell line, but the consequences were also opposite (Liu et al. 2010). 

 

 

Table 11. Effects of manipulating miR-31 expression on migration and invasion of 
three pancreatic cancer cell lines.  
 

Treatment Function Cell linea 

  AsPC-1 HPAF-II MIA PaCa-2 

Anti-miR-31 Migration 33 % ** 64 % ** Not altered 

 Invasion 27 % n.s. 20 % n.d. 

Pre-miR-31 Migration 61 % ** n.d. 58 % ** 

 Invasion 74 % ** n.d. 35 % * 
aAll values are shown as reduction (%) compared to the control cells.  
n.d., not determined 
* p<0.05, ** p<0.005 
 

 

To explore the function of miR-31 and also validate the results from the miRNA 

target gene prediction programs, the putative target genes of miR-31 were studied in 

more detail. The GOmir application was able to identify a total of seven common 
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targets for miR-31, APBB2, ARID1A, MAP4K5, PPP2R2A, RSBN1, TACC1, and 

TACC2. In addition to these genes, two additional previously confirmed miR-31 

targets, LATS2 and RHOA, were selected (Valastyan et al. 2009, Liu et al. 2010). 

One of the genes, TACC2, was not expressed in any of the samples analyzed and 

was thus excluded from further analyses. No differences in the basal expression of 

the putative target genes were detected when comparing the cell line groups with 

low and high miR-31 levels. However, in the cell lines with manipulated miR-31 

expression, at least 50% change in the expression of four genes (APBB2, LATS2, 

PPP2R2A, and RSBN1) was observed, both when inhibiting and inducing miR-31 

expression. Two most likely miR-31 targets, LATS2 and RSBN1, were further 

studied by western blot. Unfortunately no changes in the protein expression levels 

were seen although both of them were confirmed to harbor at least two miR-31 

binding sites.   

Multiple studies have implicated miR-31 as an important regulator of the 

metastasis process in many tumor types (studies summarized in Table 2) but this 

was the first time when its role in pancreatic cancer was studied. Interestingly, both 

up- and downregulation of miR-31 have been reported in different cancers. 

However, although the expression patterns vary largely between different 

malignancies, the effect of abnormal miR-31 expression seems to be mainly 

affecting cell invasion and development of metastases. Both upregulation 

(Valastyan et al. 2009, Wszolek et al. 2009, Aprelikova et al. 2010, Ivanov et al. 

2010, Sossey-Alaoui et al. 2011, Fuse et al. 2012, Hua et al. 2012) and 

downregulation (Cottonham et al. 2010, Liu et al. 2010, Wang et al. 2010, Wu et al. 

2011) of miR-31 have been demonstrated to inhibit cancer cell mobility. Based on 

this study, the phenotypes induced by aberrant miR-31 expression appear to be 

dependent not only on tissue type but also the cell line and more studies utilizing 

several different cell lines are needed to solve this question. However, since a single 

miRNA may regulate even hundreds of target genes (Friedman et al. 2009), the 

consequences of altering such a master regulator of gene expression are indeed 

expected to vary greatly, depending on the genetic and epigenetic background of the 

cells.  
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4. Future perspectives  

This study provides novel in vitro data on both the expression patterns of 

microRNAs and the function of one miR-31 and three amplification target genes, 

ARPC1A, ARPC1B, and KPNA7, in pancreatic cancer.  

The functional studies of the amplicon target genes were performed using the 

RNAi technology. Although several siRNAs were used for each gene, the possibility 

of off-target effects must still be taken into consideration. Thus, it would be 

important to show the functional consequences of overexpression of the same genes 

in cells with absent or low endogenous expression. Furthermore, this study was 

performed mainly on mRNA level, and the obvious next steps would be first to 

verify the results on protein level and then to explore the cellular roles of these 

proteins in more detail. Since ARPC1A and ARPC1B are components of a large 

protein complex, it would be interesting to also study the other subunits of the 

complex, and to evaluate the roles of the individual subunits as well as the entire 

protein complex. KPNA7 acts as a nuclear import receptor, and thus exploring its 

cargoes would be a logical step to further study its role in pancreatic cancer.  

This study revealed a specific microRNA profile for pancreatic cancer, which is 

able to separate cancer and normal samples. To gain clinical value, the profile 

should be tested also with primary tumor samples, and the number of miRNAs used 

in profiling should be decreased. Furthermore, since the putative miR-31 target 

genes tested in this study could not be confirmed, the role of other predicted targets 

should be assessed in the future. This would help in determining the molecular 

pathways that are altered by abnormal miR-31 expression and thus in understanding 

the complex phenotype observed in this study.  

The study was carried out by using mainly cell lines, an approach that has both 

advantages and disadvantages. Cell lines provide a fast and an inexpensive way of 

studying cancer genes but when interpreting the results it must kept in mind that 

they may lack many of the properties of the actual tumors. When studying cellular 

properties, the lack of the tumor microenvironment, such as the surrounding tissues 

and the immune response is a major point to consider. Thus, although the results 

from cell line studies provide a good basis, they need to be validated in primary 

tumor samples or in in vivo models to increase their reliability. For this study, 

proceeding to animal models would be a logical step, and xenograft models with 
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both silencing and overexpressing the target genes could provide additional 

evidence on the role these genes in pancreatic cancer pathogenesis.  
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CONCLUSIONS 

This study was aimed to identify and functionally characterize both genes and 

microRNAs aberrantly expressed in pancreatic cancer. The major findings of this 

thesis were the following:  

 

1. As a result of a detailed study on the 7q21-q22 amplification, a 0.77 Mb 

amplicon core region was identified and found to exist in 25% of both 

pancreatic cancer cell lines and primary tumors. The amplification was 

found to lead to overexpression of several genes, some of which were proven 

to have an important role in pancreatic carcinogenesis.  

 

2. Functional characterization of three putative 7q21-q22 amplicon target 

genes, ARPC1A, ARPC1B, and KPNA7 confirmed their functional role in 

pancreatic cancer. ARPC1A and ARPC1B were shown to regulate mobility of 

pancreatic cancer cells whereas KPNA7 had a more diverse function. KPNA7 

silencing resulted in a p21 induced G1 arrest of the cell cycle, but also led to 

changes in cell migration and morphology. All three genes have potential to 

serve as novel targets for anti-cancer therapy.  

 

3. Pancreatic cancer was shown to possess a distinct expression pattern of 

microRNAs. A set of 72 miRNAs was identified, which were differentially 

expressed between pancreatic cancer and normal pancreatic samples, and 

thus provide a molecular signature for the disease.  

 

4. miR-31 was found to be strongly overexpressed in a subset of pancreatic 

cancer cell lines. Functional characterization of miR-31 proved that it plays 

an important role in regulating migration and invasion of pancreatic cancer 

cells.  
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Characterization of the 7q21-q22 Amplicon
Identifies ARPC1A, a Subunit of the Arp2/3
Complex, as a Regulator of Cell Migration
and Invasion in Pancreatic Cancer

Eeva Laurila, Kimmo Savinainen, Riina Kuuselo, Ritva Karhu, and Anne Kallioniemi*

Laboratoryof Cancer Genetics,Institute of Medical Technology,Universityof Tampere and Tampere University Hospital,Finland

Pancreatic cancer is a highly aggressive malignancy and one of the leading causes of cancer deaths, mainly due to the lack

of methods for early diagnosis and the lack of effective therapies. Recent CGH microarray studies have revealed several

regions that are recurrently amplified in pancreatic cancer; these are thus likely to contain genes that contribute to cancer

pathogenesis and thereby could serve as novel diagnostic and therapeutic targets. Here, we performed a detailed charac-

terization of the 7q21-q22 amplicon in pancreatic cancer to identify putative amplification target genes. Fluorescence in

situ hybridization analyses in 16 pancreatic cancer cell lines and 29 primary pancreatic tumors revealed an increased copy

number in �25% of cases in both sample groups, and the cell line data also allowed us to identify a 0.77 Mb amplicon

core region containing ten transcripts. Gene expression analyses by qRT-PCR highlighted the ARPC1A gene as having the

statistically most significant correlation between amplification and elevated expression (P ¼ 0.004). Silencing of ARPC1A by

RNA interference in AsPC-1 cells having high level amplification and expression resulted in a slight decrease in cell prolifer-

ation, but a massive reduction in cell migration and invasion. ARPC1A codes for the p41 subunit of the Arp2/3 protein com-

plex, which is a key player in actin polymerization and thus regulates cell mobility. Taken together, our data implicate

ARPC1A as a novel target for the 7q21-q22 amplification and a regulator of cell migration and invasion in pancreatic cancer,

thus making it an interesting target for antimetastasis therapy. VVC 2009 Wiley-Liss, Inc.

INTRODUCTION

Pancreatic adenocarcinoma is a malignancy

with extremely poor prognosis. It is responsible

for more than 30,000 deaths per year, making it

the fourth leading cause of cancer deaths for both

genders (Jemal et al., 2008). Pancreatic cancer is

often characterized by rapid progression, aggres-

sive metastasizing and a wide resistance to

chemo- and radiotherapy. By the time of diagno-

sis, pancreatic cancer has typically invaded or

metastasized to the surrounding tissues. Because

of the aggressive nature of the disease and the

lack of methods for early detection, the 5-year

survival rate of pancreatic cancer is less than 5%

(Bardeesy et al., 2002; Jemal et al., 2008).

The genetic background of pancreatic cancer is

still widely unknown although mutations in some

specific genes, such as KRAS, have been shown

to occur frequently (Klimstra and Longnecker,

1994; Rozenblum et al., 1997). In addition to spe-

cific gene defects, pancreatic cancer typically har-

bors complex chromosomal aberrations, resulting

in gains and losses of multiple chromosomal

regions (Karhu et al., 2006). Most of these might

represent random events that merely reflect the

overall genetic instability commonly observed in

pancreatic cancer. However, some aberrations

have been shown to be recurrent, implying that

genes within these regions are likely to play an

important role in the development and progres-

sion of the disease and thus may provide novel

prognostic and therapeutic targets.

Our recent array CGH study (Mahlamäki et al.,

2004) revealed a 3 Mb region at 7q21-q22 to be

recurrently amplified in pancreatic cancer, and

this finding has been subsequently confirmed by
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several other microarray surveys (Aguirre et al.,

2004; Heidenblad et al., 2004; Holzmann et al.,

2004; Bashyam et al., 2005; Gysin et al., 2005;

Loukopoulos et al., 2007; Suzuki et al., 2008).

