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Abstract

In this thesis special issues emerging from insurance companies’ risk management
are considered in four research articles and in a brief introduction to concepts
examined in the articles. The three main topics in the thesis are financial guarantee
insurance, equity-linked life insurance contracts, and mortality modeling.

Common to all of the articles is the utilization of Bayesian methods. With
these the model and parameter uncertainty can be taken into account. As demon-
strated in this thesis, oversimplified models or oversimplified assumptions may
cause catastrophic losses for an insurance company. As financial systems become
more complex, risk management needs to develop at the same time. Thus, model
complexity cannot be avoided if the true magnitude of the risks the insurer faces is
to be revealed. The Bayesian approach provides a means to systematically manage
complexity.

The topics studied here serve a need arising from the new regulatory frame-
work for the European Union insurance industry, known as Solvency II. When
Solvency II is implemented, insurance companies are required to hold capital not
only against insurance liabilities but also against, for example, market and credit
risk. These two risks are closely studied in this thesis. Solvency II also creates a
need to develop new types of products, as the structure of capital reguirements will
change. In Solvency II insurers are encouraged to measure and manage their risks
based on internal models, which will become valuable tools. In all, the product
development and modeling needs caused by Solvency II were the main motivation
for this thesis.

In the first article the losses ensuing from the financial guarantee system of
the Finnish statutory pension scheme are modeled. In particular, in the model
framework the occurrence of an economic depression is taken into account, as
losses may be devastating during such a period. Simulation results show that the
required amount of risk capital is high, even though depressions are an infrequent
phenomenon.

In the second and third articles a Bayesian approach to market-consistent
valuation and hedging of equity-linked life insurance contracts is introduced. The
framework is assumed to be fairly general, allowing a search for new insurance
savings products which offer guarantees and certainty but in a capital-efficient
manner. The model framework includes interest rate, volatility and jumps in the
asset dynamics to be stochastic, and stochastic mortality is also incorporated. Our
empirical results support the use of elaborated instead of stylized models for asset
dynamics in practical applications.

In the fourth article a new method for two-dimensional mortality modeling is
proposed. The approach smoothes the data set in the dimensions of cohort and age
using Bayesian smoothing splines. To assess the fit and plausibility of our models
we carry out model checks by introducing appropriate test quantities.

Key words: Equity-linked life insurance, financial guarantee insurance, hedging,
MCMC, model error, parameter uncertainty, risk-neutral valuation, stochastic
mortality modeling
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1 Introduction

This thesis consists of four research papers which consider specific problems aris-
ing from insurance companies’ risk management. In particular, the papers propose
models and techniques for risk mitigation in financial guarantee insurance, equity-
linked life insurance contracts, and mortality modeling. In all steps throughout the
research articles Bayesian methods are utilized. In this chapter a brief introduc-
tion to risk management in the insurance industry is provided and Chapter 2
introduces Bayesian analysis. Chapter 3 serves as an introduction to derivative
pricing, which is a fundamental cornerstone in Papers II and III. Summaries of
original publications discuss our proposed models in financial guarantee insurance,
equity-linked life insurance policies and mortality modeling.

Risk management has become a matter of fundamental importance in all
sectors of the insurance industry. Various types of risks need to be quantified
to ensure that insurance companies have adequate capital, solvency capital, to
support their risks. Over 30 years ago Pentikäinen (1975) argued that actuar-
ial methods should be extended to a full-scale risk management process. Later
Pentikäinen et al. (1982) and Daykin et al. (1994) suggested that solvency should
be evaluated through numerous sub-problems which jeopardize solvency. These
include, for example, model building, variations in risk exposure and catastrophic
risks.

Better risk management is a focus in the new regulatory framework for the
European Union insurance industry, known as Solvency II, which is expected to
be implemented by the end of 2012 (see European Commission, 2009). At the mo-
ment mainly insurance risks are covered by the EU solvency requirements, which
are over 30 years old. As financial and insurance markets have recently devel-
oped dramatically, wide discrepancy prevails between the reality of the insurance
business and its regulation.

Solvency II is designed to be more risk-sensitive and sophisticated compared
to current solvency requirements. The main improvement consists in requiring
companies to hold capital also against market risk, credit risk and operational
risk. In other words, not only liabilities need to be taken into account, but also, for
example, the risks of a fall in the value of the insurers’ investments, of third parties’
inability to repay their debts and of systems breaking down or of malpractice.
Recent developments in financial reporting (IFRS) and banking supervision (Basel
II) have also undergone similar changes. This thesis focuses on market risk, which
affects equity-linked life insurance policies. In addition, credit risk is studied in
the context of financial guarantee insurance.

Solvecy II will increase the price of more capital-intensive products such as
equity-linked life insurance contracts with capital guarantees. This creates a need
to develop new types of products to fulfill the customer demands for traditional life
contracts but in a capital-efficient manner (Morgan Stanley and Oliver Wyman,
2010). One important objective in this thesis was to address this need.

In Solvency II insurers are encouraged to measure and manage their risks based
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on internal models (see, e.g., Ronkainen et al., 2007). The Groupe Consultatif
defines the internal model in its Glossary on insurance terms as "Risk management
system of an insurer for the analysis of the overall risk situation of the insurance
undertaking, to quantify risks and/or to determine the capital requirement on
the basis of the company specific risk profile." Hence, internal models will become
valuable tools, but are also subject to model risk. A model risk might be caused by
a misspecified model or by incorrect model usage or implementation. In particular,
the true magnitude of the risks the insurer faces may easily go unperceived when
oversimplified models or oversimplified assumptions are used.

As Turner et al. (2010) point out, the recent financial crisis, which started in
the summer of 2007, showed the danger of relying on oversimplified models and
increased the demand for reliable quantitative risk management tools. Generally,
unnecessary complexity is undesirable, but as the financial system becomes more
complex, model complexity cannot be avoided. The Bayesian approach provides
tools to easily extend the analysis to more complex models. Bayesian inference
is particularly attractive from the insurance companies’ point of view, since it is
exact in finite samples. An exact characterization of finite sample uncertainty is
critical in order to avoid crucial valuation errors. Another advantage of Bayesian
inference is its ability to incorporate prior information in the model.

In general, uncertainty in actuarial problems arises from three principal sources,
namely, the underlying model, the stochastic nature of a given model and the pa-
rameter values in a given model (see, e.g., Draper, 1995; Cairns, 2000). To quantify
parameter and model uncertainty in insurance Cairns (2000) has also chosen the
Bayesian approach. His study shows that a contribution to the outcome of the
modeling exercise was significant when taking into account both model and pa-
rameter uncertainty using Bayesian analysis. Likewise Hardy (2002) studied model
and parameter uncertainty using a Bayesian framework in risk management cal-
culations for equity-linked insurance.

In this thesis model and parameter uncertainty is taken into account by fol-
lowing the Bayesian modeling approach suggested by Gelman et al. (2004, Sec-
tion 6.7). They recommend constructing a sufficiently general, continuously para-
metrized model which has models in interest as its special cases. If a generalization
of a simple model cannot be constructed, then model comparison is suggested to
be done by measuring the distance of the data to each of the models in interest.
The criteria which may be used to measure the discrepancy between the data and
the model are discussed in Section 2.

As insurance supervision is undergoing an extensive reform and at the same
time the financial and insurance market is becoming more complex, risk manage-
ment in insurance is required to improve without question. However, more ad-
vanced risk management will become radically more complicated to handle, and
complicated systems have a substantial failure risk in system management. The
focus in this thesis is on contributing statistical models using the Bayesian ap-
proach for insurance companies’ risk management. This approach is chosen since
it provides means to systematically manage complexity. Computational methods
in statistics play the primary role here, as the techniques used require high com-
putational intensity.
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2 Bayesian analysis

Bayesian data analysis provides practical methods for drawing inferences regard-
ing unobserved quantities from a set of data using probability models for both
observed and unobserved quantities. The explicit use of probability to quantify un-
certainty is the essential characteristic of Bayesian methods. Gelman et al. (2004)
divide the process of Bayesian data analysis into three steps:

1. Setting up a full probability model – a joint probability distribution for all
observable and unobservable quantities in the problem. The model should
be consistent with knowledge about the underlying scientific problem and
the data collection process.

2. Conditioning on observed data: calculating and interpreting the appropri-
ate posterior distribution – the conditional probability distribution of the
unobserved quantities of ultimate interest, given the observed data.

3. Evaluating the fit of the model and the implication of the resulting posterior
distribution: does the model fit the data, are the substantive calculations
reasonable, and how sensitive are the results to the modeling assumptions
in step 1? If necessary, one can alter or expand the model and repeat the
three steps.

These three steps are taken in all the articles in this thesis.
In Bayesian inference the name Bayesian comes from the use of the theorem

introduced by the Reverend Thomas Bayes in 1764. Bayes’ theorem gives a solution
to the inverse probability problem, which yields the posterior density:

p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y|θ)

p(y)
,

where θ denotes unobservable parameters of interest and y denotes the observed
data. Further, p(θ) is referred to as the prior distribution and p(y|θ) as the sam-
pling distribution or the likelihood function. Now p(y) =

∑
θ p(θ)p(y|θ) in the case

of discrete θ and p(y) =
∫

p(θ)p(y|θ)dθ in the case of continuous θ. With fixed y
the factor p(y) does not depend on θ and can thus be considered as a constant.
Omitting p(y) yields the unnormalized posterior density

p(θ|y) ∝ p(θ)p(y|θ),

which is the technical core of Bayesian inference.
The prior distribution can be used to incorporate the prior information in the

model. Uninformative prior distributions (for example, uniform distribution) for
parameters can be used in the absence of the prior information or when information
derived only from the data is chosen. The choice of the uninformative prior is
not unique, and hence to some extent controversial. However, the role of prior
distribution decreases and becomes insignificant in most cases as the data set
becomes larger.
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in step 1? If necessary, one can alter or expand the model and repeat the
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introduced by the Reverend Thomas Bayes in 1764. Bayes’ theorem gives a solution
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p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y|θ)

p(y)
,

where θ denotes unobservable parameters of interest and y denotes the observed
data. Further, p(θ) is referred to as the prior distribution and p(y|θ) as the sam-
pling distribution or the likelihood function. Now p(y) =

∑
θ p(θ)p(y|θ) in the case

of discrete θ and p(y) =
∫

p(θ)p(y|θ)dθ in the case of continuous θ. With fixed y
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parameters can be used in the absence of the prior information or when information
derived only from the data is chosen. The choice of the uninformative prior is
not unique, and hence to some extent controversial. However, the role of prior
distribution decreases and becomes insignificant in most cases as the data set
becomes larger.
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2.1 Posterior simulation

In applied Bayesian analysis inference is typically carried out by simulation. This
is due simply to the fact that closed form solutions of posterior distributions exist
only in special cases. Even if the posterior distribution in some complex special
cases were solved analytically, the algebra would become extremely difficult and a
full Bayesian analysis of realistic probability models would be too burdensome for
most practical applications. By simulating samples from the posterior distribu-
tion, exact inference may be conducted, since sample summary statistics provide
estimates of any aspect of the posterior distribution to a level of precision which
can be estimated. Another advantage in simulation is that a potential problem
with model specification or parametrization can be detected from extremely large
or small simulated values. These problems might not be perceived if estimates and
probability statements were obtained in analytical form.

The most popular simulation method in the Bayesian approach is Markov
chain Monte Carlo (MCMC) simulation, which is used when it is not possible or
computationally efficient to sample directly from the posterior distribution. The
MCMC methods have been used in a large number and wide range of applications
also outside Bayesian statistics, and are very powerful and reliable when cautiously
used. A useful reference for different versions of MCMC is Gilks et al. (1996).

MCMC simulation is based on creating a Markov chain which converges to a
unique stationary distribution which is the desired target distribution p(θ|y). The
chain is created by first setting the starting point θ0 and then iteratively drawing
θt, t = 1, 2, 3, . . ., from a transition probability distribution T (θt|θt−1). The key
is to set the transition distribution such that the chain converges to the target
distribution. It is important to run the simulation long enough to ensure that the
distribution of the current draws is close enough to the stationary distribution.
The Markov property of the distributions of the sampled draws is essential when
the convergency of the simulation result is assessed.

Throughout all articles, our estimation procedure is one of the MCMC meth-
ods called a single-component (or cyclic) Metropolis-Hastings algorithm or two
of its special cases, Metropolis algorithm and Gibbs sampler. The Metropolis-
Hastings algorithm was introduced by Hastings (1970) as a generalization of the
Metropolis algorithm (Metropolis et al., 1953). Also the Gibbs sampler proposed
by Geman and Geman (1984) is a special case of the Metropolis-Hastings algo-
rithm. The Gibbs sampler assumes the full conditional distributions of the target
distribution to be such that one is able to generate random numbers or vectors
from them. The Metropolis and Metropolis-Hastings algorithms are more flexi-
ble than the Gibbs sampler; with them one only needs to know the joint density
function of the target distribution with density p(θ) up to a constant of propor-
tionality.

With the Metropolis algorithm the target distribution is generated as follows:
first a starting distribution p0(θ) is assigned, and from it a starting-point θ0 is
drawn such that p(θ0) > 0. For iterations t = 1, 2, . . ., a proposal θ∗ is generated
from a jumping distribution J(θ∗|θt−1), which is symmetric in the sense that
J(θa|θb) = J(θb|θa) for all θa and θb. Finally, iteration t is completed by calculating
the ratio

(2.1) r =
p(θ∗)

p(θt−1)
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and by setting the new value at

θt =

{
θ∗ with probability min(r, 1)
θt−1 otherwise.

Thus, under the Metropolis algorithm, the transition distribution T (θt|θt−1) of
the Markov chain is a mixture of a point mass at θt = θt−1 and the weighted
version of the jumping distribution J(θt|θt−1).

The Metropolis-Hastings algorithm generalizes the Metropolis algorithm by
removing the assumption of symmetric jumping distribution. The ratio r in (2.1)
is replaced by

r =
p(θ∗)/J(θ∗|θt−1)

p(θt−1)/J(θt−1|θ∗)

to correct for the asymmetry in the jumping rule.

In the single-component Metropolis-Hastings algorithm the simulated random
vector is divided into components or subvectors which are updated one by one.
Besides being parameters in the model, these components or subvectors might
also be latent variables in it. If the jumping distribution for a component is its
full conditional posterior distribution, the proposals are accepted with probability
one. In the case where all the components are simulated in this way, the algorithm
is the Gibbs sampler. It can be shown that these algorithms produce an ergodic
Markov chain whose stationary distribution is the target distribution.

It is absolutely necessary to check the convergence of the simulated sequences
to ensure the distribution of the current draws in the process is close enough to
the stationary distribution. In particular, two difficulties are involved in inference
carried out by iterative simulation.

First, the starting approximation should not affect the simulation result under
regularity conditions, which are irreducibility, aperiodicity and positive recurrence.
The chain is irreducible if it is possible to get to any value of the parameter space
from any other value of the parameter space; positively recurrent if it returns to
the specific value of the parameter space at finite times; and aperiodic if it can
return to the specific value of the parameter space at irregular times. By simulating
multiple sequences with starting-points dispersed throughout the parameter space,
and discarding early iterations of the simulation runs (referred to as a burn-in
period), the effect of the starting distribution may be diminished.

Second, the Markov property introduces autocorrelation in the within-sequence.
Aside from any convergence issues, the simulation inference from correlated draws
is generally less precise than that from the same number of independent draws.
However, at convergency, serial correlation in the simulations is not necessarily a
problem, as the order of simulations is in any case ignored when preforming the
inference. The concept of mixing describes how much draws can move around the
parameter space in each cycle. The better the mixing is, the closer the simulated
values are to the independent sample and the faster the autocorrelation approaches
zero. When the mixing is poor, more cycles are needed for the burn-in period as
well as to attain to a given level of precision for the posterior distribution.

To monitor convergency, the variations between and within simulated sequences
are compared until within-variation roughly equals between-variation. Simulated
sequences can only approximate the target distribution when the distribution of
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each simulated sequence is close to the distribution of all the sequences mixed
together.

Gelman and Rubin (1992) introduce a factor by which the scale of the cur-
rent distribution for a scalar estimand ψ might be reduced if the simulation were
continued in the limit n → ∞. Denote the simulation draws as ψij (i = 1, . . . , n;
j = 1, . . . , m), where the length of the sequence is n (after discarding the first
half of the simulations as burn-in period) and the number of parallel sequences
is m. Further, let B and W denote the between- and within-sequence variances,
respectively, computed as

B =
n

m − 1

m∑
j=1

(
ψ̄.j − ψ̄..

)2
, where ψ̄.j =

1

n

n∑
i=1

ψij , ψ̄.. =
1

m

m∑
j=1

ψ̄.j ,

and

W =
1

m

m∑
j=1

s2
j , where s2

j =
1

n − 1

n∑
i=1

(
ψij − ψ̄.j

)2
.

The marginal posterior variance of the estimand can be estimated by a weighted
average of B and W , namely

v̂ar
+

(ψ|y) =
n − 1

n
W +

1

n
B.

Finally, the potential scale reduction is estimated by

R̂ =

√
v̂ar

+
(ψ|y)

W
,

which declines to 1 as n → ∞. If R̂ is high, then proceeding the simulation can
presumably improve the inference about the target distribution of the associated
scalar estimand.

2.2 Model checking

Assessing the fit of the model to the data and to our substantive knowledge is
a fundamental step in statistical analysis. In the Bayesian approach replicated
data sets produced by means of posterior predictive simulation may be used to
check the model fit. In detail, a replicated data set is produced by first generating
the unknown parameters from their posterior distribution and then, given these
parameters, the new data values. Once several replicated data sets yrep have been
produced, they may be compared with the original data set y. If they look similar
to y, the model fits.

The discrepancy between the data and the model may be measured by defining
an arbitrary test quantity which is a scalar summary of parameters and the data.
The value of the test quantity is computed for each posterior simulation using
both original and replicated data sets. The same set of parameters is used in both
cases. If the test quantity depends only on data and not on parameters, then it
is said to be a test statistic. The Bayesian p-value is defined to be the posterior
probability that the test quantity computed from a replication, T (yrep, θ), exceeds
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that computed from the original data, T (y, θ). This test may be illustrated by a
scatter plot of (T (y, θ), T (yrep, θ)), where the same scale is used for both coordi-
nates. Further details on this approach can be found in Chapter 6 of Gelman et al.
(2004) or Chapter 11 of Gilks et al. (1996).

If one wishes to compare the fit of different models, nested or nonnested, over
the same set of data, a deviance D(y, θ) = −2 log p(y|θ) may be used. The ex-
pected deviance – computed by averaging the deviance over the true sampling
distribution – has a connection to the Kullback-Leibler information measure and
is thus a reasonable measure of overall model fit. The model with the lowest
Kullbach-Leibler information and thus the lowest expected deviance has the high-
est posterior probability. To obtain a summary which depends only on y, the
average discrepancy may be used. It is defined as Davg(y) = E(D(y, θ)|y), where
the discrepancy is averaged over the posterior distribution and is estimated as
D̂avg(y) =

∑L
l=1 D(y, θl)/L, where the vectors θl are posterior simulations.

2.3 Computational aspect

In this thesis fairly general and complex models allowed by the Bayesian ap-
proach are used. These models require high computational intensity and thus, the
computational aspects are in the primary role throughout all papers. All the com-
putations in this thesis were performed using the R computing environment (see
R Development Core Team, 2009). A special R library called LifeIns was devel-
oped for computations used in Paper III, and the entire code used in other papers
is available in http://mtl.uta.fi/codes.

In Paper I a Markov regime-switching model or more precisely, a Hamilton
model (Hamilton, 1989), is used to model the latent economic business cycle pro-
cess. The posterior simulations of this model are used as an explanatory variable
in a transfer function model which models the claim amounts of a financial guar-
antee insurance. As the business cycle process is assumed to be exogenous in the
transfer function model, it can be estimated separately. For both models the Gibbs
sampler is used in the estimation. The posterior simulations of the transfer func-
tion model are used to simulate the posterior predictive distribution of the claim
amounts. A number of model checks introduced earlier in this chapter were per-
formed to assess the fit and quality of the models. In particular, both models were
checked by means of data replications, test statistics and residuals. The average
discrepancy was calculated to compare the model fit of the Hamilton against the
AR(2) model, and for competing transfer function models. Further, robustness
and sensitivity analyses were also made.

In Papers II and III the use of the Bayesian approach on pricing and hedging
equity-linked life insurance contracts is particularly attractive, since it can link the
uncertainty of parameters and several latent variables to the predictive uncertainty
of the process. The estimation guidelines provided by Bunnin et al. (2002) are
used in Paper II, and in Paper III the guidelines provided by Jones (1998) are
followed. Metropolis and Metropolis-Hastings algorithms are used to estimate the
unknown parameters of the stock index, volatility and interest rate models as well
as to estimate the latent volatility and jump processes. The major challenge in
estimation is its high dimensionality, which results from the need to estimate latent
processes. In paper III we effectively apply parameter expansion to work out issues
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in estimation. Further, the contract includes an American-style path-dependent
option which is priced using a regression method (see, e.g., Tsitsiklis and Van Roy,
1999). The code also includes valuation of the lower and the upper limit of the
price for such a contract. In Paper III a stochastic mortality is incorporated in
the framework and we construct a replicating portfolio to study dynamic hedging
strategies. In both papers the most time-consuming loops are coded in C++ to
speed up computations.

Paper IV introduces a new two-dimensional mortality model utilizing Bayesian
smoothing splines. Before estimating the model special functions are developed
to form a smaller estimation matrix from the large original data matrix. The
estimation is carried out using Gibbs sampler with one Metropolis-Hastings step.
Two Bayesian test quantities are developed to test the consistency of the model
with historical data. Also the robustness of the parameters as well as the accuracy
and robustness of the forecasts are studied.
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3 Principles of derivative pricing

In Papers II and III methods of financial mathematics, in particular derivative
pricing, are used extensively to price and hedge an equity-linked life insurance con-
tract. Glasserman (2004) describes the three most important principles of deriva-
tive pricing as follows:

1. If a derivative security can be perfectly replicated (equivalently, hedged)
through trading in other assets, then the price of the derivative security is
the cost of the replicating trading strategy.

2. Discounted (or deflated) asset prices are martingales under a probability
measure associated with the choice of discount factor (or numeraire). Prices
are expectations of discounted payoffs under such a martingale measure.

3. In a complete market, any payoff (satisfying modest regularity conditions)
can be synthesized through a trading strategy, and the martingale measure
associated with a numeraire is unique. In an incomplete market there are
derivative securities that cannot be perfectly hedged; the price of such a
deriative is not completely determined by the prices of other assets.

The first principle says the foundation of derivative pricing and hedging, and
introduces a principle of arbitrage-free pricing. Arbitrage is a practice of profiting
by exploiting the price difference of identical or similar financial instruments, on
different markets or in different forms. However, the principle does not give strong
tools to evaluate the price in practice. In contrast, the second principle offers a
powerful tool by decribing how to represent prices as expectations. This leads to
the use of Monte Carlo and other numerical methods.

The third principle describes conditions under which the price of a derivative
is determined. In a complete market all risks which affect derivative prices can be
perfectly hedged. This is attained when the number of driving Brownian motions
of the derivative is less than or equal to the number of instruments used in repli-
cation. However, jumps in asset prices cause incompleteness in that the effect of
discontinuous movements is often impossible to hedge. In Paper II our set-up is in
the complete market, while in Paper III we work in the incomplete market set-up.

Let us describe the dynamics of asset prices St by a stochastic differential
equation

dSt = μ(St, t)Stdt + σ(St, t)StdBt,(3.1)

where Bt is a standard Brownian motion, and μ(St, t) and σ(St, t) are deterministic
functions depending on the current state St and time t. These dynamics describe
the empirical dynamics of asset prices under a real world probability measure P.
We may introduce a risk-neutral probability measure Q which is a particular choice
of equivalent martingale measure to P. These equivalent probability measures
agree as to which events are impossible.
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of the derivative is less than or equal to the number of instruments used in repli-
cation. However, jumps in asset prices cause incompleteness in that the effect of
discontinuous movements is often impossible to hedge. In Paper II our set-up is in
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Let us describe the dynamics of asset prices St by a stochastic differential
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dSt = μ(St, t)Stdt + σ(St, t)StdBt,(3.1)

where Bt is a standard Brownian motion, and μ(St, t) and σ(St, t) are deterministic
functions depending on the current state St and time t. These dynamics describe
the empirical dynamics of asset prices under a real world probability measure P.
We may introduce a risk-neutral probability measure Q which is a particular choice
of equivalent martingale measure to P. These equivalent probability measures
agree as to which events are impossible.
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The asset dynamics under the risk-neutral probability measure may be ex-
pressed as

dSt = rStdt + σ(St, t)StdBo
t ,(3.2)

where Bo
t is a standard Brownian motion under Q and r is a constant risk-free

interest rate. The processes (3.1) and (3.2) are consistent if dBo
t = dBt + νtdt

for some νt satisfying μ(St, t) = r + σ(St, t)νt. It follows from the Girsanov The-
orem (see, e.g., Glasserman, 2004, Appendix B) that the measures P and Q are
equivalent if they are related through a change of drift in the driving Brownian
motion. To employ a model of the form (3.2) is simpler than a model of the form
(3.1), because the drift can be set equal to the risk-free rate rather than to a
potentially complicated drift in (3.1). Further, under P and Q the diffusion terms
σ(St, t) must be the same. This is important from the estimation point of view,
since the parameters describing the dynamics under the risk-neutral measure may
be estimated based on the real-world data.

The derivative pricing equation

Vt = exp (−r(T − t)) E
Q

(VT ) , t < T,(3.3)

expresses the current price of the derivative Vt as the expected terminal value VT

discounted at the risk-free rate r. The expectation must be taken under Q. Here Vt

is European-style derivative, meaning it can be exercised only on the expiration
date. However, in this thesis we have utilized American-style derivatives which
can be exercised at any time. In articles II and III it is explained how this type of
derivative is priced.

Equation 3.3 is the cornerstone of derivative pricing by Monte Carlo simulation.
Under Q the discounted price process S̃t = exp(−rt)St is a martingale. If the
constant risk-free rate r is replaced with a stochastic rate rt, the pricing formula
continues to apply and we can express the formula as

Vt = E
Q

⎛⎝exp

⎛⎝−
T∫

t

rsds

⎞⎠ VT

⎞⎠ .

In Paper II we utilize the constant elasticity of variance (CEV) model intro-
duced by Cox and Ross (1976) to model the equity index process. This generalizes
the geometric Brownian motion (GBM) model, which underlies the Black-Scholes
approach to option valuation (Black and Scholes, 1973). Although a generaliza-
tion, the CEV process is still driven by one source of risk, so that option valuation
and hedging remain straightforward.

In the case of a stochastic interest rate, we assume the Chan-Karolyi-Longstaff-
Sanders (CKLS) model (see Chan et al., 1992), which generalizes several com-
monly used short-term interest rate models. Now there are two stochastic pro-
cesses which affect the option valuation and hedging. Perfect hedging would now
require two different hedging instruments, but in Paper III we have ignored the
risk arising from the stochastic interest rate and used only one instrument to
hedge.
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The dynamics of the stock index St and the riskless short-term rate rt are
described by the following system of SDEs:

dSt = μStdt + νS1−α
t dB

(1)
t ,

drt = κ(ξ − rt)dt + σrγ
t dB

(2)
t ,

with B
(1)
t and B

(2)
t two standard Brownian motions, correlated through B

(1)
t =

ρB
(2)
t +

√
1 − ρ2B

(3)
t , where B

(2)
t and B

(3)
t are independent standard Brownian

motions under P.
In Paper III we allow not only the interest rate but also the volatility and

jumps in the asset dynamics to be stochastic. For a stochastic interest rate and
volatility we assume a square-root diffusion referred to as the Cox-Ingersoll-Ross
(CIR) model (Cox et al., 1985). The dynamics of stock index St, variance Vt and
riskless short-term rate rt are assumed to be described by the following system of
SDEs:

d log St = μdt +
√

VtdB
(1)
t + Utdqt

dVt = (α1 + β1Vt)dt + σV

√
VtdB

(2)
t

drt = (α2 + β2rt)dt + σr

√
rtdB

(3)
t ,

where B
(1)
t , B

(2)
t and B

(3)
t are standard Brownian motions, and qt is a jump

process with jump size Ut. We further assume that these Brownian motions have
the correlation structure

Cor
(

B
(1)
t , B

(2)
t , B

(3)
t

)
=

⎛⎝ 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎞⎠ ,

and qt is a Poisson process with intensity λ, that is, Pr(dqt = 1) = λdt and
Pr(dqt = 0) = 1 − λdt. Conditional on a jump occurring, we assume that Ut ∼
N(a, b2). In addition, we assume that qt is uncorrelated with Ut or with any other
process.

Euler discretization is used in the estimation of the unknown parameters for all
the models, since the transition densities of the multivariate processes described
above do not have a closed form solution. Accordingly, the simulation is carried
out using the discretized risk-neutral process.

In paper III examine dynamic hedging strategies to control for various risks by
utilizing a replicating portfolio. We study hedges in which only a single instrument
(i.e., the underlying stock index) is employed, in particular, a partial delta-neutral
hedge and a minimum-variance hedge. Delta-neutral hedging is a trading strategy
where the number of shares in the replication portfolio is given by

NS
t =

∂Vt(St)

∂St

=̇ Δ
(S)
t ≥ 0,

where Vt(St) is the value of the derivative at time t. Here it should be noted that
the only source of risk arises from St. Delta-neutral hedge is employed to the
model introduced in Paper II.
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Minimum-variance hedging relies on the underlying asset as a single hedging
instrument and we follow the work of Bakshi et al. (1997) when deriving the hedge.
When the minimum-variance hedge is employed the variance of a hedging error
is minimized. This type of hedge can also take into account risks arising from
asset volatility and jumps. Hence, we employ the hedge for the model introduced
in Paper III. However, even this type of single-instrument hedge can only be
partial. Nonetheless, as argued by Ross (1997), such factors as untraded risks,
model misspecification or transaction costs make this type of hedge more feasible
compared to a perfect delta-neutral hedge.
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Summaries of original publications

I. Financial guarantee insurance

Financial guarantee insurance covers a lender from losses due to the default or
delinquency of the borrower. It is a country-specific business, since there are dif-
ferences in laws and regulations (see, e.g., Swiss Re, 2006). In Paper I a specific
financial guarantee insurance administrated by the Finnish Centre for Pensions
(FCfP) is considered. The special feature of the statutory earnings-related pension
scheme in the private sector is that client employers have a legal right to rebor-
row a specific amount of pension payments. In order to use this right, clients are
obliged to take out a guarantee to secure these so-called premium loans.

Losses in financial guarantee insurance may reach catastrophic dimensions for
several years when a country experiences an economic depression. During that
time the number of claims may be extraordinarily high and, more importantly,
the proportion of excessive claims may be much higher than in usual periods. A
mild and short downturn in the national economy increases the losses suffered
by financial guarantee insurers only moderately, whereas severe downturns are
crucial. Hence, financial guarantee insurance is characterized by long periods of
low loss activity punctuated by short severe spikes. This indicates that the eco-
nomic business cycle, and in particular depressions, should be incorporated into
the modeling framework.

To model financial guarantee insurance we propose a simple transfer function
model where a dichotomic business cycle model is incorporated. The latent busi-
ness cycle is modeled with a Markov regime-switching model, or more precisely
a Hamilton model, where the two states represent the depression period state
and its complement state consisting of both boom and mild recession periods. We
use the Finnish real GNP to estimate the business cycle. The prediction of claim
amounts is obtained by posterior predictive simulation, and based on predictions,
the requisite premium and initial risk reserve are determined.

The results in Paper I reveal that an economic depression constitutes a sub-
stantial risk to financial guarantee insurance. A guarantee insurance company
should incorporate the business cycle covering a depression period in its risk man-
agement policy and when adjusting the premium and the risk reserve. According
to our analysis the pure premium level based on the gross claim process should
be at minimum 2.0%. Moreover, our analysis shows the 95% value at risk for a
five-year period to be 2.3 − 2.9 times the five-year premium. The corresponding
75% value at risk is only 0.17 − 0.29 times the five-year premium. Thus, a finan-
cial guarantee insurer should have a fairly substantial risk reserve in order to get
through a long-lasting depression. Moreover, reinsurance contracts are essential in
assessing the risk capital needed.

23

Summaries of original publications

I. Financial guarantee insurance

Financial guarantee insurance covers a lender from losses due to the default or
delinquency of the borrower. It is a country-specific business, since there are dif-
ferences in laws and regulations (see, e.g., Swiss Re, 2006). In Paper I a specific
financial guarantee insurance administrated by the Finnish Centre for Pensions
(FCfP) is considered. The special feature of the statutory earnings-related pension
scheme in the private sector is that client employers have a legal right to rebor-
row a specific amount of pension payments. In order to use this right, clients are
obliged to take out a guarantee to secure these so-called premium loans.

Losses in financial guarantee insurance may reach catastrophic dimensions for
several years when a country experiences an economic depression. During that
time the number of claims may be extraordinarily high and, more importantly,
the proportion of excessive claims may be much higher than in usual periods. A
mild and short downturn in the national economy increases the losses suffered
by financial guarantee insurers only moderately, whereas severe downturns are
crucial. Hence, financial guarantee insurance is characterized by long periods of
low loss activity punctuated by short severe spikes. This indicates that the eco-
nomic business cycle, and in particular depressions, should be incorporated into
the modeling framework.

To model financial guarantee insurance we propose a simple transfer function
model where a dichotomic business cycle model is incorporated. The latent busi-
ness cycle is modeled with a Markov regime-switching model, or more precisely
a Hamilton model, where the two states represent the depression period state
and its complement state consisting of both boom and mild recession periods. We
use the Finnish real GNP to estimate the business cycle. The prediction of claim
amounts is obtained by posterior predictive simulation, and based on predictions,
the requisite premium and initial risk reserve are determined.

The results in Paper I reveal that an economic depression constitutes a sub-
stantial risk to financial guarantee insurance. A guarantee insurance company
should incorporate the business cycle covering a depression period in its risk man-
agement policy and when adjusting the premium and the risk reserve. According
to our analysis the pure premium level based on the gross claim process should
be at minimum 2.0%. Moreover, our analysis shows the 95% value at risk for a
five-year period to be 2.3 − 2.9 times the five-year premium. The corresponding
75% value at risk is only 0.17 − 0.29 times the five-year premium. Thus, a finan-
cial guarantee insurer should have a fairly substantial risk reserve in order to get
through a long-lasting depression. Moreover, reinsurance contracts are essential in
assessing the risk capital needed.

23



II & III. Equity-linked life insurance contracts

Papers II and III describe in detail how the Bayesian framework is applied to value
and hedge an equity-linked life insurance contract. The contract is defined to have
fairly general features, in particular, an equity-linked bonus, an interest rate guar-
antee for the accumulated savings, a downside protection and a surrender (early
exercise) option. These properties make the contract a path-dependent American-
style derivative which we price in a stochastic, market-consistent framework.

