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“Computer, tell me why I am
Not content or in love with a simple feeling.

I ask for I have lost my sense
Of peace and you are extraordinarily clever.”

To My Boy: Tell Me, Computer.
Messages (2007), XL Recordings.
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Abstract

Emotions are an important part of all motivated human behaviour. They
are intimately connected with our memory, thinking, mental and physical
health, and they have an important role in coordinating our interactions
with other people. Consequently, the level of competence in regulating
the content and intensity of emotions can have effects far and wide, rang-
ing from one’s daily well-being to general success in life. Similar to the
deep-seated meaning of emotions for our daily functioning, technology
has recently become a pervasive and unavoidable aspect of our modern
lives. We interact daily with some kind of technology. These ubiquitous
interactions could provide an opportunity to affect and regulate emotions
virtually anywhere and at anytime.

The aim of the present thesis was to create a theoretical and empir-
ical basis for constructing systems for computer-assisted emotion regu-
lation. First, a theoretical framework for studying and developing such
systems was defined. This framework identified artificial perceptual and
expressive intelligence as essential capabilities for technology that aims
to support the regulation of emotions. Then, the practicality of devel-
oping and more widely applying perceptual and expressive technology
was studied using constructive and empirical methods. For this purpose,
an unobtrusive method for perceptual intelligence was developed and
experimentally validated by using a special office chair to measure body
movement responses to artificial social and emotional cues. Feasible tools
for expressive intelligence were developed in experiments investigating
the experiential and physiological effects of virtual bodily distance (i.e.,
proximity) and facial expressions of humanlike computer characters. Fi-
nally, a platform was constructed for studying the effectiveness of vol-
untary facial activations in regulating emotion related experiences and
physiological processes during human-technology interaction.

The empirical results suggest that perceptual and expressive intelli-
gence can provide practical methods for regulating human emotional
responding. The developed unobtrusive method for body movement
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analysis was able to detect significant differences between body move-
ment responses to virtual stimulation with unpleasant, neutral, or pleas-
ant emotional content. Virtual proximity and facial expressions of hu-
manlike computer characters were found to significantly affect human
body movement, physiology, and subjective experiences of emotion and
attention. Voluntary facial activations were found to significantly reg-
ulate subjective experiences of pleasantness, arousal, and dominance as
well as physiological activity during virtual social communication with
humanlike characters. Further, the constructed platform was found to be
usable with relatively little training and preparation, which suggests that
it could be a practical starting point for continuing the study of computer-
assisted regulation of emotions. In sum, based on the empirical results,
the theoretical and constructive work of the present thesis is a solid ba-
sis for developing the first generation of systems for computer-assisted
emotion regulation.
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1 Introduction

Imagine that you are driving to home after a hard day at work. You had a
heated argument with a colleague and can’t help but to still brood angry
thoughts. While you are driving, you notice that the in-car navigation
system suggests an alternative route to home, which is slightly longer
than your usual route but has much more pleasant scenery. You decide
to break your habit and enjoy a new road for a change. Approaching
home, you realize that you need to stop at a convenience store to pick
up some essentials. While you are standing at the queue to the cashier,
someone cuts in line to the front of you. Your heart starts to pound and
you feel tense. Just when you are about to shout to the offender, you
notice soothing music playing in the background. It appears that your
favourite song is playing on the hands-free headset that you are wearing.
You manage to calm down and politely point out that you were first in
line. The other customer seems to be truly sorry and lets you pass without
a conflict that could have ensued if you had remained agitated.

The above example shows how changing the course of our emotions
is a natural part of our everyday lives. For example, unpleasant events
do not necessarily lead to angry outbursts, if we are able to focus on
more positive aspects of a situation. Otherwise, it would be difficult to
move beyond impulses (e.g., starting an angry argument) and towards
more useful purposes (e.g., finishing shopping and getting home). Thus,
the regulation of emotions has a fundamental role in leading a normal
life. Recently also scientific interest for studying emotion regulation has
grown and the topic can now be considered an established field of study
with conferences, special issues in scientific journals, and books dealing
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CHAPTER 1: INTRODUCTION

with the topic (Tamir, 2011). However, the work in this field has been
split into several approaches depending on, for example, different views
about the functions of emotion regulation.

Regulation of emotions is indeed a multi-faceted task. First, it is not
always clear what the best emotional state would be at a particular mo-
ment. Maximizing positive emotions might seem like an attractive option
at first hand, but negative emotions also serve important functions in life
(Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001). For example, feel-
ing bad about immoral behaviour motivates one to be a better person in
the future. Thus, simple rules like maximizing positive and minimizing
negative emotion would oversimplify the role of emotion in human be-
haviour.

Second, the extent to which the regulation of emotions should be sup-
ported may depend on context. In some cases it would rather be prefer-
able to train the person’s own competence in emotion regulation instead
of taking over most of the responsibility. For example, increasing the
competence to handle emotions is a developmental task for children who
need to learn how to deal with anger elicited by disappointments. Third,
emotions as such are multi-component phenomena that consist of changes
in subjective experience (i.e., feelings), physiology, and behaviour (Mauss,
Levenson, McCarter, Wilhelm, & Gross, 2005).

The multi-faceted nature of emotion both poses challenges and offers
possibilities for regulating emotions. For example, focusing on suppress-
ing behaviour that expresses the emotion (e.g., cursing and frowning)
may not be sufficient alone in modifying the core emotion if feelings of
anger and physiological responses are not similarly controlled. Quite the
contrary, there is evidence that suppressing negative expressions may
even lead to heightened physiological responsiveness (Gross & Leven-
son, 1997). On the other hand, the multi-component nature of emotions
can also facilitate regulation by providing multiple channels for express-
ing, recognizing, and influencing emotions.

Sometimes one’s own efforts and competences will not be sufficient
for affecting emotions as intended. In these cases, external support could
be helpful. Now, as technology pervades more and more of our mod-
ern environment, technological support for emotion regulation could be
made available virtually all the time and everywhere. For example, the
performance and connectivity of a modern mobile phone could already
provide a feasible platform for quite sophisticated applications.

On the other hand, as we interact with various technological devices
throughout the day, the emotions evoked by these interactions are also
a significant part of our lives. For example, one study of student and
workplace computer users found that computers regularly elicit high lev-
els of frustration (Lazar, Jones, Hackley, & Shneiderman, 2006). In an-
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other survey, several participants reported that they frequently have vi-
olent thoughts and even cause damage to their computers: one respon-
dent wrote “I often show my PC the middle finger!”, while another re-
ported having “[p]unched the computer hard enough to leave a dent...”
(Computer Rage: Reported Acts of Rage Against Computers, 2005). Even if
these are extreme examples, it is clear that even milder emotions can
significantly affect the perceived quality of these daily interactions with
technology (Hassenzahl & Tractinsky, 2006). So far, these emotional re-
sponses have been largely ignored by technology, but they could be regu-
lated in order to facilitate the quality and effectiveness of human-technol-
ogy interaction.

In the opening example of the way home from work, the technologi-
cal assistance for regulating emotional responses blended in to everyday
activities in the form of an emotionally intelligent car navigation system
and a music player that sensed and guided emotions. The car naviga-
tion system was able to detect the negative mood of the driver and sug-
gest a more pleasant route to home. The intelligent music player was
able to sense when anger was elicited and automatically select a song to
counter the emotion. The exact technology that was used in detecting
the emotional state of the person was not specified and could be hidden
from plain sight. Perhaps the hands-free head set worn by the person
was equipped with physiological sensors that could detect response pat-
terns associated with the negative emotions. In both cases, the technology
in the example took its own initiative by suggesting alternative driving
routes and choosing songs to play without explicitly commanded to do
so.

Recent technological advances in intelligent sensing of the person and
the environment suggest that such implicit interaction (i.e., without ex-
plicit commands) can become mainstream sooner than many would ex-
pect. For example, a smart system installed at AT&T Laboratories Cam-
bridge moved the personal computer desktop automatically from one
monitor to another when one moved away from the first one and went
near to the second one (Addlesee et al., 2001). In this case, the smart space
removed the need for logging out from one computer and logging in to
the second one. A similar system could be made to support the regulation
of emotions, for example, by projecting the photographs of loved ones on
the work desk beside the monitor.

In addition to sensing the physical environment, another way in which
technology could provide new tools for emotion regulation is through
physiological computing (Allanson & Fairclough, 2004). This approach
can be seen as a continuation of the long tradition in psychophysiological
research which is a way of looking at functions of the mind by studying
functions of the body. In psychophysiology, physiological signals that re-
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CHAPTER 1: INTRODUCTION

flect bodily processes are measured and interpreted as reflections of psy-
chological processes. Such measurements can be quite intimate in many
ways, for example, they reflect internal processes that are normally not
available to other people, and they can be acquired covertly and recorded
continuously by wearing sensors underneath one’s clothes. This way,
technology could offer new tools for supporting the regulation of core
emotional responses that otherwise would be difficult to observe.

The above examples illustrate the potential that technology has for
supporting emotion regulation. The potential advantages of technology
include the possibility for extensive, detailed, and tireless monitoring of
emotion related processes throughout the day, potentially rapid adapta-
tion to detected changes in order to actively guide emotional responding,
and the resulting implicit mode of interaction that could allow emotion
regulation to be facilitated without explicit effort from the person her- or
himself. However, although research on emotion regulation is no longer
entirely fresh, a general consensus about the basic principles of the field
has not yet emerged (Tamir, 2011). Further, there has so far been very
little work that specifically considers emotion regulation in the context
of technology. Most of such work has focused on reducing the intensity
of excessive emotional responses (e.g., symptoms of phobia), while little
attention has been paid to more common everyday scenarios (Marks, Ca-
vanagh, & Gega, 2007, provide clinical examples). Thus, there is a lack
of a well-structured basis for building the first generation of systems that
would specifically target the regulation of emotions during daily activi-
ties.

The aim of the present thesis was to provide a theoretical and empir-
ical basis for the study of computer-assisted emotion regulation. First,
a theoretical framework for unifying the existing research and directing
future work was defined. This work was divided into two subgoals:
establishing a practical approach for integrating emotions into human-
technology interaction in Publication I and providing a basis for apply-
ing this approach in computer-assisted emotion regulation in Publication
II. Then, the validity and practicality of implementing systems with the
proposed framework was established with constructive and empirical
research in Publications III and IV. Finally, a platform to be used as a
starting point for more detailed studies of computer-assisted regulation
of emotions was created and experimentally validated in Publications V
and VI.
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2 Human Emotion

2.1 The Structure of Emotion

2.1.1 Discrete Emotions

One influential branch of theories views emotions as discrete states, such
as, happiness, anger, disgust, fear, and sadness (Ekman, 1992; Johnson-
Laird & Oatley, 1989; Panksepp, 1998; Tomkins, 1962). In their simplest
form, these approaches list prototypical examples of emotion without
defining their exact meaning, or criteria (i.e., sufficient or necessary con-
ditions) for something to be considered an emotion (Gross & Thompson,
2007; Oatley & Jenkins, 1996). In some cases, these kinds of emotion lists
are made to meet the demands of a particular field of study or applica-
tion, for example, to infer periods of frustration, curiosity, and boredom
that occur while learning (e.g., D’Mello, Graesser, & Picard, 2007). This
will inevitably lead to the use of diverse sets of emotions by different
researchers as well as in common language.

For example, after asking 200 undergraduate students to write down
examples of emotion and merging syntactic variants of the same emo-
tion (e.g., happy, happiness, happily), Fehr and Russell (1984) were left
with a list of 383 different emotions. Such loosely described prototypical
examples of emotion avoid the problem of defining the exact nature of
emotions, but may lead to further problems when trying to study emo-
tions using empirical methods. For example, it is not clear how much
different emotions (e.g., sadness and grief) have in common or if they are
in fact instances of the same emotion.
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CHAPTER 2: HUMAN EMOTION

In more structured approaches to defining a discrete set of emotions,
typically hierarchies of emotion have been formulated (e.g., Ekman, 1992;
Parrott, 2001; Plutchik, 1991). It follows from this approach that some
emotions can be considered to be more fundamental than others, while
others are mixtures or subcategories of the more basic ones. Ekman (1992)
suggested nine characteristics that allow a set of more basic emotions to
be recognized and separated from each other as well as other affective
phenomena (e.g., moods and more complex emotions). In addition to
studying which emotions have clearly separate expressions (that other
people can also perceive as being different from each other), Ekman’s
(1992) criteria require further evidence from cross-cultural studies, hu-
man physiology, and animal behaviour to state that an emotion is in fact
basic by nature.

Based on these criteria, Ekman (1992, 2004) has suggested that there
is strong evidence for a limited set of basic emotions, which may include
at least anger, fear, disgust, contempt, surprise, sadness, and enjoyment.
For example, although facial cues may express over 60 different varia-
tions of anger, the common pattern of facial activity in angry expressions,
consisting of furrowing and lowering of the brow, raising of the upper
eye lid, and tightening of the muscle around the mouth, is remarkably
consistent between different cultures (Ekman, 1979, 1992). Further, hu-
man and animal expressions of certain emotions share similarities. These
similarities were noted as evidence for the evolutionary basis of our emo-
tions (and species) by Darwin and published in his book The expression of
the emotions in man and animals in (1872) (see Figure 2.1). Similarities of
some human and animal emotion would indicate a strong genetic basis
for such emotions that can be traced back to the past evolution of our
species (Schmidt & Cohn, 2001).

There is also evidence that each basic emotion (e.g., anger) is accom-
panied by certain physiological changes that separates it from other basic
emotions (e.g., fear, sadness, and disgust) (Levenson, Ekman, & Friesen,
1990). Further, such specific facial expressions and physiological patterns
for basic emotions have been found when studying members of both
Western and non-Western cultures (Ekman, 2004; Levenson, Ekman, Hei-
der, & Friesen, 1992). Taken together, it is hard to deny that these different
forms of evidence do make a compelling argument for the existence of a
few discrete and universal emotions (or related families of emotion, as
discussed by Ekman, 1992).

However, some researchers have challenged the labeling of these pat-
terns of behaviour and physiology as basic, arguing that the so-called
basic emotions may be the result of learning, that is, not fixed and genet-
ically pre-determined at birth (e.g., Posner, Russell, & Peterson, 2005). In
this view, discrete basic emotions would rather be the result of cognitive
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THE STRUCTURE OF EMOTION

(a)

(b)

(c)

(d)

Figure 2.1: Bare-teeth smile of (b) a Celebes Crested Macaque monkey
(macaca nigra) and (d) a male person. Examples from Darwin (1872) who
described the monkey as (a) in a “placid condition”, (b) “pleased by being
caressed”, and the man being (c) in “passive condition”, and (d) “naturally
smiling”. (a & b) drawn by Mr. Wolf and reprinted from Darwin (1872).
(c & d) reprinted from Duchenne (1876). Public domain.

constructions that have been later formed to interpret and extend more
basic emotional processes (e.g., experience of hedonic valence: pleasure
or displeasure). These two views (i.e., “basic” emotions and “learned,
constructed” emotions) can also be viewed as compatible and comple-
mentary.

For example, Ekman (1992) has suggested that: “To identify separate
discrete emotions does not necessarily require that one also take an evo-
lutionary view of emotions. . . . [O]ne can attribute universals to . . . social
learning which will usually occur for all members of the species regard-
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CHAPTER 2: HUMAN EMOTION

less of culture . . . ”. In other words, humans may share a set of basic
emotions due to, for example, common life challenges that require us all
to learn the same emotional responses.

Taking the argument further, even without a strong universal basis,
a set of discrete emotions could still provide a meaningful unit of study
and a basis for creating practical applications (e.g., to build computers
that respond to emotions). This kind of a practical approach might cause
some concerns like how far the research can be generalized (e.g., between
cultures), but would allow more advanced applications to be investi-
gated (e.g., automatic recognition of emotions while driving a car; Nasoz,
Lisetti, & Vasilakos, 2010).

2.1.2 Dimensions of Emotion

The dimensional theory views emotions as multi-component phenomena
(Russell & Mehrabian, 1977; Schlosberg, 1954; Wundt, 1896). In this view,
emotional responses can be organized using a combination of certain di-
mensions, such as, emotional valence (i.e., from unpleasant to pleasant),
arousal (i.e., from calm to excited), and dominance (i.e., from being in
control of to being controlled by a situation). Several different emotions
can be equal on one dimension (e.g., highly arousing), while being com-
pletely different on another (e.g., negatively arousing versus positively
arousing). In other words, this framework uses a certain point in a multi-
dimensional space of emotions to represent an individual state of emo-
tion.

The basis for the contemporary research on dimensional emotions was
laid by Osgood (1952) who found using factor analysis that several types
of verbal emotion assessments could be structured according to emo-
tional valence, arousal, and dominance. However, a similar structure of
emotion, including dimensions of valence and arousal, had been inferred
using introspective methods (i.e., through reflection of own feelings and
thoughts) by Wilhelm Wundt almost hundred years earlier (Wundt, 1896).
More recently, further evidence for the dimensional structure of emo-
tional responses has been acquired from neurophysiological and psy-
chophysiological experiments (Bradley, 2000; Bradley, Codispoti, Cuth-
bert, & Lang, 2001; Colibazzi et al., 2010). In general, the current state
of research suggests that a major part of emotional responses can be de-
scribed using the dimensions of valence and arousal, while the domi-
nance dimension has a less significant relation to emotional experience,
physiology, and behaviour.

Some researchers have described the dimensions of valence and arous-
al as core affect, that is, the basis for discrete emotional states (Barrett, 2006;
Posner et al., 2005, 2009). This view is supported by neurophysiological

8



THE STRUCTURE OF EMOTION

evidence suggesting that these two dimensions may correspond to two
basic brain mechanisms (Colibazzi et al., 2010; Heilman, 1997). Accord-
ing to this view, a certain pattern of neurophysiological activation that
varies according to the two dimensions (e.g., positive arousal) would be
interpreted by the person as a specific emotional state (e.g., joy), that is, a
discrete emotion.

An earlier approach to combining the discrete and dimensional theo-
ries of emotion is based on the circumplex model of affect (e.g., Russell,
1980; Watson & Tellegen, 1985). The circumplex of affect is formed when
different categories of emotion (e.g., happy, excited, and alert) are placed
in the emotional space of valence and arousal. Figure 2.2 illustrates how
different, more or less discrete, emotional states could be organized in the
space of valence and arousal dimensions. A similar circular pattern has
been found in several types of emotion ratings (e.g., ratings of subjective
experiences or evaluations of emotion related words) using several differ-
ent empirical procedures (e.g., sorting done by the participants or factor

pleasantunpleasant

aroused

calm

Sad

Distressed

Afraid Excited

Happy

Bored

Content

Calm

Figure 2.2: A possible organization of emotional concepts in a circumplex of
affect. Redrawn and adapted from Russell (1980).
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CHAPTER 2: HUMAN EMOTION

analysis). These results suggest that more basic psychological constructs
of valence and arousal could underlie also self-reported experiences of
discrete emotional states (Barrett, 2006).

2.1.3 Summary

Based on previous research, both the discrete and the dimensional ap-
proaches to emotions have a solid empirical basis. On one hand, the di-
mensional structure has been found in both verbal assessments of emo-
tion (e.g., self-reported emotional experiences) and bodily (i.e., neuro-
physiological and psychophysiological) emotional responses. On the oth-
er hand, the cross-cultural, physiological, and behavioral evidence for the
existence of a limited set of basic discrete emotions is also convincing.
Thus, using these two theories as complementary approaches, instead of
choosing one over the other, seems like an attractive option.

However, in practice it may be beneficial to use one of the approaches
as a working hypothesis. In the empirical research for the present thesis,
the dimensional theory was chosen as a starting point. This approach al-
lowed the experiments to be designed so that well-established measures
of physiological and subjective responses could be matched to the char-
acteristics of the stimulation. For example, virtual computer characters
were used in Publications III and IV. In both studies, the virtual stimu-
lation was designed to vary in emotional valence, and the participants’
perception of the stimuli was confirmed using subjective ratings of va-
lence. Further, in the research reported in Publication IV, we also mea-
sured the electrical activity of certain facial muscles that have been pre-
viously well-connected with emotional valence. Thus, the chosen dimen-
sional approach provided us a framework for choosing the appropriate
measurements for each experiment.

2.2 The Three Components of Emotion

2.2.1 Experience

Our everyday usage of the term “emotion” seems to stress the signifi-
cance of subjective experiences of emotion, that is, “feelings” (Gross &
Thompson, 2007). In common language, the terms “emotion” and “feel-
ing” are often used interchangeably. However, general scientific view of
emotion does not emphasize conscious subjective experience over other
components of emotion, but describes all components as fundamental to
emotion (Mauss et al., 2005). In fact, there is evidence that responses to
emotionally meaningful stimuli can occur without conscious experience
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of the stimuli. For example, Dimberg, Thunberg, and Elmehed (2000)
found that brief (30 ms long) presentations of facial expressions of happi-
ness and anger induced congruent facial reactions in the observer, even
though conscious perception of the expressions was prevented using the
backward-masking technique (i.e., presentation of a neutral face to mask
the preceding stimulation).

The measurement of subjective experience of emotion requires not
only that the person is aware (i.e., conscious) of the emotion, but also
that she or he translates the experience into a semantic form that allows
the emotion to be reported. This may be challenging for several reasons
(Russell, 1980). For example, the accuracy of the report will depend on
how accurately the person is able to describe her of his feelings. The
lay terms for describing an emotion may be insufficient for capturing the
essential parts of the experience at a fine-grained level. Further, any in-
dividual person will have naı̈ve (i.e., untrained) views of emotion that
vary in the degree that they correspond to scientific theories of emotion
or to other lay views of emotion. These implicit theories of emotion guide
how a person interprets and describes emotion. For example, one partic-
ipant in a study could describe an escalating response to rude behaviour
as a negative emotion that increases in intensity, while another partici-
pant might label the initial reaction and the subsequent response as two
different emotions, such as, disapproval and anger. Reconciliating such
differences in subjective reports of emotional experience could pose sig-
nificant effort for a researcher.

For the above reasons, structured approaches to measuring emotional
experiences may be particularly appealing for empirical work based on
established theories of emotion. One prominent approach to measur-
ing emotion uses bipolar scales to measure the emotional dimensions
of valence (i.e., from unpleasant to pleasant), arousal (i.e., from calm to
excited), and dominance (i.e., from being in control of to being domi-
nated by the stimulus). This three dimensional framework for measuring
emotion has been the basis for creating standardized sets of pictures (In-
ternational Affective Picture System; IAPS), sounds (International Affec-
tive Digital Sounds; IADS), English words (Affective Norms for English
Words; ANEW), and brief English sentences (Affective Norms for English
Text; ANET), along with their normative ratings (Bradley & Lang, 1999a,
1999b, 2007; Lang, Bradley, & Cuthbert, 1999).

Such standard ways of classifying stimuli provide a framework for re-
searchers to build upon previous work and design experiments that ad-
dress specific questions that remain open. For example, everyday expe-
rience and laboratory studies have long suggested that emotional events
are remembered in much greater detail than less emotionally rich events
and stimuli (Hamann, 2001). Later studies have provided a more de-
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tailed view of the psychological and neurophysiological mechanisms be-
hind these effects, suggesting that these enhancements in memory are
mainly associated with the physiological arousal elicited by either emo-
tionally negative or positive stimuli (LaBar & Cabeza, 2006). Valence of
the stimulus, on the other hand, seems to make a relatively small con-
tribution to the observed memory enhancements (Kensinger & Corkin,
2003). Standard ways of rating the stimuli have allowed researchers to
carefully select the appropriate stimuli for such experiments, combining
different levels of arousal with different categories of stimulus valence
(e.g., from less to more arousing negative stimuli).

However, applied settings may pose additional challenges for mea-
suring subjective experiences. For example, subjective experience is a
significant component in the clinical treatment of anxiety disorders. Ac-
quiring a detailed measure (e.g., several ratings) would be inconvenient
due to the required effort that distracts the person from the therapeutic
tasks. In practice, a measure of Subjective Units of Distress (SUD) is often
applied in this setting (Krijn, Emmelkamp, Olafsson, & Biemond, 2004;
Wiederhold & Wiederhold, 2003). The measure consists of a single rating
of the current experience, which is typically given verbally on a scale of
0 (i.e., no distress) to 100 (i.e., extreme distress). The relatively small ef-
fort imposed by the measurement allows the rating to be queried repeat-
edly throughout a clinical session, which can then provide information
for guiding the treatment.

On the other hand, the area of application may also serve as a context
that directs the inquiry to employ the most relevant measurements. For
example, SUD is a feasible measure for supporting the clinical treatment
of anxiety because negative emotion, that is, distress, and its regulation
are the most relevant aspects of emotional experience to consider during
the course of treatment. In less intensive contexts, it is feasible to em-
ploy measures that collect more fine-grained measures that address the
specific area of application. For example, Craig, D’Mello, Witherspoon,
and Graesser (2008) devised an emote-aloud procedure that was applied
to studying emotional responses during computer-assisted learning. The
procedure was based on eight experiential states that arguably relate es-
pecially to learning, such as, boredom, confusion, and curiosity. When-
ever participants experienced an emotion, they were to choose one of
these eight pre-defined states and verbally report it.

In general, when the aim is to measure discrete (e.g., basic) emotions,
typically either forced-choice ratings or ratings of intensity are used. In
the former option, a person is presented with a set of discrete emotions
that are effectively treated as exclusive. The task is to choose the emo-
tion that best matches the subjective experience elicited by, for example,
a visual stimulus. In addition to the emote-aloud procedure as discussed
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above, this approach has been employed in several studies of human per-
ception of emotions (e.g., Juslin & Laukka, 2003; Coulson, 2004). The
second option is to have the person rate the felt intensity of several dis-
crete emotions at the same time. This way, the set of emotions may be
extended to cover more complex mixtures of emotions. For example, a
concurrent experience of both happiness and sadness could be called bit-
tersweet (Larsen, McGraw, & Cacioppo, 2001).

2.2.2 Behaviour

External behaviour can be observed without asking the person to volun-
tarily express an emotion. Thus, as compared to measures of subjective
experience, behavioural measures may allow more spontaneous and in-
voluntary emotional responses to be investigated. Further, several tech-
nological (e.g., hidden cameras) and procedural (e.g., the use of a cover
story) arrangements allow behaviour to be observed without the partic-
ipant’s awareness, provided this is ethically reasonable. Such hidden
recordings can avoid the influence from knowing that others are observ-
ing one’s behaviour, and thus capture more spontaneous behaviour than
other, more obvious measurements (Picard, Vyzas, & Healey, 2001).

The face is in many ways central to emotional behaviour. First, the
face allows a wide variety of expressions to be displayed, as facial mus-
culature is fine-grained and well-innervated (Rinn, 1991; Schieber, 2001).
Second, the face is normally always visible and readily providing some
information (Cohn & Ekman, 2005). Third, in addition to facial expres-
sions, the face is the source of several other kinds of messages, for exam-
ple, speech and personal characteristics (e.g., identity, gender, and age).
Thus, we can be expected to pay significant attention to other people’s
faces.

There are several techniques for systematically describing (i.e., cod-
ing) human facial behaviour (see Cohn & Ekman, 2005, for a review).
These systems are based on detailed observation and encoding of indi-
vidual facial actions, that is, observable changes in the face (e.g., wrin-
kles in skin and movements of the eye brow). As such, most systems
do not impose a certain framework for judging which emotions the indi-
vidual movements convey (i.e., what is their significance “as a whole”).
However, many of them are based on a particular theory of emotional re-
sponding, which limits the extent that the systems can be used to code ex-
pressions not predicted by the theory in question (Cohn & Ekman, 2005).
In contrast, the most widely used system called Facial Action Coding
System (FACS; Ekman, Friesen, & Hager, 2002) covers all anatomically
feasible actions, being blind to theory in this sense.

In any case, after facial behaviour is observed and encoded, it needs

13



CHAPTER 2: HUMAN EMOTION

to be interpreted and this process will be largely dependent on the theory
that guides the research. For example, Posner et al. (2005) have argued
that although observational evidence from new-borns seems to show be-
haviour consistent with certain discrete basic emotions shortly after birth,
these observations may be confounded with the researchers’ interpreta-
tion of the actual behaviour. For example, although infants display be-
haviour (e.g., smiling) that can be associated with certain basic emotions
(e.g., joy), these behaviours could also be taken to reflect different pat-
terns of activity according to dimensional theories of emotion (e.g., a
highly pleasant and aroused state). In line with this, some researchers
have argued that dimensional theories adequately explain most of the
variance in facial behaviour (Mauss & Robinson, 2009).

However, facial coding systems have — at least so far — been rarely
used to investigate emotional responses according to dimensional theo-
ries. On the other hand, the connections between other channels of ex-
pression and specific dimensions of emotion have been quite thoroughly
studied. For example, studies of vocal expression of emotions suggest
that parameters of voice and speech are mainly affected by the current
state of arousal, while the valence of the experienced emotion is more
difficult to observe, at least from individual parameters (see Cowie et
al., 2001; Mauss & Robinson, 2009; Murray & Arnott, 1993, for reviews).
For example, anger (i.e., negative arousal) and happiness (i.e., positive
arousal) have both been found to increase pitch, intensity, and rate of
speech. On the other hand, there is some evidence that certain categories
of emotion — including anger and happiness — could be discriminated
from each other by comparing complex patterns of several acoustic pa-
rameters (Banse & Scherer, 1996). Further, other people (i.e., listeners)
are able to recognize different categories of vocalized emotion (e.g., an-
gry and sad speech) remarkably well (Juslin & Laukka, 2003).

In addition to affecting behaviour that may serve in conveying emo-
tions to others (e.g., facial expressions and speech), emotions can also
have effects on basic behavioural tendencies that serve to facilitate an in-
dividual’s own intentions. Perhaps the most direct link between emo-
tions and motivated behaviour is provided by the basic tendencies to
approach positively valenced objects (e.g., nourishment) and avoid neg-
atively valenced objects (e.g., punishment) (Bradley et al., 2001; Elliot,
2006; Lang, 1995). These tendencies are present in virtually all animals
and they have been suggested to serve as the basis for more complex hu-
man emotions (Davidson, 1993; Lang, Bradley, & Cuthbert, 1992).

An intuitive approach to studying such tendencies is to observe body
movement responses to emotionally appealing and aversive stimuli. An
often used method for accurately measuring the body posture and sway
(i.e., amount and magnitude of movements) is to have the person stand

14



THE THREE COMPONENTS OF EMOTION

on a platform that has embedded force sensors. Using this technique sev-
eral researchers have observed a reduction in body movements, that is,
freezing-like behaviour or behavioural inhibition in response to unpleas-
ant picture stimuli (Azevedo et al., 2005; Facchinetti, Imbiriba, Azevedo,
Vargas, & Volchan, 2006; Stins & Beek, 2007). Further, Hillman, Rosen-
gren, and Smith (2004) found that unpleasant, neutral, and pleasant pic-
tures all induced posterior movement, that is, movement away from the
stimuli. These results seem to be against a direct connection between
emotional valence and approach-avoidance behaviour. On the other hand,
when Miles (2009) made the association to approach behaviour very clear
by using neutral and positive facial images that appeared to move to-
wards each participant, the approach behaviour of participants was in-
deed enhanced towards the smiling (i.e., positively valenced) images as
compared to neutral images.

In addition to measuring body movements, approach-avoidance ten-
dencies have been investigated using reaction times to the perceived be-
haviour of others. The underlying premise of this approach is that move-
ment which is congruent with the approach-withdraw tendency conveyed
by other cues (e.g., facial expression) should facilitate reaction times in a
variety of tasks. In studies using approaching and withdrawing facial
images as stimuli, such advantages have been found for both approach-
ing and withdrawing angry faces as compared to other facial expressions
(Adams Jr., Ambady, Macrae, & Kleck, 2006; Van Peer, Rotteveel, Spin-
hoven, Tollenaar, & Roelofs, 2010). This suggests that the conveyed in-
tention to approach or withdraw may depend on other context besides
the facial expression as such (e.g., anger could signal both approach and
withdrawal tendencies).

The above results suggest that the connection between approach-avoid-
ance motivation and valence may be less direct than some have assumed
(see Amodio, Master, Yee, & Taylor, 2008; Carver, 2006; Harmon-Jones &
Allen, 1998; Norris, Gollan, Berntson, & Cacioppo, 2010, for similar re-
sults). Thus, there is a basis for viewing approach-avoidance motivation
as a separate component which influences behaviour and may be associ-
ated with (but not equal to) emotional valence (Mauss & Robinson, 2009).

2.2.3 Physiology

It can be argued that physiological responses are normally under less vol-
untary control than self-reports of emotion and behaviour. Consequently,
some have suggested them to reflect more “true” emotion as compared
to subjective and behavioural measures (Knapp, Kim, & André, 2011).
However, physiological processes primarily serve many purposes related
to basic mechanisms of living (Berntson & Cacioppo, 2000). Thus, physio-
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logical activity can reflect a wide variety of other processes (e.g., digestion
and homeostasis) besides emotion. Nonetheless, there are several ways
in which physiology is significantly affected by emotion, and these ef-
fects can be a valuable source of information about the basic mechanisms
behind emotional processes.

One line of evidence for the association of certain discrete emotions
and patterns of physiological activity comes from the studies of Levenson
and colleagues (Levenson & Ekman, 2002; Levenson et al., 1990, 1992). In
these studies, participants were instructed to produce sets of facial mus-
cle activations that replicated facial configurations associated with more
spontaneous emotional expressions (e.g., happy and angry faces). The re-
sults showed that certain physiological parameters differentiated among
specific pairs of expressions. For example, expressions of fear and hap-
piness were associated with significantly different skin conductance re-
sponses, while the change in skin conductance was nearly equal for fear
and disgust. However, fear and disgust were separated by significantly
different heart rate responses. Similarly, Rainville, Bechara, Naqvi, and
Damasio (2006) more recently found relatively complex patterns of phys-
iological and behavioural (i.e., respiration, heart activity, and facial activ-
ity) responses that separated fear, anger, sadness, and happiness elicited
with affective imagery. Thus, the evidence suggests that some emotions
are associated with specific physiological patterns.

On the other hand, such discrete physiological patterns are relatively
complex as compared to the more straight-forward connections between
physiology and the dimensional view of emotions. Probably the most
well-established measures associated with experienced valence (i.e., pleas-
antness) are heart rate responses and electrical measures of facial muscle
activity (Bradley, 2000; Bradley et al., 2001; Tassinary & Cacioppo, 2000).
Heart rate responses to emotionally arousing (i.e., unpleasant or pleas-
ant) stimuli typically have shown a deceleration with a varying pattern
of accelerations and decelerations following the stimuli (Bradley, 2000;
Codispoti & De Cesarei, 2007). Negative stimulation has induced a lower
heart rate than neutral and positive stimulation. However, although such
typical heart rate patterns have been found, the patterns have also varied
considerably between different types of stimulation and tasks (Anttonen,
Surakka, & Koivuluoma, 2009). For example, viewing emotion eliciting
pictures has generally induced heart rate decelerations, while imagining
emotional situations has evoked accelerative responses (Bradley et al.,
2001; Witvliet & Vrana, 1995).