The same amplicon has also been observed in

other malignancies, such as esophageal, gastric,

and hepatocellular cancers, as well as melanoma

(Balazs et al., 2001; Riegman et al., 2001; Moro-

hara et al., 2005; Sy et al., 2005), suggesting that

the inappropriate activation of genes within this

region may contribute to the pathogenesis of

multiple different malignancies. Unfortunately,

the pancreatic cancer CGH microarray data from

us and others (Aguirre et al., 2004; Heidenblad

et al., 2004; Holzmann et al., 2004; Mahlamäki

et al., 2004; Bashyam et al., 2005; Gysin et al.,

2005; Loukopoulos et al., 2007; Suzuki et al.,

2008) only provided an overview of the 7q21-q22

amplicon, and further studies are thus needed to

identify the potential target genes. Here, we

present a detailed characterization of the 7q21-

q22 amplicon in pancreatic cancer together with

the functional evaluation of two putative amplifi-

cation target genes, ARPC1A and ARPC1B.

MATERIALS AND METHODS

Cell Lines and Tissue Samples

A total of 16 established pancreatic cancer cell

lines were used in this study. Thirteen of them

(AsPC-1, BxPC-3, Capan-1, Capan-2, CFPAC-1,

HPAC, HPAF-II, Hs 700T, Hs 766T, MiaPaCa-

2, Panc-1, Su.86.86, and SW1990) were obtained

from the American Type Culture Collection

(ATCC, Manassas, VA) and three (DanG, Hup-

T3, and Hup-T4) from the German Collection of

Microorganisms and Cell Cultures (Braunschweig,

Germany). Cells were grown under recommended

culture conditions. Commercially available Ac-

cuMax A207 (III) tissue microarrays were pur-

chased from Petagene (Seoul, Korea). The tissue

microarray slides contained 32 pancreatic carci-

noma tissue specimens in duplicate and eight

non-neoplastic pancreatic tissue samples. The

grade distribution of the tumor samples was: four

samples of grade 1, 13 of grade 2, six of grade 3,

one of grade 4, and eight unspecified.

Fluorescence In Situ Hybridization

Thirteen bacterial artificial chromosome (BAC)

or P1-derived artificial chromosome (PAC) clones

(Supp. Info. Table S1) located at the 7q21-q22

region were selected using the public genomic

databases NCBI Map Viewer (http://www.ncbi.

nlm.nih.gov/mapview) and UCSC Genome

Browser (http://genome.ucsc.edu). Clones were

obtained from CHORI (Children’s Hospital Oak-

land Research Institute, Oakland). Clone DNA

was isolated by standard alkaline lysis method

and then labeled with Spectrum Orange dUTP

(Vysis, Downers Grove, IL) by random priming.

A FITC-labeled chromosome 7 centromeric

probe (p7alphaTET) was used as a reference.

The labeled probes were purified with Bio-Spin

P6 columns (Bio-Rad, Hercules, CA). Fluores-

cence in situ hybridization (FISH) on pancreatic

cancer cell lines was performed as described (Bar-

lund et al., 2000). The slides were examined

using the Olympus BX50 fluorescence microscope

(Olympus, Tokyo, Japan). Signals were counted

from fifty nuclei and the mean relative copy

number (ratio of locus specific probe versus con-

trol probe) was calculated. A relative copy num-

ber above 1.5 was considered as an increased

copy number. FISH to tissue microarray was per-

formed as described (Alarmo et al., 2006) with

minor modifications. A contig of three overlap-

ping BAC clones (RP11-62N3, RP11-1186C1,

RP11-405I21) was used as a hybridization probe.

Hybridization signals from at least twenty nuclei

were counted and the absolute mean copy num-

ber was determined.

Gene Expression Analyses

Gene expression levels were first determined

in one cell line, AsPC-1, using regular reverse

transcriptase PCR (RT-PCR) (Parssinen et al.,

2007) and then in a panel of 16 cell lines using

quantitative real-time RT-PCR (qRT-PCR) with

the Light Cycler instrument (Roche, Mannheim,

Germany). Total RNA was isolated from the cell

lines using the Trizol reagent (Invitrogen, Carls-

bad, CA). A normal human pancreatic RNA sam-

ple was obtained from Ambion (Austin, TX).

First-strand cDNA was synthesized using the

SuperScript III First-Strand Synthesis kit (Invi-

trogen). PCR primers and probes (Supp. Info. Ta-

ble S2) were obtained from TIB MolBiol (Berlin,

Germany). TATA box binding protein (TBP) was

used as a housekeeping gene for the normaliza-

tion of expression levels. The data analyses were

performed using the LightCycler software

(Roche), as described earlier (Rauta et al., 2006).

ARPC1A and ARPC1B Silencing

Specific small interfering RNAs (siRNAs) for

ARPC1A and ARPC1B genes were designed using
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the siRNA Selection Program of the Whitehead

Institute, Cambridge, MA (Yuan et al., 2004) and

the siRNA molecules were obtained from Proligo

(Paris, France). AsPC-1 cells were transfected

with the siRNAs using Interferin reagent (Poly-

plus-Transfection, San Marcos, CA) according to

the manufacturer’s instructions. Transfections

were performed on 24-well plates with 25,000

cells per well and a final concentration of 8 nM

siRNA was used. When simultaneously knocking

down two genes, a final concentration of 8 nM

was used for each siRNA. Parallel control experi-

ments using a siRNA targeting the firefly lucifer-
ase (PPYLUC) gene were performed in identical

manner. The complete sequences of all of the

used siRNAs are shown in Table 1. All siRNA

experiments were performed with six replicates

and were repeated at least twice. The efficacy of

the gene silencing was verified each time using

qRT-PCR as described earlier.

Cell Growth Analyses

For cell growth analyses, cells were transfected

with ARPC1A siRNA, ARPC1B siRNA, a combi-

nation of ARPC1A and ARPC1B siRNAs, or lucif-
erase control siRNA, as described earlier. Cells

were counted with a Coulter Z2 Coulter Counter

(Beckman Coulter, San Diego, CA) at 24, 48, 72,

and 96 hr after transfection. Cell growth assays

were performed with six replicates and repeated

twice.

Migration Studies

After a 48 hr siRNA transfection, the cells

were trypsinized and 100,000 cells were placed

on a 8.0-lm ThinCert cell culture insert

(Greiner-Bio-One GmbH, Frickenhausen, Ger-

many) in 350 ll growth medium containing 1%

FBS. The inserts were placed on a 24-well plate

containing 750 ll normal growth medium per

well. After 20 hr, migrated cells were fixed and

stained according to the manufacturer’s instruc-

tions. A Nikon Microphot EPI-FL3 microscope

was used in the quantification of the migration

inserts. Migration assays were performed with six

replicates and repeated twice.

Invasion Studies

BD BioCoat Matrigel invasion chambers (BD

Biosciences, Bedford, MA) were used for the

invasion studies. After a 48 hr siRNA transfec-

tion, the cells were trypsinized and resuspended

in growth medium containing 1% FBS. Two hun-

dred thousand cells were placed on a 8-lm inva-

sion chamber insert and the inserts were placed

on a 24-well plate containing 750 ll normal

growth medium per well. After 22 hr, invaded

cells were fixed and stained according to the

manufacturer’s instructions. Cell invasion was

quantified using the Nikon Microphot EPI-FL3

microscope by counting the invaded cells from

six separate fields for each insert. Invasion assays

were performed with six replicates and repeated

twice.

Statistical Analyses

The Mann-Whitney test was used to statisti-

cally compare the medians of the test and control

groups.

RESULTS

Defining a 0.77 Mb Amplicon Core in

Pancreatic Cancer

Our previous CGH microarray analysis had

implicated a 3 Mb commonly amplified region at

7q21-q22 in pancreatic cancer (Mahlamaki et al.,

2004). To define the exact structure and bounda-

ries of the 7q21-q22 amplicon, copy number anal-

ysis across the entire 3 Mb region was performed

in 16 established pancreatic cancer cell lines

using FISH with 13 BAC/PAC clones. Increased

copy number was observed in four (25%) cell

lines, namely AsPC-1, Capan-1, Hs700T, and

HPAF-II (Figs. 1A and 1B). In the AsPC-1 cell

line with the most intensive amplification, rela-

tive copy numbers reached up to 8.7-fold,

whereas in Capan-1, Hs700T and HPAF-II, lower

level gains were observed (relative copy numbers

up to 1.7-, 2.9-, and 2.3-fold, respectively). Of

note, in the AsPC-1 cells the hybridization signals

were located in tight clusters on metaphase chro-

mosomes, suggesting the presence of homoge-

nously staining regions.

TABLE 1. Complete siRNA Sequences

Target
gene siRNA IDa Sequence (sense)

PPYLUC LUC 50 GAUUUCGAGUCGUCUUAAUTT 30

ARPC1A A-489 50 GUGGAGCACGACUCAUUUCTT 30

ARPC1A A-196 50 CAGGGAUCGUACUCAGAUUTT 30

ARPC1B B-446 50 UCUCCAUCUGUUAUUUCGATT 30

ARPC1B B-272 50 CCGAGAGUAACCGUAUUGUTT 30

aNumber in siRNA ID indicates the start position.
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In the Capan-1, HPAF-II, and Hs700T cell

lines, the level of amplification was more or less

uniform across the entire 3 Mb region. However,

AsPC-1 cells had a clear peak of a high level

copy number increase at the distal end of the

amplicon (Figs. 1A and 1B), thus allowing us to

define a 0.77 Mb core region of amplification

(from the distal end of clone RP11-725M1 to the

beginning of clone RP11-136B3).

The existence of the 7q21-q22 amplicon was

subsequently examined in 32 primary pancreatic

tumors using a contig of three BAC clones repre-

senting the aforementioned amplicon core. Low-

level copy number increases (with mean absolute

copy number up to 5 per cell) were observed in 7

of 29 (24%) tumors where the hybridization was

successful (Fig. 1C).