We denote the amount of savings in the insurance contract at time ti by A(ti).
Its growth during a time interval of length δ = ti+1 − ti is given by

log
A(ti+1)

A(ti)
= g δ + b max

(
0, log

X(ti+1)

X(ti)
− g δ

)
,(3.3)

where X(ti) =
∑q

j=0 S(ti−j)/(q +1) is a moving average of the total return equity
index S(ti). Further, g is the guarantee rate dependent on the riskless short-term
interest rate and b is the bonus rate, the proportion of the excessive equity index
yield returned to the customer.

The price of an option depends on the assumption of the model describing the
behaviour of the underlying instrument. In our framework the price is assumed
to depend on an equity index and a riskless short-term interest rate. We assume
these to follow a fairly complex stochastic process, and furthermore, the price to
depend on the path of the underlying asset. As a closed form solution for the price
does not exist, we use Monte Carlo simulation methods (see, e.g., Glasserman,
2004).

In Paper II we utilize the constant elasticity of variance (CEV) model intro-
duced by Cox and Ross (1976) to model the equity index process, and for the
stochastic interest rate, we assume the Chan-Karolyi-Longstaff-Sanders (CKLS)
model (see Chan et al. (1992)). In Paper III we allow not only the interest rate but
also the volatility and jumps in the asset dynamics to be stochastic. For stochastic
interest rate and volatility we assume a square-root diffusion referred to as the
Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985).

As our contract is a path-dependent American-style option, an optimal exercis-
ing strategy needs to be found. It is attained by finding a stopping time maximizing
the expected discounted payoff of the option. The decision to continue is based
on comparing the immediate exercise value with the corresponding continuation
value. We use the regression approach in pricing (see, e.g., Tsitsiklis and Van Roy,
1999), in which the continuation value is expressed as a linear regression of the dis-
counted future value on known functions of the current state. The sample paths
needed in the method are simulated using the posterior predictive distribution
under risk-neutral dynamics, as suggested by Bunnin et al. (2002).

In Paper II we introduce a method to evaluate a fair bonus rate b such that the
risk-neutral price of the contract is equal to the initial investment. The problem of
determining b is a kind of inverse prediction problem, and we need to estimate the
option values for various values of b. Since we also wish to estimate the variance of
the Monte Carlo error related to the regression method, we repeat the estimation
several times for fixed values of b. A scatter plot is produced from the values of the
bonus rates and the option price estimates, and a third-degree polynomial curve
is fitted to the data. Thereafter we solve the bonus rate b for which the option
price is equal to 100, which we assume to be the initial amount of savings.
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These types of insurance policies involve not only risks arising from financial
factors, but also a risk related to mortality. With a stochastic mortality model
we do not need to make an assumption of a large insurance portfolio, and we
avoid invoking the law of large numbers. This again is significant from the risk
management point of view. In Paper II we ignore the risk from mortality and
interpret the policy-holder as surviving until the maturity of the contract. The
model thus provides an upper bound for insurance liabilities. However, in Paper
III stochastic mortality is incorporated in the framework.

In Paper III we also study dynamic hedging strategies to control for vari-
ous risks by utilizing a replicating portfolio. As a hedging strategy we employ
minimum-variance hedging, which relies on the underlying asset as a single hedg-
ing instrument. This type of hedge is needed, since a perfect delta-neutral hedge is
not feasible due to untraded risks. However, a single-instrument hedge can only be
partial, since in our set-up there is more than one source of risk. We also construct
a conventional delta-neutral hedge which uses a simpler model for asset dynamics,
and compare the performance of the hedges.

The most important finding in Papers II and III is the following. When pric-
ing equity-linked life insurance contracts, the model risk should be incorporated
in the insurance company’s risk management framework, since the use of an un-
realistic model might lead to catastrophic losses. In particular, different model
choices imply significant differences in bonus rates. There is a difference in bonus
rate estimate even when fixing the index model and using either a stochastic or
a fixed interest rate model, but only when the initial interest rate is exception-
ally low or high. However, including stochastic mortality has only a slight effect
on the estimated bonus rate. Moreover, we assessed the accuracy of the bonus
rate estimates. Although the confidence interval of the bonus rate was in some
cases fairly long, the spread between the estimate and the lower confidence limit
was reasonably small. This is a good result, since the insurance company would
probably set the bonus rate close to its lower limit in order to hedge against the
liability.

The hedging performances of the minimum-variance hedge and the delta-
neutral hedge turned out to be similar. Probably the effect of the imperfectness of
single-instrument hedging is vanishingly small compared to other sources of error.
Such are, for example, discretization errors and estimation errors of the deltas
obtained with the regression method. Our study showed that the most significant
factor producing large hedging errors is the duration of the contract. In contrast,
the mortality and updating interval of the hedge have only a minor effect on
hedging performance.

Our results suggest the following two-step procedure to choose a sensible bonus
rate: first, the theoretical fair bonus rate is determined, and second, it is adjusted
so that the Value at Risk (VaR) of the hedging error becomes acceptable for the
insurance company.
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IV. Mortality modeling

Mortality forecasting is a problem of fundamental importance for the insurance
and pensions industry, and in recent years stochastic mortality models have be-
come popular. In Paper IV we propose a new Bayesian method for two-dimensional
mortality modeling which is based on natural cubic smoothing splines. Compared
to other splines approaches, this approach has the advantage that the number of
knots and their locations do not need to be optimized. Our method also has the
advantage of allowing the cohort data set to be imbalanced, since more recent
cohorts yield fewer observations. In our study we used Finnish mortality data for
females, provided by the Human Mortality Database.

Let us denote the logarithms of observed death rates as ykt = log(mkt) for
ages k = 1, 2, ..., K and cohorts (years of birth) t = 1, 2, ..., T . The observed death
rates are defined as

mkt =
dkt

ekt

,

where dkt is the number of deaths and ekt the person years of exposure. In our
preliminary set-up we model the observed death rates, while in our final set-up we
model the theoretical, unobserved death rates μkt. Specifically, we assume that

dkt ∼ Poisson(μktekt),

where dkt is the number of deaths at age k for cohort t, μkt is the theoretical death
rate (also called intensity of mortality or force of mortality) and ekt is the person
years of exposure. This is an approximation, since neither the death rate nor the
exposure is constant during any given year.

To smooth and predict logarithms of unobserved death rates, we fit a smooth
two-dimensional curve θ(k, t), and denote its values at discrete points as θkt.
Smoothing is carried out in the dimensions of cohort and age, and the smoothing
effect is obtained by giving a suitable prior distribution for θ(k, t).

We perform a number of model checks and follow the mortality model selection
criteria provided by Cairns et al. (2008) to assess the fit and plausibility of our
model. The checklist is based on general mortality characteristics and the ability
of the model to explain historical patterns of mortality. The Bayesian framework
allows us to easily assess parameter and prediction uncertainty using the poste-
rior and posterior predictive distributions, respectively. By introducing two test
quantities we may assess the consistency of the model with historical data.

We find that our proposed model meets the mortality model checklist fairly
well, and is thus a notable contribution to stochastic mortality modeling. A minor
drawback is that we cannot use all available data in estimation but must restrict
ourselves to a relevant subset. This is due to the huge matrices involved in com-
putations when many ages and cohorts are included in the data set. However, this
problem can be alleviated using sparse matrix computations. Besides, for practical
applications the use of "local" data sets should be sufficient.
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an economic depression (i.e., deep recession). This indicates that the economic business cycle, and in
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insurance. A Markov regime-switching model is used to predict the frequency and severity of future
depression periods. The claim amounts are predicted using a transfer functionmodelwhere the predicted
growth rate of the real GNP is an explanatory variable. The pure premium and initial risk reserve are
evaluated on the basis of the predictive distribution of claim amounts. Bayesian methods are applied
throughout the modelling process. For example, estimation is based on posterior simulation with the
Gibbs sampler, andmodel adequacy is assessed by posterior predictive checking. Simulation results show
that the required amount of risk capital is high, even though depressions are an infrequent phenomenon.
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1. Introduction

A guarantee insurance (surety insurance) is typically required
when there is doubt as to the fulfilment of a contractual, legal
or regulatory obligation. It is designed to protect some public or
private interest from the consequences of a default or delinquency
of another party. Financial guarantee insurance covers losses from
specific financial transactions. Due to differences in laws and
regulations guarantee insurance is a country-specific business (see,
for example, Sigma (2006)).

When a country experiences an economic depression (that
is, deep recession), losses in financial guarantee insurance may
reach catastrophic dimensions for several years. During that time
the number of claims may be extraordinarily high and, more
importantly, the proportion of excessive claims may be much
higher than in usual periods (see, for example, Romppainen (1996)
and Sigma (2006)). As the future growth of the economy is
uncertain, it is important to consider the level of uncertainty one
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can expect in the future claim process. A mild and short downturn
in the national economy increases the losses suffered by financial
guarantee insurers only moderately, whereas severe downturns
are crucial. History knows several economic depressions. These
include the Great Depression in the 1930s,WorldWars I and II, and
the oil crisis in the 1970s. More recently, the Finnish experience
from the beginning of the 1990s and the Asian crisis in the late
1990s are good examples. An interesting statistical approach in
analyzing the timing and effects of the Great Depression is the
regime switching method presented in Coe (2002).

There is no single ‘‘best practice’’ model for credit risk capital
assessment (Alexander, 2005). The main approaches are structural
firm-value models, the option-theoretical approach, rating-based
methods, macroeconomic models and actuarial loss models. In
contrast to market risk, there has been little detailed analysis of
the empirical merits of the various models. A review of commonly
used financial mathematical methods can be found for example
in McNeil et al. (2005). Since we here study special guarantee
loans, so-called premium loans,which are not traded in Finland,we
adopt an actuarial approach. More specifically, wemodel the claim
process of financial guarantee insurance in the economic business
cycle context. However, this approach is also demanding, since a
depression is a particularly exceptional event.
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We build on the following three studies of the financial guar-
antee system of the Finnish pension scheme. Rantala and Hietikko
(1988) modelled solvency issues by means of linear models, their
main objective being to test methods for specifying bounds for the
solvency capital. The linear method combined with data not con-
taining any fatal depression period – Finland’s depression in the
early 1990s struck after the articlewas published–underestimated
the risk. Romppainen (1996) analyzed the structure of the claim
process during the depression period. Koskinen and Pukkila (2002)
also applied the economic cycle model. Their simple model gives
approximate results but lacks sound statistical grounding. We use
modern statistical methods which offer advantages for assessing
uncertainty.

From the methodological point of view, we adopt the Bayesian
approach, recommended for example by Scollnik (2001). Simpli-
fied models or simplified assumptions may fail to reveal the true
magnitude of the risks the insurer faces. While undue complexity
is generally undesirable, theremay be situationswhere complexity
cannot be avoided. Best et al. (1996) explain how Bayesian analy-
sis can generally be used for realistically complex models. An ex-
ample of concrete modelling is provided by Hardy (2002), who ap-
plies Bayesian techniques to a regime-switchingmodel of the stock
price process for riskmanagement purposes. Another example can
be found in Smith and Goodman (2000), who present models for
the extreme values of large claims and use modern techniques of
Bayesian inference. Here, Bayesian methods are used throughout
the modelling process. For example, estimation is based on pos-
terior simulation with the Gibbs sampler, and model adequacy is
assessed by posterior predictive checking. The proposed actuarial
model is used for simulation purposes in order to study the effect
of the economic cycle on the requisite pure premium and initial
risk reserve.

We apply the Markov regime-switching model to predict
the frequency and severity of depression periods in the future.
Prediction of claim amounts is made using a transfer function
model where the predicted growth rate of the real GNP is an
explanatory variable. More specifically, we utilize the business
cycle model introduced by Hamilton (1989). In this method, all the
dating decisions or,more correctly, the probabilities that particular
time periods will be recession periods, are based on observed data.
The method assumes that there are two distinct states (regimes)
in the business cycle – one for expansion and one for recession –
which are governed by a Markov chain. The stochastic nature of
GNP growth depends on the prevailing state.

Financial guarantee insurance is characterized by long periods
of low loss activity, punctuated by short severe spikes (see Sigma
(2006)). As such, conventional dichotomic business models are
inadequate, since severe recessions constitute the real risk. We
propose amodel where the two states represent (1) the depression
period state and (2) its complement state consisting of both
boom and mild recession periods. We use Finnish real GNP data
to estimate our model. The claim data are from the financial
guarantee insurance system of the Finnish pension scheme.
Combining a suitable business cyclemodel with a transfer function
model provides a new way to analyze the solvency of a financial
guarantee provider with respect to claim risk.

The paper is arranged as follows. In Section 2 the Finnish credit
crisis in the 1990s is described. Section 3 introduces the business
cycle model and Section 4 presents the transfer function model
and predictions. Model checks are presented in Section 5. Section 6
concludes.

2. The Finnish experience in the 1990s

During the years 1991–1993 Finland’s GNP dropped by 12%. The
period was inevitably harmful to all sectors of the economy and

society as a whole. However, the injuries suffered in the insurance
sectorwere onlymoderate, at least comparedwith the problems of
the banking sector at the same time. An important exception was
financial guarantee insurance related to the statutory earnings-
related pension scheme in the private sector. At a general
level, Norberg (2006) describes the risk for pension schemes under
economic and demographic developments.

The administration of the statutory earnings-related pension
scheme of the private sector is decentralized to numerous
insurance companies, company pension funds and industry-wide
pension funds. The central body for the pension scheme is the
Finnish Centre for Pensions (FCfP). The special feature of the
pension scheme is that client employers have a legal right to
reborrow a specific amount of pension payments. The loans are
called premium loans. In order to use this right, clients are obliged
to take a guarantee to secure the loans. FCfP administrated a
special financial guarantee insurance for this purpose. Competitive
alternatives were the requirement of safe collateral, guarantee
insurance from another insurance company, or a bank guarantee.
The claim event was a failure of the borrowing employer to fulfil
his commitment. Amore detailed description of the case of the FCfP
can be found in Romppainen (1996).

The business was initiated in 1962, and continued successfully
until Finland was hit by depression in the 1990s. The consequent
losses reached catastrophic dimensions, and the financial guaran-
tee insurance activity of the FCfP was closed. Claims paid by the
FCfP are shown in Fig. 1. As may also be seen from this figure, the
claim recoveries after the realization process of collaterals has typ-
ically been about 50%. The cost losses were levied on all employ-
ers involved in the mandatory scheme and hence, pension bene-
fits were not jeopardized. Subsequently the FCfP’s run-off portfolio
was transferred to a new company named ‘‘Garantia’’.

In order to promote the capital supply, the FCfP was under a
legal obligation to grant financial guarantee insurance to client
employers. It therefore employed fairly liberal risk selection and
tariffs, which probably had an influence on the magnitude of
the losses. Hence, the data reported by Romppainen (1996) and
used here cannot be expected, as such, to be applicable in other
environments. The riskswould be smaller in conventional financial
guarantee insurance, which operates solely on a commercial basis.

It is interesting to note that there are also, at present,
similar problems in the USA. The corresponding US institute
is the Pension Benefit Guaranty Corporation (PBGC), a federal
corporation created by the Employee Retirement Income Security
Act of 1974. It currently protects the pensions of nearly 44 million
American workers and retirees in 30,330 private single-employer
and multiemployer defined benefit pension plans. The Pension
Insurance Data Book (2005) (page 31) reveals that total claims on
the PBGC have increased rapidly from about 100 million dollars
in 2000 to 10.8 billion dollars in 2005. This increase cannot be
explained by nation-wide depression, but may be related to the
problems of special industry sectors (for example aviation).

3. National economic business cycle model

Our first goal is to find a model by which we can forecast
the growth rate of the GNP. We will use annual Finnish real
GNP data from 1860 to 2004, provided by Statistics Finland.
We are particularly interested in the frequency and severity of
depression periods. For this purpose we will utilize the Markov
regime-switching model introduced by Hamilton (1989). The
original Hamilton model envisages two states for the business
cycle: expansion and recession. In our situation, however, it is
more important to detect depression, since this is the phase
when financial guarantee insurance will suffer its most severe
losses. We will therefore define the states in a slightly different
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We build on the following three studies of the financial guar-
antee system of the Finnish pension scheme. Rantala and Hietikko
(1988) modelled solvency issues by means of linear models, their
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solvency capital. The linear method combined with data not con-
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early 1990s struck after the articlewas published–underestimated
the risk. Romppainen (1996) analyzed the structure of the claim
process during the depression period. Koskinen and Pukkila (2002)
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approximate results but lacks sound statistical grounding. We use
modern statistical methods which offer advantages for assessing
uncertainty.
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We apply the Markov regime-switching model to predict
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in the business cycle – one for expansion and one for recession –
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sectorwere onlymoderate, at least comparedwith the problems of
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financial guarantee insurance related to the statutory earnings-
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alternatives were the requirement of safe collateral, guarantee
insurance from another insurance company, or a bank guarantee.
The claim event was a failure of the borrowing employer to fulfil
his commitment. Amore detailed description of the case of the FCfP
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3. National economic business cycle model

Our first goal is to find a model by which we can forecast
the growth rate of the GNP. We will use annual Finnish real
GNP data from 1860 to 2004, provided by Statistics Finland.
We are particularly interested in the frequency and severity of
depression periods. For this purpose we will utilize the Markov
regime-switching model introduced by Hamilton (1989). The
original Hamilton model envisages two states for the business
cycle: expansion and recession. In our situation, however, it is
more important to detect depression, since this is the phase
when financial guarantee insurance will suffer its most severe
losses. We will therefore define the states in a slightly different
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Fig. 1. The total amount of claims paid from the financial guarantee insurance by the Finnish Centre for Pensions between 1974 and 2004. The lower dark part of the bar
describes the final loss after recoveries from collaterals and reinsurance by December 2006.

way in our application. Specifically, we use a two-state regime-
switching model in which the first state covers both expansion
and recession periods and the second depression. Our estimation
results correspond to this new definition, since depression periods
are included in our data set. By contrast, Hamilton used quarterly
US data from 1951 to 1984, which do not include years of
depression.

The Hamilton model may be expressed as yt = α0 + α1st + zt ,
where yt denotes the growth rate of the real GNP at time t , st
the state of the economy and zt a zero-mean stationary random
process, independent of st . The parameters α0 and α1 and the state
st are unobservable and must be estimated. A simple model for zt
is an autoregressive process of order r , denoted by zt ∼ AR(r). It is
defined by the equation zt = φ1zt−1 + φ2zt−2 + · · · + φr zt−r + εt ,
where εt ∼ N(0, σ 2

ε ) is an i.i.d. Gaussian error process. After some
initial analysis, we found that AR(2) was sufficient to capture the
autocorrelation of zt , and we therefore used it in estimation. The
growth rate at time t is calculated as yt = log(GNPt)−log(GNPt−1).

We define the state variable st to be 0, when the economy is
in expansion or recession, and 1, when it is in depression. The
transitions between the states are controlled by the first-order
Markov process with transition probabilities

Pr(st+1 = 0|st = 0) = p,

Pr(st+1 = 1|st = 0) = 1 − p,

Pr(st+1 = 0|st = 1) = 1 − q,

Pr(st+1 = 1|st = 1) = q.

Thus, the transition matrix is given by

P =
(

p 1 − p
1 − q q

)
.

The stationary probabilities π = (π0, π)′ of the Markov chain
satisfy the equations π′P = π′ and π′1 = 1, where 1 = (1, 1)′.

The Hamilton model was originally estimated by maximizing
the marginal likelihood of the observed data series yt . The
probabilities of the states were then calculated conditional on
these maximum likelihood estimates. The numerical evaluation
was made by a kind of nonlinear version of the Kalman filter. By
contrast, we use Bayesian computation techniques throughout, the
advantage being that we need not rely on asymptotic inference,
and the inference on the state variables is not conditional on
parameter estimates. The Hamilton model will be estimated using
the Gibbs sampler introduced by Geman and Geman (1984) in the

context of image restoration. Examples of Gibbs sampling can be
found in Gelfand et al. (1990) and Gelman et al. (2004). Carlin et al.
(1992) provide a general approach to its use in nonlinear state-
space modelling.

Gibbs sampling, also called alternating conditional sampling,
is a useful algorithm for simulating multivariate distributions,
for which the full conditional distributions are known. Let us
assume that we wish to simulate the random vector θ =
(θ1, θ2, . . . , θp) whose subvectors θi have known conditional
distributions p(θi|θ(−i)), where θ(−i) = (θ1, . . . θi−1, θi+1, . . . θp).
In each iteration theGibbs sampler goes through θ1, θ2, . . . , θp and
draws values from their conditional distributions p(θi|θ(−i))where
the conditioning subvectors have been set at their most recently
simulated values. It can be shown that this algorithm produces an
ergodic Markov chain whose stationary distribution is the desired
target distribution of θ. In Bayesian inference one can use the Gibbs
sampler to simulate the posterior distribution, if one is able to
generate random numbers or vectors from all the full conditional
posterior distributions.

To simplify some of the expressions, we will use the following
notation: y = (y1, y2, . . . , yT )

′, s = (s1, s2, . . . , sT )
′ and

zt−1 = (zt−1, zt−2, . . . , zt−r)
′. Furthermore, we denote the vector

of autoregressive coefficients by φ = (φ1, φ2, . . . , φr)
′ and the

vector of all parameters by η = (α0, α1, φ
′, σ 2

ε , p, q)′. Using these
notations the density of y, conditional on s and the parameters η,
can be written as

p(y|s, η)=
T∏

t=1

1√
2πσ 2

ε

exp

(
− 1

2σ 2
ε

(yt − α0 − α1st − φ′zt−1)
2

)
.

In order to facilitate computations, we assume that the prior
distributions are independent, and are given as follows:

p ∼ Beta(αp, βp),

q ∼ Beta(αq, βq),

p(φ) ∝ 1,

p(α0) ∝ 1,

p(σ 2
ε ) ∝ 1

σ 2
ε

,

p(α1) ∝ N(α1|μ0, σ
2
0 ) × I(α1 < −0.03).

We obtained noninformative prior distributions for p and q by
specifying as prior parameters αp = βp = αq = βq = 0.5. These
values correspond to the Jeffreys uninformative prior distribution
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Fig. 1. The total amount of claims paid from the financial guarantee insurance by the Finnish Centre for Pensions between 1974 and 2004. The lower dark part of the bar
describes the final loss after recoveries from collaterals and reinsurance by December 2006.
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switching model in which the first state covers both expansion
and recession periods and the second depression. Our estimation
results correspond to this new definition, since depression periods
are included in our data set. By contrast, Hamilton used quarterly
US data from 1951 to 1984, which do not include years of
depression.

The Hamilton model may be expressed as yt = α0 + α1st + zt ,
where yt denotes the growth rate of the real GNP at time t , st
the state of the economy and zt a zero-mean stationary random
process, independent of st . The parameters α0 and α1 and the state
st are unobservable and must be estimated. A simple model for zt
is an autoregressive process of order r , denoted by zt ∼ AR(r). It is
defined by the equation zt = φ1zt−1 + φ2zt−2 + · · · + φr zt−r + εt ,
where εt ∼ N(0, σ 2

ε ) is an i.i.d. Gaussian error process. After some
initial analysis, we found that AR(2) was sufficient to capture the
autocorrelation of zt , and we therefore used it in estimation. The
growth rate at time t is calculated as yt = log(GNPt)−log(GNPt−1).

We define the state variable st to be 0, when the economy is
in expansion or recession, and 1, when it is in depression. The
transitions between the states are controlled by the first-order
Markov process with transition probabilities

Pr(st+1 = 0|st = 0) = p,

Pr(st+1 = 1|st = 0) = 1 − p,

Pr(st+1 = 0|st = 1) = 1 − q,

Pr(st+1 = 1|st = 1) = q.

Thus, the transition matrix is given by

P =
(

p 1 − p
1 − q q

)
.

The stationary probabilities π = (π0, π)′ of the Markov chain
satisfy the equations π′P = π′ and π′1 = 1, where 1 = (1, 1)′.

The Hamilton model was originally estimated by maximizing
the marginal likelihood of the observed data series yt . The
probabilities of the states were then calculated conditional on
these maximum likelihood estimates. The numerical evaluation
was made by a kind of nonlinear version of the Kalman filter. By
contrast, we use Bayesian computation techniques throughout, the
advantage being that we need not rely on asymptotic inference,
and the inference on the state variables is not conditional on
parameter estimates. The Hamilton model will be estimated using
the Gibbs sampler introduced by Geman and Geman (1984) in the

context of image restoration. Examples of Gibbs sampling can be
found in Gelfand et al. (1990) and Gelman et al. (2004). Carlin et al.
(1992) provide a general approach to its use in nonlinear state-
space modelling.

Gibbs sampling, also called alternating conditional sampling,
is a useful algorithm for simulating multivariate distributions,
for which the full conditional distributions are known. Let us
assume that we wish to simulate the random vector θ =
(θ1, θ2, . . . , θp) whose subvectors θi have known conditional
distributions p(θi|θ(−i)), where θ(−i) = (θ1, . . . θi−1, θi+1, . . . θp).
In each iteration theGibbs sampler goes through θ1, θ2, . . . , θp and
draws values from their conditional distributions p(θi|θ(−i))where
the conditioning subvectors have been set at their most recently
simulated values. It can be shown that this algorithm produces an
ergodic Markov chain whose stationary distribution is the desired
target distribution of θ. In Bayesian inference one can use the Gibbs
sampler to simulate the posterior distribution, if one is able to
generate random numbers or vectors from all the full conditional
posterior distributions.

To simplify some of the expressions, we will use the following
notation: y = (y1, y2, . . . , yT )

′, s = (s1, s2, . . . , sT )
′ and

zt−1 = (zt−1, zt−2, . . . , zt−r)
′. Furthermore, we denote the vector

of autoregressive coefficients by φ = (φ1, φ2, . . . , φr)
′ and the

vector of all parameters by η = (α0, α1, φ
′, σ 2

ε , p, q)′. Using these
notations the density of y, conditional on s and the parameters η,
can be written as

p(y|s, η)=
T∏

t=1
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exp

(
− 1
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(yt − α0 − α1st − φ′zt−1)
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)
.

In order to facilitate computations, we assume that the prior
distributions are independent, and are given as follows:

p ∼ Beta(αp, βp),

q ∼ Beta(αq, βq),

p(φ) ∝ 1,

p(α0) ∝ 1,

p(σ 2
ε ) ∝ 1

σ 2
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,

p(α1) ∝ N(α1|μ0, σ
2
0 ) × I(α1 < −0.03).

We obtained noninformative prior distributions for p and q by
specifying as prior parameters αp = βp = αq = βq = 0.5. These
values correspond to the Jeffreys uninformative prior distribution
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in the standard Bernoulli model. We also carried out a sensitivity
analysis, using informative priors with parameters αp = 19, βp =
3; αq = βq = 11. These values correspond to the idea that the
chain has switched to state 1 in 2 out of 20 prior cases when it has
been in state 0 and has switched to state 0 in 10 out of 20 prior
cases when it has been in state 1. By this choice of priors we could
increase the probability of state 1, so that it would correspond to
our concept of depression.

For α0, φ and σ 2
ε we gave improper, noninformative prior

distributions. The prior of σ 2
ε is equivalent to giving a uniform

improper prior for log(σ 2
ε ) and is a common choice for positive-

valued parameters. The prior distribution of α1 prevents it from
obtaining a positive value (that is, the state can then be interpreted
as a depression state). Here, the notation N(α1|μ0, σ

2
0 ) refers to

the Gaussian density with mean μ0 and variance σ 2
0 and I(α1 <

−0.03) the indicator function obtaining the value 1, ifα1 < −0.03,
and 0, otherwise. The cut-off point −0.03 was chosen to draw a
clear distinction between the states of the model and also to speed
upposterior simulation. If the differencewas allowed to be smaller,
the iteration process was substantially slowed. We specified the
values μ0 = −0.1, σ 2

0 = 0.22 as prior parameters, which results
in a fairly noninformative prior distribution.We also experimented
here with an informative alternative μ0 = −0.05, σ 2

0 = 0.0252,
which reduces the difference between the states and increases the
probability of state 1. The results were similar to those obtained
when informative priors were given to p and q.

All full conditional posterior distributions are needed to
implement the Gibbs sampler. They can be found in Appendix A.
The computations were performed and figures produced using
the R computing environment (see http://www.r-project.org). The
functions and data needed to replicate the results of this article can
be found at http://mtl.uta.fi/codes/guarantee.

In Fig. 2, one simulated chain produced by the Gibbs sampler is
shown. Aswill be seen, the chain converges rapidly to its stationary
distribution, and the component series of the chain mix well, that
is, they are not excessively autocorrelated. The summary of the
estimation results, based on three simulated chains, as well as
Gelman and Rubin’s diagnostics (Gelman et al., 2004) are given in
Appendix B. The values of the diagnostic are close to 1 and thus
indicate good convergence.

4. Prediction of claim amounts

Our ultimate goal is to predict the pure premium and the
required amount of risk capital needed for the claim deviation.
The claim data were obtained from FCfP (see Section 2) and the
years included in this study are 1966–2004. The claim amounts are
predicted using the following simple regression model:

xt = β0 + β1xt−1 + β2yt + ut , (1)

where xt = G−1(x∗
t ), x

∗
t is the proportion of gross claim amount to

technical provision at time t , G−1 is some strictly increasing and
continuously differentiable link function transforming the open
unit interval (0, 1) to (−∞, ∞), yt is the growth rate of theGNPand
ut ∼ N(0, σ 2

u ) is an i.i.d. Gaussian error process, independent of yt .

Note that G−1 can be interpreted as an inverse of some distribution
function. The parameters β0, β1, β2 and σ 2

u are unknown and are
estimated. Note that the assumptions on ut imply that yt is an
exogenous process in the regression model, and, consequently,
this model and the Hamilton model can be estimated separately.
Moreover, the posterior predictive distribution of xt , t = T+1, T+
2, . . ., can be easily simulated using the posterior simulations ofβ0,
β1, β2 and σ 2

u and the posterior predictive simulations of yt .

The model xt = β0 +β1xt−1 +β2yt + ut may also be expressed
in the form

xt = β0

1 − β1

+ β2

1 − β1B
yt + 1

1 − β1B
ut

= β0

1 − β1

+ β2(yt + β1yt−1 + β2
1yt−2 + · · ·)

+ ut + β1ut−1 + β2
1ut−2 + · · · ,

from which one can see that it is a transfer function model
(also called a dynamic regression model). We have not done
general transfer function modelling here, but in more complicated
situations it might be appropriate. A useful reference in this
context is Pankratz (1991).

Since the density of xt is normal, the density of x∗ =
(x∗

1, x
∗
2, . . . , x

∗
T ), conditional on y = (y1, y2, . . . , yT ) and the

parameters, is of the form

p(x∗|y, β, σ 2
u ) =

T∏
t=1

1

g(xt)

1√
2πσ 2

× exp

(
− 1

2σ 2
u

(xt − β0 − β1xt−1 − β2yt)
2

)
,

where g(x) = d
dx
G(x).

In the following, we will consider the cases where G is the
distribution function of the standard normal distribution (probit
link), the standard logistic distribution (logit link) or Student’s t-
distribution with ν degrees of freedom (t link). When using the
t link we did not specify the degrees of freedom parameter ν,
but estimated it from the data. We used two alternative prior
distributions for ν. For other parameters we used uninformative
prior distributions except that we restricted β1 to be less than 1 in
order to ensure that the estimated model for xt is stationary. The
prior distributions are as follows:

p1(ν) = 1

200
, ν = 1, 2, . . . , 200,

p2(ν) ∝ 1

ν
, ν = 1, 2, . . . , 200,

p(β, σ 2
u |ν) ∝ 1

σ 2
u

× I(β1 < 1),

where I(β1 < 1) is an indicator function obtaining the
value 1 when β1 < 1, and 0 otherwise. The conditional
posterior distributions needed in Gibbs sampling are presented in
Appendix C.

For comparison, we also estimated the models using probit and
logit links. Theprobit link is defined as xt = Φ−1(x∗

t ), whereΦ−1(.)
denotes the inverse function of the standard normal distribution
function. The probit link can be regarded as a limiting case of the
t link, as ν → ∞. The logit link is defined as xt = logit(x∗

t ) =
log(x∗

t /(1 − x∗
t )). It does not correspond exactly to the t link with

any ν, but in the value range of the original data set it approximates
the t link with ν = 14.

The premium P and the initial risk reserve are evaluated
from the posterior predictive distribution of the proportions of
claim amount to technical provision. For simplicity, the technical
provision is set at 1 in the prediction. The predicted proportions
x∗
t are then the same as the predicted claim amounts. We denote
the predicted claim amount at time t on sample path i by x∗

it . The
premium is set at an overall mean of x∗

it over all iterations i =
1, 2, . . . , n and predicted time periods t = T +1, T +2, . . . , T +h,

that is, P = ∑n
i=1

∑T+h
t=T+1 x

∗
it/(nh). The balance at time t on sample

path i is given by bit = P(t − T ) − ∑t
j=T+1 x

∗
ij . For all simulations

i we evaluate the minimum balance bmin
i = mint bit . These values
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and 0, otherwise. The cut-off point −0.03 was chosen to draw a
clear distinction between the states of the model and also to speed
upposterior simulation. If the differencewas allowed to be smaller,
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here with an informative alternative μ0 = −0.05, σ 2

0 = 0.0252,
which reduces the difference between the states and increases the
probability of state 1. The results were similar to those obtained
when informative priors were given to p and q.

All full conditional posterior distributions are needed to
implement the Gibbs sampler. They can be found in Appendix A.
The computations were performed and figures produced using
the R computing environment (see http://www.r-project.org). The
functions and data needed to replicate the results of this article can
be found at http://mtl.uta.fi/codes/guarantee.

In Fig. 2, one simulated chain produced by the Gibbs sampler is
shown. Aswill be seen, the chain converges rapidly to its stationary
distribution, and the component series of the chain mix well, that
is, they are not excessively autocorrelated. The summary of the
estimation results, based on three simulated chains, as well as
Gelman and Rubin’s diagnostics (Gelman et al., 2004) are given in
Appendix B. The values of the diagnostic are close to 1 and thus
indicate good convergence.

4. Prediction of claim amounts

Our ultimate goal is to predict the pure premium and the
required amount of risk capital needed for the claim deviation.
The claim data were obtained from FCfP (see Section 2) and the
years included in this study are 1966–2004. The claim amounts are
predicted using the following simple regression model:

xt = β0 + β1xt−1 + β2yt + ut , (1)

where xt = G−1(x∗
t ), x

∗
t is the proportion of gross claim amount to

technical provision at time t , G−1 is some strictly increasing and
continuously differentiable link function transforming the open
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u ) is an i.i.d. Gaussian error process, independent of yt .