There is evidence that electrical measures of facial activity could be a
more specific index of experienced emotional valence. Facial electromyo-
graphy (EMG) can be so sensitive that small muscle activations can be de-
tected without externally observable changes occurring in the face (Gross
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& Levenson, 1997; Dimberg et al., 2000; Tassinary & Cacioppo, 2000;
Larsen, Norris, & Cacioppo, 2003). Especially two muscles, one in the
cheek and one in the forehead, have been well-connected with subjective
experiences of emotional valence elicited with, for example, picture stim-
uli, sound stimuli, and imagery (Lang, Greenwald, Bradley, & Hamm,
1993; Bradley & Lang, 2000; Codispoti, Mazzetti, & Bradley, 2009). Fig-
ure 2.3 illustrates the two muscles and the placement of EMG electrodes
for measuring their activity according to the guidelines of Fridlund and
Cacioppo (1986).

The activity of the zygomaticus major muscle in the cheek (activated
when smiling) increases during pleasant experiences and decreases dur-
ing unpleasant experiences. The activity of the corrugator supercilii mus-

(a) (b)

Figure 2.3: Muscles of the face. (a) A diagram of the facial muscles on the
right side of the face with the two muscles highlighted. (b) Electrode place-
ment for measuring electromyographic activity of the corrugator supercilii and
the zygomaticus major muscles from the left side of the face. (a) adapted from
public domain work by Bell (1865).
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cle in the forehead (activated when frowning), on the other hand, in-
creases during unpleasant experiences and decreases during pleasant ex-
periences.

Besides emotional valence, other dimensions of emotion have also
physiological associations. The specificity of the connection between swe-
at gland activity and emotional arousal has been long argued (Schlosberg,
1954). Electrodermal measures are acquired using a small voltage electri-
cal current, which is typically applied between two fingers of the same
hand (Dawson, Schell, & Filion, 2000). The electrical conductivity of the
skin depends on, and can be used to assess, the activity of the sweat
glands.

Some have even suggested using such electrodermal measures as di-
rect indices of anxiety related arousal (Fowles, 1988). More generally,
short- and long-term changes in electrodermal activity can be consired
to be quite specific measures of sympathetic activation of the autonomic
nervous system (Dawson et al., 2000). These changes have been used to
assess both short-term (i.e., few seconds long) emotional responses to a
certain stimulus and longer term (i.e., minutes or hours) changes in the
general level of arousal. For example, in one study excessive fear of fly-
ing was found to be associated with both a generally higher level of skin
conductance and greater short-term changes in skin conductance, as com-
pared to participants without flying phobia (Wilhelm & Roth, 1998).

However, although such connections between physiology and emo-
tional dimensions have been found consistently, recent studies suggest
that similarly valenced and arousing emotions can still evoke quite dif-
ferent physiological responses. For example, Kreibig, Wilhelm, Roth, and
Gross (2007) found that fear and sadness inducing videos evoked sig-
nificantly different heart rate responses, although subjective ratings of
valence and arousal showed almost no difference between the videos.
Stemmler, Aue, and Wacker (2007) instructed their participants to imag-
ine soccer scenarios associated with either fear or anger and a motiva-
tional tendency to either approach or withdraw. Their results showed
that heart rate and electromyographic response patterns could signifi-
cantly separate not only the negatively arousing emotions of fear and
anger, but also the direction of motivation (i.e., approach or withdraw).

These results suggest that the dimensions of valence and arousal do
not necessarily capture the whole variance of physiological responses as-
sociated with emotion. Neurophysiological studies provide further ev-
idence that emotional responses are associated with specific approach-
withdrawal tendencies that may at least partially be distinct from valence
and arousal. One line of evidence comes from studies of electroencelo-
graphic (EEG) alpha asymmetry, that is, the relative activation of the left-
and right-side of the brain as assessed by electrical measures. Greater left
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frontal brain activity has been associated with the tendency to approach,
while greater right frontal brain activity has been found to reflect the ten-
dency to withdraw (Coan & Allen, 2004).

Coan, Allen, and Harmon-Jones (2001) measured frontal brain activity
while participants produced voluntary facial configurations resembling
spontaneous emotional expressions, that is, in a procedure similar to the
studies of Levenson and colleagues (Levenson et al., 1990, 1992). They
found that approach-oriented emotions (e.g., anger) elicited greater left
frontal brain activity as compared to withdraw-oriented emotions (e.g.,
fear). In general, these basic motivational tendencies seem to be central
to physiological patterns of emotional responding and they cannot be ac-
counted for by most traditional dimensional models of emotion (e.g., va-
lence/pleasure and arousal/activation) (Carver & Harmon-Jones, 2009).

2.2.4 Summary

Although experience, behaviour, and physiology are all central to emo-
tional responding, they are best viewed as loosely-coupled systems (Mauss
et al., 2005; Mauss & Robinson, 2009). In other words, emotions are made
of multiple, individually variable components. Thus, the observed ef-
fects of emotion may diverge from measure to measure and from one
study to another. This variance in measures underlines the benefits of
acquiring complementary measures from multiple systems (i.e., experi-
ence, behaviour, and physiology) in order to get a more complete picture
of an emotional response.

The multi-component nature of emotion in terms of these loosely-
coupled responses seems to be analogical to dimensional models of emo-
tion, which view emotions as a combination of individual components,
such as, valence and arousal. In line with this notion, some researchers
have argued that most of the variance in experience, behaviour, and phys-
iology can be explained using the dimensions of valence and arousal
(Posner et al., 2005). However, there is a growing body of both behavioural
and physiological evidence which suggests that, in addition to the more
established dimensions of valence and arousal, the direction of motiva-
tion can be — at least in part — a separate component of emotional re-
sponding (Coan & Allen, 2004; Stemmler et al., 2007). For example, al-
though emotional valence and motivation have strong associations, the
motivational effects of emotional stimulation may be affected by other
factors as well.
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2.3 The Functions of Emotion

2.3.1 The Effects of Emotion

Emotions are an important part of human functioning. For each individ-
ual person, emotions have essential roles in influencing cognitive pro-
cesses, such as, attention, memory, problem-solving, and decision mak-
ing (Bechara, Damasio, & Damasio, 2000; Damasio, 1994; LaBar & Cabeza,
2006; Simon, 1967; Singer & Salovey, 1988; Wieser, Pauli, Reicherts, &
Mühlberger, 2010). Further, emotions can also have significant effects
on personal health, that is, both mental and physical well-being (Bishop,
2001; Butler, Wilhelm, & Gross, 2006; Malliani, Pagani, Lombardi, & Cer-
utti, 1991). For example, a meta-analysis of studies investigating the ef-
fects of hostility on physical health suggested that dispositional anger
is at least as significant risk factor for coronary heart disease as the more
generally acknowledged ones like smoking and high blood pressure (Mill-
er, Smith, Turner, Guijarro, & Hallet, 1996).

Positive emotions, on the other hand, may have significant and poten-
tially beneficial physiological and cognitive effects. For example, there
is evidence that cardiovascular responses are quicker to normalize after
negative stimulation when followed by positive stimulation (Fredrickson
& Levenson, 1998). Further, another pair of experiments suggested that
positive emotions may facilitate thinking in terms of broadening the scope
of attention and the diversity of answers to open-ended questions (Fre-
drickson & Branigan, 2005).

In line with the above results, the significance of emotion for human
behaviour is an integral part of most emotion theories. In Frijda’s (1986)
view, the central function of emotion is to generate a change in action
readiness. This way, emotions can be seen as an adaptive response that
allows refocusing of the behavioural system to address issues that arise
from the emotion eliciting stimulus or situation (Oatley & Jenkins, 1996).
A similar suggestion for the function of emotions as an interruption mech-
anism for cognition was made by Simon (1967). In his view, emotions
could solve problems in coordinating goal-oriented behaviour by prior-
itizing certain goals, interrupting actions towards less important goals,
and shifting focus to more important goals when appropriate.

In addition to being essential for an individual’s own functioning,
emotions serve also social purposes. Shared emotions may facilitate group
cohesion, that is, how well-bonded the members of the group feel to the
other members (Barsade, 2002). They also function to coordinate social
interaction in a group (e.g., provide information about the environment
quickly to other group members) and inform the person about the qual-
ity of current on-going interaction (Parkinson, 1996; Spoor & Kelly, 2004).
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Emotions can also be used to elicit appropriate social responses from oth-
ers. For example, making angry remarks to a colleague who misses a
deadline may make her or him feel guilty and more willing to take the
responsibility for meeting the next deadline.

Leading a successful every-day life requires us to retain from express-
ing all our emotions (Gross & Thompson, 2007). For example, making
angry remarks to one colleague may facilitate the progress of her work,
but scathing another may lead to a conflict which drains everyone’s en-
ergy and efforts. Chastising one’s boss is probably never a good career
move. On a cultural level, emotional expressions are regulated by dis-
play rules, that is, social rules that specify which (and when) emotions are
appropriate to show to a certain person (Ekman, 1979).

If some emotions cannot be shown at a given time, there occurs a need
to suppress either the emotion itself or the emotional expression. There
is evidence that suppressing an emotion (e.g., by reappraising the situ-
ation) is more effective and may have less negative consequences (e.g.,
reduce symptoms of depression) than suppressing the expression of the
emotion (Gross, 2002). More generally, successful regulation of own emo-
tions, that is, controlling the intensity and tone of emotions, can pro-
mote personal well-being and satisfaction in life (Gross & John, 2003).
For example, children who are more skillful regulators of emotion in
kindergarten perform better academically in the first-grade (Trentacosta
& Izard, 2007). Another study found that college students who had bet-
ter abilities for self-regulating emotions were nominated by their peers
significantly more often as prosocial and were more often involved in re-
ciprocal friendships as compared to other students (Lopes, Salovey, Coté,
& Beers, 2005).

On the other hand, less skillful regulation of emotion is associated
with adverse mental and physical consequences, such as, depression and
heightened physiological responses to negative emotion (Gross & John,
2003; Butler et al., 2006). The flip-side of the significance of emotion for
human functioning is that excessive emotion can be debilitating. For ex-
ample, being wary of snakes may be reasonable and even promote sur-
vival in a rural environment, but excessive fear of snakes may signifi-
cantly reduce a person’s quality of life. Thus, not only the content but
also the intensity of emotions may contribute to their practicality.

2.3.2 The Process of Emotion

Emotions do not happen as sporadic events without any context, but
are more appropriately characterized as ongoing processes that relate to
other events and situations. Frijda (1986) suggested a model which repre-
sents emotions as a process that goes through stages of appraisal, context
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evaluation, change in action readiness, and changes in physiology, ex-
pression, and action (i.e., behavior). Other theorists have also suggested
similar information-processing models that are generally in line with Fri-
jda’s well-accepted formulation, although several details (e.g., order and
timing of different parts of the process) may be open for argument and
further investigation (Lanctôt & Hess, 2007; Oatley & Jenkins, 1996).

The first stage of the process, appraisal, determines whether an event
is significant for the person and, thus, which emotion (if any) should
occur (Ellsworth & Smith, 1988; Oatley & Johnson-Laird, 1987; Scherer,
1993). The actual process of appraisal (i.e., the causes and mechanisms
of emotional inferences) can be highly automated and unconscious, that
is, outside of awareness (Ekman, 1992; Oatley & Jenkins, 1996). Then,
in the stage of context evaluation “[t]he stimulus situation as a whole is
appraised in terms of what the subject can or cannot do about it” (Frijda,
1986, p.455). This secondary appraisal, in Frijda’s terminology, serves
as the basis for preparing and selecting among potential actions in later
stages. Finally, previous stages lead to a coordinated change in action
readiness that manifests in physiological changes and eventually may
lead to overt action.

However, different appraisals and motivational tendencies do not nec-
essarily translate to specific actions. Frijda (1986) emphasized the role of
different regulatory mechanisms in determining the resulting actions and
suggested that all stages preceding action may be subject to emotion reg-
ulation. Gross and Thompson (2007) extended this view even further by
pointing out that in addition to regulating own emotions (i.e., intrinsic
regulation), one can also also regulate another person’s emotions (i.e., ex-
trinsic regulation). However, the means for regulating emotion in self
and others are essentially the same.

Figure 2.4 shows the process model of emotion regulation as presented
by Gross (1998). As emotions are elicited by situations, the first method
for regulating which emotions occur is to select appropriate situations.
For example, one could rent the latest comedy to cheer up either oneself
(i.e., intrinsic regulation) or a spouse who is having a bad day (i.e., ex-
trinsic regulation). Later, when an emotion eliciting situation occurs, it is
possible to modify the situation itself. For example, noticing that others
are terrified while you are driving fast on a highway may cause you to
slow down. In this case, the expressions of others serve to first modify
the emotional tone of the social environment, while the consequent slow-
ing down modifies the physical environment, which can both be seen as
a type of extrinsic regulation in this case.

Modifying the external situation may be very effective for determin-
ing which emotions occur. However, it is not always feasible to change
the environment. On the other hand, internal processes for regulating
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Figure 2.4: The process model of emotion regulation. Top row lists different
means for regulating emotions in different stages of emotional responding.
Redrawn and adapted from Gross and Thompson (2007)

emotion are always potentially available, as they depend only on the per-
son’s own competence. First, a person may affect how she or he directs
attention to different aspects of the situation. Second, cognitions relating
to the situation may be voluntarily changed to affect how the situation is
appraised. For example, one could try recollect a previous positive expe-
rience from a public performance before speaking again to a crowd.

Finally, it is possible to regulate emotional responses to the situation
as it happens. For example, different cultures impose specific demands
for regulating emotional expressions based on which emotions are appro-
priate in a certain context. Ekman (1979) has argued that some of these
display rules are learned so well that they operate automatically without
conscious effort. For example, in one study Americans rated facial ex-
pressions of happiness as more appropriate to show to outgroups (i.e.,
people outside their own social group) as compared to Japanese, while
Japanese rated anger and fear as more appropriate to show to outgroups
as compared to Americans (Matsumoto, 1990). However, another study
referenced in Ekman (1979) showed that when an outside experimenter
was present, the Japanese suppressed negative facial expressions and
masked them with smiling more often than Americans. This mismatch
of voluntary ratings and spontaneous behaviour seems to support the
view that behaviour is largely influenced by automated processes, such
as, display rules.

In addition to regulating which emotions can and should be expressed,
the intensity of a response can also be regulated. For example, although
one might get very angry when someone cuts in front of her or him on
a freeway, typically these feelings are suppressed or coped with in such
ways as mumbling curses under one’s breath. However, in some cases
the driver is unable to control her or his temper, which may lead to so-
called road rage (Wells-Parker et al., 2002). Milder behaviours associated
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with road rage include flashing the lights and using the horn, while in
more extreme cases the driver may deliberately try to hit another car. It
is not surprising that such angry behaviours on the road lead to an in-
creased risk of crashing while driving (Wells-Parker et al., 2002).

Clearly, there would be significant benefits in facilitating emotion reg-
ulation in these kinds of situations (e.g., driving on a free-way), where
hazardous behaviour poses serious risks to oneself as well as other peo-
ple. One recent line of research aims to develop technologies that would
give human-like assistance and support to the driver (Eyben et al., 2010;
Nasoz et al., 2010). In a way, commonly used in-car navigation systems
provide a contemporary example of this kind of virtual assistant that uses
artificial speech to facilitate driving. A recent study by Nass et al. (2005)
provides a rousing example of how emotion-sensitivity could be imple-
mented to improve such voice-based systems. The results of this study
showed that when the emotional tone of an artificial voice (i.e., happy or
upset) in a car simulator matched the emotional state of the driver, the
driver attended more to the road and made less accidents during simu-
lated driving, as compared to when the emotions of voice and the driver
were mismatched. Thus, an emotion-sensitive in-car system could have
significant potential for improving the performance of a driver and, con-
sequently, facilitating road traffic safety.

Technology is becoming increasingly ubiquitous, for example, embed-
ded within our environment, clothes, and even our bodies (Tennenhouse,
2000; J. Rantanen et al., 2002). Mobile technologies already allow us to be
reached virtually at any time and place. Thus, as technology pervades
more and more of our everyday lives, there is an increasing potential for
creating artificial systems that could assist emotion regulation whenever
needed. The applications for such systems could range from the more
dramatic (e.g., reducing road rage while driving; Nasoz et al., 2010) to
the more ordinary (e.g., automatically choosing to play soothing music
after a hard day at work; Chung & Vercoe, 2006).

2.3.3 Summary

The significance of emotion for human functioning is evident in its effects
on cognition (e.g., memory and problem-solving), physical health, mental
well-being, social interaction, and life success in general (Bechara et al.,
2000; Damasio, 1994; Gross & Thompson, 2007; LaBar & Cabeza, 2006;
Trentacosta & Izard, 2007). Consequently, abilities to regulate emotion
also have great significance for leading a successful life.

There are several ways in which emotions can be regulated before,
during, and after they have been elicited (Gross & Thompson, 2007).
However, all attempts to self-regulate emotion cannot be successful. Some-
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times other people can provide assistance (i.e., extrinsic regulation), but
it may be that they are not available, capable, or willing to help when
one is most in need of support. On the other hand, artificial systems for
facilitating emotion regulation could be made available virtually all the
time without needing rest or reciprocal assistance. Thus, there seems to
be clear potential for facilitating the regulation of emotions with technol-
ogy.
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3 Computer-Assisted Emotion
Regulation

3.1 Emotionally Intelligent Technology

3.1.1 Affective Computing

Affective computing is a relatively recent field of study which can be
broadly defined as “computing that relates to, arises from, or deliberately
influences emotions.” (Picard, 1997). The ultimate aim of this approach
can be seen as the development of computer systems that have emotional
intelligence, that is, the ability to recognize, express, and regulate emotions
in self and others (Picard et al., 2001). Thus, the field by definition cov-
ers a wide range of emotion related phenomena, for example, the devel-
opment of computational models that can be used to simulate emotions
and their regulation in computer software agents (e.g., Bosse & de Lange,
2008; Bosse, Gratch, Hoorn, Portier, & Siddiqui, 2010; Marsella & Gratch,
2003). Perhaps a better way to describe the more specific work towards
technology that is sensitive to human emotion is to separate the task into
two subgoals: creating perceptually intelligent technology and building
expressive intelligence for technology (Ochs, Niewiadomski, Pelachaud,
& Sadek, 2005; Pentland, 2000).
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3.1.2 Perceptual Intelligence

The aim of perceptual intelligence is to develop capabilities that allow
computers to attend to people and surroundings like a human would
(Pentland, 2000). In practise, such capabilities can be based on automatic
analysis of those channels of expression that humans use to perceive the
emotions of others. This is arguably a quite intuitive approach to building
technology that perceives emotions and such technologies have already
been developed for recognizing the emotional content of practically all
human expression, for example, speech, text, facial expressions, and body
movements (Castellano, Villabla, & Camurri, 2007; Cohn & Ekman, 2005;
Cowie et al., 2001, 2005; Fasel & Luettin, 2003; Wu, Chuang, & Lin, 2006).
The accuracy of these systems can be very good. For example, the sys-
tem of Bernhardt and Robinson (2007) achieved an overall recognition
rate of 81% in classifying motion-capture data of a knocking motion (i.e.,
pounding something like a door) that participants performed in a neu-
tral, happy, angry, or sad style. It is clear that a similar task could be
quite challenging for a human perceiver as well. In general, systems that
recognize emotion often can match the accuracy of human perceivers, or
sometimes even do slightly better than us (Picard et al., 2001).

Although such results are promising, there is a limit to the extent that
reliable emotion recognition can be built on individual channels of ex-
pression. Voice recognition systems are sensitive to noise in the environ-
ment, for example, engine and road noise in the case of in-car systems
(Grimm et al., 2007). Computer vision systems for detecting facial ex-
pression can be susceptible to changes in lighting and head orientation as
well as inaccurate detection of facial features (Cowie et al., 2005). Further,
placing a camera that points at the person’s face may not be practical for
all applications, especially if the system should be mobile and unobtru-
sive. Thus, a general solution for perceiving emotions should probably
use several channels of information, much in the same way as we humans
perceive emotion (e.g. Juslin & Laukka, 2003; Van den Stock, Righart, &
de Gelder, 2007). Indeed, such emotion classifiers have achieved quite
good accuracies (i.e., near or above 90% in some studies) as could be
expected based on human performance in similar multi-channel tasks
(Bailenson et al., 2008; Busso et al., 2004; Zeng et al., 2004).

There is no reason to restrict the capabilities of automatic perception
by limiting them to those cues that humans can readily perceive. For
example, Yoshitomi, Sung-Ill, Kawano, and Kilazoe (2000) created classi-
fiers that used thermal images of facial expressions in addition to visible
light images and voice parameters. The results showed quite good over-
all accuracy of 85% for a classifier that combined all three modalities to
recognize neutral faces and expressions of happiness, anger, sadness, and
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surprise. Thermal facial images have the additional advantage that they
can be acquired regardless of lighting conditions, which could extend the
feasibility of these methods to some contexts that are challenging for tra-
ditional computer vision.

Human physiological responses to emotion can also provide infor-
mation which is not normally accessible to other people. Practically all
physiological measures which have been found to significantly reflect
emotional processes have been applied also to automatic recognition of
emotions, including electrical brain and facial muscle activity, heart rate,
respiration, and skin conductivity (Horlings, Datcu, & Rothkrantz, 2008;
Picard et al., 2001; Rani, Sarkar, Smith, & Adams, 2003). For example,
Partala et al. (2005; 2006) created EMG-based systems for recognizing fa-
cial activity. These systems were able to estimate participants’ subjective
ratings of valence on a 9-point scale with up to a .9 correlation.

It may seem that physiological measurements are feasible for only
a limited range of applications due to the complex arrangements and
preparations (e.g., electrode and skin preparations) that are required for
acquiring them. However, recent advances in wireless and wearable mea-
surement technologies have already markedly facilitated the practicality
of such measurements. For example, a wearable headband with embroi-
dered silver thread electrodes for measuring electrical activity of facial
muscles has been developed (Nöjd et al., 2005). More recently, a com-
pletely contact-free measurement of facial movements has been made
possible by a wireless capacitive sensor that is integrated to eye glass
frames (V. Rantanen, Niemenlehto, Verho, & Lekkala, 2010). Such novel
measurement technologies could provide feasible alternatives to EMG for
measuring relatively small movements of muscles and facial skin which
are associated with emotional responding.

In addition to these research prototypes, first consumer products with
integrated physiological measurements have recently appeared on the
market. For example, Textronics offers sports bras and t-shirts with in-
tegrated sensors that can be coupled with Polar Electro’s watch-like com-
puters for wireless heart rate measurement during sports and exercise
training (Textronics Inc., 2011). Emotiv currently (February 2nd, 2011)
sells the EPOC headset for EEG measurements at $299 USD which is
a fraction of the cost of a clinical EEG system (Emotiv, 2010). In 2009,
Mattel released a toy called MindFlexTM that consists of a platform and
a headband that is worn to measure brain activity (Mattel, Inc., 2011).
MindFlexTM allows a ball floating in air to be controlled with voluntary
brain activity. The goal of the game is to pass the ball through differ-
ent obstacles on the platform. Such systems suggest that physiological
measurements will continue to become more convenient through the de-
velopment of more easily applied measurement technologies. Physiolog-
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ical measurements may also become more common-place and acceptable
through the proliferation of these kinds of gadgets.

3.1.3 Expressive Intelligence

In order to affect human social and emotional processes, computers need
expressive intelligence, that is, ways of expressing appropriate social and
emotional cues that have desirable effects. The basis for building effective
expressive cues for computers comes from a line of studies by Clifford
Nass and his colleagues (Nass, Steuer, & Tauber, 1994; Reeves & Nass,
1996; Nass, 2004). The results from these studies provide compelling ev-
idence that humans perceive computers as social actors. For example,
Partala and Surakka (2004) designed an experiment in which participants
performed a sorting task by moving colored squares using a computer
mouse. The task was randomly interrupted with pre-programmed de-
lays in mouse movement, which could be followed by a negatively or
a positively worded intervention from a speech synthesizer. The results
showed that the interventions which used positively worded synthesized
speech could significantly improve problem solving performance and in-
crease smiling behaviour.

In general, previous work in this field suggests that people not only
perceive computer as social entities, but also treat them as such (e.g., dis-
play politeness to computers), and are significantly affected by artificial
social and emotional communication. For example, computer-generated
text and speech communication is not only perceived to reflect the un-
derlying personality and emotional state of a computer, but textual and
prosodic cues also significantly affect human attitudes and behaviour
(Nass & Lee, 2001; Brave, Nass, & Hutchinson, 2005). There are several al-
ternative mechanisms which could account for these tendencies (see, e.g.,
Nass & Lee, 2001, for details). However, it seems likely that they are to
a significant extent based on automatic mechanisms for perceiving social
and emotional cues in human-human communication. For example, the
strong evolutionary basis for the ability to recognize and produce speech
causes people to attribute special significance to even nonsense syllables
(Nass & Lee, 2001). Further, such automated mechanisms are difficult
to extinguish without constant reminders to do so (Nass & Gong, 2000).
Thus, computer-generated human-like expressions have the potential to
repeatedly activate these same fundamental mechanisms for recognizing
social and emotional cues, although on a conscious level one might be
aware that the communication is essentially artificial.

One way of approaching the field of expressive intelligence is to con-
sider how much realism or human-likeness is required from speech and
other channels of expression in order to (still) evoke significant social and
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emotional responses in humans (Ilves & Surakka, 2008). Knowing the re-
quirements and limitations of using each channel of expression could as-
sist designers of future technologies to harmonize their potential, for ex-
ample, optimize the generation of cues according to their computational
and other resource requirements and their effectiveness for expressing
emotion.

There is evidence that even quite simple artificial cues can have signif-
icant social and emotional effects on human emotion and cognition. For
example, commonly available speech synthesizers have long provided
control over parameters which enable the imitation of human vocal cues
of emotion (Cahn, 1990; Murray & Arnott, 1995). Another line of research
aims to create visual cues in the form of human-like characters that could
enhance human-technology interaction (see Beale & Creed, 2009, for a re-
view). In an early work in this field, Lester et al. (1997) found evidence
that the mere presence of an anthropomorphic character could facilitate
children’s learning experiences in a virtual environment. More expres-
sive agents had a greater impact on learning and students rated them
more positively than the less expressive ones, but the effects were signifi-
cant even when the character was muted, that is, did not provide vocal or
animated assistance about the topic of study. The extent and significance
of this so-called persona effect has been under some dispute since the sem-
inal study (Van Mulken, André, & Müller, 1998; Dehn & Van Mulken,
2000; Moundridou & Virvou, 2002; Prendinger, Mayer, Mori, & Ishizuka,
2003). However, when Yee, Bailenson, and Rickertsen (2007) performed a
meta-analysis of empirical studies comparing interfaces with visual char-
acters to those without, the compound analysis confirmed that the pres-
ence of a virtual character resulted in more positive interactions with the
system as compared to computer interfaces without a virtual represen-
tation. Thus, it seems a relatively conservative conclusion that people
prefer interfaces that resemble humans to some extent.

Expressive virtual characters enable several social and emotional cues
that require embodiement to be conveyed, for example, gestures, posture,
facial expressions, gaze direction, and lip-synchronized speech. Empiri-
cal studies of such synthetic stimuli have shown that people readily per-
ceive them as emotional cues and that these artificial cues can also sig-
nificantly affect subjective experiences and physiology (Bailenson, Beall,
Loomis, Blascovich, & Turk, 2005; Beale & Creed, 2009; Coulson, 2004;
Fukayama, Ohno, Mukawa, Sawaki, & Hagita, 2002; Llobera, Spanlang,
Ruffini, & Slater, 2010; Vinayagamoorthy, Brogni, Steed, & Slater, 2006).
One relatively challenging line of study concerns the detailed replication
of human social cues for each individual channel of expression (see, e.g.,
Martin, Niewiadomski, Devillers, Buisine, & Pelachaud, 2006; Vinayag-
amoorthy, Garau, Steed, & Slater, 2004, for detailed approaches).
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On the other hand, some cues may be quite simple to generate for one
character and also relatively easy to generalize for other virtual charac-
ters. For example, proximity to a visual stimulus (e.g., virtual computer
character) could be simulated simply by varying its size (Loftus & Harley,
2005). Partala, Surakka, and Lahti (2004) found in one of the first studies
of virtual proximity that a closer simulated distance to a human-like head
decreased the experienced subjective dominance, that is, participants felt
they were less in control of the stimulus when the head was closer. The
study reported in Publication IV of the present thesis obtained similar
results using full-body human-like characters.

Although such relatively simple cues may suffice at least in some cases,
artificial expressions of emotion that more closely resemble human ex-
pressions may enable richer social and emotional communication. For
example, Ilves and Surakka (2004) compared two speech synthesizers
and found that the emotional content of synthesized speech evoked sig-
nificant facial muscle responses only when the more human-like voice of
the two was used. For the simulation of facial expressions, the develop-
ment of increasingly sophisticated technologies has enabled the genera-
tion of highly detailed real-time facial models (e.g., Courgeon, Buisine, &
Martin, 2009; Radovan & Pretorius, 2006). Figure 3.1 presents one such
model that uses recently developed software called the Multimodal Af-
fective and Reactive Character (M.A.R.C.). M.A.R.C. uses high resolution
textures and 3D models with about 80,000 polygons per virtual character.

The realism of the synthesized facial expressions can be enhanced
by more global changes in facial appearance. For example, Figure 3.1a
shows that a smile mainly produces local changes in the mouth area, but
also increases skin wrinkles around the eyes as compared to the neutral
expression of M.A.R.C. in Figure 3.1b. Such fine-grained synthetic facial
cues can not only facilitate realism, but also potentially provide access
to the utilisation of rapidly occurring strong reactions to the human face,
for example, unconscious processing of facial expressions, the recogni-
tion and separation of posed and genuinely felt enjoyment (i.e., so-called
Duchenne smiles), and the integration of auditory and visual information
to facilitate the perception of speech (Cosker, Paddock, Marshall, Rosin, &
Rushton, 2005; Dimberg et al., 2000; Ekman, Davidson, & Friesen, 1990).
It can be expected that future simulations of human expressive channels
will continue to increase in realism and consequently also affect our emo-
tional core more deeply than we can imagine.

3.1.4 Summary

There are several channels which can be used to perceive and express
emotions in human-technology interaction. In addition to the expressive
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(a)

(b)

(c)

Figure 3.1: M.A.R.C. software showing a real-time simulation of a human-
like face with (a) a smile, (b) a neutral expression, and (c) a frown. Im-
ages courtesy of Matthieu Courgeon, Laboratoire d’Informatique pour la
Mécanique et les Sciences de l’Ingénieur, Centre national de la recherche sci-
entifique, Université Paris-Sud 11, France

channels that are used in human perception of the emotions of others
(e.g., speech and facial expressions), physiological signals provide an at-
tractive source of information for future computer systems that recognize
emotion. In particular, new prototype technologies and consumer prod-
ucts — even toys — provide a glimpse into upcoming wearable and wire-
less physiological measurement devices that can be readily used with
little or no expertise. On the other hand, the most effective expressive
channels for significantly influencing human emotion are likely those that
resemble human expression of emotion. Such modes of expression can
take advantage of the automatic nature of the human responses that are
elicited by emotional and social cues.

Although the aim of affective computing — at least to some extent
— is to build emotionally intelligent technology, the research so far has
focused on these two separate tracks of automatically perceiving and syn-
thetically expressing emotions (Picard et al., 2001). It may be that com-
bining the two in a relatively straight-forward manner, for example, by
perceiving emotions and expressing/projecting them on an avatar, can
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leverage the quality of human-technology interaction as such (see, e.g.,
Höök, 2008).

On the other hand, several researchers have warned against using im-
pressive human-like expressions that may create false expectations about
the capabilities of a computer with no underlying real intelligence (e.g.,
Dehn & Van Mulken, 2000). Further, it seems likely that some applica-
tions will require a more proactive approach to regulating emotions. For
example, it may be insufficient to raise a person’s own awareness of her
or his excessive emotional responses, if the person does not have suffi-
cient abilities for regulating those responses. In such cases, more proac-
tively intelligent technologies would not just react to perceived emotions,
but could also facilitate the regulation of those emotions, for example, by
guiding the person’s own reactions appropriately.

3.2 Computer Systems for Emotion Regulation

3.2.1 Approaches to Computer-Assisted Emotion Regulation

The process model of Gross (1998) provides a starting point for investigat-
ing how technology could help in different stages of emotion regulation.
Figure 3.2 exemplifies some ways in which current and future technology
could facilitate and possibly extend non-technological methods of emo-
tion regulation.

Starting at the first stages of the process model of Gross (1998), com-
puter systems could assist in selecting appropriate situations or modify-

Situation Attention Appraisal
Experience
Behaviour
Physiology

Situation
selection

Situation
modification

Attention 
deployment

Cognitive 
change

Response 
modulation

Recommendation
systems

Adaptive environments
(e.g., real-time music
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augmented reality
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Internet-based guidance
and self-help programmes

Adaptive physical interfaces (e.g., robotic monitors) 
and virtual interfaces (e.g.,  virtual reality environments)

Biofeedback

Figure 3.2: Some examples of technological applications that could provide
support for different stages of the process of emotion regulation.
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ing existing ones. Different recommendation systems could offer comput-
erized support for these tasks. For example, Last.fm (Last.fm Ltd., 2011)
offers a popular music recommendation service that allows people to lis-
ten to songs and mark those that they “Love”. Based on this simple ex-
pression of emotion — together with other data (e.g., the social network
of other listeners) — the service is able to automatically choose and play
other songs that should elicit similar feelings for the particular person. In
effect, this application can be seen as a relatively simple example of a sys-
tem that facilitates the selection of an emotionally positive situation (i.e.,
background music) by recommending songs based on expressive intelli-
gence about music.

Taking the personalization of music even further, Chung and Ver-
coe (2006) created a prototype system based on both perceptual intelli-
gence and expressive intelligence about musical experiences. Their sys-
tem could modify songs by re-arranging (e.g., composing) music in real-
time based on affective responses that were automatically perceived from
physiological and behavioural data. The expressive intelligence of the
system aimed to select music in order to induce a specific emotional state,
such as, positive arousal. It would be relatively straight-forward to apply
such a system as a tool for regulating emotions in self or others, for exam-
ple, in order to cheer up a dispirited friend. Although such systems may
seem like novelty applications at first hand, there is evidence that mu-
sic can in fact significantly affect physiology, for example, speed the re-
covery from the neurophysiological and physiological effects of negative
emotions (Sokhadze, 2007). Thus, automatically arranged music could
offer a tool for significantly suppressing the effects of negative emotions
and perhaps even alleviating some of their adverse health consequences
(Bishop, 2001).

The music recommendation and re-arranging systems discussed above
illustrate basic approaches that could be used to assist a person to select
emotionally appropriate situations (e.g., a song to play or a social event
to attend) or automatically modify situations in emotionally intelligent
ways (e.g., modify the tempo of music, change the tone of lighting, or
adjust room temperature). However, it is practically impossible to assess
and anticipate all aspects of every situation beforehand, and a person
may need to take part in emotionally taxing situations in any case. For
example, the success of a business and one’s job may depend on attend-
ing an excruciating meeting with a difficult client. Thus, there is also a
need to facilitate the regulation of emotions in situations once they occur.
In these cases, the focus of technological support shifts from the modifi-
cation of external environment to influencing the person’s internal pro-
cesses.