Amplification Leads to Upregulation

of a Specific Set of Genes

The public genome databases NCBI Map

Viewer (http://www.ncbi.nlm.nih.gov/mapview)

and UCSC Genome Browser (http://genome.ucs-

c.edu) were next used to identify genes in the

0.77 Mb core region of the 7q21-q22 amplicon.

Altogether ten transcripts were found, all of them

representing known genes (Table 2, Fig. 2). We

first studied the expression levels of these genes

in the AsPC-1 cell line with the most intense

amplification, using regular RT-PCR. Two genes

(NPTX2 and TMEM130) had very weak expres-

sion or no expression at all (data not shown) and

were thus excluded from further studies, since a

putative amplification target gene is expected to

Figure 1. Delineation of the 7q21-q22 amplicon in pancreatic
cancer cell lines. (A) Relative copy number levels across the original
3 Mb amplicon are shown for the four amplified cell lines (AsPC-1,
Capan-1, HPAF-II, and Hs700T) and one nonamplified (Panc-1) cell
line. Gray area indicates the core region of the amplicon. (B) FISH
images of the AsPC-1 cell line at three different locations of the

7q21-q22 amplicon. Red signals represent the 7q21-q22 locus specific
clone as indicated in each image and green signals represent the chro-
mosome 7 centromere. (C) Amplification of the 7q21-q22 core
region in a primary pancreatic tumor. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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have a strong correlation between increased copy

number and elevated expression. Quantitative

real-time RT-PCR was then applied to evaluate

the expression levels of the remaining eight

genes in a set of four normal pancreas samples

and the same panel of 16 pancreatic cancer cell

lines previously used in the copy number analy-

ses (Fig. 3A). For each gene, the expression lev-

els in the four amplified cell lines were compared

to those in the nonamplified cell lines and normal

pancreas. Three genes (PDAP1, BUD31, and

PTCD1) located at the distal-most end of the

amplicon did not show an association between

amplification and overexpression (Fig. 3A).

PDAP1 and PTCD1 had even lower expression

levels in AsPC-1 cells than in normal pancreas

samples. The remaining five genes (TRRAP,
SMURF1, KPNA7, ARPC1A, and ARPC1B) dem-

onstrated a clear correlation between amplifica-

tion and increased expression, i.e., there was a

statistically significant difference in their median

expression level in the amplified as compared to

nonamplified cell line group (P ¼ 0.015, 0.024,

0.024, 0.004, and 0.015, respectively, Fig. 3). Fur-

thermore, all five genes were especially highly

overexpressed in AsPC-1 cells, the cell line with

highest level of amplification. Of these, ARPC1A
showed statistically the most significant differ-

ence in expression levels between amplified and

nonamplified cell lines (Fig. 3B).

ARPC1A and ARPC1B Silencing Leads to Reduced

Migration and Invasion in 7q21-q22 Amplified

Pancreatic Cancer Cells

Interestingly, the proteins encoded by ARPC1A
and ARPC1B are highly similar and are both sug-

gested to function as the p41 subunit of the

TABLE 2. Transcripts Located at the 0.77 Mb Core of the 7q21-q22 Amplicon

Symbol Name Statusa Start (Mb) End (Mb)

NPTX2 Neuronal pentraxin II Provisional 97.89 97.90
TMEM130 Transmembrane protein 130 Provisional 98.09 98.11
TRRAP Transformation/transcription domain-associated protein Provisional 98.12 98.26
SMURF1 SMAD specific E3 ubiquitin protein ligase 1 Reviewed 98.27 98.39
KPNA7 Karyopherin 7 Model 98.42 98.45
ARPC1A Actin related protein 2/3 complex. subunit 1A. 41 kDa Reviewed 98.57 98.61
ARPC1B Actin related protein 2/3 complex. subunit 1B. 41 kDa Reviewed 98.62 98.64
PDAP1 PDGFA associated protein 1 Validated 98.64 98.65
BUD31 BUD31 homolog (S. cerevisiae) Validated 98.65 98.66
PTCD1 Pentatricopeptide repeat domain 1 Validated 98.66 98.68

aIndicates the status of the gene given by the NCBI Entrez Gene database.

Figure 2. Chromosomal positions of the BAC clones and the genes within the amplicon core. Gray
boxes show the locations of the BAC clones and black arrows the locations of the genes. Arrowheads
indicate the transcription direction of the genes.
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human Arp2/3 protein complex (Welch et al.,

1997). Based on the gene expression data and

this functional similarity, both ARPC1A and

ARPC1B were selected for further studies. To

characterize the functional consequences of

the abnormal expression of ARPC1A and ARPC1B
in pancreatic cancer, we silenced them using

gene specific siRNAs both individually and

simultaneously in AsPC-1 cells, the line with the

highest level of amplification and expression.

Two different siRNAs targeting different regions

of the transcript were designed for both genes.

Efficient downregulation of mRNA levels (up to

89% and 88% reduction as compared to luciferase
control siRNA treated cells) was detected for

each gene with both siRNAs at 48 hr after trans-

fection (Fig. 4A). There was no cross-reactivity,

as ARPC1A silencing did not adequately decrease

ARPC1B mRNA levels and vice versa (Fig. 4A).

Silencing of ARPC1B had no effect on the

growth of AsPC-1 cells but silencing of ARPC1A
led to a statistically significant reduction in

AsPC-1 cell proliferation (up to 12% as compared

to luciferase control siRNA treated cells) at 96 hr

after transfection (P ¼ 0.0043, data not shown).

The same effect was observed with both

ARPC1A-specific siRNAs. More interestingly, a

dramatic reduction in AsPC-1 cell migration was

detected after ARPC1A and ARPC1B silencing,

with an average of 75% and 45%, respectively, as

compared to luciferase control siRNA (Fig. 4B, P
¼ 0.0022). As expected, the simultaneous silenc-

ing of both genes also led to reduced cell migra-

tion, although no obvious additive effect was

observed (Fig. 4B). Silencing of ARPC1B had no

effect on cell invasion but silencing of ARPC1A
resulted in a remarkable reduction (an average of

45%) in the invasiveness of the AsPC-1 cells (P
¼ 0.0043, Fig. 4C). The aforementioned changes

in cell migration and invasion were not siRNA

dependent, since the same phenotype was

observed with the two different gene-specific siR-

NAs. Finally, the same siRNAs were then used

to silence ARPC1A and ARPC1B in Panc-1 cell

Figure 3. A: Schematic representation of the expression levels of
eight genes at the 7q21-q22 amplicon core. Genes are arranged
according to their chromosomal location and the cell lines are di-
vided into two groups according to their amplification status. The
expression levels were determined using qRT-PCR, were normalized
against a housekeeping gene TBP and are shown relative to the me-

dian value for each gene. The key to the color code is shown at the
bottom. B: The expression levels of ARPC1A and ARPC1B, two genes
with the strongest correlation between amplification and over-
expression, in the amplified and nonamplified cell line groups. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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line with no 7q21-q22 amplification and low en-

dogenous expression levels for both genes. This

downregulation did not result in any changes in

cell migration or invasion as compared to luciferase
control siRNA (Supp. Info. Fig. 1), indicating

that the effect observed in AsPC-1 cells is truly

due to the amplification and overexpression of

ARPC1A and ARPC1B.

DISCUSSION

Gene amplification is a common and well-

documented mechanism for oncogene activation

in cancer. Microarray-based copy number surveys

provide an efficient tool to search for new ampli-

cons, and a growing number of amplified and

overexpressed genes have been recognized in the

last years in practically all types of cancer (Albert-

son, 2006; Lockwood et al., 2008). Such microar-

ray-based studies are, however, only capable of

pinpointing the possible candidate regions or

genes, and therefore additional work needs to be

done to find those genes that could be important

in terms of diagnosis or clinical treatment of the

disease.

Our previous genome-wide array CGH study

revealed a 3 Mb segment at the 7q21-q22 locus

to be recurrently amplified in pancreatic cancer

(Mahlamaki et al., 2004). Here, we present for

the first time the systematic characterization of

this amplicon, including the detailed analyses of

copy number levels and expression patterns as

well as the functional evaluation of two potential

amplification target genes. By using FISH we

found the 7q21-q22 amplicon to be present in

25% of the 16 pancreatic cancer cell lines

Figure 4. RNAi-based silencing of ARPC1A and ARPC1B influences
the migration and invasion of the AsPC-1 cells. (A) Relative ARPC1A
and ARPC1B mRNA expression levels 48 hr after transfection with
ARPC1A (A-489 or A-196), ARPC1B (B-446 or B-272), a combina-
tion of the ARPC1A and ARPC1B (A-489 þ B-446), or luciferase
control (LUC) siRNA reveals efficient and specific gene silencing. The

mean and SD of six replicates are shown. Relative amount of (B)
migrated or (C) invaded AsPC-1 cells after transfection with A-489,
A-196, B-446, B-272, a combination of A-489 and B-446, or luciferase
control siRNA. The mean and SD of six replicates are shown. ** indi-
cates P < 0.005.
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examined. In primary pancreatic tumors, an

increased copy number was seen with a similar

frequency in 24% of the cases, thus ruling out

the possibility that the amplicon represents a cell

culture artifact. On the basis of the cell line

FISH data, we could also narrow down the ampli-

con to a 0.77 Mb core region containing a total of

10 candidate genes. The analysis of the expres-

sion levels of these genes in the panel of 16 pan-

creatic cancer cell lines revealed that five of the

genes, TRRAP, SMURF1, KPNA7, ARPC1A, and
ARPC1B, have a strong association between

amplification and overexpression. Taken together,

these five genes are activated through increased

copy number at 7q21-q22 in pancreatic cancer

and therefore represent putative amplification tar-

get genes.

To evaluate the functional significance of the

7q21-q22 amplification we focused on two genes,

ARPC1A and ARPC1B, and explored their cellular

functions using the RNAi technique. ARPC1A
was chosen for these analyses because it showed

statistically the most significant correlation

between amplification and increased expression,

and ARPC1B was included as it is functionally

related to ARPC1A. These two genes code for

proteins that are subunits of the Arp2/3 protein

complex and, due to their high similarity at the

protein level, they are believed to be alternatives

to each other with both acting as the p41 subunit

of the complex (Welch et al., 1997; Goley and

Welch, 2006). The silencing of ARPC1A in the

AsPC-1 pancreatic cancer cell line with a high

level 7q21-q22 amplification resulted in reduced

cell proliferation. More importantly, a massive

reduction in pancreatic cancer cell migration and

invasion was observed (Fig. 4). ARPC1B silencing

also decreased cell migration, but no effect on

cell proliferation or invasion was observed. As

both genes are believed to code for the same pro-

tein, it is likely that ARPC1A can compensate for

the lack of ARPC1B but ARPC1B is not capable

of covering the loss of ARPC1A. This indicates

that, for pancreatic cancer, ARPC1A expression is

more important than ARPC1B expression.