Note that G−1 can be interpreted as an inverse of some distribution
function. The parameters β0, β1, β2 and σ 2

u are unknown and are
estimated. Note that the assumptions on ut imply that yt is an
exogenous process in the regression model, and, consequently,
this model and the Hamilton model can be estimated separately.
Moreover, the posterior predictive distribution of xt , t = T+1, T+
2, . . ., can be easily simulated using the posterior simulations ofβ0,
β1, β2 and σ 2

u and the posterior predictive simulations of yt .
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from which one can see that it is a transfer function model
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situations it might be appropriate. A useful reference in this
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Since the density of xt is normal, the density of x∗ =
(x∗

1, x
∗
2, . . . , x

∗
T ), conditional on y = (y1, y2, . . . , yT ) and the

parameters, is of the form

p(x∗|y, β, σ 2
u ) =

T∏
t=1

1

g(xt)

1√
2πσ 2

× exp

(
− 1

2σ 2
u

(xt − β0 − β1xt−1 − β2yt)
2

)
,

where g(x) = d
dx
G(x).

In the following, we will consider the cases where G is the
distribution function of the standard normal distribution (probit
link), the standard logistic distribution (logit link) or Student’s t-
distribution with ν degrees of freedom (t link). When using the
t link we did not specify the degrees of freedom parameter ν,
but estimated it from the data. We used two alternative prior
distributions for ν. For other parameters we used uninformative
prior distributions except that we restricted β1 to be less than 1 in
order to ensure that the estimated model for xt is stationary. The
prior distributions are as follows:

p1(ν) = 1

200
, ν = 1, 2, . . . , 200,

p2(ν) ∝ 1

ν
, ν = 1, 2, . . . , 200,

p(β, σ 2
u |ν) ∝ 1

σ 2
u

× I(β1 < 1),

where I(β1 < 1) is an indicator function obtaining the
value 1 when β1 < 1, and 0 otherwise. The conditional
posterior distributions needed in Gibbs sampling are presented in
Appendix C.

For comparison, we also estimated the models using probit and
logit links. Theprobit link is defined as xt = Φ−1(x∗

t ), whereΦ−1(.)
denotes the inverse function of the standard normal distribution
function. The probit link can be regarded as a limiting case of the
t link, as ν → ∞. The logit link is defined as xt = logit(x∗

t ) =
log(x∗

t /(1 − x∗
t )). It does not correspond exactly to the t link with

any ν, but in the value range of the original data set it approximates
the t link with ν = 14.

The premium P and the initial risk reserve are evaluated
from the posterior predictive distribution of the proportions of
claim amount to technical provision. For simplicity, the technical
provision is set at 1 in the prediction. The predicted proportions
x∗
t are then the same as the predicted claim amounts. We denote
the predicted claim amount at time t on sample path i by x∗

it . The
premium is set at an overall mean of x∗

it over all iterations i =
1, 2, . . . , n and predicted time periods t = T +1, T +2, . . . , T +h,

that is, P = ∑n
i=1

∑T+h
t=T+1 x

∗
it/(nh). The balance at time t on sample

path i is given by bit = P(t − T ) − ∑t
j=T+1 x

∗
ij . For all simulations

i we evaluate the minimum balance bmin
i = mint bit . These values
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Fig. 2. Iterations of the Gibbs sampler.

Fig. 3. Simulation results for the balance of guarantee insurance. The solid and dashed lines indicate the 95% and 99% values at risk, respectively, and the dotted lines 50
example paths. The simulation results based on the probit, t (with two different prior distributions) and logit links are shown.

constitute the simulated minimum balance distribution, which is
used to evaluate 95% and 75% values at risk and to predict the
required amount of risk capital.

The distribution of the minimum balance is extremely skewed,
which can be explained by the rareness of depression and by
the huge losses incurred for guarantee insurance once depression
hits. This phenomenon can be seen from Fig. 3, which shows the
95% and 99% values at risk (VaR) evaluated from the five-year
balance prediction for all the link functions. Noninformative prior
distributions were used in estimating the Hamilton model. The
solid and dashed lines indicate 95% and 99% VaRs, respectively.
The curves indicating the 95% VaR differ from each other only
moderately, while there is a major difference in the 99% VaR.

The logit link gives the steepest slope, the probit link the most
gentle, and the t link with the two different priors something
between these two. These differences can be explained by the
curvature of the distribution functions related to the links. These
distributions differ considerably in the left tail area, where the
original observations are being mapped.

Extensive simulations (10000000 iterations) were carried out
to evaluate the pure premium and the 95% and 75% VaRs for
the prediction period of five years. The results are presented in
Table 1. The pure premium level ranges from 2.0% to 2.8%. The
95% VaR ranges from 2.3 to 2.9 times the five-year premium and
the 75% VaR from 0.17 to 0.29 times the five-year premium. These
results were obtained when noninformative prior distributions
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Fig. 4. The growth rate of the GNP and the probabilities of depression, estimated using two different kinds of prior information. The uppermost part of the figure corresponds
to the case where noninformative prior distributions are used for all parameters and the undermost part that where informative prior distributions are used for p and q.

Table 1
Simulation results of the premium P , the 95% and 75% values at risk proportional to
five-year premium and the average discrepancy for a transfer function model with
different links

P 95% VaR 75% VaR D̂avg(x
∗)

Probit link 1.96 2.28 0.288 −336.43
t link, prior 1 2.05 2.36 0.272 −335.98
t link, prior 2 2.17 2.45 0.250 −335.33
Logit link 2.76 2.91 0.173 −331.74

were used in estimating the Hamilton model. When informative
prior distributions were used, the results did not substantially
change.

5. Model checks for the Hamilton model and the transfer
function model

We made some sensitivity analyses with respect to the
prior distributions related to the Hamilton model. We found
that by using informative prior distributions for the transition
probabilities p and qwe could increase the estimated probabilities
of state 1, so as to correspond better to its interpretation as
depression. This can be seen from Fig. 4, where the growth rate
of the GNP is shown along with the probabilities of depression,
estimated using two different kinds of prior information. The same
goal was achieved by giving an informative prior for α1. However,
these adjustments did not markedly affect the estimated premium
or values at risk. According to the posterior predictive checks,
the model with noninformative prior distributions appeared to be
somewhat better. However, themodelwith informative priorswas
also sufficiently good.

The residuals of theHamiltonmodel appeared to be normally or
nearly normally distributed. In fact, our data set had one positive
outlier which caused rejection of a normality test. This was due
to the fact that the model does not include a regime for the strong
boomperiods of the economy. However, it is not necessary tomake

the model more complicated by introducing a third regime, since
positive outliers are extremely rare and it was sufficient for our
purpose to model the depression periods.

The fit of a model can be checked by producing replicated data
sets by means of posterior predictive simulation. A replicated data
set is produced by first generating the unknownparameters (and in
the case of the Hamiltonmodel also the states) from their posterior
distribution and then, given these parameters, the newdata values.
One can simulate distributions of arbitrary test statistics under
the checked model by calculating the test statistics from each
replicated data set. Then one can compare these distributions
with the statistics of the original data set. This approach to model
checking is well explained in Chapter 6 of Gelman et al. (2004).

We generated 5000 replicates of the GNP data under the
Hamilton model, and from them calculated some basic statistics.
The resulting distributions were consistent with the observed
statistics, as can be seen from Fig. 5. Only the maximum value
of the original data set is extreme with respect to its simulated
posterior distribution. This value is nonetheless plausible under
the simulated model, that is, the Hamilton model. We also made a
similar test for the simpler linear AR(2) model by producing 5000
replicates. The resulting distributions, as seen in Fig. 6, were not
as consistent with the observed statistics as they were in the case
of the Hamilton model. Specifically, the observed mean, skewness
and kurtosis were more extreme than would be expected under a
good model.

The discrepancy between the data and the model may be
measured using several criteria (see Gelman et al. (2004)).We used
the average discrepancy, defined as Davg(y) = E(D(y, θ)|y), the
posterior mean of the deviance D(y, θ) = −2 log p(y|θ). A smaller
value of this criterion indicates a better model fit. The average

discrepancy is estimated as D̂avg(y) = ∑L
l=1 D(y, θl)/L, where

the vectors θl are posterior simulations. The estimated average
discrepancy for the Hamilton model with our noinformative prior

distribution was D̂avg(y) = −539.02 and with our informative

prior distribution D̂avg(y) = −549.56. The criterion value for the
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Fig. 5. Replication check for the Hamilton model with noninformative prior distributions.

Fig. 6. Replication check for the AR(2) model.

AR(2) model was D̂avg(y) = −274.19, indicating that its model fit
was considerably inferior to that of the Hamilton model.

We also made robustness checks using subsample data in
estimation. The results did not markedly change when only the
first half of the data set (years 1861–1932) was used. When the
second half (years 1933–2004) was used the difference between
the regimes became smaller and the probability of a depression
regime increased. This is natural, since the second half does not
contain the yearswhen the GNP showed extreme drops, that is, the
years 1867 (one of the great hunger years in Finland) and 1917-18
(when Finland became independent and had the Civil War).

We also made checks for our transfer function model, used
in estimating the risk premium and the initial risk reserve. The

predictive distributions of the basic statistics were consistent
with their observed values with all link functions. The residuals,
obtained after fitting the transformed data sets, appeared to be
normally or nearly normally distributed. The average discrepancy
of all models is presented in Table 1. It can be seen that with the
probit link the model fit is best and with the logit link poorest.
However, the difference between the probit link model and the t
link models is small, and it might be advisable to use one of the
t link models, since there is model uncertainty involved in the
choice of the link, and it might be safer to average over several
alternatives.

The observed proportions of claim amount to technical provi-
sion and the lines indicating predictive intervals are shown in Fig. 7.
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Fig. 7. Replication check for the transfer function models. The solid line indicates the observed data series, and the thick dashed line the medium of 5000 replications. At
each time point, 50% of the simulated values lie between the thin dashed lines and 75% between the thin dotted lines.

These lines are based on 5000 replicated series. In all figures, the
solid line is the observed data series, and the thick dashed line the
medium of the predictive distribution. The thin dashed lines indi-
cate the 50% predictive intervals, and the thin dotted lines the 75%
intervals. On the basis of visual inspection, themedian line and the
50% interval lines are almost identical in all models. The 75% pre-
dictive intervals differ from each other significantly during the de-
pression period, the logit link being the extreme case. If the 90%
lines were drawn, the upper line would go far beyond the range of
the figure in the case of the logit link, which confirms our earlier
observation that the logit link produces extreme simulation paths.
This phenomenon was already noted at the end of Section 4. If the
estimation period were longer, the variation between the models
would probably be smaller.

A standard approach would be to use a compound Poisson pro-
cess to model the numbers of claims and their sizes simultane-
ously. However, we found such an approach difficult, since both
the claim size distribution and the intensity of claims turned out
to be highly variable during our short estimation period.

6. Conclusions

In this paper we present an application of Bayesian modelling
to financial guarantee insurance. Our goal was to model the
claim process and to predict the premium and the required
amount of risk capital needed for claim deviation. Even though the
data used are from the Finnish economy and from the financial
guarantee system of the Finnish statutory pension scheme, we
would consider the model applicable in similar cases elsewhere.
However, for the interpretation of the results it is important to
note that the risks are probably smaller in conventional companies,
which operate solely on a commercial basis, than in a statutory
system.

The Markov regime-switching model was used to predict the
frequency and severity of depressions in the future. We used real
GNP data to measure economic growth. The claim amounts were
predicted using a transfer function model where the predicted
real GNP growth rate was an explanatory variable. We had no
notable convergence problemswhen simulating the joint posterior
distribution of the parameters, even though the prior distributions
were noninformative or only mildly informative. The sensitivity
to choice of link function (probit, logit and t link) in the context

of the transfer function was much greater than that to the prior
assumptions (informative or noninformative) in the growth rate
model.

The simulation results can be summarized as follows. First, if the
effects of economic depressions are not properly considered, there
is a danger that the premiums of financial guarantee insurance
will be set too low. The pure premium level based on the gross
claimprocess is assessed to be atminimum2.0% (range 2.0%–2.8%).
Second, in order to get through a long-lasting depression, a
financial insurer should have a fairly substantial risk reserve. The
95% value at risk for a five-year period is 2.3–2.9 times the five-year
premium. The corresponding 75% value at risk is only 0.17–0.29
times the five-year premium. These figures illustrate the vital
importance of reinsurance contracts in assessing the risk capital
needed.

Some general observations may be made on the basis of this
study:

• In order to understand the effects of business cycles on
guarantee insurers’ financial condition and better appreciate
the risks, it is appropriate to extend the modelling horizon to
cover a depression period;

• A guarantee insurance company may benefit from incorporat-
ing responses to credit cycle movements into its risk manage-
ment policy;

• The use of Bayesian methods offers significant advantages for
assessment of uncertainty;

• The present findings underline the observation that a niche
insurance company may need special features (for example
a transfer function model instead of the Poisson process
approach) in its internal model when a specific product (for
example pension guarantee insurance) is modelled.

We assume that the proposed method can also be applied to
the financial guarantee and credit risks assessment of a narrow
business sector whenever a suitable credit cycle model for the
sector is found.
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Appendix A. The full conditional posterior distributions of the
Hamilton model

We will use the following notation to simplify some of the
expressions: y = (y1, y2, . . . , yT )

′, s = (s1, s2, . . . , sT )
′, s(−t) =

(s1, s2, . . . , st−1, st+1, . . . , sT )
′ and z = (z1, z2, . . . , zT )

′. We will
also need a matrix

Z =

⎛
⎜⎜⎜⎝

z′
0

z′
1
...

z′
T−1

⎞
⎟⎟⎟⎠ ,

whose rows are of the form zt = (zt , zt−1, . . . , zt−r+1)
′.

Furthermore, we denote the vector of autoregressive coefficients
by φ = (φ1, φ2, . . . , φr)

′ and the vector of all parameters by η =
(α0, α1, φ

′, σ 2
ε , p, q)′. In the following treatment we assume the

pre-sample values y0 = (y0, . . . , y1−r)
′ and s0 = (s0, . . . , s1−r)

′
to be known. In fact, s0 is not known, but we will simulate its
components in a similar way to that used for s.

The full conditional posterior distributions of the Hamilton
model are as follows:

{p|s} ∼ Beta

(
T∑

t=1

[(1 − st)(1 − st−1)]

+ αp,

T∑
t=1

[st(1 − st−1)] + βp

)
,

{q|s} ∼ Beta

(
T∑

t=1

[st st−1] + αq,

T∑
t=1

[st−1(1 − st)] + βq

)
,

{st |s(−t), η, y}

∼ Bernoulli

⎛
⎜⎜⎜⎝ Pr(st = 1|s(−t), η)p(y|st = 1, s(−t), η)

1∑
j=0

Pr(st = j|s(−t), η)p(y|st = j, s(−t), η)

⎞
⎟⎟⎟⎠ ,

t = 1, . . . , T ,

{φ|s, α0, α1, σ
2
ε , y} ∼ N

(
(Z′Z)−1Z′z, σ 2

ε (Z′Z)−1
)
,

{σ 2
ε |s, α0, α1, φ, y} ∼ Inv-χ2

(
T , (z − Zφ)′(z − Zφ)/T

)
,

{α0|s, α1, φ, σε, y} ∼ N

⎛
⎜⎜⎜⎝

T∑
t=1

y∗
t

T
,
σ 2

ε

T

⎞
⎟⎟⎟⎠ ,

p(α1|s, α0, φ, σε, y) ∝ N(α1|α̂1, σ̂1
2
) × I(α1 < −0.03),

where we have denoted

α̂1 =

T∑
t=1

st y
∗∗
t

σ 2
ε

+ 1

σ 2
0

μ0

T∑
t=1

st

σ 2
ε

+ 1

σ 2
0

, σ̂ 2
1 =

⎛
⎜⎜⎜⎝

T∑
t=1

st

σ 2
ε

+ 1

σ 2
0

⎞
⎟⎟⎟⎠

−1

,

and

y∗
t = yt − α1st − φ′zt−1, y∗∗

t = yt − α0 − φ′zt−1.

The notation Inv-χ2(m, s2) means the scaled inverse-chi-

square distribution, defined as ms2

χ2
m
, where χ2

m is a chi-square

distributed random variable withm degrees of freedom.

When determining the distribution of {st |s(−t), y, η}, one needs
Pr(st = 1|s(−t), η). This is easily calculated as

Pr(st = 1|s(−t), η) = Pr(st = 1|st−1, p, q) Pr(st+1|st = 1, p, q)

Pr(st+1|st−1, p, q)
,

0 < t < T .

Appendix B. Estimation results of the Hamilton model with
noninformative prior distributions

The posterior simulations were performed using the R com-
puting environment. The following output was obtained using the
summary function of the add-on package MCMCpack:

Number of chains = 3
Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha0 0.034387 0.0037252 4.302e-05 0.0001311
alpha1 -0.127041 0.0300157 3.466e-04 0.0014282
phi1 0.272877 0.1075243 1.242e-03 0.0031602
phi2 -0.161943 0.0960893 1.110e-03 0.0027343
sigmaE 0.001325 0.0001898 2.192e-06 0.0000047
p 0.972081 0.0213633 2.467e-04 0.0010495
q 0.402894 0.2120644 2.449e-03 0.0037676
sum(St) 5.673333 3.8759548 4.476e-02 0.2744217

2. Quantiles for each variable:

2.5\% 25\% 50\% 75\% 97.5\%
alpha0 0.0274775 0.031792 0.034295 0.036825 0.042004
alpha1 -0.1864689 -0.148860 -0.125884 -0.104208 -0.074866
phi1 0.0462000 0.204920 0.277852 0.345023 0.476358
phi2 -0.3557249 -0.225779 -0.158533 -0.096778 0.022228
sigmaE 0.0009913 0.001193 0.001312 0.001444 0.001734
p 0.9156113 0.962588 0.977417 0.987580 0.997095
q 0.0506376 0.236130 0.389157 0.554960 0.834136
sum(St) 2.0000000 3.000000 4.000000 7.000000 16.000000

Gelman and Rubin’s diagnostics
(Potential scale reduction factors):

Point est. 97.5\% quantile
alpha0 1.01 1.03
alpha1 1.03 1.11
phi1 1.00 1.01
phi2 1.00 1.00
sigmaE 1.01 1.02
p 1.03 1.09
q 1.00 1.01
sum(St) 1.05 1.16

Appendix C. The conditional posterior distributions of the
transfer function models

The following notation is used to simplify some of the
expressions: x = (x1, x2, . . . , xT )

′, x∗ = (x∗
1, x

∗
2, . . . , x

∗
T )

′, y =
(y1, y2, . . . , yT )

′, 1 = (1, 1, . . . , 1)′, β = (β0, β1, β2)
′ and

X =

⎛
⎜⎜⎝
1 x0 y1
1 x1 y2
...
1 xT−1 yT

⎞
⎟⎟⎠ .

The conditional posterior distributions of the transfer function
models are as follows:
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p(β|σ 2
u , ν, x∗, y) ∝ N

(
β|β̂, σ 2

u (X′X)−1
)

× I(β1 < 1),

p(σ 2
u |ν, x∗, y) = Inv-χ2

(
σ 2
u |T −3, (x −Xβ̂)′(x −Xβ̂)/(T− 3)

)
,

p1(ν|β, σ 2
u , x∗, y) ∝ 1

T∏
t=1

tν(xt)

exp

(
− 1

2σ 2
u

SS

)
,

ν = 1, . . . , 200,

p2(ν|β, σ 2
u , x∗, y) ∝ 1

ν
T∏

t=1

tν(xt)

exp

(
− 1

2σ 2
u

SS

)
,

ν = 1, . . . , 200,

where SS = ∑T
t=1(xt −β0 −β1xt−1 −β2yt)

2 and β̂ = (X′X)−1X′x.
The notation Inv-χ2(x|m, s2) means the density of the scaled
inverse-chi-square distribution (see definition in Appendix A) and
tν(x) the density of Student’s t distribution. Note that ν is implicit
in all the above formulas, since it is needed to transform x∗ to x.

The Gibbs sampler was implemented using two blocks, θ1 =
(β, σ 2) and θ2 = ν. The first block was simulated by
at first generating σ 2 from p(σ 2

u |ν, x∗, y) and then β from

p(β|σ 2
u , ν, x∗, y). The second block (the scalar ν) was easy to

simulate, since it has a one-dimensional discrete distribution with
finite support.
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Equity-linked components are common in many life insurance products. In this paper a
full Bayesian procedure is developed for the market consistent valuation of a fairly general
equity-linked savings contract. The return on the contract consists of a guaranteed interest
rate and a bonus depending on the yield of a total return equity index. The contract includes
an American-style path-dependent surrender option, and it is valued in a stochastic interest
rate environment. From the insurance company’s viewpoint this paper provides a realistic
and flexible modeling tool for product design and risk analysis.
The underlying asset and interest rate processes are estimated using the Markov Chain

Monte Carlo method, and their simulation is based on their posterior predictive distribu-
tion, which is, however, adjusted to give risk-neutral dynamics. We introduce a procedure
to determine a point estimate and confidence interval for the fair bonus rate of the contract.
The contract prices with given bonus rates are estimated using the regression method.
The focus is on a novel application of advanced theoretical and computational methods,

which enable us to deal with a fairly realistic valuation framework and to address model
and parameter error issues. Our empirical results support the use of elaborated instead of
stylized models for asset dynamics in practical applications.

Key Words: Metropolis algorithm, model error, option pricing via simulaton, risk-

neutral valuation, Solvency, stochastic interest rate

1. INTRODUCTION

The Solvency II Directive (SII) is an EU directive that codifies and harmonizes the EU
insurance regulation. It will shape the financial world in the decades to come. A number
of other country regulators are watching Solvency II with a view to introducing similar
risk-based capital regulation locally. International Association of Insurance Supervisors
is currently developing and introducing a new global solvency framework, which has
many things in common with SII (IAIS, 2008).
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2 LUOMA, PUUSTELLI, KOSKINEN

Solvency II reflects modern risk management practices to define required capital and
manage risk. The regime assumes a market-consistent valuation of the balance sheet.
Under SII, undertakings will be able to calculate the solvency capital requirement using a
’standard formula’ or their own ’internal model’ as approved by the supervisory authority
(see, e.g., European Commission, 2009; Gatzert and Schmeiser, 2006; Ronkainen et al.,
2007)
Most equity-linked life insurance policies, for example variable annuities and equity-

indexed annuities in the United States, unit-linked insurance in the United Kingdom and
equity-linked insurance in Germany, include implicit options, which represent a signifi-
cant risk to the company issuing these contracts. Some products are fairly simple; others
are complex, with a wide choice of guarantees and options. Some products have well-
established features, others are highly innovative. One can find a useful introduction to
different types of equity-linked insurance contracts in Hardy (2003). SII will probably
cause an increase in the solvency capital requirement for products including options or
guarantees. This would result in a search for ’new traditional products’ which fulfill
the customer demands for traditional life contracts but in a capital-efficient manner (see
Morgan Stanley and Oliver Wyman, 2010).
The European insurance regulator EIOPA (2011) emphasizes that the insurer should

take into account both basis risk and market risk in their life products. Other risks that
might also be relevant include path dependence risk, lapse risk and model risk. Further,
the regulator insists that companies involved in complex, equity-linked or other, products
should use their own internal models for the calculation of solvency capital requirement.
Here, we address many of these risks in a way which is suitable for internal modeling:
we provide a general procedure and R codes.
Market consistent valuation of life insurance contracts has become a popular research

area among actuaries and financial mathematicians; see, for example, Briys and de Varenne
(1997), Grosen and Jorgensen (2000), Tanskanen and Lukkarinen (2003), Ballotta et al.
(2006) and Bauer et al. (2006). However, most valuation models allowing for sophisti-
cated bonus distribution rules and the inclusion of frequently offered options assume a
quite simplified set-up.
One of the aims of this paper is to present a more realistic framework in which equity-

linked savings contracts including guarantees and options can be valuated and analyzed.
Since the existing products vary considerably and new ones are developed in the future,
our valuation framework is fairly flexible; it includes several financial components which
are crucial for equity-linked life products’ risk analysis. Many types of products can be
covered just by excluding some components of the contract.
Assumptions on the price dynamics of underlying assets usually lead to a partial dif-

ferential equation (PDE) characterizing the price of the option. However, a closed form
solution of such a PDE exists only in simpliest cases, and several features may render its
numerical solution impractical, or the PDE may even fail to exist. The approach based
on solving PDEs is difficult when, for instance, the asset price dynamics are sufficiently
complex, or the payoff of an option depends on the paths of the underlying assets, or
the number of underlying assets required by the replicating strategy is large (greater than
three). Instead, Monte Carlo methods are routinely used in pricing this kind of derivatives
(Glasserman, 2004). Nonetheless, pricing American-style options via Monte Carlo sim-
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ferential equation (PDE) characterizing the price of the option. However, a closed form
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ulation still remains a challenging task. The problem lies in the estimation of the early
exercise decisions available.
Applications of Monte Carlo methods have become popular also in life insurance. For

instance, Zaglauer and Bauer (2008) present a framework in which participating life in-
surance contracts can be valuated and analyzed in a stochastic interest rate environment
using Monte Carlo and discretization methods. Bacinello et al. (2009) describe an algo-
rithm based on the Least Squares Monte Carlo method to price American options. Their
framework allows, for example, randomness in mortality. Hardy (2002) uses the Bayesian
approach and Markov Chain Monte Carlo (MCMC) methods for the risk management of
equity-linked insurance. Our study extends the previous work in that we deal with es-
timation and model uncertainty issues and a challenging valuation problem in the same
context.
The price of an option depends on the model describing the behavior of the underlying

instrument. Most approaches specify a particular stochastic process to represent the price
dynamics of the underlying asset and then derive an explicit pricing model. However,
neither the true model, nor its parameter values are known. A common practice is to
assume a relatively simple model, and to use point estimates of the model parameters or
to calibrate them using the prices of other options. Yet many options in practice require an
elaborate time-series specification for the price dynamics of the underlying asset, since
a too simple model might fail to explain the price of its derivative (see, for example,
Brigo and Mercurio, 2001). Hence, it becomes difficult at best to derive explicit pricing
formulae. Furthermore, with the additional complexity of a rich time-series specification,
estimation uncertainty becomes a genuine concern.
In this article we utilize the constant elasticity of variance (CEV) model, introduced

by Cox and Ross (1976), to model the equity index process. It generalizes the geometric
Brownian (GBM) model, which underlies the Black-Scholes approach to option valua-
tion. Although being a generalizition, the CEV process is still driven by one source of
risk, so that option valuation and hedging remain straightforward. For stochastic inter-
est rate, we assume the Chan-Karolyi-Longstaff-Sanders (CKLS) model (see Chan et al.
(1992)), which generalizes several commonly used short-term interest rate models.
Equity-linked insurance savings contracts are characterized by an interest rate guaran-

tee and some bonus distribution rules, which typically provide the policyholder partici-
pation at some specified rate in an underlying index. One of the most common options
available is the possibility to exit (surrender) the contract before maturity and receive
a lump sum reflecting the insurer’s past contribution to the policy minus some charges.
These American-style options are called surrender options. In the related research the
emphasis has been on the mathematics of pricing these options and on Monte Carlo ex-
periments.
Following the tradition of equivalence principle in the premium setting, one also deter-

mines the fair bonus rate, that is, the break-even participation rate for which the fair value
of the contract equals the initial investment. In this article we describe in detail how to
apply Bayesian statistics to value equity-linked savings contracts including surplus op-
tions using a fairly realistic model for assets and interest rates. One could also consider
this type of contract as a life-insurance contract in a way that the model provides an upper
bound for insurance liabilities. Then one can interpret the policyholder to survive until
the maturity of the contract as Ballotta et al. (2006) note.
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We follow Bunnin et al. (2002) who use Bayesian numerical techniques to price a
European Call option on a share index. The two major benefits from using Bayesian
techniques are that we can explicitly acknowledge the risks associated to model choice
and parameter estimation. In order to value American-style options we use the Tsitsiklis
and Van Roy (1999, 2001) regression approach, which approximates the value of the
option against a set of basic functions.
From the methodological point of view we address questions about: (i) implementa-

tion of MCMC to estimate the underlying diffusion processes, (ii) implementation of the
regression method to determine the fair price of the insurance contract and its confidence
interval, and (iii) solution of an inverse problem to determine the fair bonus rate and its
confidence interval. From a more applied point of view we investigate the effect of the
contract conditions, such as contract length, guaranteed interest rate and penalty rate,
on the fair bonus rate and its estimation accuracy. Furthermore, we compare the results
obtained in constant and stochastic interest rate environments, and briefly note the dif-
ferences in model fit and valuation results between the used CEV model and the simpler
GBM model.
The paper is organized as follows. Section 2 introduces the framework and model,

Section 3 presents the estimation and evaluation procedures and Section 4 the empirical
results. The final Section 5 concludes.

2. THE FRAMEWORK

2.1. The equity-linked savings contract

Our goal is to price an equity-linked savings contract. The contract is not exactly any
of the yet existing products, but it has many features covering a large scale of different
types of policies.
The contract consists of two parts. The first part is a guaranteed interest and the second

part a bonus depending on the yield of some total return equity index. Thus, our product
resembles equity-indexed annuities in the United States and equity-linked insurance con-
tracts in Germany. On the other hand, in some equity-linked contracts the bonus is linked
to a fund or combinaton of funds, for example in variable annuities in the United States
or segregated fund contracts in Canada (see Hardy, 2003).
We denote the amount of savings in the insurance contract at time ti by Y(ti). Then its

growth during a time interval of length δ = ti+1 − ti is given by

log
Y(ti+1)
Y(ti)

= g δ + bmax
(
0, log

X(ti+1)
X(ti)

− g δ
)
, (1)

where X(ti) =
∑q
j=0 S (ti− j)/(q+1) is a moving average of a total return equity index S (ti),

g is a guaranteed rate and b is a bonus rate, the proportion of the excessive equity index
yield which is returned to the customer. In this study we use the time interval δ = 1/255,
where 255 is approximately the number of the days in a year on which the index is quoted,
and the lag length of the moving average is chosen to be q = 125 (i.e., half a year). The
use of a moving average decreases the volatility of the contract value, and thus facilitates
hedging.
The model also incorporates a surrender (early exercise) option and possibility for a

penalty p which occurs if the customer reclaims the contract before the final expiration
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date. If the penalty is set at a too high level, the contract becomes like a European-style
option, which is exercised only at the end of the contract period. A further condition is
that there will be a 1 % penalty if the contract is reclaimed during the first 10 working
days. This condition essentially improves the estimation described in Section 3.3.2.
In the following, we will consider the two cases where (i) the riskless interest rate is

fixed at a predetermined value r, or (ii) is assumed to be stochastic. For the constant
interest rate r the guaranteed rate g is set at kr throughout the entire contract period for
some constant k < 1. In the case of stochastic interest rate, the guaranteed rate is fixed for
one year at a time. It is set annually at krt, where rt is the riskless short-term interest rate
at time t. By setting the guaranteed rate for one year at a time and not daily, the insurance
company can better hedge its liabilities, and on the other hand, the customer will have a
better idea of the guaranteed growth rate.
In this framework the penalty p for early exercise and the parameters k, g and b are

predefined by the insurance company. However, in the case of a stochastic interest rate, g
is reset annually. We will determine a fair bonus rate b so that the risk-neutral price of the
contract is equal to the initial investment. This gives the contract a simple structure and
makes its costs and returns visible and predictable for the insurer and the customer. Our
main interest is to study the effects of the expiration date, guaranteed rate and penalty rate
on the fair bonus rate in both constant and stochastic interest rate cases.
The equity-indexed annuity contract has a modification called an annual ratchet in

which the index participation is evaluated year by year. Each year the amount of savings
is increased by the greater of the floor rate, which is usually 0 percent, and the increase
in the underlying index, multiplied by the participation rate. Our contract is similar to
this apart from being evaluated on a daily basis. Our contract type is better linked to
the dynamics of the financial markets, since the customer may follow the growth of the
savings daily and also exercise the contract at market value.

2.2. Model with constant interest rate

The constant elasticity of variance (CEV) process introduced by Cox and Ross (1976)
is used to model the equity index process. It is a nonnegative diffusion process, defined
by the stochastic differential equation (SDE)

dS t = μS tdt + νS 1−αt dWt, (2)

where μ, ν (> 0) and α are fixed parameters and Wt is a standard Brownian motion under
a real-world probability measure P. If α = 0, the process (2) becomes a geometric Brow-
nian motion. In the estimation, we assume that α > 0, which means that the volatility is
smaller for larger values of S t. If α > 1

2 , there is a positive probability that the process
converges to zero. The model may also be written in the form

dS t = rS tdt + νS 1−αt dZt, (3)

where r is the riskless short-term interest rate and Zt a standard Brownian motion under
a risk-neutral probability measure Q. The parameters μ, ν and α are unknown and will be
estimated.
The transition densities of the process (2) have closed form solutions which use the

modified Bessel function of the first kind (see Bunnin et al., 2002). However, we found
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the Euler discretization of the process to be accurate enough for estimation and simulation
purposes, since our discretization interval is only one working day. The Euler scheme is
the simplest standard method for approximate simulation of stochastic differential equa-
tions; for further details, see Iacus (2008) or Glasserman (2004).
Assuming that the discretized process (2) has been observed at equally-spaced time

points 0, δ, ...Nδ, the likelihood function can be written in the form

p(y|θ) =
N∏
i=1

1√
2πν2S 2(1−α)(i−1)δ δ

exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(
ΔS iδ − μS (i−1)δδ

)2
2ν2S 2(1−α)(i−1)δ δ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where y is data, θ = (μ, ν, α) and ΔS iδ = S iδ − S (i−1)δ.

2.3. Model with stochastic interest rate

In our second set-up, we assume that the dynamics of riskless short-term rate rt and
stock index S t are described by the following system of SDEs:

drt = κ(ξ − rt)dt + σrγt dW
(1)
t , (4a)

dS t = μS tdt + νS 1−αt dW (2)
t , (4b)

with W (1)
t and W (2)

t two standard Brownian motions, correlated through W (2)
t = ρW

(1)
t +√

1 − ρ2W (3)
t , where W

(1)
t and W (3)

t are independent standard Brownian motions under a
real-world probability measure. Thus the correlation of W (1)

t and W (2)
t is ρ.