According to the process model of emotion regulation (Figs. 2.4&3.2),

35



CHAPTER 3: COMPUTER-ASSISTED EMOTION REGULATION

the first opportunity to affect the regulation of emotions once a situation
occurs is to facilitate directing attention to appropriate aspects of the sit-
uation. Perhaps the most intuitive approach would be to encourage a
person to focus on more pleasant aspects, while avoiding the negative
aspects of the situation. As an example, Amir et al. (2009) devised a
computer system for training participants with generalized social pho-
bia to direct attention away from threatening faces. The training signifi-
cantly reduced self- and clinician-assessed symptoms of phobia, and half
of the trained participants no longer met the diagnostic criteria for gen-
eralized social phobia after 4 weeks. Another quite dramatic example
of this approach comes from burn-injury treatment, where virtual real-
ity technology has effectively reduced anxiety by directing attention to-
wards a computer-generated environment (e.g., a world of snow) and
away from physical pain induced by wound care (see Morris, Louw, &
Grimmer-Somers, 2009, for a review).

However, sometimes it may be essential to direct attention to the more
negative aspects of the situation, that is, those that one would otherwise
tend to avoid. For example, one method of treatment for certain anxi-
ety disorders involves exposing a person to the object of her or his fear.
There is evidence that this kind of exposure has a greater effect when
the person is focused on the distressing stimulation (Foa & Kozak, 1986;
Grayson, Foa, & Steketee, 1982). However, a person who is anxious of
something tends to — quite naturally — look away from the object of
the fear, which may relieve short-term anxiety but upkeep the long-term
negative consequences of phobia (Tolin, Lohr, Lee, & Sawchuk, 1999).
In such cases, technological tools could be used to facilitate attention to-
wards distressing stimuli. For example, augmented reality technologies
allow virtual information and objects to be added over images of the real
physical world (e.g., by projecting images to the lenses of regular see-
through eye glasses) (Azuma et al., 2001). Together with the tracking of
eye gaze, such technologies could allow more control over the exposure
to the stimuli (e.g., time and length of exposure), for example, by always
having the object appear where the participant turns her or his gaze at.

The next stage of the model of Gross (1998) involves cognitive change,
that is, changing the meaning that the situation has for the person. Ac-
cording to Gross and Thompson (2007), cognitive change can be directed
to either appraisal of the situation as such (i.e., attitudes towards the
situation) or the person’s own perceived capabilities for managing the
situation. Changing appraisals as they happen (i.e., in real-time) can
be quite challenging, so perhaps the greatest potential for technology
to change cognitions may lie in longer-term assistance. As an exam-
ple of such longer-term computer-assisted cognitive change, an Internet-
based guided exposure system called FearFighter (CCBT Ltd., 2011) has
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been implemented for self-help therapy of anxiety disorders (Marks et al.,
2007). This system coaches a person through a step-wise programme that
aims to help in changing fear and anxiety related cognitions through con-
trolled self-exposure. However, although the computer system provides
the structure for the therapy and tools for documenting it, this system still
relies on human supervision. A completely automated system that also
monitors and responds to the person’s reported progress would require
more sophisticated artificial intelligence. Perhaps such methods can be
implemented in the longer run.

Finally, the elicited experiential, behavioural, and physiological re-
sponses may be regulated. Technological support for the regulation of
physiological responses has a long history in the field of biofeedback. In
biofeedback, the person receives information (e.g., visual or auditory com-
puter feedback) about her or his physiological processes. The aim is
that the person will become more aware of involuntary and unconscious
processes and ultimately learn to control them. Traditional applications
of biofeedback include the reduction of muscle tension in order to treat
headache and motor rehabilitation after a stroke (Nestoriuc, Martin, Rief,
& Andrasik, 2008; Tassinary & Cacioppo, 2000). However, biofeedback
can also be effective for modulating emotional responses, as physiologi-
cal responses are coupled with other components of emotional respond-
ing. For example, there is evidence that biofeedback can facilitate the
reduction of fear of flying as well as reduce the number of remissions
(i.e., re-occurring symptoms after treatment) (Wiederhold & Wiederhold,
2003).

There is evidence that the regulation of behaviour can also have sig-
nificant effects on how a person feels or perceives emotional information
(Cacioppo, Priester, & Berntson, 1993; Flack Jr., 2006; Marsh, Ambady,
& Kleck, 2005). For example, Ahn, Teeters, Wang, Breazeal, and Picard
(2007) implemented a robotic monitor that could regulate its user’s pos-
ture by moving to a different position. The results showed that when
the monitor promoted a posture that was congruent with the user’s emo-
tional state, their persistence in a problem solving task was facilitated.
This kind of a system could take a more proactive approach to regulating
emotions by directly modifying the situation itself (e.g., monitor position)
instead of providing feedback (e.g., visualization of physiological signals)
to promote changes in emotional responding.

In addition to influencing the physical environment (e.g., position of
robotic monitors), computer systems can also provide more direct influ-
ence over the antecedents of emotion (i.e., situation and stimulation) by
the adaptation of virtual stimulation. For example, using virtual reality it
is possible to create immersive computer-generated environments which
potentially allow control over both fine-grained details (e.g., the ways
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in which bugs move on the ground) and more global aspects (e.g., the
weather). Such environments have been successfully used as a replace-
ment for real-world exposure to distressing stimuli in the treatment of
different anxiety disorders, including fears of flying and spiders (Gerardi,
Cukor, Difede, Rizzo, & Rothbaum, 2010; Powers & Emmelkamp, 2008).
Further, as computers are becoming an increasingly permanent part of
our work and living (e.g., ranging from office work with computers to
buying gasoline from an automated machine), the significance of taking
the user’s emotions into account in these everyday human-technology
interactions is also growing. Although such interactions normally hap-
pen through less immersive channels of communication (i.e., compared
to virtual reality), effective social and emotional cues could be designed
for such simpler interfaces as well.

This way, technology could offer a way to modulate how emotional
responses affect the (real or virtual) situation, that is, affect the link from
the emotional response to the new emerging situation in the model of
Gross (1998). Further, through the development of perceptually and ex-
pressively intelligent technologies, natural human responses could be ex-
ploited in these affective loops by adapting situations intelligently based
on automatically perceived responses. Such implicit interaction between
the system and the person could provide means to construct truly cyber-
netic systems for emotion regulation. A central principle of cybernetics
is that feedback from a process enables it to be controlled (Wiener, 1948).
In the case of computer-assisted emotion regulation, a cybernetic system
could achieve a kind of an emotional equilibrium through tight coupling
(i.e., reciprocal feedback) between the system and human emotional re-
sponding (Rani et al., 2003). A more detailed model for such systems was
presented in Publication II of the present thesis.

3.2.2 Applications for Computer-Assisted Emotion Regulation

The field of affective computing covers many areas of applications that
utilize perceptual and expressive capabilities but are not aimed at regulat-
ing emotion per se (Picard, 1997; Picard et al., 2001; Picard & Klein, 2002).
For example, expressive intelligence could be used to facilitate the accept-
ability of domestic robots by making them more human-like (Nomura,
Kanda, Suzuki, Yamada, & Kato, 2009). Similarly, perceptual intelligence
could be used for many purposes, such as, to facilitate the mediation of
emotional information from a patient to a health-care provider, the eval-
uation of positive and negative responses to computer games, and the as-
sessment of Web page usability (Hazlett, 2003, 2006; Lisetti, Nasoz, LeR-
ouge, Ozyer, & Alvarez, 2003; Ward & Marsden, 2003). However, some
recent prototype systems can be seen to provide suggestions about the
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potential of applying technology to the more specific area of computer-
assisted emotion regulation.

A contemporary step towards computer-assisted emotion regulation
is exemplified in computer games that adapt their own functionality bas-
ed on physiological responses (Kuikkaniemi, Kosunen, Turpeinen, Laiti-
nen, & Lievonen, 2010; Sakurazawa, Yoshida, & Munekata, 2004). The
aim of this adaptation is to provide a suitable level of challenge (i.e., not
too easy or hard) for each individual person and thus make the games
more enjoyable. The ultimate aim for such a system could be achieving
and maintaining a flow experience, that is, immersion to the task through
complete alignment of emotions with the task (Csikszentmihalyi, 1990).
The goal of reaching an experience of flow (i.e., maximizing positive emo-
tion) has been explicitly stated for some computer-assisted learning sys-
tems, which aim to adjust their functioning according to perceived emo-
tion, for example, based on skin conductivity and facial expressions (e.g.,
Burleson & Picard, 2007; D’Mello et al., 2007). In-car systems that aim
to avoid extremely negative emotions (e.g., road rage) while driving a
car provide a somewhat opposite (i.e., reducing the intensity of negative
emotions) and a more dramatic example of potential real-time systems
for emotion regulation (Eyben et al., 2010; Nasoz et al., 2010).

Failure to regulate the intensity of emotional responses may also con-
tribute to the development and sustenance of different anxiety disorders,
for example, specific phobias (Amstadter, 2008). Thus, explicit facilita-
tion of emotion regulation could be beneficial for the treatment of these
disorders as well. For example, there is some evidence that the use of
biofeedback to facilitate awareness of physiological responses can further
promote the effectiveness of virtual exposure therapy in treating anxiety
disorders (Wiederhold & Wiederhold, 2003). However, such systems so
far rely on human operation in monitoring and explicitly adjusting own
behaviour according to the measured signals, while truly automated cy-
bernetic adaptation (i.e., a loop of perceptual and expressive intelligence)
is yet to be investigated in this context.

To reduce milder forms of anxiety, Prendinger and Ishizuka (2005)
presented a system that could perceive emotional reactions using physi-
ological sensors and provide empathetic feedback for the person during
a potentially stressing virtual job interview. In another setup, Prendinger
et al. (2003) used the same system to implement an Emotion Mirror that di-
rectly reflected the automatically perceived emotions back to the person
using virtual characters that showed both verbal and non-verbal emo-
tional cues. In both setups, the aim was to facilitate a person’s own com-
petences in emotion regulation by allowing virtual training in real time.
Such systems could benefit, for example, job seekers in preparing for in-
terviews. However, the effectiveness of these setups is yet to be demon-
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strated as the results of Prendinger and Ishizuka (2005) did not reveal
any significant positive effects for receiving the empathetic as compared
to non-empathetic feedback.

In addition to facilitating real-time interaction, the capture and stor-
ing of data about emotional responses could also provide opportunity
for later reflection, that is, offer a kind of an affective diary (Lindström et
al., 2006). This kind of a system could be used to facilitate awareness
of own emotion related responses in the long-term, augmenting systems
that support awareness of short-term responses (e.g., biofeedback). Ex-
ercise and fitness management systems that engage a person through
personal feedback (e.g., heart rate monitoring) and social involvement
provide current examples of widely adopted systems for physiological
awareness (Sirkiä, 2010). As health and weight may be emotionally sen-
sitive issues, it is evident that such systems could gain significant benefits
from being emotionally intelligent and supportive. In addition to facili-
tating more common aims of health management and promotion, this
kind of support for regulation of exercise and weight related emotions
could also potentially benefit more extreme cases, such as, the mitiga-
tion of eating disorders that are related to emotion dysregulation (Gilboa-
Schechtman, Avnon, Zubery, & Jeczmien, 2006).

Based on the examples discussed above, there are several promis-
ing application areas that could significantly benefit from technology-
assisted emotion regulation. These applications cover diverse scenarios
from automatic adaptation based on short-term activity (e.g., games) to
longer-term reflection of emotional responding (e.g., affective diary), and
from implicit interaction using spontaneous emotional reactions (e.g., em-
pathetic agents) to facilitating voluntary changes through explicit effort
(e.g., Emotion Mirror). However, perhaps greatest potential for break-
through technologies is in application areas that are difficult to anticipate.
Thus, the full extent of benefits from computer-assisted emotion regula-
tion may only be realized after the first generation of prototypes demon-
strates the feasibility of these technologies and seeds future innovations.

3.2.3 Summary

A review of the most recent technologies and computer systems sug-
gested that there is significant potential for technology to facilitate emo-
tion regulation. There are several existing end-user products and proto-
type solutions that could already provide tools for facilitating every stage
of emotion regulation from antecedents of emotion to the consequent
emotional responses. Technology could also provide novel opportuni-
ties to extend the means of regulating emotion by allowing the environ-
ment to be directly influenced (e.g., background music or facial expres-
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sions of virtual computer characters) in order to adapt to naturally occur-
ring human responses. This is in contrast to more traditional approaches,
for example, biofeedback, which rely on an individual person’s compe-
tences to adapt her or his functioning according to computer feedback.
More proactive approaches, on the other hand, would have significant
potential for achieving truly natural emotional human-technology inter-
action through the development of more intelligent computer perception
and expression of emotional cues (Tennenhouse, 2000). Further, the wide
variety of potential applications suggests that there are clear needs and
possibilities for improving the quality of life by facilitating emotion reg-
ulation in a variety of common every-day situations as well as in special
scenarios, such as, the treatment of anxiety and eating disorders.

However, several challenges remain to be solved for the first genera-
tion of computer-assisted emotion regulation systems, especially if they
are to be widely adopted for distinct application domains. First, pre-
vious work has not yet led to widely accepted and feasible models for
implementing robust systems for computer-assisted emotion regulation.
For example, although studies in laboratory conditions have shown that
computers can even exceed the accuracy of humans in recognizing some
emotional cues, the performance in diverse real-world settings is likely to
suffer and may never reach complete accuracy. Existing system architec-
tures (e.g., Lisetti et al., 2003; Rani et al., 2003) often do not explicitly offer
practical ways to compensate and account for these inaccuracies in emo-
tion recognition. Second, there is a need for practical, non-invasive ways
to measure and influence social and emotional responses in order to pro-
mote wider applicability of emotion regulation systems. For example,
traditional ways to measure human physiology using wired electrodes
may be inconvenient for daily use in domains such as car driver monitor-
ing. Third, the functionality of systems that facilitate emotion regulation
in real-time is yet to be demonstrated. These challenges provided a back-
ground and a research agenda for the present thesis.
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4 The Contributions of
the Publications

4.1 Theoretical Framework for Computer-Assisted Emotion
Regulation

4.1.1 Publication I: Emotions in Human-Computer Interaction

Publication I aimed to establish a theoretical framework for integrating
emotions into the development of functional and natural human-technol-
ogy interaction by reviewing and structuring previous work related to
this area. In the course of this work, studies of expressive intelligence
were established as a first priority in order to establish that humans ac-
tually respond to computer-generated stimulation in a social and emo-
tional way. Then, methods for intelligently perceiving and reacting to
these elicited responses could be created. Finally, complete affective loops
could be formed by continuously perceiving user’s reactions to synthetic
stimuli and adapting these computer-generated expressions accordingly.

The previous work reviewed in Publication I highlighted the value
of emotionally intelligent computers in many ways. The reviewed stud-
ies suggested that emotional communication could be used to facilitate
human-technology interaction by tapping automatic and rapid human
responses to such information. More generally, studies of emotions in
human-computer interaction were argued to represent the continuation
of a well-established research tradition on human emotions in at least two
ways. On one hand, since humans seem to respond to computers in a so-
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cial and emotional way, technological tools may allow more fine-grained
and controlled investigations of the characteristics of human-to-human
social and emotional communication. On the other hand, technology is
becoming increasingly pervasive in our everyday lives, which means that
human-technology interaction already forms a major part of our every-
day lives. These interactions will in any case evoke emotions that can
either be ignored or studied.

Synthetic human-like characters were identified as one of the most
promising venues for research on computer-generated emotional expres-
sions, because such simulations allow a wide range of social cues to be
used. However, it was also noted that much work remains to be done be-
fore such technologies can extensively replicate human appearance and
behaviour. In general, there are several potentially powerful social and
emotional cues that could be used in human-technology interaction, but
we are still far from understanding them in detail and using them ef-
fectively. For example, although both positive and negative information
seems to have significant effects on human cognitive and emotional pro-
cesses, especially the use of negatively toned messages may require in-
depth knowledge and sensitivity (e.g, to appropriate timing) in order to
avoid being rude.

The reviewed approaches to perceptual intelligence suggested that es-
pecially physiology-based systems show potential towards supporting
implicit modes of interaction. Recent developments in wireless, wear-
able, and unobtrusive technologies were seen to suggest that physiolog-
ical measures will soon become widely used. Such technologies will al-
low monitoring of core emotional responses, which are based on neuro-
physiological and physiological changes that are normally inaccessible to
human perception of emotion. Thus, it was argued that through tech-
nological advances computers could gain better access to our emotional
processes than other people. However, it was also noted that develop-
ment of such technology will require several iterations of hardware and
software (e.g., signal processing algorithms for perceptual intelligence).

In sum, Publication I provided a framework for structuring research
on emotions in human-computer interaction. The development of emo-
tionally intelligent systems will require work on both perceptual intelli-
gence and expressive intelligence. Finally, the merging of these two fields
will allow functional loops of implicit and smooth emotional interaction
to be created. Several topics for further research were identified in the
process of this work, including further refinement of synthetic social and
emotional cues, more detailed studies of their effects and how they would
fit into systems with complete affective loops, and developing more ac-
curate and practical (e.g., wearable and wireless) methods for perceptual
intelligence.
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4.1.2 Publication II: Computer-Assisted Regulation of Emotional and
Social Processes

Publication II aimed first to extend the framework of Publication I by es-
tablishing virtual exposure therapy, that is, treatment of anxiety disorders
using controlled exposure to computer-generated stimuli, as one of the
most promising application domains that would benefit from computer-
assisted emotion regulation. The second task was to design a robust
model for the first generation of computer-assisted emotion regulation
systems. The first priority for this task was to design a model that would
be practical to use in the course of virtual exposure treatments.

The field of exposure treatments of anxiety disorders was found to be
suitable as a test-bed for computer-assisted regulation of emotions based
on several different aspects. First, anxiety disorders are a significant pub-
lic health issue that could benefit from more effective and accessible (e.g.,
over-distance, Internet-mediated) methods of treatment. Second, expo-
sure therapy sessions are performed by perceiving emotional reactions
and adapting the stimulation in real-time, which would be a suitably
challenging setting for testing the efficiency of computerized methods.
Third, some preliminary evidence was found to suggest that by incor-
porating computers into the treatment procedures (e.g., by using virtual
reality and biofeedback) the process and results of treatment could be
facilitated. Especially the use of physiological measures of emotional
responses was found to be promising for the purposes of finding exact
timing of responses as well as for reducing the distractions caused as
compared to monitoring the level of anxiety using conventional methods
(e.g., self-reports).

However, the need for defining a more detailed and robust model for
computer-assisted regulation of emotions became clear when reviewing
the existing methods of perceptual and expressive intelligence in the con-
text of virtual exposure therapy. In particular, it became evident that
a critical aspect of exposure therapy would be to facilitate the training
of emotion regulation in order to achieve greater competence in self-
regulation after the exposure sessions. Thus, the emphasis should be
somewhat different from the more distant goal that was formulated in
Publication I, that is, a computer system that could regulate the person’s
emotions with little intervention. Further, although computers could po-
tentially take much responsibility for effective administration of therapy
in the future, the first plausible step in integrating computer systems to
present therapy sessions would involve the creation of supportive tools
for the patient and the therapist (e.g., to facilitate human perception of
emotional responses). Human supervision would likely be needed, for
example, in order to compensate for the imperfect real world perfor-
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mance of automatic emotion recognition and analysis methods.
The above considerations led to the development of the model pre-

sented in Publication II (Fig. 4.1). The model includes perceptual intelli-
gence for extracting emotional responses from several measures, proac-
tive reasoning that aims to adapt the virtual stimulation intelligently, and
a human supervisor for the system. Proactive reasoning in the model
covers both the adaptation of the stimuli according to knowledge about
human social and emotional responses (i.e., expressive intelligence) and
explaining the current state of the system (e.g., including perceived emo-
tions of the person and the reasoning behind stimulus adaptation) to a
human supervisor.

It was suggested that systems that are built according to the model
presented in Publication II could prevent a human supervisor from being
overwhelmed by the wide variety of detailed measures of emotion. The
model would also maintain the supervisor in control of the system by
allowing direct intervention to the stimulation. On the other hand, this
kind of a system could normally function without human supervision by
using an implicit cybernetic loop from automatic perception to synthetic
expression of emotions (see Figure 4.1), while both the supervisor (e.g.,
therapist) and the person being treated could mainly focus on human-
human interaction (e.g., coaching the person to relax and breathe calmly
or otherwise support the regulation of emotions).

Although the work presented in Publication II revealed that computer
systems have great promise for improving regulation of emotions dur-
ing virtual exposure, several open questions in the development of these
kinds of systems were also identified. For example, previous work on
automatic analysis methods for emotional responses has focused on clas-
sifying emotions according to categories or emotional tone (see Bailenson
et al., 2008, for an exception), while exposure therapy is based on adapt-
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Figure 4.1: A proactive model for virtual exposure therapy. Reprinted from
Publication II.
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ing the stimulation according to the intensity of the emotion (e.g., level
of distress). Thus, there is a need to create automatic analysis for emo-
tional intensity in order to create perceptual intelligence for this purpose.
Further, expressive intelligence for this field will require a more in-depth
analysis of the effects of different kinds of adaptive computer-generated
stimulations.

4.2 Perceptual and Expressive Intelligence

4.2.1 Publication III: Measuring Bodily Responses to Virtual Faces with
a Pressure Sensitive Chair

The aims of the study reported in Publication III were twofold. First,
while established behavioural and physiological measures of emotion
(e.g., facial expressions and heart rate) have already been extensively
studied for computer perception of emotion, there is still a need for less
invasive and potentially ubiquitous measurements. Such measures could
promote wider use of these technologies in various contexts where con-
ventional (e.g., wired) measurements are not practical. Second, the study
was one of the first to investigate basic body movement responses to vir-
tual computer characters (see Alatalo, Juhola, Surakka, & Tossavainen,
2009, for related work). A special office chair was used for covert (i.e., un-
noticed by the participants) measurement of body movement responses
during computer-generated stimulation with virtual characters display-
ing unpleasant, neutral, or pleasant facial expressions.

The results showed that covert pressure sensors (i.e., unnoticed by
each participant) were able to measure significant body movement re-
sponses elicited by the virtual computer characters. Participants leaned
forward in response to each stimuli and their body sway in the forward-
backward axis was reduced as compared to before onset of stimulation.
Participants’ postures remained more forward leaning during emotion-
ally engaging (i.e., unpleasant and pleasant) stimuli as compared to neu-
tral stimuli. Longest forward leaning response was elicited by the un-
pleasant stimuli.

Thus, the results showed that different facial expressions of virtual
computer characters elicited significantly different body movement re-
sponses. More generally, the results suggested that novel body move-
ment measurement technologies could offer a potential tool for recog-
nizing behavioural responses to synthetic social and emotional cues. In
particular, embedded pressure sensors could provide one convenient and
unobtrusive way of measuring behavioural responses in HCI. Such eas-
ily applied technologies could help to adopt similar measurements more
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widely as well as promote the measurement of more spontaneous emo-
tional responses (e.g., reduce awareness of the measurement and thus
voluntary regulation of body movements). On the other hand, these
kinds of technologies could support the regulation of body postures by
allowing more convenient measurement of voluntary movements as well.

4.2.2 Publication IV: Virtual Proximity and Facial Expressions of Com-
puter Agents Regulate Human Emotions and Attention

The study reported in Publication IV aimed to investigate simulated prox-
imity and facial expressions of computer characters as potential social
and emotional cues for regulating human-computer interaction. For the
purposes of expressive intelligence, proximity could be an attractive cue
for regulating emotions as proximity could be easily combined to differ-
ent stimulations (e.g., several different characters). On the other hand,
intuitively it seems clear that proximity is a strong cue for attention, for
example, closer (i.e., larger) stimuli could also be expected to grab the
attention more effectively than further away (i.e., smaller) ones. Such
attentional effects could be a potentially powerful tool for expressive in-
telligence to affect human behaviour. On the simplest level, it is quite
clear that some attention must be paid to a stimulus for it to have any ef-
fects. For example, there is evidence that attentional engagement during
exposure to distressing stimuli may facilitate the habituation of fear (Foa
& Kozak, 1986). Thus, in order to provide an empirical basis for utilizing
these effects in computer-assisted regulation of emotions, the attentional
effects of computer characters were investigated in the present study us-
ing a tentative set of subjective rating scales.

Similar to the work of Partala et al. (2004) where a virtual humanlike
head was used as the stimulus, the size of computer characters was var-
ied in order to simulate different proximities, that is, bodily distances be-
tween the character and the participant. As an extension to this previous
work, in the present study full-body agents displaying unpleasant, neu-
tral, and pleasant facial expressions were used, physiological responses
(i.e., heart rate and facial EMG) were measured, and ratings of subjective
experiences of attention (i.e., conspicuousness, concentration, and inter-
estingness) in addition to emotional ratings (i.e., valence, arousal, and
dominance) were collected. Principal component analyses were used to
explore the patterns of subjective ratings in relation to theoretical expec-
tations.

The analyses revealed that the variation of attentional ratings was ad-
equately represented by two components. The components seemed to
closely match the hypothesized factors of stimulus-driven attention, which
was associated with high conspicuousness, interestingness, and distrac-
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tion (i.e., low concentration), and voluntary attention, which was associ-
ated with high concentration and interestingness ratings. Emotional rat-
ings mostly varied according to one component that was labelled as com-
fort, ranging from an alerting (i.e., unpleasant, aroused, and dominating)
to a comfortable (i.e., pleasant, calm, and controlled) experience. Figure
4.2 shows the results of this analysis using the data published in Publica-
tion IV but with a new visualization to illustrate the associations between
the ratings of emotional and attentional experience. In this figure, mean
responses to different types of stimuli are represented by points in a two-
dimensional space of comfort and stimulus-driven attention.

The related but distinct attentional and emotional effects of proximity
and facial expressions are illustrated in Figure 4.2 in at least three ways.
First, the different stimulus categories (i.e., points) are clearly separated
from each other, that is, they each occupy their own space and do not
overlap in the visualization. This suggests that different combinations of
proximity and facial expression could be used (e.g., by expressive intel-
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sion. Based on data reported in Publication IV.

49



CHAPTER 4: THE CONTRIBUTIONS OF THE PUBLICATIONS

ligence) to elicit distinct subjective experiences of attention and emotion.
Second, there however appeared to be a direct connection between emo-
tion and attention, since there was a clear trend in that alerting stimuli
received more stimulus-driven attention (e.g., unpleasant large charac-
ters, L−) and comfortable stimuli received less stimulus-driven attention
(e.g., small pleasant characters, S+). Third, the effects of proximity and
facial expression were dependent on each other. For example, if we con-
sider that the facial expression of the character is fixed to neutral, then
increasing its size from small (i.e., S0) to medium (i.e., M0) leads to a
higher level of stimulus-driven attention. However, if the expression was
fixed to unpleasant, then similar increase of size from small (i.e., S−) to
medium (i.e., M−) would have little effect on attentional ratings, but a
notable effect on emotional ratings (i.e., decreasing comfort).

The results also showed significant physiological responses to both
the simulated proximity and the facial expressions of the computer char-
acters. Proximity affected heart rate which was higher when viewing
large characters as compared to medium sized characters. The accelera-
tion of heart rate may have reflected preparation for action, as closer or
larger stimuli need to be resolved more quickly than smaller and farther
away ones. The facial expressions of the characters affected frowning
related corrugator supercilii EMG activity. Corrugator supercilii EMG re-
sponses were suppressed during unpleasant stimulation and increased
during pleasant stimulation, which was a somewhat surprising effect as
it was opposite to the emotional tone of the characters. However, there
is evidence that reactions to human facial expressions may also vary be-
tween different contexts, for example, depending on affiliation with the
expresser (Bourgeois & Hess, 2008).

In sum, the results reported in Publication IV showed that simulated
proximity and facial expressions of computer characters could elicit sig-
nificant subjective and physiological effects. Thus, both artificial cues
could be effective as methods of expressive intelligence. In particular,
virtual proximity was found to be an effective social and emotional cue
which can be hypothesized as easy to simulate in different characters.
Emotional and attentional responses to facial expressions, on the other
hand, were interacting with size as well as with each other. This result
underlines that expressive intelligence needs to account for both the in-
dividual and the joined effects of concurrently presented social and emo-
tional cues. More generally, the results highlighted that both perceptual
and expressive intelligence will need to be sensitive to other context (e.g.,
attention and social aspects like affiliation) besides the effects of individ-
ual social and emotional cues.
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4.3 Computer-Assisted Emotion Regulation

4.3.1 Publication V: Facial Activation Control Effect (FACE)

The aim of the study reported in Publication V was to investigate volun-
tary facial activations as a method for controlling emotion related sub-
jective and physiological responses during human-technology interac-
tion. The focus was especially on the effectiveness of simple computer-
instructed activations of single facial muscles in regulating more sponta-
neous physiological processes. In each task, participants activated either
the corrugator supercilii or the zygomaticus major muscle according to vi-
sual feedback and text instructions given by the computer. Heart activity
was wirelessly measured during the tasks and subjective ratings of emo-
tional valence and the difficulty of the tasks were collected following the
tasks.

The results showed that different muscle activations produced both
task-specific emotional experiences and significant changes in heart ac-
tivity. Heart rate decelerated during most activations, with the exception
of high intensity (i.e., above 60% of maximal EMG activity) level activa-
tions of either muscle during which the mean heart rate remained close
to a pre-task baseline. Both low and high frequency heart rate variability
were suppressed during every task, which suggests that the general level
of autonomic arousal (i.e., both sympathetic and parasymphatetic activ-
ity) was decreased. Low intensity activations of either muscle elicited
larger heart rate changes and were rated as easier to perform and as more
pleasant as compared to medium and high intensity activations.

The above results suggest that voluntary facial activations could be
an effective method for influencing more spontaneous physiological pro-
cesses. Although the presently used tasks were quite simple (c.f., Coan et
al., 2001; Levenson et al., 1990), they had significant effects on heart rate
deceleration and autonomic relaxation. The present setup that allowed
participants to control their facial activity according to computer instruc-
tions and feedback was also quite simple in terms of required prepara-
tion and training. Thus, a similar setup could be feasible for use in other
contexts as well. In sum, computer-assisted moderate intensity facial ac-
tivations could be an effective, a pleasant, and a practical method for reg-
ulating emotion related physiological activity during human-technology
interaction.
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4.3.2 Publication VI: Voluntary Facial Activations Regulate Physiologi-
cal Arousal and Subjective Experiences during Virtual Social Stim-
ulation

The study reported in Publication VI aimed to investigate voluntary fa-
cial activations as a method for regulating physiological and subjective
responses to computer-generated social stimulation. Participants with ei-
ther low or high level of social anxiety performed trials in which they
activated either the corrugator supercilii or the zygomaticus major muscle
in order to keep a female or a male computer character walking towards
them. Once the character reached a pre-defined distance, it used speech
synthesis to deliver an arithmetic task for the participant to answer. Elec-
trodermal activity (i.e., changes in electrical conductivity of the skin) was
recorded during the trials and subjective ratings of valence, arousal, and
dominance were collected before and after each trial.

The results showed that both corrugator supercilii and zygomaticus ma-
jor activations had significant effects on physiology and emotional expe-
riences. The long-term level of skin conductance decreased during all
tasks. However, corrugator supercilii activations significantly facilitated
the rate of decrease, as the level of skin conductance was lowest after
these tasks. Further, both corrugator supercilii and zygomaticus major acti-
vations enhanced the magnitude of short-term changes in skin conduc-
tance as compared to tasks without facial activation. Subjective ratings
given by the less and the more socially anxious participants showed com-
pletely opposite patterns. Ratings of the more socially anxious partici-
pants decreased in pleasantness, increased in arousal, and decreased in
subjective dominance, while the less socially anxious rated their experi-
ence as more pleasant, less aroused, and more in control of the situation
after zygomaticus major activations.

The electrodermal findings suggest that voluntary facial activations
were effective in regulating more spontaneous physiological activity dur-
ing simulated social communication. In the short-term, the magnitude of
electrodermal responses was enhanced during both types of facial activa-
tions, which suggests that facial activity increased sympathetic arousal.
On the other hand, longer term changes in electrodermal activity sug-
gested that sympathetic arousal decreased at a higher rate after corrugator
supercilii activations. These effects may seem contradictory at first hand.
However, similar results have been reported when relaxation has been
facilitated with other methods (e.g., controlled breathing), for example,
during exposure therapy (Foa & Kozak, 1986). Thus, it may be that phys-
iological activation in the short-term will enhance long-term habituation
to the stimulation.

Subjective ratings after zygomaticus major activations showed that so-
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cially anxious participants did not feel comfortable in smiling to the com-
puter characters. This suggests that virtual social communication sim-
ilar to the present one could be used in eliciting social anxiety related
responses. Further, the present setup required relatively little prepara-
tion in terms of technical setup and training. In sum, Publication VI pre-
sented a platform that could be used to implement a potentially effective
and practical setup for training the regulation of social anxiety also in a
less controlled setting, for example, during clinical sessions.
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5 Discussion

The present thesis showed that computer-assisted emotion regulation can
be feasible and potentially very effective. The theoretical basis for imple-
menting such systems was laid out in Publications I and II. Publication
I discussed the potential benefits and methods of regulating emotions in
the more general field of human-computer interaction. Publication II ex-
tended these conclusions by presenting a framework for building the first
generation of human-technology systems for emotion regulation.

The resulting model for computer-assisted emotion regulation (see
Figure 4.1) can be compared with the more general model of human reg-
ulation of emotion as presented by Gross (1998) (see Figure 2.4). The
presently suggested model supports emotion regulation by applying two
general technologies: perception of emotional responses (i.e., perceptual
intelligence) and adaptation of virtual stimulation (i.e., expressive intel-
ligence). It is quite straight-forward to apply the former to support the
person’s awareness of her or his own responses (e.g., using biofeedback),
which is clearly in line with the voluntary regulation of those responses
(i.e., response modulation in the model of Gross, 1998). Adaptation of stim-
ulation, on the other hand, can be seen as a way of affecting the an-
tecedents of emotion, that is, as situation modification. Truly intelligent
expression could also affect the following stage of Gross’s model (i.e.,
attention deployment) by expressing (virtual) cues that regulate attention
appropriately.

The empirical part of the thesis established virtual proximity and fa-
cial expressions of computer characters as relatively simple and effective
emotional and attentional cues for expressive intelligence. Both proxim-
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ity and facial expressions were found to elicit significant subjective, be-
havioural, and physiological responses. Facial expressions were found
to affect body movement responses in Publication III and subjective rat-
ings of emotion and attention as well as electrical facial muscle activity
in Publication IV. It was also reported in Publication IV that, similar to
facial expressions, virtual proximity significantly affected both emotional
and attentional ratings as well as physiology in terms of changes in heart
rate.

Thus, it seems that virtual proximity and facial expressions could be
used quite directly to create stimulations, or more generally situations,
that elicit desirable (e.g., goal-congruent) emotions. This way, virtual
stimulation enables relatively effortless situation modification using eas-
ily synthesized social and emotional cues. Proximity and facial cues were
also found to have potential for significantly affecting the next stage of
emotional responding, that is, attention deployment, in terms of self-report-
ed levels of attention. In addition to the present promising results, it is
likely that such cues could be further enhanced by creating more detailed
and vivid simulations of human expression. For example, contemporary
computer models are capable of displaying not only facial movements
but also other small changes in the face, such as, skin wrinkles that result
from these movements (Courgeon et al., 2009). Such fine-grained syn-
thetic facial cues could offer a way to evoke rapid and strong reactions to
the human face, such as, different responses to smiles that signal genuine
enjoyment as compared to other types of smiles (e.g., fake enjoyment or
social agreement) (Ekman et al., 1990). On the other hand, the present
results showed that effective — socially and emotionally meaningful —
virtual cues can already be created using contemporary technology.

