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ABSTRACT

Stroke is one of the leading causes of mortality and the loss of quality life years

worldwide. Ischemic stroke is a vascular disease that is characterized by insufficient

flow of blood to brain tissue. In general, stroke results from the occlusion of an

intracranial artery by a thrombus. Therapeutic interventions are aimed at restoring

the normal circulation and limiting the extent of irreversible damage. Thus,

therapies that elicit reperfusion, such as intravenous thrombolysis (IVT) and intra-

arterial interventions, are of special interest. Imaging has a central role in the

evaluation of acute-stroke patients. It enables the detection of intracranial

hemorrhage, the approximation of the volume of reversible and irreversible

ischemic changes and provides information on cerebral vasculature. These data can

be used to predict the clinical outcome and the risk of hemorrhagic complications

and to triage the patients to different therapeutic approaches. Multimodal computed

tomography CT, especially parameters derived from CT angiography (CTA) and CT

perfusion (CTP) studies, holds promise for achieving these goals with increased

precision.

This thesis examined, in a retrospective, observational cohort, the utility and the

predictive performance of imaging parameters derived from CTA and CTP scans

obtained upon admission  in the evaluation of acute (less than 3 h from the onset of

the symptoms) ischemic stroke patients who received IVT during the years 2004 to

2007. The 3-month functional outcome was the main prognostic end point. The

parameters studied included the Alberta Stroke Program Early CT Score

(ASPECTS) that was assigned to different CTP maps and the CTP ASPECTS

mismatch, the Boston Acute Stroke Imaging Scale (BASIS), the Clot Burden Score

(CBS), and the location of the clot. In addition, two modified imaging parameters

(M1-BASIS and CBSV) were introduced. The quality of CTP scans using scanners

with detector widths of either 16 or 64 rows was also investigated.



7

The CTP ASPECTS parameters were found to detect reversible ischemia and to

correlate with the clinical outcome. The CTP ASPECTS mismatch adequately

identified the amount of potentially salvageable tissue. CBS, BASIS and the

cerebral blood volume (CBV) ASPECTS scores were statistically robust and

sensitive but unspecific predictors of a favorable clinical outcome. The two

modified imaging parameters, CBSV and M1-BASIS, shared these same properties

and appeared to provide slightly improved prognostic accuracy. The functional

outcomes of an acute internal carotid artery (ICA) occlusion and/or a proximal M1

segment of the middle cerebral artery (MCA) occlusion were typically found to be

poor even if treated with IVT. A cut-point between the proximal and the distal M1

segments showed the highest accuracy in discerning favorable from poor clinical

outcome. CTP scans performed using a 16-row scanner were significantly less

sensitive in the detection of perfusion defects in the cranial parts of the MCA region

compared with a 64-row scanner. The 16-row scans showed more uncorrected

motion artifacts that resulted from periodic small-scale patient movements.

Overall, the parameters derived from the multimodal CT provided added value in

the evaluation of acute ischemic stroke.

Keywords: ASPECTS, Boston Acute Stroke Imaging Scale, Clot Burden Score,

computed tomography perfusion, computed tomography angiography, stroke,

thrombolytic therapy.
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TIIVISTELMÄ

Aivoverenkiertohäiriö (AVH) on eräs merkittävimpiä kuolemaan johtavia tai

elämän laatua heikentäviä kansansairauksia. Iskeeminen AVH eli aivoinfarkti

aiheutuu riittämättömästä veren virtauksesta aivokudoksessa. Yleisimmin tämä

johtuu kallon sisäisen valtimon tukkeutumisesta verihyytymän vuoksi. Aivoinfarktin

hoito tähtää normaalin verenkierron palauttamiseen ja palautumattoman

kudosvaurion rajoittamiseen. Näin ollen tukkeutuneen verisuonen avaamiseen

perustuvat hoidot, kuten laskimonsisäinen liuotushoito ja valtimonsisäiset

toimenpiteet, ovat avainasemassa. Lääketieteellisellä kuvantamisella on keskeinen

rooli akuutin aivoverenkiertohäiriön diagnostisessa selvittelyssä. Kuvantaminen

mahdollistaa aivoverenvuodon toteamisen, palautuvien ja palautumattomien

iskeemisten muutosten laajuuden arvioimisen sekä verisuonen tukoksen

paikantamisen. Näitä tietoja käytetään ennusteen määrittämiseen, komplikaatioiden

todennäköisyyden arviointiin ja hoidon valintaan. Multimodaalisen

tietokonetomografiatutkimuksen erityisesti angiografia- ja perfuusio-

osatutkimuksiin (CTA ja CTP) perustuvat tunnusluvut mahdollisesti helpottavat

näiden tavoitteiden saavuttamista.

Tässä väitöstutkimuksessa tarkasteltiin retrospektiivisessä asetelmassa akuutisti

(oireiden alkamisesta alle kolme tuntia) aivoinfarktioireistoon sairastuneiden,

laskimonsisäisen liuotushoidon saaneiden potilaiden kohorttia vuosilta 2004–2007.

Tutkimuksen tavoitteena oli selvittää akuutin vaiheen CTA- ja CTP-kuvauksista

saatujen muuttujien ominaisuuksia ja hyödyllisyyttä aivoinfarktin ennusteen

arvioinnissa. Näitä muuttujia olivat CTP-karttoihin sovellettu Alberta Stroke

Program Early CT Score (ASPECTS) -pisteytys, CTP ASPECTS -poikkeama,

Boston Acute Stroke Imaging Scale (BASIS) -pisteytys, Clot Burden Score (CBS) -

pisteytys ja verisuonen tukoksen sijainti. Pisteytyksistä muokattiin kaksi uutta

muuttujaa vastaavaa tarkastelua varten. Ennustemuuttujana käytettiin kolmen
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kuukauden kohdalla arvioitua potilaan funktionaalista tilaa. Lisäksi vertailtiin 16- ja

64-leikelaitteilla tehtyjen CTP-tutkimusten laatua.

CTP ASPECTS -muuttujat mahdollistivat palautuvien ja palautumattomien

iskeemisten muutosten määrällisen arvioinnin ja korreloivat funktionaalisen

lopputuloksen kanssa. CBS, BASIS ja aivojen veritilavuuskartan (CBV) ASPECTS-

pisteytys olivat tilastollisesti merkitseviä ja herkkiä, mutta epätarkkoja hyvän

funktionaalisen lopputuloksen ennustamisessa. Kahdella muokatulla pisteytyksellä,

joille annettiin nimet CBSV ja M1-BASIS, oli vastaavat ominaisuudet, mutta

hieman parempi ennustearvo. Sisemmän kaulavaltimon distaaliosien ja

keskimmäisen aivovaltimon M1-segmentin proksimaalipuoliskon tukosten todettiin

johtavan huonoon lopputulokseen laskimonsisäisestä liuotushoidosta huolimatta;

M1-segmentin puoliväli erotteli tarkimmin hyvän ja huonon funktionaalisen

lopputuloksen. 16-leikelaitteella tehtyjen CTP-tutkimusten herkkyys havaita

perfuusiohäiriö oli merkitsevästi huonompi 64-leikelaitteella tehtyihin tutkimuksiin

verrattuna erityisesti keskimmäisen aivovaltimon suonitusalueen yläosissa. Lisäksi

16-leikelaitteella tehdyissä tutkimuksissa oli enemmän potilaan vähäisistä liikkeistä

johtuvia, tulkintaa vaikeuttavia häiriöitä.

Yhteenvetona, multimodaalisen tietokonetomografiatutkimuksen avulla saatavilla

muuttujilla on lisäarvoa akuutin aivoverenkiertohäiriön diagnostisessa arvioinnissa.



10

ABBREVIATIONS

2D two-dimensional

3D three-dimensional

A1 A1 segment of the anterior cerebral artery

ACA anterior cerebral artery

AComm anterior communicating artery

ADC apparent diffusion coefficient

AFL activities of daily living

AHA American Heart Association

AIF arterial input function

AIS acute ischemic stroke

ASPECTS Alberta Stroke Program Early CT Score

ATLANTIS Alteplase Thrombolysis for Acute Noninterventional Therapy in

Ischemic Stroke

AUC area under the curve

AVH aivoverenkiertohäiriö

BASIS Boston Acute Stroke Imaging Scale

CBF cerebral blood flow

CBS clot burden score

CBV cerebral blood volume

CCS causative classification system for ischemic stroke

CECT contrast-enhanced computed tomography

CI confidence interval

CT computed tomography

CTA computed tomography angiography

CTA-SI CTA source images

CTP computed tomography perfusion

DEFUSE Diffusion-weighted imaging Evaluation For Understanding Stroke

Evolution
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mRS delta-mRS, change in mRS (postictal vs. preictal)

DIAS Desmoteplase in Acute Ischemic Stroke

DSA digital subtraction angiography

DWI diffusion-weighted imaging

ECASS European Cooperative Acute Stroke Study

EIC early ischemic change

EMS Emergency Management of Stroke

EPITHET Echoplanar Imaging Thrombolytic Evaluation

FDA Food and Drug Administration

FLAIR fluid-attenuated inversion recovery

GRE gradient echo

H-L Hosmer-Lemeshow

IAT intra-arterial thrombolysis

ICA internal carotid artery

IMS Interventional Management of Stroke

IS ischemic stroke

IST-3 the Third International Stroke Trial

IVT intravenous thrombolysis

HMCAS the hyperdense MCA sign

M1 M1 segment of the middle cerebral artery

M1D distal M1 segment of the middle cerebral artery

M1P proximal M1 segment of the middle cerebral artery

M2 M2 segment of the middle cerebral artery

M3 M3 segment of the middle cerebral artery

MCA middle cerebral artery

MERCI Mechanical Embolus Removal in Cerebral Ischemia

MIP maximum intensity projection

MRI magnetic resonance imaging

MTT mean transit time

NCCT non-contrast (enhanced) computed tomography

NIHSS National Institutes of Health stroke scale

NINDS National Institute of Neurological Disorders and Stroke

NNT number needed to treat

mRS modified Rankin Scale
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MRS Merci Retrieval System

OR odds ratio

PCA posterior cerebral artery

PComm posterior communicating artery

PET positron emission tomography

PROACT Prolyse in Acute Cerebral Thromboembolism

PS Penumbra System

PWI perfusion-weighted imaging

ROC receiver-operating characteristic curve

r-proUK recombinant prourokinase

RR risk ratio

r-tPA recombinant tissue plasminogen activator

SARIS Stent-Assisted Recanalization in Acute Ischemic Stroke

sICH symptomatic intracranial hemorrhage

SITS-ISTR Safe Implementation of Thrombolysis in Stroke–International Stroke

Treatment Registry

SSS Scandinavian stroke scale

TOAST trial of org 10172 acute stroke treatment

tPA tissue plasminogen activator

TTP time to peak

VOF venous output function
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1. INTRODUCTION

Stroke is the second-leading cause of death in adults aged 15 years and over

worldwide, the fourth-leading cause of disease burden as measured in disability-

adjusted life years, and the leading cause of acquired disability in adults in most

regions 1, 2. Globally, an estimated 5.7 million people died as a result of a stroke in

2005 2. The estimated direct medical cost of stroke in the United States was $25

billion in 2007 3. In Finland, the yearly medical expenses caused by stroke care are

estimated to be $1.6 billion, which is 7% of all healthcare expenditures 4.

Ischemic stroke is a vascular disease that is caused by insufficient flow of blood to

the brain tissue. In general, stroke results from a thrombotic occlusion of an

intracranial artery. Reperfusion following recanalization or bypass of the occlusion,

or improved collateral flow is a necessary but not sufficient condition for a

favorable clinical outcome with the time from the onset of ischemia to the

reperfusion being a pivotal determinant 5. Thus, therapies that target the

prerequisites of reperfusion, such as intravenous thrombolysis (IVT) and intra-

arterial interventions, are of special interest.

Imaging has a central role in the evaluation of patients with acute stroke. Typically,

a multimodal CT or stroke MRI is performed. Both methods enable the detection of

intracranial hemorrhage, allow the approximation of the extent of reversible and

irreversible ischemic changes and provide anatomical information on the cerebral

and cervical vasculature 6, 7. These data can be used to predict the clinical outcome

and the risk of hemorrhagic complications and to triage the patients to different

therapeutic approaches. Multimodal CT, especially parameters derived from CT

angiography (CTA) and CT perfusion (CTP) studies, holds promise in achieving

these goals with increased accuracy 8, 9.
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This thesis examines, in a retrospective, observational cohort, the utility and the

prognostic performance of imaging parameters derived from CTA and CTP studies

in the evaluation of acute (< 3 h) ischemic stroke patients receiving IVT. These

parameters include ASPECTS assigned to different CTP maps, the Boston Acute

Stroke Imaging Scale (BASIS), the Clot Burden Score (CBS) and the location of the

clot. Two modified imaging parameters are introduced. The quality of CTP studies

with scanners of different detector widths is also investigated.



16

2. REVIEW OF THE LITERATURE

2.1 Acute ischemic stroke

2.1.1 Pathophysiology and etiology

The symptoms and the imaging and histopathologic findings following ischemic

stroke result from insufficient flow of blood to the brain parenchyma. Most

commonly, this reduction in blood flow is caused by an occlusion of an arterial

branch supplying a part of the brain in the absence of adequate collateral circulation.

Systemic factors, such as hypoperfusion because of sustained severe hypotension,

can also lead to irreversible ischemic damage in the brain tissue. An occlusion of a

blood vessel is typically due to arterial or paradoxical embolism, due to a local

thrombotic event that is triggered by rupture of an atherosclerotic plaque or due to

prothrombotic conditions (Figure 1). The Trial of Org 10172 Acute Stroke

Treatment (TOAST) classification and its variants (SSS-TOAST, CCS) define five

major etiological subtypes of ischemic stroke 10-12:

1. large-artery atherosclerosis (19%)

2. cardioembolism (9%)

3. small-vessel occlusion (44%)

4. stroke of another determined etiology (5%)

5. stroke of an undetermined etiology (22%)

The proportion of patients in each etiological category varies greatly between

different reports and depends on the population studied and the sophistication of the

diagnostic procedures. The above percentages are averages based on a large,

worldwide study 13. When only high-income countries are considered, the

proportion of cardioembolism is higher (26%), whereas that of small-vessel disease

is lower (30%). Overall there is a trend toward a higher incidence of
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cardioembolism and large-artery atherosclerosis (including arterio-arterial

embolism) in Western countries.

If the reduction in blood flow is of sufficient severity and duration, a series of events

occurs at the cellular level that leads to irreversible changes. These events include

the release of excitatory neurotransmitters and inflammatory mediators, influx of

calcium to the cells, the generation of free-oxygen radicals, the depolarization of the

cellular membrane, and the loss of the membrane integrity 14, 15. A concept of the

neurovascular unit comprising neurons, astrocytes, microglial cells, and

microvascular structures has emerged recently in the study of ischemic injury 15.

The interactions and signaling between these components appears to play a pivotal

role in the response of the tissue to the ischemic insult 16. If adequate blood supply is

not restored in the appropriate time, the affected tissue becomes infarcted,

undergoes necrosis and shows scarring with accompanying, potentially permanent

neurological deficits 17.

Figure 1: A thrombotic mass (black arrow) occluding the distal M1 segment of the

middle cerebral artery. Adapted from the Heart and Stroke Foundation of Canada,

www.heartandstroke.ca.

http://www.heartandstroke.ca.
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2.1.2 Risk factors

Numerous risk factors for stroke have been identified. The main risk factor is age

with each year of age after the age of 19 showing an increased risk of stroke of 9%

for men and 10% for women, on average 18. Other key non-preventable risk factors

include the male gender, a family history of strokes and a previous stroke. In a large

worldwide study, ten preventable risk factors— hypertension, current smoking, high

waist-to-hip ratio, poor diet, lack of physical activity, diabetes mellitus, high alcohol

intake, psychosocial stress and depression, cardiac disease (especially atrial

fibrillation) and an unfavorable lipid profile— contributed 90.3% of the total risk in

a multivariate model 13. In general, risk factors tend to have a greater impact at

younger ages 18.

2.1.3 Vascular anatomy and vascular territories

The cerebral vasculature is divided into the anterior circulation, which is formed

intracranially by the middle cerebral arteries (MCA) and the anterior cerebral

arteries (ACA), and the posterior circulation that comprises the basilar artery, its

end-arteries in the posterior fossa and the posterior cerebral arteries (PCA) in the

supratentorial space (Figure 2). The vessels are often divided into numbered

segments on the basis of their branching pattern, as demonstrated for MCA in

Figure 2D. The anterior circulation is supplied by the internal carotid arteries (ICA),

and the posterior circulation is supplied by the vertebral arteries (VA). Typically,

there are several interconnecting vessels that allow collateral flow between the

anterior and the posterior circulation, most notably the anterior and the posterior

communicating arteries (AComm and PComm) that form the circle of Willis

together with parts of the ACA, ICA and PCA vessels 19. The vascular anatomy

gives rise to vascular territories, i.e., volumes of brain tissue supplied by a certain

vascular trunk in near end-artery fashion (Figure 3). Stroke symptoms correlate with

the vascular territories affected by the stroke 20-23.
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Figure 2: CT angiography maximum-intensity projection (MIP) images of the main

blood vessels of the brain. The anterior circulation is demonstrated in panels A

through D. Panel A depicts the anterior cerebral arteries (small arrows); Panels B

and C, the middle cerebral arteries (large arrows). Panel D is an inset to Panel C

featuring the left middle cerebral artery (MCA). The posterior circulation is

demonstrated in Panels E and F with Panel E depicting the distal parts of the right

distal posterior cerebral artery and Panel F, the proximal parts along with the basilar

artery (dashed arrows). In panel D, the left MCA is divided into segments

comprising the proximal M1 segment (M1P), the distal M1 segment (M1D), the M2
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segment (M2) and the M3 segment (M3). The supraclinoid portion of the internal

carotid artery (ICA) is also marked.

Figure  3: The supratentorial vascular territories of the brain. Image adapted from

www.eMedicine.com.

2.1.4 Epidemiology and socioeconomic impact

Epidemiological and health economics data often do not differentiate ischemic from

hemorrhagic stroke. According to a recent global study, 87% of strokes are ischemic

in origin 3. In the following text, both stroke subtypes are addressed together unless

stated otherwise.

As stated above, stroke is the second-leading cause of death (10% of all deaths) in

adults aged 15 years and over worldwide, the fourth-leading cause of disease burden

as measured in disability-adjusted life years, and the leading cause of acquired

disability in adults in most regions 1,  2. An estimated 5.7 million people died as a

http://www.eMedicine.com.
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result of a stroke in 2005 2. Stroke accounts for approximately 6% of deaths in the

United States and 8% of male and 12% of female deaths in Finland 3, 24. The mean

early (one month) case fatality was 14.3% in developed countries in the years 2000

through 2008 25. During extended follow-up, other causes of death then begin to

take precedence 26.

In a meta-analysis by Feigin et al., the age-standardized prevalence of stroke for

people aged 65 years or older ranged from 46 to 73 per 1000 (men: 59 to 93 per

1000; women: 32 to 62 per 1000) 25. The authors reported that the incidence

increased progressively with each decade of life. The age-standardized incidence for

people aged 55 years or older was in the range of 4.2 to 6.5 per 1000 person-years.

In Finland, the incidences in the year 2002 were 2 per 1000 person-years for people

aged 25 to 74 years, 16 per 1000 person-years for people aged 75 to 84 years, and

30 per 1000 person-years for people aged 85 years and over 24. In developed

countries, the incidence has declined in recent decades, whereas developing

countries are experiencing a stroke epidemic 25.

The estimated direct medical cost of stroke in the United States was $25 billion in

2007 3. In Finland, every fourth stroke patient belongs to the labor force, which

incurs an annual loss of 16500 labor-years 27. The yearly medical expenses caused

by stroke care are estimated to be $1.6 billion, which is 7% of all healthcare

expenditures 4. The estimated mean lifetime costs of ischemic stroke are $130000 4.

2.1.5 Functional outcome measures

The majority (64%) of the contemporary stroke trials use modified Rankin scale

(mRS) evaluations at different time points (1-, 3-, or 6-month mRS) as the

functional outcome measure 28. This scoring system is depicted in Table 1. The

score is often dichotomized using the threshold  2 (“good clinical outcome”) or  1

(“excellent clinical outcome”) to facilitate statistical analyses. Another commonly

used (41%) outcome measure is the Barthel activities of daily living (ADL) index 28.

The dichotomization cut-off for the Barthel index is typically  90 points.
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Table 1: The modified Rankin scale (mRS). mRS is a 6-point scale, with higher

scores indicating a worse functional outcome.

2.1.6 Symptoms, signs and diagnosis

A diagnosis of acute ischemic stroke is based on history, general physical and

neurological examination and imaging findings 24, 29. Laboratory and cardiac tests

have a minor role in diagnostics and are typically used to rule out stroke mimics, to

detect comorbid conditions and in part to determine eligibility for revascularization

therapies. The symptoms and findings of the neurological examination are best

evaluated, quantified and communicated when using a standardized, formal stroke

scale 30-32. The National Institutes of Health Stroke Scale (NIHSS) is the most

widely used formal scoring system 33. NIHSS essentially captures and quantifies the

stroke symptoms and the neurological signs and findings (Table 2). The role of CT

imaging in the diagnosis of acute stroke is detailed in section 2.2.



23

Category Score/Description
1a. Level of Consciousness (LOC) 0 = Alert

1 = Drowsy
2 = Stuporous
3 = Coma

1b. LOC Questions
(Month, age)

0 = Answers both correctly
1 = Answers one correctly
2 = Incorrect

1c. LOC Commands
(Open/close eyes, make fist/let go)

0 = Obeys both correctly
1 = Obeys one correctly
2 = Incorrect

2. Best Gaze
(Eyes open – patient follows examiner’s finger
or face)

0 = Normal
1 = Partial gaze palsy
2 = Forced deviation

3. Visual Fields
(Introduce visual stimulus/threat to patient’s
visual field quadrants

0 = No visual loss
1 = Partial hemianopia
2 = Complete hemianopia
3 = Bilateral hemianopia (blind)

4. Facial Paresis
(Show teeth, raise eyebrows and squeeze eyes
shut)

0 = Normal
1 = Minor
2 = Partial
3 = Complete

5a. Motor Arm – Left
5b. Motor Arm – Right
(Elevate arm to 90 degrees if patient is sitting,
45 degrees if supine)

0 = No drift
1 = Drift
2 = Can’t resist gravity
3 = No effort against gravity
4 = No movement
X = Untestable (limb amputation etc.)

6a. Motor Leg – Left
6b. Motor Leg – Right
(Elevate leg to 30 degrees with patient supine)

0 = No drift
1 = Drift
2 = Can’t resist gravity
3 = No effort against gravity
4 = No movement
X = Untestable (limb amputation etc.)

7. Limb Ataxia
(Finger-nose, heel down shin)

0 = No ataxia
1 = Present in one limb
2 = Present in two limbs

8. Sensory
(Pin prick to face, arm, trunk, and leg – compare
side to side)

0 = Normal
1 = Partial loss
2 = Severe loss

9. Best Language
(Name item, describe a picture and read
sentences)

0 = No aphasia
1 = Mild to moderate aphasia
2 = Severe aphasia
3 = Mute

10. Dysarthria
(Evaluate speech clarity by patient repeating
listed words)

0 = Normal articulation
1 = Mild to moderate slurring of words
2 = Near unintelligible or worse
X = Intubated or other physical barrier

11. Extinction and Inattention
(Use information from prior testing to identify
neglect or double simultaneous stimuli testing)

0 = No neglect
1 = Partial neglect
2 = Complete neglect

Table  2: The National Institutes of Health Stroke Scale (NIHSS). NIHSS is a 42-

point scale that quantifies neurological deficits in 11 categories. Higher scores

indicate more severe deficits. Adapted from Richardson et al. 34



24

2.1.7 Acute management and therapies

The aims of acute stroke therapy are 1) to restore the perfusion of the ischemic brain

tissue as rapidly as possible, 2) to limit the amount of damage to the ischemic tissue

whether caused by primary (hypoperfusion) or secondary (for example,

hyperglycemia or hyperthermia) mechanisms, and 3) to decrease the probability of

complications (such as hemorrhagic transformation, aspiration). Both in

experimental models and clinical trials, the duration and severity of ischemia

determines the extent of irreversible damage 17, 35. However, potentially viable

ischemic tissue (penumbra) has been demonstrated to exist for at least 24 h after

symptom onset 36, 37. Overall, the time elapsed from the onset of the symptoms to

treatment is a critical determinant of the outcome that guides decision making and

pre- and in-hospital management 38.

Four interventions have been unanimously proven to improve the outcome of

ischemic stroke: 1) the management of patients in a stroke unit, 2) the use of aspirin

within 48 h of stroke onset, 3) decompressive surgery (hemicraniectomy) for

supratentorial malignant hemispheric cerebral infarction, and 4) the use of an

intravenous thrombolytic within 4.5 h of symptom onset 39-43. Therapeutic

interventions that directly address revascularization— the reperfusion of the

ischemic tissue by recanalization of the occluded vessel or by other means— are of

particular importance because they could reverse the disease process. Currently

available revascularization therapies include intravenous thrombolysis (IVT),

sonothrombolysis, intra-arterial thrombolysis (IAT) possibly assisted with balloon

angioplasty, IVT followed by an intra-arterial intervention, mechanical

thrombectomy using aspiration, stent retrievers, other specific retrieval devices or a

combination of these therapies, and bypass stenting 44-47.

For a comprehensive review of the early management of adults with ischemic

stroke, see the current United States and Finnish guidelines 24, 29.
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2.1.7.1 Intravenous thrombolytic therapy

Tissue plasminogen activator (tPA) is a serine protease that enhances the conversion

of plasminogen to active plasmin that acts on fibrin clots to dissolve the clot 48. This

interaction has been targeted for pharmacotherapy. First-generation therapeutic

plasminogen activators— streptokinase and urokinase— have been gradually

replaced by different recombinant tissue plasminogen activators (r-tPAs) that

preferentially activate fibrin-bound plasminogen and thus have better spatial

specificity 49. r-tPA can be administered intravenously or intra-arterially, but only

the intravenous administration route has been approved by the Food and Drug

Administration (FDA). An obvious systemic and local adverse side effect is the

increased risk of bleeding.

In 1996, the FDA approved the use of intravenous r-tPA for the treatment of acute

ischemic stroke. The approval was based on the results of the National Institute of

Neurological Disorders and Stroke trial (NINDS) 43. This trial established a time

window for the therapy to within 3 h from symptom onset. This time limit was

supported by a meta-analysis of all trials up to 2004 50. The other relevant trials

included the European Cooperative Acute Stroke Study (ECASS), ECASS II and

the Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic

Stroke (ATLANTIS) study 51-53. These trials allowed patients to be enrolled for up

to 6 h after the stroke onset and, in this setting, showed no benefit of the intravenous

r-tPA compared to placebo. However, in 2008, the ECASS III trial and evaluation of

the Safe Implementation of Thrombolysis in Stroke–International Stroke Treatment

Registry (SITS-ISTR) provided evidence that a time window of 4.5 h was safe and

effective 54, 55. This time window has since been adopted into most current treatment

guidelines 24, 56.