The short-term interest rate model (4a) was introduced by Chan et al. (1992), who
provide a useful summary of short-term interest rate models in their paper. The two most
commonly used models which may be derived from this model by parameter restriction
are the following: If γ = 0, the model becomes the Ornstein-Uhlenbeck process, proposed
by Vasiček (1977) as a model of the short rate, and, if γ = 1

2 , it becomes a square-
root diffusion referred to as the Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985). In
estimation, the parameters κ, ξ, σ and γ are assumed to be positive.
Substituting Z(1)t = W

(1)
t and Z(3)t = W

(3)
t + (μ − rt)ν−1(1 − ρ2)−1/2S αt dt, the system of

SDEs (4a) and (4b) becomes

drt = κ(ξ − rt)dt + σrγt dZ
(1)
t , (5a)

dS t = rtS tdt + νS 1−αt dZ(2)t , (5b)

where Z(2)t = ρZ
(1)
t +

√
1 − ρ2Z(3)t . Now a risk-neutral probability measure Q may be

introduced by assuming that Z(1)t and Z(3)t are two independent standard Brownian motions
under this measure. It can then be shown that the discounted price S̃ t = S t exp(−

∫ t
0 rsds)

is a martingale under Q.
The transition densities of the bivariate process described by (4a) and (4b) do not have

a closed form solution, and we will use its Euler discretization to estimate the unknown
parameters κ, ξ, σ, γ, μ, ν and α. Accordingly, we will simulate the risk-neutral process
using the Euler discretization of (5a) and (5b).
In order to obtain numerical stability in estimation, we reparametrize model (4a) as

dxt = (β − κxt)dt + τxγt dW
(1)
t ,
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by Vasiček (1977) as a model of the short rate, and, if γ = 1

2 , it becomes a square-
root diffusion referred to as the Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985). In
estimation, the parameters κ, ξ, σ and γ are assumed to be positive.
Substituting Z(1)t = W

(1)
t and Z(3)t = W

(3)
t + (μ − rt)ν−1(1 − ρ2)−1/2S αt dt, the system of

SDEs (4a) and (4b) becomes

drt = κ(ξ − rt)dt + σrγt dZ
(1)
t , (5a)

dS t = rtS tdt + νS 1−αt dZ(2)t , (5b)

where Z(2)t = ρZ
(1)
t +

√
1 − ρ2Z(3)t . Now a risk-neutral probability measure Q may be

introduced by assuming that Z(1)t and Z(3)t are two independent standard Brownian motions
under this measure. It can then be shown that the discounted price S̃ t = S t exp(−

∫ t
0 rsds)

is a martingale under Q.
The transition densities of the bivariate process described by (4a) and (4b) do not have

a closed form solution, and we will use its Euler discretization to estimate the unknown
parameters κ, ξ, σ, γ, μ, ν and α. Accordingly, we will simulate the risk-neutral process
using the Euler discretization of (5a) and (5b).
In order to obtain numerical stability in estimation, we reparametrize model (4a) as

dxt = (β − κxt)dt + τxγt dW
(1)
t ,



BAYESIAN ANALYSIS OF EQUITY-LINKED SAVINGS CONTRACTS 7

where xt = 100 rt (the interest rate given in percentages), β = 100 κξ and τ = (100)1−γσ.
Assuming that the bivariate process has been observed at equally-spaced time points
0, δ, ...Nδ, the likelihood function can be written in the form

p(y|θ) =
N∏
i=1

1√
2πτ2x2γ(i−1)δδ

exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(
Δxiδ − (β − κx(i−1)δ)δ

)2
2τ2x2γ(i−1)δδ

⎞⎟⎟⎟⎟⎟⎟⎠

×

N∏
i=1

1√
2πν2S 2(1−α)(i−1)δ (1 − ρ2)δ

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
(
ΔS iδ − μS (i−1)δδ − νS 1−α(i−1)δρΔW

(1)
iδ

)2
2ν2S 2(1−α)(i−1)δ (1 − ρ2)δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6)

where y is data, θ = (μ, ν, α, β, κ, τ, γ, ρ), Δxiδ = xiδ − x(i−1)δ, ΔS iδ = S iδ − S (i−1)δ and

ΔW (1)
iδ =

xiδ − x(i−1)δ − (β − κx(i−1)δ)δ
τxγ(i−1)δ

.

3. ESTIMATION AND EVALUATION PROCEDURES

3.1. The Metropolis algorithm

The unknown parameters of the stock index and interest rate models are estimated us-
ing Bayesian methods. This makes it possible to take parameter uncertainty into account
when evaluating the fair prices of derivatives. We follow Bunnin et al. (2002) who sim-
ulate the paths of the underlying asset using the posterior predictive distribution of the
underlying asset. In their framework the posterior predictive distribution is constructed
by averaging over alternative models and their parameters, thus taking into account the
uncertainty related to them. However, we do not average over models, since we assume
that model uncertainty can be taken into account by using a sufficiently general, contin-
uously parametrized family of distributions. This approach is recommended in Section
6.7 of Gelman et al. (2004). We also use an estimation algorithm different from the SIR
algorithm used by Bunnin et al. (2002). Even though this algorithm is fast and relatively
simple, it requires an informative and carefully adjusted prior, which makes its use la-
borious when several parameters should be estimated. Instead, we use the Metropolis
algorithm introduced by Metropolis et al. (1953) to simulate the joint posterior distribu-
tion of unknown parameters in both fixed and stochastic interest rate cases.
The Metropolis algorithm is a Markov Chain Monte Carlo (MCMC) method, and can

be used to simulate Markov chains with given stationary distributions. The MCMCmeth-
ods are especially useful when direct sampling from a probability distribution is difficult.
The Metropolis algorithm is more flexible than the Gibbs sampler, which presumes the
ability to generate random variates from the full conditional distributions of the target
distribution. In order to implement the Metropolis algorithm, one only needs to know the
joint density function of the target distribution up to a constant of proportionality.
Suppose that we wish to simulate a (multivariate) distribution with density p(θ). The
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BAYESIAN ANALYSIS OF EQUITY-LINKED SAVINGS CONTRACTS 7

where xt = 100 rt (the interest rate given in percentages), β = 100 κξ and τ = (100)1−γσ.
Assuming that the bivariate process has been observed at equally-spaced time points
0, δ, ...Nδ, the likelihood function can be written in the form

p(y|θ) =
N∏
i=1

1√
2πτ2x2γ(i−1)δδ

exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(
Δxiδ − (β − κx(i−1)δ)δ

)2
2τ2x2γ(i−1)δδ

⎞⎟⎟⎟⎟⎟⎟⎠

×

N∏
i=1

1√
2πν2S 2(1−α)(i−1)δ (1 − ρ2)δ

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
(
ΔS iδ − μS (i−1)δδ − νS 1−α(i−1)δρΔW

(1)
iδ

)2
2ν2S 2(1−α)(i−1)δ (1 − ρ2)δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6)

where y is data, θ = (μ, ν, α, β, κ, τ, γ, ρ), Δxiδ = xiδ − x(i−1)δ, ΔS iδ = S iδ − S (i−1)δ and

ΔW (1)
iδ =

xiδ − x(i−1)δ − (β − κx(i−1)δ)δ
τxγ(i−1)δ

.

3. ESTIMATION AND EVALUATION PROCEDURES

3.1. The Metropolis algorithm

The unknown parameters of the stock index and interest rate models are estimated us-
ing Bayesian methods. This makes it possible to take parameter uncertainty into account
when evaluating the fair prices of derivatives. We follow Bunnin et al. (2002) who sim-
ulate the paths of the underlying asset using the posterior predictive distribution of the
underlying asset. In their framework the posterior predictive distribution is constructed
by averaging over alternative models and their parameters, thus taking into account the
uncertainty related to them. However, we do not average over models, since we assume
that model uncertainty can be taken into account by using a sufficiently general, contin-
uously parametrized family of distributions. This approach is recommended in Section
6.7 of Gelman et al. (2004). We also use an estimation algorithm different from the SIR
algorithm used by Bunnin et al. (2002). Even though this algorithm is fast and relatively
simple, it requires an informative and carefully adjusted prior, which makes its use la-
borious when several parameters should be estimated. Instead, we use the Metropolis
algorithm introduced by Metropolis et al. (1953) to simulate the joint posterior distribu-
tion of unknown parameters in both fixed and stochastic interest rate cases.
The Metropolis algorithm is a Markov Chain Monte Carlo (MCMC) method, and can

be used to simulate Markov chains with given stationary distributions. The MCMCmeth-
ods are especially useful when direct sampling from a probability distribution is difficult.
The Metropolis algorithm is more flexible than the Gibbs sampler, which presumes the
ability to generate random variates from the full conditional distributions of the target
distribution. In order to implement the Metropolis algorithm, one only needs to know the
joint density function of the target distribution up to a constant of proportionality.
Suppose that we wish to simulate a (multivariate) distribution with density p(θ). The

algorithm works as follows: We first assign an initial value θ0 such that p(θ0) > 0 from



8 LUOMA, PUUSTELLI, KOSKINEN

a starting distribution p0(θ). Then, assuming that vectors θ0, θ1, ..., θt−1 have been gen-
erated, we generate a proposal θ∗ for θt from a jumping distribution J(θ∗|θt−1) which is
symmetric in the sense that J(θa|θb) = J(θb|θa) for all θa and θb. Finally, iteration t is
completed by calculating the ratio

r =
p(θ∗)
p(θt−1)

and by setting the new value at

θt =

{
θ∗ with probability min(r, 1)
θt−1 otherwise.

It can be shown that, under mild conditions, the algorithm produces an ergodic Markov
Chain whose stationary distribution is p(θ). We see that the transition kernel T (θt |θt−1) is
a mixture of discrete probability at θt = θt−1 and the jumping density J(θ∗|θt−1).
As mentioned above, we use the Metropolis algorithm to simulate the posterior distri-

bution. The posterior density is proportional to the product of the prior density and the
likelihood,

p(θ|y) ∝ p(θ)p(y|θ).

We use an improper uniform prior distribution

p(θ) ∝
{
1 when |ρ| < 1 and min(β, κ, τ, ν, α) > 0
0 otherwise

for the bivariate model of stock index and stochastic interest rate. The posterior func-
tion is thus proportional to the likelihood (6) in a feasible region of parameters. For the
univariate stock index model (2) we use a uniform prior with the restriction min(ν, α) > 0.

3.2. Pricing American options with regression methods

3.2.1. Point estimation of option prices

The equity-linked savings contract we want to price is in practice an American option
with a path-dependent moving average feature. An American option gives the holder
the right to exercise the option at any time up to the expiry date T . In pricing we adopt
the least squares method introduced by Tsitsiklis and Van Roy (1999, 2001). It is a
simple but powerful approximation method for American-style options. Longstaff and
Schwartz (2001) provide a slightly different version of the method. In the following brief
introduction we follow Glasserman (2004).
The pricing of an American option is based on an optimal exercising strategy. Let us as-

sume that the relevant underlying security prices of the economy follow a d-dimensional
Markov process X(t) and that the payoff value of the option at time t is given by h̃(X(t)).
The process X(t) may be augmented to include a stochastic interest rate r(t) and, in the
case of path-dependent options, past values of the underlying processes as well.
Furthermore, let T denote a set of admissible stopping times with values in [0,T ].

More specifically, we assume that the decision whether to stop at time t is a function of
X(t) and that the option can only be exercised at the m discrete times 0 < t1 ≤ t2 ≤ · · · ≤
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tm = T . (If desirable, one can improve the approximation to continuously exercisable
options by increasing m.) The goal in optimal exercising is to find a stopping time max-
imizing the expected discounted payoff of the option. The price of the option is given
by

sup
τ∈T

E
[
exp

(
−

∫ τ

0
r(s)ds

)
h̃(X(τ))

]
,

where {r(t), 0 ≤ t ≤ T } is an instantaneous short rate process and the expectation is taken
with respect to the risk-neutral probability measure.
To simplify notation we will write X(ti) as Xi. Let h̃i denote the payoff function for

exercise at ti and Ṽi(x) the value of the option at ti given Xi = x. One can then represent
pricing algorithms recursively as follows:

Ṽm(x) = h̃m(x)
Ṽi−1(x) = max{h̃i−1(x),E[Di−1,i(Xi)Ṽi(Xi)|Xi−1 = x]}, i = 1, . . . ,m,

where Di−1,i(Xi) is the discount factor from ti−1 to ti. We thus assume that the discount
factor is a function of Xi, which may be achieved by augmenting Xi, if necessary. Usually,
it is given by Di−1,i(Xi) = exp

(
−

∫ ti
ti−1
r(u)du

)
, but it is also possible to use a numeraire

process other than the one based on riskless interest, provided that the expectation is
taken with respect to a measure consistent with that numeraire. One can also show that
equivalent to the procedure described above is to deal with time zero values hi(x) =
D0,i(x)h̃i(x) and Vi(x) = D0,i(x)Ṽi(x), i = 0, 1, ...,m (see Glasserman, 2004). Then, at time
ti, the decision to continue is based on comparing the discounted immediate exercise value
hi(x) with the corresponding discounted continuation value Ci(x) = E[Vi+1(Xi+1)|Xi = x].
In the sequel, we will use these time zero values in order to simplify notation.
In regression methods it is assumed that the continuation value may be expressed as

the linear regression

E[Vi+1(Xi+1)|Xi = x] =
M∑
r=1
βirψr(x),

for some basis functions ψr : Rd → R and constants βir, r = 1, ...,M. In order to estimate
the coefficients one first generates b independent paths {X1, j, ..., Xm, j}, j = 1, ..., b, and
sets V̂m, j = hm(Xm, j), j = 1, ..., b, at terminal nodes. Then one proceeds backward in time
and, using ordinary least squares, fits at time ti the regression model

V̂i+1, j(Xi+1, j) =
M∑
r=1
βi,rψr(Xi, j) + εi, j, j = 1, ..., b, (7)

where εi, j are residuals. The estimated value of the option for path j at time ti is

V̂i, j = max{hi(Xi, j), Ĉi(Xi, j)},

where Ĉi(Xi, j) is the fitted value from Equation 7. Finally, the estimate of the option price
is given by V̂0 = (V̂1,1 + ... + V̂1,b)/b.
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3.2.2. Determining upper and lower bounds for option prices

Glasserman (2004), Andersen and Broadie (2004) and Haugh and Kogan (2004) de-
scribe in detail methods to determine the upper and the lower bounds for the price of
an American option. These bounds are important in assessing the reliability and ac-
curacy of the price estimate. For the lower bound, one needs to simulate new paths
{X1 j, . . . , Xmj}, j = 1, ..., b, of the underlying process, independent of the paths used to
estimate the regression coefficients. Define a stopping time as

τ̂ j = min{i : hi(Xi j) ≥ Ĉi(Xi j)},

which is the first time when the immediate exercise value is greater than or equal to the
estimated continuation value. The estimated continuation value Ĉi(Xi j) may be computed
using the estimated regression model or some other method. The low estimator for a
single path j is

v̂ j = hτ̂ j (Xτ̂, j)

and the lower bound of the price is estimated as the mean of low estimators over all paths.
Since no policy can be better than an optimal policy, this results in a low biased estimator.
The upper bounds are based on the inequality

V0(X0) = sup
τ

E[hτ(Xτ)] ≤ E[ max
i=1,...,m

{hi(Xi) − Mi}],

where M = {Mi, i = 0, ...,m} is any martingale with M0 = 0. It can be shown (see
Glasserman, 2004) that this inequality holds with equality when M is defined as

Mi = Δ1 + ... + Δi, i = 1, ...,m,

where

Δi = Vi(Xi) − E[Vi(Xi)|Xi−1], i = 1, ...,m. (8)

There are two methods for constructing martingales M̂ which approximate the opti-
mal martingale M. The first method uses approximate value functions and the second
approximate stopping times. We will use the first method, since it is less computationally
intensive. For this method, one also needs to simulate new paths of the underlying pro-
cess, independent of the paths used to estimate the regression coefficients. Suppose that
we have simulated b additional paths {X1 j, ..., Xmj}, j = 1, ..., b. Then the option value at
time i + 1 on path j is estimated as

V̂i+1(Xi+1, j) = max
(
hi+1

(
Xi+1, j

)
, Ĉi+1

(
Xi+1, j

))
,

where the continuation value, Ĉi+1
(
Xi+1, j

)
, is computed using the estimated regression

model.
Now we could use the martingale differences

Δ̂i+1, j = V̂i+1(Xi+1, j) − E
(
V̂i+1(Xi+1, j)|Xi j = x

)
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to approximate the optimal differences (8) if we knew the expected value. However, the
expectation can be replaced by a mean of nested simulations as follows: At each step
Xi j of the Markov chain, new successors X(k)i+1, j, k = 1, 2, . . . , n, are generated, and the
corresponding option values,

V̂i+1
(
X(k)i+1, j

)
= max

(
hi+1

(
X(k)i+1, j

)
, Ĉi+1

(
X(k)i+1, j

))
,

are computed. Then we can define the martingale differences as follows:

Δ̂i+1, j = V̂i+1(Xi+1, j) −
1
n

n∑
k=1
V̂i+1

(
X(k)i+1, j

)
,

and use them as an approximation to (8).
The corresponding martingale values are given by

M̂i+1, j = M̂i j + Δ̂i+1, j

with M̂0 j = 0. The upper bound of an option may now be estimated as

E
(
max
i=1,...,m

(hi(Xi j) − M̂i j)
)
≈
1
b

b∑
j=1

max
i=1,...,m

(hi(Xi j) − M̂i j).

3.3. Implementation

3.3.1. Choosing the regression variables

In our application, the continuation values of the option depend on the path of the un-
derlying index value in a complicated way. Theoretically, we would need q + 1 state
variables (or q+2 in the case of stochastic interest rate) to satisfy the Markovian assump-
tion of the process. However, we consider that the current value of the index, its moving
average, and the first index value appearing in the moving average may be used to predict
the continuation value reasonably well. The use of the moving average may be motivated
by observing that the growth of savings in the insurance contract depends on the path of
the moving average (see Equation 1). The current index value and the first value appear-
ing in the moving average help predict the future evolution of the moving average. The
current amount of savings also helps predict the continuation value, but it is not included
in the regression variables. Instead, it is subtracted from the regressed value before fitting
the regression and subsequently added to the fitted value.
To avoid under- and overflows in the computations, the regression variables are scaled

by the first index value. Thus, the following state variables are used:

X1(ti) =
S (ti)
S (0)

X2(ti) =
∑q
j=0 S (ti− j)/(q + 1)

S (0)

X3(ti) =
S (ti−q)
S (0)

.
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However, multicollinearity problems would occur if all the variables X1, X2 and X3 were
used at all time points. In fact, X3 would be equal for all simulations paths for i ≤ q and
the moving averages X2 would be very close to each other for small values of i. Therefore,
we apply the following rule: The variable X1 alone is used for i < q/2, X1 and X2 are
used for q/2 ≤ i < 3q/2 and all variables are used for i ≥ 3q/2.
We use Laguerre polynomials, suggested by Longstaff and Schwartz (2001), as basis

functions. More specifically, we use the first two polynomials

L0(X) = exp(−X/2)
L1(X) = exp(−X/2)(1 − X)

for the variables X1, X2 and X3. In addition, we use the cross-products L0(X1)L0(X2),
L0(X1)L1(X2), L1(X1)L0(X2), L0(X1)L0(X3) and L0(X2)L0(X3). We also tried adding L2,
and rt in the case of stochastic interest rate, but these did not improve valuation accuracy.
Thus, we have altogether 11 explanatory variables in the regression. At the time points
where only X1 is used we have only two explanatory variables, L0(X1) and L1(X1).

3.3.2. Inverse problem

Using the procedure described above we can determine the option price (i.e., the price
of the insurance contract) when the bonus rate b and the guaranteed rate g have been
given. However, we are interested to determine the bonus rate so that the price of the
contract is equal to the initial savings. The problem of determining b is a kind of inverse
prediction problem, and we need to estimate the option value for various values of b.
Since there are several sources of uncertainty involved in the estimation, we also need
to repeat it several times for fixed values of b. We end up estimating a regression model
where the option price estimates are regressed on the corresponding bonus rates. We
found the third degree polynomial curve to be flexible enough for this purpose. After
fitting the curve, we solve the bonus rate b for which the option price is equal to 100,
which we assume to be the initial amount of savings.
We repeat this procedure for the upper and lower bounds of the prices. Thus, we

estimate altogether three regression models, represented by three cubic polynomial curves
(see Figure 1). The intersections of the horizontal line at price level 100 with the upper
and lower bound curves yield lower and upper bounds for the fair bonus rate, respectively.
In order to facilitate the estimation of the lower bound of the fair bonus rate we set the
further condition that there is a 1% penalty for reclaiming the contract during the first ten
days.
Prior to fitting the polynomial, it is, however, necessary to determine an initial interval

for the solution. For this purpose we developed a modified bisection method. In this
method, one first specifies initial upper and lower limits for the bonus rate; we use the
values l = 0 and u = 1. Then one estimates the option price as well as its upper and lower
bounds at (l + u)/2. If the lower bound of the price is greater than 100, the upper limit of
the bonus rate is set at u − (u − l)/4; if the upper bound of the price is smaller than 100,
the lower limit of the bonus rate is set at l + (u − l)/4. In other cases the upper limit of
the bonus rate is set at u − (u − l)/8 and the lower limit at l + (u − l)/8. This procedure
is continued until u − l = 0.25. Note that the new limit is not set in the middle of the
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interval, as is done in the ordinary bisection method, since this might lead to missing the
correct solution due to the randomness of price estimates.
Figure 1 illustrates the estimation procedure. The option price and its lower and upper

bounds are estimated for 10 different bonus rates, and the estimation is repeated 10 times
for each bonus rate, which produces 300 points to the scatter plot. Each estimation is
based on 1000 simulated paths. The limits for the bonus rate were determined using
the modified bisection method described above. When producing this figure, the time to
maturity was set at 3 years, the guaranteed rate at 0, the penalty rate at 0 and the constant
interest rate at 0.04. We can see that the fair bonus rate is approximately 0.33, the lower
bound 0.31 and the upper bound 0.37.
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FIG. 1. Option price estimates (black diamonds), upper bounds (gray triangle point up) and lower bounds
(gray triangle point down) vs. bonus rates.

As mentioned above, the bonus rate is solved from the equation y = f (x), where y is
the price of the contract and

f (x) = β̂0 + β̂1x + β̂2x2 + β̂3x3 = x′β̂, (9)

with β̂ = (β̂0, β̂1, β̂2, β̂3)′ the ordinary least squares (OLS) estimate of the cubic regression
model and x = (1, x, x2, x3)′ a regression vector. The purpose of the initial penalty rate is
to ensure that there is exactly one solution in the relevant interval.
Using the delta method, one also obtains an approximate variance for the estimate of

x:

Var(x̂) ≈
1

[ f ′(x)]2
Var( f (x)) ≈

1(
β̂1 + 2β̂2 x̂ + 3β̂3 x̂2

)2 x̂′Cov(β̂)x̂.
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4. EMPIRICAL RESULTS

4.1. Estimation of the parameters

In order to experiment with actual data and to estimate the unknown parameters of
the models (2) and (4a,4b), we chose the following data sets: As an equity index we
use the Total Return of Dow Jones EURO STOXX Total Market Index (TMI), which is
a benchmark covering approximately 95 per cent of the free float market capitalization
of Europe. The objective of the index is to provide a broad coverage of companies in
the Euro zone including Austria, Belgium, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, the Netherlands, Portugal and Spain. The index is constructed by
aggregating the stocks traded on the major exchanges of Euro zone. Only common stocks
and those with similar characteristics are included, and any stocks that have had more
than 10 non-trading days during the past three months are removed. In estimation, we
use daily quotes from March 4th, 2002 until December 6th, 2007.
As a proxy for riskless short-term interest rate, we use Eurepo, which is the benchmark

rate of the large Euro repo market. Eurepo is the rate at which one prime bank offers
funds in euro to another prime bank if in exchange the former receives from the latter
Eurepo GC as collateral. It is a good benchmark for secured money market transactions
in the Euro zone. In the estimation of the interest rate model we use the 3 month Eurepo
rate, since it behaves more regularly than the rates with shorter maturities. Both the index
and interest series are presented in Figure 2.
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FIG. 2. The equity index and interest series.

We had no remarkable convergence problems when estimating the model parameters.
We used three chains in MCMC simulation, and all of them converged rapidly to their
stationary distributions. The summary of the estimation results, as well as Gelman and
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Rubin’s diagnostics (see Gelman et al., 2004), are given in Appendix A. The values of
the diagnostic are close to 1 and thus indicate good convergence. All computations were
made and figures produced using the R computing environment (R Development Core
Team, 2010). To speed up computations we coded the most time consuming loops in
C++. The code and data needed to replicate the results of this article are available at
http://mtl.uta.fi/codes/savings.
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FIG. 3. Posterior distributions of the parameters α (index model) and γ (interest rate model).

The posterior distributions of the parameters α (Equation 2) and γ (Equation 4a) are
shown in Figure 3. As already noted in Section 2.2, the CEV model becomes the geo-
metric Brownian motion (GBM) when α = 0. The figure reveals clearly that the posterior
probability of α being around zero is vanishingly small, which makes the GBM highly
improbable. We also tested its use in the pricing of the contract, and found that it gave
substantially lower bonus rates than the more general alternative. Both models have, un-
der the risk-neutral probability measure, equal expected yields for the underlying index,
but the volatility will be greater with the GBM, since in the CEV model the volatil-
ity decreases as the level of the process increases. But greater volatility increases the
probability of great profits, while not increasing the probability of great losses, since the
accumulated capital is guaranteed to the customer. Consequently, the fair bonus rate is
smaller in the case of the GBM.
This illustrates how our approach to use general models efficiently prevents the model

error resulting from the use of a too simple model. On the other hand, we see that γ = 1/2
is not highly improbable in the interest rate model, so the model error would not be large
if the CIR model were used instead of the more general CKLS model. The statistical
inference of the parameters α and γ seems to be robust to the choice of data, since their
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posterior distributions remained similar when we included the data from year 2008, which
was exceptional in that there was a collapse both in the stock markets and the interest rate.
Clearly, the fit of the index process could be further improved by modeling the volatility

as a separate process. Such a stochastic volatility model would, however, be more difficult
to estimate, and the valuation and hedging of the contract would be considerably more
complicate.

4.2. Evaluation of the fair bonus rate

There are several parameters which may be varied in the equity-linked savings contract
described by Equation 1. These include the duration of the contract, the lag length of
the moving average, and the guaranteed rate. Furthermore, the number of simulated
paths needs to be decided when the contract price is estimated, as well as the number
of estimation repetitions when the fair bonus rate is determined. When the interest rate
is assumed to be constant, it must be fixed at some predefined level, while when it is
assumed to be stochastics, its starting level must be given. Our model also incorporates
a possibility for a penalty rate which the customer has to pay if he reclaims the contract
before the final expiration date. When the penalty rate is set at a high level, the price of
the contract is determined like that of a European option, since then it is usually more
profitable for the customer to keep the contract until the final expiration date.
We compared the accuracy of fair bonus rate estimation in the following two cases:

first, we simulated 1000 paths to estimate the contract price and repeated the estimation
250 times to estimate the fair bonus price using the regression model (9), and, second,
used 500 simulation paths and repeated it 500 times. We found that the standard error
of the bonus rate estimate was in the second case almost twice as large as in the first
case. This indicates that it is more important to increase the number of paths in the option
price calculation than the number of repetitions in the bonus rate calculation. However,
the differences in the bonus rate estimates resulting from the use of these two simula-
tion schemes were very small; the maximum difference was 0.6 percentage units in our
simulations.
The estimates of the fair bonus rate and the 95 % confidence intervals in the cases

of constant interest rates 0.04 and 0.07 are shown in Tables 1 and 3, respectively. The
confidence interval is calculated using the lower (b̂l) and upper (b̂u) estimates of the fair
bonus rate and their standard errors:

CI =
(
b̂l − 1.96 s.e.(b̂l); b̂u + 1.96 s.e.(b̂u)

)
.

The guaranteed rate was set at 0, 1/3 and 2/3 of the interest rate, that is, 0, 0.013 and
0.027 for r = 0.04, and 0, 0.023 and 0.047 for r = 0.07. The corresponding results for the
stochastic interest rate case with the starting interest rate levels 0.04 and 0.07 are shown
in Tables 2 and 4, respectively. The guaranteed rate was not fixed at a constant value
throughout the entire contract period but for one year at a time. More specifically, it was
set at 0, 1/3 and 2/3 of the short-term rate at intervals of one year. In all the cases, the lag
length of the moving average was 125 days, the number of simulated paths was 1000, the
number of option price estimations used to determine the fair bonus rate with its upper
and lower bounds was 300 (100 for each estimate), and the number of nested simulations
used to determine the option price upper bounds was 40.
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TABLE 1.

Fair bonus rates and their 95 % confidence intervals in the case of constant interest rate r = 0.04.

contract guarantee penalty CI fair bonus CI
length rate rate lower bound rate upper bound

3 0 0 0.308 0.327 0.387
3 1/3 0 0.217 0.234 0.299
3 2/3 0 0.120 0.133 0.167
3 0 0.02 0.485 0.496 0.509
3 1/3 0.02 0.364 0.368 0.378
3 2/3 0.02 0.201 0.205 0.211
10 0 0 0.295 0.326 0.415
10 1/3 0 0.221 0.259 0.310
10 2/3 0 0.109 0.14 0.177
10 0 0.02 0.452 0.475 0.499
10 1/3 0.02 0.343 0.357 0.374
10 2/3 0.02 0.199 0.206 0.216

TABLE 2.
Fair bonus rates and their 95 % confidence intervals in the case of stochastic interest rate

with r = 0.04 as the starting level.

contract guarantee penalty CI fair bonus CI
length rate rate lower bound rate upper bound

3 0 0 0.304 0.322 0.390
3 1/3 0 0.213 0.236 0.302
3 2/3 0 0.115 0.135 0.169
3 0 0.02 0.484 0.496 0.509
3 1/3 0.02 0.363 0.368 0.379
3 2/3 0.02 0.204 0.206 0.213
10 0 0 0.255 0.334 0.443
10 1/3 0 0.197 0.258 0.322
10 2/3 0 0.102 0.141 0.177
10 0 0.02 0.440 0.477 0.503
10 1/3 0.02 0.334 0.361 0.378
10 2/3 0.02 0.198 0.210 0.219

By comparing Tables 1 and 3 (or Tables 2 and 4) one can see that the fair bonus rate is
larger when the interest rate is larger. The reason is that the level of the index grows more
rapidly when the interest rate is larger, since the ’percentage drift’ equals the riskless
interest rate under risk-neutral probability. This makes negative returns in the moving
average of the stock index less probable, and the feature of the contract which protects
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TABLE 3.

Fair bonus rates and their 95 % confidence intervals with constant interest rate r = 0.07.

contract guarantee penalty CI fair bonus CI
length rate rate lower bound rate upper bound

3 0 0 0.481 0.508 0.575
3 1/3 0 0.364 0.386 0.447
3 2/3 0 0.208 0.225 0.277
3 0 0.02 0.675 0.697 0.728
3 1/3 0.02 0.546 0.566 0.584
3 2/3 0.02 0.340 0.344 0.352
10 0 0 0.470 0.507 0.590
10 1/3 0 0.341 0.385 0.459
10 2/3 0 0.210 0.236 0.294
10 0 0.02 0.638 0.683 0.730
10 1/3 0.02 0.516 0.556 0.591
10 2/3 0.02 0.330 0.356 0.370

TABLE 4.
Fair bonus rates and their 95 % confidence intervals in the case of stochastic interest rate

with r = 0.07 as the starting level.

contract guarantee penalty CI fair bonus CI
length rate rate lower bound rate upper bound

3 0 0 0.479 0.507 0.570
3 1/3 0 0.354 0.379 0.455
3 2/3 0 0.198 0.223 0.277
3 0 0.02 0.664 0.690 0.719
3 1/3 0.02 0.533 0.555 0.569
3 2/3 0.02 0.325 0.331 0.337
10 0 0 0.446 0.501 0.606
10 1/3 0 0.327 0.383 0.476
10 2/3 0 0.181 0.227 0.297
10 0 0.02 0.606 0.667 0.707
10 1/3 0.02 0.475 0.534 0.565
10 2/3 0.02 0.299 0.330 0.345

the accumulated capital against negative returns becomes less important. This, in turn,
decreases the contract price, which is compensated by the increase in the fair bonus rate.
The results in Tables 1 and 2 show that the fixed and stochastic interest rate models

with initial interest rate r = 0.04 produce similar estimates for the bonus rates. However,
Tables 3 and 4 suggest that there is a a systematic difference between the constant and
stochastic interest rate models when the initial interest rate is larger (r = 0.07). The
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estimated bonus rates tend to be smaller in the stochastic interest rate model. The reason is
probably the mean-reverting property of the interest rate model, which causes the interest
rate to decrease during the contract period. This phenomenon is emphasized when there
is a penalty in the contract, which in most cases detains optimal stopping until the final
expiration date. The increase in the guaranteed rate also magnifies the difference, which
may also be explained by the drop in the interest rate.
The result tables indicate that the duration of the contract does not generally affect the

bonus rate. However, when the contract includes a penalty and the guaranteed rate is 0 or
1/3 of the short-term interest rate, the fair bonus rate of the 10 years contract seems to be
lower than that of the 3 years contract. If the discounted process of the payoff value (i.e.,
the immediate exercise value) were a martingale for some bonus rate, this would be the
fair bonus rate for all maturities. However, this process is martingale only approximately,
since the expectation of the future values depends on the path of the index, not only
the current value of the savings. Furthermore, the payoff value process is discontinuous
because of the penalty conditions.
The confidence intervals are largest with stochastic interest rate and long maturity, and

shortest with fixed interest rate and short maturity. Moreover, the length of the confidence
interval decreases as the guaranteed rate increases. This can be clearly seen from Figure
4. The figure also reveals that the estimated fair bonus rates are closer to their lower
limits than their upper limits when the interest rate is fixed or when the interest rate is
stochastic and the guaranteed rate is small. The insurance company probably wishes to
set the bonus rate close to its lower limit, and it is good news to the customer that this
lower limit is not far from the estimated fair value.
The result tables also show that the confidence intervals are shorter when the penalty

is included in the contract. The reason is that the penalty changes the contract closer
to a European-style option, which removes the uncertainty related to optimal stopping.
Standard errors of the various estimates are shown in Tables 7, 8, 9 and 10 of Appendix
B, and they indicate that the estimation errors related to Monte Carlo simulation are also
smaller when the penalty is included. On the other hand, the standard errors are similar
in the fixed and stochastic interest rate models.
There is an error related to the use of Euler discretization in estimation and simula-

tion. However, the effect of discretization is vanishingly small, since our discretization
interval is very short, one working day. If daily data were not available, one could use
the high frequency augmentation technique described in Jones (1998) for estimation. On
the other hand, it is important to select appropriate index and interest rate models. For
example, a failure to choose a realistic model for the stock index might lead to over- or
underestimation of volatility, which would make the price estimates biased. Finally, one
should note that the regression methods used in determining prices of American options
are approximative. In addition to Monte Carlo simulation errors, there is a modelling
error related to the choice of regressors. These error sources are taken into account in the
confidence intervals.
An important issue which we have not tackled here is the hedging of the contract lia-

bility. Our contract is so complicated that it would probably be infeasible to transfer the
liability to a third party. This would also increase the overall costs. Instead, the insurer
should manage the risk internally by constructing a replicating portfolio. This portfolio
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FIG. 4. Fair bonus rate is plotted vs. the proportion of guaranteed rate to riskless rate when p = 0 and
r = 0.04. Dashed lines represent the case with stochastic interest rate and T = 10, and dotted lines the case with
constant interest rate and T = 3. The thick lines represent estimates and the thin lines 95% confidence intervals.

would include investments in a reference fund tracking the stock index, and a money
market account yielding the short-term interest rate. If necessary, a bond maturing at the
end of the contract period could be included to hedge against the interest rate risk. In Lu-
oma and Puustelli (2009), we have studied hedging our contract with a single-instrument
hedge, which employs the underlying stock index and a money market account.