Our RNAi data are highly compatible with pre-

vious knowledge of Arp2/3 functions. The seven-

subunit Arp2/3 protein complex is a crucial player

in actin polymerization and thus is involved in

the control of cell mobility (Otsubo et al., 2004;

Goley and Welch, 2006). In line with this fact,

the complex has been shown to be expressed in

cells with high mobility, such as macrophages

and lymphocytes (Otsubo et al., 2004; Goley and

Welch, 2006). Interestingly, the reduced expres-

sion of the entire Arp2/3 complex has been

reported in gastric cancer (Kaneda et al., 2004).

However, in several other malignancies, including

breast, colorectal and lung cancer, the increased

expression of the complex has indeed been com-

monly observed and linked with cancer cell inva-

sion and metastasis (Otsubo et al., 2004; Want et

al., 2005; Semba et al., 2006). Here, we now show

that amplification of the 7q21-q22 region results

in overexpression of two Arp2/3 complex subunit

genes, ARPC1A and ARPC1B, and leads to

increased mobility in pancreatic cancer cells.

This finding is especially important because the

p41 subunit, coded by ARPC1A and ARPC1B, has
been suggested to regulate the activity of the

Arp2/3 complex (Gournier et al., 2001; Vadlamudi

et al., 2004), and thus an excess amount of these

proteins might have a profound effect on the

function of the entire complex. Our results hence

implicate ARPC1A and ARPC1B as interesting tar-

gets for anticancer therapy.

Several studies have shown that amplicons of-

ten do not only contain a single amplification tar-

get gene but rather a set of genes that are

concurrently amplified and overexpressed (Kaura-

niemi et al., 2003; Garcia et al., 2005; Gelsi-Boyer

et al., 2005; Huang et al., 2006; Yang et al., 2006;

Kuuselo et al., 2007; Parssinen et al., 2007). Our

data demonstrated that the TRRAP, SMURF1,
and KPNA7 genes were also highly expressed

when amplified. Of these, SMURF1 and TRRAP
were recently proposed as possible target genes

of the 7q21-q22 amplicon (Suzuki et al., 2008).

Both genes were found to be amplified and over-

expressed in pancreatic cancer cell lines, and

downregulation of their expression resulted in

reduced cell proliferation and colony formation

(Suzuki et al., 2008). Furthermore, even although

the KPNA7 gene itself has not been previously

associated with cancer, it belongs to the karyo-

pherins, which have been strongly linked with

several malignancies (Kau et al., 2004). For exam-

ple, the overexpression of KPNA2 has been

reported as a marker for poor prognosis in breast

cancer (Gluz et al., 2008). All this indicates that

the 7q21-q22 amplicon also contains a set of

genes whose increased expression provides either

a growth or another type of advantage to cancer

cells.

In conclusion, our detailed characterization of

the 7q21-q22 amplicon revealed a 0.77 Mb mini-

mal region of amplification that was present in

�25% of both pancreatic cancer cell lines and

ARPC1A REGULATES CELL MOTILITY IN PANCREATIC CANCER 337

Genes, Chromosomes & Cancer DOI 10.1002/gcc



primary pancreatic tumors. Expression profiling of

the genes within the minimal amplicon high-

lighted two novel putative amplification target

genes, ARPC1A and ARPC1B, both coding for the

same p41 subunit of the Arp2/3 protein complex.

The functional characterization of these genes

showed ARPC1A having a strong involvement in

pancreatic cancer cell mobility, which goes along

with previous knowledge of Arp2/3 function in

actin polymerization. Pancreatic cancer is well

known for its aggressive metastasizing, and it is

still lacking an effective antimetastasis treatment.

Thus, the role of the p41 subunit as the probable

regulator of the Arp2/3 complex makes it a very

interesting drug target in pancreatic cancer.

ACKNOWLEDGMENTS

The authors thank Kati Rouhento and Maria

Sannamo for their skillful technical assistance.

REFERENCES

Aguirre AJ, Brennan C, Bailey G, Sinha R, Feng B, Leo C, Zhang
Y, Zhang J, Gans JD, Bardeesy N, Cauwels C, Cordon-Cardo C,
Redston MS, DePinho RA, Chin L. 2004. High-resolution char-
acterization of the pancreatic adenocarcinoma genome. Proc
Natl Acad Sci USA 101:9067–9072.

Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kal-
lioniemi A. 2006. Bone morphogenetic protein 7 is widely over-
expressed in primary breast cancer. Genes Chromosomes
Cancer 45:411–419.

Albertson DG. 2006. Gene amplification in cancer. Trends Genet
22:447–455.

Balazs M, Adam Z, Treszl A, Begany A, Hunyadi J, Adany R.
2001. Chromosomal imbalances in primary and metastatic mela-
nomas revealed by comparative genomic hybridization. Cytome-
try 46:222–232.

Bardeesy N, DePinho RA. 2002. Pancreatic cancer biology and
genetics. Nat Rev Cancer 2:897–909.

Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner
ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi OP,
Kallioniemi A. 2000. Detecting activation of ribosomal protein
S6 kinase by complementary DNA and tissue microarray analy-
sis. J Natl Cancer Inst 92:1252–1259.

Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T,
Karikari CA, Tibshirani R, Maitra A, Pollack JR. 2005. Array-
based comparative genomic hybridization identifies localized
DNA amplifications and homozygous deletions in pancreatic
cancer. Neoplasia 7:556–562.

Garcia MJ, Pole JC, Chin SF, Teschendorff A, Naderi A, Ozdag
H, Vias M, Kranjac T, Subkhankulova T, Paish C, Ellis I, Bren-
ton JD, Edwards PA, Caldas C. 2005. A 1 Mb minimal amplicon
at 8p11–12 in breast cancer identifies new candidate oncogenes.
Oncogene 24:5235–5245.

Gelsi-Boyer V, Orsetti B, Cervera N, Finetti P, Sircoulomb F,
Rouge C, Lasorsa L, Letessier A, Ginestier C, Monville F,
Esteyries S, Adelaide J, Esterni B, Henry C, Ethier SP, Bibeau
F, Mozziconacci MJ, Charafe-Jauffret E, Jacquemier J, Bertucci
F, Birnbaum D, Theillet C, Chaffanet M. 2005. Comprehensive
profiling of 8p11–12 amplification in breast cancer. Mol Cancer
Res 3:655–667.

Gluz O, Wild P, Meiler R, Diallo-Danebrock R, Ting E, Mohr-
mann S, Schuett G, Dahl E, Fuchs T, Herr A, Gaumann A,
Frick M, Poremba C, Nitz UA, Hartmann A. 2008. Nuclear kar-
yopherin alpha2 expression predicts poor survival in patients
with advanced breast cancer irrespective of treatment intensity.
Int J Cancer 123:1433–1438.

Goley ED, Welch MD. 2006. The ARP2/3 complex: An actin
nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726.

Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD.
2001. Reconstitution of human Arp2/3 complex reveals critical
roles of individual subunits in complex structure and activity.
Mol Cell 8:1041–1052.

Gysin S, Rickert P, Kastury K, McMahon M. 2005. Analysis of
genomic DNA alterations and mRNA expression patterns in a
panel of human pancreatic cancer cell lines. Genes Chromo-
somes Cancer 44:37–51.

Heidenblad M, Schoenmakers EF, Jonson T, Gorunova L, Velt-
man JA, van Kessel AG, Hoglund M. 2004. Genome-wide array-
based comparative genomic hybridization reveals multiple
amplification targets and novel homozygous deletions in pancre-
atic carcinoma cell lines. Cancer Res 64:3052–3059.

Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kes-
tler HA, Schwoerer A, Rau B, Radlwimmer B, Dohner H,
Lichter P, Gress T, Bentz M. 2004. Genomic DNA-chip hybrid-
ization reveals a higher incidence of genomic amplifications in
pancreatic cancer than conventional comparative genomic
hybridization and leads to the identification of novel candidate
genes. Cancer Res 64:4428–4433.

Huang X, Godfrey TE, Gooding WE, McCarty KS, Jr, Gollin SM.
2006. Comprehensive genome and transcriptome analysis of the
11q13 amplicon in human oral cancer and synteny to the 7F5
amplicon in murine oral carcinoma. Genes Chromosomes Can-
cer 45:1058–1069.

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ.
2008. Cancer statistics, 2008. CA Cancer J Clin 58:71–96.

Kaneda A, Kaminishi M, Sugimura T, Ushijima T. 2004.
Decreased expression of the seven ARP2/3 complex genes in
human gastric cancers. Cancer Lett 212:203–210.

Karhu R, Mahlamaki E, Kallioniemi A. 2006. Pancreatic adenocar-
cinoma—Genetic portrait from chromosomes to microarrays.
Genes Chromosomes Cancer 45:721–730.

Kau TR, Way JC, Silver PA. 2004. Nuclear transport and cancer:
From mechanism to intervention. Nat Rev Cancer 4:106–117.

Kauraniemi P, Kuukasjarvi T, Sauter G, Kallioniemi A. 2003.
Amplification of a 280-kilobase core region at the ERBB2 locus
leads to activation of two hypothetical proteins in breast cancer.
Am J Pathol 163:1979–1984.

Klimstra DS, Longnecker DS. 1994. K-ras mutations in pancreatic
ductal proliferative lesions. Am J Pathol 145:1547–1550.

Kuuselo R, Savinainen K, Azorsa DO, Basu GD, Karhu R, Tuz-
men S, Mousses S, Kallioniemi A. 2007. Intersex-like (IXL) is a
cell survival regulator in pancreatic cancer with 19q13 amplifica-
tion. Cancer Res 67:1943–1949.

Lockwood WW, Chari R, Coe BP, Girard L, Macaulay C, Lam S,
Gazdar AF, Minna JD, Lam WL. 2008. DNA amplification is a
ubiquitous mechanism of oncogene activation in lung and other
cancers. Oncogene 27:4615–4624.