Recently, three trials have studied the IVT beyond the 4.5 h window. These trials

utilized MRI to measure the mismatch between diffusion-weighted imaging and

perfusion-weighted imaging findings (DWI-PWI mismatch, see section 2.2.4),

which can be used to approximate the ischemic penumbra 57, 58. In the Desmoteplase

in Acute Ischemic Stroke (DIAS) series of trials, the decision to treat with r-tPA was

based on non-quantitatively defined mismatch criteria, and the time window was



26

extended to 9 h 59-61. The phase III trial failed to show a benefit of r-tPA treatment.

In the open-label, non-randomized Diffusion-weighted imaging Evaluation For

Understanding Stroke Evolution (DEFUSE) study, patients received r-tPA at up to 6

h after symptom onset 62. A close relationship between a favorable clinical response,

and the DWI-PWI mismatch was observed. The Echoplanar Imaging Thrombolytic

Evaluation Trial (EPITHET) investigators conducted a double-blinded, randomized,

controlled trial using intravenous tPA from 3 to 6 h after stroke onset 63, 64. They

found a significant trend toward attenuation of infarct growth on DWI and a

significant increase in reperfusion that was detected with PWI. Further trials

addressing a treatment time window of beyond 4.5 h are being conducted. The

largest of these trials is the Third International Stroke Trial (IST-3) 65.

According to a meta-analysis of intravenous r-tPA trials by Lees et al., the odds ratio

(OR) of an excellent outcome (mRS  1) was 2.4 if the treatment was administered

during the first 90 min and declined steadily to 1.4 during the 3.0-4.5 h time epoch
35. These data are reflected in the number needed to treat (NNT) figures that

increased proportionally with time (Figure 4). Symptomatic intracranial hemorrhage

(sICH), which has potentially deleterious effects on the short- and long-term clinical

outcome, occurs in 1.7-8.0% of patients receiving intravenous r-tPA 43, 54, 66-68.

Numerous risk factors for sICH have been identified. Patients with severe stroke

(NIHSS  20) have a greater likelihood of hemorrhage 69. Advanced age alone does

not increase the probability of hemorrhagic complication, but the outcomes are

worse 70. Hyperglycemia and sustained hypertension have been linked with an

increased risk of sICH 71-75. The numerous CT imaging findings that are associated

with an increased risk of hemorrhage are described in section 2.2. MRI findings that

predict hemorrhagic complications include a profound reduction of cerebral blood

volume, large diffusion or perfusion abnormalities upon baseline imaging (  100

ml), low apparent diffusion coefficient (ADC) values, signs of early blood-brain

barrier disruption, and leukoaraiosis of the deep white matter 75-81. Some of the

absolute and relative contraindications to intravenous r-tPA are due to the increased

probability of hemorrhage. The exact inclusion and exclusion criteria for

intravenous r-tPA vary somewhat between institutions and countries. For a typical

treatment protocol, see Wechsler 49.
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Figure  4:  NNT to  reach  a  mRS score  of  0-1  for  all  trials  of  intravenous  r-tPA in

acute ischemic stroke prior to 2010. NNT is almost doubled with each additional 90

min after stroke onset. Adapted from Donnan et al. 39

2.1.7.2 Intra-arterial interventions

The two largest trials that have studied intra-arterial administration of a

thrombolytic agent are the phase II Prolyse in Acute Cerebral Thromboembolism

(PROACT) and the PROACT II trials 82, 83. In both studies, the pharmacological

intervention was intra-arterial recombinant prourokinase (r-proUK) with intravenous

heparin, which were both administered within 6 h of symptom onset. Patients

receiving IAT had increased vessel recanalization rates (58-66% vs. 14-18%) and

better clinical outcomes although the probability of intracranial hemorrhage was

increased. The Emergency Management of Stroke (EMS) trial and the Interventional

Management of Stroke (IMS) trials I and II studied a combined intra-arterial and

intravenous thrombolysis with r-tPA administered within a 3 h time window 30, 84, 85.

Combined IV-IA strategies are collectively called bridging therapies. The

investigators reported that there was a significantly improved 3-month outcome

compared with the NINDS placebo arm, whereas there was only a trend toward

improved outcomes when compared with the NINDS r-tPA arm. Other studies with
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more heterogeneous setups have shown better functional outcomes in combined IV-

IA treatment groups 47. IAT can be assisted with balloon angioplasty.

During the last decade, different methods and devices have been introduced to

perform mechanical thrombectomy. Two of these devices, the Merci Retrieval

System (MRS) and the Penumbra System (PS), have been approved by the FDA for

the treatment of acute ischemic stroke. The Mechanical Embolus Removal in

Cerebral Ischemia (MERCI) trial was a single-arm study that included patients

presenting between 3-8 h from symptom onset or within 3 h if there was a

contraindication to IVT or if the treatment failed 86. This trial was extended in the

Multi MERCI study 87. In a pooled analysis, recanalization, which was achieved in

65% of patients, significantly predicted improved 3-month outcome 88. Higher

degrees of recanalization were associated with improved outcome and decreased

mortality 89. In the Phase II Penumbra Pivotal Stroke Trial, the time window for

treatment was 8 h. Eighty-one percent of the patients showed recanalization, 42%

showed an improvement of at least 4 points in NIHSS scores and a 1-month mRS

score  2 90. There are several case reports and retrospective study series showing

high recanalization rates when using intracranial stents as an emergency

revascularization strategy 47. However, the Stent-Assisted Recanalization in Acute

Ischemic Stroke (SARIS) trial is the only high-quality prospective study 91. In this

study, following intervention, 100% of occlusions were recanalized. At one-month

follow-up, 65% of patients showed an improvement of at least 4 points in NIHSS

scores, and 62% had mRS  3. Recanalization with retrievable, unfolded stents

(stent retrievers) and temporary stent placement is currently being investigated and

has shown promising preliminary results 92-95.

2.2 Multimodal computed tomography

Traditionally CT examinations of the brain have been performed by imaging

sequential axial slices with or without intravenously administered iodinated

contrast-agent. These imaging modalities are called contrast-enhanced computed

tomography (CECT) and non-contrast (enhanced) computed tomography (NCCT).

Both of these modalities provide anatomical and structural information on the
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intracranial space. CECT is not typically included in the acute ischemic stroke

imaging protocols. The introduction of multidetector technology in the past two

decades has enabled the use of thinner section-widths and rapid coverage of large

imaging volumes. This technology has resulted in the development of computed

tomography angiography (CTA) and computed tomography perfusion (CTP). CTA

provides detailed anatomical information on the cerebral vasculature. CTP conveys

functional information on the hemodynamic status of the vasculature at the tissue

(capillary) level and allows the detection and characterization of ischemic brain

parenchyma. Together, the three modalities— NCCT, CTA and CTP— are referred

to as multimodal computed tomography.

2.2.1 Non-contrast computed tomography

The first scan obtained when using a multimodal CT imaging protocol is NCCT. It

is used to exclude etiologies that cause symptoms mimicking those of ischemic

stroke, the most important of which are intracranial hemorrhage and neoplasms, to

detect possible early or irreversible ischemic changes in the brain parenchyma and

to assess the risk of post-treatment bleeding complications, especially in the context

of revascularization therapy 7, 43, 50, 71.

Early ischemic changes (EICs) observed using NCCT within 6 h of symptom onset

include 1) subtle parenchymal hypoattenuation with or without swelling that often

manifests as a loss of visualization of the gray-white matter interface and 2) isolated

parenchymal swelling without hypoattenuation. Focal hyperattenuation of an arterial

trunk is an additional sign that can be considered a surrogate for ongoing

parenchymal ischemia. In some specific locations, these findings have been given

names including the insular ribbon sign, obscuration of the lentiform nucleus, the

MCA dot sign, and the dense media sign or the hyperdense MCA sign (HMCAS).

The EICs are insensitive for detecting acute ischemic processes and show, at best,

moderate interobserver agreement and reproducibility. In general, they indicate an

increased risk of poor clinical and imaging outcomes. The presence of HMCAS is

associated with a major neurologic deficit, and it predicts poor clinical and

radiologic outcomes after IVT 96. For a review, see 7, 97.
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The duration and degree of hypoperfusion determines the presence of EICs 98.

Although the presence or absence of different types of EICs cannot reliably

differentiate between irreversibly damaged brain tissue and penumbra, the isolated

focal swelling is associated with the penumbra and the parenchymal

hypoattenuation with the infarct core and a poor functional outcome 99-103. Frank

parenchymal hypoattenuation indicates irreversible ischemic damage 101. The extent

of these changes is predictive of the risk of hemorrhagic transformation 71, 73, 104, 105.

Evaluation of this risk is especially important when deciding whether a patient is

eligible for revascularization therapies. In the ECASS I and II trials, the

involvement of more than one-third of the MCA territory with EICs and/or frank

hypoattenuation was considered a contraindication for reperfusion therapy due to an

increased risk of hemorrhagic transformation 51. This rather arbitrary criterion that is

challenging to interpret has been widely adopted 106-108. However, the relationship

between EICs and adverse outcomes following IVT is not straightforward. It

appears that IVT administered in the presence of early infarction signs does not

induce a poorer outcome than that predicted by the early signs alone 97.

2.2.1.1 Alberta Stroke Program Early CT Score

To overcome the issues associated with the “one-third of the MCA territory”

criterion, an algorithmic, topographic system called the Alberta Stroke Program

Early CT Score (ASPECTS) was developed 104, 109, 110. ASPECTS is a weighted

scoring scheme that allows quantitative assessment of the extent of acute ischemic

changes in the anterior circulation. Only parenchymal hypoattenuation is considered

a finding in the scoring process. Each hemisphere is divided into 10 regions (Figure

5) comprising the caudate nucleus, lenticular nucleus, insula, internal capsule,

inferior anterior MCA territory, inferior middle MCA territory, inferior posterior

MCA territory, superior anterior MCA territory, superior middle MCA territory, and

the superior posterior MCA territory in two axial sections at the level of the basal

ganglia (the ganglionic level) and the corona radiata (the supraganglionic level).

Each of these regions is given a score of 1 point. This point is deducted if the region

shows acute ischemic changes. Thus, negative findings yield a score of 10, and
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extensive ischemia covering the entire MCA region yields a score of 0. On the basis

of a volumetric assessment, if the ASPECTS score is  6, then more than one-third

of the MCA territory is affected, on average. When 3 or more of the ASPECTS

regions show ischemic changes (ASPECTS  7), the patient is unlikely to achieve

an independent functional outcome. Overall, ASPECTS applied to NCCT images is

predictive of the clinical outcome, the effectiveness of IVT and IAT and the rate of

hemorrhagic complications but is not sufficiently accurate for triaging IVT

candidates 110-115. The ASPECTS paradigm has also been adapted to the posterior

circulation 116. However, when applied to NCCT, this score did not predict

functional independence 116.

Figure  5: Axial NCCT images showing the MCA territory regions as defined by

ASPECTS. The ganglionic and the supraganglionic levels are indicated using white
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brackets. C- Caudate, I- Insular ribbon, IC- Internal Capsule, L- Lentiform nucleus,

M1- Anterior MCA cortex, M2- MCA cortex lateral to the insular ribbon, M3-

Posterior MCA cortex, M4, M5, and M6 are the anterior, lateral and posterior MCA

territories immediately superior to M1, M2 and M3, rostral to the basal ganglia.

Subcortical structures are allotted 3 points (C, L, and IC). The MCA cortex is

allotted 7 points (insular cortex, M1, M2, M3, M4, M5 and M6). The image is

adapted from www.aspectsinstroke.com.

2.2.2 Computed tomography angiography

The second modality acquired in a multimodal protocol is typically the CTA. In

general, a volume from the aortic arch up to the vertex of the skull is covered, and

thin-section slices of isotropic spatial resolution are calculated 117. This method

enables the reconstruction of two-dimensional (2D) reformatted images in arbitrary

planes, maximum intensity projection (MIP) images and three-dimensional (3D)

images and provides detailed information on the cerebral vasculature that is

comparable with that obtained using digital-subtraction angiography (DSA) 118-122.

Both intracranial and extracranial vessels can be evaluated in a single study. Thus,

the vascular anatomy and the collateral circulation can be visualized, the pathology

of the vessel wall that alters the diameter of the vessel lumen can be evaluated, and

intravascular thrombi can be identified 117, 123. CTA can detect large- and small-

vessel occlusions and stenoses highly accurately (95-99%) both intracranially and

extracranially 123-126. The location and the volume of the thrombi are independent

prognostic factors in acute ischemic stroke with proximal, high-volume clots

predicting poor clinical outcomes compared with distal, low-volume clots. This

finding is related to the rate of recanalization, which is lower in proximal-vessel

positions. In addition, the location and volume of the clot limits the effectiveness of

IVT in dissolving the occluding thrombus 127-138. This information can be used to

guide therapeutic decision making and the choice between IVT, intra-arterial

interventions or refraining from revascularization therapy.

http://www.aspectsinstroke.com.
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2.2.2.1 Clot Burden Score

The Clot Burden Score (CBS) is an imaging score based on the location and the

extent of the thrombus detected using CTA 135, 139. In this scoring scheme, a score of

0 to 10 is assigned on the basis of the number and location of arterial segments

affected in the anterior circulation (Figure 6). Similar to ASPECTS, the absence of

an occlusion is scored with 10 points and points are deducted if non-opaque arterial

segments are shown by the contrast agent. CBS is correlated with the clinical and

radiological outcomes 134, 135, 139. Patients with higher CBS values are more likely to

experience independent functional outcomes and less likely to die. Correspondingly,

the final infarct volumes are smaller and the rates of hemorrhagic transformation

lower.

Figure  6: Schematic representation of the Clot Burden Score (CBS). One or two

points each are subtracted from a total score of 10 when no contrast opacity is

detected using CTA in the infraclinoid ICA (1 point), supraclinoid ICA (2 points),

proximal M1 segment (2 points), distal M1 segment (2 points), M2 segment

branches (1 point each) and the A1 segment (1 point), as indicated by the numbers

next to the corresponding vessel segments. CBS applies only to the symptomatic

hemisphere. From Puetz et al. 135
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2.2.2.2 Boston Acute Stroke Imaging Scale

The Boston Acute Stroke Imaging Scale (BASIS) is an imaging score that combines

arterial and parenchymal imaging findings 140. BASIS is a binary, 2-step

classification scheme where patients are designated as having either a major or

minor stroke. If the distal ICA, the proximal MCA (segments M1 and M2) or the

basilar artery is occluded or if there is a significant ischemic lesion either in NCCT

or DWI based on the one-third of the MCA rule, ASPECTS or bilateral pons or

bithalamic involvement, the stroke is considered major. Otherwise, the stroke is

designated as minor. BASIS is correlated with mortality, short-term clinical

outcome evaluated at discharge from the hospital, and the length and costs of

hospitalization with major stroke predicting poor outcomes and higher costs 133, 140.

2.2.2.3 Evaluation of the leptomeningeal collateral circulation

Leptomeningeal collateral circulation occurs due to the arterio-arterioral

connections between the major cerebral artery systems that enable the filling of pial

arteries distal to the site of vessel occlusion. Sufficient flow through the collaterals

allows the brain tissue to remain viable even if the normal antegrade flow supplying

the tissue volume is diminished or interrupted 141-143. This additional blood flow

reduces the baseline infarct core and the expansion of the core, decreases the risk of

hemorrhagic transformation and increases the odds of a good clinical outcome in-

hospital, at discharge and six months after the stroke 123, 144-152. A multitude of

heterogeneous methods have been used to identify and score collateral circulation

including classification schemes utilizing CTA 123, 138, 148, 152, 153. However, currently,

a systematic evaluation of the extent of the collateral pathways is seldom performed

in the acute-stroke imaging workup.

2.2.2.4 Computed tomography angiography source images

Unprocessed CTA source images (CTA-SI) can be used to predict whether the

tissue volume will infarct regardless of whether recanalization is achieved 154. CTA-

SI is clearly superior to NCCT in the detection of the infarct core and in the

prediction of infarct extension, symptomatic hemorrhagic complications and clinical
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outcomes 60, 112, 126, 155-159. CTA-SI obtained using a 16-row or shorter detector-

length scanners essentially capture the steady state of the contrast agent, which

approximates the cerebral blood volume and irreversible ischemic changes 160, 161.

Wider detector lengths and faster image-acquisition times make CTA-SI more

blood-flow weighted, and thus, it increasingly reflects the at-risk tissue rather than

only the tissue that will undergo necrosis 112, 162-164.

2.2.3 Computed tomography perfusion

The final imaging modality obtained in a typical multimodal protocol is CTP. A

perfusion study enables the quantification of capillary, tissue-level blood flow. CTP

is a dynamic imaging modality where the first pass of a bolus of iodinated contrast-

agent is traced though the brain parenchyma by repeated scanning of the volume of

interest immediately following the injection 165. This method provides insight into

the physiology and pathophysiology of cerebral hemodynamics. Based on a multi-

compartmental tracer kinetic model, CTP allows the calculation of a variety of

parameters that reflect different aspects of the hemodynamic state 7, 166, 167:

1. Cerebral Blood Flow (CBF) indicates the volume of blood moving through

a brain volume (mass) of interest per unit time ([CBF] = ml/100 g/min).

2. Cerebral Blood Volume (CBV) describes the total volume of blood in a

given brain volume (mass) of interest ([CBV] = ml/100 g). This volume

includes the intracellular, intravascular and extravascular interstitial spaces.

3. Mean Transit Time (MTT) describes the average difference in time

between the arterial inflow and the venous outflow of a brain region-of-

interest ([MTT] = s). This time is dependent on the average distance

travelled. MTT can be calculated from the CBF and CBV with the central

volume principle 168: MTT = CBV/CBF.

4. Time to Peak (TTP) is defined as the time from the beginning of the arterial

enhancement to the peak of the enhancement curve ([TTP] = s).

In essence, two mathematical approaches have been applied in calculating the CBF

and MTT from raw measurement data obtained using a CT scanner: the
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deconvolution and non-deconvolution methods 166. Non-deconvolution methods are

based on the application of Fick’s principle of conservation of mass to a given

region of interest. The CBF can be calculated using the maximum slope technique.

Non-deconvolution methods make use of simplifying assumptions that decrease the

accuracy of the results. Deconvolution methods attempt to correct the effect of

contrast delay and dispersion. There are multiple deconvolution techniques, and the

singular value decomposition (SVD) has gained widespread acceptance.

Deconvolution methods enable the creation of accurate, quantitative perfusion

parametric maps. The concept and calculations have been validated in humans using

xenon-CT, positron emission tomography (PET) and MRI and in animals, using

microsphere studies. For a comprehensive theoretical and technical analysis, see the

series of reviews by Konstas et al. 166, 167, 169.

The main goal of a stroke perfusion study is to provide an assessment of the

viability of the ischemic tissue, i.e., to identify the irreversibly damaged tissue (the

infarct core), the tissue that is at risk for progression to infarction if reperfusion is

not achieved (the penumbra) and the normally perfused or hyperemic tissue 167, 170,

171. This classification stems from experimental studies that characterized two

functional thresholds for CBF: 1) below which cortical function ceases without an

increase in extracellular potassium or reduction in pH (the penumbra) and 2) below

which there is disruption of cellular integrity (the core) 172. These thresholds have

been correlated with advanced neuroimaging findings— the perfusion parametric

maps— to define a more clinically relevant operational penumbra, which identifies

hypoperfused but potentially salvageable tissue 170, 173, 174. In the simplest terms, the

operational penumbra is the mismatch (subtraction) volume between the CBF or

MTT (or TTP) and the CBV (or DWI), in which the CBV (or DWI) lesion reflects

the infarct core and the CBF or MTT (or TTP) lesion reflects the boundaries of the

hypoperfused penumbral tissue (Figure 7) 167. This concept was initially validated

for MRI, and later MRI and CT results were correlated (see section 2.2.4 for a

discussion of the DWI-PWI mismatch in MRI) 154, 175. However, standardization or

validation of the quantitative perfusion parameter map values has not been achieved

for acquisition and postprocessing across different vendor platforms or even across

different platforms from the same vendor 176, 177. Thus, numerous absolute threshold

values have been proposed for different perfusion parameters in multiple studies.
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The use of relative values obtained by comparing to the contralateral, uninvolved

side can, in part, circumvent this problem 178-180. However, even the relative values

vary with postprocessing technique, and the interpreter must be familiar with the

software and hardware used 179, 180. The perfusion parameters that best define the

core and the penumbra remain under discussion. This task is challenging, as both

regions are dynamic in character because of the nature of the disease process.

Recent reports suggest that appropriately thresholded relative and absolute MTT

values optimally distinguish the at-risk penumbra and that thresholded CBF values

may assess the core more accurately than CBV cut-offs 176, 179, 180. Depending on the

postprocessing technique used, relative MTT thresholds ranged between 150 and

249% and relative CBF values were between 16 and 44%. Relative CBVs ranged

between 56 and 60% 179. ASPECTS has been validated for CTP parametric maps,

which provides another method for quantifying CTP findings in the anterior

circulation including calculation of the perfusion mismatch 113, 181, 182.

Figure  7: A patient suffering from an acute stroke of the left MCA region who

displays both MTT and CBF–CBV mismatch. The CBV lesion is obviously smaller

than the MTT or the CBF lesion. Arrows mark the boundaries of the perfusion

defect in the three parametric maps.

CTP has the potential to serve as a surrogate marker for stroke severity and as an

independent predictor of clinical outcome. Multiple studies utilizing a variety of

imaging methods have established a strong correlation between the size of the core

upon admission and the clinical outcome 167, 183. Patients with a core lesion volume

 70-100 ml show poor outcomes regardless of therapy or recanalization status 184-
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186. It is unclear how large a clinically significant penumbra should be. An arbitrary

mismatch ratio (for example, defined as VolumeMTT/VolumeCBV) –cut-off of 1.2 or

2.0 has been used in most studies 167. The degree of early reduction in CBF and

CBV and, interestingly, the size and severity of the DWI lesion are correlated with

the risk of a hemorrhagic complication 76, 77, 187-189. CTP can identify potentially

salvageable brain tissue in the context of IVT 190.

A major disadvantage of CTP in most currently used scanners is the limited z-axis

coverage. According to a recent report, 75 mm of z-axis coverage was required to

reliably detect a perfusion mismatch ratio of 2.0 in the anterior circulation, whereas

50 mm was sufficient when a ratio of 1.2 was used 191. Newer 256- and 320-row

scanners can achieve whole-brain coverage 192, 193. CTP is insensitive to acute

lacunar and small, deep white-matter lesions 194, 195. CTP may overestimate the size

of the CBV lesion 190, 196. In contrast, CBV and CBF may underestimate the core

due to post-ischemic hyperperfusion 197. If not properly thresholded, the MTT and

CBF defects include a region of reactive benign oligemia that is not at risk of

progressing to infarction 180, 198-200. CTP involves an intravenous injection of 35-60

ml of iodinated contrast material. However, this procedure does not appear to

increase the incidence of contrast-induced nephropathy 201. The patient also receives

a dose of ionizing radiation. If the CTP protocol has been set-up correctly, the dose

is slightly higher than that used for NCCT 167. The complex post-processing may be

prone to operator errors 202, which can be counteracted with training and quality

control 203.

2.2.4 Comparison of multimodal CT and stroke MRI

Multimodal MRI offers an alternative method to study acute stroke. A typical stroke

MRI protocol includes diffusion-weighted imaging (DWI), perfusion-weighted

imaging (PWI), MR angiography (MRA), gradient-echo (GRE) and fluid-attenuated

inversion recovery (FLAIR) imaging 204, 205. GRE and FLAIR are used to detect

intracranial hemorrhage, and MRA provides information on major-vessel patency.

DWI is used to detect the ischemic process and to characterize the extent of the

infarct core 206, 207. PWI allows the assessment of cerebral hemodynamics using the
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perfusion parameters described in section 2.2.3 208, 209. The DWI-PWI mismatch

estimates the size of the operational penumbra 209-211.

MRI is superior to NCCT in sensitivity and accuracy of detection of acute ischemia

and hemorrhage 212, 213. The anatomical and pathophysiological information

obtained with CTA and CTP and the clinical utility of these data are comparable to

MRI 160, 175, 214-217. Theoretically, CTP provides better approximation of the true

quantitative perfusion values 117, 205. As with CTP parameters, DWI can

overestimate the size of the infarct core but appears superior to any CT option 205,

218. Multimodal CT is readily available, is faster and cheaper to perform, is less

sensitive to motion artifacts and has fewer contraindications 7, 117, 205. However, MRI

typically has better z-axis coverage and does not involve exposure to ionizing

radiation or iodinated contrast-agents 117, 205.

2.2.5 The role of multimodal CT in acute ischemic stroke

Imaging plays a central role in the evaluation of patients with acute stroke. The

current American Heart Association (AHA) guidelines for imaging of acute

ischemic stroke recommend the use of NCCT or MRI to detect ICH and frank

ischemic changes 219. However, the guidelines state that in patients presenting

within 3 h of symptom onset, NCCT alone shows suboptimal detection rates of

ischemic changes and that more definitive diagnoses can be obtained using DWI or

CTA-SI if they do not unduly delay the timely administration of r-tPA. A

multimodal protocol takes 2 to 10 min to complete and does not significantly delay

the administration of IVT 220, 221. In addition, the authors of the guidelines reported

that a vascular study— CTA, MR angiography (MRA) or DSA— is “probably

indicated” and that patients who are more than 3 h from symptom onset should be

examined using a DWI or a CTA-SI and also using vascular imaging and perfusion

studies, particularly if an intra-arterial intervention is contemplated. Furthermore, an

incremental protocol that includes CTP enhances stroke diagnostics and inter- and

intraobserver agreement 8. Overall, the guidelines assert that progress in the

treatment of the acute-stroke patient has been modest, and it is apparent that the use

of NCCT alone is insufficient to properly triage patients to different treatments.
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A multimodal protocol enables diagnostics beyond excluding intracranial

hemorrhage and provides information that allows more diverse clinical decision

making with the intention of selecting patients for different revascularization

therapies 7, 45, 117, 166, 167, 219. A multimodal protocol enables questions, such as

whether there are intravascular thrombi that can be targeted for thrombolysis,

whether there is a sizable core of critically ischemic tissue that is irreversibly

infarcted, whether there is adequate collateral circulation, and whether there is a

penumbra of severely ischemic but potentially salvageable tissue, to be answered.

Patients outside the currently accepted therapeutic time window for

revascularization therapies or who have an unknown duration of symptoms can

potentially be treated. The risk of a hemorrhagic complication can be evaluated

more accurately. Patients can be more sensibly triaged in trials of experimental

therapies, such as sonothrombolysis, mechanical thrombectomy using new devices,

induced hypertension therapy and different neuroprotective strategies. One report

suggests that it may be possible to increase the proportion of good functional

outcomes among IVT patients by using multimodal CT upon admission 222.

Multimodal imaging is an essential component in the shift from time window-based

decision making to management based on the characterization of the ischemic

tissue. The steps to reach this paradigm change have been traced in a recent

multidisciplinary consensus statement 223.
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3. AIMS OF THE STUDY

The aims of this study are as follows:

1) To study the potential of ASPECTS as applied to CTP parametric maps in

the characterization of acute ischemic stroke and the prediction of clinical

and imaging outcomes. In particular, to test the hypothesis that the CTP

ASPECTS mismatch, which is the difference between MTT and CBV

ASPECTS scores, may be useful for identifying patients that could benefit

from IVT [I].