5. CONCLUSIONS

Without sound valuation, economic capital models give a false sense of security. Hence,
valuation is the basis of financial risk management. This paper has attempted to provide
a full Bayesian analysis of an equity-linked savings contract embedding an American-
style path-dependent option in a way which leads to fair valuation. The introduced fairly
realistic and flexible valuation framework suits for the design and risk analysis of new
products. As a concrete problem we have quantified the effect of the discount rate, guar-
anteed rate and penalty rate on the fair bonus rate. We have shown how to determine
the fair bonus rate and its confidence interval using the regression method. The code
needed to utilize the introduced framework e.g. for an internal modeling, can be found at
http://mtl.uta.fi/codes/savings.
The Bayesian approach enables us to analyze estimation and model errors, and to take

estimation uncertainty into account in the valuation of the contract. Statistical methods,
when used appropriately, help detect significant discrepancies between used models and
empirical data. This in turn helps curb errors which stem from using inappropriate mod-
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els, such as a too simple asset model. By studying posterior distributions we found clear
evidence that the CEV model, which explicitly allows departures from the geometric
Brownian motion, provides a better fit to data. This is an important finding, since we
can avoid overestimating volatility, and thus the contract price, by using a more general
model.
One of the major findings of our simulation experiments was that the duration of the

contract did not generally affect the fair bonus rate. We also found that there were no
significant differences in the fair bonus rate between the stochastic and fixed interest rate
models when the initial interest rate was set at 4%. When the initial interest rate level was
set at a higher level of 7%, the fair bonus rate was estimated to be lower in the stochastic
interest rate case. This result suggests that it is more important to use a stochastic model
for the interest rate when the initial interest rate is exceptionally low or high.
The accuracy of the fair bonus rate estimates was poorest when the stochastic interest

rate model was used, the contract duration was long, and the penalty and guaranteed rates
were zero. Although the confidence interval of the bonus rate was fairly long in some
cases, the spread between the estimate and the lower confidence limit was reasonably
small. This is a good result, since the insurance company would probably set the bonus
rate close to its lower limit in order to hedge against the liability.
Since the model fit of the underlying financial time series could be further improved, it

would be interesting to study in future research how the use of more sophisticated models,
such as stochastic volatility models, would affect the valuation results. The impact of
mortality on the results could also be analysed. Furthermore, it would be of practical
importance to compare the perfomance of relevant hedging strategies.
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APPENDICES

A. Estimation results

The posterior simulations were performed using the R computing environment. The
following output was obtained using the summary function of the add-on packageMCMC-
pack:

TABLE 5.

Estimation results of the index model with constant interest rate.

Number of chains = 3

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.08723 0.06768 0.0005526 0.001766

log nu 3.41621 0.32460 0.0026503 0.009327

alpha 0.88321 0.05544 0.0004526 0.001592

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu -0.0448 0.04134 0.08835 0.1316 0.2185

log nu 2.7876 3.20125 3.41310 3.6349 4.0524

alpha 0.7766 0.84630 0.88314 0.9205 0.9914

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.00 1.01

log nu 1.01 1.03

alpha 1.01 1.03
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TABLE 6.

Estimation results of the index model with stochastic interest rate.

Number of chains = 3

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.079225 0.067939 5.547e-04 0.0042595

log nu 3.402534 0.327204 2.672e-03 0.0219129

alpha 0.880626 0.055834 4.559e-04 0.0037286

kappa 0.052439 0.045232 3.693e-04 0.0018596

beta 0.221869 0.132709 1.084e-03 0.0060462

tau^2 0.009487 0.001697 1.386e-05 0.0001046

gamma 0.683214 0.087154 7.116e-04 0.0051778

rho 0.091389 0.025618 2.092e-04 0.0016489

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu -0.048659 0.026263 0.079805 0.12508 0.21444

log nu 2.769493 3.176798 3.401768 3.61407 4.04341

alpha 0.772006 0.843013 0.881094 0.91714 0.98700

kappa 0.001606 0.018515 0.039505 0.07354 0.16534

beta 0.035210 0.126786 0.200871 0.29001 0.53552

tau^2 0.006695 0.008333 0.009257 0.01045 0.01355

gamma 0.504586 0.627500 0.687341 0.74042 0.84705

rho 0.041503 0.075450 0.090498 0.10661 0.14419

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.01 1.04

log nu 1.01 1.02

alpha 1.01 1.02

kappa 1.01 1.03

beta 1.01 1.03

tau^2 1.02 1.06

gamma 1.04 1.10

rho 1.01 1.03
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B. Result tables

TABLE 7.
Fair bonus rate and its lower and upper bounds with standard errors in the case of constant

interest rate r = 0.04.

length of guarantee penalty bonus SE of lower SE of lower upper SE of upper
the contract rate rate rate bonus rate bound bound bound bound

3 0 0 0.327 0.009 0.314 0.003 0.365 0.011
3 1/3 0 0.234 0.023 0.227 0.005 0.275 0.012
3 2/3 0 0.133 0.008 0.126 0.003 0.151 0.008
3 0 0.01 0.466 0.006 0.451 0.002 0.484 0.006
3 1/3 0.01 0.357 0.005 0.348 0.002 0.364 0.004
3 2/3 0.01 0.206 0.003 0.204 0.001 0.206 0.003
3 0 0.02 0.496 0.005 0.487 0.001 0.499 0.005
3 1/3 0.02 0.368 0.004 0.366 0.001 0.370 0.004
3 2/3 0.02 0.205 0.003 0.205 0.002 0.205 0.003
10 0 0 0.326 0.009 0.313 0.009 0.372 0.022
10 1/3 0 0.259 0.015 0.245 0.012 0.283 0.014
10 2/3 0 0.14 0.014 0.131 0.011 0.157 0.01
10 0 0.01 0.442 0.006 0.423 0.005 0.468 0.006
10 1/3 0.01 0.333 0.004 0.319 0.003 0.35 0.005
10 2/3 0.01 0.192 0.004 0.187 0.003 0.198 0.005
10 0 0.02 0.475 0.004 0.456 0.002 0.491 0.004
10 1/3 0.02 0.357 0.003 0.347 0.002 0.366 0.004
10 2/3 0.02 0.206 0.003 0.203 0.002 0.208 0.004
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TABLE 8.
Fair bonus rate and its lower and upper bounds with standard errors in the case of stochastic

interest rate with r = 0.04 as the starting level.

length of guarantee penalty bonus SE of lower SE of lower upper SE of upper
the contract rate rate rate bonus rate bound bound bound bound

3 0 0 0.322 0.011 0.312 0.004 0.366 0.012
3 1/3 0 0.236 0.02 0.225 0.006 0.277 0.013
3 2/3 0 0.135 0.008 0.121 0.003 0.155 0.007
3 0 0.01 0.468 0.007 0.45 0.002 0.484 0.007
3 1/3 0.01 0.356 0.004 0.346 0.001 0.364 0.005
3 2/3 0.01 0.207 0.003 0.203 0.001 0.208 0.003
3 0 0.02 0.496 0.006 0.486 0.001 0.499 0.005
3 1/3 0.02 0.368 0.004 0.365 0.001 0.369 0.005
3 2/3 0.02 0.206 0.003 0.206 0.001 0.207 0.003
10 0 0 0.334 0.09 0.306 0.026 0.4 0.022
10 1/3 0 0.258 0.022 0.228 0.016 0.298 0.012
10 2/3 0 0.141 0.014 0.124 0.011 0.157 0.01
10 0 0.01 0.445 0.005 0.411 0.004 0.47 0.006
10 1/3 0.01 0.334 0.005 0.31 0.002 0.355 0.005
10 2/3 0.01 0.196 0.004 0.18 0.003 0.204 0.005
10 0 0.02 0.477 0.004 0.446 0.003 0.495 0.004
10 1/3 0.02 0.361 0.004 0.338 0.002 0.37 0.004
10 2/3 0.02 0.21 0.003 0.2 0.001 0.213 0.003
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TABLE 9.
Fair bonus rate and its lower and upper bounds with standard errors in the case of constant

interest rate r = 0.07.

length of guarantee penalty bonus SE of lower SE of lower upper SE of upper
the contract rate rate rate bonus rate bound bound bound bound

3 0 0 0.508 0.013 0.489 0.004 0.548 0.014
3 1/3 0 0.386 0.01 0.37 0.003 0.423 0.012
3 2/3 0 0.225 0.009 0.216 0.004 0.255 0.011
3 0 0.01 0.646 0.01 0.624 0.003 0.673 0.01
3 1/3 0.01 0.528 0.009 0.51 0.003 0.547 0.006
3 2/3 0.01 0.338 0.005 0.327 0.001 0.342 0.004
3 0 0.02 0.697 0.007 0.679 0.002 0.714 0.007
3 1/3 0.02 0.566 0.005 0.55 0.002 0.572 0.006
3 2/3 0.02 0.344 0.004 0.342 0.001 0.344 0.004
10 0 0 0.507 0.013 0.488 0.009 0.555 0.018
10 1/3 0 0.385 0.011 0.37 0.015 0.426 0.017
10 2/3 0 0.236 0.013 0.23 0.01 0.269 0.013
10 0 0.01 0.643 0.009 0.607 0.007 0.683 0.01
10 1/3 0.01 0.519 0.006 0.488 0.004 0.548 0.008
10 2/3 0.01 0.327 0.004 0.306 0.002 0.344 0.004
10 0 0.02 0.683 0.005 0.648 0.005 0.72 0.005
10 1/3 0.02 0.556 0.003 0.522 0.003 0.583 0.004
10 2/3 0.02 0.356 0.003 0.334 0.002 0.364 0.003
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TABLE 10.
Fair bonus rate and its lower and upper bounds with standard errors in the case of stochastic

interest rate with r = 0.07 as the starting level.

length of guarantee penalty bonus SE of lower SE of lower upper SE of upper
the contract rate rate rate bonus rate bound bound bound bound

3 0 0 0.507 0.01 0.485 0.003 0.548 0.011
3 1/3 0 0.379 0.014 0.364 0.005 0.426 0.015
3 2/3 0 0.223 0.012 0.206 0.004 0.255 0.011
3 0 0.01 0.636 0.01 0.617 0.003 0.674 0.009
3 1/3 0.01 0.52 0.006 0.499 0.002 0.538 0.007
3 2/3 0.01 0.326 0.004 0.311 0.002 0.33 0.004
3 0 0.02 0.69 0.007 0.668 0.002 0.707 0.006
3 1/3 0.02 0.555 0.004 0.537 0.002 0.559 0.005
3 2/3 0.02 0.331 0.004 0.327 0.001 0.329 0.004
10 0 0 0.501 0.013 0.477 0.016 0.563 0.022
10 1/3 0 0.383 0.012 0.356 0.015 0.435 0.021
10 2/3 0 0.227 0.032 0.205 0.012 0.272 0.013
10 0 0.01 0.628 0.01 0.578 0.006 0.67 0.008
10 1/3 0.01 0.502 0.007 0.454 0.005 0.53 0.006
10 2/3 0.01 0.311 0.004 0.276 0.002 0.328 0.004
10 0 0.02 0.667 0.005 0.614 0.004 0.695 0.006
10 1/3 0.02 0.534 0.004 0.487 0.006 0.555 0.005
10 2/3 0.02 0.33 0.003 0.303 0.002 0.339 0.003
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We introduce a Bayesian approach to market consistent valuation and hedging of an
equity-linked life insurance contract. This paper aims to provide a realistic and flexible
modeling tool for product design and risk analysis for insurance companies.
The contract consists of a guaranteed interest rate and a bonus depending on the yield of

a total return equity index. A fairly general and realistic framework is assumed, allowing
interest rate, volatility and jumps in the asset dynamics to be stochastic, and incorporating
stochastic mortality. We employ MCMC methods to estimate both the financial and mor-
tality models, and show how parameter expansion can be effectively applied to estimate
the financial model.
Our contract is an American-style path-dependent derivative, and we value it using the

regression method. This is combined with an inverse prediction method to determine the
fair bonus rate. As a hedging strategy we employ minimum variance hedging which relies
on the underlying asset as a single hedging instrument. We compare its hedging effective-
ness with a conventional delta-neutral hedge which uses a simpler model for asset dynam-
ics. Parameter uncertainty is taken into account using posterior predictive simulations in
valuation and hedging.

Key Words: Option pricing via simulaton, single-instrument hedging, stochastic interest

rate, stochastic mortality, stochastic volatility

1. INTRODUCTION

Insurance markets around the world are changing as well as their supervision. In Euro-
pean Union a new risk-based insurance regulatory framework called Solvency II will soon
be implemented. Solvency II is designed to reflect modern risk management practices,
and the regime assumes a market-consistent valuation of the balance sheet.
In Solvency II insurers are encouraged to measure and manage their risks based on

internal models (see, e.g., European Commission, 2009; Gatzert and Schmeiser, 2006;
Ronkainen et al., 2007). Further, the European insurance regulator EIOPA (2011) insists
that companies involved in complex equity-linked products should use their own internal
models for the calculation of solvency capital requirement. On the other hand, Solvecy II
will increase the price of more capital-intensive products such as life insurance contracts
with capital guarantees. This would result in a search for ’new traditional products’ which
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fulfill the customer demands for traditional life contracts but in a capital-efficient manner
(Morgan Stanley and Oliver Wyman, 2010). This paper attempts to serve a need for
creating internal models as well as a need to develop new types of products in a market-
consistent framework.
There is a wide variety of life insurance products in the market. Most equity-linked

life insurance policies, for example variable annuities and equity-indexed annuities in the
United States, unit-linked insurance in the United Kingdom and equity-linked insurance
in Germany, include implicit options, which represent a significant risk to the company
issuing these contracts. One can find a useful introduction to different types of equity-
linked insurance contracts in Hardy (2003). Here we do not assume any existing product
in the market. The existing products vary considerably and new ones are developed in
the future. Instead, our valuation framework is fairly flexible including several financial
components which are crucial for the risk analysis of equity-linked life products. Many
types of products can be covered from our procedure just by excluding some components
of the contract.
Equity-linked and participating life insurance policies are characterized by a vast num-

ber of features including, for example, bonus and surrender options and interest rate guar-
antees. All these features have values which need to be priced. Pricing these policies in a
market consistent framework was first studied by Briys and de Varenne (1997a,b). Since
then a number of articles have appeared on the topic; see, for example, Grosen and Jor-
gensen (2000), Tanskanen and Lukkarinen (2003), Bernard et al. (2005), Ballotta et al.
(2006), Bauer et al. (2006) and Zaglauer and Bauer (2008). However, most valuation
models assume a simplified set-up. Our objective is to present a realistic valuation frame-
work in which the guarantee and the bonus are priced in a stochastic framework, and a
surrender option is included in the contract.
The price of an option depends on the assumption of the model describing the be-

haviour of the underlying instrument. Most approaches specify a particular stochastic
process to represent the price dynamics of the underlying asset and then derive an ex-
plicit pricing formula. A traditional approach involves solving a partial differential equa-
tion. However, when the asset dynamics are assumed to follow a fairly complex model, a
closed form solution of the partial differential equation may not exist or its numerical so-
lution may become intractable. When the payoff of an option depends on the path of the
underlying asset, the price cannot be evaluated in this manner. Instead, Monte Carlo sim-
ulation methods may be used (Glasserman, 2004). For example, Bacinello et al. (2009)
apply the least squares Monte Carlo (or regression) method in pricing a participating life
insurance with early exercise.
Most papers on pricing equity-linked life insurance contracts lack paying attention to

parameter and model errors. Neither the true underlying model nor its parameter values
are known. Typically, a relatively simple model is assumed and the point estimates of
the parameters are used. This might lead to a crucial valuation error. In the Bayesian ap-
proach, parameter and model uncertainty plays a major role. While frequentist methods
typically rely on large sample approximations, Bayesian inference is exact in finite sam-
ples. In derivative pricing an exact characterization of finite sample uncertainty is critical
from the insurance company’s risk management point of view. The Bayesian approach is
particularly attractive, since it can link the uncertainty of parameters and latent variables
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the parameters are used. This might lead to a crucial valuation error. In the Bayesian ap-
proach, parameter and model uncertainty plays a major role. While frequentist methods
typically rely on large sample approximations, Bayesian inference is exact in finite sam-
ples. In derivative pricing an exact characterization of finite sample uncertainty is critical
from the insurance company’s risk management point of view. The Bayesian approach is
particularly attractive, since it can link the uncertainty of parameters and latent variables
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to the predictive uncertainty of the process. Another advantage of Bayesian inference is
its ability to incorporate prior information into the model.
We define an equity-linked life insurance contract with fairly general features. Specif-

ically, it provides a participation in an equity index at a specified rate, option to surrender
at any time, and a downside protection and guaranteed interest rate for the accumulated
savings. These properties make the contract a path-dependent American-style derivative,
whose pricing and hedging requires using advanced simulation techniques. In particular,
we will use the regression approach in pricing (see, e.g., Tsitsiklis and Van Roy, 1999,
2001). The estimated regressions are also used to compute the deltas needed in hedg-
ing. The sample paths needed in the regression method are simulated using the posterior
predictive distribution under risk-neutral dynamics, as suggested by Bunnin et al. (2002).
The used financial model is also fairly general and realistic, allowing the interest rate,

volatility and jumps in the asset dynamics to be stochastic. In estimating this multivariate
process we follow the guidelines provided by Jones (1998). However, we do not apply
high frequency augmentation, since we are dealing with daily data and the discretiza-
tion errors in the volatility and interest rate processes are small. Instead, we show how
parameter expansion can be effectively used in parameter estimation under the general
correlation structure.
Equity-linked life insurance policies involve not only risks arising from financial fac-

tors, but also risk related to mortality. Bacinello (2003) and Shen and Xu (2005) introduce
mortality risk, but only in a simple set-up with deterministic or constant mortality rates.
Biffis (2005) and Bacinello et al. (2009) incorporate stochastic mortality to the pricing
framework. With a stochastic mortality model we do not need to make an assumption of
a large insurance portfolio, and we avoid invoking to the law of large numbers. This again
is significant from the risk management point of view. As a mortality model we will use
a generalization of the Gompertz model which takes the cohort effect into account.
In Solvency II insurers are required to cover their risks appropriately, especially as

guarantees offered to policyholders imply an increase of risks for insurers. Insurers can
manage these risks either through a hedging programme or by additional tools, which
include reinsurance and purchase of structured products. With hedging schemes insurers
manage risks through financial instruments used for replicating cash flows representing
the changes in the market value of liabilities. However, the hedging programme might
not be able to properly take into account some of the risks, for example policyholder
behaviour and other demographic risks, or the interactions amongst different risks. The
insurer may transfer these risks to a reinsurer or to an investment bank. For more, see
EIOPA (2011).
We also study dynamic hedging strategies to control for various risks by utilizing a

replicating portfolio. As a hedging strategy we employ minimum-variance hedging which
relies on the underlying asset as a single hedging instrument. We follow the work by
Bakshi et al. (1997) when deriving the minimum-variance hedge. This type of hedge is
needed, since a perfect delta-neutral hedge is not feasible due to untraded risks. However,
a single-instrument hedge can only be partial, since in our set-up there is more than one
source of risk. We also construct a conventional delta-neutral hedge which uses a simpler
model for asset dynamics, and compare the performance of the hedges. We find that both
methods produce fairly large hedging error standard deviations, which may result from
using approximate delta values obtained with the regression method.

HEDGING EQUITY-LINKED LIFE INSURANCE CONTRACTS 3

to the predictive uncertainty of the process. Another advantage of Bayesian inference is
its ability to incorporate prior information into the model.
We define an equity-linked life insurance contract with fairly general features. Specif-

ically, it provides a participation in an equity index at a specified rate, option to surrender
at any time, and a downside protection and guaranteed interest rate for the accumulated
savings. These properties make the contract a path-dependent American-style derivative,
whose pricing and hedging requires using advanced simulation techniques. In particular,
we will use the regression approach in pricing (see, e.g., Tsitsiklis and Van Roy, 1999,
2001). The estimated regressions are also used to compute the deltas needed in hedg-
ing. The sample paths needed in the regression method are simulated using the posterior
predictive distribution under risk-neutral dynamics, as suggested by Bunnin et al. (2002).
The used financial model is also fairly general and realistic, allowing the interest rate,

volatility and jumps in the asset dynamics to be stochastic. In estimating this multivariate
process we follow the guidelines provided by Jones (1998). However, we do not apply
high frequency augmentation, since we are dealing with daily data and the discretiza-
tion errors in the volatility and interest rate processes are small. Instead, we show how
parameter expansion can be effectively used in parameter estimation under the general
correlation structure.
Equity-linked life insurance policies involve not only risks arising from financial fac-

tors, but also risk related to mortality. Bacinello (2003) and Shen and Xu (2005) introduce
mortality risk, but only in a simple set-up with deterministic or constant mortality rates.
Biffis (2005) and Bacinello et al. (2009) incorporate stochastic mortality to the pricing
framework. With a stochastic mortality model we do not need to make an assumption of
a large insurance portfolio, and we avoid invoking to the law of large numbers. This again
is significant from the risk management point of view. As a mortality model we will use
a generalization of the Gompertz model which takes the cohort effect into account.
In Solvency II insurers are required to cover their risks appropriately, especially as

guarantees offered to policyholders imply an increase of risks for insurers. Insurers can
manage these risks either through a hedging programme or by additional tools, which
include reinsurance and purchase of structured products. With hedging schemes insurers
manage risks through financial instruments used for replicating cash flows representing
the changes in the market value of liabilities. However, the hedging programme might
not be able to properly take into account some of the risks, for example policyholder
behaviour and other demographic risks, or the interactions amongst different risks. The
insurer may transfer these risks to a reinsurer or to an investment bank. For more, see
EIOPA (2011).
We also study dynamic hedging strategies to control for various risks by utilizing a

replicating portfolio. As a hedging strategy we employ minimum-variance hedging which
relies on the underlying asset as a single hedging instrument. We follow the work by
Bakshi et al. (1997) when deriving the minimum-variance hedge. This type of hedge is
needed, since a perfect delta-neutral hedge is not feasible due to untraded risks. However,
a single-instrument hedge can only be partial, since in our set-up there is more than one
source of risk. We also construct a conventional delta-neutral hedge which uses a simpler
model for asset dynamics, and compare the performance of the hedges. We find that both
methods produce fairly large hedging error standard deviations, which may result from
using approximate delta values obtained with the regression method.



4 LUOMA & PUUSTELLI

The paper is organized as follows. Section 2 introduces the framework and models
for the asset dynamics and mortality, Section 3 presents the estimation and evaluation
procedures and Section 4 hedging strategies. Section 5 presents the empirical results
and the final Section 6 concludes. The full conditional distributions of the financial and
mortality models as well as the estimation results are provided in the appendices.

2. THE FRAMEWORK

2.1. The equity-linked life insurance contract

We define the equity-linked life insurance contract as in Luoma et al. (2008). The
contract consists of two parts, the first being a guaranteed interest and the second a bonus
depending on the yield of some total return equity index. Thus, our product resembles
equity-indexed annuities in the United States and equity-linked insurance contracts in
Germany. On the other hand, in some equity-linked contracts the bonus is linked to a
fund or combinaton of funds, for example in variable annuities in the United States or
segregated fund contracts in Canada (see Hardy, 2003).
We denote the amount of savings in the insurance contract at time ti by A(ti). Then its

growth during a time interval of length δ = ti+1 − ti is given by

log
A(ti+1)
A(ti)

= g δ + bmax
(
0, log

X(ti+1)
X(ti)

− g δ
)
, (1)

where X(ti) =
∑q
j=0 S (ti− j)/(q+1) is a moving average of a total return equity index S (ti),

g is a guaranteed rate and b is a bonus rate, the proportion of the excessive equity index
yield which is returned to the customer. In this study we use the time interval δ = 1/255,
where 255 is approximately the number of the days in a year on which the index is quoted
and the lag length of the moving average is chosen to be q = 125 (i.e., half a year). The
use of a moving average decreases the volatility of the contract value, and thus facilitates
hedging.
The model also incorporates a surrender (early exercise) option and possibility for a

penalty p which occurs if the customer reclaims the contract before the final expiration
date. If the penalty is set too high, the contract is basically a European-style option and
thus exercised only at the end of the contract period. A further condition is that there
will be a 1 % penalty if the contract is reclaimed during the first 10 working days. This
condition essentially improves the estimation described in Section 3.4. The penalty is not
applied if the contract is reclaimed due to mortality.
In the following, we will consider the two cases where (i) the riskless interest rate is

fixed at a predetermined value r, or (ii) is assumed to be stochastic. For the constant
interest rate r the guaranteed rate g is set at kr throughout the entire contract period for
some constant k < 1. In the case of stochastic interest rate, the guaranteed rate is fixed for
one year at a time. It is set annually at krt, where rt is the riskless short-term interest rate
at time t. By setting the guaranteed rate for one year at a time and not daily, the insurance
company can better hedge its liabilities, and on the other hand, the customer will have a
better idea of the guaranteed growth rate.
In this framework the penalty p for early exercise and the parameters k, g and b are

predefined by the insurance company. However, in the case of a stochastic interest rate, g
is reset annually. In Section 3.4 we introduce a method to evaluate a fair bonus rate b so
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that the risk-neutral price of the contract is equal to the initial investment. This gives the
contract a simple structure and makes its costs and returns visible and predictable for the
insurer and the customer.
The equity-indexed annuity contract has a modification called an annual ratchet in

which the index participation is evaluated year by year. Each year the amount of savings
is increased by the greater of the floor rate, which is usually 0 percent, and the increase
in the underlying index, multiplied by the participation rate. Our contract is similar to
this apart from being evaluated on a daily basis. Our contract type is better linked to
the dynamics of the financial markets, since the customer may follow the growth of the
savings daily and also exercise the contract at market value.

2.2. Financial and mortality models

We assume that the dynamics of the stock index S t, variance Vt and riskless short-term
rate rt are described by the following system of SDEs:

d log S t = μdt +
√
VtdB(1)t + Utdqt (2a)

dVt = (α1 + β1Vt)dt + σV
√
VtdB(2)t (2b)

drt = (α2 + β2rt)dt + σr
√
rtdB(3)t (2c)

where B(1)t , B
(2)
t and B(3)t are standard Brownian motions, qt is a jump process, and Ut

is the jump size. We further assume that these Brownian motions have the correlation
structure

Cor
(
B(1)t , B

(2)
t , B

(3)
t

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

and qt is a Poisson process with intensity λ, that is, Pr(dqt = 1) = λdt and Pr(dqt = 0) =
1 − λdt. Conditional on a jump occurring, we assume that Ut ∼ N(a, b2). In addition,
we assume that qt is uncorrelated with Ut or with any other process. We abbreviate this
model as SVJ-SI.
In order to facilitate estimation, we reparameterize the models (2a) -(2c) as follows:

d log S t = μdt + σ1
√
YtdB(1)t + Utdqt (4a)

dYt = (α∗1 + β1Yt)dt + σ2
√
YtdB(2)t (4b)

dRt = (α∗2 + β2Rt)dt + σ3
√
RtdB(3)t (4c)

where Yt = Vt/σ21 is rescaled variance and Rt = 100 rt is the interest rate given in percent-
ages. The new parameters are α∗1 = α1/σ

2
1, σ2 = σV/σ1, α

∗
2 = 100α2 and σ3 = 10σr.

We introduce a risk-neutral probability measure Q under which the discounted index
process S̃ t = S t exp(−

∫ t
0 rsds) is a martingale. Specifically, we assume the risk neutral

dynamics to be

dS t =(rt − λμJ)S tdt +
√
VtS tdZ(1)t + JtS tdqt (5a)

dVt = (α1 + β1Vt)dt + σV
√
VtdZ(2)t (5b)

drt = (α2 + β2rt)dt + σr
√
rtdZ(3)t (5c)
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where Jt = eUt −1, μJ = E(Jt) = exp(a+ 12b
2)−1, and Z(1)t , Z

(2)
t and Z(3)t are three standard

Brownian motions with correlation structure (3) under Q. In logarithmic form, equation
(5a) is given by

d log S t =
(
rt −

1
2
Vt − λμJ

)
dt +

√
VtdZ(1)t + Utdqt.

For the intensity of mortality, we will use a generalization of the Gompertz model. The
Gompertz model describes the age dynamics of human mortality fairly accurately in the
middle span of ages, approximately between 30 and 80 years, which is enough for our
purposes (see, e.g., Promislow, 2006). Specifically, we use a generalization of the form

log(μku) = β00 + β01u + β10k + β11ku + εku, (6)

where μku is the death rate for age k and for cohort u set by the year of birth. We assume
the error term εku follows an autoregressive process of order one: εku = φεk−1,u + aku,
where aku ∼ i.i.d. N(0, σ2m). The parameters β00, β01, β10, β11, φ and σ2m are unobservable
and must be estimated.

3. ESTIMATION AND EVALUATION PROCEDURES

3.1. Estimation of the financial model

We use Bayesian methods to estimate the unknown parameters of the stock index,
volatility and interest rate models, as well as to estimate the latent volatility and jump
processes. This makes it possible to take parameter uncertainty into account when the
fair price of the contract is evaluated and a hedging strategy is employed. The major
challenge in estimation is its high dimensionality, which results from the need to estimate
latent processes.
We will use Euler discretization in the estimation of unknown parameters, since the

transition density of the multivariate process described by (4a), (4b) and (4c) does not
have a closed form solution. Accordingly, we will simulate the risk-neutral process using
the Euler discretization of (5a), (5b) and (5c). The Euler scheme is the simplest standard
method for approximate simulation of stochastic differential equations; for further details,
see Iacus (2008) or Glasserman (2004).
A discrete version of (4a), (4b) and (4c) is given by

log S k+1 = log S k + μδ +
√
Yk δe(1)k+1 + Uk+1lk+1

Yk+1 = Yk + (α∗1 + β1Yk)δ +
√
Yk δe(2)k+1

Rk+1 = Rk + (α∗2 + β2Rk)δ +
√
Rk δe(3)k+1

where δ denotes discretization interval length, e(1)k , e
(2)
k and e

(3)
k are three normal variables

with zero means, variances σ21, σ
2
2 and σ

2
3, and correlation structure (3), Uk ∼ N(a, b

2) is
jump size and lk ∼ Ber(λδ) an indicator variable of a jump.
Our estimation procedure is a single-component (or cyclic) Metropolis-Hastings algo-

rithm (see, e.g., Gilks et al., 1996). TheMetropolis-Hastings (M-H) algorithm is a general
term for Markov Chain Monte Carlo (MCMC) methods which are used to simulate pos-
terior distributions. The algorithm was introduced by Hastings (1970) as a generalization
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of the Metropolis algorithm (Metropolis et al., 1953). Also the Gibbs sampler (Geman
and Geman, 1984) can be viewed as its special case.
The single-component M-H algorithm differs from the basic algorithm in that the sim-

ulated random vector is divided into components which are updated one by one. The
purpose is to simulate the conditional distribution of each block given the current values
of the other blocks. In the case of the Gibbs sampler, random variates from these distri-
butions are drawn directly. In the more general case, a proposal from an approximative
distribution is first generated, and it is accepted with certain probability, or otherwise the
old value is retained.
In the case of our model, it is possible to divide the vector of all parameters into blocks

which can be updated using Gibbs sampling, that is, the full conditionals of these blocks
can be simulated directly. This is possible, since we have introduced a superfluous pa-
rameter σ1 and we use the general correlation structure. Now posterior simulations of
the dispersion matrix of the error vector (e(1)k , e

(2)
k , e

(3)
k ) can be drawn from the Inverse-

Wishart density. In order to stabilize simulation, only such draws are accepted for which
0.9 < σ21 < 1.1. Then the scaled variance vector Y is close to the true variance vector
V . We estimate the GARCH(1,1) model to obtain an initial value for Y . Further details
about the updating procedure are provided in Appendix A.
Note that the data do not contain enough information to estimate σ1 and Y separately,

but their joint posterior distribution determines the posterior of V , which is of interest.
Adding a new parameter is called parameter expansion, which can be more generally
used to improve the convergence of Markov chain simulation. This is discussed in Liu
and Wu (1999), van Dyk and Meng (2001) and Liu (2003), and a simple example is
provided by Gelman et al. (2004).
The volatility and jump processes cannot be updated using Gibbs sampling. Here we

follow the guidelines provided by Jacquier et al. (1994) and Jones (1998). The scaled
variances Yk are updated one by one. Their full conditional distribution is p(Yk |Y−k,H, φ)
where Y−k comprises all of Y except Yk, H comprises the index, interest rate and jump
processes, and φ is a vector of all parameters. Since we are dealing with a Markov
process,

p(Yk |Y−k,H, φ) ∝ p(Yk |Yk−1,Hk−1,Hk, φ)p(Yk+1,Hk+1|Yk,Hk, φ).

Now Yk may be updated by first generating a proposal Y∗k from p(Yk |Yk−1,Hk−1,Hk, φ) and
accepting it with probability

min
(
1,
p(Yk+1,Hk+1|Y∗k ,Hk, φ)
p(Yk+1,Hk+1|Yk,Hk, φ)

)
.

A detailed description of this update can be found in Appendix A.
The jump process can be updated similarly. Let us denote the joint process of jumps

and jump sizes as Ik = (lk,Uk) and the other processes as Lk = (S k,Yk,Rk). Because the
jumps are independent, their full conditional is given by p(Ik |I−k, L, φ) = p(Ik |Lk−1, Lk, φ),
which is proportional to

p(Ik |φ)p(Lk |Lk−1, Ik, φ).
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Now Ik is updated by first generating I∗k from its marginal distribution p(Ik |φ) and accept-
ing it with probability

min
(
1,
p(Lk |Lk−1, I∗k , φ)
p(Lk |Lk−1, Ik, φ)

)
.

The jumps lk and their sizes Uk could also be updated separately. A detailed description
of this update can be found in Appendix A.

3.2. Mortality estimation and prediction

To estimate the mortality model (6) we use Gibbs updates for β = (β00, β01, β10, β11)
and σ2u, and a Metropolis update for φ. The needed conditional posterior distributions
can be found in Appendix B. The data are imbalanced in the sense that later cohorts
have fewer observations. The unobserved future death rates are considered as missing
observations, and they are estimated similarly to the unknown parameters using Gibbs
updates. Each missing value is initially given the corresponding death rate from the most
recent cohort where it is available. Then the missing values of each cohort are updated
by generating them from their multivariate normal conditional distribution.
When the mortality model is used to study hedging performance, we need to scale the

estimated AR(1) model, which is based on yearly data, to daily observations. When the
sampling frequency is changed from 1 to δ, the high frequency sampling parameters are
given as φh f = φδ and σ2m.h f = σ

2
m
1−φ2δ
1−φ2 (see, e.g., Gourieroux and Jasiak, 2001).

When pricing and hedging the contract, we use the worst-case scenario of mortality
from the insurance company’s viewpoint. In practice, we simulate 1000 paths of death
rates and choose the minimum rate for each time point. These minimum death rates are
then used to generate the date of death for each simulation path.

