
ANTTI KUUSISTO

Modal Fragments
of Second-Order Logic

ACADEMIC DISSERTATION
To be presented, with the permission of

the board of the School of Information Sciences of the University of Tampere,
for public discussion in the Paavo Koli Auditorium, Kanslerinrinne 1,

Tampere, on October 21st, 2011, at 12 o’clock.

UNIVERSITY OF TAMPERE

Distribution
Bookshop TAJU
P.O. Box 617
33014 University of Tampere
Finland

Tel. +358 40 190 9800
Fax +358 3 3551 7685
taju@uta.fi
www.uta.fi/taju
http://granum.uta.fi

Cover design by
Mikko Reinikka

Acta Universitatis Tamperensis 1657
ISBN 978-951-44-8573-2 (print)
ISSN-L 1455-1616
ISSN 1455-1616

Acta Electronica Universitatis Tamperensis 1119
ISBN 978-951-44-8574-9 (pdf)
ISSN 1456-954X
http://acta.uta.fi

Tampereen Yliopistopaino Oy – Juvenes Print
Tampere 2011

ACADEMIC DISSERTATION
University of Tampere
School of Information Sciences
Finland

ANTTI KUUSISTO

Modal Fragments of Second-Order Logic

Ph.D. Thesis in Mathematics

SIS, Mathematics
University of Tampere

Finland, 2011

Acknowledgements

First of all, I wish to thank my supervisor, Professor Lauri Hella. Lauri has
offered me his continued support in both scientific and practical matters.
I cannot overstate how much I have benefited from being part of Lauri’s
group.

Of course various other people have helped me in my professional life.
I express my gratitude—for a variety of very good reasons—to Balder ten
Cate, Miguel Couceiro, Pietro Galliani, Valentin Goranko, Pertti Koivisto,
Juha Kontinen, Sirkka Laaksonen, Suvi Lehtinen, Peter Lohmann, Kerkko
Luosto, Allen Mann, Mika Mattila, Jeremy Meyers, Jori Mäntysalo, Renne
Pesonen, Tero Tulenheimo, Ari Virtanen, Jonni Virtema and Jouko Väänä-
nen. My warmest personal thanks go to Essi, Jenna, Leena, Paula, Terhi
and of course Maria B.!

The research that led to this thesis was carried out in the Department
of Mathematics and Statistics, University of Tampere. The department was
absorbed into the newly established School of Information Sciences in the
beginning of 2011. The department has been an exceptionally friendly work-
ing environment. I wish to thank everyone at the department for providing
their share of the great atmosphere.

Finally, I acknowledge the financial support of MALJA Graduate School
in Mathematical Logic and Algebra, TISE Graduate School in Information
Science and Engineering, University of Tampere and Alfred Kordelin Foun-
dation.

Tampere, September 2011
Antti Kuusisto

Abstract

In this thesis we investigate various fragments of second-order logic that
arise naturally in considerations related to modal logic. The focus is on
questions related to expressive power. The results in the thesis are reported
in four independent but related chapters (Chapters 2, 3, 4 and 5). In Chap-
ter 2 we study second-order propositional modal logic, which is the system
obtained by extending ordinary modal logic with second-order quantifica-
tion of proposition symbols. We show that the alternation hierarchy of this
logic is infinite, thereby solving an open problem from the related literature.
In Chapter 3 we investigate the expressivity of a range of modal logics ex-
tended with existential prenex quantification of accessibility relations and
proposition symbols. The principal result of the chapter is that the re-
sulting extension of (a version of) Boolean modal logic can be effectively
translated into existential monadic second-order logic. As a corollary we ob-
tain decidability results for multimodal logics over various classes of frames
with built-in relations. In Chapter 4 we study the equality-free fragment
of existential second-order logic with second-order quantification of function
symbols. We show that over directed graphs, the expressivity of the frag-
ment is incomparable with that of first-order logic. We also show that over
finite models with a unary relational vocabulary, the fragment is weaker
in expressivity than first-order logic. In Chapter 5 we study the extension
of polyadic modal logic with unrestricted quantification of accessibility re-
lations and proposition symbols. We obtain a range of results related to
various natural fragments of the system. Finally, we establish that this
extension of modal logic exactly captures the expressivity of second-order
logic.

Contents

1 Introduction 9
1.1 Preliminary Considerations 12

2 Modal Logic and Monadic Second-Order Alternation Hierar-
chies 14
2.1 SOPML and Monadic Alternation Hierarchies 14
2.2 Preliminary Definitions . 15