2) To correlate the anatomical information conveyed by BASIS and CBS to the

dynamic information of the CTP parameters in order to determine how these

variables predict the clinical outcome and whether a derived parameter

combining both CTA and CTP data could provide increased value for the

prediction of the clinical outcome of acute ischemic stroke in the context of

IVT [II].

3) To analyze in depth the impact of the location of the clot, visualized in the

anterior circulation using CTA, on the clinical outcome in acute ischemic-

stroke patients treated with IVT [III].

4) To compare the technical quality of the CTP studies performed using a 64-

row or a 16-row scanner and to analyze the differences in the ability to

detect perfusion defects between the two scanners in the context of acute

ischemic stroke [IV].
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4. SUBJECTS, MATERIALS AND
METHODS

4.1 Overview

All studies [I-IV] had retrospective observational cohort design. The clinical and

imaging data of consecutive patients, who were admitted to Tampere University

Hospital between January 2004 and December 2007 because of acute (duration < 3

h) stroke symptoms and who after evaluation received IVT to treat acute ischemic

stroke, were collected and analyzed.

The initial imaging evaluation consisted of NCCT, CTA and CTP. The selection of

patients to receive thrombolytic therapy was based on institutional guidelines, which

did not have CTP or CTA parameters as exclusion or inclusion criteria. To rule out

possible selection bias caused by CTA and CTP studies, a sample population of 179

acute-stroke patients who did not receive IVT in 2007 was reviewed. The indication

to exclude a patient from IVT was documented carefully. In one case, the decision

to exclude a patient was based on the results of a CTP study (extremely poor

technical quality of the admission NCCT and over one-third MCA lesion in the

CBV map). In addition, we discovered three cases in which the admission NCCT

was initially erroneously interpreted as negative, the results reported orally to the

stroke neurologist, a review and a correction was conducted after the CTP maps had

been calculated and analyzed some minutes later, and the decision to administer

thrombolytic therapy was withdrawn. A follow-up NCCT was performed for all

patients at 24 h after the administration of the thrombolytic agent.

IVT was administered according to guidelines from the American Heart Association

(AHA) 224: Actilyse (Boehringer-Ingelheim, Ingelheim, Germany), total dose 0.9

mg/kg, was administered in a 10% bolus with the remaining 90% administered as a

continuous infusion over 1 h.
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4.2 Subjects, study population and baseline
characteristics

4.2.1 Patients who received IVT to treat acute ischemic stroke in
2007 [I and II]

The clinical and imaging data from 92 consecutive patients, who were admitted to

Tampere University Hospital between January 2007 and December 2007 due to

acute (duration < 3 h) stroke symptoms and who received intravenous r-tPA to treat

acute ischemic stroke after evaluation, were collected. In total, 271 patients

suffering from acute ischemic stroke were evaluated as candidates for thrombolytic

therapy during this period. A full multimodal imaging evaluation was successfully

completed in 72 of the 92 patients (78%) who received thrombolytic therapy. Nine

patients (10%) were evaluated using NCCT alone, and 11 patients (12%) were

evaluated using NCCT and CTA due to a previously known hypersensitivity to the

contrast agent, chronic renal failure, imminent closure of the three-hour time

window or movement artifacts that rendered some of the imaging data

uninterpretable (Figure 8). Altogether, 83 patients (90%) were imaged using CTA.

The median age of the patients was 71 years (interquartile range 58-80 years, 42

female). Based on the clinical features and the imaging studies, in 11 of the 92

patients evaluated, the ischemic episode involved the posterior circulation (8 cases

of thrombosis of the basilar artery). The other episodes were considered to involve

the anterior circulation. The thrombosis was demonstrated with CTA in 37 cases

(45% of the CTA studies and 40% of all patients). In 40 cases (56%) of the 72

evaluated using CTP, a perfusion defect was detected in the ASPECTS levels. An

additional 6 perfusion defects were found outside the ASPECTS levels. A perfusion

pattern implying acute ischemia was detected in half of the cases involving the

posterior circulation when CTP was conducted. In total, a perfusion defect was

demonstrated in 64% of the CTP scans (50% of all patients). The median NIHSS

upon admission was 7 points (56.0% < 8, 18.7% > 15; interquartile range 4-12). The

median mRS was 1 point preictally.
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Figure 8: The population and subpopulations of studies I and II.

4.2.2 Patients who received IVT to treat acute ischemic stroke
from 2004 to 2007 [III]

Altogether, 313 anterior- or posterior-circulation ischemic-stroke patients from

January 2004 to December 2007 were treated with IVT and had a 3-month follow-

up after thrombolysis. CTA was performed on 283 patients (90%). The inclusion

criteria were acute anterior-circulation vessel occlusion confirmed with CTA and

IVT treatment. There were 105 (37%) patients who met the inclusion criteria.

Thrombi were not detected in 140 (50%) cases, and 38 (13%) patients showed a

posterior-circulation clot. The median age of the patients was 69 years (interquartile

range 54-83 years; 45 female). The median NIHSS upon admission was 13 points

(interquartile range 4-12) and 6 points (interquartile range 0-20) at 24 h after IVT

administration. The median NCCT ASPECTS upon admission was 10 points

(interquartile range 8-10). The median time from imaging to the initiation of IVT

was 35 minutes. The median preictal mRS was 1. A 3-month mRS was missing

from one patient who was discharged to another district and was not contacted for

phone interview. At 24 h, a local hemorrhagic complication or parenchymal

hemorrhage distant to the site of the infarct was detected in 7 cases (7%). According

to the 5-subtype Causative Classification of Stroke (CCS) scheme 12, large-artery

atherosclerosis was the etiology in 23 (22%) cases; cardiac embolism in 55 (52%)

cases; and other uncommon cause in 6 (6%) patients. There were no cases of small-

artery occlusion, and 21 (20%) patients had an ischemic stroke of undetermined

cause. Sixty-nine percent of the patients had hypertension, 17% suffered from

diabetes, 41% had atrial fibrillation, and 33% had coronary artery disease.
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4.2.3 Patients who received IVT to treat acute ischemic stroke
from 2006 to 2007 [IV]

Clinical and imaging data were analyzed of 140 consecutive patients who were

admitted to Tampere Hospital between January 2006 and December 2007 due to

acute (duration < 3 h) stroke symptoms, who were imaged with NCCT and CTP and

who subsequently received intravenous r-tPA. The patients were scanned using

either a 64-row or a 16-row scanner located in neighboring rooms. Although the

patients were not explicitly randomized for imaging with either scanner, the

selection of the scanner was effectively random. The median age of the patients was

71 years (interquartile range 58–80 years; 45% female). Based on the clinical

features and the imaging data, in 16 of the 140 patients evaluated (11%), the

ischemic episode involved the posterior circulation. The median NIHSS score upon

admission was 7 (interquartile range 4-12; 54% < 8, 13% > 15). The median mRS

was 1 preictally. There were no significant differences in age, admission NIHSS,

prestroke mRS or onset-to-treatment times between the patients imaged with the 64-

row and those examined with the 16-row scanner. There were significantly fewer

females in the 16-row group (36% vs. 55%).

4.3 Clinical variables

Baseline characteristics included antiplatelet therapy (aspirin, dipyridamole or

clopidogrel) prior to stroke, age, gender, prestroke functional status, time from both

symptom onset and imaging to the initiation of IVT and the stroke clinical risk

factors hypertension, diabetes, coronary heart disease, and atrial fibrillation. These

data were collected from patient records. Admission clinical evaluation results had

been prospectively stored according to a specific protocol and comprised blood

pressure, the NIHSS score at the time of initiation of IVT and whether an

intravenous antihypertensive was used. The admission hemoglobin, glucose and

glycated hemoglobin were obtained from the laboratory database. Systematic ECG

monitoring and further vascular and heart imaging were performed in the stroke unit

and the neurology ward, and the results of these studies were retrieved. A follow-up

NIHSS score was determined for all patients at 24 h after the administration of the
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thrombolytic agent. The CCS scheme was used by a certified CCS-rater to assess

stroke etiology.

A Modified Rankin Scale (mRS) score, which was scored three months after the

stroke, was the primary clinical outcome measure in all studies. In the years from

2004 to 2005, the three-month mRS score was prospectively recorded by a

neurologist experienced in stroke management during a follow-up visit, and from

2006 to 2007, the three-month mRS score was prospectively recorded by a stroke

neurologist during a phone interview. Death during the primary hospitalization and

discharge from the neurology ward to a rehabilitation facility were both considered

to signify unfavorable clinical outcomes upon discharge. These data were used as

secondary clinical outcome measures in study III.

4.4 Imaging parameters

NCCT scans were obtained using two different multidetector scanners: a General

Electric LightSpeed 16-slice scanner (GE Healthcare, Milwaukee, WI) and a Philips

Brilliance 64-slice scanner (Philips, Cleveland, OH). Brain NCCT was performed

using the following parameters: 64-row, 120 kV, 430 mAs, collimation 12 x 1.25

mm, rotation 1.5 s and 16-row, 120 kV, 320 mAs, collimation 16 x 1.25 mm,

rotation 1s. Contiguous slices were reconstructed to the thickness of 5 mm over the

entire scanning range (64-row) or to the thickness of 5 mm in the skull base and 7.5

mm in the supratentorial region (16-row).

CTA was performed using a scanning range extending from the C2-vertebra to the

vertex of the skull. The imaging parameters were 120 kV, 212 mAs (using dynamic

tube current modulation), collimation 64 x 0.625 mm, rotation 0.75 s, pitch factor

0.923 (64-row) or 120 kV, 160 mAs, collimation 16 x 0.625 mm, rotation 0.8 s,

pitch factor 0.938 (16-row). Contiguous slices were reconstructed to the thickness of

0.9 mm with a 0.45 mm overlap (64-row) or to the thickness of 1.25 mm (16-row).

The contrast agent (iobitridol, Xenetix, 350 mgI/ml, Aulnay-sous-Bois, France) was

administered via an antecubital 18G cannula using a double-piston power injector at
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a flow rate of 4 ml/s using 70 ml of contrast agent followed by a 50-ml saline flush.

Manual bolus triggering was used.

CTP was performed using the parameters 80 kV, 200 mAs (effective), collimation

32 x 1.25 mm, rotation 0.4 s (64-row) or 80 kV, 200 mAs, collimation 8 x 2.5 mm,

and rotation 1s (16-row). A total of 120 slices covering a range of 80 mm were

generated in 55 s using a protocol that utilized two alternating table positions to

increase the z-axis coverage, i.e., a “shuttle mode” (64-row), or 200 slices covering

a range of 20 mm were generated in 50 s in a stationary table position (16-row).

Contiguous slices were reconstructed to the thickness of 10 mm (64-row) or to the

thickness of 5 mm (16-row) at even time intervals. The imaging range was

positioned such that the ASPECTS levels were covered. The remaining 80 mm

range (64-row) was positioned both cranial and caudal to the ASPECTS levels with

the exact balance dependent upon the clinical presentation. The contrast agent

(Xenetix, 350 mgI/ml) was administered via an antecubital 18G cannula using a

double-piston power injector at a flow rate of 5 ml/s using 60 ml of contrast agent

followed by a 40 ml saline flush.

4.5 Image analysis

NCCT examinations were reviewed using dedicated medical-imaging workstations.

CTA and CTP images were analyzed and areas and volumes were measured using

the Advantage Workstation version 3.2 (GE Healthcare, Milwaukee, WI). CTA

images were reviewed by examining both the raw data and the MIP images.

Parametric perfusion maps were generated using the CT Perfusion 3 software,

which uses a deconvolution-based algorithm. The ACA was used as a source for the

arterial input function (AIF), and the region of interest for the venous output

function (VOF) was positioned in the superior sagittal sinus. These curves were

considered noisy if there was a clear dip or spike in the curve that could affect the

calculations. Minor rippling of the signal, although a phenomenon caused by noise

sources, was not recorded as noise in this context. Persistently poor image quality

was corrected when feasible by manually adjusting the parameters that control the

motion artifact correction algorithm in the software.
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The principles of the ASPECTS scoring of NCCT and CTP maps are described in

section 2.2.1.1. The location of the image section closest to an ASPECTS level was

considered suboptimal if the location did not exactly correspond with the reference

level described in the literature 109 but did allow reliable scoring. ASPECTS was

considered uninterpretable if the section was obviously a different anatomic region,

for example, the cranial parts of the basal ganglia when evaluating the upper level.

MTT maps were used to detect at-risk tissue, and CBV maps were used to

approximate the infarct core. The perfusion mismatch was calculated as the

difference between ASPECTS scored for the maps. When characterizing a perfusion

defect, we used a semiquantitative approach where the presence of a perfusion

defect was determined visually from color-coded maps by comparing the

appearance of the affected location to that of the healthy tissue on the contralateral

hemisphere. On the basis of theoretical considerations and to increase measurement

accuracy, we required the area measured in the visually identified location to be

larger than 25 mm2 with a mean MTT > 7s (or mean CBV < 2.5 mL/100 g; adapted

from Wintermark et al. 225). Further validation was performed by requiring the mean

relative MTT > 249% for the penumbra and the mean relative CBF < 31% and the

mean relative CBV < 58% for the infarct core compared with the contralateral side
179, 180.

The location of the clot was recorded on the basis of the most-proximal position of

the occlusion. The M1 segment of the MCA was divided into two parts of equal

length: the proximal and the distal half. The principles of the Clot Burden Score

(CBS) scoring system and the assignment of BASIS are described in sections 2.2.2.1

and 2.2.2.2.

The examinations were reviewed in the order NCCT, CTA and finally CTP, which

parallels the clinical work flow. The reviewers were blinded to the clinical data

apart from the side and nature of the acute symptoms. The location of the clot was

determined, the CBS was scored, and BASIS, NCCT and CTP ASPECTS were

assigned by two radiologists (N.S. and A.L. or J.H., see study I). In cases where the

scoring differed, a consensus score was agreed upon. The overall consensus opinion

was compared in general terms to the original report by an experienced
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neuroradiologist, and if significant discrepancies were present, that neuroradiologist

was further consulted. Perfusion-defect areas and final infarct volumes were

measured by one radiologist (N.S.). The boundaries of the affected areas were

determined visually, and absolute- and relative-value thresholds described above

were applied. Volumes were calculated by multiplying the measured area by the

slice thickness.

Intraclass correlation coefficients (ICC) between a staff radiologist (N.S.) and an

experienced neuroradiologist (J.H.) were calculated for CBS and ASPECTS

assignments in a test sample (n=20): ICCCBS=0.86, ICCNCCT0h=0.86, ICCMTT=0.79,

ICCCBV=0.73 and ICCNCCT24h=0.93. The median interobserver agreement indices for

areas and volumes were AREAMTT: 68%, AREACBV: 90% and VOLUMEINFARCT:

80%. The interobserver agreement index for BASIS was 95%. Cohen´s kappa for

the location of the clot was 0.94.

4.6 Statistical analyses

Data were analyzed using SPSS versions 17 and 18 (SPSS Inc., Chicago, IL). A

biostatistician was consulted where deemed necessary. Patients with mRS  2

(primary clinical outcome measure) at the 3-month follow-up or those discharged to

home from the neurology ward (secondary clinical outcome measure) were

considered to have experienced favorable clinical outcomes. P-values of less than

0.05 were considered statistically significant. In study I, the difference between the

3-month postictal and the preictal mRS was used as an indicator of a good clinical

outcome, as it more accurately reflects the disease load inflicted by the current

episode. As expected from the definitions, mRS and mRS were highly correlated

(r = 0.85), and the offset between mRS and mRS was generally very small or

nonexistent. The median preictal mRS in the research population was 1. The

threshold for a good clinical outcome was deemed to be mRS  1 to enable

comparison with the mRS  2 threshold.

Group comparisons were performed using Fisher’s exact test [I]; the Mann-Whitney

U test and Fisher’s exact test [II]; Student’s t-test, the Chi-squared test, the Kruskal-
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Wallis, and Fisher’s exact test [III]; and Student’s t-test, the Mann-Whitney U test,

the Chi-squared test and Fisher’s exact test [IV].

Binary logistic regression modeling using either the primary or secondary clinical

outcome measures as the dependent variable was repeated for different variables of

interest. In study II, age and gender were treated as potential confounders and were

controlled for by treating them as covariates. One variable of interest was included

in the model at a time. In study III, NIHSS, age, gender, time from onset to

treatment and clinical risk-factors were examined as potential confounders and were

tested both in univariate models and with the location of clot in the model. The final

regression model retained the statistically significant and theoretically relevant

confounders. The calibration of the models was evaluated using the Hosmer-

Lemeshow test and the discrimination using the C statistic. The odds ratio (OR) at a

95% confidence interval (CI) was calculated for each covariate.

Pearson correlation coefficients and 2-tailed significance levels were calculated in

all correlation analyses. Differences between correlation coefficients were examined

using Steiger's Z-test.

After excluding cases of thrombosis of the basilar artery, receiver-operating

characteristic curves (ROC) were computed and Youden indices were evaluated to

select optimal threshold values for imaging parameters in predicting the

dichotomized good clinical outcome [I, II]. Differences between areas under the

curves (AUCs) of ROCs were tested using the Hanley-McNeil procedure.

Diagnostic sensitivities and specificities and confidence intervals were calculated

according to their textbook definitions. Normal and extended McNemar tests were

used to compare the overall diagnostic performance, the sensitivities and the

specificities.

Where necessary, the Bonferroni correction was applied to adjust for multiple

comparisons.
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5. RESULTS

5.1 CTP ASPECTS, CBS, and BASIS in the evaluation
of acute ischemic stroke [I, II]

The diagnostic performances of ASPECTS applied to CTP parametric maps, BASIS

and CBS were studied in the context of IVT. It was further hypothesized that CTP

ASPECTS mismatch may be useful in identifying patients that potentially benefit

from thrombolytic therapy and that a derived parameter combining both CTA and

CTP data may best predict clinical outcomes.

5.1.1 CTP ASPECTS parameters predict the final infarct volume
and the clinical outcome [I]

To assess the prognostic performance, the correlations between different ASPECTS

parameters, the final infarct volume and the clinical outcome (measured by the

mRS, which is the difference between the postictal and preictal mRS scores) were

studied. When both anterior- and posterior-circulation strokes were included in the

analysis (n = 92 for NCCT and n = 72 for CTP), the final infarct volume correlated

inversely with all ASPECTS scores, and the absolute values of the correlation

coefficients having the order 24 h follow-up NCCT (NCCT 24 h) > CBV >

admission NCCT (NCCT 0 h) > MTT. In the case of the clinical outcome, the

correlations were ordered NCCT 24 h > CBV > MTT > NCCT 0 h. When the

anterior-circulation ischemic events were included in the analysis (n = 81 for NCCT

and n = 66 for CTP), correlations between the ASPECTS scores and the clinical

outcome were strengthened, although a similar order was maintained. This change is

due primarily to the generally poor prognosis of the posterior-circulation events that

were excluded and the definition of ASPECTS addressing only the anterior

circulation. In the CTP ASPECTS mismatch subgroup (n = 36), the correlation

coefficients between the ASPECTS scores and the clinical outcome were higher,
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whereas the correlations between the ASPECTS scores and infarct volume remained

essentially unchanged. All correlations described were statistically significant.

Overall, the correlations between the MTT and CBV scores and the clinical outcome

were stronger than that of the admission NCCT score and the clinical outcome,

suggesting that the CTP parameters may classify the patients more accurately.

However, only the CBV score displayed a statistically significant difference from

the admission NCCT score in all subgroups studied (p = 0.01-0.02).

The dichotomized thresholds for a good clinical outcome ( mRS  1) in anterior-

circulation stroke were calculated for the CTP and NCCT ASPECTS scores using

ROC curves. CBV  7 (AUC = 0.72) was the most accurate in identifying patients

with a good clinical outcome and thus those who potentially benefited from IVT.

This parameter showed 100% sensitivity and 44% specificity, and no patients with a

good clinical outcome were in the CBV < 7 group. Although statistically robust, the

MTT  4 (AUC = 0.68) and NCCT 0 h  10 (AUC = 0.66) thresholds were

outperformed. However, the differences between the AUCs were not statistically

significant.

5.1.2 CTP ASPECTS mismatch identifies potentially
salvageable ischemic tissue [I]

A mismatch between the NCCT 24 h and the MTT ASPECTS scores may be used to

estimate the amount of tissue salvaged because MTT approximates the extent of at-

risk tissue and the NCCT 24 h depicts the infarct volume. Going upstream in the

pathophysiological chain of events, this mismatch parameter is related to

reperfusion and vessel recanalization. Dichotomizing mRS using the threshold

mRS  1 to signify a good clinical outcome, the lowest statistically significant

threshold for the MTT–NCCT 24 h ASPECTS mismatch that was related with a

favorable clinical outcome was 2 (p = 0.04). Using this threshold as an indicator for

total or partial timely tissue reperfusion, in the subgroup of patients showing MTT–

NCCT 24 h ASPECTS mismatch  2 (n = 17), this parameter and the CTP

ASPECTS mismatch were highly correlated (r = 0.83) and showed a strong linear

relationship (R2 = 0.70, Figure 9). These data suggest that the CTP ASPECTS

mismatch adequately predicts the amount of potentially salvageable tissue.
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Figure 9: The relationship between the MTT–CBV ASPECTS and the MTT–NCCT

24 h ASPECTS mismatches.

5.1.3 CBS, BASIS and CBV ASPECTS as prognostic classifiers
[II]

CBS and CBV ASPECTS were dichotomized using the thresholds (CBS > 6 and

CBV ASPECTS  7) that most accurately differentiated favorable from poor clinical

outcomes in study I and previous studies 111, 113, 114, 139, 182. By definition, BASIS is a

dichotomous variable. When the subgroups, which were defined by the

dichotomizations, were compared separately for each variable, patients with low

CBS or CBV ASPECTS scores or with major strokes had significantly higher

admission-NIHSS scores, larger perfusion defects in the CBV and MTT maps and

more findings of acute ischemic processes in the admission NCCT. A low CBS

score correlated with a low CBV ASPECTS score and major stroke. All these

properties significantly predicted poor clinical outcomes and larger infarct volume.

The accuracy of CBS and CBV ASPECTS in the prediction of the clinical outcome
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was enhanced when only anterior circulation strokes were included in the analysis,

whereas the predictive power of BASIS improved when all vascular territories were

included in the analysis. The performance of BASIS also improved if patients with

occlusion of the M2 segment were classified as having a minor stroke. This

modification was named M1-BASIS. An imaging parameter that combines CBS and

CBV ASPECTS was also devised by calculating an unweighted sum of the scores.

This parameter was named CBSV. An optimal threshold for dichotomization was

calculated for CBSV using ROC analysis where the 3-month clinical outcome was

used as the state variable (> 15, AUC = 0.72).

The prognostic value of these dichotomous imaging parameters was further assessed

using binary logistic regression analyses having functional independence (mRS  2)

at three months after the stroke as the dependent variable. Age and gender were

considered potential confounders and were controlled for by treating them as

covariates. When all vascular territories were included in the analysis, CBV

ASPECTS, CBS, CBSV, BASIS and M1-BASIS were all significant predictors of

good clinical outcome. CBV ASPECTS displayed the largest OR (13.3, CI 95% =

2.2-79.7). NCCT 0 h ASPECTS was not significantly associated with the clinical

outcome. When only anterior-circulation strokes were considered, CBSV was the

most robust predictor (OR = 16.3, CI 95% = 2.7-98.8, p = 0.002), whereas BASIS

did not reach statistical significance.

Sensitivities and specificities for detecting good clinical outcome (mRS  2) were

calculated for the dichotomized imaging parameters. When all vascular territories

were included in the analysis, CBV ASPECTS was the most sensitive predictor of

good clinical outcome (0.96, CI 95% = 0.86-0.99), whereas BASIS showed the most

accurate specificity (0.57, CI 95% = 0.34-0.77). BASIS was significantly less

sensitive than any of the other parameters. When only the anterior circulation was

considered, CBV ASPECTS was the most sensitive (0.96, CI 95% = 0.86-0.99)

predictor, and CBSV was the most specific (0.47, CI 95% = 0.22-0.73) predictor,

and again, BASIS was significantly less sensitive when compared to all other

parameters. CBV ASPECTS showed the best overall diagnostic accuracy in both

setups (0.82 for all vascular territories and 0.83 for the anterior circulation).
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5.2 The location of the thrombus in the prediction of the
clinical outcome [III]

The location of the clot is one of the components used in the calculation of the CBS.

The impact of the location of the clot only on the clinical outcome of anterior-

circulation stroke patients treated with IVT was studied. An assumption was made

that dividing the M1 segment of the MCA into proximal (M1P) and distal (M1D)

parts would provide increased accuracy in predicting the clinical outcome.

5.2.1 The location of the clot predicts the clinical outcome in a
dose-response manner

Patients with more proximal clots showed a poorer functional outcome at three

months after their stroke (Figure 10). When adjoining clot locations (ICA-M1P,

M1P-M1D, M1D-M2, M2-M3) were compared in pairs to determine differences in

the rate of good clinical outcome, the largest difference in prognosis (2.5-fold)

between adjoining clot locations was found between M1P and M1D where 24% and

59% showed a good clinical outcome, respectively. This measurement was the only

difference that was statistically significant (p = 0.01). There was a significant

increase in mortality (32% vs. 3%, p < 0.001) and functional dependency (82% vs.

29%, p < 0.001) in patients with an ICA or M1P occlusion compared with patients

with a more distal occlusion.
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Figure 10: Clinical outcome (3-month mRS) for different clot locations. A

favorable clinical outcome was defined as mRS  2 (functional independence).

Only one patient (6%) with an ICA and one patient (5%) with a M1P occlusion were

discharged to home, whereas 13 (45%) patients with an M1D clot, 15 (48%) patients

with an M2 clot and 5 (71%) patients with an M3 clot returned to home from the

primary hospital episode. Similar to the 3-month outcome, in a pairwise comparison

between the adjoining clot locations, the difference in favorable outcomes between

M1P (5%) and M1D (45%) was the only statistically significant difference (p =

0.003).

Binary logistic regression analysis was performed using functional independence

(mRS  2) at three months after the stroke as the dependent variable. When the clot

location was included in the model, the onset-to-treatment time (OTT), the gender,

presence of diabetes or hypertension or atrial fibrillation or coronary heart disease,

tested one at a time, were not statistically significant covariates. Age, NIHSS,

gender and OTT were retained in the final multivariate regression model as potential

confounders. Gender and OTT were selected for theoretical reasons, although they

did not reach statistical significance. The clot location was a highly significant

independent predictor of good clinical outcome in this model that was adjusted for

NIHSS (Table 3). When the ICA was set as the reference for the clot location, the

OR for a good clinical outcome at three months increased when moving from a
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proximal vessel position to a more distal one. The difference between ICA and M1P

was not statistically significant, whereas the differences to more distal locations

were highly significant, implying that the two proximal and the two distal vessel

positions form separate groups. The largest difference in the ORs of adjoining vessel

positions was between M1P and M1D (6.5-fold). A higher NIHSS score and

advanced age were both significantly associated with poorer outcome.