3.3. Pricing American options with the regression method

Our equity-linked life insurance contract is an American-style option with a path-
dependent moving average feature. An American option gives the holder the right to
exercise the option at any time up to the expiry date. In pricing we adopt the regres-
sion (or least squares) method introduced by Tsitsiklis and Van Roy (1999, 2001). It is
a simple but powerful approximation method for American-style options. Longstaff and
Schwartz (2001) provide a slightly different version of the method.
In this method a number of paths from the underlying (multivariate) process are first

generated under the Q-measure. In our application we do not use fixed parameter values
but generate the paths from an adjusted version of the posterior predictive distribution.
The first adjustment is that μ is replaced with rt−Vt/2−λμJ in order to obtain risk-neutral
dynamics, and the second that we use either 7% or 4% as an initial value of rt in order to
study its effect on the results.
Option pricing is based on an optimal exercising strategy in which the goal is to find

a stopping time maximizing the expected discounted payoff of the option. The decision
to continue is based on comparing the immediate exercise value with the corresponding
continuation value. In the regression method it is assumed that the continuation value may
be expressed as a linear regression of the discounted future value on known functions of
the current state.
For simplicity, we assume that the value of the insurance contract at maturity, surrender

or death is equal to its accumulated savings at the relevant time point. Special policies
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for these cases could be easily implemented. In the regression method mortality is taken
into account so that at each time point only those simulation paths are used in regression
for which the person is alive. Bacinello et al. (2009) provide a method to generate times
of death, and also a valuation algorithm in which mortality is taken into account. Our
approach is slightly different in that it is based on the Tsitsiklis and Van Roy (2001)
version of the regression method, while theirs is based on that of Longstaff and Schwartz
(2001). The deficit of the latter version is that it in practice produces low-biased price
estimates (see Glasserman, 2004).
In our application, the continuation values of the option depend on the path of the un-

derlying index value in a fairly complicated way. Theoretically, we would need q+1 state
variables (or q+2 in the case of stochastic interest rate) to satisfy the Markovian assump-
tion of the process. However, we consider that the current value of the index, its moving
average, and the first index value appearing in the moving average may be used to predict
the continuation value reasonably well. The use of the moving average may be motivated
by observing that the growth of savings in the insurance contract depends on the path of
the moving average (see equation 1). The current index value and the first value appearing
in the moving average help predict the future evolution of the moving average. We also
use the current values of interest rate and volatility to predict the continuation value. The
current amount of savings also helps predict the continuation value, but it is not included
in the regression variables. Instead, it is subtracted from the regressed value before fitting
the regression and subsequently added to the fitted value.
To avoid under- and overflows in the computations, the regression variables related to

the equity index are scaled by the first index value, and the current value of the interest rate
is given in percentages. Thus, the following state variables are used: X1(ti) = S (ti)/S (0),
X2(ti) =

[∑q
j=0 S (ti− j)/(q + 1)

]
/S (0), X3(ti) = S (ti−q)/S (0), X4(ti) = R(ti) and X5(ti) =

V(ti). However, multicollinearity problems would occur if the variables X1, X2 and X3
were used at all time points. In fact, X3 would be equal for all simulations paths for
i ≤ q and the moving averages X2 would be very close to each other for small values
of i. Therefore, we apply the following rule: The variables X1, X4 and X5 are used for
1 ≤ i < q/2, variables X1, X2, X4 and X5 are used for q/2 ≤ i < 3q/2, and all variables
are used for i ≥ 3q/2.
We use Laguerre polynomials, suggested by Longstaff and Schwartz (2001), as basis

functions. More specifically, we use the first two polynomials

L0(X) = exp(−X/2)
L1(X) = exp(−X/2)(1 − X)

for all variables. In addition, we use the cross-products L0(X1)L0(X4), L0(X1)L0(X5),
L0(X1)L0(X2), L0(X1)L1(X2), L1(X1)L0(X2), L0(X1)L0(X3) and L0(X2)L0(X3). We also
tried adding L2, and rt in the case of stochastic interest rate, but these did not improve
valuation accuracy. Thus, we have altogether 17 explanatory variables in the regression.

3.4. Determining the fair bonus rate

Using the regression method we can determine the option price (that is, the price of
the insurance contract) when the bonus rate b and the guarantee rate g have been given.
However, we are interested to determine the bonus rate so that the price of the contract
is equal to the initial investment. It makes the different hedging strategies comparable,
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since the bonus rate affects the optimal time to surrender, which is the most significant
factor to produce large hedging errors. If the bonus rate is set at a high level, the contract
is almost never reclaimed before the final expiration date, and, on the other hand, if the
bonus rate is too low, early surrender is highly probable.
The problem of determining b is a kind of inverse prediction problem, and we need

to estimate the option values for various values of b. Since we also wish to estimate
the variance of the Monte Carlo error related to the regression method, we repeat the
estimation several times for fixed values of b. We end up estimating a regression model
where the option price estimates are regressed on the bonus rates. (This regression model
should not be confused with the regression method used in the estimation of the option
value for a fixed b). We found the third degree polynomial curve to be flexible enough
for this purpose. After fitting the curve, we solve the bonus rate b for which the option
price is equal to 100, which we assume to be the initial amount of savings. In order to
facilitate the estimation of the fair bonus rate, we set the further condition that there is a
1% penalty for reclaiming the contract during the first ten days.
Prior to fitting the polynomial, it is, however, necessary to determine an initial interval

for the solution. For this purpose we have developed a modified bisection method. In this
method, one first specifies initial upper and lower limits for the bonus rate; we use the
values l = 0 and u = 1. Then one estimates the option price at (l + u)/2. If the price is
greater than 100, the upper limit of the bonus rate is set at u − (u − l)/4; if the price is
smaller than 100, the lower limit of the bonus rate is set at l + (u − l)/4. This procedure
is continued until u − l = 0.25. Note that the new limit is not set in the middle of the
interval, as is done in the ordinary bisection method, since this might lead to missing the
correct solution due to the randomness of the price estimates.
Figure 1 illustrates the estimation procedure. The option price is estimated for 10

different bonus rates, and the estimation is repeated 5 times for each bonus rate, which
produces 50 points to the scatter plot. Each estimation is based on 1000 simulated paths.
The initial limits of the bonus rate (0.14, 0.39) were determined using the modified bi-
section method described above. We can see that the fair bonus rate is approximately
28%.
As mentioned above, the bonus rate is solved from the equation y = f (x), where y is

the price of the contract and

f (x) = β̂0 + β̂1x + β̂2x2 + β̂3x3 = x′β̂,

where β̂ = (β̂0, β̂1, β̂2, β̂3)′ is the ordinary least squares (OLS) estimate of the cubic regres-
sion model and x = (1, x, x2, x3)′ a regression vector. The purpose of the initial penalty
rate is to ensure that there is exactly one solution in the relevant interval.
Using the delta method, one also obtains an approximate variance for the estimate of

x:

Var(x̂) ≈
1

[ f ′(x)]2
Var( f (x)) ≈

1(
β̂1 + 2β̂2 x̂ + 3β̂3 x̂2

)2 x̂′Cov(β̂)x̂.
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FIG. 1. Contract price estimates vs. bonus rates. The contract length is set at 3 years, guarantee rate at
rt/3, and starting level of rt at 7%, and mortality is not included.

4. HEDGING

4.1. Minimum variance hedging

We construct a single instrument hedge, which employs only the underlying stock in-
dex. This hedge is only partial, since there are several sources of risks in our model.
Uncontrolled risks are those which move the target option value but are uncorrelated
with the underlying index. Such factors as model misspecification and transaction costs
may render this type of hedge more practical to adopt than the conventional delta-neutral
hedge. Besides a perfect delta-neutral hedge would be infeasible, since some of the risks
are untraded.
We assume that there is a reference fund tracking the stock index, and a money market

account (MMA) growing at the rate rt. Let NSt be the number of shares to be purchased
from the reference fund, and let N0t be the residual position in the MMA. Then the time
t value of the replicating portfolio is N0t + NSt S t. Furthermore, the hedging error Ht+δ at
time t + δ is given by

Ht+δ = NSt S t+δ + N0t ertδ −Ct+δ, (7)

where δ is the updating interval of the replicating portfolio, and Ct+δ is the value of the
contract at time t + δ. In the limit when δ → 0, the mean squared hedging error is
minimized by choosing

NSt =
Cov (dS t, dCt)
Var (dS t)

. (8)

Let us denote the jump sizes of the index process S t by Jt � eUt − 1. The mean and
variance of Jt are given by μJ = exp(a + 1

2b
2) − 1 and σ2J = exp(2a + b

2)(exp(b2) − 1),
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respectively. Under our framework, the total return variance can be decomposed into two
components

1
dt
Var

(
dS t
S t

)
= Vt + VJt , (9)

where the instantaneous variance of the jump component is given by

VJt = (1/dt)Var (Jtdqt) = (1/dt)
(
E(Jtdqt)2 −

[
E(Jt)E(dqt)

]2)
= (1/dt)

[
σ2J +

(
μJ

)2] [
λdt + (λdt)2

]
= λ

[
σ2J +

(
μJ

)2]
.

Now let Ct(S t,Vt, rt) denote the value of the contract at time t with index value S t,
variance Vt and interest rate rt. The differential of Ct(S t,Vt, rt) may be written as

dCt(S t,Vt, rt) =
∂Ct(S t,Vt, rt)
∂S t

√
VtdZ(1)t +

∂Ct(S t,Vt, rt)
∂Vt

dVt +
∂Ct(S t,Vt, rt)

∂rt
drt

+ [Ct(S t + JtS t,Vt, rt) −Ct(S t,Vt, rt)] dqt.

Using this and equations (8) and (9) we obtain that

NSt = Δ
(S )
t

Vt
(Vt + VJt )

+ Δ
(V)
t
ρ12σVVt
S t(Vt + VJt )

+ Δ
(r)
t
ρ13σr

√
Vtrt

S t(Vt + VJt )

+
λ
[
Et (JtCt(S t + JtS t,Vt, rt)) −Ct(S t,Vt, rt)μJ

]
S t(Vt + VJt )

(10)

where we have denoted the deltas as Δ(S )t =
∂Ct(S t ,Vt ,rt)
∂S t , Δ(V)t =

∂Ct(S t ,Vt ,rt)
∂Vt and Δ(r)t =

∂Ct(S t ,Vt ,rt)
∂rt .
Equation (10) shows that the position to be taken in the shares of the reference fund

must control not only for the direct impact of stock price changes on the target option, but
also for the indirect impacts of those parts of volatility and interest rate changes which
are correlated with index fluctuations. We can see that the additional number of shares
needed besides Δ(S ) is increasing both in ρ12 and ρ13. Furthermore, since the jump risk
is present as well, the position to be taken in the reference fund must also hedge the
impact of jump risk on the target option, which is reflected in the last term in (10). This
term is increasing in λ and μJ , meaning that the larger the random-jump risk, the more
adjustment needs to be made in the hedging position.
We explained in Section 3.3 how to use the regression method to price our contract,

which is an American-style derivative. The estimated regression model is used to deter-
mine the optimal stopping times needed in the simulation of hedging performance. For
each simulation path the used stopping time is the first time when the estimated continu-
ation value is smaller than the immediate exercise value.
We estimate the deltas Δ(S ), Δ(V) and Δ(r) by differentiating the estimated regression

equation with respect to S , V and r. The computations are simplified by noting that the
derivative of X3 with respect to S is 0, and the corresponding derivative of X2 very small,
so that it can be ignored. Furthermore, we compute the expectation on the second line of
(10) using numerical integration and the estimated regression model.
Comparison of the hedging schemes is based on 1000 simulation paths of the under-

lying process. For each path, the hedging error is computed as the difference of the
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replication portfolio and the balance at the estimated optimal stopping time. Then the
mean difference, mean squared error and quantiles of the error distribution are computed
over all simulation paths. Moreover, this procedure is repeated 100 times using different
simulation paths and regression estimates, and the results of these repetitions are pooled.
The real-world probability measure P is used in this simulation, since we are interested
in the real-world outcome. The Q-measure is only used for pricing and constructing the
hedge portfolio.
Finally, we note that the hedging errors stem from three sources. First, perfect hedging

is not possible even in continuous time, since we have more sources of randomness than
hedging instruments. Second, since portfolio rebalancing takes place in discrete time,
the discretization error given in (7) occurs. Third, since the exact values of the deltas
are unknown, we have to use the regression method to estimate them, which adds to the
hedging error.
The exact values of the parameters σV , σρ, ρ12, ρ13, λ, a and b, and the variance Vt,

needed in (10), are also unknown, but this has probably only a minor effect on the hedging
error. We use posterior median estimates for the parameters, and update the values of Vt
using the GARCH(1,1) model estimated from the original data. In principle we could
update the estimates of Vt using Bayesian simulation with the SVJ-SI model, but we
found this to be too computationally-intensive for the hedging experiment.

4.2. Competing model and delta-neutral hedging

A similar approach is used when a delta-neutral hedge is constructed for a simpler
model. The real-world asset dynamics of this model are described as

drt =κ(ξ − rt)dt + σrγt dW
(1)
t (11a)

dS t = μS tdt + νS 1−αt dW (2)
t . (11b)

Here W (1)
t and W (2)

t are two standard Brownian motions, correlated through W (2)
t =

ρW (1)
t +

√
1 − ρ2W (3)

t , where W
(1)
t and W (3)

t are two independent standard Brownian mo-
tions. The risk neutral dynamics are obtained by replacing the drift μ in (11b) with rt.
Details on estimation and pricing under this model may be found in Luoma et al. (2008).
We abbreviate this model as CEV-SI.
In the delta-neutral hedge corresponding to this model, the number of shares in the

replication portfolio is given by

NSt =
∂Ct(S t, rt)
∂S t

= Δ
(S )
t ≥ 0.

Again we use the regression method to price the derivative and to compute Δ(S ). Here we
do not include rt in the regression variables and thus assume that Δ(r)t ≈ 0.

5. EMPIRICAL RESULTS

5.1. Estimation of the parameters

In order to experiment with actual data and to estimate the unknown parameters of the
models, we chose the following data sets: As an equity index we use the Total Return
of Dow Jones EURO STOXX Total Market Index (TMI), which is a benchmark covering
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approximately 95 per cent of the free float market capitalization of Europe. The objective
of the index is to provide a broad coverage of companies in the Euro zone including
Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the
Netherlands, Portugal and Spain. The index is constructed by aggregating the stocks
traded on the major exchanges of Euro zone. Only common stocks and those with similar
characteristics are included, and any stocks that have had more than 10 non-trading days
during the past three months are removed. In estimation, we use daily quotes fromMarch
4th, 2002 until December 6th, 2007.
As a proxy for riskless short-term interest rate, we use Eurepo, which is the benchmark

rate of the large Euro repo market. Eurepo is the rate at which one prime bank offers
funds in euro to another prime bank if in exchange the former receives from the latter
Eurepo GC as collateral. It is a good benchmark for secured money market transactions
in the Euro zone. In the estimation of the interest rate model we use the 3 month Eurepo
rate, since it behaves more regularly than the rates with shorter maturities. Both the index
and interest series are presented in Figure 2.

Dow Jones EURO STOXX TMI
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FIG. 2. The equity index and interest series.

In this study we use three alternative ways to model volatility. We apply the SVJ-SI
and CEV-SI models for pricing and predictive simulation, while the GARCH(1,1) model
is used for quick variance updating in hedging simulation. Figure 3 shows the returns of
the used index series and curves indicating 95 % probability limits under these models.
We see that the curve of the GARCH model reacts quickly to returns large in absolute
value, after which it decays exponentially, while the peaks of the SVJ-SI curve are more
symmetric. In the CEV-SI model the variance is a deterministic function of the index
level, thus not reacting to the returns.
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FIG. 3. Three volatility models fitted to the index returns. The lines indicate 2 times fitted volatility.

In mortality modelling we use mortality data provided by the HumanMortality Database
(see http:// www.mortality.org). This was created to provide detailed mortality and pop-
ulation data to those interested in the history of human longevity. In our work we use
Finnish mortality data for females between ages 30 and 80. More specifically, we use
cohort death rates for cohorts born between 1926 and 1961.
All computations were made and figures produced using the R computing environment

(R Development Core Team, 2010). To speed up computations we coded the most time
consuming loops in C++. We had no remarkable convergence problems in the MCMC
simulation used in estimation. Estimation of the finance model (2a)-(2c) was computa-
tionally more challenging, and we simulated three chains of length 200000 and picked
every 10th simulation to obtain accurate results. In the estimation of the mortality model
all chains converged rapidly to their stationary distributions. The summary of the esti-
mation results, as well as Gelman and Rubin’s diagnostics (see Gelman et al., 2004), are
provided in Appendix C. The values of the diagnostic are close to 1 and thus indicate
good convergence.

5.2. Hedging results

There are several parameters which may be varied in the equity-linked life insurance
contract described by equation (1). We set the lag length of the moving average at 125
days, the number of simulated paths in contract price estimation at 1000 and the number
of estimation repetitions at 100. The hedging results are based on 100 repetitions of 1000
simulation paths. In each case, the optimal stopping rule is based on the "correct" process,
that is, the process used in simulating the paths. Furthermore, we set the duration of the
contract at 3 or 10 years, and the starting level of interest rate at 4 or 7 percents. We do
not fix the guarantee rate at a constant value throughout the entire contract period but set
it at 0, 1/3 or 2/3 of the short-term rate at intervals of one year. In each case we assume
that the initial investment is 100 (euros).
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We calculate the results with and without mortality. When mortality is incorporated
into the framework, the age of the insurant is assumed to be 80, and we use cohort data
for those born in 1927. Due to simulation and other types of errors it is difficult to detect
the effect of mortality, and it would be even more difficult if younger persons were used.
Moreover, we consider only cases when the updating frequency of the replicating portfo-
lio is either one day or 20 working days, since the results concerning daily and weekly
updates do not differ considerably. Table 1 shows the fair bonus rates and hedging results
when minimum variance hedging with SVJ-SI model is used, while Table 2 shows the
results when delta-neutral hedging with CEV-SI model is used. Table 3 shows the results
of delta-neutral hedging with CEV-SI model when the real-world predictive simulations
are generated from the SVJ-SI model, while Table 4 presents the opposite situation. The
results for the SVJ-SI model with mortality and 80 year old insurants may be found in
Table 5.

TABLE 1.
Fair bonus rates and hedging errors when the SVJ-SI model is used for both hedging and

predictive simulation (no mortality).

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 24.1 -1.9 0.07 -2.2 0.08
3 4 1/3 17.3 -1.4 0.04 -1.6 0.04
3 4 2/3 8.8 -0.8 0.04 -0.8 0.04
3 7 0 37.9 -2.9 0.19 -3.4 0.2
3 7 1/3 28.2 -2.3 0.12 -2.7 0.13
3 7 2/3 15.3 -1.3 0.08 -1.5 0.09
10 4 0 26.8 -15.7 -0.09 -15.4 -0.07
10 4 1/3 19.1 -11.1 -0.08 -10.8 -0.06
10 4 2/3 9.2 -3.7 0.04 -3.5 0.05
10 7 0 38.1 -17.5 0.23 -16.6 0.26
10 7 1/3 29 -19.2 0.02 -18.9 0.05
10 7 2/3 15.4 -10.2 0.06 -10 0.07

From all these tables we may see that the estimated fair bonus rate increases as the
guarantee rate decreases. This is logical but it is less obvious why the fair bonus rate also
increases as the starting level of the interest rate increases. The probable explanation is as
follows: When the interest rate is larger the level of the index grows more rapidly, since
the ’percentage drift’ equals the riskless interest rate under risk-neutral probability. This
makes negative returns in the moving average of the stock index less probable, and the
feature of the contract which protects the accumulated savings against negative returns
becomes less important. This, in turn, decreases the contract price, which is compensated
by the increase in the bonus rate.
From Tables 1 and 2 we may see that the mean hedging errors, that is, the mean differ-

ences between the replicating portfolio and pay-off values at the optimal stopping time,
are very close to zero, as would be expected. Moreover, they are slightly positive in most

16 LUOMA & PUUSTELLI

We calculate the results with and without mortality. When mortality is incorporated
into the framework, the age of the insurant is assumed to be 80, and we use cohort data
for those born in 1927. Due to simulation and other types of errors it is difficult to detect
the effect of mortality, and it would be even more difficult if younger persons were used.
Moreover, we consider only cases when the updating frequency of the replicating portfo-
lio is either one day or 20 working days, since the results concerning daily and weekly
updates do not differ considerably. Table 1 shows the fair bonus rates and hedging results
when minimum variance hedging with SVJ-SI model is used, while Table 2 shows the
results when delta-neutral hedging with CEV-SI model is used. Table 3 shows the results
of delta-neutral hedging with CEV-SI model when the real-world predictive simulations
are generated from the SVJ-SI model, while Table 4 presents the opposite situation. The
results for the SVJ-SI model with mortality and 80 year old insurants may be found in
Table 5.

TABLE 1.
Fair bonus rates and hedging errors when the SVJ-SI model is used for both hedging and

predictive simulation (no mortality).

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 24.1 -1.9 0.07 -2.2 0.08
3 4 1/3 17.3 -1.4 0.04 -1.6 0.04
3 4 2/3 8.8 -0.8 0.04 -0.8 0.04
3 7 0 37.9 -2.9 0.19 -3.4 0.2
3 7 1/3 28.2 -2.3 0.12 -2.7 0.13
3 7 2/3 15.3 -1.3 0.08 -1.5 0.09
10 4 0 26.8 -15.7 -0.09 -15.4 -0.07
10 4 1/3 19.1 -11.1 -0.08 -10.8 -0.06
10 4 2/3 9.2 -3.7 0.04 -3.5 0.05
10 7 0 38.1 -17.5 0.23 -16.6 0.26
10 7 1/3 29 -19.2 0.02 -18.9 0.05
10 7 2/3 15.4 -10.2 0.06 -10 0.07

From all these tables we may see that the estimated fair bonus rate increases as the
guarantee rate decreases. This is logical but it is less obvious why the fair bonus rate also
increases as the starting level of the interest rate increases. The probable explanation is as
follows: When the interest rate is larger the level of the index grows more rapidly, since
the ’percentage drift’ equals the riskless interest rate under risk-neutral probability. This
makes negative returns in the moving average of the stock index less probable, and the
feature of the contract which protects the accumulated savings against negative returns
becomes less important. This, in turn, decreases the contract price, which is compensated
by the increase in the bonus rate.
From Tables 1 and 2 we may see that the mean hedging errors, that is, the mean differ-

ences between the replicating portfolio and pay-off values at the optimal stopping time,
are very close to zero, as would be expected. Moreover, they are slightly positive in most



HEDGING EQUITY-LINKED LIFE INSURANCE CONTRACTS 17

TABLE 2.
Fair bonus rates and hedging errors when the CEV-SI model is used for both hedging and

predictive simulation (no mortality).

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 32.7 -1.6 0.13 -1.8 0.13
3 4 1/3 23.8 -1.2 0.09 -1.3 0.09
3 4 2/3 13.1 -0.7 0.05 -0.7 0.05
3 7 0 50.2 -2.4 0.21 -2.7 0.21
3 7 1/3 38.3 -1.8 0.15 -2.1 0.15
3 7 2/3 22.6 -1.2 0.07 -1.3 0.07
10 4 0 32.6 -3.8 0.25 -3.7 0.26
10 4 1/3 26.7 -4.4 0 -4.2 0.01
10 4 2/3 14 -1.1 0.04 -1.1 0.04
10 7 0 50.6 -28.4 -0.12 -27.6 -0.11
10 7 1/3 38.3 -11.9 0.02 -11.7 0.03
10 7 2/3 24 -4.4 -0.01 -4.3 -0.01

TABLE 3.
Fair bonus rates and hedging errors when the CEV-SI model is used for hedging and the

SVJ-SI model for predictive simulation (no mortality).

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 32.7 -7 -1.01 -7.4 -0.95
3 4 1/3 23.8 -5.1 -0.76 -5.4 -0.72
3 4 2/3 13.1 -2.9 -0.46 -3.1 -0.43
3 7 0 50.2 -11.9 -1.78 -12.6 -1.66
3 7 1/3 38.3 -9.1 -1.35 -9.7 -1.27
3 7 2/3 22.6 -5.5 -1.01 -6 -0.97
10 4 0 32.6 -40.3 -5.09 -40 -4.9
10 4 1/3 26.7 -36.7 -9.34 -36.7 -9.1
10 4 2/3 14 -15.9 -3.73 -15.9 -3.63
10 7 0 50.6 -117.6 -19.44 -116.6 -18.97
10 7 1/3 38.3 -78.3 -14.78 -77.9 -14.44
10 7 2/3 24 -47.6 -12.82 -47.2 -12.62

cases, probably because the stopping rule based on the estimated regression model is
slightly suboptimal. The exceptions are probably due to simulation errors.
The 0.5% values at risk (VaR) are substantially worse in the 10 years contracts than in

the corresponding 3 years contracts. In the case of the SVJ-SI model the worst figure is
around -20, which means that the hedging error is 20% of the initial investment. In most
cases, when the guarantee rate increases, the VaR improves. This is understandable, since
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3 4 2/3 13.1 -0.7 0.05 -0.7 0.05
3 7 0 50.2 -2.4 0.21 -2.7 0.21
3 7 1/3 38.3 -1.8 0.15 -2.1 0.15
3 7 2/3 22.6 -1.2 0.07 -1.3 0.07
10 4 0 32.6 -3.8 0.25 -3.7 0.26
10 4 1/3 26.7 -4.4 0 -4.2 0.01
10 4 2/3 14 -1.1 0.04 -1.1 0.04
10 7 0 50.6 -28.4 -0.12 -27.6 -0.11
10 7 1/3 38.3 -11.9 0.02 -11.7 0.03
10 7 2/3 24 -4.4 -0.01 -4.3 -0.01

TABLE 3.
Fair bonus rates and hedging errors when the CEV-SI model is used for hedging and the

SVJ-SI model for predictive simulation (no mortality).

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 32.7 -7 -1.01 -7.4 -0.95
3 4 1/3 23.8 -5.1 -0.76 -5.4 -0.72
3 4 2/3 13.1 -2.9 -0.46 -3.1 -0.43
3 7 0 50.2 -11.9 -1.78 -12.6 -1.66
3 7 1/3 38.3 -9.1 -1.35 -9.7 -1.27
3 7 2/3 22.6 -5.5 -1.01 -6 -0.97
10 4 0 32.6 -40.3 -5.09 -40 -4.9
10 4 1/3 26.7 -36.7 -9.34 -36.7 -9.1
10 4 2/3 14 -15.9 -3.73 -15.9 -3.63
10 7 0 50.6 -117.6 -19.44 -116.6 -18.97
10 7 1/3 38.3 -78.3 -14.78 -77.9 -14.44
10 7 2/3 24 -47.6 -12.82 -47.2 -12.62

cases, probably because the stopping rule based on the estimated regression model is
slightly suboptimal. The exceptions are probably due to simulation errors.
The 0.5% values at risk (VaR) are substantially worse in the 10 years contracts than in

the corresponding 3 years contracts. In the case of the SVJ-SI model the worst figure is
around -20, which means that the hedging error is 20% of the initial investment. In most
cases, when the guarantee rate increases, the VaR improves. This is understandable, since
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TABLE 4.
Fair bonus rates and hedging errors when the SVJ-SI model is used for hedging and the

CEV-SI model for predictive simulation (no mortality).

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 24.1 -0.1 0.22 -0.4 0.22
3 4 1/3 17.3 -0.1 0.15 -0.3 0.15
3 4 2/3 8.8 0 0.06 0 0.06
3 7 0 37.9 -0.1 0.35 -0.4 0.35
3 7 1/3 28.2 0 0.23 -0.3 0.23
3 7 2/3 15.3 0 0.11 -0.1 0.11
10 4 0 26.8 -1.8 0.31 -2 0.31
10 4 1/3 19.1 -1 0.22 -1.1 0.21
10 4 2/3 9.2 -0.1 0.08 -0.1 0.08
10 7 0 38.1 -0.1 0.4 -0.5 0.4
10 7 1/3 29 -0.2 0.29 -0.5 0.28
10 7 2/3 15.4 0 0.11 -0.1 0.11

TABLE 5.
Fair bonus rates and hedging errors when the SVJ-SI model is used for both hedging and

predictive simulation, and mortality is taken into account.

contract interest rate guarantee fair bonus 0.5% VaR mean error 0.5% VaR mean error
length starting level rate rate daily update daily update 20d update 20d update

3 4 0 24.5 -2.1 0.05 -2.3 0.06
3 4 1/3 17.3 -1.4 0.05 -1.6 0.05
3 4 2/3 8.9 -0.8 0.04 -0.9 0.04
3 7 0 38 -2.8 0.19 -3.4 0.2
3 7 1/3 28.3 -2.2 0.13 -2.6 0.14
3 7 2/3 15.4 -1.3 0.08 -1.5 0.09
10 4 0 23.6 -4.6 0.16 -4.4 0.17
10 4 1/3 18.7 -8.6 -0.01 -8.4 0
10 4 2/3 9.2 -3 0.04 -2.9 0.05
10 7 0 38.6 -17.4 0.17 -16.3 0.18
10 7 1/3 28.9 -17.2 0.04 -16.7 0.06
10 7 2/3 15.6 -9.6 0.05 -9.4 0.07

a larger guarantee reduces fluctuation in the value of the contract. In the 3 years contracts
one can see that the VaRs are slightly poorer when the updating interval is 20 days, while
in the 10 years contracts the opposite statement holds. In general, it is not easy to estimate
extreme VaRs accurately using simulation; for example, the standard error for the VaR
value -20 is around 0.6.
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By comparing Tables 1 and 2 one can also see that the fair bonus rates for the CEV-SI
model are substantially higher than for the SVJ-SI model. The reason here is that in the
CEV model the variance of the return process is a decreasing function of the index level,
implying lower predicted variances. This in turn decreases the value of the contract for a
fixed bonus rate, which is compensated by an increase in the fair bonus rate. When the
higher bonus rate is used and the true process is SVJ-SI, the result is unfavourable for
the insurance company. One dramatic consequence of this are the negative mean hedging
errors shown in Table 3, which are large in absolute value. The VaRs are also dramatically
small, which may be explained by the fact that the optimal stopping time is at the end of
the contract period or close to it.
Table 4 shows the results in the opposite situation where the SVJ-SI model is used for

hedging and the true process is CEV-SI. In this case the bonus rate is too small, which
implies that the hedging errors are positive on average. Moreover, the VaRs are very
small in absolute value, since the optimal stopping times are close to the beginning of the
contract period.
The effect of mortality can be studied by comparing Tables 1 and 5. In the 3 years

contracts the fair bonus rate is usually slightly larger when mortality is taken into account,
which is a kind of compensation for suboptimal stopping in the case of death. In the 10
years contracts no systematic difference can be observed, probably because of simulation
errors. The hedging results also look similar in both cases.
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FIG. 4. Difference between hedging portfolio and pay-off value when both SVJ-SI and CEV-SI models are
used in hedging and in predictive simulation. It is assumed that the initial interest rate is 7%, guarantee rate 0
and prediction length 10 years, and that there is no mortality. The bonus rate is 38% when the hedging model
is SVJ-SI and 50.2% when it is CEV-SI. On the left the difference is calculated at the optimum stopping time,
and on the right at the end of the contract period.

From Figure 4 one can see that the hedging error distributions are extremely peaked
when the hedging model corresponds to the true process and the hedging error is defined
as the difference between the replicating portfolio and the pay-off value at the optimal
stopping time. The exceptionally small or large errors may occur when the stopping
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From Figure 4 one can see that the hedging error distributions are extremely peaked
when the hedging model corresponds to the true process and the hedging error is defined
as the difference between the replicating portfolio and the pay-off value at the optimal
stopping time. The exceptionally small or large errors may occur when the stopping
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FIG. 5. (a) Distribution of the optimal stopping time in a 10 years contract. It is assumed that the initial
interest rate is 7%, guarantee rate 0 and bonus rate 38.6%, and that there is no mortality. The SVJ-SI model is
used both in predictive simulation and in determining the optimal stopping time. (b) Standard deviation of the
hedging error when SVJ-SI and CEV-SI models are used for the insurance contract, and when the Black-Scholes
model is used to hedge a 10 years European call option with initial price 1, strike price 4, interest rate 7% and
volatility 20%. In each case, the initial investment is 100 (euros) and the replication portfolio is updated daily.
These figures are based on 1000 simulation paths.

time is near the end of the contract period. The right hand side of the figure shows that
the hedging error distributions have large standard deviations at the end of the contract
period. When the correct model is used for hedging, the mean of the error distribution is
slightly positive, since stopping at the end is suboptimal in most cases. When the SVJ-SI
model is used for hedging and the true process is CEV-SI, the bonus is too small and the
hedging error distribution is further on the positive side. In the opposite case, when the
CEV-SI model is used for hedging and the true process is SVJ-SI, the bonus is too large
and the hedging error distribution is concentrated on negative values.
From Figure 5 (a) one may see that the optimal stopping times are concentrated in the

beginning part of the contract period, but in some cases the stopping is delayed until the
end. Figure 5 (b) shows the standard deviation (SD) of the hedging error as a function of
time. For comparison, the SD of the hedging error of a European call option with a suit-
ably chosen strike price is also shown. Interestingly, it is close to the SDs of the insurance
contract. This vanilla option is not easy to hedge because of its leverage, which makes
its value very volatile, while the issue with the insurance contact is that the regression
method does not provide delta values accurate enough.
These results indicate that model error might be crucial when hedging an equity-linked

life insurance contract. In the worst scenarios the errors would mean huge losses to the
insurance company. Small VaRs as such should not be an issue, since the hedging error
distribution can be easily sifted to the positive side by decreasing the bonus rate.
We therefore suggest the following two-step approach to choose a sensible bonus rate.

First, the theoretical fair bonus rate and the corresponding regression coefficient matrix
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time is near the end of the contract period. The right hand side of the figure shows that
the hedging error distributions have large standard deviations at the end of the contract
period. When the correct model is used for hedging, the mean of the error distribution is
slightly positive, since stopping at the end is suboptimal in most cases. When the SVJ-SI
model is used for hedging and the true process is CEV-SI, the bonus is too small and the
hedging error distribution is further on the positive side. In the opposite case, when the
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and the hedging error distribution is concentrated on negative values.
From Figure 5 (a) one may see that the optimal stopping times are concentrated in the

beginning part of the contract period, but in some cases the stopping is delayed until the
end. Figure 5 (b) shows the standard deviation (SD) of the hedging error as a function of
time. For comparison, the SD of the hedging error of a European call option with a suit-
ably chosen strike price is also shown. Interestingly, it is close to the SDs of the insurance
contract. This vanilla option is not easy to hedge because of its leverage, which makes
its value very volatile, while the issue with the insurance contact is that the regression
method does not provide delta values accurate enough.
These results indicate that model error might be crucial when hedging an equity-linked

life insurance contract. In the worst scenarios the errors would mean huge losses to the
insurance company. Small VaRs as such should not be an issue, since the hedging error
distribution can be easily sifted to the positive side by decreasing the bonus rate.
We therefore suggest the following two-step approach to choose a sensible bonus rate.