Loukopoulos P, Shibata T, Katoh H, Kokubu A, Sakamoto M,
Yamazaki K, Kosuge T, Kanai Y, Hosoda F, Imoto I, Ohki M,
Inazawa J, Hirohashi S. 2007. Genome-wide array-based com-
parative genomic hybridization analysis of pancreatic adenocar-
cinoma: Identification of genetic indicators that predict patient
outcome. Cancer Sci 98:392–400.

Mahlamaki EH, Kauraniemi P, Monni O, Wolf M, Hautaniemi S,
Kallioniemi A. 2004. High-resolution genomic and expression
profiling reveals 105 putative amplification target genes in pan-
creatic cancer. Neoplasia 6:432–439.

Morohara K, Nakao K, Tajima Y, Nishino N, Yamazaki K,
Kaetsu T, Suzuki S, Tsunoda A, Kawamura M, Aida T, Tachi-
kawa T, Kusano M. 2005. Analysis by comparative genomic
hybridization of gastric cancer with peritoneal dissemination
and/or positive peritoneal cytology. Cancer Genet Cytogenet
161:57–62.

Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka
T, Mukai K. 2004. Involvement of Arp2/3 complex in the pro-
cess of colorectal carcinogenesis. Mod Pathol 17:461–467.

Parssinen J, Kuukasjarvi T, Karhu R, Kallioniemi A. 2007. High-
level amplification at 17q23 leads to coordinated overexpression
of multiple adjacent genes in breast cancer. Br J Cancer
96:1258–1264.

Rauta J, Alarmo EL, Kauraniemi P, Karhu R, Kuukasjarvi T, Kal-
lioniemi A. 2006. The serine-threonine protein phosphatase
PPM1D is frequently activated through amplification in aggres-
sive primary breast tumours. Breast Cancer Res Treat 95:257–
263.

Riegman PH, Vissers KJ, Alers JC, Geelen E, Hop WC, Tilanus
HW, van Dekken H. 2001. Genomic alterations in malignant
transformation of Barrett’s esophagus. Cancer Res 61:3164–
3170.

338 LAURILA ETAL.

Genes, Chromosomes & Cancer DOI 10.1002/gcc



Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S,
Zahurak M, Goodman SN, Sohn TA, Hruban RH, Yeo CJ,
Kern SE. 1997. Tumor-suppressive pathways in pancreatic carci-
noma. Cancer Res 57:1731–1734.

Semba S, Iwaya K, Matsubayashi J, Serizawa H, Kataba H, Hirano
T, Kato H, Matsuoka T, Mukai K. 2006. Coexpression of actin-
related protein 2 and Wiskott-Aldrich syndrome family verpro-
line-homologous protein 2 in adenocarcinoma of the lung. Clin
Cancer Res 12:2449–2454.

Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori
K, Hirohashi S, Inazawa J, Imoto I. 2008. Identification of
SMURF1 as a possible target for 7q21.3–22.1 amplification
detected in a pancreatic cancer cell line by in-house array-based
comparative genomic hybridization. Cancer Sci 99:986–994.

Sy SM, Wong N, Lai PB, To KF, Johnson PJ. 2005. Regional
over-representations on chromosomes 1q, 3q and 7q in the pro-
gression of hepatitis B virus-related hepatocellular carcinoma.
Mod Pathol 18:686–692.

Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R.
2004. p41-Arc subunit of human Arp2/3 complex is a p21-
activated kinase-1-interacting substrate. EMBO Rep 5:154–
160.

Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis
JS. 2005. Tumor cells caught in the act of invading: Their
strategy for enhanced cell motility. Trends Cell Biol 15:138–
145.

Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ.
1997. The human Arp2/3 complex is composed of evolutionarily
conserved subunits and is localized to cellular regions of
dynamic actin filament assembly. J Cell Biol 138:375–384.

Yang ZQ, Streicher KL, Ray ME, Abrams J, Ethier SP. 2006.
Multiple interacting oncogenes on the 8p11-p12 amplicon in
human breast cancer. Cancer Res 66:11632–11643.

Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F. 2004.
siRNA Selection Server: An automated siRNA oligonucleotide
prediction server. Nucleic Acids Res 32:W130–W134.

ARPC1A REGULATES CELL MOTILITY IN PANCREATIC CANCER 339

Genes, Chromosomes & Cancer DOI 10.1002/gcc



GENES, CHROMOSOMES & CANCER 51:557–568 (2012)

Both Inhibition and Enhanced Expression of miR-31
Lead to Reduced Migration and Invasion
of Pancreatic Cancer Cells
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MicroRNAs (miRNAs) are short single-stranded RNA molecules that have a critical role in the regulation of gene expression.

Alterations in miRNA expression levels have been observed in multiple tumor types and there is clear evidence on their active

involvement in cancer development. Here, a comprehensive miRNA expression profiling in 16 pancreatic cancer cell lines and

four normal pancreatic samples provided a specific molecular signature for pancreatic cancer and enabled us to identify 72

differentially expressed miRNAs with approximately half of them being up- and half downregulated in cancer cells as compared

with normal samples. Of these, miR-31 was selected for further functional analyses based on its interesting ‘‘on-off’’ type

expression profile, i.e., very low or even absent expression in normal pancreas and in six of the pancreatic cancer samples but

extremely high expression in the remaining 10 cell lines. Quite unexpectedly, both the inhibition of miR-31 in AsPC-1 and

HPAF-II pancreatic cancer cells with high endogenous expression and forced expression of miR-31 in MIA PaCa-2 with low

endogenous levels led to reduced cell proliferation, migration, and invasion. More importantly, in AsPC-1 cells further

enhancement of miR-31 also resulted in reduced cell migration and invasion, implicating that the level of miR-31 is critical

for these phenotypes. This study highlights a specific miRNA expression pattern in pancreatic cancer and reveals that manipu-

lation of miR-31 expression leads to reduced cell migration and invasion in pancreatic cancer. VVC 2012 Wiley Periodicals, Inc.

INTRODUCTION

MicroRNAs (miRNAs) are small noncoding

�21–23 nt long RNA molecules, which posttran-

scriptionally regulate gene expression (Bartel,

2009). miRNAs generally bind to the 30UTRs of

their target genes to suppress their expression ei-

ther by inhibiting translation or directing the tar-

get mRNA for degradation (Zimmerman and Wu,

2011). The functional capability of miRNAs is

massive since a single miRNA may regulate the

expression of dozens or even hundreds of genes

(Thomas et al., 2010), making them key players

in maintaining cellular homeostasis. miRNAs

have been shown to regulate a variety of different

cellular functions, such as development, differen-

tiation, proliferation, and cell death. The cur-

rently identified 1048 human miRNAs (miRBase

28.2.2011) are predicted to regulate at least half

of all human genes (Friedman et al., 2009).

On the basis of their fundamental role in the

regulation of gene expression, it is not surprising

that alterations in miRNA expression are strongly

associated with the development and progression

of practically all types of human malignancies

(Hammond, 2006; Zimmerman and Wu, 2011).

Some miRNAs are commonly altered across differ-

ent tumor types but cancer specific expression pat-

terns also exist (Lu et al., 2005). Generally,

downregulation of miRNAs is believed to be more

frequent in cancer cells than upregulation (Lu

et al., 2005; Hammond, 2006). However, there is

growing evidence of miRNAs that are expressed at

rather low-levels in normal tissues but that are

upregulated in cancer. The current notion implies

that miRNAs can possess both oncogenic and

tumor suppressive functions, depending on the

genes they regulate (Garzon et al., 2009). For

example, overexpression of miRNAs, such as the

miR-17-92 cluster, may suppress the expression of

tumor suppressor genes whereas downregulation

of other miRNAs, i.e., the let-7 family, enhances
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the expression of oncogenes, both resulting in pro-

motion of tumor growth.

Abnormal expression of miR-31 has been

recently reported to be strongly involved in vari-

ous malignancies. miR-31 is upregulated in colo-

rectal, hepatocellular, and lung cancer as well as

in squamous cell carcinomas of tongue and the

head and neck (Wong et al., 2008a,b; Sarver

et al., 2009; Liu et al., 2010a,b), and downregu-

lated in bladder, breast, gastric, ovarian, and pros-

tate cancer (Valastyan et al., 2009; Wszolek et al.,

2009; Creighton et al., 2010; Schaefer et al., 2010;

Zhang et al., 2010). miR-31 plays an evident role

in regulating cell migration and invasion and

thereby the ability of cancer cells to metastasize.

This was first demonstrated in a study by

Valastyan et al. (2009) where inhibition of miR-

31 expression induced breast cancer metastasis.

Later on, miR-31 has been associated with tumor

invasion and metastasis in several other tumor

types, including colon cancer, mesothelioma, and

HNSCC (Cottonham et al., 2010; Ivanov et al.,

2010; Liu et al., 2010a). Recent studies have also

shed some light into the molecular mechanisms

of miR-31 function, by revealing its target genes

and the biological pathways affected (Sossey-

Alaoui et al., 2010; Valastyan et al., 2010).

Pancreatic cancer is a highly aggressive malig-

nancy. It is usually diagnosed at a late stage where

curative therapy is no more available, leading to

five-year mortality rates of more than 95% (Jemal

et al., 2010). A number of studies has explored

gene copy number and gene expression alterations

in pancreatic cancer to identify novel cancer asso-

ciated genes, but only recently articles describing

the expression patterns of miRNA genes have

been published (Park et al., 2011; Zhang et al.,

2011). Here we analyzed the expression levels of

470 miRNA genes in a comprehensive collection

of 16 pancreatic cancer cell lines and four normal

samples to reveal their miRNA expression pattern

and, more importantly, to identify appropriate

model systems to functionally evaluate the contri-

bution of specific miRNAs to pancreatic cancer

pathogenesis. We then focused on the functional

analysis of miR-31 because of its highly elevated

expression in a subset of cell lines and presently

unknown role in pancreatic cancer.