Odds
ratio CI 95% p value

Clot location - - 0.001
   ICA Ref Ref -
   M1 Proximal 4.2 0.45 - 38.2 0.21
   M1 Distal 27.4 2.9 - 257.9 0.004
   M2 and M3 (combined) 57.3 6.0 - 549.0 0.001

Onset-to-treatment time 1.0 0.98 - 1.02 0.81
Gender 0.49 0.15 - 1.6 0.23
Age 0.94 0.90 - 0.98 0.005
Admission NIHSS 0.82 0.74 - 0.92 0.001

Table 3: Binary logistic regression analysis for 3-month favorable clinical outcome

(mRS  2). Odds ratios are per minute for onset-to-treatment time, per year for age

and per one point for NIHSS. Ref = reference location.

5.2.2 A cut-off between M1P and M1D best differentiates
between good and poor clinical outcomes

On the basis of the above analyses, the clot location was dichotomized using three

cut-offs: ICA-M1P, M1P-M1D, M1D-M2 and M3 combined to simulate location-

based decision making. These dichotomized variables were entered into the

regression model one at a time instead of the clot-location variable. When the 3-

month outcome was the dependent variable, ICA-M1P and M1P-M1D showed

almost equal ORs (17.1 vs. 16.0), with the latter having a narrower 95% CI (2.3-

129.5 vs. 3.9-66.2). The most distal cut-off clearly showed a smaller OR (5.5, 95%

CI 1.8-16.8). When using the discharge status as the dependent variable, the cut-off

M1P-M1D yielded the largest OR (31.0, 95% CI 4.5-215.3). Overall, the increase in

the odds of a favorable outcome was clearly dampened when distal to M1P-M1D.
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Sensitivities and specificities for detecting good clinical outcomes were calculated

for these cut-offs. A clot distal to the cut-off location constituted a positive test

result. The cut-off M1P-M1D showed the highest diagnostic accuracy (0.75) in

predicting good clinical outcome at three months after the stroke. When the cut-offs

were tested in pairs, the overall diagnostic performance was significantly different

in every pair (p < 0.001 for each pair).

5.3 The technical quality and perfusion-defect detection
properties of CTP studies performed using a 16-row
or a 64-row multidetector CT scanner [IV]

The technical quality of the perfusion studies performed using 16-row or 64-row

scanners were compared and the differences in the ability to detect perfusion defects

were analyzed. The hypothesis was that the 16-row scanner would miss information

that is potentially critical for clinical decision making when compared with the 64-

row scanner.

The 64-row scanner was used to perform a perfusion study with 67 of the 140

patients (48%). A perfusion defect was demonstrated in 56% of the CTP studies.

Seventy-seven percent of the patients experienced a favorable clinical outcome at 3

months (mRS  2). The clinical outcome was not significantly different between

patients evaluated using different scanners.

5.3.1 The 16-row CTP scans show poorer technical quality

There were more motion artifacts in the 16-row group (Table 4). The artifacts

appeared to be due to the capture of small-scale periodic patient movements, such as

tremor, swallowing, nodding and minor swinging of the head. Correspondingly, the

AIF and the VOF curves were significantly noisier when calculated from the 16-row

scans. The analysis software completely corrected significantly fewer of these

artifacts. Both ASPECTS levels were optimally covered in only 29% of the 16-row

scans, whereas in the 64-row scans, both levels were optimally included in the

imaging volume in every case. In 46 of the 16-row scans (63%), only the lower level
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was optimally covered. Because of this lack of coverage, ASPECTS could not be

reliably assigned for the upper level in 26 cases (34%). Furthermore, because of its

larger z-axis coverage, the 64-row scanner fully or partially visualized the

subtentorial compartment significantly more often.

64-row

(n = 67)

16-row

(n = 73) p

Both ASPECTS levels optimally covered 67 (100%) 21 (29%) < 0.001

Motion artifacts 36 (54%) 52 (71%) 0.04

Incompletely corrected motion artifacts 8 (12%) 33 (42%) 0.001

Noisy AIF and/or VOF 1 (1%) 28 (38%) < 0.001

Subtentorial parenchyma not visualized 1 (1%) 31 (42%) < 0.001

ASPECTS score uninterpretable 0 (0%) 31 (42%) < 0.001

Scan not reliably interpretable 0 (0%) 6 (8%) 0.03

Table  4: Comparison of the technical quality of the 64-row and 16-row perfusion

scans.

5.3.2 The 16-row CTP studies suffer from decreased sensitivity
in the detection of perfusion defects in the cranial parts of
the middle cerebral artery region

The overall ASPECTS scores for MTT and CBV maps and the ASPECTS mismatch

scores were not significantly different between scanners. When the ASPECTS

regions that were missed by the 16-row scanner because of limited anatomic

coverage were scored as normal and were included in the analysis, the average

number of regions affected in the upper ASPECTS level was reduced. This

reduction reflects the decreased sensitivity for detecting perfusion defects. In the

case of MTT, this difference between the scanners became statistically significant

(Table 5). However, there were no significant differences in the total MTT and CBV

scores or the mean and number of ASPECTS mismatches. There were 9 patients

(6%) who showed perfusion defects that were located entirely outside the regions

covered by the ASPECTS levels and the volume between these levels. Eight were

detected by the 64-row scanner (p = 0.03).
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ASPECTS regions affected

64-row

(n = 67)

16-row

(n = 42) p1

16-row

(n = 67) p2

MTT lower ASPECTS level 1.4 ± 2.0 1.1 ± 1.6 0.74 1.5 ± 2.0 0.74

MTT upper ASPECTS level 0.9 ± 1.1 0.7 ± 1.1 0.54 0.5 ± 1.0 0.02

CBV lower ASPECTS level 0.7 ± 1.4 0.5 ± 1.2 0.35 0.6 ± 1.2 0.77

CBV upper ASPECTS level 0.3 ± 0.7 0.3 ± 0.7 0.87 0.2 ± 0.6 0.25

Table 5: Comparison of the perfusion-defect detection properties at different

ASPECTS levels. The 16-row (n = 67) column heading refers to the inclusion of

patients with ASPECTS regions that were missed by the 16-row scanner due to its

limited anatomic coverage. These regions were scored as normal. In the n = 42

population, these patients were excluded. p1: 64-row (n = 67) vs. 16-row (n = 42),

p2: 64-row (n = 67) vs. 16-row (n = 67). All values are of the mean ± SD.
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6. DISCUSSION

6.1 Predicting the outcome of acute ischemic stroke
using CTA and CTP

Predicting the clinical outcome is perilous. Ischemic stroke is a highly dynamic

condition comprising interplay between multiple different pathophysiological and

possibly also interventional processes that influence the eventual outcome. Some of

the most important of these factors include the coagulation cascade, the endogenous

fibrinolytic system, the exogenous drug effects, re-embolization, tissue

susceptibility to ischemic damage, the processes that modify the infarct threshold,

the collateral circulation, and the duration and the severity of the ischemia. The clot

may undergo complete or partial dissolution resulting in vessel recanalization,

undergo stabilization resulting in persistent occlusion, or progress to a more

extensive thrombosis. No single clinical or imaging variable sampled at the time of

admission to the hospital can capture these phenomena sufficiently to enable

deterministic prediction of the outcome. However, parameters derived from CTA

and CTP imaging potentially provide improved accuracy in the evaluation of the

prognosis and enable more precise risk stratification and decision making for

treatment 8, 9.

In study I, the ASPECTS scoring scheme was applied to CTP maps and the

association of these scores with the clinical and the imaging outcomes was

examined. The limited z-axis coverage of the majority of CT scanners that are

currently in use means that CTP images cannot cover the entire brain volume with a

single contrast bolus. Furthermore, exact volumetric analysis of the perfusion maps

requires user supervision and is too slow to be used in the context of acute stroke

imaging. Thus, applying the ASPECTS scoring scheme to the perfusion images

becomes an appealing alternative. This method has been validated by previous

investigators 111-114.
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The initial analyses in study I included all patients who received IVT within a

period of one year regardless of the vascular territory affected to provide a realistic

estimate of the overall performance in a clinical setting. A perfusion defect was

detected in 50% of these patients implying that with limited z-axis coverage, a CTP

study could affect approximately half of the positive thrombolytic treatment

decisions. Correlation analyses including all patients, patients with an anterior-

circulation stroke, and patients with a CTP ASPECTS mismatch revealed that the

CTP ASPECTS scores correlated more closely with the clinical outcome than the

findings from the admission NCCT. However, only CBV displayed a statistically

significant difference from the NCCT, whereas the MTT did not reach statistical

significance. This result appears to be due to the heterogeneity introduced by cases

where timely reperfusion occurred and the MTT defect was completely or partially

reversed. These findings are similar to previous reports in which the CTP ASPECTS

scores, especially the CBV ASPECTS, better predicted the clinical outcome of IVT

patients compared with the admission NCCT and CTA-SI 111-114, 181. Using ROC

analysis, Kloska et al. suggested that an optimal threshold value for CBV ASPECTS

that best differentiated between good and poor clinical outcomes was  7, whereas

Aviv et al. found that no patients with CBV ASPECTS  7 achieved a good clinical

outcome 113, 114. In study I, the threshold that performed best in ROC analyses was

CBV ASPECTS  7, which agrees closely with these reports.

The perfusion mismatch concept has also been adapted to CTP ASPECTS 182. CTP

ASPECTS mismatch has been used as a criterion to extend the time window of IVT

to  6  h 226. In study I, 39% of patients presented with such a mismatch. It was

demonstrated that the CTP ASPECTS mismatch identified the amount of potentially

salvageable tissue adequately and described the spectrum of possible imaging

outcomes. Small mismatches (  1 ASPECTS points) were difficult to assess because

of noise introduced by the dynamic stroke pathophysiology and interpretation issues

during image analysis. A threshold of  2 salvaged ASPECTS regions was

correlated with a favorable clinical outcome, suggesting that reversal of smaller

perfusion defects are unlikely to benefit the patient. This threshold corresponds

approximately to a mismatch ratio of 2.0 182. This result prompted Sztriha et al. to

use this CTP ASPECTS threshold in the classification of patients who presented
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between 3 and 6 h from symptom onset 226. They reported that this threshold

performed adequately in identifying patients who could benefit from IVT.

Building on and expanding these concepts, in study II, we examined the

performance of two CTA-based classification schemes, BASIS and CBS, and one

perfusion parameter, CBV ASPECTS, and a combination of these variables in the

prediction of clinical outcomes in the same IVT cohort as in study I. Both BASIS

and CBS address the location of the clot, whereas CBS also takes the volume of the

clot into account. CBV ASPECTS provides an approximation of the size of the

infarct core. Thus, these parameters provide information on markedly different

aspects of the stroke pathophysiology.

Patients with low CBS and CBV ASPECTS scores and with major strokes

according to BASIS experienced poor clinical outcomes more often, which is

consistent with recent studies 111-114, 134, 135, 139, 181, 227. As expected from their

definition, which does not address the posterior circulation, CBS and CBV

ASPECTS predicted the clinical outcome with greater accuracy when only anterior-

circulation strokes were analyzed. In contrast, BASIS encompasses both the anterior

and posterior circulation and correspondingly performed better when all vascular

territories were included in the analysis. However, BASIS did not reach statistical

significance when only patients with anterior-circulation strokes were analyzed (p =

0.23). This finding was reversed if patients with thrombosis of the M2 segment were

classified as having a minor stroke (p = 0.002). This modified BASIS performed

better than the original and was named M1-BASIS. This finding is likely due to the

effect of IVT and supports the notion that patients with a clot in the M2 segment

often benefit from IVT, whereas when the clot is more proximal, a limited response

is more likely 131, 134, 136, 228. Only a minority of patients (8%) received IVT in the

cohort that was originally used to validate BASIS 140. In the logistic regression

analysis, BASIS, M1-BASIS and dichotomized CBV ASPECTS and CBS were all

significant predictors of the clinical outcome.

A new, derived imaging parameter was created by calculating the sum of a

parameter from the CTA and one from the CTP, the CBS and CBV ASPECTS. This

variable was named CBSV. When only anterior-circulation strokes were considered,
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CBSV proved to be, statistically, the most robust predictor of favorable clinical

outcome (OR = 16.3, CI 95% = 2.7-98.8, p = 0.002). In view of the fact that the

CBSV combines two independent predictors of the clinical outcome that both reflect

different pathophysiological aspects of stroke, in theory, the CBSV should have

better predictive power than either of its components, which is supported by the

results of study II. An imaging score resembling CBSV but utilizing CTA-SI instead

of CBV was introduced recently 134. This scoring scheme improved the

identification of patients with high mortality rates or poor functional outcomes

despite early IVT.

CBV ASPECTS, CBS, CBSV and M1-BASIS all had high sensitivity (85-96%) but

moderate to poor specificity (24-52%) for predicting good clinical outcome. BASIS

was only moderately sensitive (70-71%). This rather low specificity is to be

expected because not all patients experience reperfusion, and although strategic

infarcts may cause a serious functional deficit, they may show minimal imaging

findings. Tan et al. found CBS to be less sensitive but more specific when compared

with our results 139. This inconsistency is likely due to the higher median NIHSS

score and lower proportion of patients treated with r-tPA (71%) in their study

population.

The location of the clot is one of the main components of CBS and BASIS. Study

III examined the ability of the location of the clot alone in predicting the clinical

outcome. The results revealed that the location was an independent predictor of the

clinical outcome even when the NIHSS score was controlled for. The odds ratios for

a good clinical outcome increased and the mortality decreased consistently when

moving from a proximal to a more distal vessel position. When adjoining vessel

positions were tested in pairs, only the difference between M1P and M1D was

statistically significant. Following dichotomization of the clot location, a cut-point

between the M1P and M1D was associated with the largest increase in the odds of a

favorable outcome and showed the highest diagnostic accuracy. This cut-point is

likely due to specific anatomic and pathophysiological factors. The lenticulostriate

arteries, which supply blood to the basal ganglia, originate primarily from the

proximal M1 segment. A lesion in this region affects gait and other motor functions

and has direct consequences for functional independence. The mean diameter of the
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vessel, and thus the volume of the clot, is larger in the proximal segment, which

potentially decreases the effectiveness of IVT. Moreover, proximal thrombi tend to

propagate distally, which can also increase the total volume of the clot.

Some studies have previously addressed the effect of the clot location on

recanalization and clinical outcomes in the context of IVT. Del Zoppo et  al.  used

DSA to reveal that thrombi situated in the M2 and M3 segments are more likely to

undergo recanalization than those in the M1 segment and the ICA 127. Consistent

with these results, in a more recent study, Saqqur et al. utilized repeated transcranial

Doppler ultrasonography to detect recanalization where the main end-point was the

clinical outcome at 3 months 129. Different subareas of the M1 segment were not

addressed in either of these studies. However, the rate of good outcomes at M1P in

study III was comparable to that of the proximal MCA and the M1D to that of the

distal MCA in these published reports. Furthermore, other studies with more

heterogeneous setups have corroborated that large-vessel occlusions are less likely

to recanalize and that they predict unfavorable clinical outcomes 128, 131, 132.

Overall, the findings of study III and the previously published research support the

notion that alternatives to IVT, which are chiefly primary intra-arterial or bridging

therapy, should be considered if the thrombus is located in the ICA or in the

proximal M1 segment.

6.2 The 16-row scanner is inferior to the 64-row
scanner in the CTP evaluation of acute ischemic
stroke

The differences in the technical quality and the perfusion-defect detection properties

between CTP studies performed using a 16-row or a 64-row scanner were compared

in a clinically managed IVT cohort. The 64-row scanner covered 80 mm of the z-

axis, whereas the 16-row scanner covered 20 mm. The coverage of the 64-row

scanner was increased by alternating the table between two positions. This

procedure can also be utilized with 16-row scanners. Typically, 40-mm coverage is

achieved. Another method to double the imaging range is to use two contrast
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injections and to image adjoining 20 mm slabs separately. Although these

techniques increase the number of perfusion defects detected, the results remain

inferior compared with z-axis ranges larger than 40 mm 191, 193.

Some studies have addressed the impact of different z-axis ranges in the detection of

perfusion defects. Using a 320-row scanner, Page et al. reported that 160-mm

coverage better defined the extent of the infarct core and the penumbra compared

with 40-mm coverage 193. Morhard et al. observed that 20-mm coverage missed

24% of pathological findings when compared with 96-mm coverage 229. Furtado et

al. noted that 75 mm of z-axis coverage was required to reliably detect a perfusion

mismatch ratio of 2.0, whereas 50 mm was sufficient when a ratio of 1.2 was used
191. Fifty-five millimeters must be covered to provide sufficiently accurate

estimations whether more than one-third of the MCA region is irreversibly

damaged. Interestingly, rules based on ASPECTS provide potential alternatives for

excluding patients from thrombolytic therapy and require less extensive coverage
109, 112. Youn et al. reported that 80-mm coverage was associated with a significantly

higher lesion-detection rate compared with 20-mm coverage 230. The results

presented in this thesis are consistent with these findings. All previous studies

contained somewhat heterogeneous populations and simulated narrower coverage

by selecting ranges of larger volumes that were imaged using one scanner, whereas

in study IV, all patients received IVT and two scanners with different detection

widths were used.

In study IV, the 16-row examinations suffered from limited anatomic coverage that

often resulted in inadequate visualization of the cranial MCA region. ASPECTS

could not be assigned to the upper, supraganglionic level in one-third (34%) of these

scans, which significantly decreased the detection sensitivity of perfusion defects in

the upper level (Table 5). The impact on the overall ASPECTS score was limited

because the lower ganglionic level is given considerably heavier weight (7 vs. 3

regions). However, in study I, the threshold for salvaged ASPECTS regions (and

hence the CTP ASPECTS mismatch) that was associated with a favorable outcome

was 2 points. Thus, the supraganglionic level alone is potentially critical in the

evaluation of the mismatch. Furthermore, the 64-row scanner was capable of
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discovering a significantly larger number of perfusion defects entirely outside the

volume limited by the ASPECTS levels.

The number of movement artifacts was significantly greater in the 16-row group.

This increase may be due to the higher sampling frequency (1/s vs. 0.27/s) and the

smaller slice thickness (5 mm vs. 10 mm), which appeared to capture small-scale

periodic patient movements more frequently. This type of movement was poorly

corrected by the analysis software. Although this feature does not typically render

the scan uninterpretable, it introduces inaccuracies to the measurement of absolute

values of the perfusion parameters. However, a lower sampling frequency could

result in the same effect and a larger slice thickness may decrease the sensitivity in

detecting small perfusion defects due to averaging.

Overall, the 16-row scanner was inferior to the 64-row scanner in the CTP

evaluation of acute ischemic stroke. However, there was no significant difference in

the clinical outcome between the study groups. This finding is to be expected

because the institutional guidelines on stroke management did not define any

specific role for the CTP findings at the time; thus, stroke management was

essentially similar between the both groups.

6.3 Limitations

All studies were limited methodologically by the retrospective single center design.

The sample size is a potential limitation in particular for the subgroup analyses.

Because of the design of the studies, direct data on vessel recanalization or

reperfusion were not available for the majority of patients. However, a low

ASPECTS score at the 24 h NCCT and poor clinical outcomes are closely correlated

with delayed or failed reperfusion and can be used as a surrogate. The craniocaudal

coverage of the CTP was, at a minimum, 20 mm. Thus, the size of the perfusion

defect was estimated using ASPECTS scoring and area measurements in the

ASPECTS levels. It should be noted that MTT maps potentially overestimate the

size of the perfusion defect, whereas CBV maps may overestimate or underestimate

the volume of the irreversibly damaged parenchyma, and CTP results may vary with
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machine 177. Interobserver agreement in some imaging parameters was not perfect,

although this finding is consistent with previous reports 113. M1-BASIS was created

based on a post hoc analysis of the data set and should be further validated in other

thrombolytic therapy cohorts. In study III, the distribution of patients based on clot

locations was uneven because 63% of patients showed a clot distal to the mid M1

segment. The only confounding variable between these two groups (proximal and

distal to the mid M1 segment) that was significantly different was gender. However,

gender was not a significant predictor of the clinical outcome. The Pearson

correlation coefficient for gender and the clot location was 0.18. The Kruskal-Wallis

test for gender did not reveal significant differences between clot locations. The

disparity in gender distribution could be attributed to chance because no selection

process was identified that would potentially produce this result.

6.4 Multimodal CT-based evaluation protocol for acute
stroke

Multimodal CT is fast, increasingly available, safe when performed correctly, and

affordable 167. There is an accumulating body of evidence that multimodal CT can

provide diagnostic information comparable to that of MRI, which can aid in clinical

decision making, in particular in the selection of different revascularization

therapies. Thus, CT-only imaging protocols in the evaluation of acute stroke have

been proposed 167.

Distal ICA occlusions, proximal MCA-branch occlusions or a considerable thrombi

burden may be poor candidates for IVT and may be better candidates for intra-

arterial thrombolysis or mechanical interventions 137, 231, 232. An observational study

by Mattle et al. compared IAT to IVT in patients with hyperdense MCA sign and

noted that IAT was more beneficial 233. The findings of study III are consistent with

these reports, and the results provide improved spatial resolution in the M1 segment.

In a recent study, multimodal intra-arterial therapy resulted in the highest

recanalization rates of anterior-circulation clots 233, 234. Furthermore, intra-arterial

therapies have a potential role when IVT fails, if there is contraindication to IVT, in
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the extension of the treatment time window and in the treatment of wake-up strokes
47.

Drawing from the previously published research and the results of studies I-IV, a

multimodal CT-based evaluation and treatment triage protocol for acute stroke is

proposed (Figure 11) 49, 167, 235. This protocol demonstrates how the findings of this

thesis can be integrated to the emerging, imaging-oriented, time-independent

concept of acute stroke evaluation and management outlined in section 2.2.4. The

overall level of evidence on the use of intra-arterial stroke interventions remains

suboptimal and does not permit definitive recommendations. The recanalization

strategy for thrombosis of the basilar artery remains an open issue, and the cut-off

location for intra-arterial or bridging therapy suggested in Figure 11 is largely

speculative 236. Although the time from the onset of the symptoms has no explicit

role in the proposed protocol, when a perfusion defect is undetected in the presence

of significant symptoms and more than 4.5 h has elapsed from the symptom onset,

DWI imaging may detect a possible acute lacunar ischemic event.
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Figure 11: An imaging-oriented evaluation protocol for acute stroke based on the

use of multimodal CT.
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7. SUMMARY AND CONCLUSIONS

This thesis investigated the utility and the prognostic performance of imaging

parameters derived from CTA and CTP scans in the evaluation of acute ischemic-

stroke patients receiving intravenous thrombolytic therapy and the quality of CTP

studies with scanners of different detector widths.

The main findings and conclusions are as follows:

1. Parameters derived using ASPECTS scores of CTP maps obtained upon

admission to the hospital can detect reversible ischemia and are correlated

with the clinical outcome. CBV ASPECTS best differentiates between good

and poor outcomes in anterior-circulation strokes and is superior to NCCT

ASPECTS. CTP ASPECTS mismatch adequately identifies the amount of

potentially salvageable tissue and describes the spectrum of possible imaging

outcomes.

2. CBS, BASIS and CBV ASPECTS are statistically robust and sensitive but

unspecific predictors of good clinical outcomes among patients receiving

IVT. Two derived imaging parameters, CBSV and M1-BASIS, essentially

share these same properties but appear to provide slightly better prognostic

accuracy.

3. The functional outcome of acute ICA or proximal M1 segment occlusion is

generally poor even if treated with intravenous thrombolytic therapy. A cut-

point between the proximal and the distal M1 segment best differentiates

between good and poor clinical outcomes and provides the highest accuracy

in predicting favorable clinical outcomes.
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4. CTP studies performed using a 16-row scanner suffer from limited z-axis

coverage that significantly decreases the sensitivity for detecting perfusion

defects in the cranial parts of the MCA region compared with a 64-row

scanner. The 16-row scans show more motion artifacts that result from

small-scale periodic patient movements.
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 Abstract 

  Background and Purpose:  Advances in the management of acute ischemic stroke and medical 
imaging are creating pressure to replace the rigid one-third middle cerebral artery (MCA) and 
non-contrast-enhanced CT (NCCT) Alberta Stroke Program Early CT Score (ASPECTS) thresholds 
used for the selection of patients eligible for intravenous thrombolytic therapy. The identifica-
tion of potentially salvageable ischemic brain tissue lies at the core of this issue. In this study, 
the role of CT perfusion ASPECTS in the detection of reversible ischemia was analyzed.  Materi-

als and Methods:  We retrospectively reviewed the clinical and imaging data of 92 consecutive 
patients who received intravenous thrombolytic therapy for acute (duration  ! 3 h) ischemic 
stroke. Most of the patients underwent admission multimodal CT, and all patients had follow-
up NCCT at 24 h. ASPECTS was assigned to all modalities and correlated with clinical and imag-
ing parameters. Receiver-operating characteristic curve analysis was performed to determine 
optimal thresholds for different parameters to predict clinical outcome.  Results:  A perfusion 
defect could be detected in 50% of the patients. ASPECTS correlated inversely with the clinical 
outcome in the following order: follow-up NCCT  1  cerebral blood volume (CBV)  1  mean transit 
time (MTT)  1  admission NCCT. The follow-up NCCT and the CBV displayed a statistically signifi-
cant difference from the admission NCCT, while the MTT did not reach statistical significance. 
The threshold that best differentiated between good and bad clinical outcome on admission 
was CBV ASPECTS  6 7. In patients with CT perfusion ASPECTS mismatch, MTT and CBV ASPECTS 
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essentially provided the lower and upper limits for the follow-up NCCT ASPECTS, thus defining 
the spectrum of possible outcomes. Furthermore, CT perfusion ASPECTS mismatch strongly 
correlated (r = 0.83) with the mismatch between the tissue at risk and the final infarct, i.e. the 
amount of salvaged tissue. This finding suggests that the CT perfusion ASPECTS mismatch ad-
equately identifies the amount of potentially salvageable ischemic brain tissue.  Conclusions:  
Parameters derived from the use of CT perfusion ASPECTS can detect reversible ischemia and 
are correlated with clinical outcome.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 The role of CT perfusion (CTP) in the decision to administer thrombolytic therapy with 
intravenous recombinant tissue plasminogen activator (rtPA) remains controversial. Re-
search initiatives have been proposed to establish a sufficient body of evidence that would 
allow formal clinical guidelines to be composed  [1] . At the core of this dilemma lie the detec-
tion of the ischemic penumbra and the infarct core and the implications this information 
should have for clinical decision making. Previous studies suggest that CTP can provide an 
estimate of the amount of potentially salvageable, acutely ischemic brain tissue and that the 
resulting CTP parameters provide an independent prognostic factor of the clinical outcome 
 [2–6] . CTP also seems to increase diagnostic performance in stroke diagnosis and inter- and 
intraobserver agreement  [7] .

  The Alberta Stroke Program Early CT Score (ASPECTS) is a semiquantitative, weighted 
scoring system that was developed to overcome the difficulties in the application of the non-
contrast-enhanced CT (NCCT) one-third middle cerebral artery (MCA) rule that is used to 
select patients eligible for intravenous thrombolytic therapy  [8] . ASPECTS is predictive of 
clinical outcome and hemorrhagic complications but is not sufficiently accurate in the triage 
of thrombolysis candidates  [9–11] . Applying ASPECTS to CTP parametric maps has been 
suggested to be more reliable in both detecting reversible ischemia and predicting clinical 
outcome  [12–15] .

  We retrospectively reviewed the clinical and imaging data of 92 consecutive patients 
who received intravenous thrombolytic therapy for acute (duration  ! 3 h) ischemic stroke in 
order to study the potential of CTP ASPECTS in the detection of reversible ischemia. We 
hypothesized that CTP ASPECTS mismatch  [16] , the difference between the mean transit 
time (MTT) and cerebral blood volume (CBV) map scores, might be useful in identifying 
patients who potentially benefit from thrombolytic therapy.