First, the theoretical fair bonus rate and the corresponding regression coefficient matrix
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is determined using the inverse prediction method described in Section 3.4. Second, the
inverse prediction method is combined with hedging simulation by utilizing the regres-
sion coefficient matrix from the first step in order to determine a bonus rate such that the
VaR of the hedging error at the maturity of the contract is acceptable for the insurance
company. In order to eliminate the model risk, the SVJ-SI model should be used, since it
implies lower bonus rates.

6. CONCLUSIONS

In this paper we present a full Bayesian analysis of valuation and hedging of an equity-
linked life insurance contract. The Bayesian approach enables us to exploit MCMCmeth-
ods and to take parameter uncertainty into account in both valuation and hedging. We
value the contract with the regression method, since it embeds an American-style surren-
der option and no closed-form valuation formula is available. In the valuation we take
both financial and mortality risks into account. Two alternative financial models, SVJ-SI
and CEV-SI, are utilized. As a stochastic mortality model we use a generalization of the
Gompertz model.
The main steps in this paper are the estimation of the financial and mortality models,

generation of the posterior predictive distributions, pricing the American-style contract,
evaluation of the fair bonus rate, and hedging simulation. Two alternative hedging strate-
gies are employed: first, single-instrument hedging combined with the SVJ-SI model,
and, second, conventional delta-neutral hedging combined with the CEV-SI model.
The hedging performances of these alternative strategies turn out to be similar. Prob-

ably the effect of the imperfectness of single-instrument hedging is vanishingly small
compared to other sources of errors, such as discretization errors and estimation errors of
the deltas. However, we find that correct model choice is crucial and that the use of an
unrealistic model might lead to catastrophic losses for the insurance company. In partic-
ular, if the true data generating process were SVJ-SI, using the CEV-SI model in pricing
might lead to losses, since the latter model implies significantly larger bonus rates.
We find that the duration of the contract is the most significant factor to produce large

hedging errors. On the contrary, including mortality has only a slight effect on the es-
timated fair bonus rate and no observable effect on hedging performance. The effect of
the updating interval is also small; rebalancing the hedging portfolio monthly produces
in practice the same performance as daily updating.
Our results suggest the following two-step procedure to choose a sensible bonus rate:

first, the theoretical fair bonus rate is determined, and second, it is adjusted so that the
VaR of the hedging error becomes acceptable for the insurance company.
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APPENDICES

A. Full conditional distributions of the option pricing model

Let us denote γ1 = (α∗1, β1), γ2 = (α
∗
2, β2), φ = (μ, γ1, γ2, σ1, σ2, σ3, ρ12, ρ13, ρ23),

Ik = (lk,Uk), Y = (Y1, . . . YK−1) and

e(1)k =
log S k − log S k−1 − μδ − lkUk

√
Yk−1δ

,

e(2)k =
Yk − Yk−1 −

(
α∗1 + β1Yk−1

)
δ

√
Yk−1δ

,

e(3)k =
Rk − Rk−1 −

(
α∗2 + β2Rk−1

)
δ

√
Rk−1δ

,

ek =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
e(1)k
e(2)k
e(3)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and

Σ = Cov
(
e(1)k , e

(2)
k , e

(3)
k

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ21 σ12 σ13
σ12 σ

2
2 σ23

σ13 σ23 σ
2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Updating μ with a Gibbs step

Prior: p(μ) ∝ 1
Conditional posterior:

{μ|z(1),Y, σ1.23} ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑K−1
k=1

z(1)k+1
Yk∑K−1

k=1
1
Yk

,
σ1.23

δ
∑K−1
k=1

1
Yk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where

z(1) =
(
z(1)2 , z

(1)
3 , . . . , z

(1)
K

)
,

z(1)k+1 =
log(S k+1) − log(S k) − lk+1Uk+1

δ
−

√
Yk
δ
μ
(1.23)
k+1 ,

μ
(1.23)
k+1 =

(
σ12 σ13

) (σ22 σ23
σ23 σ

2
3

)−1 (e(2)k+1
e(3)k+1

)
,
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and

σ1.23 = σ1 −
(
σ12 σ13

) (σ22 σ23
σ23 σ

2
3

)−1 (
σ12
σ13

)
.

Updating γ1 with a Gibbs step

Prior: p(γ1) ∝ 1
Conditional posterior:

{γ1|z(2),Y, σ2.13} ∼ N
((
X′Δ−1X

)−1
X′Δ−1z(2),

σ2.13

δ

(
X′Δ−1X

)−1)
,

where

z(2) =
(
z(2)2 , z

(2)
3 , . . . , z

(2)
K

)
,

z(2)k+1 =
Yk+1 − Yk
δ

−

√
Yk
δ
μ
(2.13)
k+1 ,

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Y1
1 Y2
...
...

1 YK−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Δ−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Y1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1

YK−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

μ
(2.13)
k+1 =

(
σ12 σ23

) (σ21 σ13
σ13 σ

2
3

)−1 (e(1)k+1
e(3)k+1

)
,

and

σ2.13 = σ
2
2 −

(
σ12 σ23

) (σ21 σ13
σ13 σ

2
3

)−1 (
σ12
σ23

)
.

Updating γ2 with a Gibbs step

Prior: p(γ2) ∝ 1
Conditional posterior:

{γ2|z(3), X∗, σ3.12} ∼ N
((
X′∗Δ−1∗ X∗

)−1
X′∗Δ−1∗ z(3),

σ3.12

δ

(
X′∗Δ−1∗ X∗

)−1)
,
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where

z(3) =
(
z(3)2 , z

(3)
3 , . . . , z

(3)
K

)
,

z(3)k+1 =
Rk+1 − Rk
δ

−

√
Rk
δ
μ
(3.12)
k+1 ,

X∗ =
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1 R1
1 R2
...
...

1 RK−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Δ−1∗ =
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0
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...
...

. . . 0
0 . . . 0 1

RK−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

μ
(3.12)
k+1 =

(
σ13 σ23

) (σ21 σ12
σ12 σ

2
2

)−1 (e(1)k+1
e(2)k+1

)
,

and

σ3.12 = σ
2
3 −

(
σ13 σ23

) (σ21 σ12
σ12 σ

2
2

)−1 (
σ13
σ23

)
.

Updating Σ with a Gibbs step

Prior: p(Σ) ∝ Inv-Wishart(Σ|Ψ,m) × I(0.9,1.1)(σ21)
Posterior: p(Σ|μ, γ1, γ2, S ,Y,R, I) ∝ Inv-Wishart(Σ|Ψ+A,m+K −1)× I(0.9,1.1)(σ21), where

A =
K∑
k=2
eke′k.

Updating volatility with Metropolis-Hastings steps

Let us denote Hk = (log S k, Ik,Rk). The conditional posterior of Yk:

p (Yk |Yk−1,Yk+1,Hk−1,Hk,Hk+1, φ)
∝ p (Yk |Yk−1,Hk−1,Hk, φ) p (Yk+1,Hk+1|Yk,Hk, φ)

Proposal Y∗k is generated from p (Yk |Yk−1,Hk−1,Hk, φ):
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Y∗k = Yk−1 + (α
∗
1 + β1Yk−1)δ +

√
Yk−1δe(2)∗k ,

where e(2)∗k ∼ N
(
μ
(2.13)
k , σ2.13

)
. For k = 1 the proposal is generated from unconditional

distribution Pr(Y1|φ). Since Y is a CIR process, its stationary distribution is Gamma
(
−
2α∗1
σ22
,−
σ22
2β1

)
.

Acceptance probability:

min
(
1,
p(Yk+1,Hk+1|Y∗k ,Hk, φ)
p(Yk+1,Hk+1|Yk,Hk, φ)

)

=min
{
1, exp

[
− log(Y∗k ) + log(Yk) −

1
2

(
e∗
′

k+1Σ
−1e∗k+1 − e

′
k+1Σ

−1ek+1
)]}
,

where e∗k+1 is computed using Y
∗
k . For k = K the acceptance probability cannot be com-

puted. The proposal is accepted with probability 1.

Updating the parameters of the jump process with Gibbs steps

Prior: λ0 ∼ Beta(p1, p2)
Posterior: Pr(λ0|l) ∝ Beta(p1 +

∑
li, p2 + K −

∑
li)

Priors: b2 ∼ Inv-χ2(d f0, σ20), a|b2 ∼ N(a0, b2/b0)
Posteriors:

b2|l,U ∼ Inv-χ2
(
d f0 + n,

1
d f0 + n

(
d f0σ20 + (n − 1)s

2 +
b0n
b0 + n

(Ū − a0)2
))

a|b2, l,U ∼ N
(
b0a0 + nŪ
b0 + n

,
b2

b0 + n

)

where n =
∑
li, Ū = 1

n
∑
liUi, s2 = 1

n−1
∑
li(Ui − Ū)2.

Updating the jump process with Metropolis-Hastings steps

Let us denote and Lk = (log S k,Yk,Rk). Then the full conditional distribution of Ik is

p (Ik |Ik−1, Ik+1, Lk, Lk−1, Lk+1, φ) = p (Ik |Lk−1, Lk, φ) ∝
p (Ik |Lk−1, φ) p (Lk |Ik, Lk−1, φ) = p (Ik |φ) p (Lk |Ik, Lk−1, φ)

Proposal from distribution p (Ik |φ): l∗k ∼ Ber(λ0), U
∗
k ∼ N(a, b

2).
Acceptance probability:

min
(
1,
p(Lk |Lk−1, I∗k , φ)
p(Lk |Lk−1, Ik, φ)

)

=min
{
1, exp

[
−
1
2

(
e∗
′

k Σ
−1e∗k − e

′
kΣ
−1ek

)]}
,

where e∗k is computed using I
∗
k .
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Y∗k = Yk−1 + (α
∗
1 + β1Yk−1)δ +

√
Yk−1δe(2)∗k ,

where e(2)∗k ∼ N
(
μ
(2.13)
k , σ2.13

)
. For k = 1 the proposal is generated from unconditional

distribution Pr(Y1|φ). Since Y is a CIR process, its stationary distribution is Gamma
(
−
2α∗1
σ22
,−
σ22
2β1

)
.

Acceptance probability:
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(
1,
p(Yk+1,Hk+1|Y∗k ,Hk, φ)
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− log(Y∗k ) + log(Yk) −

1
2

(
e∗
′

k+1Σ
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′
k+1Σ

−1ek+1
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,
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∗
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∑
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∑
li)
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1
d f0 + n
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d f0σ20 + (n − 1)s

2 +
b0n
b0 + n

(Ū − a0)2
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b0a0 + nŪ
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,
b2

b0 + n

)
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∑
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n
∑
liUi, s2 = 1

n−1
∑
li(Ui − Ū)2.
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B. Full conditional posterior distributions of the mortality model

Let us denote yku = log(μku) for k = 1, ...,K and u = 1, ...,U. Furthermore, yu =
(y1u, ..., yKu), y = (y1, ..., yU) and X = (X′1, . . . , X

′
U)
′, where

Xu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 u 1 u · 1
1 u 2 u · 2
...
...
...
...

1 u K u · K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and β = (β00, β01, β10, β11).
The inverse of Cor(y|β, φ) is

R−1∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
R−1 0

. . .

0 R−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = IU ⊗ R
−1

where IU is U × U identity matrix and

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 φ φ2 . . . φK−1

φ 1 φ . . . φK−2

...
. . .

...

φK−1 φK−2 . . . φ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Updating σ2m with a Gibbs step

Prior: p(σ2m) ∝ 1
σ2m

Conditional posterior: σ2|y, β, φ ∼ Inv-χ2(KU,SS/KU), where SS = (y−Xβ)′R−1∗ (y−Xβ).

Updating β with a Gibbs step

Prior: p(β) ∝ 1
Conditional posterior: β|y, φ, σ2m ∼ N(μβ, σ2mVβ), where μβ = (X′R−1∗ X)−1X′R−1∗ y and
Vβ = (X′R−1∗ X)−1.

Updating φ with a Metropolis step

Prior: p(φ) = I(−1,1)(φ)
Conditional posterior: p(φ|y, β, σ2m) ∝ (1 − φ2)−

1
2U(K−1) exp

(
− 1
2σ2m
S S

)
I(−1,1)(φ)
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C. Estimation results of the financial and mortality models

The posterior simulations were performed using the R computing environment. The
following outputs were obtained using the summary function of the add-on package
MCMCpack:

TABLE 6.

Estimation results of the financial model.

Number of chains = 3

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.1157251 0.0365450 2.110e-04 7.554e-04

alpha1 0.1968175 0.0386987 2.234e-04 1.658e-03

beta1 -6.2996549 1.3530007 7.812e-03 5.483e-02

alpha2 0.2154899 0.1286814 7.429e-04 7.452e-04

beta2 -0.0495622 0.0429811 2.482e-04 2.270e-04

sigma22V 0.2218156 0.0444790 2.568e-04 2.137e-03

sigma33 0.0140068 0.0005198 3.001e-06 3.108e-06

rho12 -0.7681546 0.0523322 3.021e-04 2.070e-03

rho13 0.0792596 0.0264295 1.526e-04 2.204e-04

rho23 -0.1322315 0.0517667 2.989e-04 1.381e-03

a -0.0060781 0.0068594 3.960e-05 1.366e-04

b2 0.0003484 0.0002063 1.191e-06 2.366e-06

lambda0 0.0090029 0.0027855 1.608e-05 6.318e-05
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2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu 0.0426332 0.0911853 0.1162357 0.1406814 0.1859535

alpha1 0.1271985 0.1697973 0.1944505 0.2216304 0.2790440

beta1 -9.1239610 -7.1682486 -6.2259077 -5.3563520 -3.8502831

alpha2 0.0281787 0.1218338 0.1949668 0.2853363 0.5272006

beta2 -0.1612529 -0.0704730 -0.0382768 -0.0170129 -0.0015817

sigma22V 0.1457985 0.1902363 0.2177842 0.2496907 0.3184338

sigma33 0.0130214 0.0136508 0.0139906 0.0143487 0.0150585

rho12 -0.8556995 -0.8054466 -0.7729459 -0.7370593 -0.6501383

rho13 0.0266995 0.0615367 0.0792856 0.0971150 0.1311709

rho23 -0.2335275 -0.1670558 -0.1321860 -0.0979035 -0.0299741

a -0.0193522 -0.0104156 -0.0062760 -0.0019092 0.0080387

b2 0.0001421 0.0002256 0.0002996 0.0004109 0.0008392

lambda0 0.0051479 0.0065661 0.0085743 0.0111619 0.0145301

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.00 1.00

alpha1 1.00 1.00

beta1 1.00 1.01

alpha2 1.00 1.00

beta2 1.00 1.00

sigma22V 1.00 1.00

sigma33 1.00 1.00

rho12 1.01 1.02

rho13 1.00 1.00

rho23 1.00 1.00

a 1.00 1.01

b2 1.01 1.01

lambda0 1.01 1.02
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TABLE 7.

Estimation results of the mortality model.

Number of chains = 3

Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

beta00 -7.218e+00 0.0230773 2.665e-04 3.524e-04

beta01 -1.391e-02 0.0011916 1.376e-05 6.582e-05

beta10 7.248e-02 0.0008204 9.473e-06 3.685e-05

beta11 -2.229e-05 0.0001162 1.341e-06 7.854e-06

sigma2m 2.941e-02 0.0015699 1.813e-05 4.937e-05

phi 2.486e-01 0.0366845 4.236e-04 1.603e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

beta00 -7.2635215 -7.2333503 -7.218e+00 -7.203e+00 -7.1731612

beta01 -0.0162149 -0.0146982 -1.392e-02 -1.315e-02 -0.0115150

beta10 0.0708985 0.0719250 7.247e-02 7.302e-02 0.0740813

beta11 -0.0002524 -0.0001005 -1.917e-05 5.772e-05 0.0002014

sigma2m 0.0266480 0.0283436 2.928e-02 3.038e-02 0.0327533

phi 0.1769527 0.2246326 2.472e-01 2.714e-01 0.3236979

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

beta00 1.00 1.00

beta01 1.01 1.04

beta10 1.01 1.02

beta11 1.02 1.06

sigma2m 1.00 1.00

phi 1.00 1.01
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We propose a new method for two-dimensional mortality modeling. Our approach
smoothes the data set in the dimensions of cohort and age using Bayesian smoothing
splines. The method allows the data set to be imbalanced, since more recent cohorts
have fewer observations. We suggest an initial model for observed death rates, and an
improved model which deals with the numbers of deaths directly. Unobserved death rates
are estimated by smoothing the data with a suitable prior distribution. To assess the fit
and plausibility of our models we perform model checks by introducing appropriate test
quantities. We show that our final model fulfils nearly all of the model selection criteria
proposed by Cairns et al. (2008).
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1. INTRODUCTION

Mortality forecasting is a problem of fundamental importance for the insurance and
pensions industry. Due to the increasing focus on risk management and measurement for
insurers and pension funds, stochastic mortality models have attracted considerable inter-
est in recent years. A range of stochastic models for mortality have been proposed, for
example the seminal models of Lee and Carter (1992), Renshaw and Haberman (2006)
and Cairns et al. (2006b). Some models build on an assumption of smoothness in mortal-
ity rates between ages in any given year (e.g. Cairns et al., 2006b), while others allow for
roughness, (e.g. Lee and Carter, 1992; Renshaw and Haberman, 2006).
In this paper we propose a new Bayesian method for two-dimensional mortality mod-

eling. Our method is based on natural cubic smoothing splines, which are popular in
statistical applications, since the smoothing problem can be solved using simple linear
algebra. In this approach the distinct data values are taken as knots of the spline, and its
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smoothness is achieved by employing rouhgness penalty in a penalized likelihood func-
tion. In the Bayesian approach, the prior distribution takes the role of the roughness
penalty term. A useful introduction to smoothing splines may be found, for example, in
Green and Silverman (1994).
A more general penalized splines approach would employ a set of basis functions,

such as B-splines. In the case that cubic B-splines are used, one may obtain the same
solution as in the smoothing spline approach by using the same roughness penalty and by
choosing the knots to be the distinct values of the data points. Compared to the general
penalized splines approach our approach has the advantage that one does not need to
optimize with respect to the number of knots and their locations. However, the drawback
in our approach is that the matrices involved in computations become too large, unless
one restricts the size of the estimation data set.
We use age-cohort data instead of age-period data, since we wish to preserve the se-

quential dependence of observations within each cohort. Therefore, we have to deal with
imbalanced data, since more recent cohorts have fewer observations. We suggest an ini-
tial model for the observed death rates, and an improved model which deals with the
numbers of deaths directly. We assume the number of deaths to follow a Poisson dis-
tribution, a common model for the number of deaths in a year in a particular cohort.
Unobserved death rates are estimated by smoothing the data with one of our spline mod-
els. The proposed method is illustrated using Finnish mortality data for females, pro-
vided by the Human Mortality Database. We implement the Bayesian approach using the
Markov chain Monte Carlo method (MCMC), or more specifically, the single-component
Metropolis-Hastings algorithm.
The use of Bayesian methods is not new in this general context. Dellaportas et al.

(2001) proposed a Bayesian mortality model in a parametric curve modeling context.
Czado et al. (2005) and Pedroza (2006) provided Bayesian analyses for the Lee-Carter
model using MCMC, with further work by Kogure and Kurache (2010). More recently,
Reichmuth and Sarferaz (2008) have applied MCMC to a version of the Renshaw and
Haberman (2006) model. Schmid and Held (2007) present software which allows analy-
sis of incidence count data with a Bayesian age-period-cohort model. Cairns et al. (2011)
use the same model to compare results based on a two-population approach with single-
population results. Currie et al. (2004) and Richards et al. (2006) assume smoothness in
both age and cohort dimensions through the use of P-splines in a non-Bayesian set-up.
Lang and Brezger (2004) introduce two-dimensional P-splines in a Bayesian set-up but
in a different context.
Cairns et al. (2008) evaluated several types of stochastic mortality models using a

checklist of criteria. These criteria are based on general characteristics and the ability
of the model to explain historical patterns of mortality. None of the existing models met
all of the criteria. However, Plat (2009) later proposed a model which apart from partly
meeting the parsimony criteria meets all of the criteria. We also follow the same list in
assessing the fit and plausibility of our model.
The plan of the paper is as follows. In the next section we describe the data and its use

in estimation. In Section 3 we explain the smoothing problem and present the Bayesian
formulation of the preliminary model, and in Section 4 we describe our final model. In
Section 5 we introduce the estimation method and provide some convergence results. The
model checks are described in Section 6, after which we conclude with a brief discussion.
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one restricts the size of the estimation data set.
We use age-cohort data instead of age-period data, since we wish to preserve the se-
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checklist of criteria. These criteria are based on general characteristics and the ability
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The plan of the paper is as follows. In the next section we describe the data and its use

in estimation. In Section 3 we explain the smoothing problem and present the Bayesian
formulation of the preliminary model, and in Section 4 we describe our final model. In
Section 5 we introduce the estimation method and provide some convergence results. The
model checks are described in Section 6, after which we conclude with a brief discussion.
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2. DATA

We use mortality data provided by the Human Mortality Database (see Human Mortal-
ity Database, 2009). This was created to provide detailed mortality and population data
to those interested in the history of human longevity. In our work we use Finnish cohort
mortality data for females. We use age-cohort data instead of age-period data, since we
wish to take into account the dependence of consequtive observations within each cohort.
In the complete data matrix the years of birth included are between 1807 and 1977; hence
there are 171 different cohorts. The most recent data are from 2006. When the age group
of persons 110 years and older is excluded, the dimensions of the data matrix become
110 × 171. These data are illustrated in Figure 1, in which the observed area is denoted
by vertical lines and the unobserved by two white triangles in the upper left and lower
right corners.
Our estimation method would produce huge matrices if all these data were used simul-

taneously. Therefore, we define estimation areas which are parts of the complete data set.
A rectangular estimation area shown in Figure 1 indicates the cohorts and ages for which
a smooth spline surface is fitted. The mortality rates are known for part of this area, and
they are predicted for the unknown part. More specifically, an estimation area is defined
by minimum age x1, maximum age xK , minimum cohort t1 and the maximum cohort tT .
The maximum age for which data are available in cohort tT is denoted as x∗. Thus, the
number of ages included is K = xK − x1 + 1 and the number of cohorts T = tT − t1 + 1.
Since some readers might be more familiar with age-period data, we have also plotted

the data set in the dimensions of age and year in Figure 2. One should, however, remem-
ber that the figures in these two types of mortality tables are not computed in the same
way. One figure in an age-period table is based on persons who have a certain (discrete)
age during one calendar year and are born during two consecutive years, while each fig-
ure in an age-cohort table is based on data from two consecutive calendar years about
persons born in a certain year (for details, see Wilmoth et al., 2007).

3. PRELIMINARY MODEL

We start building our model in a simplified set-up. Let us denote the logarithms of
observed death rates as yxt = log(mxt) for ages x = x1, x2, ..., xK and cohorts (years of
birth) t = t1, t2, ..., tT . The observed death rates are defined as

mxt =
dxt
ext
,

where dxt is the number of deaths and ext the person years of exposure. In our preliminary
set-up we model the observed death rates directly, while in our final set-up we model the
theoretical, unobserved death rates μxt.

3.1. The smoothing problem

Our goal is to smooth and predict logarithms of observed death rates. We fit a smooth
two-dimensional curve θ(x, t), and denote its values at discrete points as θxt. In matrix
form we may write

Y = Θ + E,
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FIG. 1. Age-cohort representation of the data set. The complete data set is indicated by the streaked area,
and the imbalanced estimation set by the white rectangle.
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FIG. 2. Age-period representation of the data set. The complete data set is indicated by the streaked area,
and the imbalanced estimation set by the white parallelogram.

where Y is a K × T matrix of observations, Θ is a matrix of smoothed values, and E is
a matrix of errors. We denote the columns of Y, Θ and E by y j, θ j and ε j, respectively.
Concatenating the columns we obtain y = vec(Y), θ = vec(Θ) and ε = vec(E).
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We further assume that the death rates within a cohort follow a multivariate normal dis-
tribution having an AR(1) correlation structure with autocorrelation coefficient φ. Thus,

ε j ∼ N(0, σ2P), j = 1, 2, ...,T,

where P is a correlation matrix with elements ρrs = φ|r−s|. The observations in different
cohorts are assumed to be independent.
In general, all observations are not available for all cohorts. For each j, we may parti-

tion y j into observed y j1 and unobserved y j2, and θ j correspondingly to θ j1 and θ j2, and
P to P j,rs, r, s = 1, 2. The unobserved part of the data can be predicted using the result
about the conditional distribution of the multivariate normal distribution:

{y j2|y j1, σ2, φ} ∼ N(θ j2.1, σ2P j,22.1),

where θ j2.1 = θ j2 + P j,21P−1j,11(y j1 − θ j1) and P j,22.1 = P j,22 − P j,21P
−1
j,11P j,12.

When estimating θ we wish to minimize the generalized sum of squares

S S 1 =
T∑
j=1
(y j1 − θ j1)′P−1j,11(y j1 − θ j1). (1)

The vector of all observed mortality rates is yobs = Sy, where S is a selection matrix
selecting the known values from the complete data vector y. The matrix S can be con-
structed from the identity matrix of size KT by including the ith row (i = 1, 2, ...,KT ) if
the ith element of y is known. Now we can write (1) as

S S 1 = (yobs − Sθ)′(SP∗S′)−1(yobs − Sθ), (2)

where P∗ = IT ⊗ P.
In addition to maximizing fit, we wish to smooth Θ in the dimensions of cohort and

age. Specifically, we minimize the roughness functional
∫ xK

x1

[
∂2

∂x2
θ(x, t j)

]2
dx (3)

for each j = 1, 2, ...,T and
∫ tT

t1

[
∂2

∂t2
θ(xk, t)

]2
dt (4)

for each k = 1, 2, ...,K.
If θ(x, t j) is considered a smooth function of x obtaining fixed values at points x1, x2, ..., xK ,

then using variational calculus it can be shown that the integral in (3) is minimized by
choosing θ(x, t j) to be a cubic splines curve with knots at x1, x2, ..., xK . Furthermore, this
integral can be expressed as a squared form θ′jGKθ j, where GK is a so-called roughness
matrix with dimensions K × K (for proof, see Green and Silverman, 1994). Similarly, if
θ(xk, t) is a cubic splines curve with knots at t1, ..., tT , the integral in (4) equals θ′(k)GTθ(k),
where θ(k) denotes the kth row of Θ and GT is a T × T roughness matrix. Thus, we wish
to minimize

S S 2 =
T∑
j=1
θ′jGKθ j = θ

′(IT ⊗GK)θ (5)
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and

S S 3 =
K∑
k=1
θ′(k)GTθ(k) = θ

′(GT ⊗ IK)θ. (6)

An N×N roughness matrix is defined asGN = ∇NΔ−1N ∇
′
N where the non-zero elements

of banded N × (N −2) and (N −2)× (N −2) matrices ∇N and ΔN , respectively, are defined
as follows:

∇i,i =
1

xi+1 − xi
, ∇i+1,i = −

(
1

xi+1 − xi
+

1
xi+2 − xi+1

)
, ∇i+2,i =

1
xi+2 − xi+1

and

Δi,i+1 = Δi+1,i =
xi+2 − xi+1

6
, Δi,i =

xi+2 − xi
3

,

with data points xi, i = 1, . . . , n. In our case the data are given at equal intervals, implying
that

∇i,i = 1, ∇i+1,i = −2, ∇i+2,i = 1

and

Δi,i+1 = Δi+1,i =
1
6
, Δi,i =

2
3
.

Combining the previous results, we obtain the bivariate smoothing splines solution for
θ by minimizing the exression S S 1 + λ1S S 2 + λ2S S 3, where S S 1, S S 2 and S S 3 are
given in the equations (2), (5) and (6), respectively, and the parameters λ1 and λ2 control
smoothing in the dimensions of cohort and age, respectively. Using matrix differentiation
and the properties of Kronecker’s product, it is easy to show that for fixed values of λ1
and λ2 the minimal solution is given by

θ̂ =
[
S′(SP∗S′)−1S + A

]−1
S′(SP∗S′)−1yobs, (7)

where

A = λ1(IT ⊗GK) + λ2(GT ⊗ IK). (8)

In the special case that the data set is balanced (S is an identity matrix), the solution is
simplified to θ̂ = (I + P∗A)−1y.

3.2. Bayesian formulation

Bayesian statistical inference is based on the posterior distribution, which is the con-
ditional distribution of unknown parameters given the data. In order to compute the pos-
terior distribution one needs to define the prior distribution, which is the unconditional
distribution of parameters, and the likelihood function, which is the probability density of
observations given the parameters. Bayes’ theorem implies that the posterior distribution
is proportional to the product of the prior distribution and the likelihood:

p(η|y) ∝ p(η)p(y|η),

where y is the data vector and η the vector of all unknown parameters.
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In our case, the likelihood is given by

p(yobs|η) = (2πσ2)−
K∗
2 |SP∗S′|−

1
2 e−

1
2σ2
(yobs−Sθ)′(SP∗S′)−1(yobs−Sθ), (9)

where K∗ is the length of yobs.
In order to facilitate estimation we reparametrize the smoothing paramaters as follows:
λ = λ1 and ω = λ2/λ1, where λ1 and λ2 control the smoothing in the dimensions of age
and cohort, respectively. Furthermore, we use the following hierarchical prior for η:

p(η) = p(σ2)p(λ)p(ω)p(φ)p(θ|σ2, λ, ω, φ),

where

p(σ2) ∝
1
σ2

(10)

p(λ) ∝ λα1−1e−β1λ

p(ω) ∝ ωα2−1e−β2ω

p(φ) ∝ 1, −1 < φ < 1.

As hyperparameters we set α1 = β1 = 0.001 and α2 = β2 = 10. Thus, the prior of σ2 is
the standard uninformative improper prior used for positive parameters, and the priors of
λ and φ are also fairly uninformative. The prior of ω is instead more informative, having
mean 1 and variance 0.1, since we found that the data do not contain enough information
about ω, and with a looser prior we would face convergence problems in estimation.
We made sensitivity analysis with respect to the prior of λ and found that increasing or
decreasing the order of magnitude of α1 and β1 did not essentially affect the results.
The smoothing effect can now be obtained by choosing a conditional prior for θ which

is consistent with the smoothing splines solution. Such a prior contains information only
on the curvature, or roughness, of the spline surface, not on its position or gradient. Thus,
we assume that {θ|σ2, λ, ω, φ} is multivarite normal with density

p(θ | σ2, λ, ω, φ) = (2πσ2)−
KT
2

∣∣∣∣λ [(IT ⊗GK,γ + ω(GT ⊗ IK)]
∣∣∣∣
1
2 e−

λ

2σ2
θ′[(IT⊗GK,γ)+ω(GT⊗IK )]θ,

(11)
where GK,γ is a positive definite matrix approximating GK . More specifically, we define
GK,γ = GK +γXX′, where γ > 0 can be chosen to be arbitrarily small, and X = (1 x) with
1 = (1, ..., 1)′ and x = (x1, ..., xK)′. Initially, we use GK,γ instead of GK , since otherwise
p(θ|σ2, λ, ω, φ) would be improper, which would lead to difficulties when deriving the
conditional posteriors for λ and ω.
Multiplying the densities in (11) and (9) and picking the factors which include θ we

obtain the full conditional posterior for θ up to a constant of proportionality:

p(θ|y, σ2, λ, ω, φ) ∝ e−
1
2σ2 {(y

obs−Sθ)′(SP∗S′)−1(yobs−Sθ)+λθ′[(IT⊗GK,γ)+ω(GT⊗IK )]θ}. (12)

Manipulating this expression and replacing GK,γ with GK we obtain

p(θ|y, σ2, λ, ω, φ) ∝ e−
1
2σ2
(θ−θ̂)′B(θ−θ̂)

,
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where θ̂ is given in (7) and B = A + S′(SP∗S′)−1S. From this we see that the con-
ditional posterior distribution of θ is multivariate normal with mean θ̂ and covariance
matrix σ2B−1 in the limiting case when GK,γ → GK . This implies that the conditional
posterior mode for θ is equal to the smoothing splines solution provided in the previ-
ous section. Thus, using the multivariate prior described above, we can implement the
roughness penalty of smoothing splines in the Bayesian framework.
In order to implement estimation using the Gibbs sampler, the full conditional posterior

distributions of the parameters are needed. In the following, we will provide these for σ2,
λ, ω and φ in the limiting case when GK,γ → GK .
The conditional posterior of σ2 is

p(σ2|y, λ, ω, φ) ∝ (σ2)−(
K∗+KT
2 +1)e−

1
2σ2 [(yobs−Sθ)′(SP∗S′)−1(yobs−Sθ)+θ′Aθ],

which is the density of the scaled inverted χ2-distribution Inv-χ2(ν, b)1, where ν = K∗+KT
and b = (S S 1 + λS S 2 + λωS S 3)/ν with S S 1, S S 2 and S S 3 given in (2), (5) and (6).
The conditional posterior of λ is

p(λ|y, θ, σ2, ω, φ) ∝ λα1−1+
KT
2 e−λ

[
β1+

1
2σ2
θ′(IT⊗GK+ωGT⊗IK )θ

]
, (13)

which is the density of Gamma(α1 + KT/2, β1 + (S S 2 + ωS S 3)/(2σ2)).
The conditional posterior of ω is

p(ω|y, θ, σ2, λ, φ) ∝ ωα2+T−2
⎡⎢⎢⎢⎢⎢⎢⎣
K−2∏
k=1

T−2∏
j=1

(
1 + ω

μ j

νk

)⎤⎥⎥⎥⎥⎥⎥⎦
1
2

e−ω
[
β2+

λ

2σ2
θ′(GT⊗IK )θ

]
, (14)

where μ j, j = 1, ...,T − 2, and νk, k = 1, ...,K − 2, are the nonzero eigenvalues of GT
and GK , respectively. This is not a standard distribution, but since it is log-concave, it is
possible to generate values from it using adaptive rejection sampling, introduced by Gilks
and Wild (1992).
Finally, the conditional posterior of φ, given by

p(φ|y, θ, σ2, λ, ω) ∝ (1 − φ2)−
1
2 (K∗−T )e−

1
2σ2
S S 1 ,

is not of standard form, and it is therefore difficult to generate random variates from it
directly. Instead, we may employ a Metropolis step within the Gibbs sampler.
Now, the estimation algorithm is implemented so that the parameters λ, ω, σ2 and θ are

updated one by one using Gibbs steps, and φ is updated using a Metropolis step. Further
details will be given in Section 5.

4. THE FINAL MODEL

In our final set-up we are able to control for unsystematic mortality risk in addition to
systematic risk. Unsystematic risk means that even if the true mortality rate were known,
the numbers of deaths would remain unpredictable. When the population becomes larger,
the unsystematic mortality risk becomes smaller due to diversification.