MATERIALS AND METHODS

Sample Material and miRNA Microarrays

Sixteen established pancreatic cancer cell lines

were obtained from the American Type Culture

Collection (Manassas, VA) and the German Col-

lection of Microorganisms and Cell Cultures

(Braunschweig, Germany). Cells were cultured

under recommended conditions. Total RNA was

extracted using the Trizol reagent (Invitrogen,

Carlsbad, CA) and Agilent 2100 Bioanalyzer

(Santa Clara, CA) was used for RNA quality

control. Four different normal pancreatic RNA

samples were obtained from commercial sources

(Ambion, Austin, TX; Biochain, Hayward, CA;

and Clontech, Mountain View, CA). Microarrays

containing 470 human miRNAs (based on the

Sanger miRBase version 9.1) were purchased

from Agilent (Santa Clara, CA).

Sample Preparation and Array Hybridization

The miRNA array hybridizations were per-

formed according to manufacturer’s instructions

using Agilent’s miRNA labeling and hybridization

kit. In brief, 100 ng of total RNA was dephospho-

rylated, denatured, and labeled with pCp-Cy3 dye.

Labeled RNA was purified using the Micro

BioSpin 6 columns. Samples were denatured and

hybridization was allowed to occur at 55�C for 20

hr. Each microarray slide contains eight identical

subarrays. The normal pancreas samples were

pooled and hybridized to each slide to allow

comparison of the data between the slides. Posthy-

bridization washes were performed as recom-

mended. Arrays were scanned by using Agilent

DNA microarray scanner.

Data Analysis

The miRNA array image was transformed to

spot intensity data with Agilent Feature Extrac-

tion Software (version 9.5.1.1). The data were

analyzed using Limma package of Bioconductor

(Gentleman et al., 2004; Smyth et al., 2005). All

64 viral RNAs on the array were excluded from

the analysis. In addition, control spots and spots

that were flagged as saturated, nonuniformity out-

liers, or population outliers were omitted. The

background of the data was first corrected with

Normexp method with offset 50 (Ritchie et al.,

2007). Further, the data were normalized with

quantile normalization, which has been shown to

be a robust normalization method for Agilent

miRNA array (Pradervand et al., 2009). The

mean value of the replicate probes in log2 scale

was used for each miRNA in each sample result-

ing in altogether 470 miRNAs in the actual analy-

sis. The differential expression was studied
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utilizing empirical Bayes linear model and the

Benjamini–Hochberg adjustment for the P-values
with the Limma package (Smyth et al., 2005). In

the differential expression analysis, the 16 cancer

cell lines were compared, as a group, with the

group containing four normal samples and the

pooled normal samples. The miRNAs with

adjusted P-value below 0.05 and fold change over

1.5 between the groups were assigned as differen-

tially expressed. The samples were clustered

using hierarchical clustering method with correla-

tion distance and average linkage within each

sample set revealing the relationships between

the samples.

miRNATarget Gene Analysis

Predicted target genes for selected miRNAs

were identified using GOmir application (Septem-

ber 2009 version), which combines data from

miRNA target prediction databases TargetScan,

PicTar, miRanda, and RNAhybrid and allows the

comparison of the results (Roubelakis et al., 2009).

Quantitative RT-PCR

TaqMan microRNA Assays (Applied Biosys-

tems, Carlsbad, CA) were used for validation of

the miRNA array results. Twenty-five nanograms

of total RNA was reverse transcribed using Taq-

Man MicroRNA Reverse Transcription Kit.

Quantitative PCR was performed as instructed

using the LightCycler instrument (Roche Applied

Science, Indianapolis, IN). Spearman’s rank cor-

relation coefficient was used to compare the

miRNA array and qRT-PCR results.

Functional Studies

Functional consequences of aberrant miR-31

expression were studied by transiently transfecting

anti-miR-31 inhibitors or pre-miR-31 precursor

and their corresponding controls (Ambion, TX)

into AsPC-1, HPAF-II, and MIA PaCa-2 cells.

Cells were seeded on either 24-well (30,000 cells/

well for AsPC-1 and HPAF-II; 10,000 cells/well

for MIA PaCa-2) or 6-well plates (150,000 cells/

well for AsPC-1 and HPAF-II; 80,000 cells/well

for MIA PaCa-2). Cells were transfected 24 hr af-

ter seeding using the Interferin reagent (Polyplus-

Transfection, San Marcos, CA) according to the

manufacturer’s instructions. A final concentration

of 30 nM miRNA inhibitor or precursor was used.

Each experiment was done in six replicates and

repeated at least twice. The efficacy of miR-31

silencing or expression was verified each time

using qRT-PCR as described earlier, using a

housekeeping gene RNU48 as a reference.

In cell proliferation experiments, cells were

counted with the Coulter Z1 Coulter Counter

(Beckman Coulter, San Diego, CA) 72 and 96 hr

after transfection. In cell cycle analyses, cells

were collected 48 and 72 hr after transfection,

centrifuged, and suspended to 500 ll of propi-

dium iodide staining buffer as described (Parssi-

nen et al., 2008) and analyzed with Accuri C6

flow cytometer (Accuri Cytometers, Ann Arbor,

MI). Migration and invasion studies were per-

formed using 8.0-lm BD Falcon migration cham-

bers or BD BioCoat Matrigel invasion chambers

(BD Biosciences, CA) as described (Alarmo et al.,

2009) with FBS gradient (0% vs. 10%) as a che-

moattractant. Cells were collected 48 hr after

transfection, counted, and the following number

of cells was used for each experiment (migration:

100,000 for AsPC-1 and HPAF-II; 50,000 for MIA

PaCa-2; invasion: 200,000 for AsPC-1 and HPAF-

II; 100,000 for MIAPaCa-2). After 20 hr, stained

cells were photographed with Aperio ScanScope

XT microscope and analyzed using the ImageJ

software (Abramoff et al., 2004) as described

(Ketolainen et al., 2010).

TGFb Treatment

AsPC-1, HPAF-II, and MiaPaCa-2 cells were

treated with 10 ng/ml TGFb (R&D Systems,

Minneapolis, MN) for 72 hr. RNA was isolated

and the expression level of miR-31 was measured

as described above.

Western Blot Analyses

To examine the possible effects of miR-31 on

the expression levels of APBB2 and RSBN1, cells

were collected after 72 hr treatment with anti-

miR-31 (AsPC-1 and HPAF-II) or pre-miR-31

precursor (MiaPaCa-2) and corresponding con-

trols. Protein extraction, SDS-PAGE gel electro-

phoresis, and blotting were done as previously

described (Ketolainen et al., 2010). The following

primary antibodies were used: APBB2, RSBN1,

E-cadherin (1:1,000 dilution, Abcam), and Vimen-

tin (1:1,000, Sigma). The antibody against b-actin
(1:10,000, Molecular Probes) or Tubulin

(1:20,000, Sigma) was used as a loading control.

Antibody incubations were done for 1 hr at room

temperature and proteins were visualized using

BM Chemiluminescence Western Blotting Kit

(Mouse/Rabbit) (Roche Diagnostics GmbH).
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Statistical Analyses

The Chi-square test was used to compare the

observed and expected frequencies of miRNA

genomic locations. The Mann–Whitney test was

used in all functional studies to statistically com-

pare the medians between the test and control

groups. All P-values are two-sided.

RESULTS

Pancreatic Cancer Cells Possess a Distinct miRNA

Expression Pattern

Agilent miRNA arrays were used to screen for

miRNA expression patterns in 16 pancreatic can-

cer cell lines and four normal pancreatic RNA

samples. Hierarchical clustering of the miRNA

expression data separated the normal and cancer

samples into two distinct clusters (Fig. 1A) indi-

cating a specific miRNA expression signature in

pancreatic cancer. One of the normal samples

(obtained from Clontech) clustered farther away

from rest of the normal sample group but was

still more closely related to them than the cancer

cell lines. A pool of the four normal samples was

hybridized to all three microarray slides used in

this study, and as expected, the three pools dem-

onstrated highly similar expression profiles, thus

indicating good consistency between data derived

from different microarray slides. The pancreatic

cancer cell lines also showed some separation

into distinct groups in the hierarchical clustering

analysis but we were unable to link these pat-

terns to specific cell line characteristics, such as

site of origin (primary tumor vs. metastasis), dif-

ferentiation status, or KRAS, TP53, CDKN2A, or
SMAD4 mutation status (Deer et al., 2010).

Next, the Bayes method and the Benjamini–

Hochberg adjustment were used to identify

miRNAs that were differentially expressed in

pancreatic cancer versus normal pancreas samples.

A total of 72 differentially expressed miRNAs (at

least 1.5-fold expression change, adjusted P-value
<0.05) were identified (Supporting Information

Table S1). Of these, 35 were upregulated

(Fig. 1B) and 37 downregulated (Fig. 1C) in pan-

creatic cancer cells as compared with the normal

samples. As might have been expected these

included miRNAs that have been reported to be

commonly altered in various malignancies (e.g.,

miRNA-221/222, miR-31, the let7 family, miR-

143, and miR-145) (Zimmerman and Wu, 2011)

but also those that have been implicated rarely or

not at all in cancer studies, such as miR-442b,

miR-564, miR-565, and miR-801 (Lee et al.,

2009; Caramuta et al., 2010). To validate the

microarray data, we used quantitative real-time

RT-PCR to measure the expression levels of 12

differentially expressed miRNAs representing dif-

ferent expression ranges (Supporting Information

Fig. S1). A median correlation value of 0.66

(Spearman’s rank correlation coefficient, range

from 0.398 to 0.926; Fig. S1, Supporting Informa-

tion Table S2) was observed between the two

methods, thus confirming the reliability of the

microarray data.

Both Inhibition and Induction of miR-31

Expression Leads to Decreased Pancreatic

Cancer Cell Growth, Migration, and Invasion

One of the miRNAs with most interesting

expression pattern in our study was miR-31. It

had very low-expression in normal pancreas and

in six of the pancreatic cancer samples but

strikingly high expression in 10 cancer cell lines,

indicating an on-off type of expression signature

(Fig. 1B, Supporting Information Table S1). To

study the functional consequences of abnormal

miR-31 expression in pancreatic cancer, we tran-

siently inhibited miR-31 expression in AsPC-1

and HPAF-II cells with high endogenous expres-

sion as well as MIA PaCa-2 cells with very low

endogenous level. In an opposite fashion, we

induced miR-31 expression in MIA PaCa-2 and

AsPC-1 cells using pre-miR-31 precursor. The ef-

ficacy of miR-31 silencing or expression in these

assays was confirmed by qRT-PCR (Supporting

Information Fig. S2). The treatment of AsPC-1

cells with the pre-miR-31 precursor led to an

�10-fold induction in the miR-31 expression.