Publications V and VI showed that computer-assisted regulation of
facial behaviour could affect more spontaneous physiological processes
and, thus, provide a potential method for regulating emotion related
physiological responding. The setup of these experiments can be seen
as an example of an effective method of response modulation, that is, the
final stage in the model of Gross (1998). In particular, publication VI
demonstrated a setup where virtual social stimulation was controlled us-
ing voluntary facial activity. The results showed that facial activity had
significant effects on autonomic arousal as well as on subjective ratings
which were opposite for the less and the more socially anxious partici-
pants. Thus, this kind of a setup could be used for eliciting and regu-
lating both experiential and physiological responses related to emotions
in general and social anxiety in particular. The platform constructed for
Publication VI could as such provide a starting point for implementing
exposure sessions for training the regulation of social anxiety.

In addition to the regulation of facial behaviour, computer systems
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could be used to assist in regulating other emotion related behaviours as
demonstrated in Publication III. In this study, a pressure sensitive chair
was presented as a potential method for unobtrusive measurement of
body movements. Such easily applied measurement technologies could
facilitate wide use of systems for monitoring and regulating bodily be-
haviour. The regulation of body movements is a particularly promising
approach, as body posture has been found to significantly affect emo-
tional experiences, influence judgements, and facilitate problem solving
(Ahn et al., 2007; Cacioppo et al., 1993; Flack Jr., 2006). On the other hand,
there have been several recent advances in wireless and wearable phys-
iological measurement technologies that monitor, for example, electrical
facial muscle activity, movements of facial skin, brain activity, and heart
activity (Nöjd et al., 2005; V. Rantanen et al., 2010; Vehkaoja & Lekkala,
2004, 2006). Thus, there is growing potential for wider adoption of per-
ceptually intelligent technology that provide the basis for regulating be-
havioural and physiological responses.

The present work covered the process of emotional responding from
the antecedents of emotion (i.e., the eliciting situation) to the resulting
experiential, behavioural, and physiological responses. Computer sup-
port for regulating emotions by facilitating the selection of appropriate
situations (i.e., first stage in the model of Gross & Levenson, 1997) was
not empirically addressed as a part of this work. However, some ap-
proaches to provide support for this task, such as, music recommenda-
tion and composition systems, were suggested in the literature review of
this thesis. Importantly, whether people choose to use computer-assisted
systems for emotion regulation in the first place can also be seen as a way
of selecting a situation (i.e., with or without computer assistance). These
decisions will determine whether such systems become widely adopted
or not. In the end, perhaps the most essential question is how people will
perceive these computer systems that aim not only to influence but also
to change their emotional functioning.

In sum, the present results provide a solid theoretical and empirical
basis for computer systems that facilitate emotion regulation. Three cen-
tral challenges for creating such systems were identified and addressed in
this work. First, a theoretical framework for structuring the work in this
area was presented in Publications I and II. In particular, Publication II
presented a model that could be widely applied to create robust systems
for computer-assisted emotion regulation. Second, practical and effective
ways for measuring and influencing social and emotional responses were
developed in Publications III and IV. Publication III focused on unobtru-
sively measured body movement responses, while Publication IV studied
physiological and subjective responses to virtual cues of proximity and
facial expressions. These technologies were shown to be promising ap-
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proaches for developing unobtrusive perceptual and effective expressive
intelligence that could facilitate wider acceptance and adoption of emo-
tion regulation systems. Third, the first generation of easy-to-use setups
for facilitating emotion regulation in real-time human-technology inter-
action were studied in Publications V and VI. In sum, the present em-
pirical and constructive work demonstrated the potential of computer-
assisted emotion regulation systems in terms of their easy adoption and
effectiveness in influencing emotional responding on experiential, physi-
ological, and behavioural levels.
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6 Conclusions

The theoretical and empirical work of the present thesis addressed three
themes: the theoretical basis for computer-assisted emotion regulation,
perceptual and expressive intelligence, and real-time emotion regulation
using computer stimulation and voluntary facial activations. The follow-
ing conclusions were drawn from this work:

• Affective loops that allow implicit interaction with computers (i.e.,
without explicit commands or feedback) can be created by merging
perceptual and expressive intelligence.

• Perceptual intelligence will become increasingly convenient, perva-
sive, and accepted through the proliferation of wireless and wear-
able technologies.

• The measurement of human body movements can be used to cre-
ate truly unobtrusive perceptual intelligence (e.g., undetected by
the person being measured) for monitoring social and emotional re-
sponses.

• Virtual proximity and facial expressions provide easy-to-apply, prac-
tical cues for expressive intelligence that significantly affects human
social and emotional responses in a controlled fashion.

• Voluntary facial activations can be used as a simple but effective
method for regulating experiential and physiological processes dur-
ing socially and emotionally meaningful stimulation.

• Current technology allows real-time cycles of perceptual and ex-
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pressive intelligence to be created for easy-to-use computer-assisted
regulation of social and emotional processes.

These conclusions can be used for the development of the first gener-
ation of systems for computer-assisted emotion regulation. In particular,
the present theoretical model has potential in leveraging such systems
beyond command-based modes of interaction and towards more implicit
affective loops. Further, the development of practical and effective per-
ceptual and expressive intelligence is possible based on the empirical
work of the thesis. These results provide a solid platform for utilizing
the developed methods in more applied contexts, for example, as tools
for learning to regulate excessive anxiety during exposure to distressing
virtual stimulation.
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CHAPTER 9

Emotions in human–computer

interaction
Veikko Surakka and Toni Vanhala

Overview: Human–computer interaction (HCI) may be signifi-
cantly improved by incorporating social and emotional pro-
cesses. Developing appropriate technologies is only one side
of the problem. It is also vital to investigate how synthesized
emotional information might affect human behavior in the con-
text of information technology. Despite previous suggestions that
people treat computers as social actors, we still know relatively
little about the possible and supposedly positive effects of
utilizing any kind of emotional cues or messages in human–
technology interaction. The aim of the present chapter is to pro-
vide a theoretical and empirical basis for integrating emotions
into the study of HCI. We will first argue and show evidence in
favor of the use of virtual emotions in HCI. We will then proceed
by studying the possibilities of a computer for analyzing human
emotion-related processes and consider some physiological
measures used for this purpose in more detail. In this context,
we will also briefly describe some new technological prototypes
for measuring computer users’ behavior. The chapter ends with
a discussion summarizing the findings and addressing the
advantages of studying emotions in the context of present-day
technology.

Introduction

The qualitative improvement and facilitation of human–computer
interaction (HCI) has become a central research issue in computer
science. Traditionally, attempts to improve HCI have centered on
making computers more user-friendly along technical dimensions. In
this line of work, perhaps still the most visible milestone for an ordin-
ary user has been the development of a graphical, mouse-driven user
interface. This invention dramatically enhanced computer use and
raised HCI to a new level. The most important consequences are that
the user receives feedback about his or her actions when operating a
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desktop computer or another kind of information technology, such as
handheld devices, televisions, and mobile telephones.

These developments in turn enable the development of various non-
traditional input and output channels. For example, computers might
be used by touching, speaking, and gazing in their direction. On the
other hand, computers themselves might provide rich feedback or
output using either the common auditory, visual, or audiovisual chan-
nels, or less commonly applied modalities, such as the sense of touch.

Although current computers and user interfaces are reasonably
functional (e.g., efficient in computing and relatively easy to use),
new problems and lines of research have developed in parallel with
the technology itself. Indeed, one of the recently recognized problems
relates to the emotional state that working with computers evokes in
users. At least two studies have succeeded in bringing attention to the
emotional aspects of human–technology relations.

A study by Concord Communications (1999) found that users often
admit to help desk managers that they have had violent thoughts and/
or engaged in abusive behavior toward their computers. A study
called “Rage Against the Machine,” conducted by MORI on behalf of
Compaq, found that users swear, consider causing damage, deliber-
ately pull out the plug, and even kick their computers.1 These exam-
ples show that working with computers evokes intense negative
emotional reactions. Looking a little deeper, these examples also imply
that people actually treat computers as if they were social entities,
which they would like to threaten and punish in order to make them
operate better in the future.

Curiously, although it is evident on a conscious cognitive level that
computers do not share our communicative signals, we seem to forget
this when interacting with them. For instance, people really seem to
appreciate sharing their feelings with computers as well as virtual
expressions of empathy, irrespective of the fact that machines cannot
really feel for us (Brave et al., 2005; Klein et al., 2002). Moreover, other
social signals, such as simulated emotional touch (i.e., haptics and
emotions), simulated proximity, and virtual facial expressions of an
embodied agent character may affect our subjective feelings and
physiological arousal (Partala et al., 2004; Salminen et al., 2008; Vanhala
et al., 2010). Generally speaking, people react to virtual cues of emotion
and sociality in much the same manner as they do to those expressed
by other humans. According to Nass et al. (1994), this is due to our
strong tendency for social behavior.

1 www.ipsos-mori.com/researchpublications/researcharchive/poll.aspx?oItemId=1900.
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However, we are still left with the fact that computers have limited
access to the social signals that we give out, and therefore cannot
respond properly to their users. Building perceptually intelligent com-
puters is one way to try to construct more socially and emotionally
intelligent computers (Pentland, 2000). Concepts such as perceptually
intelligent machines, affective computing, and emotion and interest sensitive
media refer to a future generation of flexible, trainable, adaptive,
and emotionally responsive user interfaces. The ambitious aim of
perceptual intelligence is to build machines or interfaces that are as
intelligent observers of social and emotional cues as we are. These
interfaces utilize, for example, video cameras, microphones, and eye
trackers for perceiving users’ behaviors and translating them into
information that a computer can process.

In addition, various types of physiological indicators (i.e., physio-
logical computing), including correlates of autonomic nervous system
activation (e.g., pupil size variation and heart rate), responses of cen-
tral nervous activation, and electrical activity of facial muscles (Figure
9.1), can be utilized in connecting the user with the computer
(Allanson et al., 1999; Anttonen and Surakka, 2005; Barreto et al.,
2000; Jacob, 1991; Kübler et al., 1999; Partala et al., 2001, 2005, 2006;
Pentland, 2000; Picard, 1997; Surakka et al., 2004; Wolpaw et al., 2002).
Although these physiological measures are not readily available for
our human communication partners, they can provide rich informa-
tion for machines that sense them. As physiological activity is a cen-
tral, underlying factor of all human behavior, it can be argued that
computers might potentially have better access to our emotional pro-
cesses than other people.

Enhancements of the perceptual intelligence of computers need to be
matched by corresponding increases in expressive intelligence. The ambi-
tious aim in this respect is that computers should be able to express
socially and emotionally meaningful information in a human-like
manner. Important aspects of communication are sensitivity to the user
and appropriate responses to his or her cognitions and emotions. This
might be achieved, for example, by the use of friendly visual expres-
sions and even-tempered vocal intonations, while taking into account
how users react to them. Work in this field is very much in its infancy.
Speech synthesizers, for instance, are slowly beginning to make better
use of prosodic features (Ilves and Surakka, 2004). There is also
emerging knowledge about the types of virtual cues that are effective
in influencing social perceptions of the human perceiver. Recent studies
using virtual agents suggest that their gaze direction and other mean-
ingful facial expressions are effective in communicating that they are
trustworthy, intelligent social actors (Berry et al., 2005; Schilbach et al.,
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2006). However, these channels have not yet been used to any large
extent in actual or real-time human–machine interaction.

Real-time expressive intelligence requires systems that are able to
smoothly monitor and interpret users’ behaviors via many channels so
that the user’s reactions to these intelligent expressions can also be
taken into account. Computers that utilize video-, bio-, and behavioral
signals need efficient signal analysis methods in order to interpret the
various sensory signals with which they are faced. Intelligent percep-
tion also involves the capability to harness the potential of all available
information. In the age of wireless and wearable computing, this
means that systems should be able to dynamically integrate new
devices (if and when they become available) into their analytical and
decision-making processes. Further, they need to drop devices and
measurements from their analysis when devices become unavailable

Figure 9.1 A person interacting with a software agent. This
agent records the changes in the level of electrical facial
muscle activities, and interprets these activations with the
help of signal-processing algorithms. In the prototype, a
software agent can be called on for help by raising the
eyebrows (a common gesture when one is faced with prob-
lems or surprises). This agent can be forced to disappear by
lowering the eyebrows (a common gesture used for express-
ing a negative attitude).
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(i.e., out of range), and still be able to interpret remaining data prop-
erly. These kinds of new developments have been enabled by the
recent approaches in software development which emphasize loosely
coupled, agent-based architectures (e.g., Vanhala and Surakka, 2005).
Thus, complete communicative links can be created between the user
and the computer.

An example of a complete communication link between person and
machine is a demonstration of the Real Estate Agent (REA) software
developed at the Massachusetts Institute of Technology. For example,
REA can sense the appearance of a customer or user in front of her
with the help of machine vision technology. She (or it) can then make a
greeting by speech and nonverbal gestures (i.e., it has both a speech
and a gesture database). It is also capable of taking turns during
conversation (Cassell et al., 2000). Recently, D’Mello et al. (2007) argued
that such full communication cycles are needed in intelligent tutoring
systems, such as their AutoTutor system. The emotions evoked by
AutoTutor were explored with self-reports and observations.
Perceptual intelligence was built into the system in the form of several
automatic emotion classifiers for conversational cues, and for analyzing
postural and facial expression. However, the integration of these separ-
ate channels and the intelligent use of this knowledge in an affective
loop between the student and AutoTutor is still a work in progress.

We have designed an architecture for building functional prototype
software that regulates (i.e., both observes and responds to) users’
social and emotional responses (Figure 9.2). The software architecture
enables the designer of the system to script the responses of an agent to
different predefined scenarios of psychophysiological or psychobeha-
vioral activity. For example, one prototypic system was developed for
relaxing the respiration intensity of a person with labored breathing by
automatic analysis of his or her heart activity patterns (Vanhala and
Surakka, 2005). Depending on the automated higher-level interpret-
ation of low-level electrocardiographic signals extracted from the
“user,” a virtual agent character would appear and calm the person
by instructing a more relaxed breathing pattern in synthesized speech.
A second system designed to monitor noninvasively the patterns of
mouse and keyboard activity was developed to calm people who
become negatively aroused when browsing the web with a mouse
and keyboard. Intense levels of arousal while using the computer
mouse has also been termed “mouse rage.” This “rage” has been
shown to exist in day-to-day computer use and can potentially lead
to harmful physiological consequences (Marsh and Khor, 2006). When
the user becomes negatively aroused, he or she may interpret the lack
of feedback from the computer as negative information. This in turn
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may lead to an even greater increase in negative arousal. In this case,
our system was designed first to monitor noninvasively the patterns of
mouse and keyboard activity, and then, if needed, to invoke a virtual
character in order to break the vicious circle.

Although previous examples have shown that contemporary audio-
visual agents can be programmed to display socially meaningful
signals, this still requires a great deal of effort in preprogramming

Figure 9.2 A schematic overview of a prototype software
developed for detecting users’ probable emotion-related
responses. For example, significant changes in bioelectrical
signals of facial muscles can be recognized with signal-
processing algorithms (i.e., psychophysiological comput-
ing). In addition, dynamic behavioral changes (i.e., keyboard
and mouse manipulation) can be monitored with signals
from traditional input devices (i.e., psychobehavioral com-
puting). When predefined algorithmic thresholds are
exceeded, for example, an audiovisual agent can be made
to appear and communicate in a predefined manner.
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(i.e., scripting) the behavior of these agents. Even though we are
beginning to understand the effectiveness of social and emotional cues
in human–computer communication, we are still far from coming up
with machines that can independently perform intelligent social emo-
tional communication.

The aim of the present chapter is to provide a basis for a new
generation of emotionally intelligent systems. Thus, in the following
sections, we will first discuss the advantages of having a technology
that is sensitive to emotional and social information. Next, we will
present studies that clearly show the potential of emotionally
expressive intelligence. Following this, we will present findings on
how perceptual and expressive intelligence can be merged to create
functional loops of perceptual and expressive intelligence. Finally, we
will discuss the findings by adopting a positive perspective for the
future.

Emotions and sociality in HCI

A natural approach to the development of social and emotional HCI
involves considering which factors are central in human communi-
cation and behavior. In addition to the questionnaire and interview
findings reported in the introduction, there is other evidence that
people use the same kind of social rules in HCI that they use in
human–human social communication (Fogg and Nass, 1997; Reeves
and Nass, 1996). For example, research on sociality and computers has
shown that people automatically interpret a computer agent as extro-
verted or introverted according to its programmed behavior. It has
also been shown that people prefer to interact with agents whose
behavior seems to reflect a consistent trait or disposition. For example,
they prefer agents that are extroverted and use more courageous
language to agents that are extroverted but use more shy language
(Nass et al., 2000). Furthermore, there is evidence that people accept
and are responsive to flattery and feedback from computers (Aula and
Surakka, 2002; Fogg and Nass, 1997). In fact, a research paradigm
called “computers are social actors” (CASA) suggests that theories
and methods of social psychology are directly applicable to HCI (Nass
et al., 1994, 2000; Nass and Moon, 2000; Nass and Steuer, 1993; Reeves
and Nass, 1996).

According to Reeves and Nass (1996), our strong tendency to social-
ity results in people unavoidably reacting to computers’ signals as if
they had originated from another human being. Although it has not
been explicitly stated that the CASA paradigm includes emotions and
emotional behavior, it is clear that emotions are one of the most
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significant factors in social behavior. For example, people like and
trust embodied computer agents that display empathic emotions more
than agents with self-oriented emotional expressions (Brave et al.,
2005). On the other hand, it may also be that inanimate objects, and
especially virtual creatures with or without embodiment, automatic-
ally evoke our tendency for emotional behavior. This evoked emo-
tional behavior then results in the activation of other social processes.
In any case, it is clear that emotional factors are an important compon-
ent in HCI.

The acknowledged importance of emotions in terms of intra- and
interindividual performance and behavior means that the challenge
of incorporating emotions into HCI must be faced. For some time,
there has been a growing consensus that human emotion systems
(physiological, experiential, and expressive) are central factors for
rational human behavior (Damasio, 1994; Lang, 1995; Lang et al.,
1993; LeDoux, 1994). Affective processes are a necessity for cognitive
processing. For example, there is evidence that decision making can
be seriously disturbed after brain damage to areas that are important
for emotional processing (Damasio, 1994). In a classic paper, Zajonc
(1980) suggested that emotional processing can even have primacy
over cognition. Because working with computers constantly requires
and evokes both affective and cognitive processing, there is no doubt
that affective information needs to be considered in the development
of interaction with technology. New anthropomorphic interfaces,
such as embodied agents, have the potential to enhance the social
reactions to computers even further. For example, there is evidence
that people react similarly to both virtual and human faces (Schilbach
et al., 2005, 2006; Vanhala et al., 2010; Weyers et al., 2006). This may
have considerable implications, as, for instance, perception of emo-
tional cues can significantly affect the processing of nonemotional
auditory information at a very basic neuronal level (Surakka et al.,
1998). Thus, it is becoming increasingly important to take emotions
into account in developing alternative new interaction techniques per
se and in regulating the quality of human–technology interaction
(Aula and Surakka, 2002; Partala and Surakka, 2003, 2004; Salminen
et al., 2008; Surakka et al., 2003, 2004).

The argument developed so far implies that fully functional systems
need to analyze the aims of the user and the context of use, and be
perceptually and expressively intelligent. Clearly, the fulfillment of
these aims will require a lot of work. Developing system architectures
and programs (as, for example, in Figure 9.2) that are able to process,
interpret, and act upon social and emotional information represents a
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research endeavor in its own right. Although our research team
(among others) is ultimately aiming to develop these types of fully
functional systems, our recent research efforts have been mainly deal-
ing with the following subtasks.

First, studies that investigate the potential advantages of having
expressive intelligence are required. The key question in terms of
emotions and human–technology interaction is whether we can evoke
reasonable, useful effects with emotional feedback and interventions
from technology. Provided that we find useful emotional and social
effects, we will then have a well-grounded basis for further develop-
ments. Proceeding in this order may initially seem counterintuitive, as
perceptual intelligence is actually a precondition for expressive intelli-
gence in fully functional systems. However, if computers were found
not to evoke emotional and social responses, further studies would be
misguided. In any case, our own studies have shown the clear promise
of the potential of emotionally intelligent expression. For this reason,
we have proceeded to develop perceptual intelligence. These activities
have consisted of both the development of newor alternative hardware-
sensing technologies and the analysis of the possibilities of different
signal-processing algorithms in interpreting the data flow from various
sensing technologies.

Potential of emotionally intelligent expression in HCI

Although people seem to be driven to act socially and emotionally
with computers, as yet there is little knowledge regarding what kind of
effects (emotional or cognitive) computers expressing this type of
information might have on human behavior. The usual and often
implicit assumption is that computers that respond to users’ stress,
frustration, or more specific emotions might significantly improve and
facilitate HCI. A related challenge is to identify what measures could
be used for detecting these effects automatically in order to build
perceptual intelligence into machines. In a sense, these types of investi-
gations can be implemented in a highly similar fashion to investiga-
tions in basic emotion research. Thus, we first need to establish, for
example, whether pupil size behavior is affected by emotional stimu-
lation. If this proves to be the case, then it is clear that the special
nature of HCI needs to be considered at some point by performing
pupil size measurements while the user is interacting with a computer.

When we first began to study the potential advantages of emotions
in HCI, one of the earlier notions was that tracking the users’ gaze
direction and pupil size variation could provide an input signal
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indicating users’ interests and emotional states to the computer (e.g.,
Jacob, 1996). The early results and theories concerning this issue were
rather mixed. For example, some studies found pupil constriction to
negative emotional stimulation, while others did not find such evi-
dence (e.g., Hess, 1972; Janisse, 1974; Loewenfeld, 1966). Furthermore,
gender differences were suggested in some of the early studies (for a
review, see Partala and Surakka, 2003). As it was unclear how emo-
tional stimuli would affect the pupil size, it was also unclear whether
pupil size variation could be used as an index of users’ emotional
states. Thus, we conducted studies to address this question, using a
set of carefully developed acoustic emotional stimuli called
international affective digitized sounds (IADS) by Bradley and Lang
(1999, 2000).

In one experiment (Partala et al., 2000; Partala and Surakka, 2003),
participants’ pupil size was monitored while they were exposed to 30
(10 emotionally negative, 10 neutral, and 10 emotionally positive)
stimuli. We found that both negative and positive auditory stimuli
evoked significantly greater pupil enlargement than neutral auditory
stimuli at the time of presentation. Pupil sizes began to slowly
approach the baseline at about 3 s after the stimulus onset, but the
statistical differences remained the same even after 2 s from the stimu-
lus offset. We found no evidence of either pupil constrictions or gender
differences. The ratings of the stimuli showed that the stimuli elicited
the intended emotional responses, and the ratings were in accordance
with those of Bradley and Lang (1999). In a further experiment (Experi-
ment 2 in Partala et al., 2000), we found similar results.

The above findings were encouraging in that they showed that
auditory emotional stimulation regulates the functioning of the auto-
nomic nervous system as indexed by pupil size variation. The results
also showed that subjective experiences could be significantly influ-
enced by auditory stimuli. These findings therefore demonstrate that
the measurement of pupil size can be used to reveal possible effects of
emotions in the context of HCI.

In a subsequent experiment, we utilized pupil size measurements
and ratings of emotional experiences by indexing the users’ emotions
in the context of HCI. Because pupil size is very sensitive to variations
in lighting, we used synthesized speech as a feedback channel during
computer interaction. The use of speech synthesis parallels the use of
computer agents, but of course without embodiment in this case. In the
experiment, we studied the effects of synthesized emotional feedback
on cognitive performance and on psychological and physiological
reactions during a fully computerized, problem-solving task (Aula
and Surakka, 2002). Participants were required to solve series of
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relatively simple computations (e.g., 3 (?) 3 ¼ 6) in which they had to
decide upon the missing (þ or –) operator by pressing a corresponding
key. After each series, a Finnish speech synthesizer called Mikropuhe
gave random negative, neutral, or positive feedback (i.e., feedback that
was independent of the participants’ performance) with emotional
content (e.g., “I am disappointed with your result,” “Your result was
average,” and “Your performance makes me glad,” respectively). The
feedback messages were controlled so that only the content of the
messages varied. Prosodic cues were kept constant across all feedback
messages so that there was no variation in intonation, volume, tone,
etc. (for more information about the association between vocal cues
and emotions, see Scherer et al., 1984). At the end of the experiment,
the participants rated their emotional responses to the different feed-
back messages on two 9-point rating scales assessing emotional
valence and arousal (for more information on dimensions of emotions,
see, e.g., Lang et al., 1993; Schlosberg, 1954).

In brief, the results from the valence ratings showed that the
participants rated different feedback categories as differing signifi-
cantly in valence (negative as the most unpleasant, positive as the
most pleasant). Response times to mathematical tasks were signifi-
cantly shorter after positive emotional feedback than after negative
emotional feedback. Pupil size increased in response to all feedback
categories, meaning that autonomic nervous system activity was
accentuated as a result of computerized synthetic communication.
Interestingly, when tracked over time (5 s from the stimulus offset),
the pupil size behavior revealed significant differential pupil
responses after the different feedback categories. After positive feed-
back, there was a greater and faster recovery toward baseline than
after neutral feedback.

In sum, the findings suggested that synthetic speech with emotional
content regulates emotional responses. Participants experienced
feedback messages as emotionally negative, neutral, or positive, and
their physiology was consequently affected. The findings also suggest
that positive emotional feedback results in improved cognitive per-
formance and faster recovery from physiological arousal than non-
emotional feedback. It is noteworthy that the results suggested that
positive feedback was effective regardless of the actual performance of
the person. This implies that emotional feedback will be effective even
with a less than perfect analysis of human performance. This is
encouraging for the development of complex emotional technologies.
On a more general level, our results clearly showed that synthesized
emotional feedback may facilitate the interaction between humans and
machines.
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Another type of evidence in favor of the use of emotions in human–
technology interaction comes from studies using facial EMG and sub-
jective ratings for verifying the evocation of emotional responses in the
context of HCI. Unlike earlier findings concerning pupil size, there is
an abundance of evidence that facial muscle activity (as measured by
EMG) is related to both vocal and facial stimuli that communicate
emotions (e.g., Cacioppo and Gardner, 1999; Dimberg, 1990; Hietanen
et al., 1998; Larsen et al., 2003; Surakka and Hietanen, 1998). Conse-
quently, there was no particular need to verify the use of facial EMG
responses in emotion research, and we were able to proceed more
directly in this study. Thus, in another of our experiments (Partala
and Surakka, 2004), we assessed facial EMG responses and ratings of
emotional experiences in response to synthetic emotions. We also
studied the effects of these synthetic emotions in terms of cognitive
performance during a computerized problem-solving task.

In this study, participants relocated different color bars with a
mouse according to specific instructions. Participants were exposed
to preprogrammed mouse delays in this interactive problem-solving
task. Following the mouse delays, emotionally worded positive or
negative interventions were given via a speech synthesizer (i.e., Mik-
ropuhe), or in the control condition, no intervention was given. For
example, one of the positive interventions involved the computer
saying: “The functions of the computer were suspended. The problem
will happily soon be over.” One of the negative interventions was:
“The execution of the program was interrupted. This is annoying.” As
in our previous speech synthesis studies, prosodic cues were kept
constant across all interventions, and only the contents of the interven-
tions varied. Facial EMG responses were recorded from above corru-
gator supercilii (activated when frowning) and zygomaticus major
(activated when smiling) muscle sites (e.g., Fridlund and Cacioppo,
1986). We also measured, among other things, participants’ task per-
formance after the different interventions. Finally, participants were
asked to rate the different intervention categories on 9-point scales on
the dimensions of valence and arousal.

The results showed that subjects rated the interventions as intended,
meaning that positive interventions were rated significantly more
positively than negative ones. Analysis of problem-solving perform-
ance showed better performance following positive than negative
interventions. EMG activity was analyzed during and after the differ-
ent interventions. These results showed that smiling activity was sig-
nificantly higher during the positive interventions than during the
other interventions. It was also significantly higher after the positive
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than the control condition. Interestingly, frowning activity generally
decreased from the baseline during both positive and negative inter-
ventions. EMG activity was still below baseline 3 s after the interven-
tions. Frowning activity was significantly lower after the positive
interventions than in the control condition. To summarize, the results
showed that synthetic speech with emotional content regulated both
emotional and cognitive processes. Thus, the results again emphasized
the utility of emotions in general and positive emotions in particular
(Partala and Surakka, 2004).

It should not be interpreted from the above findings that only
positive feedback or intervention is of value in HCI. On the contrary,
the results speak in favor of the use of emotions in general because, for
example, frowning activity relaxed in response to both negative and
positive interventions. Furthermore, negative emotional cues may
serve important functions in HCI as well. In a very recent study
(Vanhala et al., 2010), we explored how embodied emotionally expres-
sive agents would affect ratings of emotion and attention-related
dimensions and physiological responses. Participants were shown a
set of female and male embodied agents displaying a negative, a
neutral, or a positive facial expression. In addition to the facial cues,
the apparent proximity level of the agent was varied by displaying the
agent in three different sizes.

The results showed that negative virtual facial cues were effective in
capturing attention. Participants rated frowning agents as significantly
less pleasant, less relaxing, and more arousing, dominating, conspicu-
ous, and distracting than neutral and smiling agents. The physio-
logical measures provided preliminary evidence suggesting that
negative expressions required less mental effort to process. For
example, mental effort has been linked with sympathetic activation
of the autonomous nervous system (e.g., Chen and Vertegaal, 2004)
Sympathetic activity was decreased during negative expressions of
the male agent according to our low-frequency heart-rate variabi-
lity analysis. Thus, the reactions to negative, threatening facial cues
seem to be special in terms of the subjective experiences and physio-
logical reactions that they evoke. Regardless of the fact that they are
emotionally negative, their utility lies in the fact that they can more
efficiently catch one’s attention, and that can be very useful for many
purposes.

Somewhat similar findings that demonstrate an anger pop-out or
threat superiority effect in responses to human faces have been reported
by other researchers (e.g., Fox and Damjanovic, 2006; Hansen and
Hansen, 1988). Our study also replicated the earlier results showing
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that simulated proximity to a computer agent significantly affects the
level of the feeling of being in control, so that the bigger the agent, the
lower is the experience of being in control (Partala et al., 2004). In both
of these studies, agents that appeared to be closer were rated as more
dominating than agents that seemed to be further away. Overall,
findings from our studies with embodied virtual characters parallel
the implications of CASA; that is, similar social and emotional cues
(e.g., proximity and facial expressions) seem to be active both in HCI
and in human–human interaction. Taking advantage and conscious
control of these cues has the potential to significantly facilitate HCI by
effecting relatively fast and automatic processes; for example, the
rapid allocation of attention to emotional cues in virtual faces.

Developments in emotional perceptual intelligence

Methods for perceptual intelligence require quite complex efforts in
different research areas. First, we need engineers to develop new
hardware prototypes for unobtrusive measurement technology. Then,
the prototypes need to be tested; for example, in the respect that they
are able to reliably measure emotion-related responses. Typically,
these developments require several iterations before they become
functional. Signal-processing methods need to be developed in a simi-
lar iterative fashion in order to give computers capacity for lower- and
higher-level interpretations from the measured signals. Finally, every-
thing should be coupled together. In the next section, we aim to
describe investigations that have dealt with both hardware and
software developments in the context of emotions and HCI.

With respect to other emotion-related autonomic nervous system
activation correlates, we have recently begun to study different heart-
activity measures. Similar to pupil size measurements, recent techno-
logical advances have made these measures relatively noninvasive,
wireless, and convenient. For example, in one of the earlier studies
investigating the relation between emotions and heart rate, heart-
rate responses were measured with a regular-looking office chair
(Anttonen and Surakka, 2005). This chair contains embedded sensors
that are able to detect the heart rate of the person sitting on it. While
validating the concept of a nonintrusive measurement chair, we dis-
covered that the chair was able to detect significant changes in heart
rate during auditory, visual, and audiovisual stimuli with emotional
content. The mean heart rate decelerated in response to emotional
stimulation in line with previous findings (e.g., Levenson and Ekman,
2002; Rainville et al., 2006). Further results revealed that heart rate
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decelerated the most in response to negative stimuli as compared with
responses to positive and neutral stimuli.

As both facial activity and heart rate changes have been found to be
associated with emotional responding, we performed a further study
investigating what kind of heart rate responses could be evoked by
computer-guided voluntary facial muscle activations (Vanhala and
Surakka, 2007b). Participants were required to activate their facial
muscles according to different guidelines as visualized by the com-
puter. Paralleling the methods of biofeedback, participants received
real-time visual feedback about the intensity level of their corrugator
supercilii and zygomaticus major muscle activations as measured by
EMG. Heart activity was registered with a prototype of a wireless
electrocardiogram (ECG) measurement patch (Vehkaoja and Lekkala,
2004). We found that activations of both muscles resulted in a deceler-
ation of the mean heart rate, which was extracted from the wireless
ECG. This effect was strongest for the moderate intensity level of
activations, which were also rated as the most pleasant and easy to
perform. The results were encouraging, as they demonstrated how
computers can effectively help in regulating emotional and physio-
logical processes.

In a subsequent study, we investigated whether the heart-rate
effects could be automatically detected and classified (Vanhala and
Surakka, 2007a). The results showed that heart-rate responses to vol-
untary facial activations could be detected in real time with less than
half a second of heart-rate data. In summary, these studies utilizing
heart activity have suggested that physiological responses to emo-
tional stimulation can be identified from unobtrusively acquired
heart-rate data and that computers can really help in regulating these
responses.

Because the facial musculature system is richly developed and well
represented in the brain’s motor cortex, human facial activity is one
promising channel for taking measures to distinguish emotional reac-
tions (e.g., Ekman, 1994; Rinn, 1991). In fact, computing systems built
for classifying emotional states into negative, neutral, and positive
from continuous facial EMG recordings have shown some promise
(Partala et al., 2005, 2006). The setup was as follows. Participants were
shown emotionally arousing pictures and videos, and their task was to
rate their emotional experiences on a dimensional scale following each
stimulation. At the same time, the computer, using various computa-
tional regression models, estimated the participants’ ratings on the
basis of their facial EMG activity. Next, the subjective ratings and
the computer’s estimations were compared with one another. The
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comparison showed that the best models were able to estimate the
participants’ positive and negative ratings of pictorial and video stim-
uli with average accuracies of over 70 and 80 percent, respectively.
Thus, facial EMG is yet another promising method upon which to
build perceptual intelligence.

Following these promising results, the development of new wireless
electrode measurement technologies has begun (see www.cs.uta.fi/
~wtpc/). One of these is an elastic, comfortable-to-wear, facial EMG
headband that contains embroidered silver thread electrodes that are
“attached” simply by wearing the band. The band includes signal
amplifying and radio technology to send the amplified signals wire-
lessly to machines with computing power. First studies with this
prototype have been successful (Nöjd et al., 2005; Vehkaoja et al.,
2005). It is firmly believed that these kinds of advances in technology
will bring physiological measurement devices into a wider use in the
future.