1Notation X ∼ Inv-χ2(ν, b) means that νb/X ∼ χ2ν .
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4.1. Formulation and estimation

In the final model the inference is rendered more accurate by modeling the observed
numbers of deaths directly. Specifically, we assume that

dxt ∼ Poisson(μxtext),

where dxt is the number of deaths at age x and cohort t, μxt is the theoretical death rate
(also called intensity of mortality or force of mortality) and ext is the person years of
exposure. This is an approximation, since neither the death rate nor the exposure is
constant during any given year. Our purpose is to model θxt = log(μxt) with a smooth
spline surface. Compared to the preliminary model we have replaced mxt by μxt and
removed the error term and its autocorrelation structure.
Similarly to the preliminary model, we obtain the smoothing effect by using a suitable

conditional prior distribution for θ. Specifically, we obtain p(θ|λ, ω) by replacing σ2 with
1 in equation (11). For λ and ω we use the same prior distributions as earlier, given by
(10), and their conditional posteriors are obtained from (13) and (14) when σ2 is set at 1.
However, here we use hyperparameters α1 = β1 = 10−6, since removing σ2 changes the
scale of λ several orders of magnitude.
Now the full conditional posterior distribution of θ may be written as

p(θ|dobs, λ, ω) ∝ exp

⎧⎪⎪⎨⎪⎪⎩
tT∑
t=t1

xKt∑
x=x1

[
dxtθxt − ext exp(θxt)

]
−
1
2
θ′Aθ

⎫⎪⎪⎬⎪⎪⎭ , (15)

where dobs is a vector of observed death numbers, and Kt the number of ages for which
data are available in cohort t. The double sum in this expression comes from the likeli-
hood function and the squared form from the prior distribution.
This model can be estimated similarly to the preliminary model, using Gibbs sampling.

However, since the conditional distribution in (15) is non-standard, it is difficult to sample
from it directly. Here we may use a Metropolis-Hastings step within the Gibbs sampler.
As a proposal distribution we may use a multivariate normal approximation to (15), given
by

J(θ) ∝ exp
{
−
1
2

(
yobs − Sθ

)′ (
SΣS′

)−1 (yobs − Sθ) − 1
2
θ′Aθ

}
,

where yobs is a vector of observed log death rates, Σ is a diagonal matrix with 1/dxt, x =
x1, ..., xK , t = t1, ..., tT , as its diagonal elements, and S is a selection matrix defined in
Section 3.1. The approximate variance 1/dxt of the log death rate is obtained by applying
the delta method to the relevant transformation of the underlying Poisson variable.
Thus, the proposal θ∗ is distributed as

θ∗ ∼ MVN(C−1S′(SΣS′)−1yobs,C−1),

where C = A + S′(SΣS′)−1S, and is accepted with probability

min
(
1,
p(θ∗|dobs, λ, ω)/J(θ∗)
p(θ|dobs, λ, ω)/J(θ)

)
.

A BAYESIAN SMOOTHING SPLINE METHOD FOR MORTALITY MODELING 9

4.1. Formulation and estimation

In the final model the inference is rendered more accurate by modeling the observed
numbers of deaths directly. Specifically, we assume that

dxt ∼ Poisson(μxtext),

where dxt is the number of deaths at age x and cohort t, μxt is the theoretical death rate
(also called intensity of mortality or force of mortality) and ext is the person years of
exposure. This is an approximation, since neither the death rate nor the exposure is
constant during any given year. Our purpose is to model θxt = log(μxt) with a smooth
spline surface. Compared to the preliminary model we have replaced mxt by μxt and
removed the error term and its autocorrelation structure.
Similarly to the preliminary model, we obtain the smoothing effect by using a suitable

conditional prior distribution for θ. Specifically, we obtain p(θ|λ, ω) by replacing σ2 with
1 in equation (11). For λ and ω we use the same prior distributions as earlier, given by
(10), and their conditional posteriors are obtained from (13) and (14) when σ2 is set at 1.
However, here we use hyperparameters α1 = β1 = 10−6, since removing σ2 changes the
scale of λ several orders of magnitude.
Now the full conditional posterior distribution of θ may be written as

p(θ|dobs, λ, ω) ∝ exp

⎧⎪⎪⎨⎪⎪⎩
tT∑
t=t1

xKt∑
x=x1

[
dxtθxt − ext exp(θxt)

]
−
1
2
θ′Aθ

⎫⎪⎪⎬⎪⎪⎭ , (15)

where dobs is a vector of observed death numbers, and Kt the number of ages for which
data are available in cohort t. The double sum in this expression comes from the likeli-
hood function and the squared form from the prior distribution.
This model can be estimated similarly to the preliminary model, using Gibbs sampling.

However, since the conditional distribution in (15) is non-standard, it is difficult to sample
from it directly. Here we may use a Metropolis-Hastings step within the Gibbs sampler.
As a proposal distribution we may use a multivariate normal approximation to (15), given
by

J(θ) ∝ exp
{
−
1
2

(
yobs − Sθ

)′ (
SΣS′

)−1 (yobs − Sθ) − 1
2
θ′Aθ

}
,

where yobs is a vector of observed log death rates, Σ is a diagonal matrix with 1/dxt, x =
x1, ..., xK , t = t1, ..., tT , as its diagonal elements, and S is a selection matrix defined in
Section 3.1. The approximate variance 1/dxt of the log death rate is obtained by applying
the delta method to the relevant transformation of the underlying Poisson variable.
Thus, the proposal θ∗ is distributed as

θ∗ ∼ MVN(C−1S′(SΣS′)−1yobs,C−1),

where C = A + S′(SΣS′)−1S, and is accepted with probability

min
(
1,
p(θ∗|dobs, λ, ω)/J(θ∗)
p(θ|dobs, λ, ω)/J(θ)

)
.



10 LUOMA, PUUSTELLI & KOSKINEN

This update is an independence sampler, since the proposal distribution of θ∗ does not
depend on the current value θ. The whole algorithm is once more a special case of the
single-component Metropolis-Hastings. Further details on this algorithm will be provided
in the next section.

5. ESTIMATION

5.1. Estimation procedure

Our estimation procedure is a single-component (or cyclic) Metropolis-Hastings algo-
rithm. This is one of the Markov Chain Monte Carlo (MCMC) methods, which are useful
in drawing samples from posterior distributions. Generally, MCMCmethods are based on
drawing values from approximate distributions and then correcting these draws to better
approximate the target distribution, and hence they are used when direct sampling from a
target distribution is difficult. A useful reference for different versions of MCMC is Gilks
et al. (1996).
The Metropolis-Hastings algorithm was introduced by Hastings (1970) as a general-

ization of the Metropolis algorithm (Metropolis et al., 1953). Also the Gibbs sampler
proposed by Geman and Geman (1984) is its special case. The Gibbs sampler assumes
the full conditional distributions of the target distribution to be such that one is able to
generate random numbers or vectors from them. TheMetropolis andMetropolis-Hastings
algorithms are more flexible than the Gibbs sampler; with them one o nly needs to know
the joint density function of the target distribution with density p(θ) up to a constant of
proportionality.
With the Metropolis algorithm the target distribution is generated as follows: first a

starting distribution p0(θ) is assigned, and from it a starting-point θ0 is drawn such that
p(θ0) > 0. For iterations t = 1, 2, . . ., a proposal θ∗ is generated from a jumping distribu-
tion J(θ∗|θt−1), which is symmetric in the sense that J(θa|θb) = J(θb|θa) for all θa and θb.
Finally, iteration t is completed by calculating the ratio

r =
p(θ∗)
p(θt−1)

(16)

and by setting the new value at

θt =

{
θ∗ with probability min(r, 1)
θt−1 otherwise.

It can be shown that, under mild conditions, the algorithm produces an ergodic Markov
Chain whose stationary distribution is the target distribution.
Metropolis-Hastings algorithm generalizes the Metropolis algorithm by removing the

assumption of symmetric jumping distribution. The ratio r in (16) is replaced by

r =
p(θ∗)/J(θ∗|θt−1)
p(θt−1)/J(θt−1|θ∗)

to correct for the asymmetry in the jumping rule.
In the single-component Metropolis-Hastings algorithm the simulated random vector

is divided into components or subvectors which are updated one by one. If the jumping
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distribution for a component is its full conditional posterior distribution, the proposals
are accepted with probability one. In the case that all the components are simulated in
this way, the algorithm is called a Gibbs sampler. As stated above, in the case of our
preliminary model we can simulate all parameters except φ directly, and may therefore
use a Gibbs sampler with oneMetropolis step. As the jumping distribution of φwe use the
normal distribution N(φt−1, 0.052). For the final model we use a Gibbs sampler with one
Metropolis-Hastings step for θ. The proposal distribution and its acceptance probability
were already given in Section 4.

5.2. Empirical results

All the computations in this article were performed and figures produced using the
R computing environment (R Development Core Team, 2010). The functions and data
needed to replicate the results can be found at http://mtl.uta.fi/codes/mortality. A minor
drawback is that we cannot use all available data in estimation but must restrict ourselves
to a relevant subset. This is due to the huge matrices involved in computations if many
ages and cohorts are included in the data set. For example, if we used our complete data
set, whose dimensions are T = 110 and K = 171, we would have to deal with Kronecker
product matrices of dimension 18810 × 18810. This would require 5 GB of memory
for storing one matrix and much more for computations. Although we can alleviate the
storage problem and also speed up the computations using sparse matrix methods, we still
cannot use the complete data set. In our implementation we use the R package SparseM.
To assess the convergence of the simulated Markov chain to its stationary distribution

we used 5 representative values of θ, denoted as θ1, ..., θ5, from each corner and the middle
of the data matrix, in addition to the upper level parameters. The value θ5 is in the lower
right corner of the matrix and corresponds to an unobserved data item.
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FIG. 3. Posterior simulations of the final model.
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For each data set and both models we assessed the convergence of iterative simulation
using three simulated sequences with 5000 iterations. In the case of the final model we
discarded 1500 first iterations of each chain as a burn-in period, while in the case of the
preliminary model the convergence was more rapid and we discarded only 200 iterations.
Figure 3 shows one simulated chain corresponding to the final model and the data

set with ages 50–90 and cohorts 1901–1941. It seems that the chain converges to its
stationary distribution after about 300 iterations, and the component series of the chain
mix well, that is, they are not excessively autocorrelated, except for the parameter λ.
Summaries of the estimation results for both preliminary and final model as well as the
diagnostics of Gelman and Rubin (1992) are given in Appendix A. The values of the
diagnostic are close to 1 and thus indicate good convergence.

6. MODEL CHECKING

Cairns et al. (2008) provide a checklist of criteria against which a stochastic mortality
model can be assessed. We will follow this list as we assess the fit and plausibility of our
two models. The list is as follows:

1. Mortality rates should be positive.
2. The model should be consistent with historical data.
3. Long-term dynamics under the model should be biologically reasonable.
4. Parameter estimates should be robust relative to the period of data and range of ages
employed.

5. Model forecasts should be robust relative to the period of data and range of ages
employed.

6. Forecast levels of uncertainty and central trajectories should be plausible and consis-
tent with historical trends and variability in mortality data.

7. The model should be straightforward to implement using analytical methods or fast
numerical algorithms.

8. The model should be relatively parsimonious.
9. It should be possible to use the model to generate sample paths and calculate predic-
tion intervals.

10. The structure of the model should make it possible to incorporate parameter uncer-
tainty in simulations.

11. At least for some countries, the model should incorporate a stochastic cohort effect.
12. The model should have a non-trivial correlation structure.

Both of our models fulfil the first item in the list, since we model log death rates. To
assess the consistency of the models with historical data we will introduce three Bayesian
test quantities in Section 6.1.
A model is defined by Cairns et al. (2006a) to be biologically reasonable if the mor-

tality rates are increasing with age and if there is no long-run mean reversion around a
deterministic trend. Our spline approach implies that the log death rate increases linearly
beyond the estimable region. The preliminary model allows for short-term mean rever-
sion (or autocorrelation) for the observed death rate, while there is no mean reversion at
all in the final model.
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The fourth and fifth points in the list, that is, the robustness of parameter estimates
and model forecasts, will be studied in Sections 6.2 and 6.3. The figures of posterior
predictions in Section 6.3 help assess the plausibility and uncertainty of forecasts and
their consistency with historical trends and variability.
Implementing the models is fairly straightforward but involves several algorithms.

Basically, we use the Gibbs sampler, and supplement it with rejection sampling and
Metropolis and Metropolis-Hastings steps, which are needed to update certain param-
eters or parameter blocks. A further complication is that we have to use sparse matrix
methods to increase the maximum size of the data set.
In the Bayesian approach one typically uses posterior predictive simulation, in which

parameter uncertainty is taken into account, to generate sample paths and calculate pre-
diction intervals. This will be explained in detail in Section 6.3.
The hierarchical structure of the spline models makes them parsimonious: on the upper

level the preliminary model has 4 parameters, the final model only 2. Both models also
incorporate a stochastic cohort effect. The preliminary model incorporates an AR(1)
structure for observed mortality, while the final model has no correlation structure for
deviations from the spline surface.
One should note, however, that the spline model in itself implies a covariance struc-

ture. In a one-dimensional case the Bayesian smoothing spline model can be interpreted
as a sum of a linear trend and integrated Brownian motion (Wahba, 1978). The prior
distribution does not contain information on the intercept or slope of the trend but im-
plies the covariance structure of the integrated Brownian motion. Similarily, in our two-
dimensional case, the spline surface can be interpreted as a sum of a plane and deviations
from this plane. The conditional prior of θ, given the smoothing parameters, does not
include information on the plane but implies a specific spatial covariance structure for the
deviations.

6.1. Tests for the consistency of the model

In the Bayesian framework, posterior predictive simulations of replicated data sets may
be used to check the model fit (see Gelman et al., 2004). Once several replicated data sets
yrep have been produced, they may be compared with the original data set y. If they look
similar to y, the model fits.
The discrepancy between data and model can be measured using arbitrarily defined

test quantities. A test quantity T (y, θ) is a scalar summary of parameters and data which
is used to compare data with predictive simulations. If the test quantity depends only on
data and not on parameters, then it is said to be a test statistic. If we already have N
posterior simulations θi, i = 1, ...,N, we can generate one replication yrepi using each θi,
and compute the test quantities T (y, θi) and T (yrepi , θi). The Bayesian p-value is defined to
be the posterior probability that the test quantity computed from a replication, T (yrep, θ),
will exceed that computed from the original data, T (y, θ). This test may be illustrated by
a scatter plot of (T (y, θi),T (yrepi , θi)), i = 1, ...,N, where the same scale is used for both
coordinates. Further details on this approach can be found in Chapter 6 of Gelman et al.
(2004) or Chapter 11 of Gilks et al. (1996).
In the case of our preliminary model, a replication of data is generated as follows:

First, θ, σ2 and φ are generated from their joint posterior distribution. Then, using these
parameter values, a replicated data vector yrep is generated from the multivariate normal
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distribution N(θ, I⊗σ2P). Finally, the elements of yrep which correspond to the observed
values in yobs are selected. In the case of the final model, θ is first generated and then
the numbers of deaths dxt and exposures ext are generated recursively by starting from
the smallest age included in the estimation data set. The numbers for the smallest age
are not generated but they are taken to be the same as in the estimation set. Finally, the
replicated death rates are computed as yxt = log(dxt/ext), and the values corresponding to
the observed values in yobs are selected. Further details about this procedure are provided
in Appendix B.
We introduce three test quantities to check the model fit. The first measures the au-

tocorrelation of the observed log death rate and the second and third its mean square
error:

AC(y, θ) =
∑T
t=t1

∑xK−1
x=x1 (yx+1,t − θx+1,t)(yxt − θxt)∑T

t=1 Kt
,

where Kt is the number of observations in cohort t, and

MSE1(y, θ) =
∑tT
t=t1

∑xKt
x=x1 (yxt − θxt)

2

∑T
t=1 Kt

, MSE2(y, θ) =
∑tT
t=t1

(
yxKt t − θxKt t

)2
T

.

Figures 4 and 5 show the results when using the data set with ages 50–90 and cohorts
1901–1941. Each figure is based on 500 simulations. If the original data and repli-
cated data were consistent, about half the points in the scatter plot would fall above the
45◦ line and half below. Figure 4a indicates that the preliminary model adequately ex-
plains the autocorrelation observed in the original data set, while Figure 5a suggests that
there might be slight negative autocorrelation in the residuals not explained by the model.
However, since the Bayesian p-value, which is the proportion of points above the line, is
approximately 0.95, there is no sufficient evidence to reject the assumption of indepen-
dent Poisson observations.
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FIG. 4. Goodness-of-fit testing for the preliminary model.

14 LUOMA, PUUSTELLI & KOSKINEN

distribution N(θ, I⊗σ2P). Finally, the elements of yrep which correspond to the observed
values in yobs are selected. In the case of the final model, θ is first generated and then
the numbers of deaths dxt and exposures ext are generated recursively by starting from
the smallest age included in the estimation data set. The numbers for the smallest age
are not generated but they are taken to be the same as in the estimation set. Finally, the
replicated death rates are computed as yxt = log(dxt/ext), and the values corresponding to
the observed values in yobs are selected. Further details about this procedure are provided
in Appendix B.
We introduce three test quantities to check the model fit. The first measures the au-

tocorrelation of the observed log death rate and the second and third its mean square
error:

AC(y, θ) =
∑T
t=t1

∑xK−1
x=x1 (yx+1,t − θx+1,t)(yxt − θxt)∑T

t=1 Kt
,

where Kt is the number of observations in cohort t, and

MSE1(y, θ) =
∑tT
t=t1

∑xKt
x=x1 (yxt − θxt)

2

∑T
t=1 Kt

, MSE2(y, θ) =
∑tT
t=t1

(
yxKt t − θxKt t

)2
T

.

Figures 4 and 5 show the results when using the data set with ages 50–90 and cohorts
1901–1941. Each figure is based on 500 simulations. If the original data and repli-
cated data were consistent, about half the points in the scatter plot would fall above the
45◦ line and half below. Figure 4a indicates that the preliminary model adequately ex-
plains the autocorrelation observed in the original data set, while Figure 5a suggests that
there might be slight negative autocorrelation in the residuals not explained by the model.
However, since the Bayesian p-value, which is the proportion of points above the line, is
approximately 0.95, there is no sufficient evidence to reject the assumption of indepen-
dent Poisson observations.

−0.15 −0.10 −0.05 0.00 0.05

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05

AC(y, θ)
AC

(y
re

p , θ
)

0.002 0.003 0.004 0.005 0.006 0.007 0.008

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8

MSE2(y, θ)

M
S

E
2(y

re
p , θ

)

(a) Autocorrelation test (b) MSE test

FIG. 4. Goodness-of-fit testing for the preliminary model.



A BAYESIAN SMOOTHING SPLINE METHOD FOR MORTALITY MODELING 15

−0.05 0.00 0.05

−0
.0

5
0.

00
0.

05

AC(y, θ)

AC
(y

re
p , θ

)

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

0.
00

10
0.

00
20

0.
00

30
0.

00
40

MSE2(y, θ)

M
S

E
2(y

re
p , θ

)

(a) Autocorrelation test (b) MSE test

FIG. 5. Goodness-of-fit testing for the final model.

The test statistic MSE1 measures the overall fit of the models, and both models pass
it (figures not shown). The test statistic MSE2 measures the fit at the largest ages of the
cohorts. From Figure 5b we see that that the final model passes this test. However, Figure
4b suggests that under the preliminary model the MSE2 simulations based on the original
data are smaller than those based on replicated data sets (pB = 0.98). The reason here
is that the homoscedasticity assumption of logarithmic mortality data is not valid. The
validity of the homoscedasticity and independence assumptions could be further assessed
by plotting the standardized residuals (not shown here).

6.2. Robustness of the parameter estimates

The robustness of the parameters may be studied by comparing the posterior distribu-
tions when two different but equally sized data sets are used. Here we used two data sets
with ages 40–70 and 60–90, and cohorts 1917–1947 and 1886–1916, respectively. We
refer to these as the younger and older age groups, respectively. Figure 6 (c) indicates
that the variance parameter σ2 of the preliminary model is clearly higher for the younger
age group. This results from the fact that the variance of log mortality data becomes
smaller when the age grows. This also causes a robustness problem for λ, since its pos-
terior distribution is dependent with that of σ2. Also φ seems to have a slight robustness
problem, suggested by Figure 6 (d). On the contrary, ω does not suffer from robustness
problems, but the reason is that the data do not contain enough information for its estima-
tion, which implies that the posterior is practically the same as the prior. Since ω does not
significantly deviate from unity, one could consider using only one smoothing parameter
instead of two.
Figure 7 (a) indicates that under the final model the posterior of λ is more concentrated

on small values for the younger age group. However, the difference between the age
groups is not as clear as in the case of the preliminary model. Besides, the range of the
distribution is fairly large in both cases.
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instead of two.
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FIG. 6. Distributions of λ, ω, σ2 and φ for the preliminary model. The solid line corresponds to the younger
(ages 40–70) and the dashed line the older (ages 60–90) age group.
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FIG. 7. Distributions of λ and ω for the final model. The solid line corresponds to the younger (ages 40–70)
and the dashed line the older (ages 60–90) age group.
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FIG. 7. Distributions of λ and ω for the final model. The solid line corresponds to the younger (ages 40–70)
and the dashed line the older (ages 60–90) age group.
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6.3. Forecasting

Our procedure for forecasting mortality is as follows. We first select a rectangular
estimation area which includes in its lower right corner the ages and cohorts for which
the death rates are to be predicted. Thus we have in our estimation set earlier observations
from the same age as the predicted age and from the same cohort as the predicted cohort.
An example of an estimation area is shown in Figure 1.
In the Bayesian approach, forecasting is based on the posterior predictive distribution.

In the case of our preliminary model, a simulation from this distribution is drawn as fol-
lows: First, θ, σ2 and φ are generated from their joint posterior distribution. Then the
unobserved data vectors y j2, j = 1, 2, ...,T, (which are to be predicted) are generated
from their conditional multivariate normal distributions, given the observed data vectors
y j1 and the parameters θ, σ2 and φ. These distributions were provided in Section 3. In the
case of our final model, θ is first generated. Then the numbers of deaths dxt and the expo-
sures ext are generated recursively starting from the most recent observed values within
each cohort. In this way we obtain simulation paths for each cohort and a predictive
distribution for each missing value in the mortality table. Further details are provided in
Appendix B.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
50

10
0

15
0

Ages: 70, 90 Cohort: 1892

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
50

10
0

15
0

Ages: 70, 90 Cohort: 1900

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
50

10
0

15
0

Ages: 70, 90 Cohort: 1908

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
50

10
0

15
0

Ages: 70, 90 Cohort: 1916

D
en

si
ty

FIG. 8. Posterior predictive distributions of the death rates at ages 70 and 90, based on the preliminary
model. The solid curves correspond to the larger data set (cohorts 1876 – 1916, and ages 30–70 when the the
death rate at age 70 is predicted, and ages 50–90 when the death rate at age 90 is predicted) and the dashed
curves the smaller (cohorts 1886 – 1916, and ages 40–70 when the the death rate at age 70 is predicted, and
ages 60–90 when the death rate at age 90 is predicted). The vertical lines indicate the realized death rates.

In studying the accuracy and robustness of forecasts, we use estimation areas similar
to those used earlier. However, we choose them so that we can compare the predictive
distribution of the death rate with its realized value. The estimation is done as if the
triangular area in the right lower corner of the estimation area, indicated in Figure 1,
were not known. The posterior predictive distributions shown in Figure 8 are based on
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FIG. 8. Posterior predictive distributions of the death rates at ages 70 and 90, based on the preliminary
model. The solid curves correspond to the larger data set (cohorts 1876 – 1916, and ages 30–70 when the the
death rate at age 70 is predicted, and ages 50–90 when the death rate at age 90 is predicted) and the dashed
curves the smaller (cohorts 1886 – 1916, and ages 40–70 when the the death rate at age 70 is predicted, and
ages 60–90 when the death rate at age 90 is predicted). The vertical lines indicate the realized death rates.

In studying the accuracy and robustness of forecasts, we use estimation areas similar
to those used earlier. However, we choose them so that we can compare the predictive
distribution of the death rate with its realized value. The estimation is done as if the
triangular area in the right lower corner of the estimation area, indicated in Figure 1,
were not known. The posterior predictive distributions shown in Figure 8 are based on
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FIG. 9. Posterior predictive distributions of the death rates at ages 70 and 90, based on the final model. The
solid curves correspond to the larger data set (cohorts 1876 – 1916; ages 30–70 when the the death rate at age
70 is predicted, and ages 50–90 when the death rate at age 90 is predicted) and the dashed curves the smaller
(cohorts 1886 – 1916; ages 40–70 when the the death rate at age 70 is predicted, and ages 60–90 when the death
rate at age 90 is predicted). The vertical lines indicate the realized death rates.

the preliminary model, while those in Figure 9 are based on the final model. The four
cases in both figures correspond to forecasts 1, 9, 17 and 25 years ahead, for cohorts 1892,
1900, 1908 and 1916, respectively, when the death rate at ages 70 and 90 are forecast.
The distributions indicated by solid lines are based on larger estimation sets than those
indicated by dashed lines.
It may be seen that increasing uncertainty is reflected by the growing width of the

distributions. Furthermore, the size of the estimation set does not considerably affect
the distributions when the death rate at age 90 is predicted, while when it is predicted at
age 70, the smaller data sets produce more accurate distributions. The obvious reason is
that in the latter case the larger estimation set contains observations from the age interval
30–40 in which the growth of mortality is less regular than at larger ages, inducing more
variability in the estimated model. In all cases, the realized values lie within the 90%
prediction intervals.
Figures 10 and 11 show posterior predictive simulations when the preliminary and the

final model is used, respectively. In each case, the results are shown for the cohorts 1891,
1904 and 1916. Three predictive simulation paths (gray lines) are shown for the cohorts
1904 and 1916. Their starting points indicate the beginning of the forecast region. As
may be seen, their variability resembles that of the observed paths (thin black lines).
The variability of observed death rates around the central trajectories (thick black lines)
reflects sample variability around the expected values.
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FIG. 9. Posterior predictive distributions of the death rates at ages 70 and 90, based on the final model. The
solid curves correspond to the larger data set (cohorts 1876 – 1916; ages 30–70 when the the death rate at age
70 is predicted, and ages 50–90 when the death rate at age 90 is predicted) and the dashed curves the smaller
(cohorts 1886 – 1916; ages 40–70 when the the death rate at age 70 is predicted, and ages 60–90 when the death
rate at age 90 is predicted). The vertical lines indicate the realized death rates.
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FIG. 10. Posterior predictions with the preliminary model for ages 50 − 90 and cohorts 1876 − 1916. The
gray lines represent posterior predictions of log death rates, thin black lines their observed values, and thick
black lines the averages of the posterior simulations of θ. The forecast region starts at ages 78 and 66 for
cohorts 1904 and 1916, respectively.
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FIG. 11. Posterior predictions with the final model for ages 50 − 90 and cohorts 1876 − 1916. The gray
lines represent posterior predictions of log death rates, thin black lines their observed values, and thick black
lines the averages of the posterior simulations of θ. The forecast region starts at ages 78 and 66 for cohorts 1904
and 1916, respectively.

A BAYESIAN SMOOTHING SPLINE METHOD FOR MORTALITY MODELING 19

Age

lo
g(

de
at

h 
ra

te
)

50 60 70 80 90

−5
−4

−3
−2

−1

1891

1904

1916

FIG. 10. Posterior predictions with the preliminary model for ages 50 − 90 and cohorts 1876 − 1916. The
gray lines represent posterior predictions of log death rates, thin black lines their observed values, and thick
black lines the averages of the posterior simulations of θ. The forecast region starts at ages 78 and 66 for
cohorts 1904 and 1916, respectively.

Age

lo
g(

de
at

h 
ra

te
)

50 60 70 80 90

−5
−4

−3
−2

−1

1891

1904

1916

FIG. 11. Posterior predictions with the final model for ages 50 − 90 and cohorts 1876 − 1916. The gray
lines represent posterior predictions of log death rates, thin black lines their observed values, and thick black
lines the averages of the posterior simulations of θ. The forecast region starts at ages 78 and 66 for cohorts 1904
and 1916, respectively.



20 LUOMA, PUUSTELLI & KOSKINEN

7. CONCLUSIONS

In this article we have introduced a new method to model mortality data in both age and
cohort dimensions with Bayesian smoothing splines. The smoothing effect is obtained by
means of a suitable prior distribution. The advantage in this approach compared to other
splines approaches is that we do not need to optimize with respect to the number of knots
and their locations. In order to take into account the serial dependence of observations
within cohorts, we use cohort data sets, which are imbalanced in the sense that they con-
tain fewer observations for more recent cohorts. We consider two versions of modeling:
first, we model the observed death rates, and second, the numbers of deaths directly.
To assess the fit and plausibility of our models we follow the checklist provided by

Cairns et al. (2008). The Bayesian framework allows us to easily assess parameter and
prediction uncertainty using the posterior and posterior predictive distributions, respec-
tively. In order to assess the consistency of the models with historical data we introduce
test quantities. We find that our models are biologically reasonable, have non-trivial cor-
relation structures, fit the historical data well, capture the stochastic cohort effect, and are
parsimonious and relatively simple. Our final model has the further advantages that it has
less robustness problems with respect to parameters, and avoids the heteroscedasticity of
standardized residuals.
A minor drawback is that we cannot use all available data in estimation but must restrict

ourselves to a relevant subset. This is due to the huge matrices involved in computations
if many ages and cohorts are included in the data set. However, this problem can be
alleviated using sparse matrix computations. Besides, for practical applications using
"local" data sets should be sufficient.
In both models we have two smoothing parameters, controlling smoothing in the di-

mensions of cohort and age. Since it turned out that the data do not contain information
to distinguish between these parameters, we might consider simplifying the model and
using only one smoothing parameter. On the other hand, the model might be generalized
by allowing for dependence between the smoothing parameter and age.
In conclusion, we may say that our final model meets well the mortality model selec-

tion criteria proposed by Cairns et al. (2008) except that it has a somewhat local character.
This locality is partly due to limitations on the size of the estimation set and partly due
to slight robustness problems related to the smoothing parameter and forecasting uncer-
tainty.
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APPENDIX A

The posterior simulations were performed using the R computing environment. The
following outputs were obtained using the summary function of the add-on package
MCMCpack:

TABLE 1.

Estimation results of the preliminary mortality model.

Number of chains = 3

Sample size per chain = 4800

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

lambda 16.940473 5.0795384 4.233e-02 4.001e-01

omega 1.010386 0.2781601 2.318e-03 1.765e-02

sigma2 0.004243 0.0001720 1.433e-06 3.552e-06

phi -0.047612 0.0295280 2.461e-04 6.206e-04

theta1 -5.163545 0.0335889 2.799e-04 4.310e-04

theta2 -1.552719 0.0331673 2.764e-04 2.790e-04

theta3 -3.958345 0.0121454 1.012e-04 1.156e-04

theta4 -5.903402 0.0333465 2.779e-04 2.878e-04

theta5 -3.099490 0.2857720 2.381e-03 3.118e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

lambda 8.643654 13.198089 16.351764 20.291032 28.209809

omega 0.551153 0.814618 0.979278 1.175660 1.634720

sigma2 0.003923 0.004125 0.004237 0.004355 0.004597

phi -0.104964 -0.067280 -0.047333 -0.027680 0.011365

theta1 -5.229142 -5.186360 -5.163524 -5.141287 -5.097599

theta2 -1.617886 -1.574978 -1.552572 -1.530468 -1.488354

theta3 -3.982101 -3.966441 -3.958372 -3.950303 -3.934482

theta4 -5.969645 -5.925643 -5.903172 -5.880918 -5.837735

theta5 -3.659055 -3.288343 -3.100254 -2.910501 -2.526937
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Potential scale reduction factors:

Point est. 97.5% quantile

lambda 1.02 1.08

omega 1.03 1.08

sigma2 1.00 1.01

phi 1.00 1.01

theta1 1.00 1.00

theta2 1.00 1.00

theta3 1.00 1.00

theta4 1.00 1.00

theta5 1.00 1.00

Multivariate psrf

1.02
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TABLE 2.

Estimation results of the final mortality model.

Number of chains = 3

Sample size per chain = 3500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

lambda 3635.488 921.74852 8.9953444 7.067e+01

omega 1.001 0.08031 0.0007838 1.945e-03

theta1 -5.169 0.04009 0.0003913 1.320e-03

theta2 -1.553 0.02386 0.0002329 7.500e-04

theta3 -3.955 0.01060 0.0001035 3.319e-04

theta4 -5.886 0.04394 0.0004288 1.288e-03

theta5 -3.064 0.28431 0.0027745 8.642e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

lambda 2173.3167 2952.634 3483.3201 4195.765 5756.134

omega 0.8506 0.946 0.9989 1.054 1.162

theta1 -5.2484 -5.198 -5.1685 -5.142 -5.091

theta2 -1.5998 -1.569 -1.5536 -1.536 -1.506

theta3 -3.9765 -3.962 -3.9548 -3.948 -3.934

theta4 -5.9737 -5.917 -5.8853 -5.856 -5.801

theta5 -3.6252 -3.264 -3.0631 -2.875 -2.515

Potential scale reduction factors:

Point est. 97.5% quantile

lambda 1.06 1.19

omega 1.00 1.00

theta1 1.00 1.01

theta2 1.00 1.01

theta3 1.01 1.01

theta4 1.00 1.02

theta5 1.00 1.01

Multivariate psrf

1.04
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APPENDIX B

In the case of the final model, the numbers of deaths dxt and the exposures ext should be
forecast for the ages and cohorts for which they are unknown. Furthermore, these values
should be generated when replications of the original estimation data set are produced.
In the case of forecasting, we use an iterative procedure to generate dxt and ext, starting

from the most recent observation of death rate within each cohort. In the case of data
replication, we start from the smallest age available in the data set. In each case, the
initial cohort size is estimated on the basis of the relationship

qxt = 1 − exp(−μxt),

where qxt is the probability that a person in cohort t dies at age x. The same equality
applies for the maximum likelihood estimates of qxt and μxt, given by q̂xt = dxt/nxt and
mxt = dxt/ext, where nxt is the number of persons reaching age x in cohort t. Thus, we
obtain the formula

dxt
nxt
= 1 − exp

(
−
dxt
ext

)
, (17)

from which we may solve nxt when dxt and ext are known.
Further, the number of persons alive is updated recursively as nx+1,t = nxt − dxt, and the

number of deaths is generated from the binomial distribution:

dx+1,t ∼ Bin
(
nx+1,t, qx+1,t

)
.

Then ex+1,t is solved using (17).
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replication, we start from the smallest age available in the data set. In each case, the
initial cohort size is estimated on the basis of the relationship

qxt = 1 − exp(−μxt),

where qxt is the probability that a person in cohort t dies at age x. The same equality
applies for the maximum likelihood estimates of qxt and μxt, given by q̂xt = dxt/nxt and
mxt = dxt/ext, where nxt is the number of persons reaching age x in cohort t. Thus, we
obtain the formula

dxt
nxt
= 1 − exp

(
−
dxt
ext

)
, (17)

from which we may solve nxt when dxt and ext are known.
Further, the number of persons alive is updated recursively as nx+1,t = nxt − dxt, and the

number of deaths is generated from the binomial distribution:

dx+1,t ∼ Bin
(
nx+1,t, qx+1,t

)
.

Then ex+1,t is solved using (17).