  Materials and Methods 

 Overview 
 We retrospectively analyzed the clinical and imaging data of 92 consecutive patients who 

were admitted to Tampere University Hospital between January 2007 and December 2007 
because of acute (duration  ! 3 h) stroke symptoms and who received intravenous rtPA for the 
treatment of acute ischemic stroke after evaluation. In total, 271 patients suffering from acute 
ischemic stroke were evaluated as candidates for thrombolytic therapy during this period of 
time. The initial imaging evaluation of stroke patients consisted of NCCT, CT angiography 
(CTA) and CTP. The selection of patients eligible for thrombolytic therapy was based on in-
stitutional guidelines that did not have CTP or CTA parameters as exclusion or inclusion cri-
teria. Still, we reviewed patient records of 179 patients who did not receive thrombolytic ther-
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apy in order to detect possible selection bias caused by CTP studies. The indications to exclude 
a patient from thrombolytic therapy had been carefully documented. In 1 case, the decision 
to exclude the patient was based on the results of a CTP study (extremely poor technical qual-
ity of the admission NCCT and over one third MCA lesions in the CBV map). In addition, we 
discovered 3 cases in which the admission NCCT was initially erroneously interpreted as 
negative and the results were reported orally to the stroke neurologist, followed by a review 
and a correction after the CTP maps had been calculated and analyzed some minutes later, 
with the result that the decision to administer thrombolytic therapy was withdrawn.

  A full multimodal imaging evaluation was successfully completed in 72 of the 92 pa-
tients who received thrombolytic therapy. Nine patients were evaluated with NCCT alone 
and 11 patients with NCCT and CTA because of previously known contrast agent hypersen-
sitivity, chronic renal failure, imminent closure of the 3-hour time window, or movement 
artifacts that rendered some of the imaging data not evaluable. A standard rtPA administra-
tion scheme was used: a total dose of 0.9 mg/kg Actilyse (Boehringer-Ingelheim, Ingelheim, 
Germany) was administered, with 10% given as a bolus and the remaining 90% as a contin-
uous infusion for 1 h. A follow-up NCCT was performed for all patients 24 h after the ad-
ministration of the thrombolytic agent. National Institutes of Health Stroke Scale (NIHSS) 
scores were assessed on admission and 24 h after the thrombolytic therapy. The modified 
Rankin Scale (mRS) was evaluated preictally and on day 90. The clinical data were stored 
(prospectively) in the patient records during the hospital stay and on day 90 after the ictus, 
the latter following a phone interview. These data were collected from the patient records and 
critically reviewed for errors using the data available from all medical and related disciplines 
(J.T.S.). The study was approved by the Tampere University Hospital Ethics Committee.

  Imaging Parameters 
 CT scans were obtained using two different multidetector scanners: the General Electrics 

LightSpeed 16-slice scanner (GE Healthcare, Milwaukee, Wisc., USA) and the Philips Bril-
liance 64-slice scanner (Philips, Cleveland, Ohio, USA). Brain NCCT was performed using the 
parameters 120 kV, 430 mA, collimation 12  !  1.25 mm, and rotation 1.5 s (64-slice scanner), 
or 120 kV, 320 mA, collimation 16  !  1.25 mm, and rotation 1 s (16-slice scanner). Contiguous 
slices were reconstructed to the thickness of 5 mm in the whole scanning range (64-slice scan-
ner) or to the thickness of 5 mm in the skull base and 7.5 mm in the supratentorial region 
(16-slice scanner). CTA was performed using a scanning range extending from the C2 vertebra 
to the vertex of the skull. The imaging parameters were 120 kV, 212 mA (using dynamic tube 
current modulation), collimation 64  !  0.625 mm, rotation 0.75 s, and pitch factor 0.923 
(64-slice scanner), or 120 kV, 160 mA, collimation 16  !  0.625 mm, rotation 0.8 s, and pitch 
factor 0.938 (16-slice scanner). Contiguous slices were reconstructed to the thickness of 0.9 mm 
with a 0.45-mm overlap (64-slice scanner) or to the thickness of 1.25 mm (16-slice scanner). 
The contrast agent (iobitridol 350 mg I/ml; Xenetix, Aulnay-sous-Bois, France) was adminis-
tered via an antecubital vein with an 18-gauge cannula using a double-piston power injector 
with a flow rate of 4 ml/s and 70 ml of contrast agent followed by a 50-ml saline flush. Manu-
al bolus triggering was used. CTP was performed using the parameters 80 kV, 200 mA (effec-
tive), collimation 32  !  1.25 mm, and rotation 0.4 s (64-slice scanner), or 80 kV, 200 mA, col-
limation 8  !  2.5 mm, and rotation 1 s (16-slice scanner). 120 slices covering a range of 80 mm 
were generated in 55 s using an alternating jog protocol, i.e. shuttle mode (64-slice scanner), or 
200 slices covering a range of 20 mm were generated in 50 s with a stationary gantry position 
(16-slice scanner). Contiguous slices were reconstructed to a thickness of 10 mm (64-slice scan-
ner) or 5 mm (16-slice scanner) at even time intervals. The imaging range was positioned so 
that the ASPECTS planes  [8]  were always covered. The rest of the 80-mm range (64-slice scan-
ner) was positioned both cranial and caudal to the ASPECTS planes with the exact balancing 
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depending on the clinical presentation. The contrast agent (Xenetix 350 mg I/ml) was admin-
istered via an antecubital vein with an 18-gauge cannula using a double-piston power injector 
with a flow rate of 5 ml/s and 60 ml of contrast agent followed by a 40-ml saline flush.

  Image Analysis 
 NCCT examinations were reviewed using dedicated medical imaging workstations. 

CTA and CTP images were analyzed, and areas and volumes were measured with Advantage 
Workstation version 3.2 (GE Healthcare). Parametric perfusion maps – MTT, cerebral blood 
flow, and CBV – were generated with the CT Perfusion 3 software that uses a deconvolution-
based algorithm. CTA images were reviewed by examining both the raw data and maximum 
intensity projection images.

  The principles of ASPECTS scoring in NCCT and CTP maps and the evaluation of CTP 
ASPECTS mismatch have been described in previous studies  [8, 12, 15] . In short, each hemi-
sphere is divided into 10 regions in 2 axial planes at the level of the basal ganglia and corona 
radiata ( fig. 1 ). Each of these regions has a score of 1 point. This point is deducted if that re-
gion has ischemic changes. Thus, a negative finding yields a score of 10, and extensive isch-
emia covering the whole MCA region yields a score of 0.

  MTT maps were used to detect tissue at risk, and CBV maps were used to approximate 
the infarct core  [4] . The calculation of CTP ASPECTS mismatch is described in  figure 1 . We 
adopted a semiquantitative approach where the presence of a perfusion defect was deter-
mined visually from color-coded maps by comparing the appearance of the affected location 
with that of the healthy tissue on the contralateral side. In order to increase measurement 

  Fig. 1.  CTP ASPECTS mis-
match in a patient suffering 
from acute ischemia in the right 
MCA  ter ritory. In the CBV maps, 
 ASPECTS areas I, M2, and M5 
are affected (CBV ASPECTS = 
7), whereas in the MTT maps 
 areas I, M1, M2, M4, M5, and 
M6 display a perfusion defect 
(MTT ASPECTS = 4). Thus, 
CTP  ASPECTS mismatch = 3. 
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accuracy and based on theoretical considerations, the area in the visually identified location 
was required to measure  1 25 mm 2  with a mean MTT  1 7 s (or mean CBV  ! 2.5 ml/100 g, cor-
respondingly). NCCT and CTP ASPECTS were assigned by two radiologists (N.S. and A.L.). 
In cases where the scoring differed, a consensus score was agreed on. This score was corre-
lated with the original findings of an experienced neuroradiologist, and if significant dis-
crepancies were present, this neuroradiologist was further consulted. The examinations were 
reviewed in the order NCCT, CTA, and finally CTP, paralleling that of the clinical work flow. 
The reviewers were blinded to the clinical data apart from the side and nature of the acute 
symptoms. Perfusion defect areas and final infarct volumes were measured by one radiolo-
gist (N.S.). The boundaries of the affected areas were determined visually, and absolute val-
ue thresholds described above were applied. Volume was calculated by multiplying the mea-
sured area with the slice thickness. Intraclass correlation coefficients (ICC) between a staff 
radiologist (N.S.) and an experienced neuroradiologist (J.H.) were calculated for ASPECTS 
assignments in a test sample (n = 20): ICC NCCT  = 0.86, ICC MTT  = 0.79, ICC CBV  = 0.73, and 
ICC NCCT 24 h  = 0.93. Median interobserver agreement indices for areas and volumes were 
Area MTT : 68%, Area CBV : 90%, and Volume INFARCT : 80%.

  Statistics 
 Data were analyzed with SPSS version 17 (SPSS Inc., Chicago, Ill., USA). Pearson correla-

tion coefficients and 2-tailed significance levels were calculated in all correlation analyses. 
Receiver-operating characteristic curves (ROC) were computed and Youden indices were eval-
uated to select optimal threshold values for imaging parameters to predict dichotomized good 
clinical outcome. After the dichotomization of the imaging parameters based on the threshold 
values, the data were cross tabulated and significance levels were calculated using Fisher’s exact 
test. Differences between correlation coefficients and ROC area under the curves (AUCs) were 
studied with Steiger’s Z test and the Hanley-McNeil procedure, respectively. Sensitivity, speci-
ficity, and confidence interval calculations were performed using standard procedures. In the 
text and the illustrations, the following notation is used to denote the level of statistical sig-
nificance:  *  p  !  0.05,  *  *  p  !  0.01 and  *  *  *  p  !  0.001. If p  6  0.01, the precise p value is given.

  Results 

 Baseline Characteristics and Validation of the Scoring System 
 The median age of the patients was 71 years (interquartile range 58–80 years, 42 female). 

Based on the clinical features and the imaging studies, in 11 of the 92 patients evaluated, the 
ischemic episode involved the posterior circulation (8 cases of thrombosis of the basilar ar-
tery). The rest of the episodes were considered to involve the anterior circulation. The throm-
bosis could be demonstrated with CTA in 37 cases (45% of the CTA studies and 40% of all 
patients). In 40 (56%) of the 72 patients evaluated with CTP, a perfusion defect could be de-
tected in the ASPECTS planes. An additional 6 perfusion defects were found outside the 
 ASPECTS planes. A perfusion pattern implying acute ischemia could be detected in half of the 
cases involving the posterior circulation when CTP was performed. In total, a perfusion defect 
could be demonstrated in 64% of the CTP studies (50% of all patients). The median NIHSS on 
admission was 7 points (56.0% had NIHSS  ! 8, 18.7% had NIHSS  1 15, interquartile range 
4–12), and 24 h later the median NIHSS was 2 points. The median mRS was 1 point preictal-
ly and 2 points 3 months later. The median change in mRS ( � mRS) was 1 point. 74.4% of the 
patients experienced a favorable clinical outcome at 3 months (mRS  ̂  2). At 24 h, a local hem-
orrhagic complication (HI1, HI2, PH1, or PH2) was detected in 6 cases (6.5%), and 4 patients 
(4.4%) had parenchymal hemorrhage distant to the site of the infarct (PHr1 or PHr2). In order 
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to validate the ASPECTS scoring method, we studied the correlations between CTP and 
NCCT ASPECTS, and the area and the volumetric data acquired from the perfusion maps and 
the NCCT images. ASPECTS for CBV and MTT were inversely correlated with the perfusion 
defect areas with r = –0.87 *  *  *  and r = –0.91 *  *  * , respectively. The correlation between the CTP 
ASPECTS mismatch and the measured mismatch area was r = 0.77 *  *  * . As expected, the infarct 
volume correlated with  � mRS (r = 0.54 *  *  * ) as did NIHSS on admission (r = 0.35 *  * ).

  CTP ASPECTS Parameters Correlate with Final Infarct Volume and Clinical Outcome 
 In order to assess the prognostic performance, we studied the correlations between dif-

ferent ASPECTS parameters, the final infarct volume, and the clinical outcome, which we 
measured with  � mRS. First, we studied the overall performance of the ASPECTS scoring 
method systematically applied to all patients identified as candidates for thrombolytic ther-
apy based on clinical features, including patients with a subsequently diagnosed posterior 
circulation stroke ( table 1 , ‘all patients’). The final infarct volume correlated inversely with 
all ASPECTS, with the 24-hour follow-up NCCT having the highest correlation, as expected. 
Also the other scores displayed statistically significant correlations in the order CBV  1  
NCCT 0 h   1  MTT, with NCCT 0 h  and MTT having close to equal correlation coefficients. This 
pattern is reflected in the clinical outcome, where the correlations were ordered NCCT 24 h   1  
CBV  1  MTT  1  NCCT 0 h , with CBV having a correlation coefficient almost equal to that of 
NCCT 24 h . In general, the correlations between ASPECTS and  � mRS were weaker than those 
between ASPECTS and the infarct volume but still highly statistically significant. This pat-

Table 1. C orrelations between the NCCT and CTP ASPECTS scores and the final infarct volume and the 
clinical outcome (�mRS) for all patients, patients with anterior circulation ischemia, and patients with 
CTP ASPECTS mismatch

Infarct volume � mRS

corr. coeff. vs. NCCT0 h corr . coeff. vs. NCCT0 h

All patients (n = 92 for NCCT and n = 72 for CTP)
NCCT0 h r = –0.56*** – r = –0.25* –
MTT r = –0.56*** p = 1.0 r = –0.34** p = 0.40
CBV r = –0.69*** p = 0.07 r = –0.48*** p = 0.01*
NCCT24 h r = –0.82*** p < 0.001*** r = –0.49*** p = 0.01*

Anterior circulation (n = 81 for NCCT and n = 66 for CTP)
NCCT0 h r = –0.57*** – r = –0.34** –
MTT r = –0.58*** p = 0.91 r = –0.43*** p = 0.41
CBV r = –0.70*** p = 0.08 r = –0.55*** p = 0.02*
NCCT24 h r = –0.85*** p < 0.001*** r = –0.65*** p < 0.001***

Patients with CTP ASPECTS mismatch (n = 36)
NCCT0 h r = –0.55** – r = –0.39* –
MTT r = –0.48** p = 0.63 r = –0.57*** p = 0.12
CBV r = –0.66*** p = 0.33 r = –0.69*** p = 0.01*
NCCT24 h r = –0.84*** p = 0.003** r = –0.85*** p < 0.001***

The  final infarct volume and the clinical outcome correlated inversely with all ASPECTS scores, with 
the 24-hour follow-up NCCT having the highest correlation. All the correlation coefficients (corr. coeff.) 
were statistically significant. The correlations between the MTT and CBV ASPECTS scores and the clin-
ical outcome are stronger than the correlation of the admission NCCT score and the clinical outcome, 
suggesting that CTP parameters may better classify reversible and non-reversible ischemia. However, only 
the CBV score displayed a statistically significant difference (p < 0.05) from the admission NCCT score 
in all the subgroups (vs. the NCCT0 h columns). * p < 0.05; ** p < 0.01; *** p < 0.001.
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tern is mostly due to the inclusion of the ischemic events of the posterior circulation in the 
analysis, as the prognosis of these events is generally worse and ASPECTS is designed to de-
tect disturbances in the anterior circulation. When only anterior circulation events are in-
cluded in the analysis, the correlations between ASPECTS and  � mRS are strengthened, 
while the order remains unchanged ( table 1 , ‘anterior circulation’).

  CTP ASPECTS mismatch gives a single-digit estimate of the extent of reversible isch-
emia ( fig. 1 ). In our data, a mismatch was present in 36 cases (39%). In an additional 4  patients, 
a perfusion mismatch was present in the ASPECTS planes but not within any ASPECTS sub-
territory. In the ASPECTS mismatch subgroup, the correlations between ASPECTS and the 
clinical outcome were higher than in the case of all patients or all anterior circulation events, 
while the correlations between ASPECTS and infarct volume remained similar ( table 1 , ‘pa-
tients with CTP ASPECTS mismatch’).

  Overall, the correlations between the MTT and CBV scores and the clinical outcome are 
stronger than the correlation of the admission NCCT score and the clinical outcome, sug-
gesting that CTP parameters may better classify reversible and non-reversible ischemia. 
However, only the CBV score displayed a statistically significant difference (p  !  0.05) from 
the admission NCCT score in all the subgroups studied ( table 1 ).

  CTP ASPECTS Mismatch Identifies Potentially Salvageable Ischemic Tissue 
 In  figure 2 , the MTT, CBV, and NCCT 24 h  ASPECTS scores and  � mRS are plotted for 

each of the 36 patients with a CTP ASPECTS mismatch and sorted according to the NCCT 24 h  
ASPECTS in descending order along the x-axis. Essentially, MTT and CBV provide the low-
er and upper limits for NCCT 24 h , thus defining the spectrum of possible outcomes. The 
 � mRS curve traces the contour of all the other curves; it lies most closely to the NCCT 24 h  
curve, which can be expected considering the results of the correlation analysis.

  A mismatch between the NCCT 24 h  and the MTT ASPECTS scores can be used to esti-
mate the amount of tissue salvaged, as MTT gives an estimate on the amount of tissue at risk 
and NCCT 24 h  depicts the size of the actual infarct. Thus, this mismatch parameter can be 
used as a surrogate for vessel recanalization. Dichotomizing  � mRS with the condition  � mRS 
 ̂  1 to signify good clinical outcome, the lowest statistically significant threshold for the 
MTT-NCCT 24 h  ASPECTS mismatch that predicted good clinical outcome was 2 (p = 0.04). 
Using this threshold as an indicator for total or partial vessel recanalization, in the subgroup 
of patients with MTT-NCCT 24 h  ASPECTS mismatch  6 2 (n = 17), this parameter and CTP 
ASPECTS mismatch are highly correlated (r = 0.83 *  *  * ) and have a strong linear relationship 
(R 2  = 0.70,  fig. 3 ). Overall, these findings suggest that the CTP ASPECTS mismatch ade-
quately predicts the amount of potentially salvageable ischemic brain tissue.

  CBV ASPECTS  6 7 Identifies Patients with Good Clinical Outcome 
  Table 2  demonstrates the thresholds for good clinical outcome ( � mRS  ̂  1) for the CTP 

and NCCT ASPECTS scores derived from ROC. Overall, the most robust predictor of a 
good clinical outcome was the 24-hour follow-up NCCT score  6 8, which had 94% sensitiv-
ity and 65% specificity. However, CBV  6 7 performed well in identifying patients who had 
good clinical outcome and who potentially benefited from thrombolytic therapy. This 
threshold had 100% sensitivity, 44% specificity, and no patients with good clinical outcome 
in the CBV  ! 7 partition. The thresholds MTT  6 4 (AUC = 0.68) and NCCT 0 h   6 10 (AUC = 
0.66), although statistically robust, were outperformed by CBV  6 7 (AUC = 0.72). The dif-
ferences between AUCs did not yield statistical significance. However, in the case of MTT 
and NCCT 0 h , the AUCs were below the 0.70 threshold, which is often considered as a cutoff 
value for an adequately performing diagnostic test. Patients with thrombosis of the basilar 
artery in the admission CTA were excluded from the analysis.
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  Fig. 2.  The MTT, CBV, and NCCT 24 h  ASPECTS scores and  � mRS are plotted for each of the 36 patients 
with a CTP ASPECTS mismatch  1 0 according to the NCCT 24 h  ASPECTS in descending order along the 
x-axis. The  � mRS curve traces the contour of all the other curves; it lies most closely to the NCCT 24 h  
curve. Essentially, MTT and CBV provide the lower and upper limits for NCCT 24 h , thus defining the 
spectrum of possible outcomes. 

  Fig. 3.  The lowest statistically significant threshold for the MTT-NCCT 24 h  ASPECTS mismatch that pre-
dicted good clinical outcome was 2. Using this threshold as a marker indicating total or partial vessel re-
canalization, in the subgroup of patients with MTT-NCCT 24 h  ASPECTS mismatch  6 2 (n = 17), this mis-
match and CTP ASPECTS mismatch are highly correlated (r = 0.83 *  *  * ) and have a strong linear relation-
ship (R 2  = 0.70). In the case of the outlier in the top left corner of the graph, the recanalization was partial 
or too late, allowing part of the tissue at risk to become infarcted, while the rest of the tissue at risk was 
salvaged. 
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  Discussion 

 We set off to study the performance of different quantitative parameters obtained using 
CTP ASPECTS that potentially have an impact on the choice of treatment in acute stroke. 
With 16- and 64-slice scanners, the axial dimension of the imaging volume is limited
to 20–80 mm depending on the protocol used. This is not enough to cover the whole brain. 
Further, exact volumetric analysis of the perfusion maps requires user supervision, espe-
cially in the case of CBV, and is too slow a procedure to be used in the context of acute stroke 
imaging, which requires rapid online interpretation of the images. Thus, applying the 
 ASPECTS scoring system to the perfusion images becomes an attractive option  [12] .

  We decided to use the difference between the postictal and the preictal mRS as the indi-
cator of good clinical outcome, as this better reflects the disease load inflicted by the current 
episode. As expected from the definitions,  � mRS and 3-month mRS are highly correlated
(r = 0.85 *  *  * ). Since poor preictal functional status is essentially a contraindication to throm-
bolytic therapy, the offset between  � mRS and 3-month mRS is generally very small or non-
existent. The median preictal mRS in our research population was 1. The threshold for good 
clinical outcome was chosen to be  � mRS  ̂  1 in order to maintain comparability to the tra-
ditional 3-month mRS  ̂  2 threshold.

  All patients who received intravenous thrombolytic therapy in a period of 1 year were 
included in the baseline analysis regardless of the vascular territory affected in order to gain 
a realistic idea of the performance of the multimodal CT evaluation of stroke in a clinical 
setting. A perfusion defect could be detected in 50% of these patients, implying that with the 
technology used, a CT perfusion study could have an impact on half of the positive throm-
bolytic treatment decisions at the maximum. In total, 87% of the perfusion defects were pres-
ent in either or both of the two ASPECTS planes. Those located outside the ASPECTS planes 
were detected by the 64-slice scanner in all but 1 case. The acute ischemic lesions that escape 
detection by CTP are mostly lacunar processes or are localized infratentorially or cranially 
to the perfusion study volume  [17] .

  We hypothesized that CTP ASPECTS parameters predict the clinical outcome of pa-
tients who receive intravenous thrombolytic therapy better than the traditional admission 
NCCT. Correlation analyses with all patients and relevant subgroups support this hypoth-
esis, as the CTP parameters correlate more closely with the clinical outcome when compared 

Table 2.  Threshold values for dichotomized NCCT and CTP ASPECTS parameters that best differentiate 
between good (�mRS ≤1) and bad clinical outcome

Threshold Good 
outcome

p
value

RR
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

AUC

CBV ≥7 vs. <7 74 vs. 0% <0.001 n/a 1.00 (0.93–1.00) 0.44 (0.25–0.66) 0.72
MTT ≥4 vs. <4 68 vs. 6% <0.001 11.5 (2.9–45.6) 0.92 (0.81–0.97) 0.5 (0.29–0.71) 0.68
NCCT0 h ≥10 vs. <10 65 vs. 11% 0.01 6.0 (3.2–11.3) 0.86 (0.75–0.92) 0.45 (0.26–0.66) 0.66
NCCT0 h ≥7 vs. <7 75 vs. 1% 0.04 62.0 (8.8–436.7) 0.98 (0.92–1.00) 0.15 (0.05–0.36) 0.66
NCCT24 h ≥8 vs. <8 71 vs. 5% <0.001 27.4 (7.0–107.5) 0.94 (0.85–0.98) 0.65 (0.43–0.82) 0.83

R OC were devised to find the optimal threshold values. Overall, the most robust predictor of good 
clinical outcome was the 24-hour follow-up NCCT score ≥8. CBV ≥7 performed well in identifying 
 patients who had good clinical outcome and who potentially benefited from thrombolytic therapy. The 
differences between the AUCs did not yield statistical significance for the admission imaging studies 
(CBV, MTT, and NCCT0 h). Patients with thrombosis of the basilar artery were excluded from the analysis. 
RR = Risk ratio; CI = confidence interval; n/a = not available.



15

Cerebrovasc Dis Extra 2011;1:6–16

 DOI: 10.1159/000324324 

 Sillanpaa et al.: CT Perfusion ASPECTS in the Evaluation of Stroke 

www.karger.com/cee
 © 2011 S. Karger AG, Basel 

 Published online: February 17, 2011 

E X T R A

to the NCCT findings ( table 1 ). However, only CBV displayed a statistically significant dif-
ference from NCCT, while MTT did not reach statistical significance. This is probably due 
to the heterogeneity introduced by cases in which thrombolytic therapy was effective and the 
MTT defect was totally or partially reversed. There was no statistically significant difference 
in the correlations between the admission CTP and NCCT parameters and the total infarct 
volume. This finding can be expected as the strength of the correlation between the infarct 
volume and the clinical outcome was only moderate (r = 0.54 *  *  * ), which probably reflects 
the presence of strategic infarcts that have a relatively small volume but have a considerable 
impact on the clinical outcome and often escape detection by the follow-up NCCT.

  Optimally, the decision of administering thrombolytic therapy is based on the amount 
of salvageable brain tissue present. In the MCA region, this tissue volume is correlated with 
CTP ASPECTS mismatch  [16] . In total, 39% of the patients presented with such a mismatch. 
We demonstrated that in patients who received thrombolytic therapy CTP ASPECTS mis-
match adequately identifies the amount of potentially salvageable tissue ( fig. 2 ,  3 ). However, 
small mismatches are difficult to interpret because of noise introduced by biological hetero-
geneity and errors in image analysis. In our data, a mismatch  6 2 was linked with good clin-
ical outcome. A larger sample size is needed for a more accurate analysis.

  Other notable limitations of this study are its retrospective design and non-excellent in-
terobserver agreement in some imaging parameters, which, however, is comparable to that 
previously reported  [13] .

  Finally, in the footsteps of previous investigators, we identified threshold values for di-
chotomized NCCT and CTP ASPECTS parameters that would best differentiate between 
good and bad clinical outcome. Our approach emphasized the sensitivity of identifying pa-
tients with potentially good outcome. While a statistically robust threshold could be devised 
for all the parameters studied, the threshold that performed best at presentation was CBV  6 7, 
which is in accordance with previous findings  [12–15] . However, thresholds 6 and 8 per-
formed almost equally well, implying that relying on a single threshold value in decision mak-
ing is probably ill advised. We also tested the established admission NCCT ASPECTS  6 7 
threshold. This threshold proved to be very unspecific (Specificity 15%), which is to be ex-
pected as there were only patients who received thrombolytic therapy in our study population.

  In conclusion, advances in the management of acute ischemic stroke and medical imag-
ing and the extension of the time window for thrombolytic therapy are creating pressure to 
replace the rigid one-third MCA rule and non-contrast-enhanced CT ASPECTS thresholds 
in selecting patients to receive thrombolytic therapy with a shift toward identifying patients 
with potentially salvageable ischemic brain tissue. Our data suggest that parameters derived 
using ASPECTS scoring of CT perfusion images, especially the CTP ASPECTS mismatch, 
can in part answer these demands. Further, on admission, the ASPECTS of the CBV map 
correlates more strongly with clinical outcome than the NCCT ASPECTS.
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Abstract 

Purpose: Recently two classification methods based on the location and the extent of thrombosis 

detected with CT angiography have been introduced:  the Boston Acute Stroke Imaging Scale 

(BASIS) and the clot burden score (CBS). We studied the performance of BASIS and CBS in 

predicting good clinical outcome (mRS ≤2 at 90 days) in an acute (<3h) stroke cohort treated with 

intravenous thrombolytic therapy. 