As a whole, the above research and development has shown that
there are several measurements and technologies that can be inte-
grated into computer systems in order to create perceptually intelli-
gent machines. Importantly, many of the measures are becoming
increasingly noninvasive, ubiquitous, and convenient. In many cases,
the process of carefully attaching sensors according to clinical and
experimental standards could be eliminated for the end user of the
system. The user would instead merely wear a common accessory
(e.g., headband or hat) or be seated on a regular chair that contains
unobtrusive sensors.

Discussion

We began our analysis from descriptive findings about surprisingly
strong emotional reactions while working with computers. Our
further analysis from more controlled experimental studies showed
that computers are able to evoke and regulate human emotions
while people are working with them. These reactions were more
modest than those reported in the public media. However, the
findings were clear. It may be that our strong tendency to interpret
information socially is the central cause for emotional reactions in
HCI, as argued earlier (Brave et al., 2005; Reeves and Nass, 1996). On
the other hand, it might also be that inanimate objects and especially
virtual creatures with or without embodiment automatically evoke
our tendency for emotional behavior as a first priority. Following
emotions, other social processes like politeness, for example, are
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activated. In either case, emotions are very much operational and
effective in HCI.

Emotions evoked by technology were also found to be otherwise
beneficial, as clear proof was found of their effects on participants’
emotions and cognitive performance. Positive emotional feedback was
found to enhance human mathematical computations. This was the
case regardless of the fact that the feedback was randomized, meaning
that it had nothing to do with actual performance (Aula and Surakka,
2002). Thus, it may be that positive emotional feedback in particular
will be effective even with less than perfect timing and analysis of
human performance. Research on emotional interventions (Partala
and Surakka, 2004) again showed that emotional messages given by
a computer operated in a similar fashion to that in the above study.

The studies reviewed above concerning expressive emotional intelli-
gence showed that even relatively mild, emotion-related social cues
can have significant experiential, behavioral, and physiological effects.
The use of positive emotional cues seemed to have especially benefi-
cial effects. However, negative cues also showed promise as a method
for evoking reactions; for example, in order to draw attention to critical
information (Vanhala et al., 2010). The use of negatively toned emo-
tional cues may, in fact, require much more fine-grained analysis of the
timing for delivering such cues and more fine-grained analysis of
the user performance. Of course, in both cases (i.e., positive or negative
emotional cues), more research is needed on the requirements for user
performance analysis; for example, with respect to optimal timing for
launching emotional interaction between humans and computers. We
have shown that it is possible to unobtrusively monitor heart rate and,
moreover, to automatically classify changes in the heart rate (Anttonen
and Surakka, 2005; Vanhala and Surakka, 2007a). Thus, in this light,
automatic analysis of the levels of various physiological processes
(e.g., heart rate) is one possibility for detecting the appropriate
moments for intervening in users’ behaviors. It is possible that people
will become annoyed over wrongly timed interventions and feedback,
although we have not observed anything to suggest this in our own
studies. It is even possible that people will become annoyed over more
properly timed communication. There really is much work to do in
investigating the synchrony of communication between humans and
technology. At this point, we would still like to highlight our finding
that people are affected by artificial emotions on many levels (affect-
ive, cognitive, social). Perhaps it is well worth risking people’s annoy-
ance about computer-generated communication if, on the whole, the
benefits clearly outweigh the possibly quite infrequent annoyances.
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Moreover, in real life, people tend to be forgiving and tolerant of all
kinds of interactions with asynchronies. In this vein, it can be argued
that because we tend to treat technology in a human-like manner, we
will also be tolerant and forgiving in HCI.

Findings showing promise and potential for expressive intelligence
were argued to act as a precondition for further developments in the
area of perceptual intelligence. As there is evidence of this potential,
there are grounds for developing perceptual intelligence as well. At
the moment, there is ongoing work that has already shown that it is
possible to develop less obtrusive hardware technologies than, for
example, traditional electrode measurement technology. Further tech-
nological breakthroughs of this kind are required in the future if we
wish to achieve wider acceptance of emotional computing. Our
ongoing work has also proved that at least up to a point, software
(i.e., signal-processing methods) is capable of continuously analyzing
higher-level user processes such as emotional experiences. Of course,
there is still a lot to do even regarding these types of inferring algo-
rithms. Moreover, the inclusion of hardware and software technology
in the context of use is very much in its early stages.

Studying the effects of emotions and social information in the con-
text of information technology (e.g., HCI, CMC, videoconferencing)
clearly reveals the constrained nature of communicative cues available
in this context. Due to the limitations of technology, it is unavoidable
that, for example, only a face and voice (virtual or real) can be made
perceptible. If synthetic characters are used, there is still much to do
before they can perfectly mimic human performance, although they do
enable the use of a wider range of social cues, such as virtual proximity
and facial expressions. At first glance, these shortcomings can be seen
as critical barriers to trying to study the possibilities of using this kind
of information. However, in some ways, much of the past and current
research on human–human emotion has also dealt with virtual or
artificial stimuli. For example, studies have widely utilized only facial
stimuli (i.e., without voice and body), digitized auditory stimuli (with-
out face and body), etc., yet significant scientific advances concerning
human emotions have been made with these stimuli of limited eco-
logical validity. Thus, upon closer inspection, one might argue that
studying the effects of emotions in the context of HCI represents the
continuation of a relatively well-established research tradition. Fur-
thermore, one could also argue that virtual agents like speech synthe-
sizers, virtual faces, and artificial persons really do offer useful tools
for controlled experimentation on the effects of communicative signals
on human performance (e.g., Massaro and Egan, 1996). If this is the
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case, it is reasonable to assume that findings from HCI can be applied
directly to human–human interaction.

It is clear that working with computers requires both cognitive and
emotional resources even in the absence of dramatic reactions such as
swearing at and kicking computers. Perhaps working with computers
imposes a continuous cognitive-emotional load, leading to accentu-
ated physiological and psychological arousal. If this arousal is nega-
tively valenced, in the long run there may be serious side effects on our
mental and physical health. For example, sympathetic arousal similar
to what we have found in response to synthesized emotional cues is
known to result, in the long term, in elevated risk of cardiovascular
diseases (Malliani et al., 1991). One self-evident argument for the
necessity of emotionally intelligent technology is that, as we have
now seen, computers evoke social and emotional responses in any
case. Thus, the question that arises is whether we neglect this or
whether we are willing to use this phenomenon in our own favor.

This chapter has presented encouraging findings in favor of using
emotional information in HCI. The studies have suggested that emo-
tions can be systematically evoked and regulated by technology in the
context of information technology. This kind of emotional HCI can
facilitate cognitive performance, regulate attentive processing, and
reduce negative physiological arousal. Technology is, and will con-
tinue to be, pervasive in everyday life to such an extent that we cannot
afford to neglect its effects on emotions. Emotions themselves are
equally pervasive factors for all human performance in any context,
including HCI.
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Finland 

1. Introduction 
Imagine a person who has a fear of other people. Let us call her Anna. She is afraid of 
people watching her every move as she stands in a line or walks down the street. Meeting 
new people is almost impossible as she always feels stared at and judged by everyone. This 
fear, or maybe even a phobia, can make Anna’s life very complicated. It is difficult for her to 
travel through public spaces in order to get to work, to deal with a bus or taxi driver, shop 
for groceries, etc. Anna’s leisure time activities are also very limited. The situation is indeed 
a vicious cycle, as it is even difficult for her to seek treatment and go to a therapist.  
In USA alone, there are approximately 15 million people like Anna who suffer from social 
anxiety disorder (Anxiety Disorders Association of America, 2008). A total of 40 million 
people suffer from different anxiety disorders. The associated yearly costs of mental health 
care exceed 42 billion U.S. dollars. Thus, emotional disorders are a significant public health 
issue. There is a need for demonstrably effective and efficient new methods for therapy. 
Computer systems have recently been applied to the treatment of many emotional 
disorders, including different phobias (Krijn et al., 2004; Wiederhold & Bullinger, 2005). 
These systems provide controlled virtual exposure to the object of the disorder, for example, 
a computer simulation of a spider or a room filled with other people. In this form of 
behavioural therapy, patients are systematically desensitized by gradual exposure to a 
computer generated representation of the object of their fear (Weiten, 2007; Krijn et al., 
2004). At first, the level of exposure is kept mild and constant, for example, by keeping the 
object of the fear visually distant and far away. Then, the level of exposure is increased little 
by little, for example, by moving a virtual spider closer or increasing the number of virtual 
people. The underlying theory is that such exposure replaces anxiety provoking memories 
and thoughts with more neutral ones that are acquired in a safe, controlled environment.  
It has been shown that people react to computer generated stimuli in the same manner as to 
authentic, real-life stimuli. For example, socially anxious people are cautious about 
disturbing embodied artificial characters in virtual reality (Garau et al., 2005). People have 
also reported higher anxiety and shown increased somatic responses when speaking to 
negative as compared to neutral and positive audiences consisting of virtual agent 
characters (Pertaub et al., 2002). As these studies have shown that virtual characters are able 
to evoke emotions or anxiety, computer generated stimuli show clear potential as a new 
method for treating different social and emotional disorders by enabling controlled 
exposure to anxiety provoking stimuli.  
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Advantages of computer generated stimuli include accurate control of the grade of 
exposure, the relative easiness of creating diverse stimuli and varying their characteristics, 
and the cost-efficiency of therapy. For example, a person who has a phobia of flying can 
experience a whole virtual air plane trip from take-off to landing at a relatively low cost. 
Further, the experience can be replicated again and again with small variations to factors 
that would be very difficult to control in real situations. Virtual environments even allow 
the re-enactment of traumatic episodes, such as bombings and car accidents. In fact, there 
are various conditions that have been successfully treated using virtual exposure to artificial 
stimuli, including fear of flying, fear of driving, fear of confined spaces, fear of public 
speaking, social phobia, post-traumatic disorders, and panic disorders (Krijn et al., 2004; 
Wiederhold & Bullinger, 2005). However, Krijn et al. (2004) concluded in their review of 
virtual exposure methods that there is little conclusive evidence about the relative 
effectiveness of virtual reality and real, in vivo exposure. One particular concern was the lack 
of evidence for the effectiveness of virtual exposure therapy as a stand-alone treatment.  
There is evidence that the effectiveness of exposure therapy can be further improved by 
applying physiological measurements (Wiederhold & Wiederhold, 2003). For example, 
physiological signals can be registered and displayed to the patient during exposure therapy 
(Wiederhold & Bullinger, 2005; Wiederhold & Wiederhold, 2003). This way, the patient can 
gain awareness of physiological processes and learn to voluntarily control them. Voluntary 
control of emotion-related physiological functions has been shown to influence emotional 
reactions associated with, for example, fear and facial expressions (Vanhala & Surakka, 
2007a; Wiederhold & Wiederhold, 2003). In other types of setups, the clinician can monitor 
these signals, estimate the progress of therapy, and adjust its intensity accordingly.  
Previous research has established a number of physiology-based measures of emotional 
states that can be used as a basis for adapting the therapy (Vanhala & Surakka, 2007a; 
Vanhala & Surakka, 2007b; Partala et al., 2006; Anttonen & Surakka, 2005; Wilhelm et al., 
2006; Surakka & Vanhala, accepted). These measures include electrical brain and facial 
muscle activity, heart rate, respiration, and skin conductivity. However, it is not possible to 
use a single measure as an index of emotional states, as each individual measure is affected 
by a number of psychological and physiological factors (Ward & Marsden, 2003). Emotions 
themselves are often categorized according to a number of dimensions, such as arousal and 
emotional valence (Bradley & Lang, 1994). Further, emotional processes are tightly 
interconnected with other psychophysiological processes, including cognition and attention 
(Surakka et al., 1998). Thus, it is necessary to take other psychophysiological processes (e.g., 
attention) into account when recognizing and analyzing emotions (Ward & Marsden, 2003). 
As multi-signal, online monitoring of human psychophysiology involves signals with 
several varying characteristics (e.g. sample rate and frequency content) and as each measure 
reflects several inter-linked physiological systems, the amount of information can easily 
overwhelm a human operator. One way to deal with this challenge is to build perceptual 
intelligence into computers themselves (Pentland, 2000). Signal analysis of measured 
psychophysiological signals and states could be performed automatically. Further, the role 
of human actors in this kind of a virtual therapy system could be changed. Currently, 
humans need to process all information that is used to control the parameters of a virtual 
therapy system. Proactive computing could be used to remove this bottleneck 
(Tennenhouse, 2000). A system that responds to the emotional and physiological state of a 
person could automatically adapt the computer system according to the rules of 
desensitization. This way, both the person being treated and the therapist could focus on 
training to regulate emotions instead of actively interpreting and estimating them.  
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The main goal of the present work is to present a new model for computer systems that 
proactively support emotion regulation. First, in the next section we present examples of 
single and compound measures of psychophysiological states that could be used to build 
perceptual intelligence for this kind of a system. Then, in the following section we discuss 
studies demonstrating the effectiveness of computers in regulating emotions. In the process 
we identify several computer-generated stimuli that could be used to influence emotional 
and social processes. In the fourth section we combine these findings into a model that 
supports both computer-assisted regulation and voluntary control of emotion related 
psychological and physiological processes. Finally, we discuss the advantages and 
challenges of this model and suggest pertinent research areas for future work. 

2. Measuring emotions 
As our aim is to support the regulation of emotions, we need to be able to evaluate the 
results of this regulation, that is, changes in emotional responding. Researchers generally 
view emotions as a concurrent change in experiential, behavioural, and physiological 
systems that organize human motivational behaviour (e.g., Frijda, 1986; Mauss et al., 2005). 
Thus, our first task is to identify measures that capture a wide view of emotional processes. 
There have been two research traditions of emotions. The first tradition views emotions as 
discrete states, such as, disgust, fear, joy, sadness, and surprise (Ekman, 1993). The second 
tradition views emotions as a three-dimensional space varying in emotional valence, 
arousal, and dominance (Bradley & Lang, 1994; 2000). These traditions have direct 
consequences especially for measuring the experiential component of emotions. For 
example, one common method is to ask people to rate their experiences using bipolar scales 
of emotional valence (i.e., from negative to positive), arousal (i.e., from calm to aroused), 
and dominance (i.e., from feeling of being in control to being controlled).  
The measurement of the experiential component of emotion often requires that the person is 
interrupted and asked to report her or his experiences. For example, during exposure 
therapy patients are periodically asked to rate the intensity of their anxiety using a scale of 
subjective units of discomfort (SUD) ranging from 0 to either 10 or 100 (see, e.g., review by 
Krijn et al., 2004). The rating is used to evaluate when the level of anxiety has changed and 
requires the therapist to adapt the exposure. When the anxiety is very high, the exposure 
may be decreased, for example, with instructed relaxation. Low anxiety suggests that the 
patient is ready to proceed to a higher level of exposure, for example, to take one step closer 
to a spider. This way, the person is gradually exposed to the object of their fear and 
habituated to ever increasing amounts of exposure in the process.  
The drawback of reporting subjective experiences is that it distracts the person’s attention 
from any ongoing tasks that she or he may be performing. This may hinder a person’s 
experience of being present in the virtual therapy environment. There is some evidence pro 
the view that this feeling is critical for the success of exposure therapy, as it is required for 
the experience of relevant emotions and learning to regulate them (Krijn et al., 2004). In this 
sense, behavioural and physiological components of emotion are somewhat more 
convenient to measure. It is feasible to acquire these measures continuously and in real-time 
without distracting the person (Öhman et al., 2000; Teller, 2004; Wilhelm et al., 2006; 
Mandryk & Atkins, 2007). This also creates potential for more accurate timing of emotional 
responses. For example, the exact time of a reaction to some surprising event is more readily 
identified from changes in facial behaviour as compared to a post study questionnaire.  
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Measures of facial behaviour have been frequently used for detecting emotional responses. 
For example, Ioannou and others (2005) reported results from using an adaptive system to 
classify the facial behaviour of one person. The system classified emotional facial 
expressions into three classes based on features extracted from video images. The classes 
represented three out of four quadrants of a two-dimensional emotional space (i.e., high 
arousal – negative, high arousal – positive, low arousal – negative). The classification 
accuracy of a general (i.e., person-independent) model was about 58%. After adapting this 
model to the particular person, the performance increased to approximately 78%.   
In contrast to Ioannou et al. (2005), typically the classes in video-based classification of facial 
behaviour have been based on a view of discrete emotions (see, e.g., reviews in Donato et 
al., 1999; Cowie et al., 2001). The accuracies for these kinds of classifiers are impressive at 
their best. For example, Sohail & Bhattacharya (2007) reported an average accuracy of over 
90% in classifying six emotional facial expressions. However, discrete classifiers usually do 
not address the intensity of emotional states which is used in adapting the amount of virtual 
exposure. As an exception, Bailenson (in press) recently developed a classifier for both the 
discrete facial expression and the intensity of the expression. In any case, most previously 
investigated discrete classifiers are limited in their applicability to virtual therapy.  
Video-based measures can be used to detect facial activity in a non-invasive manner, for 
example, without restricting the movements of the person by electrode wires. However, 
video-based methods can only be used to detect clearly visible facial behaviour, while 
electrophysiological measures have the potential to register very small changes in muscle 
activity (Ekman et al., 2002). There is also evidence that physiological measures can reflect 
emotional responses that do not evoke observable behaviour (e.g., Gross & Levenson, 1997). 
Furthermore, video-based measures are very sensitive to lighting and head orientation as 
well as to inaccuracies in detecting facial landmarks (e.g., Cowie et al., 2005). For these 
reasons, physiological measures may be seen to reflect a more objective (e.g., context-
independent) view of the emotional response.  
A common method for measuring the physiological activity that underlies visible facial 
behaviour is electromyography (EMG). Facial EMG is performed by attaching electrodes 
that register the electrical activity of facial muscles over specific muscle sites (Tassinary & 
Cacioppo, 2000). Especially the EMG activity of the corrugator supercilii (activated when 
frowning) and the zygomaticus major (activated when smiling) muscles has been frequently 
found to co-vary with subjective experiences of emotional valence (e.g., Lang et al., 1993; 
Larsen et al., 2003). The corrugator supercilii muscle which knits and lowers the brow is 
located in the forehead. Its activity has been found to increase when a person experiences 
negative emotions and to decrease during positive experiences. The zygomaticus major is a 
relatively large muscle located in the cheek. When activated it pulls up the corner of the 
mouth. The intensity of its activity varies with emotional valence in the opposite manner to 
the corrugator supercilii muscle.  
Although some physiological reactions are quite straight-forward to interpret, humans do 
not normally evaluate emotional expressions of other people from electrophysiological data. 
Even one electrophysiological signal can contain lots of information, which may overwhelm 
a human observer. For example, facial EMG activity may reflect both the intensity of facial 
muscle activations and the fatigue in muscles (Tassinary & Cacioppo, 2000).  
Automatic analysis and interpretation of physiological signals can help in perceiving which 
changes in signals are related to emotional processes. There is evidence that even the 
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subjective component of an emotion (i.e., emotional experiences) can be automatically 
estimated from electrical facial muscle activity. For example, Partala and others (2005; 2006) 
were able to build systems that automatically estimated and classified emotional 
experiences evoked by picture and video stimuli. The first system (Partala et al., 2006) was 
adapted to the individual responses of each person as follows. First, participants were 
shown a calibration block of 24 pictures selected from the standardized set of International 
Affective Picture System (IAPS). After each stimulus, the participant rated the emotional 
valence that she or he experienced using a 9-point bipolar scale. Then, the statistical models 
that estimated the emotional valence were adapted to the person based on the ratings and 
the EMG data from the calibration block. Finally, the system was tested using 28 pictures 
and six videos that showed a female or a male actor crying, smiling, and portraying a 
neutral facial expression. Subjective ratings of emotional valence were collected after each 
stimulus. These ratings and the system’s estimate of emotional valence were compared in 
order to determine the accuracy of the system. The results showed that the best models were 
able to separate negative and positive emotional responses with accuracies of over 70 
percent for pictures and over 80 percent in the case of video stimuli. Further, the largest 
correlation between the subjective ratings and the system’s estimate of emotional valence on 
a 9-point scale was over 0.9. Thus, the results of the first system showed that subjective 
emotional experiences can be estimated based on measures of electrical facial activity with 
relatively simple models in real-time. Although there is still room for improvement, the 
accuracy achieved in this study is already sufficient for many applications.  
The second system was person-independent and therefore did not require a separate 
calibration period (Partala et al., 2005). The valence of emotional experiences was estimated 
based on the direction of change in EMG activity from a baseline period of 0.5 seconds 
before stimulus onset. This system was able to distinguish between reactions rated as 
positive or negative at an accuracy of nearly 70 percent for pictures and over 80 percent for 
videos. In summary, facial activity shows clear promise as a reliable measure for automatic, 
real-time classification of emotional valence, as both person-adapted and person-
independent systems were demonstrated to perform at a reasonable accuracy.  
In addition to measures of electrical facial muscle activity, there is a wide variety of other 
physiological measures that have been shown to vary between emotional reactions, such as 
the mean heart rate and its frequency components (Anttonen & Surakka, 2005; Levenson & 
Ekman, 2002; Bradley, 2000; Malliani et al., 1991). For example, Rainville and others (2006) 
investigated classification of emotional responses using a large set of heart activity and 
respiration related features. Participants recalled and experientially relived one or two 
autobiographical episodes associated with the experience of fear, anger, sadness, or 
happiness. The system was able to detect which of the four emotions the participant was 
experiencing (i.e., according to subjective ratings) at an accuracy of about 65%.  
One challenge that has rarely been investigated in previous classification studies is the 
recognition and accurate timing of emotional responses. In other words, participants 
themselves have typically reported the onset and offset of emotional responses and data has 
been segmented by hand. It is clear that in order to react to the events in real-time, a system 
should be able to segment the collected data without human intervention. Vanhala & 
Surakka (2007b) recently reported a study of this kind of an online system. The system 
automatically detected the onset and offset of emotion related events (i.e., voluntary smiling 
and frowning) based on less than half a second of heart rate data. The onset of activity was 
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detected with a statistically significant accuracy of 66.4% and the offsets were detected with 
an accuracy of 70.2%. However, the rate of false recognitions was 59.7% which is quite high. 
Thus, the results showed that the heart rate can be used to support recognition and 
classification of emotional responses, but it should be used as one of several corroborative 
measures in practical applications.  
In fact, previous studies have usually employed more than one measure in classifying 
emotional states (e.g., Kim et al., 2004; D’Mello et al., 2007; Mandryk & Atkins, 2007). 
Otherwise, recognizing mental states and responses can be challenging, as physiological 
responses are person-dependent and they reflect several overlapping reactions and mental 
processes. For example, Bailenson and others (in press) compared classifiers that used facial 
activity as such or combined it with several physiological measures of heart activity, skin 
conductance, and finger temperature. The use of physiological measures significantly 
improved the precision of classification (i.e., the proportion of correctly classified samples in 
each classified group) as compared to classifiers that used only hand-coded facial features. 
The best improvements were over 15% for classifying sadness and about 9% for classifying 
amusement. Similarly, Zeng and others (2004) were able to improve the accuracy of their 
emotion classification system to 90 percent when both facial expressions and prosodic cues 
of speech were used. When only one of these modalities was used, the accuracies dropped 
to 56 and 45 percent, respectively. Busso and others (2004) achieved similar results with a 
system that recognized emotions from speech and facial expressions. In an earlier work, 
Picard and others (2001) identified specific physiological responses from four physiological 
signals (i.e., facial electromyogram, blood volume pressure, skin conductance, and 
respiration) and used these response patterns in classifying emotional experiences to eight 
classes. They achieved a classification accuracy of 81 percent.  
The measurement of bioelectric signals can be criticized based on the complex arrangements 
(e.g., electrodes, amplifiers, and skin cleaning) that are required for measuring them. 
Recently, several wireless and non-invasive technologies have been developed for 
measuring physiological signals, including facial EMG (e.g., Anttonen & Surakka, 2005; 
Teller, 2004; Wilhelm et al., 2006). For example, the electrical activity of forehead muscles 
(e.g., corrugator supercilii) can be measured with an easy-to-wear wireless headband that 
contains embroidered silver thread electrodes (Vehkaoja & Lekkala, 2004; Nöjd et al., 2005). 
As another example of non-invasive and easily applied measurement technology, Anttonen 
and Surakka (2005; 2007) were able to reliably measure emotion related heart rate changes 
with a regular looking office chair. The chair contained embedded electromechanical sensors 
in the seat, arm rests, and back rest. The sensors can be used to detect pressure changes due 
to heart activity, body movement, or changes in posture. Based on these recent advances in 
non-invasive technologies, physiological measures are quickly catching up on the current 
benefits of video-based methods for tracking changes in emotion related behaviour.  
In summary, there are several well-tried methods for measuring the different aspects of 
emotion. Our present review suggested that especially physiological measures show 
potential as objective and sensitive measures of emotion related processes. Thus, there is no 
need to rely on any single measure of emotional processes, such as SUD in adjusting the 
exposure in virtual therapy. In fact, typically several measures have been fused together in 
order to derive more accurate compound measures. This also helps in interpreting the data, 
as it can be pre-processed into a form that is more accessible to a human observer. Further, 
physiological measures are less prone to distract the person as they can be continuously 
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acquired without intervention. However, monitoring emotion related processes can still 
require considerable human effort after integration and interpretation by the computer. The 
model that we present in the current paper is aimed to facilitate this work. 

3. Regulating emotions with computers 
Social and emotional cues from computers have been found to evoke significant responses 
in their human observers. For example, synthesized speech with emotional content has been 
found both to evoke positive emotions and to enhance problem solving activity (Partala & 
Surakka, 2004; Aula & Surakka, 2002). Aula & Surakka (2002) used synthesized speech to 
provide neutral, negatively, or positively worded auditory feedback that seemed to reflect 
participant’s performance in solving arithmetic problems. In reality, the content of feedback 
was random and independent of the participant’s performance. Nonetheless, positive 
feedback significantly facilitated the speed of solving problems. In a later study, Partala & 
Surakka (2004) investigated emotionally worded interventions after a pre-programmed 
mouse delay during computerized puzzle solving tasks. Similar to the previous study, 
problem solving performance was significantly better after positively worded interventions. 
In terms of facial EMG measurements, participants also smiled more and frowned less after 
positive interventions as compared to facial activity after neutral and negative interventions.  
These kinds of studies have shown that explicit feedback and interventions from computers 
can affect human cognitive and emotional processes. There is also evidence that even more 
subtle social and emotional cues are effective in human-computer interaction. For example, 
in one of the first studies of virtual proximity, Partala and others (2004) investigated 
reactions to the simulated distance of a virtual head. When the head appeared to be closer, 
participants rated that they felt dominated by it. Vice versa, when the head was further 
away, participants felt that they were controlling it. Vanhala and others (submitted) recently 
found similar subjective dominance reactions to the simulated proximity of an embodied 
computer agent. Some researchers have even described computers as social actors, meaning 
that people have a strong tendency to behave socially when interacting with computers 
(Nass et al., 1994; Reeves & Nass, 1996). 
The effectiveness of virtual stimuli in evoking social and emotional reactions is the basis for 
virtual exposure therapy. The idea is that new neutral memory structures are formed during 
virtual exposure. These memory structures should replace the previous anxiety related 
structures when responding to real-life situations (Krijn et al., 2004). In other words, people 
should react to provoking virtual stimuli in the same manner as to authentic, real-life 
stimuli. There are some studies that support his view. For example, socially anxious people 
get highly distressed when they talk to or need to disturb embodied artificial characters in 
virtual reality (Pertaub et al., 2002; Garau et al., 2005). Further, the effects of virtual exposure 
to spiders have been found to generalize to real-life behaviour as measured by the 
Behavioural Avoidance Test (Garcia-Palacios et al., 2002). That is, people were able to 
approach a real spider more easily after exposure to a virtual one.  
In addition to these computer generated stimuli that regulate emotional responses, emotions 
can also be actively self-regulated. Gross & Thompson (2007) have described the 
development of emotion self-regulation as a continuum. In the first stages emotions are 
consciously regulated. Later, emotion regulation becomes more automatic and effortless. 
Thus, the process of learning to regulate emotions resembles the process of skill acquisition 
in general (Anderson, 2000). In this view, less skilled emotion regulators use cognitive 
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processes extensively to support the regulation. For example, they may deliberately rely on 
instructions and examples of successful regulation. After practise, the regulation of emotions 
becomes autonomous and efficient, demanding much less cognitive processing. For 
example, a skilled self-regulator does not need to explicitly apply instructions (e.g., from a 
therapist) in order to regulate emotions.  
Instructions that support emotion regulation may be relatively simple. For example, 
Vanhala & Surakka (2007a) investigated whether computer-guided voluntary facial 
activations have an effect on autonomous nervous system activity. Participants were 
instructed to activate either the corrugator supercilii muscle or the zygomaticus major muscle at 
one of three intensity levels (i.e., low, medium, or high). Instructions for each task and real-
time feedback about the intensity of facial muscle activations were provided to the 
participant on the computer screen. Subjective ratings of emotional valence were collected 
after the activation. It was found that different muscle activations produced both task-
specific emotional experiences and significant changes in heart rate and heart rate 
variability. Thus, the results showed that relatively simple computer-instructions allow 
people to actively influence their involuntary physiological reactions and subjective 
experiences that are associated with emotions.  
Physiological feedback as such can also help in learning to regulate emotions. Usually, 
either skin conductivity or breathing patterns are registered and displayed to the patient or 
the therapist during computer-assisted therapy sessions (Wiederhold & Bullinger, 2005). 
This way, a person can become aware of unconscious physiological responses and 
processes, which can enable voluntary control over them. As an impressive example in 
favour of the effectiveness of virtual exposure therapy, Wiederhold & Wiederhold (2003) 
followed the behaviour of a group of 10 patients inflicted with fear of flying who were 
treated using virtual exposure and physiological feedback. As the terrorist attacks on 
September 11th, 2001 were quite directly related to flying, they could have caused relapses in 
terms of intensifying the fear of flying in these patients. However, everyone of this group 
was able to fly without medication or further treatment just four months after the attacks.   
Physiological data can also be collected for later reflection. For example, Lindström and 
others (2006) presented an “affective diary” that provided a multimodal (i.e., auditory and 
visual) representation of sensor data. A measure of arousal was extracted from the 
physiological measures and the estimated level of arousal affected the posture of a virtual 
character displayed on the screen. Users of the diary could later reflect their experiences and 
manipulate the character in order to match it to their recollection of those feelings. This 
application illustrates the interplay of involuntary emotion related physiological reactions 
(i.e., visually coded sensor data) and voluntary regulation of emotions (i.e., later reflection 
and adjustment in “affective diary”). However, a crucial component for supporting the 
training of emotion regulation is the online adjustment of emotional stimulation, for 
example, the amount of exposure to virtual stimuli. This requires a real-time system for the 
evaluation and reflection of psychological and physiological processes.  
In summary, computer systems show potential for regulating human emotions. First, 
studies have shown that people react socially and emotionally to computers and virtual 
environments. Second, the effects of virtual stimuli (e.g., habituation of anxiety responses) 
have been further facilitated when feedback of emotion related physiological activity has 
been provided. Third, we found that voluntary regulation of emotion related processes 
seems to be a potential key factor both in learning the regulation as such but also in 
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modulating the functioning of involuntary mechanisms activated during emotion related 
processes. Fourth, we reviewed a large number of physiological measures that show 
potential as sensitive and objective measures of emotional responses. The relevant 
information from these measures could be extracted using automatic classification of 
emotional responses. This way, it would be possible to avoid overwhelming a human 
observer, while still using all of the available information in order to maximally support 
emotion regulation. In the next section we present a model that supports this goal by 
integrating perceptual intelligence to the system. 

4. Adaptive support for emotion regulation 
Figure 1 shows a model of how virtual exposure therapy is currently performed. The model 
contains a set of different actors that take part in an interaction loop. First, the relevant 
emotional state is observed using different emotion related measures. Then, a human 
facilitator monitoring these measures decides how the virtual stimuli should be adapted. For 
example, if the patient reports a relatively low subjective experience of discomfort, the 
facilitator may proceed to increase the amount of exposure, for example, by moving a 
virtual spider closer. Note that the facilitator may in fact be the person who is being 
measured and treated, that is, the person may choose to control the amount of stimulation 
her or himself. Finally, the interaction loop in Figure 1 is closed after the adaptation by the 
newly modified stimulation. For example, if the virtual spider was moved closer, it may 
now provoke stronger anxiety reactions. These anxiety reactions are then reflected in the 
measures of emotion related processes, which leads to another cycle of interaction. The 
underlying idea of these continuous cycles is that the person learns to regulate emotional 
responses to increasing levels of stimulation.  

 
Fig. 1. A diagram of the current model used in virtual exposure therapy. Different actors are 
presented as boxes and labelled arrows represent the flow of information.  

Although the model is quite compact and straight-forward, there are three major challenges 
involved when it is applied. First, although previous work has shown that virtual 
stimulation is effective in evoking similar emotional and social responses as real-life stimuli, 
the effects of virtual stimulation and its online adaptation have not been extensively 
investigated. It has also been found that computer-generated stimuli may significantly 
facilitate cognitive processing and effectively support regulation of anxiety responses. 
However, more information is still needed about how adapting the different parameters of 
stimulation in real-time affects emotion related processes. This challenge should be resolved 
by controlled experimental studies of each virtual stimulus in the future. 
The second challenge is that there are several emotion related measures that provide 
complementary, non-overlapping information. There is a large amount of information 
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contained in each of these measures. A human observer is often forced to choose between a 
broad view of the emotional state and an in depth analysis of it. Perceptual intelligence can 
be used to solve this challenge. Different methods for building computers that perceive 
emotion from physiological and behavioural measures were reviewed in the second section. 
These methods form the basis for the perceptual intelligence in our new model.  
Figure 2 presents a model where perceptual intelligence has been included into the system. 
The model is similar to the previous one with the exception that the interpretation of 
emotion related measures is performed automatically. Thus, the facilitator has access to a 
higher level representation or a summary of information that is relevant to therapy. Simply 
stated, the computer acts as a kind of a translator that deciphers the information in the 
measured signals into a summary that is more accessible to the human observer. This way, 
the facilitator is less likely to be overwhelmed with the load of information available from 
different experiential, behavioural, and physiological measures. However, the actual 
adaptation is still controlled by a human facilitator acting on the basis of the summarized 
information.  

 
Fig. 2. A diagram of a perceptually intelligent model to be used in virtual exposure therapy. 
Different actors are presented as boxes and labelled arrows represent the flow of 
information.  