This is still lower than the endogenous level in

several pancreatic cancer cell lines (HPAF-II,

HupT4, and HPAC) indicating that the expres-

sion remained in a physiological level.

Inhibition of miR-31 expression resulted in

statistically significant cell growth reduction both

in AsPC-1 and HPAF-II cells when compared

with corresponding control transfected cells. The

growth of AsPC-1 cells was decreased by an aver-

age of 12% at 96 hr after transfection whereas

HPAF-II cells showed significant growth reduc-

tion already at 72 hr (18%) and escalating at 96

hr (24%; Fig. 2A). Despite these obvious changes

in cell growth, no differences in the cell cycle of

the AsPC-1 or HPAF-II cells could be seen (data

not shown). As anticipated, transfection of anti-

miR-31 to the MIA PaCa-2 cells with very low
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endogenous expression did not influence cell

growth (Fig. 2A). Somewhat unexpectedly, over-

expression of miR-31 resulted in reduced growth

of MIA PaCa-2 cells (24% reduction at 96 hr as

compared with controls; Fig. 2B), caused by an

apparent G1 arrest in the cell cycle (G1 cell frac-

tion 72% vs. 46% at 72 hr in pre-miR-31 precur-

sor and control transfected cells, respectively).

For AsPC-1 cells, transfection of pre-miR-31 had

no effect on cell proliferation (Fig. 2B).

Inhibition of miR-31 expression also influenced

the migration and invasion of AsPC-1 and HPAF-

II cells. Migration of AsPC-1 cells was reduced

by an average of 33% as compared with control

Figure 1. miRNA expression patterns in pancreatic cancer cell
lines and normal pancreas samples. Hierarchical clustering of the
miRNA expression data was sufficient to distinguish pancreatic cancer
samples from normal pancreatic samples. (A) A total of 72 differen-
tially expressed miRNAs (fold change >1.5, adjusted P < 0.05) was

identified, of those 35 were upregulated, (B) 37 downregulated and
(C) in cancer samples compared with normal samples. Blue color
indicates low-expression and red high expression, the color code is
in log2 scale. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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cells and a dramatic 64% decrease in cell migra-

tion was observed in HPAF-II cells (Figs. 2C and

2E). Decrease in cell invasion was 27% and 20%

in AsPC-1 and HPAF-II cells, respectively,

though statistical significance was only seen for

HPAF-II (Fig. 2C). Again as expected, inhibition

of miR-31 expression did not influence migration

of MIAPaCa-2 cells (Fig. 2C). In contrast, overex-

pression of miR-31 significantly reduced both

migration and invasion of MIAPaCa-2 cells, by an

average of 58% and 35%, respectively (Figs. 2D

and 2F). Surprisingly, transfection of miR-31 pre-

cursor also dramatically decreased migration and

invasion of AsPC-1 cells (61% and 74%, respec-

tively, as compared with controls; Fig. 2D).

These changes in migration and invasion cannot

be explained by the fact that miR-31 also

reduced cell growth. An equal number of miR-31

precursor and control cells were subjected to the

analyses and the assays only lasted for 20–22 hr, a

time where only marginal growth differences

might occur.

To evaluate whether the observed changes in

cell migration and invasion are associated with

Figure 2. Manipulation of miR-31 levels leads to alterations in cell
proliferation, migration, and invasion in pancreatic cancer cells. Inhibi-
tion of miR-31 expression in (A) AsPC-1 and HPAF-II cells with high
endogeneous levels resulted in reduced cell proliferation, (C) cell
migration and invasion, whereas the MiaPaCa-2 cells with very low
endogenous miR-31 level did not show any effect (A, C). (B) Induc-
tion of miR-31 expression reduced the growth of MiaPaCa-2 cells but

not of AsPC-1 cells and (D) dramatically reduced cell migration and
invasion of both cell lines. Gray bars show anti-miR-31 (panels A, C)
or pre-miR-31 (panels B, D) treated and white bars control treated
cells. Error bars indicate 1/2 SD of six replicates. *P < 0.05; **P <
0.005. (E) Representative images of migrated HPAF-II and (F) Mia-
PaCa-2 cells after anti-miR-31 and pre-miR-31 treatments, respec-
tively, are shown.
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the induction of epithelial-mesenchymal transi-

tion (EMT), we examined the E-cadherin and

Vimentin levels in the pancreatic cancer cell lines

before and after miR-31 manipulations. HPAF-II

cells had high endogenous E-cadherin expression

but showed only a very weak band for Vimentin.

AsPC-1 expressed both proteins (E-cadherin at a

somewhat lower level than in HPAF-II) whereas

MiaPaCa-2 had no endogenous E-cadherin

expression but high Vimentin expression. Never-

theless, manipulation of the miR-31 expression

level did not alter the E-cadherin and Vimentin

expression patterns in any of the cell lines (data

not shown). Furthermore, treatment of the cells

Figure 3. Manipulation of miR-31 expression affects target gene expression levels. (A) Forced expres-
sion of miR-31 in MIA PaCa-2 cells, (B) inhibition in AsPC-1, and (C) HPAF-II cells resulted in altered
expression of several miR-31 target genes. Dotted line indicates a 50% change in target gene expression
as compared with control treated cells.
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with TGFb, a known inducer of EMT, did not

alter miR-31 levels in AsPC-1 and MiaPaCa-2

cells. However, a statistically significant induction

of miR-31 expression (38%, P ¼ 0.0022) was

observed in HPAF-II cells at 72 hr after the

TGFb treatment. Taken together, the effects of

miR-31 do not seem to be primarily caused by or

mediated through the induction of EMT.

The Differentially Expressed miRNAs are

Predicted to Target a Multitude of Genes

miRNAs are known to regulate the expression

of a large number of genes. The GOmir applica-

tion utilizes four different target prediction pro-

grams (TargetScan, miRanda, RNAhybrid, and

PicTar) and was used to predict the target genes

for the 20 miRNAs with most significant differen-

tial expression (Supporting Information Table

S1). When used individually, the four different

programs were able to identify tens or even hun-

dreds of possible target genes for each miRNA.

The number of common target genes, i.e., those

predicted by all four programs and thus consid-

ered to represent the most probable targets,

varied widely from one miRNA to another (range

0–73, median 12; Supporting Information

Table S3). For example, a total of seven common

predicted target genes were identified for miR-31.

To validate experimentally the results from the

prediction programs, we focused on the analysis

of miR-31. We screened the mRNA levels of

nine putative target genes, both in the original

microarray sample set (16 pancreatic cancer cell

lines) and in a set of cell lines where the expres-

sion of miR-31 had been manipulated. Seven of

the genes (APBB2, ARID1A, MAP4K5, PPP2R2A,
RSBN1, TACC1, and TACC2) were selected based

on our own target analysis and were implicated

by all four target prediction programs. The two

additional genes, LATS2 and RHOA, had been

previously shown to represent miR-31 targets,

either at RNA or protein level, respectively

(Valastyan et al., 2009; Liu et al., 2010b).

One of the genes, TACC2, was not expressed in

any of the samples and was thus excluded from

further analyses. For the remaining eight genes,

no differences could be seen in the basal expres-

sion of the putative target genes while comparing

the cell line groups with low- and high-miR-31

levels (data not shown). However, when we

looked at the anti-miR-31 and pre-miR-31 treated

cell lines, distinct changes in target gene expres-

sion levels were observed (Fig. 3). Overexpres-

sion of miR-31 in the MIA PaCa-2 cells resulted

in decreased expression of all eight genes and in

five of these (APBB2, LATS2, PPP2R2A, RSBN1,
and TACC1) the reduction was greater than 50%

as compared to the control treated cells. Likewise

after miR-31 inhibition, at least a 50% induction of

target gene expression was seen for four genes

(APBB2, LATS2, PPP2R2A, and RSBN1) in AsPC-1

cells and for one gene (LATS2) in HPAF-II cells.

On the basis of the mRNA analyses APBB2
and RSBN1 appeared as the most likely novel tar-

gets for miR-31. We used the TargetScan data-

base (www.targetscan.org) to assess whether the

miR-31 binding sites of RSBN1 and APBB2 are

conserved among species. RSBN1 harbors five

miR-31 binding sites, of which two are highly

conserved across most vertebrates, two poorly

conserved among mammals but still found in at

least 12 species, and one only in a few primates.

For APBB2 two miR-31 binding sites are found,

one of them highly conserved. Western blot anal-

ysis showed that both proteins were expressed in

untreated AsPC-1, HPAF-II, and MiaPaCa-2

cells. However, we observed no difference in the

expression levels between the anti-miR-31 or

pre-miR-31 treated cells and corresponding con-

trols levels (data not shown).

DISCUSSION

Screening of the miRNA expression levels in

16 pancreatic cancer cell lines revealed a specific

molecular signature and a total of 72 differentially

expressed miRNAs with practically an even num-

ber of up- and downregulated miRNAs. In most

malignancies, miRNAs are believed to be more

often downregulated than upregulated (Lu et al.,

2005; Hammond 2006) but such a trend has not

been observed in pancreatic cancer (Zhang et al.,

2011). Our data now corroborate these findings

and suggest that there are distinct differences in

miRNA balance between different tumor types.

Many of the differentially expressed miRNAs

identified in our cell line versus normal pancreas

comparison have been previously implicated in

studies of primary pancreatic tumor samples

(Bloomston et al., 2007; Lee et al., 2007; Szafran-

ska et al., 2007; Kent et al., 2009; Park et al.,

2009; Zhang et al., 2009). For example, miR-21,

miR-221, and members of the miR-17-92 cluster,

all of which are functionally characterized onco-

miRNAs in pancreatic cancer (Kent et al., 2009;

Park et al., 2009) were dysregulated also in

our sample set. Moreover, six members of the
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well-characterized let-7 miRNA family previously

reported to be downregulated in pancreatic can-

cer (Park et al., 2011; Zhang et al., 2011) also

showed reduced expression in our study. Finally,

miR-31 has been previously shown to be upregu-

lated in primary pancreatic cancers and was

recently associated with poor prognosis in pancre-

atic cancer (Szafranska et al., 2007; Jamieson

et al., 2011). It has to be noted that comparisons

between pancreatic cancer cell lines originating

from exocrine pancreas and normal samples con-

taining both exocrine and endocrine tissue are

not simple. However, our data and the fact that

the exocrine part represents over 90% of the

mass of the pancreas indicate that normal tissue

RNA is a suitable reference. We also identified

several dysregulated miRNAs, including miR-564

and miR-801 (Lee et al., 2009; Caramuta et al.,

2010), that have not been previously linked to

pancreatic cancer or other tumor types. It is possi-

ble that these represent cell line specific events

and thus their actual significance in pancreatic

cancer pathogenesis needs to be confirmed. Over-

all this study provides the most comprehensive

screening of miRNA expression patterns in com-

mercially available pancreatic cancer cell lines to

date and demonstrates that the cell lines indeed

provide feasible models for studying miRNA

functions in pancreatic cancer.