Methods: 83 consecutive patients who underwent multimodal CT were analyzed.  Binary logistic 

regression model was used to assess how BASIS, CBS and cerebral blood volume (CBV) ASPECTS 

predict favorable clinical outcome. Diagnostic sensitivities and specificities were calculated and 

compared. 

Results: Patients with low CBS and CBV ASPECTS scores and major strokes according to BASIS had 

significantly higher admission NIHSS scores, larger perfusion defects and more often poor clinical 

outcome. In logistic regression analysis CBV ASPECTS, CBS and BASIS were significantly associated 

with the clinical outcome. The performance of BASIS improved when patients with thrombosis of 

the M2 segment of the middle cerebral artery were classified as having minor stroke (M1-BASIS). 

In the anterior circulation the sum of CBS and CBV ASPECTS (CBSV) proved to be the most robust 

predictor of favorable outcome. CBV ASPECTS and CBS had high sensitivity but moderate to poor 

specificity while BASIS was only moderately sensitive and specific. 

Conclusions: CBS, BASIS and CBV ASPECTS are statistically robust and sensitive but unspecific 

predictors of good clinical outcome. Two new derived imaging parameters, CBSV and M1-BASIS, 

share these properties and may have increased prognostic value.  

 



Abbreviation key: ASPECTS = Alberta Stroke Program Early CT Score, AUC = area under the curve, 

BASIS = Boston Acute Stroke Imaging Scale, CBV = cerebral blood volume, C = C statistic, CBS = clot 

burden score, CI = confidence interval, CTA = computed tomography angiography, CTP = computed 

tomography perfusion, H-L = Hosmer-Lemeshow , MTT = mean transit time, MCA = middle 

cerebral artery, NCCT = non-contrast-enhanced computed tomography, NIHSS = National 

Institutes of Health Stroke Scale, mRS = modified Rankin Scale, ROC = receiver-operating 

characteristic, RR = risk ratio, rtPA = recombinant tissue plasminogen activator 

 

Key words: computed tomography angiography, Boston Acute Stroke Imaging Scale, clot burden 

score, computed tomography perfusion, thrombolytic therapy, stroke, ASPECTS



Introduction 

Computed tomography angiography (CTA) of the intracranial vessels is increasingly being 

performed either separately or as part of multimodal CT evaluation of acute ischemic stroke to 

detect intravascular occlusion by clots, hemodynamically significant stenotic atherosclerotic 

lesions, arterial dissection and other arteriopathies. CTA provides an independent prognostic 

factor with proximal, high volume clots predicting poor clinical outcome when compared to distal, 

low volume clots [1-9].  

Recently two classification methods based on the location and the extent of the thrombus 

detected with CTA have been introduced. BASIS (Boston Acute Stroke Imaging Scale) is a binary 

classification scheme where patients are designated to have either major or minor stroke [5]. In 

short, if the distal internal carotid artery (ICA), the proximal (segments M1 and M2) middle 

cerebral artery (MCA) or the basilar artery is occluded or if there is a significant ischemic lesion  

either in non-contrast CT (NCCT) or diffusion weighted MRI, the stroke is considered major, 

otherwise the stroke is considered minor [5]. BASIS is correlated to short-term clinical outcome 

evaluated at discharge from the hospital and the length and the costs of hospitalization [5, 6]. Clot 

burden score (CBS) is a more elaborate scheme in which a score from 0 to 10 is given based on the 

extent of arterial segments affected in the anterior circulation [7, 8]. The scoring system has been 

pictorially demonstrated by Puetz et al. [8]. CBS is correlated to the clinical and radiological 

outcomes [7-9]. 

We reviewed retrospectively the clinical and imaging data of 83 consecutive patients who 

underwent multimodal CT assessment and received intravenous thrombolytic therapy to treat 

acute (<3h) ischemic stroke in order to study the performance of BASIS and CBS in predicting the 

clinical outcome. Further, we correlated the anatomical information conveyed by BASIS and CBS 



with CT perfusion (CTP) parameters that reflect the hemodynamic state in the cerebral vasculature 

and hypothesized that a derived parameter combining both CTA and CTP data might best predict 

the clinical outcome. 

 

Materials and Methods 

Overview 

We analyzed retrospectively the clinical and imaging data of 380 consecutive patients who were 

admitted to Tampere University Hospital between January  2007 and December 2007 because of 

acute (duration <3h) strokelike symptoms. After clinical and imaging evaluation 92 patients 

received intravenous rtPA to treat acute ischemic stroke. Among these patients full admission 

multimodal (NCCT, CTA and CTP) imaging evaluation was successfully completed with 72 patients 

while an additional 11 patients were evaluated with just NCCT and CTA because of chronic renal 

failure, imminent closure of the 3h time window or movement artifacts that rendered some of the 

imaging data uninterpretable. These 83 patients were selected to this study. The selection of 

patients to receive thrombolytic therapy was based on institutional guidelines that did not have 

CTP or CTA derived parameters as exclusion or inclusion criteria. Standard intravenous rtPA 

adminstration scheme was used: Actilyse (Boehringer-Ingelheim, Ingelheim, Germany), total dose 

0.9 mg/kg from which 10% given as a bolus and the remaining 90% as a continuous infusion for 1h. 

Stable access to an emergency angiography suite was not available at the time so intra-arterial 

interventions were not included in the treatment protocol. A follow-up NCCT was performed for 

all patients 24h after the administration of the thrombolytic agent. National Institutes of Health 

Stroke Scale (NIHSS) was assessed at the admission and 24h after the thrombolytic therapy. 

Modified Rankin Scale (mRS) was evaluated preictally and on day 90. The clinical data was stored 



prospectively to the patient records during the hospital stay and on day 90 after the ictus, the 

latter following a phone interview. This data was collected from the patient records and critically 

reviewed for errors using the data available from all medical and related disciplines (J.T.S.). The 

study was approved by Tampere University Hospital ethics committee. 

 

Imaging parameters 

Computed tomography scans were obtained using two different multidetector scanners:  General 

Electrics LightSpeed 16-slice (GE Healthcare, Milwaukee, Wis) and Philips Brilliance 64-slice 

(Philips, Cleveland, Oh). The imaging procedures and the parameters used are described 

thoroughly in our previous study available online as an open-access article at the website of the 

publisher [10].  

 

Image analysis 

NCCT examinations were reviewed using dedicated medical imaging workstations. CTA and CTP 

images were analyzed with Advantage Workstation version 3.2 (GE Healthcare). The examinations 

were reviewed in the order NCCT, CTA and finally CTP paralleling that of the clinical work flow. The 

reviewers were blinded to the clinical data apart from the side and nature of the acute symptoms.  

The analysis of the NCCT and the CTP images is detailed in our previous article [10]. CTA images 

were studied by examining the raw data and maximum intensity projection images.  The principles 

of the CBS scoring system and the assignment of BASIS have been described in recent studies [5, 

7]. CBS was scored and BASIS was assigned independently by two radiologists (N.S. and A.L.). In 

cases where the scoring or the assignment differed, a consensus opinion was agreed on. These 



results were correlated with the original neuroradiological report. If significant discrepancies were 

present the neuroradiologist that had issued the report was further consulted. Intraclass 

correlation coefficient (ICC) between a staff radiologist (N.S.) and an experienced neuroradiologist 

(J.H.) for a test sample (n=20) for CBS was 0.87.  The interobserver agreement index for BASIS was 

95%. The interobserver variability statistics for the other imaging parameters used are described in 

our previous article [10]. 

 

Statistics 

The data was analyzed with SPSS version 18 (SPSS Inc., Chicago, Ill). Group comparisons were 

performed by using the Mann-Whitney U test and the Fisher exact test. Patients with mRS ≤2 at 90 

days were considered to have experienced good clinical outcome. After excluding cases with 

thrombosis of the basilar artery Receiver-operating characteristic curves (ROC) were computed for 

the imaging parameters studied using dichotomized clinical outcome as the state variable. Youden 

index was evaluated to select for optimal threshold value. A binary logistic regression model using 

the clinical outcome as the dependent variable was repeated for different variables of interest. 

Age and gender were treated as potential confounders and were controlled for by treating them 

as covariates. One variable of interest was included in the model at a time.  The calibration of the 

models was evaluated with the Hosmer-Lemeshow test and the discrimination with the C statistic. 

Odds ratio (OR) with 95% confidence interval (CI) was calculated for each covariate. Sensitivity, 

specificity and confidence interval calculations were performed using standard procedures. The 

McNemar test was used to compare the sensitivities and specificities calculated. The Bonferoni 

correction was applied to adjust for multiple comparisons. 

 



Results 

Baseline characteristics 

The median age of the patients was 71 years (interquartile range 62-80 years, 40 female). Based 

on the clinical features and the imaging studies, in 11 of the 83 patients evaluated (13%) the 

ischemic episode involved the posterior circulation. The rest of the episodes were considered to 

involve the anterior circulation. Thrombosis could be demonstrated with CTA in 37 cases (45%). 

The locations of the thrombi are described in Table 1. In 40 cases (56%) of the 72 evaluated with 

CTP a perfusion defect could be detected in the ASPECTS planes. An additional 6 perfusion defects 

were found outside the ASPECTS planes. In total, a perfusion defect could be demonstrated in 64% 

of the CTP studies (50% of all patients).  The median NIHSS score at the admission was 7 

(interquartile range 4-12, 54% had NIHSS <8, 18% had NIHSS >15) and 24h later the score was 2. 

The median time from symptom onset to treatment was 138 minutes (interquartile range 114-

162). The median mRS was 1 preictally and 2 90 days later. The median change in mRS (∆mRS) was 

1 point. 74% of the patients experienced favorable clinical outcome at 90 days (mRS ≤2). At 24h a 

local hemorrhagic complication (HI1, HI2, PH1 or PH2) was detected in 5 cases (6.0%) and 4 

patients (4.8%) had parenchymal hemorrhage distant to the site of the infarct (PHr1 or PHr2). The 

validation of the ASPECTS scoring method for CTP is depicted in our previous study [10]. 

 

CBS, BASIS and CBV ASPECTS as prognostic classifiers  

CBS and CBV ASPECTS were dichotomized using the thresholds (CBS >6 and CBV ASPECTS >6) that 

best differentiated good from poor clinical outcome in the previous studies [7, 10-14]. BASIS is by 

definition a dichotomous variable that classifies strokes as either major or minor. Table 2 



summarizes the comparison of patients in the subgroups so formed for all intracranial vascular 

territories (n=83) whereas in Table 3 only patients suffering from anterior circulation stroke were 

included in the analysis (n=72). There was no significant difference in age between the patients in 

the different subgroups. There were more female patients with major strokes and more male 

patients with minor strokes according to the BASIS classification (p=0.01). As expected, patients 

with low CBS and CBV ASPECTS scores and patients with major strokes had significantly higher 

admission NIHSS scores, significantly larger perfusion defects in the CBV and MTT maps and more 

findings related to acute ischemic process in the admission NCCT. Patients in the low CBS and low 

CBV ASPECTS subgroups invariably had major stroke according to BASIS. Patients with low CBV 

ASPECTS and major stroke had more proximal and higher volume thrombi shown by significantly 

lower CBS. Low CBS and CBV ASPECTS and major stroke significantly predicted poor clinical 

outcome and larger infarct volume 24 hours after the administration of thrombolytic therapy. The 

ability of CBS and CBV ASPECTS to predict the clinical outcome was enhanced when only anterior 

circulation strokes were included in the analysis, whereas the predictive power of BASIS improved 

when all vascular territories were included in the analysis. BASIS did not reach statistical 

significance when only patients with anterior circulation strokes were analyzed (p=0.23). This is 

because patients with thrombosis in the M2 segment of the MCA are classified as having major 

stroke and yet in the study population 83% of these patients had good clinical outcome. If these 

patients were classified as having minor stroke, BASIS performed considerably better (Table 4). 

This modification is referred to as M1-BASIS in Tables 4, 5 and 6 and in the following paragraphs. 

There were eight cases of local and/or peripheral hemorrhagic complications in the study 

population. In four patients the hemorrhages were mild and did not produce any symptoms. In the 

other four patients a notable space occupying effect was present. When cross-tabulated with the 



dichotomized imaging parameters, none of the parameters predicted hemorrhagic transformation 

statistically significantly. 

In order to further assess the prognostic value of these dichotomous imaging parameters we 

performed binary logistic regression analysis using the mRS at 90 days dichotomized with the 

threshold ≤2 as the dependent variable (Table 5). We also devised a novel parameter which 

combines CBS and CBV ASPECTS by calculating an unweighted sum of the scores for each patient. 

This parameter was named CBSV. Using ROC analysis with clinical outcome as the state variable, 

an optimal threshold for dichotomization was calculated for CBSV (>15, AUC=0.72, Figure 1) and 

this dichotomized variable was entered into the regression analysis. Figure 1 also shows ROC 

curves for CBS (AUC=0.69) and CBV ASPECTS (AUC=0.70). Age and gender were treated as 

potential confounders and were controlled for by treating them as covariates. When all vascular 

territories were included in the analysis, CBV ASPECTS, CBS, CBSV, BASIS and M1-BASIS were all 

significantly associated with the clinical outcome. CBV ASPECTS displayed the largest odds ratio for 

good clinical outcome (p=0.005, OR=13.3). NCCT ASPECTS and gender were not significantly 

associated with the clinical outcome whereas a low NIHSS score at presentation significantly 

predicted good clinical outcome (p=0.007). Age had a modest effect with old age being a risk 

factor for poor outcome (p=0.02). When only anterior circulation strokes were considered, CBV 

ASPECTS, CBS, CBSV and M1-BASIS were significantly associated with the clinical outcome with 

CBSV having the best statistical confidence level (p=0.002, OR=16.3). CBS displayed the largest 

odds ratio (p=0.005, OR=25.1). BASIS did not reach statistical significance.  

Sensitivities and specificities for detecting good clinical outcome were calculated for all the 

imaging parameters that achieved statistical significance in the regression analysis (Table 6). When 

all vascular territories were included in the analysis, CBV ASPECTS was the most sensitive predictor 



of good clinical outcome (0.96, CI 95% = 0.86-0.99) while BASIS had the best specificity (0.57, CI 

95% = 0.34-0.77). In the case of sensitivity, the differences between CBV ASPECTS, CBS and CBSV 

were not statistically significant while BASIS was significantly less sensitive than any of the other 

parameters.  M1-BASIS was less sensitive than CBV ASPECTS (p=0.03). In the case of specificity, 

BASIS and M1-BASIS were significantly more specific when compared to CBS (p=0.02 and p=0.04, 

respectively). Otherwise there were no statistically significant differences. When only the anterior 

circulation was considered, CBV ASPECTS was the most sensitive (0.96, CI 95% = 0.86-0.99) and 

CBSV the most specific (0.47, CI 95% = 0.22-0.73) predictor. BASIS proved to be significantly less 

sensitive when compared to all the other parameters (p=0.001-0.008). There were no statistically 

significant differences between specificities.  When the Bonferoni correction was applied to adjust 

for multiple comparisons, BASIS remained to be significantly less sensitive than other parameters 

both in the case of all vascular territories and the anterior circulation while all other differences 

were rendered statistically non-significant. 

 

Discussion 

Recently a number of imaging parameters have been introduced that may be useful in the risk 

stratification and the treatment decision making in acute ischemic stroke. We studied the 

performance of two CTA-based classification schemes, BASIS and CBS, and one perfusion 

parameter, CBV ASPECTS, in a thrombolytic therapy cohort. 

In the absence of adequate collateral circulation vessel recanalization is a necessary condition to 

favorable clinical outcome. The location, the volume and the composition of the clot essentially 

determine the effectiveness of intravenous rtPA in dissolving the occluding thrombus [1-9, 15]. 

The time from the onset of the symptoms to the possible recanalization largely determines the 



functional outcome as the duration of parenchymal ischemia dictates the progression of the 

irreversible changes, i.e. the size of the infarct core [16]. Both BASIS and CBS address the location 

of the clot while CBS also takes into account the volume. CBV ASPECTS estimates the size of the 

infarct core. 

Patients with low CBS and CBV ASPECTS scores and with major strokes according to BASIS had 

significantly higher admission NIHSS scores, larger perfusion defects, larger infarct volumes, more 

findings related to acute ischemic process in the admission NCCT and more often poor clinical 

outcome. CBS and CBV ASPECTS predicted the clinical outcome more accurately when only 

anterior circulation strokes were analyzed which is to be expected as these scoring schemes do 

not include data from the posterior circulation. BASIS, on the other hand, also takes into account 

the posterior circulation.  Thus it performs better when all vascular territories are included in the 

analysis as patients with occlusion of the basilar artery are correctly classified as having major 

stroke. However, BASIS did not reach statistical significance when only patients with anterior 

circulation stroke were analyzed. This is remedied if patients with thrombosis of the M2 segment 

are classified as having minor stroke (p=0.23 vs. p=0.002). This modified BASIS, which we named 

M1-BASIS, seems to perform slightly better than BASIS also when all vascular territories are 

included in the analysis. These findings probably reflect the effect of the thrombolytic therapy and 

support the notion that patients with thrombosis of the M2 segment of the MCA benefit from 

intravenous thrombolytic therapy whereas a more proximal clot location predicts limited response 

[1, 3, 9, 17]. Only a minority of patients (8%) received thrombolytic therapy in the study 

population that was originally used to validate BASIS [5]. 

In the logistic regression analysis dichotomized M1-BASIS, CBV ASPECTS, CBS and BASIS were all 

significantly associated with the clinical outcome (p=0.001, p=0.005, p=0.02 and p=0.01, 



respectively). When only anterior circulation strokes were considered, the sum of CBS and CBV 

ASPECTS, a novel variable which we named CBSV, proved to be the most robust predictor of 

favorable outcome (p=0.002, OR=16.3). CBSV combines two independent predictors of clinical 

outcome that reflect different pathophysiological processes: CBV ASPECTS that approximates the 

volume of already irreversibly damaged brain tissue and CBS that provides information about clot 

extent and location [7, 8, 10]. Thus, theoretically CBSV should have better predictive power than 

either of its components. This is supported by our results. 

CBV ASPECTS, CBS, CBSV and M1-BASIS all had high sensitivity (85-96%) but moderate to poor 

specificity (24-52%) in predicting good clinical outcome. The rather modest specificity is to be 

expected as not all patients with potentially favorable profile experience recanalization and as 

strategic infarcts may cause serious functional deficit with minimal imaging findings.  Further, 

there were 4 patients (2 with anterior circulation strokes) with prestroke mRS >2 that were 

classified as low risk patients by CBS, CBV ASPECTS and CBSV, which decreases the specificity of 

these parameters somewhat. BASIS was only moderately sensitive (70-71%). There were no 

statistically significant differences between specificities after the Bonferoni correction was applied 

to adjust for multiple comparisons. Tan et al. found CBS to be less sensitive but more specific 

when compared to our findings [7]. This is probably due to considerably higher median NIHSS 

score (16) and lower proportion of patients treated with rtPA (70.5%) in their study population.  

Our study is limited by retrospective design and sample size. There was some heterogeneity in the 

details of treatment and variation in onset-to-needle times which are to be expected in a clinically 

managed population. Because of the study design data on vessel recanalization was not available 

for the majority of the patients. However, a large final infarct volume is intimately related to 

delayed or failed recanalization and can be used as a surrogate. M1-BASIS was created based on a 



post hoc analysis of the data set and should be further validated in other thrombolytic therapy 

cohorts. 

In conclusion, novel imaging parameters that lie upstream to clinical parameters (NIHSS) in the 

pathophysiological chain of ischemic stroke potentially allow higher resolution in the risk 

stratification and the treatment decision making. Optimally a selection of markers portraying 

different aspects of the disease state and having independent prognostic value would be utilized. 

These markers include anatomical angiographic data revealing the location and the extent of the 

clot (CBS and BASIS) and dynamic perfusion data enabling the detection of irreversibly damaged 

and potentially salvageable brain tissue (CBV ASPECTS and CTP ASPECTS mismatch) [10]. We 

demonstrated that CBS, BASIS and CBV ASPECTS are statistically robust and sensitive but 

unspecific predictors of good clinical outcome among patients receiving intravenous thrombolytic 

therapy. We introduced two derived imaging parameters, CBSV and M1-BASIS, that essentially 

share these same properties but seem to have slightly better prognostic accuracy. BASIS was 

significantly less sensitive than the other parameters studied. 
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Table 1. The location of the clot in CT angiography. A thrombus could be detected in 44.6% of the 

studies. The most common locations were the M2 and the M1 segments of the MCA. There were 8 

cases of thrombosis of the basilar artery. The most distant thrombi detected were situated in the 

M3 segment.  

Thrombus location n % 
Basilar artery 8 9.6 
PCA P2 segment 2 2.4 
SCA 1 1.2 
MCA M1 segment 10 12.0 
MCA M2 segment 12 14.5 
MCA M3 segment 3 3.6 
ICA 1 1.2 
Total detected 37 44.6 
Not detected 46 55.4 

 

 



Table 2. All patients arranged into subgroups according to dichotomized CBS, CBV ASPECTS and 

BASIS. Patients with low CBS and CBV ASPECTS scores and with major strokes according to BASIS 

had significantly higher admission NIHSS scores, larger perfusion defects, larger infarct volumes 

and more often poor clinical outcome. Patients in the low CBS and low CBV ASPECTS subgroups 

invariably had major stroke according to BASIS. Patients with low CBV ASPECTS and major stroke 

had more proximal and higher volume thrombi as reflected by significantly lower CBS. All values 

mean ± 1SD unless otherwise noted. ∆mRS = mRS at 90 days – prestroke mRS. 

 All Vascular Territories 
 Clot Burden Score  CBV ASPECTS  BASIS   
 CBS ≤ 6 CBS > 6  CBV ≤ 6 CBV  > 6  major minor  
 n = 9 n = 74 p value n = 8 n = 64 p value n = 32 n = 51 p value 
mRS at 90 days  3.0 ± 2.0 2.0 ± 1.6 0.05 4.0 ± 1.3 1.8 ± 1.4 0.002 3.0 ± 1.9 1.7 ± 1.3 0.04 

∆mRS  2.6 ± 1.9 1.1 ± 1.4 0.01 3.3 ± 0.9 0.9 ± 1.3 < 0.001 2.1 ± 1.8 0.8 ± 1.1 0.004 

Infarct volume (cm3) 60.1 ± 66.2 9.4 ± 21.5 0.001 87.5 ± 60.1 7.6 ± 16.3 < 0.001 33.1 ± 47.5 3.5 ± 7.8 < 0.001 

CBS 5.2 ± 1.7 9.7 ± 0.6 - 6.9 ± 1.6 9.5 ± 1.4 < 0.001 8.0 ± 2.1 10.0 ± 0.0 < 0.001 

BASIS (major/minor) 9 / 0 23 / 51 < 0.001 8 / 0 18 / 46 < 0.001 32 / 0 0 / 51 - 

CBV ASPECTS 6.8 ± 2.8 9.4 ± 1.5 0.001 4.4 ± 0.7 9.7 ± 0.7 - 7.6 ± 2.4 10.0 ± 0.2 < 0.001 

MTT ASPECTS 2.4 ± 1.1 8.3 ± 2.5 < 0.001 2.9 ± 1.5 8.3 ± 2.6 < 0.001 4.6 ± 2.7 9.4 ± 1.2 < 0.001 

NCCT ASPECTS 8.6 ± 1.7 9.6 ± 1.2 0.04 7.4 ± 2.6 9.7 ± 0.9 0.001 8.8 ± 1.9 9.9 ± 0.5 < 0.001 

Admission NIHSS 13.6 ± 4.4 8.2 ± 6.4 0.008 15.5 ± 3.2 7.6 ± 5.6 0.001 13.3 ± 7.0 6.1 ± 4.3 < 0.001 

Gender (female/male) 7 / 2 33 / 41 0.08 5 / 3 30 / 34 0.47 21 / 11 19 / 32 0.01 

Age 63.3 ± 17.8 69.4 ± 13.5 0.34 74.1 ± 11.4 68.0 ± 14.8 0.24 69.5 ± 13.2 68.3 ± 14.7 0.81 
 

 



Table 3. Patients with anterior circulation stroke arranged into subgroups according to 

dichotomized CBS, CBV ASPECTS and BASIS. The ability of CBS and CBV ASPECTS to predict the 

clinical outcome improved when only anterior circulation strokes were included in the analysis. 

Interestingly, BASIS did not reach statistical significance when only patients with anterior 

circulation stroke were analyzed. All values mean ± 1SD unless otherwise noted. ∆mRS = mRS at 90 

days – prestroke mRS. 

 Anterior Circulation  
 Clot Burden Score  CBV ASPECTS  BASIS   
 CBS ≤ 6 CBS > 6  CBV ≤ 6 CBV  > 6  major minor  
 n = 9 n = 63 p value n = 8 n = 58 p value n = 24 n = 48 p value 
mRS at 90 days  3.0 ± 2.0 1.7 ± 1.4 0.02 4.0 ± 1.3 1.7 ± 1.4 0.001 2.5 ± 1.6 1.6 ± 1.4 0.23 

∆mRS  2.6 ± 1.9 0.9 ± 1.1 0.005 3.3 ± 0.9 0.8 ± 1.2 < 0.001 1.8 ± 1.5 0.7 ± 1.1 0.02 

Infarct volume (cm3) 60.1 ± 66.2 8.9 ± 22.2 0.001 87.5 ± 60.1 6.8 ± 15.5 < 0.001 40.0 ± 52.1 3.2 ± 7.3 < 0.001 

CBS 5.2 ± 1.7 9.7 ± 0.6 - 6.9 ± 1.6 9.4 ± 1.5 < 0.001 7.4 ± 2.0 10.0 ± 0.0 < 0.001 

BASIS (major/minor) 9 / 0 15 / 48 < 0.001 8 / 0 15 / 43 < 0.001 24 / 0 0 / 48 - 

CBV ASPECTS 6.8 ± 2.8 9.3 ± 1.5 0.001 4.4 ± 0.7 9.7 ± 0.7 - 7.3 ± 2.4 10.0 ± 0.2 < 0.001 

MTT ASPECTS 2.4 ± 1.1 8.2 ± 2.5 < 0.001 2.9 ± 1.5 8.1 ± 2.7 < 0.001 4.0 ± 2.2 9.4 ± 1.3 < 0.001 

NCCT ASPECTS 8.6 ± 1.7 9.5 ± 1.3 0.01 7.4 ± 2.6 9.7 ± 0.9 0.001 8.4 ± 2.0 9.9 ± 0.5 < 0.001 

Admission NIHSS 13.6 ± 4.4 7.4 ± 5.1 0.003 15.5 ± 3.2 7.0 ± 4.7 < 0.001 11.7 ± 5.5 6.3 ± 4.4 < 0.001 

Gender (female/male) 7 / 2 25 / 38 0.07 5 / 3 25 / 33 0.45 16 / 8 16 / 32 0.01 

Age 63.3 ± 17.8 68.8 ± 13.9 0.41 74.1 ± 11.4 67.6 ± 15.0 0.20 68.3 ± 13.9 68.0 ± 14.8 0.98 
 



Table 4. Patients arranged into subgroups according to M1-BASIS, all vascular territories and the 

anterior circulation. If patients with thrombosis in the M2 segment of the MCA were classified as 

having minor stroke, BASIS had considerably better prognostic value. This modification was named 

M1-BASIS. All values mean ± 1SD unless otherwise noted. ∆mRS = mRS at 90 days – prestroke mRS. 