The third and final challenge in using the conventional model is that it places the human 
facilitator as a part of the real-time system (see Figs. 1&2). This requires that a person must 
continuously attend to the measurements and decide when and how to react to any changes 
or even to a lack of changes. Figure 3 shows a final model designed to more efficiently 
support emotion regulation in virtual exposure therapy. The continuous monitoring of 
emotion related information is now built into the computer system itself. In contrast to 
conventional computer systems that place humans as a part of the processing loop, this 
model can support emotion regulation without distracting the person or requiring constant 
attention. The system provides this support by taking the initiative and adapting the 
stimulation when it is appropriate, that is, by being proactive (Tennenhouse, 2000).  
In this kind of a system, the role of the human facilitator is to supervise the process of 
therapy. In order to perform this task, the supervisor needs information about the therapy 
process and the functioning of the system. Further, this information should be concise if we 
are to retain the main advantage of automatic signal analysis and reasoning which was to 
allow people to focus on the task at hand. One potentially efficient way to do this is to 
provide an explanation of the system’s reasoning to the supervisor. This type of a model fits 
the definition of an expert system which solves problems in a narrow domain of expertise 
(i.e., virtual exposure therapy) and is able to explain its own reasoning (Bratko, 2001). For 
example, if the system moved the object of the phobia closer to the person, it could be asked 
why it did this. A brief explanation could be that, for instance, the physiological signals 
showed that the current level of anxiety was very low. Then, the person could further query 
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the specifics of these signals, if she or he so desires. This way, the users confidence of the 
system’s functioning could be increased by making it transparent to the user. Of course, this 
would also allow the system’s reasoning to be monitored and tuned when appropriate.  
 

 
Fig. 3. A diagram of a proactive model for virtual exposure therapy. Different actors are 
presented as boxes and labelled arrows represent the flow of information.  

During the operation of the system its supervisor may exert control over the system either 
by adapting the stimulation directly or through interaction with the person who is being 
trained. For example, a therapist may instruct the person to relax by performing controlled 
breathing exercises. This voluntary control affects the physiological state which is further 
reflected in the collected emotion related measures. As a result, the changes in these 
measures lead to corresponding adaptation of the stimulation. As another example, the 
person may directly influence those measures that affect the intensity of stimulation. This is 
feasible as the same expressive channels that reflect spontaneous emotional reactions can 
also be voluntarily controlled. For instance, the person may voluntarily frown in order to 
signal a high level of discomfort and move the spider further away. This also highlights 
another advantage of proactive adaptation. As responses to measured changes (i.e., 
voluntary activity) are explicit pre-programmed reactions, they can be guaranteed to be 
consistent. This might not be the case if the responses were selected by a human operator.  
In summary, a perceptually intelligent and proactive system enables a wide variety of 
information to be used in regulating emotions. First, perceptual intelligence enables more 
efficient processing of measured emotion related signals. This enables the monitoring of a 
larger set of emotional measures, which then results in a more comprehensive and reliable 
view of the emotional state, for example, attending to multiple physiological and 
behavioural changes. Second, proactive reasoning may be used to adapt the stimulation in 
an appropriate and consistent manner. The adaptation can be based on findings that show 
how virtual stimulation affects human emotions and cognitive processing. As a whole, a 
system that uses this model can function independently without constant human 
supervision, helping people to regulate emotions without distracting them. 

5. Discussion and future work 
The current work presented a model for a computer system that supports the regulation of 
emotion related processes during exposure to provoking stimuli. We identified two main 
challenges for these kinds of systems. First, emotions as such are complex, multi-component 
processes that are measured with several complementary methods. The amount of 
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information can overwhelm a human operator. Second, the adaptation of stimulation 
requires real-time reasoning about the current emotional state and the effects of adaptation. 
This reasoning may distract a human facilitator from tasks related to emotion regulation. 
Further, a human operator may respond inconsistently to changes in emotional processes, 
which effectively removes the control of the system from the person who is being trained.  
In the present work we addressed the first challenge of identifying emotional reactions by 
including perceptual intelligence to our model. Several measures for automatic analysis of 
emotional state have been investigated in previous studies. Especially physiological 
measures were found to show potential as objective and reliable measures of emotional 
processes. For example, there are several new wireless and wearable measurement 
technologies that enable continuous and non-invasive measurement of emotion related 
physiology. Thus, automatic analysis of emotion related physiological activity can help to 
identify significant emotional responses during virtual exposure therapy. For a human 
observer, this pre-processed data is easier to interpret and apply to emotion regulation.  
The second challenge of adapting virtual stimulation was addressed with proactive 
reasoning. First, we reviewed studies of human responses to virtual stimulation. These 
studies showed that human cognitive functioning and emotional responses may be 
significantly regulated using different computer-generated social and emotional cues, for 
example, virtual proximity. Second, we suggested a model where the computer 
automatically adapts the virtual stimulation according to the emotional state that it has 
perceived. This way, perceptual intelligence and artificial reasoning result in a proactive 
system that does not require humans to process data in real-time. In other words, when our 
model is applied to virtual exposure therapy, a person can focus on the training itself 
instead of monitoring and responding to measured physiological signals.  
In spite of the promising findings from previous studies, there are still open questions in the 
computer perception of emotional responses to provoking stimuli. For example, some 
findings suggest that physiological reactions of phobics and healthy people may be 
significantly different (Wilhelm & Roth, 1998). Although the responses may be similar in 
terms of direction of change from a baseline (e.g., heart rate accelerated in both phobics and 
healthy subjects exposed to provoking stimulation), the differences in the magnitude of 
change may affect the results of automatic recognition. This raises the question whether 
automatic classification methods for emotional responses in healthy people provide 
information that is applicable to treating emotional disorders (i.e., abnormal emotional 
responses). Thus, there is a need to study systems where automatic perception has been 
included in a virtual therapy system.  
The previous research on automatic classification of emotional states has used both person-
independent methods and methods that are calibrated to each individual person. These two 
types of methods are suited for different kinds of applications (Bailenson et al., in press). 
Systems based on a universal model of emotional responses are suited when lots of people 
use the same interface, for example, a public computer at a library. An idiosyncratic model 
that adapts to each person is more suitable when the same person repeatedly uses the 
interface. The latter case is typical in virtual therapy applications, as the person is treated 
over multiple similar sessions (Krijn et al., 2004; Wiederhold & Wiederhold, 2005). However, 
a person-independent model could be used as a starting point for the adaptation, similar to 
the video-based system by Ioannou and others (2005). This would enable the system to 
provide estimates of emotional experiences even before a set of person-specific physiological 
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data is collected and calibration is performed. Then, later adaptation of the model could be 
performed to improve its accuracy.  
Another challenge in perceptual intelligence that has received little attention is the 
automatic segmentation of collected measures. Most previous studies of automatic 
classification of emotional responses have used hand-segmented data. Typically, a 
participant reports the onset and the offset of an emotional state and the data is segmented 
off-line. In contrast to these methods, virtual exposure therapy requires a system that 
analyses the data online and adapts to the emotional state of a person in real-time. If 
perceptual intelligence is to be included in this kind of a system, there is a need to 
investigate online, automatic segmentation of physiological data. Our preliminary results of 
heart rate responses have shown that such automatic segmentation is feasible (Vanhala & 
Surakka, 2007b). However, there is a need to investigate systems that use multiple 
complementary signals in order to improve the reliability and accuracy of methods.  
On a general level, our review suggested that people appreciate computer systems that 
respond to their emotions, for example, display empathy (Klein et al., 2002; Brave et al., 
2005). Although it seems a small step to assume that people would appreciate computers 
that administer virtual exposure therapy by responding to anxiety, there can be a 
fundamental difference. Emotion regulation aims not only to respond but also to change the 
emotional reactions to virtual and real-life emotional stimulation. There is a need to study 
how people experience this kind of a system and whether it helps in regulating emotions.  
In summary, the present work showed how automatic perception of emotions and proactive 
adaptation of a computer system could help in facilitating virtual exposure therapy. The 
skill of regulating emotions is gradually acquired by adapting virtual stimuli according to 
the emotional state of the person. This principle is applicable to other emotionally intelligent 
applications as well. For example, we might be less likely to loose our temper if the desktop 
computer could display empathy when an important document gets accidentally deleted. 
Thus, research on perceptual intelligence and proactive reasoning in virtual exposure 
therapy systems has the potential to improve the quality of human-technology interaction in 
general. The current work identified the state-of-the-art and the future research that will 
help in reaching this goal.   
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ABSTRACT 
The present aim was to study emotion related body movement 
responses using an unobtrusive measurement chair that is 
embedded with electromechanical film (EMFi) sensors. 30 
participants viewed images of a male and a female computer 
agent while the magnitude and direction of body movements were 
measured. The facial expressions (i.e., frowning, neutral, smiling) 
and the size of the agents were varied. The results showed that 
participants leaned statistically significantly longer towards the 
agent when it displayed a frowning or a smiling expression as 
compared to a neutral expression. Also, their body movements 
were reduced while viewing the agents. The results suggest that 
the EMFi chair is a promising tool for detecting human activity 
related to social and emotional behaviour. In particular, the EMFi 
chair may support unobtrusive measurement of bodily responses 
in less strictly controlled contexts of human-computer interaction.   

Categories and Subject Descriptors 
H.5.2. User Interfaces: Input devices and strategies. 

General Terms 
Algorithms, Measurement, Experimentation, Human Factors. 

Keywords 
Affective computing, non-invasive sensors, body movements, 
virtual embodied agents, approach and withdrawal motivation. 

1. INTRODUCTION 
The posture and dynamics of the body provide cues of our 
internal motivation towards other people. For example, we tend to 
approach (e.g. lean towards) things and people we like and care 
about, and withdraw (e.g. lean away) from people and objects that 
threaten us [6,16,18]. People can also recognize the emotions and 
intentions of others based on their bodily behaviour [1,17]. In one 
study observers identified some posed postural expressions of 
sadness, anger, and happiness with over 90% accuracy [11].  

Postural cues are also significant in social and emotional human-
computer interaction (HCI). For example, the posture of and the 
distance to an embodied agent have been found to modulate 
subjective emotional experiences and physiological responses of 
human observers [11,20,24]. Further, there is evidence that the 
regulation of a person’s posture can facilitate cognitive and 
emotional processes [8,15]. Ahn and others [2] found that a 
robotic computer that manipulated the posture of its user could 
increase the user’s persistence in solving problems. 

In order to intelligently react to the posture of its user, the 
computer should be able to recognize socially and emotionally 
significant postural cues. In laboratory studies the participant 
typically stands on a force platform that is used to measure bodily 
behaviour (e.g., [14,18]). The measurement is obvious, which 
may influence the emotional and social responses that are 
investigated. More unobtrusive measurements could be performed 
by integrating measurement sensors to everyday objects, such as 
chairs [3,4,23]. Using such a chair, episodes of boredom, 
confusion, delight, flow, and frustration have been successfully 
recognized during a learning task [13].  

Truly unobtrusive (e.g., unnoticeable) measurements of body 
movements have not yet been demonstrated. Furthermore, 
previous research on automatic recognition of postural cues has 
not been firmly based on established theories of emotion. One 
prominent line of research maps emotions into a three 
dimensional bipolar space varying in emotional valence (i.e. from 
unpleasant to pleasant), arousal (i.e. from calm to aroused), and 
dominance (i.e. from feeling of being controlled to feeling of 
being in control) [7]. It has been argued that especially the 
emotional valence of a stimulus and behaviour are connected at a 
very basic motivational level. In this view, unpleasant stimuli 
activate defensive motivation which manifests itself as 
withdrawal or freezing behaviour [6,16]. Pleasant stimuli promote 
appetitive motivation which evokes approach behaviour. Further, 
these basic motivational tendencies and behavioural changes 
should be reflected in postural (e.g. leaning towards an appealing 
stimulus) and other body movements. In line with this reasoning, 
Facchinetti and others [14] found that negatively arousing pictures 
reduced sideways movement, whereas positively arousing 
pictures reduced sway mostly in the forward-backward direction.  

There is also evidence that body movements are related to other 
dimensions of emotion. For example, when people or computers 
have rated images of body postures using scales of valence, 
arousal, and dominance, the highest agreement has been reached 
for the ratings of arousal [10,13,17]. Further, objects that appear 
to be closer (e.g. larger or approaching objects) have been rated 
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more dominating (i.e. more controlling) than objects that are 
further away [12,20]. In sum, previous results provide support for 
grounding a study of body movements in the dimensional view of 
emotions. We have recently been developing a device called the 
EMFi chair for this purpose. The EMFi chair is a regular looking 
office chair containing embedded electromechanical film (EMFi) 
sensors in the seat, the back rest, and the arm rests [Figure 1].  

 
Figure 1. The EMFi chair. The back rest contained three 

strips of electromechanical film (EMFi). The back cushion is 
folded and the sensors are revealed for demonstration. 

Movements of a person sitting on the chair generate small 
changes in pressure that are exerted to the EMFi sensors in the 
chair. When external force or pressure is exerted to the film's 
surface, the thickness of the film is changed and a charge 
proportional to the force or pressure acting on the film is 
generated [19]. The measurement of these charges enables the use 
of the EMFi film as a sensor for detecting dynamic forces. Earlier 
work has shown that emotion related heart rate activity can be 
reliably measured by using the EMFi chair [3,4]. The chair 
detects heart activity non-invasively by extracting 
ballistocardiography (BCG) from the EMFi signal. The signal 
should also reflect changes in bodily activity in general (e.g., 
freezing or increased level of activity). 

The present work investigated the feasibility of the EMFi chair in 
detecting bodily responses during emotionally arousing and 
socially engaging stimulation. 30 participants viewed a male and 
a female agent character in three different sizes and with a 
frowning, a neutral, or a smiling facial expression. The three sizes 
were used to simulate different distances for interacting with the 
agent, as different social and emotional cues have been found to 
be prominent on different distances [20]. Pressure changes were 
measured with the EMFi chair during stimulation. Emotional 
experiences were measured using the three dimensional affective 
space (i.e., valence, arousal, dominance) by Bradley and Lang [7]. 

2. METHODS 
2.1 Participants 
15 female and 15 male subjects participated in the experiment. 
The participants’ mean age was 25.14 ranging from 19 to 45 
years. All participants had normal or corrected to normal vision. 

2.2 Equipment  
The EMFi chair was used to measure pressure changes resulting 
from body movements. The back rest of the chair covered three 
6.0 × 18.5 cm strips of EMFi [Figure 1]. The three strips were 
connected to a charge amplifier and acted as a single sensor. This 
sensor registered a negative charge when pressure was exerted to 
any of the film strips, that is, when the person leaned back in the 
chair. When the person leaned forward, pressure was released and 
a positive charge was generated. This way, body movements (i.e., 
backward or forward) could be detected.  

The EMFi signal was sampled at 500 Hz using a Quatech DAQP-
16 A/D-card and a PC running Windows XP. Stimuli were 
presented on a 19-inch CRT monitor with a resolution of 
1024×768 pixels. Stimulus presentation was controlled using E-
Prime experiment generator running on a PC with Windows XP 
[21]. Stimulus on- and offset markers were sent through a serial 
cable from the E-Prime computer to the Quatech A/D-card.  

2.3 Stimuli 
Two (i.e., female and male) realistic humanlike characters created 
by Cantoche [9] were used as stimuli in the present study. The 
agents were displayed in three different heights of 9 cm, 18 cm, 
and 27 cm on the 19-inch monitor. The participants were seated at 
approximately 50 cm from the monitor. The agents had realistic 
body proportions and their head and body were fully displayed. 
The character displayed a negative (i.e., frowning), a neutral, or a 
positive (i.e., smiling) facial expression. There were a total of 18 
stimuli (2 genders × 3 sizes × 3 facial expressions). 

The stimuli were counter-balanced so that 10 people viewed a 
smiling, a frowning, or a neutral character as the first stimulus. 
The rest of the stimuli were presented in a random order. 

2.4 Procedure 
The experiment was performed in a sound-attenuated and electro-
magnetically shielded laboratory. First, the laboratory and the 
procedure were introduced to the participant. The participant was 
told a cover story that the purpose of the study was to investigate 
changes in body temperature when viewing different agent 
characters. Then, the participant was seated on the EMFi chair. 
An ear clip was attached to support the cover story.  

Participants were instructed to relax and breathe calmly while 
viewing the stimuli. Stimuli were displayed at the centre of the 
screen with a white background for 30 seconds. 10-second long 
inter-stimulus intervals were used, except for a 30 second interval 
before the first stimulus. After the stimulus presentation, the ear 
sensor was detached. 

Next, the participant was asked to rate the stimuli using the three 
bipolar 9-point scales of emotional valence, arousal, and 
dominance. The midpoint (i.e., the value 5) of each scale 
represented a neutral value. The ratings were administered on 
paper. Each stimulus remained on the screen until the participant 
proceeded to the next one by pressing the left mouse button. The 
stimuli were presented in a random order during the ratings.  

Finally, the participant was debriefed and interviewed. None of 
the participants reported having noticed anything special about 
the chair they were seated on (i.e. the EMFi chair). The 
experiment lasted approximately one hour for each participant. 
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2.5 Data analysis  
Body posture and body movement data were extracted from the 
EMFi signal. First, the EMFi signal was pre-processed with a DC 
notch filter in order to remove any possible bias (Eq. 1). 

 y(n) = x(n) – x(n-1) + 0.999y(n-1) (1) 

Then, posture was estimated by integrating the values over time, 
starting from the stimulus onset. Data was divided into six 
intervals by extracting the posture value every five seconds.  

The magnitude of body movements was computed using the root 
mean square (RMS) of the EMFi signal [22]. Similar to previous 
studies, the level of activity was compared to a baseline value 
[5,14]. The RMS was computed for a five second pre-stimulus 
baseline and a mean of the six interval values during stimulation.  

A 3 × 3 (size × expression) repeated measures multivariate 
analysis of variance (MANOVA) was performed for posture data. 
Post hoc analyses of significant effects were performed with 
univariate ANOVAs for each interval. A 2 × 3 × 3 
(stimulation × size × expression) repeated measures ANOVA was 
performed for body movement data. Greenhouse-Geisser 
correction was used. Post hoc pairwise comparisons were 
performed using Bonferroni corrected paired samples t-tests.  

3. RESULTS 
The subjective ratings (Mean ± Standard Error of the Mean; 
S.E.M.) showed that smiling expressions were rated as more 
pleasant (5.86 ± .11) and frowning expressions as more 
unpleasant (3.51 ± .11) than neutral facial expressions 
(5.11 ± .10). Similarly, smiling expressions were rated as more 
calming (3.39 ± .13) and less dominating (6.43 ± .15) than neutral 
expressions (arousal:  3.66 ± .13, dominance: 6.29 ± .15), while 
frowning expressions were rated as the least calming (4.86 ± .14) 
and close to neutral dominance (5.32 ± .16).  

Regarding the mean body postures, Figure 2 shows that in general 
participants leaned forward while viewing the agents. After an 
initial movement towards the stimulation that was a common 
response to all types of agents, the postural responses began to 
differ during the third interval (i.e. 10 – 15 seconds after stimulus 
onset). A 3 × 3 (size × expression) MANOVA for posture data at 
the six intervals showed a statistically significant main effect of 
expression, F(12,108) = 1.869, p < .05. There were no other 
statistically significant main or interaction effects.  
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Figure 2. Mean posture estimates (and S.E.M.) for different 
facial expressions in volts. Increasing values signify movement 

towards and decreasing values away from stimulation. 

Post hoc ANOVA tests showed statistically significant main 
effects of expression within the third F(2,58) = 5.869, p < .01, the 
fourth F(2,58) = 3.926, p < .05, and the fifth interval 
F(2,58) = 6.597, p < .01. Post hoc pairwise comparisons showed 
statistically significant differences between the negative and the 
neutral MD = 2.57, p < .05, and the positive and the neutral 
MD = 2.72, p < .05 expressions within the third interval. Post hoc 
pairwise comparisons also showed statistically significant 
differences between the negative and the neutral expressions 
within the fourth MD = 2.38, p < .05 and the fifth MD = 2.47, 
p < .05 interval.  

The mean magnitude of body movements (i.e. the level of 
movement activity) decreased from 20.88 ± 2.37 mV during the 
pre-stimulus baseline and remained at a lower level with an 
average of 15.41 ± 1.87 mV during the whole stimulation [Fig. 3]. 
A 2 × 3 × 3 (stimulation × size × expression) ANOVA for body 
movement data showed a statistically significant main effect of 
stimulation F(1,29) = 8.893, p < .01. There were no other 
statistically significant main or interaction effects. A post hoc 
pairwise comparison confirmed that movement was significantly 
reduced after stimulus onset MD = 5.47, p < .01.  
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Figure 3. Mean magnitude of body movements (and S.E.M.) in 

millivolts for the baseline and six intervals. 

4. DISCUSSION 
Our results showed that the EMFi chair successfully detected 
bodily responses to emotionally significant stimulation. First, the 
EMFi signal showed a positive change suggesting an initial 
movement towards the agent regardless of its facial expression. 
This change can be seen as an initial orientation response that has 
been suggested to be common to all motivationally significant and 
emotionally engaging stimuli [6].  

The facial expression modulated how long the initial postural 
response was sustained. No statistically significant difference 
between expressions was found within the first 10 seconds of 
stimulation. During the third interval, the responses began to 
differ. The posture was statistically significantly more forward 
leaning when viewing negatively rated or positively rated agents 
as compared to viewing agents rated as more neutral. The posture 
was sustained for the longest time during the frowning expression, 
as the difference between frowning and neutral expressions 
remained statistically significant during the fourth and the fifth 
intervals. The difference between smiling and neutral expressions, 
on the other hand, diminished earlier as participants leaned back 
on the fourth interval during positive stimulation. Thus, the 
participants leaned more towards a virtual embodied agent when 
it displayed a negative or a positive facial expression as compared 
to a neutral expression. This may reflect a sustained engagement 
of social attention resources to the more expressive stimulations. 
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The present results also showed reduced body movement activity 
while viewing the agents as compared to the pre-stimulus 
baseline. Previous studies have found similar bodily responses to 
both negative (e.g., mutilation) and positive pictures (e.g., babies) 
in terms of reduced movement or “freezing” responses [5,14].  

The EMFi chair provides several benefits for investigating 
behavioural responses in HCI. For example, reduced awareness of 
the measurement may help to avoid biased results (e.g., due to 
voluntary regulation of body movements). Further, the technology 
supports the extension of body movement studies from force 
platforms in laboratories to less strictly controlled settings with 
embedded sensors.  

In summary, the EMFi chair was a promising tool for measuring 
behavioural responses to social and emotional stimulation in HCI. 
Statistically significant body movement responses to virtual 
emotionally expressive agents simulating proximity cues could be 
detected using the EMFi chair. Future work includes studying 
body movements in an interactive scenario and developing real-
time classification of bodily responses. This way, the EMFi chair 
could facilitate HCI in a regular office or home setting, for 
example, by enabling behavioural regulation using automated 
postural analysis [2,8,13,15]. Thus, the EMFi chair paves the way 
for integrating social and emotional cues for real-time HCI. 
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Virtual proximity and facial expressions
of computer agents regulate human
emotions and attention

By Toni Vanhala*, Veikko Surakka, Harri Siirtola, Kari-Jouko Räihä, Benôıt
Morel and Laurent Ach
..........................................................................

Emotion- and attention-related subjective and physiological responses to virtual proximity
and facial expressions of embodied computer agents (ECA) were studied. Thirty participants
viewed female and male characters with a neutral, unpleasant, or pleasant facial
expression. Agents’ size was used to simulate three levels of proximity. Participants’
electrical facial muscle and heart activity were registered, and subjective ratings of
emotional and attentional experiences collected. Unpleasant and large (i.e., closer) agents
were more alerting (i.e., unpleasant, arousing, and dominating) and attracted more
stimulus-driven attention than neutral, pleasant, and smaller (i.e., further away) agents.
Pleasant agents attracted more voluntary attention than neutral and unpleasant agents.
Heart rate (HR) responded to agent proximity, while the valence of the agent affected
electrical facial muscle activity. Thus, the imitation of human social emotional cues in
embodied computer agents (ECAs) could be used to regulate human–computer interaction.
Copyright © 2010 John Wiley & Sons, Ltd.

KEY WORDS: embodied agents; proximity; facial expressions; heart rate; emotion; attention

Introduction

Virtual computer agents have significant potential for
evoking social and emotional responses in human–
computer interaction. Even non-embodied agents can
affect a person’s emotional and cognitive processes.1

However, results from several studies suggest that the
mere presence of an embodied agent may enhance,
for example, learning experiences.2 Further, the current
highly proficient work on embodied agents provides
broad and vivid simulation of human behavior, enabling
the use of social and emotional cues that are similar to
human–human interaction (see Reference [3] for a recent
review). These cues, such as facial expressions and prox-
imity, are very much operational in human–computer
interaction, due to our strong and automatic tendency
for social behavior.4

Emotional and social responses to human facial
expressions have been extensively studied. For example,

*Correspondence to: T. Vanhala, Tampere Unit for Computer–
Human Interaction (TAUCHI), Department of Computer
Sciences, University of Tampere, Tampere 33014, Finland. E-
mail: toni.vanhala@cs.uta.fi

it is well-known that facially expressed emotions evoke
congruent experiences and physiological activity in the
perceiver such as pleasant experiences and smiling in
response to positive human facial cues.5 There is a grow-
ing interest for replicating and extending these findings
using artificial facial cues.6

Reproduction of human social cues like facial expres-
sions can be relatively challenging (see Reference [7] for
a comprehensive approach). On the other hand, some
cues can be easily simulated. For example, the retinal
size of a visual stimulus (e.g., agent) is directly related to
its perceived distance (i.e., proximity).8 Different prox-
imities are preferred for different forms of interaction.9

Especially very close proximity to other people can cause
feelings of discomfort.10 In general, larger images have
been found to accentuate ratings of arousal and physi-
ological responses (e.g., facial activity).11 In agents, the
simulation of a closer proximity to a virtual humanlike
head decreased subjective dominance, that is, the feeling
of being in control of the virtual stimulus.12

Emotional experiences have been frequently studied
with self-report scales that form a three-dimensional
bipolar space of emotional valence, arousal, and
dominance.13 The valence dimension varies from

............................................................................................
Copyright © 2010 John Wiley & Sons, Ltd.
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unpleasant to pleasant emotional experience. The arousal
dimension ranges from calm to aroused and the dom-
inance dimension ranges from the feeling of being
controlled to the feeling of being in control of the situation
or stimulus. The midpoint of each scale represents a neu-
tral (e.g., neither unpleasant nor pleasant) experience.

Emotions in general are viewed as concurrent changes
in experiential, physiological, and behavioral systems
that organize human motivational behavior.14 They are
known to influence several cognitive processes includ-
ing memory, problem-solving, and decision-making.1,15

Thus, emotional responses to artificial communication
(e.g., virtual facial expressions and proximity) could
modulate both the experiences and the performance of a
person.

Visual emotional information in general has been
found to significantly modulate early (i.e., within 150–
300 ms time from stimulus onset) change detection and
attention-related auditory processing.16 Generally, emo-
tions and attention have both been associated with
the same basic neurocognitive systems: the Behav-
ioral Approach System and the Behavioral Inhibition
System.17 Thus, emotion and attention can be viewed as
inherently tied responses.

In contrast to research on emotions, there are no well-
tried and widely accepted scales for subjective ratings of
attention-related factors. Attention is the means to select
a limited amount of information for processing.18 These
means include both stimulus-driven (i.e., exogenous)
and voluntary processes. Stimulus-driven processes are
more directly influenced by the properties of the stim-
ulus. They are often involuntary and automatic. On
the other hand, voluntary processes may be seen as
mostly goal-directed and controlled.19 These two types
of processes are constantly interacting. For example,
stimuli with strong exogenous properties are often
used as distractors while subjects perform voluntary
tasks.19

Responses to embodied agents in computer inter-
faces are often voluntary. For example, we may choose
whether to interact with an agent based on how compe-
tent the agent seems for the task at hand. However, there
is evidence that we also respond to subtle social and emo-
tional cues from the agents.3,4,12 Although a major part of
these responses are involuntary and automatic, we may
also become aware of them by voluntary reflection of our
reactions.15

There has been some interest for developing and using
scales for ratings of attention, especially in virtual reality
and gaming research (e.g., Reference [20]). Apparently,
there is a clear need for developing measures for sub-

jective experiences of attention. Thus, a first tentative
set of attentional scales was designed in the present
work.

We aimed to cover both stimulus-driven and
voluntary attentional responses using three scales:
conspicuousness, interestingness, and concentration.
Merriam-Webster21 defines conspicuous as “attracting
attention,” while interesting is defined as “holding the
attention.” Concentration is defined as the “direction of
attention to a single object.” Distraction can be seen as its
opposite, as Merriam-Webster21 defines it as “to draw or
direct (as one’s attention) to a different object or in dif-
ferent directions at the same time.” These concepts have
similar meanings in the Finnish language.22

Based on these definitions, conspicuous objects are
more likely to affect stimulus-driven (i.e., exogenous)
processes, while voluntary concentration should reflect
voluntary (i.e., endogenous) processes. Strong conspicu-
ous stimuli should also act as distractors and negatively
affect voluntary concentration. Finally, ratings of inter-
estingness should reflect how intensely the stimulus
holds the attracted attention (i.e., the intensity of both
stimulus-driven and voluntary processes).

We settled on the three dimensions for measuring
attention-related experiences. The nine-point bipolar
self-report scales in Finnish ranged from inconspicuous
(Fin. huomiota herättämätön) to conspicuous (huomiota
herättävä), from uninteresting (mielenkiinnoton) to
interesting (mielenkiintoinen), and from distracting
(häiritsee keskittymistä) to assisting (auttaa keskittymään)
concentration. The midpoint of each scale represented
a neutral experience (e.g., neither inconspicuous nor
conspicuous).

In addition to subjective experiences, emotional and
attentional stimulation is known to affect several physi-
ological processes, including heart activity, facial muscle
activity, and skin conductance.11,23 A well-tried measure
of emotion-related facial activity is electromyography
(EMG) which reflects the electrical activity of muscles.
Specifically, the activity of zygomaticus major muscle
(activated when smiling) has been shown to decrease
during negative and to increase during positive emo-
tional experiences.24 The activity of corrugator supercilii
muscle in the forehead (activated when frowning) varies
with emotional valence in the opposite manner. How-
ever, other social and cognitive processes (e.g., affiliation
with the expresser) also affect facial activity.25 Thus, mea-
sures of facial activity (e.g., EMG) are not fully specific
to emotional phenomena.

Similarly, heart rate (HR) measures are also sensitive
to many types of emotional and cognitive responses.

............................................................................................
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A series of studies has shown that the mean HR first
decelerates during most emotional stimulations, but
the following pattern of accelerations and decelerations
varies between different types of positive and neg-
ative stimuli.11,23 Positive visual stimuli have evoked
larger peak accelerations, while negative stimulation has
evoked greater initial decelerations of the HR. Generally,
HR deceleration can be seen as an orientation response
that reflects a heightened level of attention, especially
during negative stimulation.11,23 Acceleration of the HR,
on the other hand, has been linked with preparation for
action. Thus, mean HR may provide a relatively unintru-
sive measure that suggests the level of attention versus
action.

In the present work we studied the effects that virtual
proximity and facial expressions of embodied agents can
have on cognitive and emotional processes. First, par-
ticipants viewed a female and a male character in three
different sizes and with either an unpleasant, a neutral,
or a pleasant facial expression. HR and facial EMG activ-
ity were measured during this session. Then, participants
viewed the stimuli again and reported their experiences
using six bipolar scales after each stimulus. The first three
scales measured the three-dimensional emotion space of
valence, arousal, and dominance. The other three scales
of conspicuousness, concentration, and interestingness
aimed to measure attentional effects of the stimuli (i.e., a
subjective attentional space). Principal component anal-
ysis (PCA) was used to explore the structure of the ratings
in relation to the theorized concepts of stimulus-driven
and voluntary attention.

Methods

Participants

Fifteen female and 15 male subjects participated in the
experiment. The participants’ mean age was 25.1 years
ranging from 19 to 45 years. All participants had normal
or corrected to normal vision and normal heart function-
ing by their own reports. The acquisition of the HR data
failed for two participants (one female and one male)
who were excluded from all analyses.

Equipment

HR was measured with a Tunturi photoplethysmo-
graphic (PPG) sensor attached to the earlobe. Signal was
sampled at 500 Hz using a Quatech DAQP-16 A/D-card
and Windows XP.

Facial EMG was registered from the left side of the
face above the corrugator supercilii and zygomaticus major
muscle sites using Ag–AgCl sintered electrodes. A pair
of electrodes was attached below and above the right eye
to detect eye blinks. The ground electrode was over the
mastoid bone and an active reference on the forehead
close to the center of the hairline. Guidelines of Frid-
lund and Cacioppo were followed.26 EMG and blink data
were acquired using Neuroscan SynAmp2TM amplifiers
and a server computer. Data were stored by the computer
registering PPG data and connected to the Neuroscan
server.27 Passband for EMG was 0.1–1 kHz, amplifica-
tion 2010 times, and sample rate 5 kHz. Passband for
blinks was 0.05–30 Hz and off-line highpass from 10 Hz.
All electrode impedances were below 10 k�.

Stimuli were presented with E-Prime© software on
a 19-inch CRT monitor with a resolution of 1024 × 768
pixels.28 E-Prime© sent stimulus onset and offset mark-
ers through a serial cable to the Quatech A/D-card.

Stimuli

Small facial cues and full-body agents were designed
in order to imitate a real person in every-day
human–human interaction (i.e., fully visible body and
non-exaggerated facial expressions). Two (i.e., female
and male) realistic humanlike characters with identi-
cal body postures (Figure 1 a–c) created by Cantoche29

were used as stimuli. The agents were displayed as static
images in three different heights of 9, 18, and 27 cm
at a distance of 50 cm. The character displayed either
an unpleasant, a neutral, or a pleasant facial expres-
sion. Thus, there was a total of 18 stimuli (2 agents × 3
sizes × 3 expressions). Ten people each first viewed either
an unpleasant, a pleasant, or a neutral character. The rest
of the stimuli were in random order.

Procedure

First, the sound-attenuated and electro-magnetically
shielded laboratory was introduced to the participant.
A cover story told that the study aimed to investigate
changes in skin temperature. Then, the participant was
seated at a distance of about 50 cm from the monitor and
the electrodes were attached, including a dummy elec-
trode on the back of the left hand in order to support the
cover story. Participant was also told that the PPG sensor
was used to isolate measurement artifacts. EMG and PPG
sensors were attached to head-boxes in the same room.

............................................................................................
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Figure 1. The male character in small size displaying (a) neu-
tral, (b) unpleasant, and (c) pleasant expressions. Lower bodies
for (b) and (c) were identical to (a). Printed by permission of

Cantoche.29

Then, the participant viewed the stimuli. Participants
were instructed to relax and breathe calmly. Each stimu-
lus was centered on a white background. A 30-second
long stimulation was used to allow low frequency
changes to the HR, although the mean HR responds to
visual stimulation in a few seconds.23 There were 10-
second long intervals between consecutive stimuli. The
first stimulus was preceded with an interval of 30 sec-
onds. After the last stimulus was viewed, sensors were
detached.

Next, the participant rated the stimuli using six bipo-
lar nine-point scales of experienced emotional valence,
arousal, dominance, conspicuousness, interestingness,
and concentration. The scales were administered on
paper and participants were instructed to rate their own
subjective experiences. Ratings were self-paced to allow
carefully considered responses. The participant could
move on to the next stimulus by pressing the left but-
ton of a computer mouse. The stimuli were in random
order. Finally, the participant was debriefed after rating
all the stimuli. The session lasted about one hour.