We next focused on the analysis of miR-31

because of its unique expression pattern with

extremely high expression levels in 10 cancer cell

lines and virtually no expression in the six

remaining cell lines and normal pancreas samples.

Previous studies have revealed either increased

(Wong et al., 2008a,b; Sarver et al., 2009; Liu

et al., 2010a,b; Lajer et al., 2011) or decreased

(Valastyan et al., 2009; Wszolek et al., 2009;

Creighton et al., 2010; Schaefer et al., 2010;

Zhang et al., 2010) miR-31 expression in a wide

variety of malignancies but a similar on-off

expression pattern that we found here has not

been reported. Recently, Sossey-Alaoui et al.

(2010) demonstrated that miR-31 expression

decreases gradually during breast cancer progres-

sion. In our study, specific cell line characteris-

tics, i.e., the site of origin, differentiation status,

or mutation status of genes (KRAS, TP53,
CDKN2A, or SMAD4) (Deer et al., 2010) com-

monly altered in pancreatic cancer, did not associ-

ate with the miR-31 levels and therefore other

factors must underlie the observed expression dif-

ferences. In mesothelioma, loss of miR-31 expres-

sion was attributed to a homozygous deletion at

the 9p21.3 locus (Ivanov et al., 2010). The same

region is also frequently deleted in pancreatic

cancers (Caldas et al., 1994; Nowak et al., 2005)

but there was no direct correlation between 9p

loss and miR-31 expression level among the cell

lines studied here. In fact, several cell lines with

high miR-31 expression (e.g., AsPC-1, PANC-1,

Capan-2, and CFPAC-1) are known to harbor 9p

loss (Nowak et al., 2005). Thus, the mechanisms

behind the altered miR-31 expression in pancre-

atic cancer remain unknown.

Previous studies have implicated miR-31 as an

important regulator of the metastasis process in

many tumor types (Dykxhoorn, 2010) but no in-

formation existed on its role in pancreatic cancer.

To obtain an extensive view on the function of

miR-31 in pancreatic cancer, we chose to both

downregulate and upregulate its expression in

pancreatic cancer cells with either high (AsPC-1

and HPAF-II) or very low (MIAPaCa-2) endoge-

nous levels. Interestingly, both manipulations

resulted in similar phenotypic effects. Specifi-

cally, inhibition of miR-31 in AsPC-1 and HPAF-

II cells and induction of miR-31 expression in

MIAPaCa-2 cells resulted in decreased cell

growth. These data are in agreement with recent

studies where reduced cell growth was observed

after miR-31 downregulation in lung cancer (Liu

et al., 2010b) and after miR-31 induction in ovar-

ian cancer and mesothelioma (Creighton et al.,

2010; Ivanov et al., 2010). However, increased

cell proliferation was observed after forced

expression of miR-31 in HNSCC (Liu et al.,

2010a), whereas in breast cancer miR-31 manipu-

lation had no effect on cell growth (Valastyan

et al., 2009).

Likewise to cell growth, inhibition of miR-31

in AsPC-1 and HPAF-II cells and induction of

miR-31 expression in MIAPaCa-2 cells also led to

analogs effects in cell migration and invasion, i.e.,

attenuation of these characteristics. These pheno-

typic effects were especially dramatic in the

MIAPaCa-2 cells where miR-31 expression

reduced cell migration by more than 50%. Quite

surprisingly, further induction of miR-31 expres-

sion in AsPC-1 cells with high endogenous levels

also led to a significant decrease in cell migration

and invasion. Thus, in the AsPC-1 cells both

abolishing and further enhancing miR-31 expres-

sion resulted in reduced cell migration and inva-

sion. To our knowledge, this kind of an effect

has not been previously reported for miR-31, or

any other miRNA. Previously experiments where

miR-31 levels have been manipulated in opposite

miR-31 CONTROLS CELL MIGRATION IN PANCREATIC CANCER 565

Genes, Chromosomes & Cancer DOI 10.1002/gcc



directions in the exact same cells have only been

reported by Liu et al. (2010a). However, they

observed that in HNSCC cells inhibition of miR-

31 expression resulted in reduced migration

whereas further induction of miR-31 led to

increased migration. Thus our findings in AsPc-1

cells reveal a novel phenomenon implying that

not only the presence but also the amount of

miR-31 is important for its phenotypic conse-

quences. Taken together, our data extend previ-

ous findings and demonstrate that miR-31 also

plays an important role in pancreatic cancer.

More importantly, we suggest that the level of

miR-31 is critical for the phenotype of the pan-

creatic cancer cells. In vivo experiments are a log-

ical continuation of the current study but need to

involve multiple cell lines and careful control of

the miR-31 levels in order to generate meaning-

ful information.

Similarly to our data, a previous study in colo-

rectal cancer also demonstrated decreased cell

migration and invasion after miR-31 inhibition

(Wang et al., 2010). However in breast cancer,

miR-31 was shown to have antitumorigenic

effects and inhibition of its expression signifi-

cantly increased migration and invasion of both

human mammary epithelial cells and nonmeta-

static breast cancer cells (Valastyan et al., 2009).

Overexpression of miR-31 has been shown to

reduce cell mobility in several tumor types,

including breast cancer, mesothelioma, and blad-

der cancer (Valastyan et al., 2009; Wszolek et al.,

2009; Ivanov et al., 2010; Sossey-Alaoui et al.,

2010) but again contradictory data, that is

enhanced cell migration, invasion, and motility

after miR-31 overexpression, have been reported

in HNSCC (Liu et al., 2010a) and in colorectal

cancer (Cottonham et al., 2010).

As detailed earlier, divergent phenotypic

effects have been observed after miR-31 inhibi-

tion or overexpression in different studies sug-

gesting that the consequences of these

manipulations might be cell type specific. How-

ever, as only a very small number of cell lines

have been evaluated in each study, it might be

too early to draw this conclusion. Creighton et al.,

(2010) proposed that the decreased cell growth

associated with miR-31 overexpression is re-

stricted to cells with defects in the TP53 path-

way. All cell lines used in our study have TP53

mutations (Deer et al., 2010) and thus we were

not able to either corroborate or oppose this issue.

In any case, it is likely that, in addition to the

TP53 pathway components, other genetic aberra-

tions also influence the response to miR-31

manipulation. More importantly, since a single

miRNA may regulate dozens of target genes

(Friedman et al., 2009), the consequences of

altering such a master regulator of gene expres-

sion are indeed expected to vary from one cell

type and cell line to another depending on their

genetic and epigenetic composition. It is also pos-

sible that miRNAs have different target genes in

different tissues thus explaining the variable phe-

notypic responses.

We used a combination of four different pre-

diction programs to ensure optimal identification

of miRNA target genes. There was significant

variation in the predictions between the four pro-

grams and the number of predicted targets for

each miRNA varied from one program to another.

Thereby none of the programs seemed to outper-

form the others by systematically proving a more

complete list of predictions. Unfortunately, com-

prehensive comparisons of various target predic-

tion algorithms do not currently exist (Thomas

et al., 2010). In the case of miR-31, the predic-

tion programs identified seven common target

genes, including one previously known target

PPP2R2A (Liu et al., 2010b), but failed to detect

some known experimentally validated target

genes, such as ITGA5, LATS2, RHOA, RDX,
SATB2, and WAVE3 (Valastyan et al., 2009; Apre-

likova et al., 2010; Liu et al., 2010b; Sossey-

Alaoui et al., 2010). The baseline expression lev-

els of the seven predicted genes as well as two

previously known targets (LATS2 and RHOA) did
not differ between the cell lines with high- and

low-miR-31 expression. However, all of them

were downregulated after miR-31 induction in

MIAPaCa-2 cells, thus implying that their expres-

sion is regulated by miR-31. Furthermore, the

expression of APBB2, LATS2, PPP2R2A, and

RSBN1 was induced in AsPC-1 cells after miR-31

inhibition whereas only LATS2 was altered in

HPAF-II cells. However, the protein expression

levels of APBB2 and RSNB1 were not affected by

miR-31 inhibition or induction. Finally, despite of

repeated attempts we failed to generate clones

that would have allowed us to examine the direct

interaction between miR-31 and the 30UTR of

RSNB1. Therefore we must conclude that, despite

of the data from the target prediction programs

and changes in mRNA levels as well as the highly

conserved seed sequence, APBB2 and RSBN1 are

not likely targets of miR-31.

In conclusion, this study uncovers a specific

miRNA expression pattern with a large number
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of dysregulated miRNAs in pancreatic cancer and

provides an excellent resource of information on

commonly used cell lines for the pancreatic cancer

research community. This is the first study to

reveal the functional significance of miR-31 in

pancreatic cancer and unexpectedly our results

demonstrate that both inhibition and forced

expression of miR-31 lead to deteriorated cell

proliferation, migration, and invasion. More impor-

tantly, these effects were observed in AsPC-1 cells

where both manipulations resulted in reduced cell

migration and invasion. These findings are highly

interesting and imply that the level of miR-31 is

critical for the cells and that our understanding on

the functional role of miRNAs is still incomplete.

We also identified novel miR-31 target genes that

might have relevance for pancreatic cancer patho-

genesis and suggest that miR-31 target genes

might vary from one tissue type to another.

Because of its evident role in regulating tumor

metastases, miR-31 has been proposed to serve as

an interesting target for cancer therapy. However,

our data emphasize the challenges in manipulating

miR-31 levels and indicate that further studies are

warranted to fully understand the complex func-

tional role of miR-31 in cancer cells.
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