 M1-BASIS 
 All Vascular Territories Anterior Circulation 
 major minor  major minor  
 n = 21 n = 62 p value n = 13 n = 59 p value 
mRS at 90 days  2.9 ± 1.9 1.7 ± 1.3 0.02 3.5 ± 2.1 1.7 ± 1.3 0.002 
∆mRS  2.3 ± 1.8 0.8 ± 1.1 0.001 2.6 ± 2.0 0.8 ± 1.1 < 0.001 
Infarct volume (cm3) 54.4 ± 59.3 6.6 ± 18.3 < 0.001 39.0 ± 51.9 6.8 ± 17.9 0.001 
CBS 6.2 ± 2.2 9.8 ± 0.5 < 0.001 7.7 ± 2.5 9.8 ± 0.5 < 0.001 
BASIS (major/minor) 13 / 0 9 / 50 < 0.001 21 / 0 11 / 51 < 0.001 
CBV ASPECTS 6.6 ± 2.7 9.6 ± 1.1 < 0.001 7.3 ± 2.8 9.6 ± 1.1 < 0.001 
MTT ASPECTS 2.8 ± 1.6 8.5 ± 2.3 < 0.001 4.1 ± 3.1 8.6 ± 2.2 < 0.001 
NCCT ASPECTS 8.0 ± 2.2 9.7 ± 1.0 < 0.001 8.7 ± 2.0 9.7 ± 0.9 0.005 
Admission NIHSS 13.5 ± 4.5 6.9 ± 4.8 < 0.001 15.4 ± 6.7 6.7 ± 4.7 < 0.001 
Gender (female/male) 8 / 5 24 / 35 0.22 13 / 8 27 / 35 0.21 
Age 66.3 ± 15.6 68.5 ± 14.2 0.71 68.8 ± 14.0 68.7 ± 14.2 0.97 

 



Table 5. Binary logistic regression analysis for favorable clinical outcome (mRS ≤2 at 90 days), all 

vascular territories and the anterior circulation. CBV ASPECTS, CBS and BASIS were all significantly 

associated with the clinical outcome with M1-BASIS having the best statistical confidence level in 

predicting of good clinical outcome when all vascular territories were included in the analysis. 

When only anterior circulation strokes were considered, the sum of CBS and CBV ASPECTS (CBSV) 

proved to be the most robust predictor. CI = Confidence Interval, H-L = Hosmer-Lemeshow 

significance, C = C statistic. 

 All Vascular Territories Anterior Circulation  

 
Odds 
ratio CI 95% 

p 
value H-L C 

Odds 
ratio CI 95% 

p 
value H-L C 

CBV ASPECTS > 6 13.3 2.2 - 79.7 0.005 0.51 0.75 15.3 2.4 - 98.8 0.004 0.88 0.79 

CBS > 6 11.6 1.7 - 77.1 0.01 0.36 0.74 25.1 2.6 - 240 0.005 0.16 0.80 

M1-BASIS (minor) 8.7 2.4 - 31.6 0.001 0.92 0.80 7.3 1.5 - 34.0 0.01 0.70 0.78 

BASIS (minor) 3.9 1.2 - 12.9 0.02 0.23 0.74 2.6 0.66 - 10.2 0.17 0.83 0.73 

CBSV > 15 12.1 2.4 - 60.8 0.003 0.48 0.76 16.3 2.7 - 98.8 0.002 0.71 0.80 

NCCT ASPECTS > 7 1.2 0.1 - 13.9 0.89 0.77 0.70 1.5 0.12 - 18.0 0.76 0.82 0.72 

Admission NIHSS 0.87 0.79 - 0.96 0.007 0.86 0.79 0.82 0.71 - 0.94 0.004 0.54 0.85 

Onset-to-treatment time 0.99 0.98 - 1.01  0.29 0.06 0.71 1.01 0.99 - 1.03 0.36 0.21 0.71 

Gender 0.98 0.33 - 2.9 0.97 0.89 0.69 0.73 0.36 - 4.3 0.58 0.38 0.72 

Age 0.95 0.90 - 0.99 0.02 0.89 0.69 0.94 0.89 - 0.99 0.03 0.38 0.72 
 



Table 6. Sensitivities and specificities for detecting good clinical outcome (mRS ≤2 at 90 days) for 

the imaging parameters that achieved statistical significance in the regression analysis. When all 

vascular territories were included in the analysis, CBV ASPECTS was the most sensitive predictor of 

good clinical outcome while BASIS had the best specificity. When only the anterior circulation was 

considered, CBV ASPECTS was the most sensitive and CBSV the most specific predictor. In both 

settings BASIS was significantly less sensitive when compared to all the other parameters. CI = 

Confidence Interval, Se = Sensitivity, Sp = Specificity, Acc = Accuracy. 

 All Vascular Territories  Anterior Circulation  
 Se CI 95% Sp CI 95% Acc  Se CI 95% Sp CI 95% Acc 
CBV ASPECTS > 6 0.96 0.86 - 0.99 0.35 0.15 - 0.61 0.82  0.96 0.85 - 0.99 0.40 0.17 - 0.67 0.83 
CBS > 6 0.93 0.83 - 0.98 0.24 0.09 - 0.48 0.77  0.93 0.82 - 0.98 0.35 0.13 - 0.61 0.76 
CBSV > 15 0.93 0.81 - 0.98 0.41 0.19 - 0.67 0.80  0.92 0.80 - 0.97 0.47 0.22 - 0.73 0.82 
M1-BASIS 0.85 0.73 - 0.92 0.52 0.30 - 0.74 0.77  0.88 0.75 - 0.94 0.40 0.17 - 0.67 0.77 
BASIS 0.70 0.57 - 0.81 0.57 0.34 - 0.77 0.67  0.71 0.58 - 0.82 0.41 0.19 - 0.67 0.66 

 



Figure 1. Receiver-operating characteristic curves for CBSV, CBS and CBV ASPECTS with clinical 

outcome as the state variable. Good clinical outcome was defined as mRS ≤2 at 90 days. AUCCBSV = 

0.72, AUCCBV ASPECTS = 0.70 and AUCCBS = 0.69. 
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Background and purpose: We studied the impact of the location of the thrombus

(internal carotid artery, proximal M1 segment, distal M1 segment, M2 segment, and

M3 segment of the middle cerebral artery) in predicting the clinical outcome of pa-

tients treated with intravenous thrombolytic therapy (<3 h) in a retrospective cohort.

Methods: Anterior circulation thrombus was detected with computed tomography

angiography in 105 patients. Baseline clinical and radiological information was col-

lected and entered into logistic regression analysis to predict favorable clinical out-

come (3-month modified Rankin Scale from 0 to 2 was a primary outcome measure).

Results: Three months after stroke, there was a significant increase in mortality (32%

vs. 3%, P < 0.001) and functional dependency (82% vs. 29%, P < 0.001) in patients

with internal carotid artery or proximal M1 segment of the middle cerebral artery

thrombus compared to a more distal occlusion. In the regression analysis, after

adjusting for National Institutes of Health Stroke Scale, age, sex, and onset-to-

treatment time, the clot location was an independent predictor of good clinical out-

come (P = 0.001) and exhibited dose-response type behavior when moving from a

proximal vessel position to a more distal one. When the location was dichotomized, a

cutoff between the proximal and the distal M1 segments best differentiated between

good and poor clinical outcome (OR = 16.0, 95% CI 3.9–66.2).

Conclusions: The outcome of acute internal carotid artery or proximal M1 segment of

the middle cerebral artery occlusion is generally poor even if treated with intravenous

thrombolysis. Alternative revascularization strategies should be considered. Vascular

imaging at the admission is required to guide this decision.

Introduction

The location and the volume of the thrombus are

independent prognostic factors in acute ischemic stroke

(AIS) with proximal, high-volume clots predicting poor

clinical outcome when compared to distal, low-volume

clots [1–11]. In addition, the location and the volume of

the clot induce limitations to the effectiveness of intra-

venous thrombolysis (IVT) with recombinant tissue

plasminogen activator (rtPA) in dissolving the occlud-

ing thrombus [1–11].

The purpose of our study was to analyze in more

depth the impact of the location of the clot, visualized

in the anterior circulation using computed tomography

angiography (CTA), to the clinical outcome in AIS

patients treated with IVT. We assumed that separating

the M1 segment of the middle cerebral artery (MCA) to

proximal (M1P) and distal (M1D) parts could provide

increased accuracy in predicting the clinical outcome.

We discuss the implications of the anterior clot location

and clinical baseline information in evaluating the

outcomes in an IVT cohort.

Methods

Study population

Our retrospective observational cohort study was ap-

proved by Tampere University Hospital ethics com-

mittee. Altogether, 315 anterior or posterior circulation

AIS patients from January 2004 to December 2007 were

treated with thrombolytic therapy and had a 3-month

follow-up after thrombolysis at the department of

neurology of the Tampere University Hospital. CTA
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had been performed to 285 patients (90%). The

thrombolytic therapy protocol used was similar to the

American Heart Association (AHA) guidelines [12].

Inclusion criteria for the study were acute anterior cir-

culation vessel occlusion confirmed with CTA and

treatment with standard IVT administration scheme.

From 2004 to 2007, intra-arterial interventions were not

performed to anterior circulation occlusions at our

institution.

Participants and variables

Baseline clinical characteristics included age, sex, time

from both symptom onset and imaging to the initiation

of IVT, and stroke clinical risk factors (hypertension,

diabetes, coronary heart disease, atrial fibrillation).

These data were collected from the patient records.

National Institutes of Health Stroke Scale (NIHSS)

score at the time of initiation of the rtPA had been

prospectively stored according to a specific protocol. A

follow-up non-contrast-enhanced computed tomogra-

phy (NCCT) and NIHSS scoring were performed for all

patients 24 h after the administration of the thrombo-

lytic agent. A hemorrhagic complication was considered

symptomatic if there was no notable (>4 points)

improvement in 24 h NIHSS compared to admission

NIHSS. Causative Classification of Stroke (CCS) sys-

tem was used by certified CCS-rater (J.T.S.) to assess

stroke etiology [13]. Modified Rankin Scale (mRS),

scored 3 months after the stroke, was the primary

outcome measure. In the years from 2004 to 2005, the

3-month mRS score was prospectively recorded based

on a follow-up visit to neurologist and from 2006 to

2007 on a phone interview by neurologist. One patient

had not been reached with telephone or by other means.

Death during the primary university hospital episode or

discharge from neurology ward to a rehabilitation

facility was considered to signify unfavorable clinical

outcome at discharge. This status was used as the sec-

ondary outcome measure. The seven (7%) patients who

were discharged temporarily to primary health care

centers only because of adjustment of the warfarin dose

were included to the favorable discharge group along

with patients discharged directly to their homes. All the

prospectively stored clinical data were carefully evalu-

ated (J.T.S.) for possible errors.

Imaging parameters

Computed tomography scans were obtained using two

different multidetector scanners: General Electrics

LightSpeed 16-slice (GE Healthcare, Milwaukee, WI,

USA) and Philips Brilliance 64-slice (Philips, Cleveland,

OH, USA). The imaging procedures and the parameters

used are described in our previous study available on-

line as an open-access article at the website of the

publisher [14].

Image analysis

Non-contrast-enhanced computed tomography (NCCT)

examinations were reviewed using dedicated medical

imaging workstations. The Alberta Stroke Program

Early CT Score (ASPECTS) was assessed from admis-

sion and follow-up NCCT images as described in our

previous article [14]. CTA images were analyzed with

Advantage Workstation version 3.2 (GE Healthcare).

The examinations were reviewed in the order NCCT

and CTA paralleling that of the clinical work flow. The

reviewers were blinded to the clinical data apart from

the side and nature of the acute symptoms. CTA images

were studied by examining the raw data and maximum

intensity projection images.

The location of the clot was recorded based on the

most proximal position of the occlusion. The M1 seg-

ment of the MCA was divided into two parts of equal

length: the proximal and the distal half.

The principles of the Clot Burden Score (CBS)

scoring system have been described in recent studies

[8,9]. The location of the clot was determined, and CBS

was scored independently by two radiologists (N.S. and

A.L.). In cases where the scoring or the assignment

differed, a consensus opinion was agreed on. Intraclass

correlation coefficient (ICC) between a staff radiologist

(N.S) and an experienced neuroradiologist (J.H.) for a

test sample (n = 20) for CBS was 0.87. Cohen�s kappa
for the location of the clot was 0.94.

Statistics

A biostatistician was consulted (H.H.). The data were

analyzed with SPSS version 18 (SPSS Inc., Chicago, IL,

USA). Group comparisons were performed using the

Student t-test, the Chi-squared test, the Fisher exact

test, and the Kruskal–Wallis test. The Bonferroni cor-

rection for multiple comparisons was applied where

necessary. Patients who had 3-month mRS £ 2 or who

were discharged to home from neurology ward were

considered to have experienced favorable clinical out-

come. Binary logistic regression modeling using these

outcome measures as the dependent variable was re-

peated for different variables of interest. NIHSS, age,

sex, time from onset to treatment, and clinical risk

factors were examined as potential confounders and

were tested both in univariate models and with clot

location. The calibration of the models was evaluated

with the Hosmer–Lemeshow test and the discrimination

with the C statistic. Odds ratio (OR) with 95% CI was
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calculated for each covariate. Sensitivity, specificity,

and CI calculations were performed using standard

procedures. The normal and extended McNemar tests

were used to compare the overall diagnostic perfor-

mance, the sensitivities, and the specificities.

Results

Baseline characteristics

Of the 285 patients, 105 (37%) met the inclusion crite-

ria: acute anterior circulation vessel occlusion followed

by IVT. A thrombus was not detected in 142 (50%)

cases, and 38 (13%) patients had a posterior circulation

clot. The first data column of Table 1 summarizes the

baseline characteristics of the study cohort, and the

number of patients with different clot locations is de-

scribed in Fig. 1. The mean onset-to-treatment time

(OTT) was 132 min (SD = 27). There was one patient

(1%) with OTT > 180 min (217 min). The median

time from imaging to the initiation of IVT was 35 min.

The median preictal mRS was 1, and the median

3-month mRS was 2. There were no patients with pre-

ictal mRS > 2 in the study population. At 24 h, a local

hemorrhagic complication or parenchymal hemorrhage

distant to the site of the infarct was detected in seven

out of 105 cases (7%) in NCCT. The hemorrhage was

symptomatic in 5 (5%) cases. According to the 5-sub-

type CCS, large artery atherosclerosis was the etiology

in 23 (22%), cardiac embolism in 55 (52%), and other

uncommon cause in 6 (6%) patients. Twenty-one (20%)

patients had AIS of undetermined cause.

The location of the clot predicts the clinical outcome at

discharge and at 3 months and exhibits a dose-

response type relationship

Three months after stroke (primary outcome), patients

with more proximal clots had worse functional outcome

Table 1 Demographic and baseline characteristics of all patients and by the locus of the thrombus and outcome (mRS) at 3 months after

intravenous thrombolysis

Characteristic

All patients

(n = 105)

mRS £ 2

at day 90

(n = 54)

mRS 3–6

at day 90

(n = 50) P1

Proximal thrombus

(ICA + M1P,

n = 38)

Distal thrombus

(M1D + M2 + M3,

n = 67) P2

Age (y), mean (SD) 68.8 (13.5) 66.4 (13.1) 71.3 (13.6) 0.06 66.0 (15.1) 70.4 (12.3) 0.11

Male sex (%) 60 (57) 32 (59) 28 (56) 0.74 27 (71) 33 (49) 0.03

National Institutes

of Health Stroke Scale

(NIHSS) before

treatment,

median (IQR)

13 (10) 9 (10) 17 (7) <0.001 18 (7) 11 (10) <0.001

NIHSS 24 h after

thrombolysis,

median (IQR)

6 (14) 2 (4) 16 (11) <0.001 15 (10) 3 (7) <0.001

ASPECTS score

at admission CT,

median (IQR)

10 (2) 10 (1) 9 (2) 0.20 9 (3) 10 (2) 0.07

ASPECTS score

at 24 h CT,

median (IQR)

7 (5) 9 (3) 5 (4) <0.001 4 (5) 8 (4) <0.001

Onset-to-treatment

time (min), mean (SD)

132 (27) 133 (26) 129 (29) 0.46 131 (31) 132 (25) 0.85

Hypertension n (%) 69 (65.7) 36 (66.7) 33 (66.0) 0.94 22 (57.9) 47 (70.1) 0.20

Diabetes n (%) 17 (16.2) 6 (11.1) 11 (22.0) 0.13 8 (21.1) 9 (13.4) 0.31

Atrial fibrillation n (%) 41 (39.0) 23 (42.6) 18 (36.0) 0.49 12 (31.6) 29 (43.3) 0.24

Coronary artery

disease n (%)

35 (33.3) 12 (22.2) 23 (46.0) 0.01 16 (42.1) 19 (28.4) 0.15

P1, P value between mRS £ 2 and mRS 3–6 groups; P2, P-value between proximal and distal thrombus groups.

Figure 1 Clinical outcome (3-month mRS) for different clot

locations. Good clinical outcome was defined as mRS £ 2 at

3 months.
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(Fig. 1). There was a significant increase in mortality

(32% vs. 3%, P < 0.001) and functional dependency

(82% vs. 29%, P < 0.001) in patients with an ICA or

M1P occlusion compared to a more distal occlusion.

When adjoining clot locations (ICA-M1P, M1P-M1D,

M1D-M2, M2-M3) were compared in pairs to find

differences in the rate of favorable clinical outcome, the

largest difference in prognosis (2.5 fold) between

adjoining clot locations was found between M1P and

M1D with 24% and 59% having good clinical outcome,

respectively. This was the only difference that proved to

be statistically significant (P = 0.01).

Evaluated at the time of discharge from the neurol-

ogy ward (secondary outcome), seven (7%) patients,

who all had either ICA or M1P occlusion, had died

during the primary hospitalization. Sixty-three (60%)

patients were discharged to a skilled nursing facility or

to a rehabilitation facility. Thirty-five (33%) patients

were discharged to their homes.

Only one patient (6%) within an ICA group and one

patient (5%) within a M1P group were discharged to

home. On the other hand, 13 (45%) patients within a

M1D group, 15 (48%) patients within a M2 group, and

5 (71%) patients within a M3 group had favorable

outcome at discharge. The results for pairwise com-

parisons between adjoining clot locations were similar

to the 3-month outcome with the difference in favorable

outcome between M1P (5%) and M1D (45%) being the

only statistically significant one (P = 0.003).

To further assess the prognostic value of the clot

location, we performed binary logistic regression anal-

ysis using 3-month mRS dichotomized with the

threshold £2 and outcome at discharge (dichotomous)

as the dependent variables (Table 2). When the clot

location was included in the model, OTT, sex, diabetes,

hypertension, atrial fibrillation, and coronary heart

disease, tested one at a time, were not statistically sig-

nificant covariates. Age, NIHSS, sex, and OTT were

kept in the final multivariate regression model and

treated as potential confounders. The latter two vari-

ables were selected only because of theoretical reasons.

The clot location was a highly significant

(P = 0.001) predictor of good clinical outcome even

when the model was adjusted for NIHSS (Table 2).

Interestingly, when tested in the absence of the other,

the clot location resulted in a model fit that was better

than that of NIHSS based on Nagelkerke R2 measure

(0.47 vs. 0.40). Setting ICA as the reference for the clot

location, the odds ratio for good clinical outcome at

3 months exhibited dose-response type behavior when

moving from a proximal vessel position to a more distal

one. The difference between ICA and M1P was not

statistically significant (P = 0.21) whilst the differences

to more distal locations were highly significant

(P = 0.004 for M1D and P = 0.001 for M2 and M3)

implying that the two proximal and the two distal

vessel positions behave differently. The largest differ-

ence (6.5 fold) in the odds ratios of adjoining vessel

positions was between M1P and M1D. The admission

NIHSS score and age significantly predicted the clinical

outcome.

The model was also tested using CBS instead of the

clot location. CBS was an independent predictor

(P < 0.001) having an odds ratio of 1.7 per one point

(95% CI 1.3–2.2). When CBS and the clot location were

added to the model at the same time, both variables

were rendered non-significant.

A cut-off between M1P and M1D best differentiates

between good and poor clinical outcome

To study the context of location-based decision making,

the clot location was dichotomized using three cutoffs:

ICA-M1P, M1P-M1D, and M1D-M2 and M3 com-

Table 2 Logistic regression analysis for favorable clinical outcome

mRS at 3 months £2 (H–L = 0.57, C = 0.90) Discharge to home (H–L = 0.71, C = 0.86)

Odds ratio CI 95% P value Odds ratio CI 95% P value

Clot location – 0.001 – – 0.007

ICA ref ref – ref ref –

M1 Proximal 4.2 0.45–38.2 0.21 0.8 0.04–18.6 0.89

M1 Distal 27.4 2.9–257.9 0.004 31.1 2.3–417.8 0.009

M2 and M3 57.3 6.0–549.0 0.001 26.2 3.3–340.2 0.01

Onset-to-treatment time 1.0 0.98–1.02 0.81 1.0 0.99–1.03 0.52

Sex 0.49 0.15–1.6 0.23 0.86 0.29–2.5 0.77

Age 0.94 0.90–0.98 0.005 0.93 0.89–0.97 0.002

Admission National Institutes

of Health Stroke Scale (NIHSS)

0.82 0.74–0.92 0.001 0.91 0.82–0.99 0.03

H–L, Hosmer–Lemeshow significance; C, C statistic; ref, reference location.

Odds ratios are per minute for onset-to-treatment time, per year for age, and per one point for NIHSS.
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bined. These dichotomized variables were entered into

the regression model one at a time (Table 3). In the case

of the 3-month outcome, ICA-M1P and M1P-M1D

had near equal odds ratios (17.1 vs. 16.0) with the latter

having a narrower 95% CI (2.3–129.5 vs. 3.9–66.2)

whilst the most distal cutoff had a considerably smaller

odds ratio (5.5, 95% CI 1.8–16.8). When the discharge

status was the dependent variable, the cutoffM1P-M1D

yielded the largest odds ratio (31.0, 95% CI 4.5–215.3)

whilst again the most distal cutoff had the smallest odds

ratio (2.5, 95% CI 0.98–6.7, P = 0.07).

Next, sensitivities and specificities for detecting good

clinical outcome were calculated. A clot distal to the

cutoff location constituted a positive test result. The

cutoff M1P-M1D had the highest diagnostic accuracy

(0.75) in predicting good clinical outcome at 3 months

(Table 4). When outcome at the discharge was ana-

lyzed, the cutoff M1D-M2 and M3 combined per-

formed slightly better (0.69 vs. 0.66). This was

attributed to 34 patients (51%) having a M1D or a

more distal thrombus that were discharged into a

rehabilitation facility, whilst 3 months later only 19

(29%) of these patients had mRS £ 2. When the cutoffs

were tested in pairs, the overall diagnostic performance

was significantly different in every pair (P < 0.001 for

each pair). The differences between the sensitivities and

the specificities were all statistically significant

(P < 0.01 for each pair) for both outcome measures

apart from the differences in the sensitivities between

the cutoffs ICA-M1P and M1P-M1D. The differences

in baseline characteristics between groups defined by

the cutoff M1P-M1D are depicted in Table 1.

Discussion

We studied the impact of the location of the clot in

predicting the clinical outcome of patients suffering

from AIS treated with intravenous thrombolytic

therapy. The results showed that the outcome

improved and the mortality decreased consistently

when moving from a proximal to a more distal vessel

position. The odds ratios for good clinical outcome

(3-month mRS £ 2) exhibited corresponding dose-

response type relationship in the logistic regression

analysis with ICA as the reference for the clot loca-

tion. When individual adjoining vessel locations were

tested in pairs, only the difference between M1P and

M1D proved to be statistically significant. After

dichotomization of the clot location, a cut-point be-

tween M1P and M1D was associated with the largest

increase in the odds of favorable outcome compared

to neighboring cut-points and had the highest diag-

nostic accuracy in predicting favorable outcome.

Certain anatomic and pathophysiological factors

conceivably contribute to the last finding. First, the

lenticulostriate arteries, which supply blood to the basal

ganglia, mainly originate from the proximal M1 seg-

ment of MCA. An infarction in this region affects gait,

an important component of functional independence.

Secondly, as the diameter of the MCA vessel increases

toward the proximal segment, the volume of the clot

increases substantially decreasing the effectiveness of

IVT. Moreover, a proximal thrombus has the tendency

to propagate distally, which also increases the total

volume of the clot.

Table 3 Logistic regression analysis for favorable clinical outcome for different dichotomization cutoffs of clot location

Cutoff

mRS at 3 months £2 Discharge to home

Odds ratio CI 95 % P value H–L C Odds ratio CI 95 % P value H–L C

ICA/M1 Proximal 17.1 2.3–129.5 0.006 0.59 0.87 11.2 1.1–118.8 0.04 0.84 0.80

M1 Proximal/M1 Distal 16.0 3.9–66.2 <0.001 0.68 0.89 31.0 4.5–215.3 0.001 0.47 0.87

M1 Distal/M2 and M3 5.5 1.8–16.8 0.003 0.87 0.86 2.5 0.93–6.7 0.07 0.82 0.79

H–L, Hosmer–Lemeshow significance; C, C statistic.

The model was adjusted for age, onset-to-treatment time, sex, and National Institutes of Health Stroke Scale. The proximal vessel location is the

reference.

Table 4 Diagnostic accuracies of different dichotomization cutoffs for clot location in predicting favorable clinical outcome

Cutoff

mRS at 3 months £2 Discharge to home

Se CI 95% Sp CI 95% Acc Se CI 95% Sp CI 95% Acc

ICA/M1 Proximal 0.96 0.86–0.99 0.30 0.18–0.45 0.64 0.97 0.83–1.00 0.23 0.14–0.35 0.48

M1 Proximal/M1 Distal 0.87 0.74–0.94 0.62 0.47–0.75 0.75 0.94 0.79–0.99 0.51 0.39–0.63 0.66

M1 Distal/M2 and M3 0.56 0.41–0.62 0.86 0.73–0.94 0.70 0.57 0.40–0.73 0.74 0.62–0.84 0.69

Se, sensitivity; Sp, specificity; Acc, accuracy.
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Two classification methods based in part on the

location of the clot have been introduced recently

[7–10]. These scoring schemes are correlated with the

clinical outcome. We found that CBS was an indepen-

dent predictor of good clinical outcome and that per-

formed comparably to the clot location. Some studies

have previously addressed the effect of the clot location

on recanalization and the clinical outcome in the

anterior circulation AIS in the context of IVT. Del

Zoppo et al. [1] used DSA to find that the M2 and M3

segments are more likely to undergo recanalization than

the M1 segment and ICA. Saqqur et al. [3] arrived at

similar results in a more recent work utilizing repeated

transcranial Doppler ultrasonography in studying

recanalization and its effect on clinical outcome at

3 months. Different parts of the M1 segment were not

addressed. However, the rate of good outcome at M1P

in our study was comparable to that of the proximal

MCA and M1D to that of the distal MCA in these

studies. Still other studies with more heterogeneous

setups have reported that large vessel occlusions are less

likely to recanalize and predict poor clinical outcome

[2, 5, 6].