Data Analysis

HR data were extracted from PPG data as follows. First,
HR data were non-uniformly sampled as inter-beat inter-
vals. Then, the data were re-sampled at 5 Hz using a
tachiogram.30 EMG data were analyzed by averaging
rectified EMG sample values. Potential artifacts were
removed from the data by discarding samples taken
when blink activity exceeded 50 µV. Mean HR for the
whole stimulus and mean EMG for the first 5 seconds
from the stimulus onset was computed using a one-
second prestimulus baseline correction.

The intended categories (i.e., unpleasant, neutral,
and pleasant) of expressions were confirmed with
a manipulation check using a 2 × 2 × 3 × 3 (partici-
pant’s gender × agent × expression × size) mixed-model
repeated measures analysis of variance (ANOVA) on
valence ratings.

Next, subjective ratings and mean physiological
responses were within-subject standardized. Standard-
ization is often used to correct different ranges
of responses between participants and measurement
sessions.31 However, standardization (i.e., z-scores) of
physiological measures may misrepresent results, if the
relative order of averaged responses is not preserved.
Thus, raw scores for physiological measures are reported
as recommended by Fridlund and Cacioppo.26

Then, PCAs were applied to the rating scales. Compo-
nents with eigenvalues statistically significantly over 1.0
were identified with bootstrapping (n = 504, rep. = 2000,
p < 0.05) and factor scores extracted.32

Finally, 3 × 3 (facial expression × size) within-subject
repeated measures ANOVAs were performed on HR, cor-
rugator supercilii, and zygomaticus major EMG, and PCA
scores. One-way ANOVAs were used for post hoc simple
effect analyses. Post hoc pairwise comparisons were per-
formed using Fisher’s least significant difference (LSD)
for paired samples t-tests [33, p. 368]. ANOVAs were
Huynh–Feldt corrected.

Results

Manipulation Check

The mean ratings of valence were congruent with the
facial expression of the agent (Figure 2). Mean valence
ratings were lowest for unpleasant, close to neutral (i.e.,
value of 5) for neutral, and highest for pleasant facial
expressions. Further, facial expressions were rated con-
sistently regardless of the size of the agent.

............................................................................................
Copyright © 2010 John Wiley & Sons, Ltd. 218 Comp. Anim. Virtual Worlds 2010; 21: 215–224

DOI: 10.1002/cav

APPENDIX D: PUBLICATION IV

132



VIRTUAL PROXIMITY AND FACIAL EXPRESSIONS OF ECA
...........................................................................................

Figure 2. Mean valence ratings and Standard Error of the
Mean (SEM) for different facial expressions and sizes of the

agents.

The 2 × 2 × 3 × 3 mixed-model ANOVA for ratings
of valence showed statistical significance for the main
effects of facial expression F (2, 52) = 48.46, p < 0.001,
size F (2, 52) = 4.69, p < 0.05, and the interaction effect
of facial expression and size F (4, 104) = 2.54, p < .05.
Main and interaction effects of participant’s gender and
agent were not statistically significant. The interaction
effect was likely due to the difference in the effect of size
within each expression (Figure 2). Agents with unpleas-
ant expressions were rated the more unpleasant the
larger they were, whereas within neutral and pleasant
expressions the effect was curvilinear.

Post hoc comparisons showed that valence ratings were
lower for unpleasant than neutral t(27) = 9.18, p < 0.001,
and pleasant expressions t(27) = 7.23, p < 0.001. Valence
ratings were higher for pleasant than neutral expressions
t(27) = 3.48, p < 0.01. Valence ratings were higher for
medium sized than large agents t(27) = 2.99, p < 0.01.
Other pairwise comparisons were not statistically signif-
icant.

Principal Component Analysis

PCA of the emotion space (i.e., valence, arousal, and
dominance) produced one component with eigenvalue
statistically significantly over 1.0. The component was
directly related to emotional valence and dominance,
and inversely related to arousal (Table 1). We labeled the
component as comfort that ranges from an alerting (i.e.,
unpleasant, aroused, and dominating) to a comfortable
(i.e., pleasant, calm, and controlled) experience.

PCA of the attention-related ratings (i.e., conspicuous-
ness, concentration, and interestingness) produced two
components with eigenvalues statistically significantly
over 1.0. The first component was directly related to con-
spicuousness and interestingness, and inversely related
to concentration (Table 2). Stimuli with high scores of
this component strongly attracted attention (i.e., were

Component

1 2 3

Eigenvalue 1.933a 0.598 0.469

Valence 0.787a −0.536a 0.306a

Arousal −0.837a 0.018 0.546a

Dominance 0.783a 0.557a 0.277a

Table 1. Component matrix of emotional scales.
ap < 0.05

Component

1 2 3

Eigenvalue 1.477a 1.105a 0.418

Conspicuousness 0.900a −0.050 0.434a

Concentration −0.471a 0.825a 0.313a

Interestingness 0.668a 0.649a −0.364a

Table 2. Component matrix of attentional
scales.

ap < 0.05

conspicuous), held attention (i.e., were interesting), and
distracted concentration. Stimuli with low scores were
rated as inconspicuous and uninteresting. Thus, the com-
ponent was labeled as stimulus-driven attention.

The second component was positively related to both
concentration and interestingness. Thus, stimuli with
high scores of this component were voluntarily concen-
trated on and they held attention more intensely than
stimuli with lower scores. We labeled the component as
voluntary attention.

Emotion and Attention Scores

Table 3 shows the results of the 3 × 3 (facial expres-
sion × size) ANOVAs for comfort, stimulus-driven
attention, and voluntary attention scores.

The main effects of expression and size on com-
fort scores were statistically significant. Figure 3 shows
that the scores conformed to the agent’s expression.
Unpleasant expressions received a negative comfort
score, neutral expressions received a higher score, and
pleasant expressions received the highest positive score.
Figure 3 also shows that comfort scores were lower when
the agent was larger.
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Expression F(2,54) Size F(2,54) Expression × Size F(4,108)

Comfort 96.39c 16.00c 1.15
Stimulus-driven 36.09c 64.63c 6.81b

Voluntary 25.39c 6.14b 3.71a

Table 3. ANOVA results for comfort, stimulus-driven attention, and voluntary attention scores.
ap < 0.01
bp < 0.001
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Figure 3. Mean comfort scores (and SEM) for different facial
expressions and sizes of the agents.

Post hoc pairwise comparisons between expressions
showed that comfort scores were significantly lower for
unpleasant than neutral, t(27) = 13.89, p < 0.001, and
pleasant expressions, t(27) = 10.45, p < 0.001, and sig-
nificantly lower for neutral than pleasant expressions,
t(27) = 2.90, p < 0.05. Post hoc pairwise comparisons
between sizes showed that comfort scores were signifi-
cantly higher for small than medium size agents, t(27) =
2.64, p < 0.05, and large agents, t(27) = 4.52, p < 0.001,
and significantly higher for medium size than large
agents, t(27) = 3.85, p < 0.001.

For stimulus-driven attention scores, Table 3 shows
statistically significant main effects of expression and
size. The interaction of expression and size was also
statistically significant. Figure 4 shows that the mean
stimulus-driven attention scores were higher for larger
agents. The effect was similar within each expression.
However, large unpleasant agents had a markedly high
score, whereas small neutral and pleasant agents had
a markedly low score. Figure 4 also shows that the
valence of the agent’s facial expression had a curvilin-
ear effect within each size. Unpleasant (i.e., negative
valence) agents received the highest mean score, neu-
tral agents received the lowest score, and pleasant (i.e.,
positive valence) agents received a slightly higher mean
score than neutral agents.

Figure 4. Mean stimulus-driven attention scores (and SEM)
for different facial expressions and sizes of the agents.

The interaction effect most likely reflected the
markedly low and high mean scores of some agent
categories (e.g., large unpleasant agents). However,
we performed within-size and within-expression sim-
ple effect analyses in order to confirm the main
effects. Simple effect of expression was significant
within small, F (2, 54) = 29.24, p < 0.001, medium size,
F (2, 54) = 12.10, p < 0.001, and large agents, F (2, 54) =
17.99, p < 0.001. Simple effect of size was significant
within unpleasant, F (2, 54) = 19.074, p < 0.001, neutral,
F (2, 54) = 31.35, p < 0.001, and pleasant expressions,
F (2, 54) = 56.04, p < 0.001. As all simple effects were sta-
tistically significant, we proceeded to post hoc pairwise
comparisons.

Post hoc comparisons between expressions showed
that stimulus-driven attention scores were significantly
higher for unpleasant than neutral, t(27) = 7.54, p <

0.001, and pleasant agents, t(27) = 5.48, p < 0.001, and
significantly lower for neutral than pleasant agents,
t(27) = 3.32, p < .05. Post hoc comparisons between sizes
showed that stimulus-driven attention was significantly
lower for small than medium size agents, t(27) = 5.83,
p < 0.05, and large agents, t(27) = 10.98, p < 0.001, and
significantly lower for medium than large sized agents,
t(27) = 5.77, p < 0.001.

For voluntary attention scores, Table 3 shows statisti-
cally significant main effects of expression and size. The
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Figure 5. Mean voluntary attention scores (and SEM) for
different facial expressions and sizes of the agents.

interaction of expression and size was also statistically
significant. Figure 5 shows that the effect of agent size on
voluntary attention scores was different between expres-
sions. Unpleasant agents received lower scores the larger
they were, whereas neutral and pleasant agents received
highest scores when they were medium sized. On the
other hand, the effect of agent’s facial expression was con-
sistent within each size. Unpleasant agents received the
lowest score, neutral agents received a higher score, and
pleasant agents received the highest mean score within
each size.

Figure 5 suggests that the interaction effect reflected
differences in response to size between different facial
expressions. However, we performed both within-
expression and within-size simple effect analyses in
order to test both main effects. The simple effect of size
was statistically significant within the unpleasant expres-
sion, F (2, 54) = 4.63, p < 0.05. The simple effect of size
was not statistically significant within neutral and pleas-
ant expressions. Post hoc pairwise comparisons showed
that voluntary attention scores were significantly lower
for large than small unpleasant agents, t(27) = 2.92, p <

0.01. Other pairwise comparisons were not statistically
significant.

The simple effect of expression was significant
within small, F (2, 54) = 15.25, p < 0.001, medium size,
F (2, 54) = 19.66, p < 0.001, and large agents, F (2, 54) =
11.60, p < 0.001. As within-size simple effects of expres-

Standardized Raw Value (µV or BPM)

Corrugator supercilii EMG

Unpleasant −0.17 ± 0.08 −0.07 ± 0.05
Neutral 0.09 ± 0.07 0.05 ± 0.06
Pleasant 0.09 ± 0.06 0.06 ± 0.05

HR

Small 0.02 ± 0.05 −0.39 ± 0.94
Medium −0.12 ± 0.05 −1.70 ± 0.92
Large 0.10 ± 0.05 0.26 ± 0.37

Table 5. Mean (± SEM) changes from baseline in
corrugator supercilii EMG for different expressions

and HR for agent sizes.

sion were significant, we proceeded to post hoc pairwise
comparisons. Pairwise comparisons showed that vol-
untary attention score was lower for unpleasant than
neutral, t(27) = 5.53, p < 0.001, and pleasant expres-
sions, t(27) = 5.85, p < 0.001. Voluntary attention score
was higher for pleasant than neutral agents, t(27) = 2.27,
p < 0.05.

Physiological Responses

Table 4 shows the results of the 3 × 3 (facial expres-
sion × size) ANOVAs for standardized corrugator super-
cilii EMG, zygomaticus major EMG, and HR.

The main effect of expression on corrugator supercilii
EMG was statistically significant. Table 5 shows that
unpleasant agents suppressed, while neutral and pleas-
ant agents increased corrugator supercilii EMG activity.

Post hoc pairwise comparisons showed that corrugator
supercilii EMG was significantly lower during unpleasant
than pleasant expressions, t(27) = 2.14, p < 0.05. Other
pairwise comparisons were not statistically significant.

Expression F(2,54) Size F(2,54) Expression × Size F(4,108)

Corrugator 3.25∗ 0.88 0.17
Zygomaticus 1.11 2.36 0.17
HR 0.34 3.24∗ 1.15

Table 4. ANOVA results for corrugator supercilii EMG, zygomaticus major EMG, and HR.
*p < 0.05
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For HR, Table 4 shows statistically significant main
effect of size. Table 5 shows that HR clearly decelerated
in response to medium sized agents and accelerated in
response to large agents. Raw HR responses to small
agents in beats per minute (BPM) show some variability,
but standardized scores more clearly suggest that HR did
not markedly respond to small agents.

Post hoc pairwise comparisons showed that HR was
significantly lower in response to medium size than large
agents, t(27) = 2.45, p < 0.05. Other pairwise compar-
isons were not statistically significant.

Discussion

Our results showed that both the expressions and
the virtual proximity of embodied agents had statisti-
cally significant effects on both subjective ratings and
physiological activity. According to subjective ratings,
unpleasant agents were more alerting (i.e., unpleasant,
arousing, and dominating) and attracted more stimulus-
driven attention than neutral and pleasant agents. On
the other hand, pleasant agents were rated as the most
comforting (i.e., pleasant, calming, and controlled) and
attracted more voluntary attention than unpleasant and
neutral agents.

The size of the agent (i.e., apparent distance) affected
so that small agents were rated as comforting, while
large agents were rated as alerting. Agents also attracted
more stimulus-driven attention the larger they were. A
closer proximity intensified the effect of facial expres-
sions, as ratings of voluntary attention decreased even
lower when unpleasant agents increased in size.

HR was averaged over each stimulus presentation.
This analysis revealed HR deceleration in response to
medium size agents and acceleration in response to
large agents. Small agents did not markedly change
the HR. Large agents also received the highest mean
score of stimulus-driven attention and they were rated
as the most alerting. These subjective responses and the
observed HR acceleration may both be linked with the
need to prepare for action.23

These results are in line with previous work showing
that larger or closer negative stimulation, in gen-
eral, evokes accentuated subjective and physiological
responses.11 These responses are tied to the basic
neurocognitive systems that direct us to approach pos-
itive and withdraw from negative stimuli.17 However,
although these basic tendencies are thought to be uni-
versal, there is evidence that evaluations of virtual facial
expressions are culture-dependent to some extent.34

Thus, several factors (e.g., culture) should still be con-
sidered when designing artificial facial cues in order to
convey the intended emotional tone (e.g., pleasant).

The present corrugator supercilii EMG responses were
opposite to the emotional tone of the agent, as unpleasant
agents suppressed and pleasant agents increased corru-
gator supercilii EMG activity. Similar counter or neutral
responses to facial cues have been previously reported,
for example, when the observer does not affiliate with
the expresser (due to, e.g., opposite gender).25 However,
at least our manipulation check did not show any signif-
icant gender effects. Thus, the exact nature of the present
facial responses is not fully clear.

In sum, our results showed that the simulated emo-
tional tone and bodily distance to a virtual agent
activated both subjective and physiological responses.
Thus, virtual computer agents have the means for
effectively regulating the human psychophysiological
emotion and attention response systems. It is widely
accepted that these systems are central in human moti-
vational behavior.14,23 In conclusion, fine grained and
vivid emotional and social cues may become a major
tool for future interfaces to engage and motivate their
users.
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Voluntary Facial Activations Regulate Physiological Arousal and
Subjective Experiences During Virtual Social Stimulation
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Exposure to distressing computer-generated stimuli and feedback of physiological changes during exposure have been effective in

the treatment of anxiety disorders (e.g., social phobia). Here we studied voluntary facial activations as a method for regulating
more spontaneous physiological changes during virtual social stimulation. 24 participants with low or high level of social anxiety
activated either the corrugator supercilii (used in frowning) or the zygomaticus major (used in smiling) facial muscle to keep
a female or a male computer character walking towards them. The more socially anxious participants had higher level of skin

conductance throughout the trials as compared to less anxious participants. Within both groups, short-term skin conductance
responses were enhanced both during and after facial activations, and corrugator supercilii activations facilitated longer term
electrodermal relaxation. Zygomaticus major activations had opposite effects on subjective emotional ratings of the less and the

more socially anxious. In sum, voluntary facial activations were effective in regulating emotional arousal during virtual social
exposure. Especially corrugator supercilii activation was found to be a promising method for facilitating autonomic relaxation.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems—human factors; J.4 [Social and
Behavioral Sciences] psychology; H.5.2 [Information Interfaces and Presentation]: User Interfaces—input devices and
strategies

General Terms: Experimentation, Human Factors
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1. INTRODUCTION

Exposure to virtual stimulation has proven to be an effective method for overcoming excessive anxiety and
fears of, for example, spiders, flying, and small confined places (i.e., claustrophobia) [North et al. 1998;

This study was financially supported by the Graduate School in User-Centered Information Technology and the Academy of
Finland (project number 1115997). Author’s addresses: T. Vanhala, Current address: VTT Technical Research Centre of Finland,
P.O. Box 1300, 33101 Tampere, Finland; V. Surakka, Research Group for Emotions, Sociality, and Computing, Tampere Unit for

Computer-Human Interaction (TAUCHI), School of Information Sciences, 33014 University of Tampere, Finland; M. Courgeon,
J.-C. Martin, Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI), National Center for Scientific
Research (CNRS), Paris South XI University, BP 133, 91403 Paris, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to

lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2012 ACM 1544-3558/2012/-ART0 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 0, Publication date: 2012.

APPENDIX F: PUBLICATION VI

154



0:2 • T. Vanhala et al.

Rothbaum et al. 2000; Gerardi et al. 2010]. In one traditional treatment of anxiety disorders (e.g., phobias),
a person is gradually exposed and desensitized to increasing levels of distressing stimulation, for example,
by reducing the distance to a real spider [Foa and Kozak 1986; Öst 1989]. Computer-generated virtual
stimulation has several advantages as compared to traditional face-to-face therapy. For example, the level of
exposure (e.g., detailed movements of a virtual spider) and even the environment (e.g., simulated weather
during a flight) can be controlled at a very fine-grained level [Wiederhold and Rizzo 2005; Vanhala and
Surakka 2008; Courtney et al. 2010; Gerardi et al. 2010]. A recent meta-analysis of controlled studies on
virtual reality exposure therapy showed that virtual reality exposure has been slightly more efficient in
affecting the outcomes of treatment (i.e., reducing a variety of phobic symptoms) as compared to in vivo
exposure [Powers and Emmelkamp 2008]. The relatively high control over stimulus exposure could in part
explain why virtual stimulation is so effective. Further, some potent therapeutic virtual setups would be very
hard or practically impossible to arrange in traditional therapy. For example, virtual reality has enabled
vivid and immersive re-enactments of traumatizing events, which has helped people to overcome their post-
traumatic stress reactions originating from such events (e.g., car accidents and terrorist bombings) [Beck
et al. 2007; Josman et al. 2008].

One particularly challenging form of anxiety disorders is social phobia, that is, excessive fears related to
social interaction. Social phobia is characterized by and is in part diagnosed based on avoidance of social
situations and inhibition of social behavior [Mick and Telch 1998; Connor et al. 2000; Gerardi et al. 2010;
Rinck et al. 2010]. This means that suitable settings for treating social anxiety are difficult to arrange in
regular face-to-face therapy, as the person may avoid social contact in the first place and she or he may
be unwilling to participate in group-therapy [Olfson et al. 2000; Anderson et al. 2003]. For these reasons,
it is not surprising that social phobia remains largely untreated in the general population [Kessler 2003].
However, there is evidence that virtual reality exposure may be more acceptable than real-world exposure
[Garcia-Palacios et al. 2007]. Thus, virtual reality environments could support a person to seek treatment.

Exposure treatment of social phobia is a relatively recent approach, but the results so far have been
promising [Anderson et al. 2003]. For example, public speaking anxiety has been successfully treated using
exposure to a group of peers [Heimberg et al. 1990]. There is also evidence that virtual computer-generated
stimulation can be similarly effective in inducing anxiety, for example, when speaking to a virtual crowd
of computer-generated characters [James et al. 2003; Anderson et al. 2003; Gerardi et al. 2010]. Further,
continued exposure to speaking in front of a virtual audience has been found both to reduce self-reported
public speaking anxiety and to decrease the mean heart rate during a speech [Harris et al. 2002].

More generally, several studies have found that human responses to computer-generated social cues (e.g.,
the facial expressions of computer-generated human characters) are similar to those in human-human in-
teraction [Nass et al. 1994; Pertaub et al. 2002; Zanbaka et al. 2007; Beale and Creed 2009]. For example,
simulated distance to a virtual human-like character has been found to affect how dominant the charac-
ter appears to the participants [Partala et al. 2004; Vanhala et al. 2010]. In another recent study, virtual
characters approached participants who were instructed to stand still in the virtual environment [Llobera
et al. 2010]. It was found that their physiological arousal after the approach was higher when the virtual
characters came closer. Similarly, in a study using an opposite setup, it was found that more socially anxious
participants remained at a farther distance from virtual human characters that they could freely approach
in a virtual reality environment [Rinck et al. 2010]. Based on the above, virtual computer systems seem to
offer controlled stimulation that can affect human social processes, even to the level of inducing significant
social anxiety, and could thus also be used as a part of exposure therapy.

A relatively simple computer-assisted setup for controlling the level of exposure to distressing virtual
stimuli could be based on the variation of simulated distance to a stimulus. One of the strongest cues of
distance is the retinal size of the visual object, that is, larger images appear to be closer [Loftus and Harley
2005]. In general, large images or images that appear to approach the person have been found to accentuate

ACM Transactions on Applied Perception, Vol. 9, No. 1, Article 0, Publication date: 2012.

PUBLICATION VI

155



Facial Activations Regulate Arousal • 0:3

both subjective and physiological arousal [Reeves et al. 1999; Codispoti and De Cesarei 2007; Vanhala et al.
2010]. In particular, closer distance to a feared object (e.g., a snake) accentuates the subjective (e.g., self-
reported level of fear) and physiological (e.g., heart rate) responses to the stimulus [Teghtsoonian and Frost
1982]. Impressive results have been achieved in the treatment of phobias with a specific object (e.g., spiders)
by instructing participants to cope with an increasingly closer distance to a distressing stimulus [Öst 1989;
Hellström and Öst 1995]. In many cases a single session of about 2 hours has been sufficient to suppress the
excessive fear and allow the person to function normally in her or his daily life.

There is evidence that monitoring and feedback of physiological reactions can further improve the ef-
fectiveness of exposure therapy [Gatchel and Proctor 1976; Wiederhold and Wiederhold 2003; Wiederhold
and Rizzo 2005]. The person may be taught methods for voluntarily regulating her or his physiological
processes (e.g., heart rate and blood pressure) prior to the therapy, which may then enable her or him to
gain awareness of and control over excessive reactions during therapy [Gatchel and Proctor 1976; Hellström
and Öst 1995; Gerardi et al. 2010]. Another option is to provide continuous feedback about physiological
processes during the exposure, which could be especially suitable in an already computerized setup (i.e.,
virtual exposure). There is some evidence that such real-time feedback about the physiological processes
could improve the effects of virtual exposure therapy. For example, in one follow-up study participants who
received visual feedback about their physiology during virtual exposure therapy for the fear of flying were all
able to fly without medication 3 years after the treatment [Wiederhold and Wiederhold 2003]. Physiological
measurements can also provide additional information about the progress of therapy to the therapist. For
example, heart rate during exposure therapy can be expected to decrease from session to session as treatment
progresses [Grayson et al. 1982].

In traditional therapy without technological aids, the progress of therapy is typically assessed by verbal
reports. Such assessments are necessary for deciding when the person is ready for higher levels of exposure
(e.g., take a step closer to the spider) and when support should be given, for example, by guided relaxation.
A common measure used in guiding a therapeutic session is the Subjective Units of Discomfort (SUD) scale
which is a person’s verbal assessment of her or his experienced distress, for example, on a scale from 0
(i.e., none) to 100 (i.e., maximum) [Wiederhold and Wiederhold 2003; Krijn et al. 2004]. A more detailed
approach to measuring emotional responses divides them into three components and corresponding bipolar
rating scales: emotional valence (i.e., from unpleasant to pleasant), arousal (i.e., from relaxed to aroused),
and dominance (i.e., from being controlled to being in control of the stimulus or situation) [Bradley and
Lang 1994]. However, it is clear that more detailed subjective measures of emotion (e.g., the use of several
rating scales) can interfere the process of systematic desensitization, for example, by distracting attention
from the therapy itself.

In comparison to subjective ratings of emotional experiences, physiological measures have been suggested
as relatively non-invasive methods for monitoring emotional processes during exposure therapy and controlled
stimulation in general [Ward and Marsden 2003; Wiederhold and Wiederhold 2003; Vanhala and Surakka
2008]. For example, anxiety related emotional arousal has long been associated with changes in electrodermal
activity (EDA), that is, changes in the function of sweat glands as measured by the conductivity of electricity
on skin [Schlosberg 1954; Dawson et al. 2000]. Due to the high specificity of EDA measures, some researchers
have even suggested using them as direct measures of anxiety [Fowles 1988; Dawson et al. 2000]. EDA is an
elecrophysiological measure that specifically indicates the level of sympathetic activation of the autonomic
nervous system (ANS). Higher level of sympathetic activation is typically associated with higher overall skin
conductance level (SCL), enhanced increases in skin conductance after the onset of a stimulus (i.e., event-
related skin conductance response, ER-SCR), increased frequency of skin conductance changes in the absence
of a specific stimulus (i.e., non-specific skin conductance responses, NS-SCR), and increased magnitude of
NS-SCR [Dawson et al. 2000]. ER-SCR can also be seen as a part of the orientation response, that is, greater
magnitude of response is typically associated with enhanced attention to the eliciting stimulus [Frith and
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Allen 1983; Dawson et al. 2000]. More commonly EDA measures have been tightly connected with arousal
induced by emotionally relevant (i.e., pleasant or unpleasant) visual and auditory stimuli [Witvliet and Vrana
1995; Bradley 2000; Bradley et al. 2001; Mauss and Robinson 2009].

Perhaps the most well-established physiological measure associated with emotional valence is facial elec-
tromyography (EMG) which reflects the electrical activity of facial muscles [Larsen et al. 2003]. The activity
of zygomaticus major muscle in the cheek (activated when smiling) is known to typically decrease during
unpleasant and increase during pleasant emotional experiences. The activity of corrugator supercilii mus-
cle in the forehead (activated when frowning) varies with emotional valence in the opposite manner. More
generally, it has been suggested that these muscles are common to many facial expressions of positive (e.g.,
zygomaticus major activations in pleasure and contentment) and negative (e.g., activations of forehead mus-
cles in distress and fear) emotion [Ekman 1979; 1993; 2004]. In the context of computer systems, automatic
analysis of the changes in EMG activity can provide real-time estimates of the experienced emotional va-
lence. For example, our recent system was able to match its EMG-based estimations of emotional valence
(i.e., negative or positive) to the participants’ ratings of subjective emotional experience with accuracies of
over 70% for picture stimulation and over 80% for video stimulation, although the accuracy of the system
did vary quite much between participants [Partala et al. 2006]. Average accuracies ranged subject-wise from
47.3% to 87.1% for picture stimuli and from 41.6% to 85.0% for video stimuli. Thus, although in general
there is a systematic pattern in facial responses to negatively and positively valenced stimuli, individual
differences in the association of emotion and facial activity could be studied in further detail (e.g., which
characteristics between participants could account for such differences).

Similar to more spontaneous activity, voluntary activations of facial muscles are also associated with specific
effects on emotional experience and physiological measures [Levenson et al. 1990; Coan et al. 2001]. In one
series of experiments, Levenson and his colleagues [Levenson et al. 1990; Levenson et al. 1992; Levenson and
Ekman 2002] instructed participants muscle-by-muscle to voluntarily produce facial configurations associated
with certain emotions (e.g., happiness or anger). For example, the facial configuration for anger required the
participant to activate the corrugator supercilii muscle and five other facial muscles. The results showed that
the voluntary activations induced significant numbers of self-reported emotional experiences that matched
the facial configuration and specific physiological differences between emotions (e.g., fear increased skin
conductance more than happiness). In our own studies, we have found that computer-assisted activations (i.e.,
on-screen instructions and visual biofeedback) of either the zygomaticus major or the corrugator supercilii
muscle can significantly affect concurrent emotion related ANS activity in terms of heart rate and heart rate
variability [Vanhala and Surakka 2007].

There is some debate whether such physiological responses are distinct patterns of physiological activity
associated with a set of discrete emotions (e.g., fear and happiness) [Boiten 1996; Rainville et al. 2006; Mauss
and Robinson 2009]. However, evidence for the correlation of autonomic activity and emotional dimensions
(e.g., positively and negatively valenced emotions) has been quite consistently found, also when reviewing
the effects of voluntary activations [Cacioppo et al. 2000; Levenson and Ekman 2002; Christie and Friedman
2004; Mauss and Robinson 2009]. In any case, taken at face value the above results indicate that voluntary
facial activations have significant physiological effects. In general, researchers see physiological changes as
one of the essential parts of emotion [Mauss et al. 2005]. Further, recent research suggests that both cognitive
and emotional knowledge may be fundamentally embodied, that is, physiological changes may be a core part
of all human information processing [Niedenthal 2007]. Thus, voluntary activations of facial muscles, which
are mainly controlled by the central nervous system, could provide means for significantly affecting more
spontaneous physiological processes, which are more tightly controlled by the ANS. This could also facilitate
control over heightened physiological activity which is a core part of excessive anxiety and fear [Connor et al.
2000; Wiederhold and Wiederhold 2003].

In summary, previous research suggests that computer-assisted systems can provide effective means for
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Table I. Gender distributions, mean ± standard error of the mean (S.E.M.),
minimum, and maximum values for the age and SPIN-FIN scores of all students and

the experiment groups
gender age SPIN-FIN test SPIN-FIN retest

group male female mean mean min max mean min max

All 59 27 24.2±.5 15.9±1.1 0 47
LSA 10 2 24.1±1.0 5.5±.8 1 8 4.1±.9 0 12
HSA 5 7 22.4±.8 32.2±2.8 22 47 36.3±2.2 12 51

regulating physiological arousal and subjective anxiety. Similar to in vivo exposure, virtual exposure has
been effective in evoking and reducing subjective and physiological responses to distressing stimulation.
Physiological monitoring and feedback has been found to further improve the outcome of such virtual expo-
sure. However, monitoring and voluntary regulation of physiological responses during exposure may require
effort and distract attention from the therapy itself. Perhaps voluntary facial activations could offer a more
seamless method for regulating physiology during therapy by using facial activity to control the exposure
itself, that is, without explicit biofeedback.

The present aim was to study whether voluntary facial activation could be used to regulate emotion
related subjective experiences and physiological arousal during artificial social stimulation. 24 participants
were recruited based on their level of social anxiety assessed with the Finnish translation of the Social Phobia
Inventory (SPIN-FIN) [Ranta et al. 2007]. During the experiment, participants viewed realistic human-like
female and male characters that were controlled by voluntary corrugator supercilii or zygomaticus major
activations. The characters appeared to walk closer towards the participant, stop at a close distance, and
deliver an arithmetic equation using speech synthesis. The participant was to attend to the equation, verbally
repeat it, and report whether the equation was correct or false. Skin conductance was measured during the
tasks to assess the level of arousal in relation to the level of social anxiety and the effects of facial activations.
Subjective ratings of emotional valence, arousal, and dominance were also collected before and after the facial
activations in order to investigate changes in subjective experiences.

2. METHODS

2.1 Participants

Voluntary participants were invited to the study based on their SPIN-FIN score. The SPIN-FIN questionnaire
was completed by 88 students at the Department of Computer Sciences, University of Tampere, Finland.
2 questionnaires were excluded due to incomplete data. The present study was one of several that were
offered for the students for partial course credit. Table I shows two groups of 12 participants each that were
recruited to the present experiment based on their SPIN-FIN score. The Low Social Anxiety (LSA) group
was recruited from the lower quartile of SPIN-FIN scores, while the High Social Anxiety (HSA) group was
recruited from the upper quartile of SPIN-FIN scores. Cut-off scores were at 8 points for the LSA group,
and at 22 points for the HSA group. This exceeded the suggested cut-off score of 19 points for screening
sub-clinical social phobia and social phobia using the SPIN and SPIN-FIN questionnaires [Connor et al.
2000; Ranta et al. 2007]. A SPIN-FIN retest was administered at the beginning of the experiment session
which was held 8–22 days after the first test. All participants had normal or corrected to normal vision. An
informed written consent was obtained from each participant before the experiment.

2.2 Materials

Female and male realistic humanlike characters in Figures 1 and 2 were used in the study. The characters were
presented using the Multimodal Affective and Reactive Character (M.A.R.C.) software [Courgeon et al. 2008].
M.A.R.C. is a platform which simulates a virtual human in real-time using high-quality graphical rendering
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Fig. 1. The female character standing at the initial pose, in mid gait, and at the closest distance.

of face and body using high resolution textures and 3D models (about 80,000 polygons on each character).
M.A.R.C. is designed to provide a controlled platform for studies of human perception [Courgeon et al. 2009].
In the present study, M.A.R.C. was used to simulate a person that walks towards the participant, stops at
a close distance, and speaks to the participant. M.A.R.C. produced eye blinking animations, automatic
lip-synchronization, and motion-capture based walking animation for the characters. The animations were
generated in real time so that, for example, if walking was paused at mid gait, the character returned to an
upright stance with feet on the ground.

The character was displayed on a white background, that is, no 3D environment was displayed in order to
encourage the participant to focus on the approaching behavior of the character. The character was set to
show a neutral facial expression throughout the experiment. The virtual camera was positioned so that each
character’s head would be approximately 23 cm high at the closest distance, while keeping the time it took
to walk from the initial distance to the closest distance equal between the characters. Thus, different camera
positions were used for the two characters. Initial heights of the characters at the onset of stimulation were
54 mm for the female and 49 mm for the male character. Starting at the initial distance and walking without
pauses, it took 8010 ± 70 ms for the character to reach the closest distance.

Festival speech synthesis (Finnish female and male voices) was used in creating verbal arithmetic tasks to
be answered by the participants. The aim was to direct attention to the artificial stimulation by requiring
participants to concentrate on the speech of the character. Further, the aim was to choose a task that
would be unlikely to confound the group-wise effects of the facial activation with the demands of the task.
Previous studies suggest that mental arithmetic is suitable for this purpose, as social anxiety does not
affect performance in such a task [Larkin et al. 1998; Gramer and Saria 2007]. The tasks were modeled
after previous studies using subtraction tasks that require moderate effort to answer correctly (e.g., Geary,
French, & Wiley, 1993). 18 pre-generated tasks were created by randomly choosing a two-digit number and
a one-digit number. The tasks were in the form of an equation where the one-digit number was subtracted
from the two-digit number. The right-side of the equation (i.e., difference) was either correct (e.g., 95 - 9 = 86;
10 equations), or incorrect so that the result was either smaller by one (4 equations) or greater by one (e.g.,
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Fig. 2. The male character standing at the initial pose, in mid gait, and at the closest distance.

74 - 3 = 72; 4 equations). The verbal expression of the character consisted of a sentence with an invariant first
part followed by the equation. For example, the character said “In my opinion, seventy-four minus three is
equal to seventy-two”. The duration of speech samples ranged from 5170 to 7270 ms. Speech samples for the
female and the male voice had equal duration (± 3.0 ms).

100 ms long sound tones for indicating the onset (1000 Hz tone) and offset (1100 Hz tone) of facial
activation tasks were created using sinusoidal wave and the Hanning window. All sound materials (i.e., tones
and speech samples) were in 16-bit 22.05 kHz mono audio.