An observational study by Mattle et al. [15] com-

pared intra-arterial thrombolysis to IVT in patients

with hyperdense middle cerebral artery sign, a sign of

proximal occlusion of the MCA, and found intra-arte-

rial thrombolysis to be more beneficial. In a recent re-

port, multimodal therapy resulted in the highest

recanalization rates of anterior circulation clots [16].

Moreover, according to a scientific statement from the

American Heart Association, it would be ideal to ob-

tain vascular imaging studies such as CTA to poten-

tially triage patient to primary intra-arterial therapies if

an endovascular team is available and undue delay is

not caused [17]. CTA can also be used to guide bridging

therapy even if immediate IVT is preferred as the

therapy of choice [18]. In our study population,

the rate-limiting step was waiting for the results of the

mandatory laboratory parameters, not the multimodal

CT imaging. Interestingly, the onset-to-treatment time

was not a significant determinant of clinical outcome

(Table 2).

Owing to the retrospective study design, selection

bias is a potential limitation of this study, and data on

vessel recanalization were not available. Even so, a low

ASPECTS score at 24 h NCCT and poor clinical out-

comes are intimately related to delayed or failed

recanalization and can be used as a surrogate.

The results of this study show that the outcome of

acute ICA and proximal M1 segment occlusion is

generally poor even if treated with intravenous throm-

bolysis and that a cut-point between proximal and

distal M1 segment best differentiates between good and

poor clinical outcome and has the highest accuracy in

predicting good clinical outcome. These findings sup-

port the notion that alternative treatment strategies,

primary intra-arterial, or bridging therapy, should be

taken into consideration if the thrombus is located in

the ICA or in the proximal M1 segment. Vascular

imaging at the admission is required to guide this

decision. Verification of these results with prospective

studies is necessary, optimally in a randomized setup.
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Abstract 

Purpose: Perfusion computed tomography (PCT) is increasingly performed in multimodal CT 

evaluation of acute ischemic stroke. We compared the technical quality of perfusion studies 

performed with a 16-row and a 64-row scanner and analyzed the differences between the 

scanners in their ability to detect perfusion defects. 

Methods: We analyzed retrospectively the clinical and imaging data of 140 consecutive acute 

(<3h) stroke patients who underwent multimodal CT evaluation and received intravenous rtPA. 

Alberta Stroke Program Early CT Score (ASPECTS) was assigned to PCT maps. Clinical and imaging 

parameters were compared between the two scanners. 

Results: There were more motion artifacts in the 16-row studies (p=0.04) and the analysis 

software was able to completely correct significantly fewer of these (p<0.001). Both ASPECTS 

levels were optimally covered in only 29% of the 16-row studies whereas in the 64-row studies 

both levels were invariably optimally visualized (p<0.001). This significantly decreased the 

sensitivity of the 16-row scanner to detect perfusion defects in the upper ASPECTS level (p=0.02). 

The 64-row scanner was able to detect more perfusion defects that were located entirely outside 

the ASPECTS regions (p=0.03). There was no significant difference in the 3-month functional 

outcome. 

Conclusions: The 16-row scanner suffered from limited anatomic coverage that decreased the 

sensitivity to detect perfusion defects in the cranial parts of the middle cerebral artery region. The 

16-row studies had poorer technical quality that was in part attributable to higher sampling 

frequency and smaller slice thickness making the imaging more sensitive to small scale movement 

of the patient. 
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Abbreviation key: AIF = arterial input function, ASPECTS = Alberta Stroke Program Early CT Score,  

CBV = cerebral blood volume, MCA = middle cerebral artery, MRI = magnetic resonance imaging, 

MTT = mean transit time, NCCT = non-contrast-enhanced computed tomography, NIHSS = National 

Institutes of Health Stroke Scale, mRS = modified Rankin Scale, PCT = perfusion computed 

tomography, rtPA = recombinant tissue plasminogen activator, VOF = venous output function 

 

Key words: computed tomography perfusion, thrombolytic therapy, stroke 
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Introduction 

Multimodal CT imaging may improve the prognosis of acute stroke patients especially in the 

context of revascularization therapy [1]. The heart of the multimodal approach is the perfusion 

study which allows the detection of the infarct core and the penumbra and the quantification of 

salvageable brain tissue. This can be accomplished with high accuracy and full anatomic coverage 

by using perfusion and diffusion weighted MRI [2-4]. However, the availability of MRI in an acute 

setting is scarce and motion artifacts and length of the study induce limitations. Perfusion CT (PCT) 

has emerged as an alternative to MRI [5-8]. The pathophysiologic information obtained from PCT 

is comparable to that of MRI [9-10]. 

The main disadvantages of PCT are limited craniocaudal (z-axis) anatomic coverage, typically 20 to 

80mm with 16- and 64-row scanners, and insensitivity in detecting lacunar ischemic events [11-

12]. State-of-the-art scanners can achieve whole brain coverage [13], but the bulk of acute stroke 

imaging will be performed with 16- and 64-row scanners for several years to come.  

The impact of using CT scanners of differing detector widths and acquisition protocols in the 

imaging evaluation of stroke has been little studied previously in the context of acute 

revascularization therapy. We reviewed retrospectively the clinical and imaging data of 140 

consecutive acute (<3h) ischemic stroke patients who underwent full multimodal CT assessment 

with either a 64-row or a 16-row scanner and received intravenous thrombolytic therapy. We 

compared the technical quality of the perfusion studies and analyzed the differences in the ability 

to detect perfusion defects between the two scanners. We hypothesized that the 16-row scanner 

might miss information potentially critical to the clinical decision making when compared to the 

64-row scanner. 



5 

 

  

Materials and Methods 

Overview 

We analyzed retrospectively the clinical and imaging data of 140 consecutive patients who were 

admitted to Tampere University Hospital between January 2006 and December 2007 because of 

acute (duration <3h) strokelike symptoms, imaged with non-contrast computed tomography 

(NCCT) and PCT and who subsequently received intravenous recombinant tissue plasminogen 

activator (rtPA) to treat acute ischemic stroke. The patients were scanned with either a 64-row or 

a 16-row scanner located in neighboring rooms. Although the patients were not explicitly 

randomized to be imaged with either scanner, the selection of the scanner was effectively 

random. The decision to administer thrombolytic therapy was based on institutional guidelines 

that did not have PCT derived parameters as exclusion or inclusion criteria at the time. Standard 

intravenous rtPA administration scheme was used: Actilyse (Boehringer-Ingelheim, Ingelheim, 

Germany), total dose 0.9 mg/kg from which 10% given as a bolus and the remaining 90% as a 

continuous infusion for 1h. A follow-up NCCT was performed for all patients 24h after the 

administration of the thrombolytic agent. National Institutes of Health Stroke Scale (NIHSS) was 

assessed at the admission and 24h after the thrombolytic therapy. Modified Rankin Scale (mRS) 

was evaluated preictally and on day 90. The clinical data was stored prospectively to the patient 

records during the hospital stay and on day 90 after the ictus, the latter following a phone 

interview. This data was collected from the patient records and critically reviewed for errors using 

the data available from all medical and related disciplines. The study was approved by (**) 

Hospital ethics committee. 
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Imaging parameters 

CT scans were obtained using two different multidetector scanners:  General Electrics LightSpeed 

16-row (GE Healthcare, Milwaukee, Wis) and Philips Brilliance 64-row (Philips, Cleveland, Oh). 

Brain NCCT was performed using the parameters 120 kV, 430 mAs, collimation 12 x 1.25mm, 

rotation 1.5s (64-row) or 120kV, 320mAs, collimation 16 x 1.25mm, rotation 1s (16-row). 

Contiguous slices were reconstructed to the thickness of 5mm in the whole scanning range (64-

row) or to the thickness of 5mm in the skull base and 7.5mm in the supratentorial region (16-row). 

PCT was performed using the parameters 80kV, 200mAs (effective), collimation 32 x 1.25mm, 

rotation 0.4s (64-row) or 80kV, 200mAs, collimation 8 x 2.5mm, rotation 1s (16-row). 120 slices 

covering a range of 80mm were generated in 55s using a protocol utilizing two alternating table 

positions to increase z-axis coverage, i.e. ‘shuttle mode’ (64-row), or 200 slices covering a range of 

20mm were generated in 50s with a stationary table position (16-row). Contiguous slices were 

reconstructed to the thickness of 10mm (64-row) or to the thickness of 5mm (16-row) at even 

time intervals. The imaging range was positioned so that the Alberta Stroke Program Early CT 

Score (ASPECTS) levels [14] would be covered. The rest of the 80mm range (64-row) was 

positioned both cranial and caudal to the ASPECTS levels with the exact balancing depending on 

the clinical presentation. The contrast agent (Xenetix 350 mgI/ml, Aulnay-sous-Bois, France) was 

administered through an antecubital 18G cannula using a double piston power injector with a flow 

rate of 5ml/s using 60ml of contrast agent followed by a 40ml saline flush. 

 

Image analysis 
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The NCCT examinations were reviewed using dedicated medical imaging workstations. The PCT 

images were analyzed and areas and volumes were measured with Advantage Workstation 

version 3.2 (GE Healthcare). Parametric perfusion maps – mean transit time (MTT) and cerebral 

blood volume (CBV) – were generated with the CT Perfusion 3 software (GE Healthcare) that uses 

a deconvolution based algorithm. The anterior cerebral artery (ACA) was used as a source for the 

arterial input function (AIF) and the region of interest for the venous output function (VOF) was 

positioned in the superior sagittal sinus.  These curves were considered noisy if there was a clear 

dip or spike in the curve potentially affecting the calculations. Minor rippling of the signal, 

although a phenomenon caused by noise sources, was not recorded as noise in this context. 

Persisting poor image quality was corrected when feasible by manually adjusting the parameters 

that control the motion artifact correction algorithm of the software. 

The use of ASPECTS in reporting and quantifying the PCT findings was dictated by the limited 

anatomic coverage of the 16-row scanner and the differing slice thicknesses. ASPECTS offers an 

attracting measure of coverage as it has been designed to reflect most of the volume of the 

middle cerebral artery (MCA) territory. It also has clinical relevance. The principles of ASPECTS 

scoring in NCCT and PCT maps and the evaluation of PCT ASPECTS mismatch (core-penumbra 

mismatch) have been described in previous studies [11, 14-15]. In short, each hemisphere is 

divided to 10 regions in two axial sections at the level of the basal ganglia (the ganglionic level) 

and corona radiata (the supraganglionic level). Each of these regions has a score of one point. This 

point is deducted if the region has ischemic changes. Thus a negative finding yields a score of 10 

and extensive ischemia covering the whole MCA region yields a score of 0. The location of the 

image section closest to a ASPECTS level was considered suboptimal if the location did not exactly 

correspond to the reference level described in the literature [14] but allowed reliable scoring. 
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ASPECTS was considered not interpretable if this section clearly represented a different anatomic 

region, for example the cranial parts of the basal ganglia when evaluating the upper level. 

MTT maps were used to detect tissue at risk and CBV maps were used to approximate the infarct 

core. We adopted a semiquantitative approach where the presence of a perfusion defect was 

determined from color coded maps visually by comparing the appearance of the affected location 

to that of the healthy tissue on the contralateral side. In order to increase the accuracy of the 

measurements and based on theoretical considerations we required that the area measured in the 

visually identified location was larger than 25mm2 with mean MTT>7s (or mean CBV<2.5 mL/100g, 

correspondingly). The technical quality of the study was assessed, the NCCT and PCT ASPECTS 

scores were assigned and the other imaging parameters were evaluated by two radiologists. In 

cases where the findings differed, a consensus was agreed on. These findings were correlated with 

the original report issued by an experienced neuroradiologist and if significant discrepancies were 

present that neuroradiologist was further consulted. The examinations were reviewed in the order 

NCCT first and then PCT paralleling that of the clinical work flow. The reviewers were blinded to 

the clinical data apart from the side and nature of the acute symptoms. Perfusion defect areas and 

final infarct volumes were measured by one radiologist. The boundaries of the affected areas were 

determined visually and absolute value thresholds described above were applied. Volume was 

calculated by multiplying the measured area with the slice thickness. Intraclass correlation 

coefficients (ICC) between a staff radiologist and an experienced neuroradiologist were calculated 

for ASPECTS assignments in a test sample (n=20): ICCNCCT=0.86, ICCMTT=0.79, ICCCBV=0.73 and 

ICCNCCT24h=0.93.  Median interobserver agreement indices for areas and volumes were AREAMTT: 

68%, AREACBV: 90% and VOLUMEINFARCT: 80%. 
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Statistics 

The data was analyzed with SPSS version 18 (SPSS Inc., Chicago, Ill). Patients with mRS≤2 at 90 

days were considered to have experienced good clinical outcome. Group comparisons were 

performed by using the Student t-test, the Mann-Whitney U test, the Chi-squared test and the 

Fisher exact test depending on the variable analyzed. The Bonferroni correction was applied to 

adjust for multiple comparisons. 

 

Results 

Baseline characteristics 

The median age of the patients was 71 years (interquartile range 58-80 years, 45% female). The 

64-row scanner was used to perform the perfusion study with 67 patients (48%). A perfusion 

defect could be detected in the ASPECTS levels in 70 cases (50%). An additional 9 perfusion defects 

were found outside the ASPECTS levels. In total, a perfusion defect could be demonstrated in 56% 

of the PCT studies.  Based on the clinical features and the imaging studies, in 16 of the 140 

patients evaluated (11%) the ischemic episode involved the posterior circulation.  

The median NIHSS score at the admission was 7 (interquartile range 4-12, 54% had NIHSS<8, 13% 

had NIHSS>15) and 24h later the median score was 2. The median mRS was 1 preictally and 2 

three months later. Seventy-seven percent of the patients experienced favorable clinical outcome 

at 90 days (mRS≤2). At 24h a local hemorrhagic complication (HI1, HI2, PH1 or PH2) was detected 

in 5 cases (3.6%) and 4 patients (2.9%) had parenchymal hemorrhage distant to the site of the 

infarct (PHr1 or PHr2).  
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The differences in age, admission NIHSS, prestroke mRS, total infarct volume at 24h, number of 

hemorrhagic complications or onset-to-treatment times were not statistically significant between 

the patients imaged with the 64-row and the ones examined with the 16-row scanner (Table 1). 

Further, the clinical outcome (mRS at 90 days) was not significantly different in these groups. 

There were significantly fewer females in the 16-row group (p=0.02). 

 

Comparison of the technical quality of the perfusion studies 

The 16-row studies suffered in quality because of limited anatomic coverage (20mm vs. 80mm) 

and higher sampling frequency (1/s vs. 0.27/s) that combined with smaller slice thickness (5mm vs. 

10mm) rendered the image acquisition more susceptible to motion artifacts. Six studies out of 140 

(4%) were deemed not reliably interpretable because of severe motion artifacts and/or because 

AIF and/or VOF did not peak during the scan due to hemodynamic or technical reasons (Table 2). 

While all of these studies were performed with the 16-row scanner (p=0.03), there were no 

statistically significant differences between the scanners in AIF or VOF not peaking. However, the 

AIF and the VOF curves were significantly noisier in the 16-row studies (p<0.001). This is in part 

related to the larger number of motion artifacts in the 16-row group (p=0.04). The analysis 

software was able to completely correct significantly fewer of these artifacts in the 16-row group 

(p=0.001). A typical artifact resulting from minute movement (eg. tremor) that was incompletely 

corrected by the software but that did not render the study uninterpretable is demonstrated in 

Figure 1. Both ASPECTS levels were optimally covered in only 29% of the 16-row studies whereas 

in the 64-row studies both levels were optimally included in the imaging volume in every case 

(p<0.001). In 46 of the 16-row studies (63%) only the lower level was optimally covered. ASPECTS 
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could not be reliably assigned for the upper level because of this in 26 cases (34%). There were 2 

cases (3%) where the lower level could not be scored. Suboptimal slice orientation due to 

anteroposterior or lateral tilt was found in 9 studies (6%) with no significant differences between 

the scanners. The 64-row scanner was able to fully or partially visualize also the subtentorial 

compartment significantly more often because of the larger craniocaudal coverage (p<0.001). 

 

Comparison of the perfusion defect detection properties 

There were no statistically significant differences between the scanners in the ASPECTS scores for 

MTT and CBV maps or the ASPECTS mismatch scores (Table 3). Nor were there significant 

differences when the upper and the lower ASPECTS levels were analyzed individually. When the 

ASPECTS regions that were missed by the 16-row scanner because of limited anatomic coverage 

were scored normal and included in the analysis, the average number of regions affected in the 

upper level diminished reflecting decreased sensitivity in the detection. In the case of MTT the 

difference became statistically significant when compared to the 64-row scanner (p=0.02). 

However, there were no significant differences between the scanners in the total MTT and CBV 

scores or the mean and number of ASPECTS mismatches in this setting either.  

There were in total 9 patients (6%) who had perfusion defects that were located entirely outside 

the regions covered by the ASPECTS levels and the volume between the levels (Table 3). Eight of 

them were detected by the 64-row scanner (p=0.03). 

 

Discussion 
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We compared the technical quality of perfusion studies performed with a 16-row and a 64-row 

scanner and analyzed the differences between the scanners in their ability to detect perfusion 

defects in a clinically managed intravenous thrombolytic therapy cohort.  

The 64-row scanner covered 80mm of the z-axis while the 16-row scanner covered 20mm. The 

coverage of the 64-row scanner was increased by alternating the table between two positions. 

This procedure can be utilized also with 16-row scanners resulting in 40-mm-coverage. Another 

method to double the imaging volume is to use two contrast injections and image adjoining 20mm 

ranges separately. While these techniques improve the detection rate of perfusion defects, the 

results are still inferior compared to z-axis ranges larger than 40mm [16, 17].   

The selection of the scanner the patient was imaged with was based on availability or the 

preferences of the imaging nurses performing the scanning procedure when both scanners were 

available. Although the patients were not explicitly randomized to be imaged with either scanner, 

effectively randomization took place as the presence of a selection bias is very unlikely. This is 

reflected by close to equal number of PCT studies performed with the scanners during the 2 years 

and the similarity of other baseline characteristics between the study groups (Table 1). 

The 16-row studies suffered in quality because of limited anatomic coverage that often resulted in 

inadequate visualization of the cranial MCA region evident in the finding that ASPECTS could not 

be assigned to the upper level in one-third (34%) of the studies (Table 2). This led to significantly 

decreased sensitivity in the detection of perfusion defects in the upper level (Table 3). However, 

this has only a mild impact in the overall ASPECTS score as the lower level is weighted considerably 

heavier (7 vs. 3 regions). Further, there were no significant differences in the number and extent 

of perfusion mismatches found (Table 3). The 64-row scanner was able to discover a significantly 
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larger number of perfusion defects entirely outside the volume limited by the ASPECTS levels 

(Table 3). 

Some studies have previously addressed the impact of different z-axis ranges in the detection of 

perfusion defects. Using a 320-row scanner Page et al. found that 160-mm-coverage better 

defined the extent of the infarct core and the penumbra compared to 40-mm-coverage [17]. 

Morhard et al. observed that 20-mm-coverage missed 24.1% of pathological findings when 

compared to 96-mm-coverage [18]. Furtado et al. found that z-axis coverage of 75mm is required 

to reliably detect a perfusion mismatch ratio of 0.5 while 50mm was sufficient when a ratio of 0.2 

is used [16]. Fifty-five mm need to be covered to estimate if more than one-third of the MCA 

region is involved. However, if this coverage is not achieved, rules based on ASPECTS provide 

potential alternatives for excluding patients from thrombolytic therapy [11, 14-15]. Youn et al. 

reported that 80-mm-coverage had significantly higher lesion detection rate compared to 20-mm-

coverage [19]. Our results are in congruence with these previous findings. While all these studies 

had somewhat heterogeneous populations and simulated narrower coverage by selecting ranges 

of larger volumes imaged with one scanner, we studied patients that all received intravenous 

revascularization therapy and compared two scanners with different detection widths. 

The limited coverage of a 16-row device makes the positioning of the perfusion imaging volume a 

crucial factor as small offsets from the optimal placement, minor patient movement after the 

acquisition of the scout image and disadvantageous slice orientation can mean that either of the 

ASPECTS levels escapes visualization. Our institution had 18 months experience in routinely 

performing multimodal stroke evaluations before the study population was imaged so operator 

inexperience probably plays only a minor role. 
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Another quality issue was the movement artifacts that were significantly more abundant and 

severe in the 16-row group (Table 2). This can be mainly attributed to higher sampling frequency 

(1/s vs. 0.27/s) and smaller slice thickness (5mm vs. 10mm) which seems to make the capture of 

small scale periodic patient movements like tremor, swallowing, nodding and minor swinging of 

the head more frequent. This type of movement was poorly corrected by the analysis software. 

While this does not render the study uninterpretable, it introduces inaccuracies to the 

measurement of absolute values of the perfusion parameters. On the other hand, lower sampling 

frequency potentially has this same effect and larger slice thickness may decrease the sensitivity of 

the detection of small perfusion defects because of averaging. Interestingly, the motion artifacts 

often coincided with the arrival of the contrast bolus to the central nervous system emphasizing 

the importance of instructing the patient. 

There was no significant difference in the clinical outcome between the study groups (Table 1). 

This is to be expected as our institutional guidelines on management of stroke did not define any 

role for PCT findings at the time and so the treatment was essentially the same in both groups.   

Our study is limited by retrospective design. There was minor heterogeneity in the details of 

conventional stroke treatment which is to be expected in a clinically managed population. There 

were significantly fewer females in the 16-row group. This can be attributed to chance as no 

selection process that would potentially produce this result could be identified. 

In conclusion, PCT studies performed with the 16-row scanner suffered from limited anatomic 

coverage that decreased the sensitivity to detect perfusion defects in the cranial parts of the MCA 

region when compared to the 64-row scanner. The 16-row studies also had more motion artifacts 

resulting from small scale periodic patient movements possibly due to higher sampling frequency. 
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However, the potential impact of these findings seems to be limited as there were no statistically 

significant differences in the total ASPECTS scores or the number of perfusion mismatches found. 

On the other hand, extensive z-axis coverage allows near comprehensive evaluation of both the 

anterior and the posterior circulation. The possible benefits of the larger z-axis coverage have to 

be balanced with the radiation exposure. 
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Figure 1: A typical artifact in a 16-row study resulting from minute movement that was 

incompletely corrected by the software. The serrated appearance of the contour of the time-

density curve is a result of small scale movement of the head (Panel a). Especially the segments 

where the rate of change of the density is slow are affected. Panel b demonstrates this movement 

between consecutive acquisitions of the same 5mm slice 1s apart in the surroundings of the 

region-of-interest of the AIF positioned in the left anterior cerebral artery. There is minor rotation 

of the head in the axial plane. A typical smooth time-density curve obtained with the 64-row 

scanner is shown in Panel c. 
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Table 1. Baseline characteristics in the 64-row and the 16-row groups. All values mean ± SD or 

number of patients (percentage). 

 64-row (n = 67) 16-row (n = 73) p 

Age 67.1 ± 14.4 70.0 ± 13.7 0.22 

Female gender 37 (55%) 26 (36%) 0.02 

Admission NIHSS  8.4 ± 6.1 8.5 ± 6.0 0.92 

mRS, prestroke  0.6 ± 0.8 0.9 ± 0.8 0.10 

mRS ≤2 at 90 days 51 (76%) 57 (78%) 0.78 

Total infarct volume at 24h (ccm) 23.0 ± 54.2 20.7 ± 42.4 0.77 

Hemorrhagic complication 4 (6%) 4 (5%) 0.90 

Onset-to-treatment time (min) 133 ± 27 131 ± 28 0.74 
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Table 2. Comparison of the technical quality of the perfusion studies. AIF = Arterial Input 

Function, ASPECTS = Alberta Stroke Program Early CT Score, VOF = Venous Output Function. 

 64-row (n = 67) 16-row (n = 73) p 

Both ASPECTS levels optimally covered 67 (100%) 21 (29%) < 0.001 

Motion artifacts 36 (54%) 52 (71%) 0.04 

Incompletely corrected motion artifacts 8 (12%) 33 (42%) 0.001 

Noisy AIF and/or VOF 1 (1%) 28 (38%) < 0.001 

Arterial phase not finished 2 (3%) 4 (5%) 0.68 

Venous phase not finished 5 (7%) 7 (10%) 0.77 

Multiple boluses 0 (0%) 1 (1%) 1.00 

Suboptimal slice orientation 2 (3%) 7 (10%) 0.17 

Subtentorial parenchyma not visualized 1 (1%) 31 (42%) < 0.001 

ASPECTS score not interpretable 0 (0%) 31 (42%) < 0.001 

Study not reliably interpretable 0 (0%) 6 (8%) 0.03 
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Table 3. Comparison of the perfusion defect detection properties. The ‘16-row (n=67)’ column 

heading refers to the inclusion of patients with ASPECTS regions that were missed by the 16-row 

scanner because of limited anatomic coverage. These regions were scored normal. In the n = 42 

population these patients were excluded. p1: 64-row (n=67) vs. 16-row (n=42), p2: 64-row (n=67) vs. 

16-row (n=67). ASPECTS = Alberta Stroke Program Early CT Score, CBV = Cerebral Blood Volume, 

MTT = Mean Transit Time, NCCT = Non-contrast Computed Tomography.  

 64-row (n = 67) 16-row (n = 42) p1 16-row (n = 67) p2 

ASPECTS regions affected    

    MTT lower ASPECTS level (mean ± SD)  1.4 ± 2.0 1.1 ± 1.6 0.74 1.5 ± 2.0 0.74 

    MTT upper ASPECTS level (mean ± SD) 0.9 ± 1.1 0.7 ± 1.1 0.54 0.5 ± 1.0 0.02 

    CBV lower ASPECTS level (mean ± SD) 0.7 ± 1.4 0.5 ± 1.2 0.35 0.6 ± 1.2 0.77 

    CBV upper ASPECTS level (mean ± SD) 0.3 ± 0.7 0.3 ± 0.7 0.87 0.2 ± 0.6 0.25 

ASPECTS score       

    MTT (mean ± SD) 7.8 ± 3.0 8.2 ± 2.6 0.70 7.9 ± 2.8 0.97 

    CBV (mean ± SD) 9.0 ± 1.9 9.2 ± 1.7 0.50 9.0 ± 2.0 0.85 

    NCCT 24h (mean ± SD) 8.3 ± 2.6 8.7 ± 1.9 1.00 8.6 ± 2.1 0.99 

    ASPECTS mismatch (mean ± SD) 1.2 ± 2.0 1.0 ± 1.3 0.98 1.2 ± 2.0 0.92 

Number of patients        

    ASPECTS mismatch present (%) 28 (42%) 19 (45%) 0.72 30 (45%) 0.73 

    Perfusion defect not in ASPECTS regions (%) 8 (12%) 1 (2%) 0.15 1 (1%) 0.03 

    Perfusion mismatches in total (%) 36 (54%) 20 (48%) 0.53 31 (46%) 0.39 
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