2.3 Equipment

The experiment was performed at an electro-magnetically shielded and sound-attenuated laboratory. Partic-
ipants were seated at a distance of 50 cm from a 19-inch Dell 1908FPb flat-panel computer monitor that was
rotated to a vertical orientation (see Figure 3). Resolution of 1024×768 pixels was used. EMG was measured
using bipolar pre-gelled Ag-AgCl electrodes (Spes Medica 15×20 mm) placed above the corrugator supercilii
and the zygomaticus major muscle sites on the left side of the face. A reference electrode was placed on
the mastoid process behind the left ear. Guidelines of Fridlund and Cacioppo (1986) were followed in EMG
preparation.

EDA was measured from the non-dominant hand using Ag-AgCl sintered electrodes attached to the in-
termediate phalanges (i.e., second section) of index and middle fingers. Participants were instructed to wash
and carefully dry their hands before electrodes were attached. Grass Technologies EC 33 electrode paste was
used.

EMG and EDA were measured with a NeXus-10 physiological monitoring device (Mind Media B.V.) that
was connected to a laptop computer using a wireless Bluetooth communications link. The sample rates
were 2048 Hz for EMG and 256 Hz for EDA. EMG was analyzed according to common procedure as follows
[Tassinary and Cacioppo 2000]. Analog high-pass filter of .5 Hz was used and EMG was further digitally
pass-band filtered (7-th order Butterworth) from 20 to 500 Hz. Finally, a 500 ms moving average filter was
applied to rectified EMG samples in order to derive a sample-by-sample estimate of muscle tension.
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Fig. 3. The first author seated at a distance of 50 cm from the monitor while wearing the EMG and EDA electrodes.

An AKG CK 80 microphone placed at the base of the computer monitor was used in recording the partici-
pant’s speech. Mono audio was captured at 22.05 kHz with 16-bit resolution and stored without compression.
Sound materials were presented to the participant using Creative Cambridge Soundworks R© SW310 speak-
ers. The experiment was conducted using a single Dell E6410 laptop (Microsoft Windows XP SP3, Intel
i5 2.53 GHz CPU, 3 GB RAM, NVidia Quadro NVS 3100M) which ran the M.A.R.C. software and the ex-
perimental software that communicated with the M.A.R.C. software using UDP. The experimental software
registered and processed the EMG and EDA measurements and audio recordings in real-time. The software
was implemented in C++ using Microsoft Foundation Classes and DirectX R© technologies.

2.4 System Calibration

The system was adapted for each participant by measuring the minimum and maximum levels of EMG
activity during a separate calibration session prior to the experiment. The participant was given a mirror
to help in monitoring her or his own facial behavior and was instructed to practice the activation of both
facial muscles. A computer screen with two vertical black rectangles was shown to the participant during
the calibration. The height of the rectangles varied according to the measured values of EMG activity. The
left rectangle showed the level of corrugator supercilii activity in relation to the minimum and maximum
values registered during the calibration, whereas the right rectangle showed the level of zygomaticus major
activity. The registered range of EMG activity was used to define a threshold for facial activation tasks in
the experiment by adding 20 % of the registered range of activity to the minimum value. A horizontal red
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line was shown on both rectangles to indicate the current threshold.
The participant was guided to produce at least two maximal activations, first with the corrugator super-

cilii muscle and then with the zygomaticus major muscle, while relaxing between activations. After maximal
activations, the participant was informed about the required threshold and asked to produce longer activa-
tions that were maintained above the threshold level. The calibration session ended after several controlled
activations had been produced and the participant felt confident in her or his ability to voluntarily activate
each muscle at the required level.

2.5 Trials

Participants were to perform trials by activating one of the two muscles (i.e., corrugator supecilii or zy-
gomaticus major) or without activating either muscle. Each trial consisted of a relaxation period, a facial
activation task, and the response to a verbal arithmetic task. A single muscle, a single character, and a
randomly chosen arithmetic task was used in a trial.

First, participants were to relax their facial muscles for 6 consecutive seconds according to text instructions
displayed on the computer screen. When both the corrugator supercilii and the zygomaticus major muscles
were relaxed for more than 1 second, a counter starting from 5 and counting to 1 was displayed instead of
the instructions. If the level of EMG activity of either muscle exceeded the defined threshold, the counter
was reset and the instructions shown again.

After relaxation, the display faded in from a black screen to showing either the female or the male agent
standing at the initial distance. After one second, the 1000 Hz tone indicated the start of the facial activation
task. When the EMG activity of the muscle that was to be used in the task exceeded the defined threshold,
the character appeared to walk towards the participant. If the intensity level of EMG activity dropped and
remained for 250 ms below the threshold, the character stopped walking. The activity had to remain for 250
ms above the threshold to restart the movement. The third task condition did not require voluntary facial
activation, that is, the character started walking after the tone and did not stop until reaching the closest
distance.

When the character reached the closest distance, the 1100 Hz tone was sounded to indicate the end of the
facial task. After 3000 ms, the character started to speak with a synthesized voice. The character delivered
one of the verbal arithmetic tasks. The participant was to repeat the equation, and to say whether the
equation was correct or false. The experimenter was seated in another room during the trials and wore
headphones to listen and detect when the response was completed. Then, he used a keyboard to manually
proceed to the next trial. The screen faded to black and the next trial started from the relaxation period.

In addition to the experimental trials, the participant performed two training trials when the task condition
changed, that is, when another muscle was to be used in the following trial. Tasks without facial activation
were not trained. A training trial was similar to an experimental trial so that it consisted of a relaxation
period, followed by a facial activation task. A white ball displayed on a black background was controlled
with the facial activation, instead of the computer character. Similar to actual trials, the participant was to
bring the ball closer until the second tone was sounded. Arithmetic tasks were not further trained.

2.6 Procedure

First, the sound-attenuated and electro-magnetically shielded laboratory was introduced to the participant
and a written informed consent obtained. A cover story told that there were three computer characters in
the study. The purpose of the cover story was to provide a similar context for all subjective ratings by
leading the participant to believe that the experiment would continue after the final ratings were collected.
The SPIN-FIN retest was administered after the consent. Then, the participant was instructed to wash her
or his hands and seated in front of the computer monitor. EMG and EDA electrodes were attached. Next,
system calibration was performed. After calibration, the experimenter instructed the participant in how to
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Table II. The experimental procedure for each participant consisted of system calibration followed by subjective
ratings, training trials, and experimental trials. Different parts are shown in chronological order from left to right
group id

female character male character
LSA 1 C R TC EC R TZ EZ R EN R TC EC R TZ EZ R EN R
LSA 2 C R TZ EZ R TC EC R EN R TZ EZ R TC EC R EN R

. . .
LSA 6 C R EN R TZ EZ R TC EC R EN R TZ EZ R TC EC R
HSA 7 C R TC EC R TZ EZ R EN R TC EC R TZ EZ R EN R

. . .

HSA 12 C R EN R TZ EZ R TC EC R EN R TZ EZ R TC EC R

male character female character
LSA 13 C R TC EC R TZ EZ R EN R TC EC R TZ EZ R EN R

. . .
LSA 18 C R EN R TZ EZ R TC EC R EN R TZ EZ R TC EC R
HSA 19 C R TC EC R TZ EZ R EN R TC EC R TZ EZ R EN R

. . .

HSA 24 C R EN R TZ EZ R TC EC R EN R TZ EZ R TC EC R

id=participant’s identifier, C= calibration, R= subjective ratings, T= two training trials, E= three experiment trials; Sub-indices:

C= corrugator supercilii activation, Z= zygomaticus major activation, N= no facial activation

perform the arithmetic tasks. Two examples of a task and an answer were presented. Then, the participant
was asked to answer two more tasks presented by the experimenter. The experimenter left the room before
the experimental trials started.

The participants were to complete a total of six blocks each consisting of two training trials and three
experimental trials using the same facial muscle. Blocks were counter-balanced within the LSA and HSA
group similarly as illustrated in Table II. Half (6) of the participants in each group performed the tasks
first with the female and then with the male character, while the other half performed tasks first with
the male followed by the female character. A different permutation of the blocks (i.e., corrugator supercilii,
zygomaticus major, and the block without facial activation) was assigned to each of the 6 participants within
each group. After the completion of six blocks, the participant was debriefed.

Subjective ratings of emotional valence, arousal, and dominance were collected before each block and after
the last block. Bipolar nine-point scales ranging from -4 (e.g., unpleasant) to +4 (e.g., pleasant) were used.
The middle value of 0 represented a neutral rating (e.g., neither unpleasant nor pleasant) on each scale.
Scales were administered on paper and participants were instructed to rate their own subjective experience.
Extra rating scales were provided to the participant in order to support the cover story.

2.7 Data Reduction and Analysis

Participants whose SPIN-FIN re-test score did not meet cut-off criteria (11 and 12 in the LSA group, 12 and
21 in the HSA group) were excluded from further analysis. 1 female and 1 male participant was excluded
from each group. Due to difficulties with EMG measurement, one participant in each group was not able to
complete the corrugator supercilii block with the female agent.

Four different electrodermal measures of SCL, NS-SCR frequency, NS-SCR magnitude, and ER-SCR mag-
nitude were extracted as follows. The base level of skin conductance (i.e., SCL) was calculated as the mean
value of the EDA signal during the last 3 seconds of each relaxation period. The change in SCL from a
relaxation period to the next was analyzed, that is, changes in SCL occurring during the facial activation
were not analyzed. In order to detect skin conductance responses (i.e., SCR), a 62.5 ms moving average
filter was applied to the EDA signal. Responses were scored automatically based on subsequent minima and
maxima in the filtered signal. An amplitude change of over .02 µS was considered a response. This type of
analysis is in effect similar to baseline correction of physiological data, as it excludes the base level of activity
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(i.e., SCL) and quantifies the magnitude of an individual response [Dawson et al. 2000]. The frequency of
NS-SCRs was computed as the mean number of responses occurring during the facial activation task. The
magnitude of NS-SCRs was also computed and analyzed. The ER-SCR elicited by the verbal arithmetic task
was calculated as the mean magnitude of a detected response occurring within 1–5 s of the onset of speech
synthesis (i.e., during speech synthesis).

Changes in subjective ratings were analyzed by computing the mean ratings on each scale and subtracting
the pre-block rating from the post-block rating (i.e., using the pre-block rating as a baseline). Performance in
the arithmetic tasks was scored based on the audio recordings. The answer was judged as incorrect, if either
the repeated equation or the answer (i.e., correct or false) was incorrect. Performance in the facial task was
calculated as the mean number of errors, that is, times when the EMG activity fell below the threshold, and
the mean time to complete the task (i.e., time it took for the character to reach the closest distance). The
two complementary performance measures (i.e., errors and time) were used in order to gain a more complete
view of the objective functionality of facial activations as a method of voluntary control. It seems likely that
difficulty in reaching the threshold in the first place would mainly extend the time required to complete the
task, while difficulty in maintaining facial activations (i.e., unstable activations) should in addition lead to
more errors in the task as EMG activity would repeatedly exceed and fall under the threshold.

2 × 3 (Group × Task) mixed-model Analyses of Variance (ANOVA) were performed for subjective ratings,
electrodermal measures, and the mean number of correct answers to the arithmetic task. Task completion
times did not vary in tasks without facial activation, as they were not dependent on participant’s performance
(i.e., no errors could be made in the task). These tasks were excluded from analysis of performance times
and the number of errors. Thus, a 2 × 2 (Group × Task) ANOVA was performed for performance times and
errors. For significant interactions, simple effects of Group were analyzed using between-subjects ANOVA.
Pairwise comparisons were performed using Bonferroni corrected t-tests. Greenhouse-Geisser correction was
applied to within-subject factors and the corresponding epsilon (ǫ) is reported. Reported effect size measures
are the partial eta squared (η2

p) for ANOVA and Cohen’s d for t-tests.

3. RESULTS

3.1 Subjective Ratings

Figure 4 shows that in general the mean ratings of valence, arousal, and dominance were on the positive side
of the scales. Thus, participants rated the situation as slightly pleasant, arousing, and being in their own
control during the whole experiment session. However, the patterns of ratings were different between the LSA
and HSA groups, especially for the zygomaticus major activation condition. After zygomaticus major trials,
participants in the LSA group rated their subjective experience as more pleasantly valenced, less aroused,
and more in control of the situation, while mean ratings of the HSA group show the opposite: decreased
valence, increased arousal, and decreased subjective dominance.

The 2 × 3 ANOVA for the change in valence ratings did not show statistically significant effects of Group,
F (1,18) < 1, or Task, F (2,36) < 1. The interaction effect of Task and Group was statistically significant,
F (2,36) = 4.47, p = .021, η2

p = .20, ǫ = .94. The simple effect of Group was statistically significant within the zy-
gomaticus major task, F (1,18) = 5.93, p = .025, η2

p = .25. The post hoc comparison between the LSA and HSA
groups within the zygomaticus major task was statistically significant, t(18) = 2.44, p = .025, d = .54. The
simple effect of Group was not statistically significant within the corrugator supercilii task, F (1,18) = 1.04,
p = .322, or the task without facial activation, F (1,18) = 2.90, p = .110.

The 2 × 3 ANOVA for the change in arousal ratings did not show statistically significant effects of Group,
F (1,18) = 1.13, p = .303, or Task, F (2,36) = 1.29, p = .288. The interaction effect of Task and Group was sta-
tistically significant, F (2,36) = 4.25, p = .023, η2

p = .19, ǫ = .98. The simple effect of Group was statistically
significant within the zygomaticus major task, F (1,18) = 9.60, p = .006, η2

p = .35. The post hoc comparison be-
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Fig. 4. Mean pre- and post-block ratings of valence, arousal, and dominance for different facial activation tasks and the LSA

and HSA groups.

tween the LSA and HSA groups within the zygomaticus major task was statistically significant, t(18) = 3.10,
p = .006, d = .69. The simple effect of Group was not statistically significant within the corrugator supercilii
task, F (1,18) < 1, or the task without facial activation, F (1,18) = 1.315, p = .27.

The 2×3 ANOVA for the change in dominance ratings did not show statistically significant effects of Group,
F (1,18) = 2.10, p = .164, or Task, F (2,36) < 1. The interaction effect of Task and Group was statistically
significant, F (2,36) = 3.72, p = .045, η2

p = .17, ǫ = .80. The simple effect of Group was statistically significant
within the zygomaticus major task, F (1,18) = 7.56, p = .013, η2

p = .30. The post hoc comparison between the
LSA and HSA groups within the zygomaticus major task was statistically significant, t(18) = 2.75, p = .013,
d = .61. The simple effect of Group was not statistically significant within the corrugator supercilii task,
F (1,18) = 2.30, p = .146, or the task without facial activation, F (1,18) < 1.

3.2 Performance Measures

Table III shows that there was little difference in the performance of the LSA and HSA groups in facial
activation and arithmetic tasks. Both groups made more errors and the tasks took longer to complete when
using the zygomaticus major as compared to the corrugator supercilii muscle. The verbal arithmetic task
that followed the facial activations was performed with good accuracy overall, as the mean percentage of
correct answers was above 90% in all conditions. Especially performance of the HSA group was very accurate
(98.3% correct) following corrugator supercilii activations.

The 2 × 2 ANOVA for the number of errors in the facial activation task showed a statistically significant
main effect of Task, F (1,18) = 6.31, p = .022, η2

p = .26. The main effect of Group, F (1,22) < 1, and the inter-
action effect of Group and Task, F (1,18) < 1, were not statistically significant. The post hoc comparison
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Table III. Mean values (± S.E.M.) of number of errors made during the facial
activation tasks, the time to complete each task in seconds, and the percentage
of correct answers to the verbal arithmetic task for different facial activation

tasks and the LSA and HSA groups
corrugator supercilii zygomaticus major no activation

LSA HSA LSA HSA LSA HSA

errors .13±.09 .42±.14 1.37±.65 1.33±.66
task time 8.1±.1 8.3±.1 9.4±.7 9.0±.4 8.0±.0 8.0±.0
correct (%) 93.3±2.7 98.3±1.7 95.0±2.5 95.0±3.6 93.3±3.7 93.3±3.7

Table IV. Mean values (± S.E.M.) of the change in SCL during a trial, the number of
NS-SCRs during the task, the magnitude of NS-SCR during the task, and the

magnitude of the ER-SCR to the verbal arithmetic task in µS for different facial
activation tasks and the LSA and HSA groups

corrugator supercilii zygomaticus major no activation

LSA HSA LSA HSA LSA HSA

change in SCL -7.9±1.5 -2.4±1.3 -4.8±1.2 -1.9±.9 -3.9±1.2 -1.8±.5
NS-SCR frequency .9±.1 .9±.2 1.3±.3 1.1±.1 .9±.1 .9±.1
NS-SCR magnitude 6.9±1.0 4.7±1.0 7.5±1.2 5.0±1.2 5.2±.9 3.7±.7

ER-SCR magnitude 2.4±.4 2.2±.5 2.5±.4 2.2±.4 1.9±.3 1.2±.2

between the corrugator supercilii and the zygomaticus major tasks was statistically significant, t(19) = 2.51,
p = .022, d = .56.

The 2 × 2 ANOVA for the task completion times showed a statistically significant main effect of Task,
F (1,18) = 6.74, p = .018, η2

p = .27. The main effect of Group, F (1,18) < 1, and the interaction effect of Group
and Task, F (1,18) < 1, were not statistically significant. The post hoc comparison between the corrugator
supercilii and the zygomaticus major tasks was statistically significant, t(19) = 2.60, p = .018, d = .58.

The 2 × 3 ANOVA for the number of correct answers in the arithmetic task did not show statistically
significant effects of Group, F (1,18) < 1, Task, F (2,36) < 1, or the interaction of Group and Task, F (2,36) < 1.

3.3 Electrodermal Measures

Table IV shows that the level of skin conductance decreased during all trials. The decrease was markedly
greater within the LSA as compared to the HSA group during all tasks. Within both groups the corrugator
supercilii task induced a greater decrease in SCL as compared to the other two tasks. The frequency of
non-specific skin conductance responses was similar in both groups and for each task, although responses
were slightly more frequent during zygomaticus major activations than during the other two tasks. Tasks
involving facial activation induced greater skin conductance responses both during the activation (i.e., NS-
SCR) and after the activation (i.e., ER-SCR to the verbal arithmetic task), as compared to the task without
facial activation.

The 2×3 ANOVA for the SCL change showed statistically significant main effects of Group, F (1,18) = 6.92,
p = .017, η2

p = .28, and Task, F (2,36) = 4.37, p = .036, η2
p = .20, ǫ = .69. The interaction effect of Group and

Task was not statistically significant, F (2,36) = 2.41, p = .125. A post hoc comparison confirmed that SCL
decreased more within the LSA group than within the HSA group, t(18) = 2.63, p = .017, d = .59. Post hoc
comparisons also showed that SCL decreased more during the corrugator supercilii trials as compared to
trials without facial activation, t(19) = 2.64, p = .050, d = .59. Post hoc comparisons did not show signif-
icant differences between the zygomaticus major task as compared to the task without facial activation,
t(19) = .94, p = 1, and as compared to the corrugator supercilii task, t(19) = 1.81, p = .260.

The 2 × 3 ANOVA for the frequency of NS-SCRs did not show statistically significant effects of Group,
F (1,18) < 1, Task, F (2,36) = 3.72, p = .051, or the interaction of Group and Task, F (2,36) < 1.
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The 2 × 3 ANOVA for the magnitude of NS-SCRs showed a statistically significant main effect of Task,
F (2,36) = 9.06, p < .001, η2

p = .34, ǫ = .96. The main effect of Group, F (2,36) = 2.34, p = .144, and the in-
teraction effect of Group and Task, F (2,36) < 1, were not statistically significant. Post hoc comparisons
showed that as compared to the task without facial activation, the magnitude of NS-SCRs was greater
during the corrugator supercilii task, t(19) = 2.73, p = .041, d = .61, and during the zygomaticus major task,
t(19) = 4.15, p = .002, d = .93. The magnitude of NS-SCR was not statistically significantly different between
the corrugator supercilii and the zygomaticus major tasks, t(19) = 1.26, p = .671.

The 2 × 3 ANOVA for the magnitude of ER-SCRs showed a statistically significant main effect of
Task, F (2,36) = 7.99, p = .003, η2

p = .31, ǫ = .78. The main effect of Group, F (1,18) < 1, and the interaction
effect of Group and Task, F (2,36) < 1, were not statistically significant. Post hoc comparisons showed
that as compared to the task without facial activation, the magnitude of ER-SCRs was greater after
corrugator supercilii activation, t(19) = 2.68, p = .046, d = .60, and after the zygomaticus major activation,
t(19) = 4.82, p < .001, d = .1.08. The magnitude of ER-SCR was not statistically significantly different be-
tween the corrugator supercilii and the zygomaticus major tasks, t(19) = .38, p = 1.

4. DISCUSSION

The present results showed that voluntary activations of facial muscles had significant effects on both physio-
logical arousal and subjective ratings of emotional experiences. The mean level of skin conductance decreased
after every task within both groups, which suggests that both the less and the more socially anxious partic-
ipants were able to relax more as a trial progressed. However, the decrease in skin conductance was smaller
within the socially anxious participants, which suggests that social anxiety restrained them from becoming
similarly accustomed to the arousing situation as compared to the less socially anxious participants.

Within both groups, corrugator supercilii activations (i.e., frowning) were associated with a significantly
higher decrease in the level of skin conductance (i.e., SCL) as compared to the task without facial activations.
Although the mean level of SCL was decreased after every task, the decrease was both greater and happened
faster (i.e., the task time was shorter) during corrugator supercilii activations as compared to zygomaticus
major activations, suggesting a higher rate of decrease. These decreases in long-term SCL suggest that the
general level of sympathetic arousal was reduced following tasks involving corrugator supercilii activations
[Dawson et al. 2000]. However, as compared to the task without facial activation, both corrugator supercilii
and zygomaticus major activations enhanced the magnitude of skin conductance responses that occurred
either during the task (i.e., NS-SCR) or in response to the subsequent speech synthesis (i.e., ER-SCR). This
suggests that, in the short term, muscle activations increased the level of autonomic arousal.

Subjective ratings of emotional experiences revealed interesting differences between the less and the more
socially anxious participants. The ratings of the low social anxiety group increased in pleasantness after
zygomaticus major activations (i.e., smiling), while participants in the high social anxiety group rated their
experience as less pleasant. Socially anxious participants also rated their subjective experience as more
aroused after zygomaticus major activations (i.e., smiling), while the mean ratings of less anxious participants
showed a decrease in arousal. Further, the ratings of subjective dominance showed that zygomaticus major
activations enhanced the feeling of subjective control for the less socially anxious participants, while the
ratings of the more socially anxious participants showed a decrease in the feeling of subjective control. These
results suggests that socially anxious participants did not feel as comfortable as the less socially anxious
participants in smiling to the approaching virtual character.

In terms of the objective functionality of voluntary facial activations as a method for controlling the
stimulation, all participants were able to complete the present tasks without notable difficulties and within
reasonable time. However, the results suggest that voluntary corrugator supercilii activations were slightly
better controlled than zygomaticus major activations in the present context. Both groups of participants (i.e.,
LSA and HSA) were able to maintain the required level of activation in the majority of corrugator supercilii
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tasks, whereas about one error per task was made on average during zygomaticus major activations. Thus,
at least with relatively simple tasks and without a longer training for producing the controlled voluntary
facial activations, both the less and the more socially anxious participants could control the virtual social
stimulation slightly more accurately using corrugator supercilii activations.

The present ratings of zygomaticus major activity were in line with the behavioral tendencies associated
with social anxiety. Social anxiety commonly leads to the avoidance of social interaction and the inhibition
of pro-social behavior [Mick and Telch 1998; Connor et al. 2000]. Smiling, on the other hand, is a pro-social
cue that may indicate that a person can be approached and affiliated with, that is, she or he is willing to
participate in social interaction [Hess et al. 2004]. Further, a person with a high level of social anxiety is more
likely to associate negative perceptions to social interactions, while zygomaticus major activity is typically
associated with positive emotion [Levenson et al. 1990; Rapee and Heimberg 1997; Larsen et al. 2003; Partala
et al. 2006]. Thus, it is quite natural that the more anxious participants were not as comfortable as the less
anxious participants in smiling to the virtual character.

On the other hand, the mean changes in subjective ratings after corrugator supercilii activations suggest
that especially the more socially anxious participants were more comfortable in frowning to the character.
This pattern of increased pleasure, decreased arousal, and increased dominance may at first seem surprising
from the point of view that emotions are fundamentally embodied phenomena and that bodily changes are
tightly coupled with emotional experience [Coan et al. 2001; Levenson and Ekman 2002; Niedenthal 2007]. It
could be argued that as spontaneous corrugator supercilii activity is associated with negative emotion, also
voluntary activity of the same muscle should induce a similar physiological state and thus lead to increasingly
negative ratings. However, like other channels of expression, facial activity serves also social functions (e.g.,
conversational signaling) and is neither exclusively emotional nor a direct reflection of emotional state as such
[Ekman 1979; Mauss and Robinson 2009]. In particular, corrugator supercilii activity has also been associated
with both the effort of performing a task and dominating a social interaction [Van Boxtel and Jessurun 1993;
Waterink and Van Boxtel 1994; Carroll and Russell 1997; Hietanen et al. 1998]. In the present setup, the
activation of corrugator supercilii muscle may have matched particularly well with the participants’ task of
taking voluntary control over (i.e., more or less dominating) a virtual character, which may have led to a
more comfortable subjective experience.

It could be desirable that a socially anxious person would eventually learn to use and perceive also
zygomaticus major activations (i.e., smiling) as a comfortable and natural part of social situations, that
is, rate their own experience after these activations similarly as the less socially anxious participants: more
pleasantly valenced, less aroused, and being more in their own control. Voluntary facial activations could
have a significant role in achieving this as a part of exposure treatment, where a person is gradually exposed
and desensitized to increasing levels of distressing stimulation, for example, by reducing the distance to a real
or a virtual person [Foa and Kozak 1986; Öst 1989; Gerardi et al. 2010]. First, during continued exposure
to distressing stimulation (e.g., an approaching virtual human), both voluntary corrugator supercilii and
zygomaticus major activations could provide accurate control over the virtual stimulation during exposure
treatment. Then, through continuous training, the responses to voluntary zygomaticus major activations
could be modified from negative (i.e., decreased pleasantness) to positive (i.e., increased pleasantness). This
could finally lead to the modification of subjective and behavioral tendencies that upkeep excessive anxiety.

Physiological changes associated with voluntary facial activations could further facilitate these changes in
anxiety responses. The results showed that voluntary corrugator supercilii and zygomaticus major activa-
tions were both effective in inducing physiological arousal (i.e., sympathetic activation) during exposure to
the virtual social stimulation. In general, physiological activation is a central factor in desensitization and
habituation of fear [Foa and Kozak 1986]. It is hypothesized that increased physiological activity correlates
with the activation of anxiety-relevant cognitive-emotional fear structures that can then be modified. For
example, there is evidence that phobic persons who react more strongly in terms of physiological changes are
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also those who benefit most from exposure to their objects of fear [Kozak et al. 1988]. Thus, in terms of apply-
ing the present results, voluntarily induced (e.g., by facial activations) increases in the level of physiological
activity could provide support for the activation and habituation of fear during exposure.

Further, the skin conductance response to the arithmetic task was also enhanced after voluntary facial
activations as compared to tasks without facial activation, which suggests that both types of facial activations
induced a stronger orientation to the task [Frith and Allen 1983]. This is also in line with both types of
facial activations leading to slightly higher mean percentages of correct answers to the arithmetic task as
compared to tasks without facial activation. This suggests that participants focused more on the synthetic
speech stimulation after voluntary facial activations. Especially participants in the HSA group gave very
accurate answers following corrugator supercilii activations with over 98 % of correct answers. In terms of
exposure treatment, higher level of attention to anxiety-relevant stimulation has been found to facilitate the
habituation of fear responses [Foa and Kozak 1986]. Thus, the present results suggest that voluntary facial
activations could be used to facilitate behavioral and physiological changes that support the outcome of
exposure treatments.

The present study can offer only limited insight into the mechanisms behind the physiological and sub-
jective effects of voluntary facial activations. However, the present results do suggest that the social aspects
of facial expression were a significant factor influencing subjective responses to voluntary zygomaticus major
activations, as the ratings of the less and the more social anxious participants showed completely opposite
patterns. On the other hand, we did not observe any significant differences between the two muscles or the
LSA and HSA groups in respect to the frequency or magnitude skin conductance responses during or shortly
after (i.e., during synthesized speech) the voluntary activations. Thus, the present work did not provide evi-
dence for physiological patterning (i.e., “embodied emotion”) underlying the emotional response to voluntary
activations, that is, no direct coupling of physiology and experience. However, it is possible that facial muscle
specific physiological response patterns could have been observed with other complementary physiological
measures. For example, while the presently used EDA measures are strongly associated with arousal, heart
rate is known to correlate well with the subjective experience of emotional valence (e.g., negative or positive)
[Bradley 2000; Bradley et al. 2001; Mauss and Robinson 2009]. A more detailed analysis of multi-component
physiological responses to voluntary activations of individual facial muscles could be a promising direction
for future work.

On the other hand, the present work can already provide a basis for more straight-forward interpretation
and application of the results. First, the present setup showed that controlling a virtual character with
voluntary facial expressions is feasible and functional with relatively little preparation, including very brief
training and instructions for the person. Thus, similar setup would be practical to use, for example, in a
clinical setting. Second, by using voluntary facial activations to control the stimulation, participants were
able to significantly affect their more spontaneous physiological activity (i.e., sympathetic ANS arousal)
without explicit biofeedback. As the present setup couples feedback about facial activity with changes in the
stimulation itself, this kind of system would encourage a person to focus on the anxiety relevant stimulation,
supporting the goals of exposure treatment. Third, the present setup provides a platform that could be used
as such to implement an exposure session which could consist of similar tasks as used in the present study. It
could be expected that continuing exposure to the arousing tasks would eventually lead to the habituation
of responses and arousal. This is in line with the current finding that the level of skin conductance decreased,
indicating reduction of autonomic arousal, as a trial progressed (i.e., more tasks were performed).

In general, exposing a socially anxious person to a distressing (i.e., negatively arousing) setup where they
voluntarily smile (i.e., activate the zygomaticus major muscle) to bring a virtual character closer, would be in
line with the method of traditional exposure treatment of anxiety disorders. However, although the present
setup was effective in producing significant subjective and physiological effects, there are several factors that
may have contributed to the results. For example, the role of (the participant’s perception of) the virtual
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characters and synthetic speech could be significant and should be investigated in order to optimize the
effectiveness of stimulation (e.g., design virtual characters that specifically induce social anxiety). Further,
the functionality of such a setup in inducing and reducing clinical levels of social anxiety is to be confirmed
by further study, in particular due to the small sub-clinical (i.e., not clinically diagnosed) sample used in
the present study as well as its short-term nature. For example, in order to generalize the effects of virtual
stimulation to more complex real scenarios, it could be beneficial to create more wide variety of tasks and
stimulation that are administered over several sessions.

The present setup was designed to be quite strictly controlled and simple in terms of the social communica-
tion, that is, the virtual character could only approach when a certain facial muscle was activated. However,
real-life interactions involve other people whose reactions cannot be controlled and always predicted. Thus,
a socially anxious person who progresses to the level of learning to deal with everyday human-to-human
interaction could benefit from a richer virtual environment. Fuller social scenarios could be constructed by
using one or several virtual characters that react more expressively to a person’s behavior, for example, by
having virtual audience members that lean forward smiling or withdraw frowning when the person speaks
[Pertaub et al. 2002].

There are also several other parameters that could be modified in real time due to the flexibility of
computer-generated stimulation. For example, a more complete 3D environment could be gradually intro-
duced to increase the feeling of presence, that is, the experience of sharing a real physical space with the
virtual characters [Schuemie et al. 2001]. Such an environment could also facilitate the perception of dis-
tance to the virtual characters by enabling more sophisticated cues of depth (e.g., stereoscopy) to be used.
High-end interaction techniques could also be used to facilitate the realism of the setup. For example, the
point-of-view was currently static and somewhat unrealistic, as the character was standing but appeared to
approach the seated participant at the eye level. The use of a head-mounted display with movement tracking
could have enabled each participant to look around using a realistic point-of-view matching their own head
movement. In general, these kinds of richer technologies would offer more versatility for virtual exposure
treatment and we intend to incorporate them to our future work.

5. CONCLUSIONS

The present results showed that voluntary facial activations could provide a method for regulating physi-
ological and subjective arousal during exposure to artificial social stimuli. Especially corrugator supercilii
activations were found to facilitate the long-term relaxation of physiological arousal (i.e., SCL) and they were
also relatively well controlled in the present context. On the other hand, the subjective ratings of emotional
experiences following zygomaticus major suggested that the more socially anxious participants were less
comfortable in smiling to the virtual character. Detecting such informative response patterns and monitor-
ing their change could be useful for assessing social anxiety, for example, in order to follow the progress of
exposure therapy. Further, both types of facial muscle activations produced short-term physiological changes
(i.e., enhanced magnitude of NS-SCR and ER-SCR) that were compatible with and potentially beneficial
for the aims of exposure treatment. In summary, the present results provide several promising directions for
research and form a solid basis for continuing our work in studying voluntary facial activations as a method
for computer-assisted regulation of emotions.
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Rinck, M., Rörtgen, T., Lange, W.-G., Dotsch, R., Wigboldus, D. H. J., and Becker, E. S. 2010. Social anxiety predicts
avoidance behaviour in virtual encounters. Cognition and Emotion 24, 7, 1269–1276.

Rothbaum, B. O., Hodges, L., Smith, S., Lee, J. H., and Price, L. 2000. A controlled study of virtual reality exposure
therapy for the fear of flying. Journal of Consulting and Clinical Psychology 68, 6, 1020–1026.

Schlosberg, H. 1954. Three dimensions of emotion. Psychological Review 61, 2, 81–88.

Schuemie, M. J., van der Straaten, P., Krijn, M., and van der Mast, C. A. P. G. 2001. Research on presence in virtual

reality: a survey. CyberPsychology & Behavior 4, 2, 183–201.

Tassinary, L. G. and Cacioppo, J. T. 2000. Handbook of Psychophysiology. Cambridge University Press, Cambridge, UK,

Chapter The skeletomotor system: Surface electromyography, 163–199.

Teghtsoonian, R. and Frost, R. O. 1982. The effects of viewing distance on fear of snakes. Journal of Behavior Therapy

and Experimental Psychiatry 13, 3, 181–190.

Van Boxtel, A. and Jessurun, M. 1993. Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an

index of effort during a two-choice serial reaction task. Psychophysiology 30, 6, 589–604.

Vanhala, T. and Surakka, V. 2007. Facial activation control effect (FACE). In Affective Computing and Intelligent Interac-

tion, A. Paiva, R. Prada, and R. W. Picard, Eds. Springer-Verlag, 278–289.

Vanhala, T. and Surakka, V. 2008. Affective Computing. InTech Education and Publishing, Vienna, Austria, Chapter

Computer-Assisted Regulation of Emotional and Social Processes, 405–420.
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8. Erno Mäkinen: Face Analysis Techniques for Human-Computer Interaction
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