2.2.1 Syntax and Semantics 15
2.2.2 Grids and Graphs . 20
2.2.3 Alternation Hierarchies 21

2.3 SOPMLE = MSO . 22
2.4 Simulating Globality . 26
2.5 The Alternation Hierarchy of SOPML is Infinite 28

2.5.1 Encoding Grids by Localized Grid Graphs 29
2.5.2 The Alternation Hierarchy of MSO over Localized Grid

Graphs . 31
2.5.3 The Alternation Hierarchy of SOPML over Directed

Graphs . 37
2.6 Chapter Conclusion . 39

3 Monadic Σ1
1 and Modal Logic with Quantified Accessibility

Relations 40
3.1 Modal Fragments of Σ1

1 and Modal Correspondence Theory . 40
3.2 Preliminary Definitions . 42

3.2.1 Syntax and Semantics of Σ1
1(PBML=) 42

3.2.2 Types . 45
3.3 Σ1

1(ML) Translates into Monadic Σ1
1(MLE) 48

3.4 Σ1
1(PBML=) Translates into ∃MSO 51

3.4.1 An Effective Translation 51
3.4.2 Σ1

1(PBML=) ≤ ∃MSO 56
3.5 Chapter Conclusion . 65

4 Expressivity of Equality-Free Existential Second-Order Logic
with Function Quantification 66
4.1 Equality-Free Existential Second-order Logic with Function

Quantification . 66
4.2 Preliminary Definitions . 67
4.3 Expressivity of fESOwo= over Models with a Relational Vo-

cabulary . 69
4.3.1 Bloating Models . 69

4.4 Expressivity of fESOwo= over Finite Models with a Unary
Relational Vocabulary . 72

7

4.4.1 fESOwo= < FO over Finite Models with a Unary Re-
lational Vocabulary 73

4.4.2 FOwo= < fESOwo= over Finite Models with a Unary
Relational Vocabulary 79

4.5 Chapter Conclusion and a Remark on Generalized Quantifiers 80

5 On Fragments of SOPMLE and SO(ML) 86
5.1 SOPMLE and SO(ML) . 86
5.2 Preliminary Definitions . 87
5.3 Basic Properties of SOPMLE and SOPML 88

5.3.1 Σ2 Formulae and Finite Models 89
5.4 Σ2 Formulae of SOPML and SOPMLE with a Bounded Num-

ber of Existential Quantifiers 92
5.5 Modal Fragments of SO and Regular Languages 97
5.6 SO(ML) = SO . 100
5.7 Chapter Conclusion . 107

6 Concluding Remarks 108

References 110

8

CHAPTER 1

Introduction

Since the advent of relational semantics, modal logic has developed fast and
currently the field has a wide range of applications in different disciplines
ranging from computer science and artificial intelligence to economics and
linguistics. Due to its well manifest success, modal logic deserves a developed
mathematical background theory. This thesis contributes to the understand-
ing of the model theory of very expressive extensions of modal logic. The
focus is sharp; we digress very little from questions concerning expressivity
of fragments of second-order logic (SO) that are directly related to modal
logic. The article [21] in the Handbook of Modal Logic [3] is a relatively
recent survey giving an overview the current state of the model theory of
modal logic. See also [12], and see the Chapters 1–3 of [7] for background
information.

In this thesis we study various fragments of second-order logic that arise
naturally in considerations concerning extensions of modal logic. Under-
standing fragments of second-order logic can be very useful in the study of
non-classical logics with constructors giving them the capacity to express
properties not expressible in first-order logic (FO). A typical such non-
classical logic immediately translates into a fragment of second-order logic.
Armed with theorems about fragments of second-order logic, one may then
immediately obtain a range of results concerning the non-classical logic un-
der investigation. Such results can be, for example, related to decidability
issues or expressivity of the logic in question.

While the principal topic of the thesis is modal logic, the investigations
below can also be regarded as a study of (fragments of) second-order logic.
A notably wide range of the very difficult open problems in finite model
theory [44] are questions about the expressive power of fragments of SO.
For example, by Fagin’s theorem (see [44]) and due to the fact that PTIME
is closed under complement, separating universal second-order logic and ex-
istential second-order logic in the finite immediately separates PTIME from
NP. Difficult questions aside, a developed model theory of second-order
logic can help in the study of a wide range of mathematical problems, for
example in discrete mathematics. Since the expressive power of second-order
logic is very high and related questions have proved tough, it makes sense
to take rather small steps. Directing attention to fragments when devel-
oping the theory is a natural approach. While potentially directly useful,

9

insights about fragments also elucidate the role different logical constructors
(such as connectives and quantifiers) play in making the expressive power
of second-order logic. In this thesis we concentrate on fragments motivated
by investigations in modal logic, and from the point of view of second-order
model theory such systems are obviously not the only interesting fragments.
However, we believe that results about modal fragments of second-order logic
can ideally serve two purposes. They are results about second-order logic
and also potential tools for investigations in modal logic.

In Chapter 2 we study second-order propositional modal logic (SOPML).
Second-order propositional modal logic is the system obtained by extending
ordinary modal logic with propositional quantifiers ∃P and ∀P . Informally, a
formula ∃Pϕ is true if there exists an interpretation of P such that ϕ is true.
In the standard framework extending Kripke semantics, such propositional
quantifiers are monadic second-order quantifiers, i.e., quantifiers ranging
over subsets of the domain of a model. Johan van Benthem asks in [5]
whether the alternation hierarchy of SOPML is infinite over the class of
Kripke frames. (See Chapter 2 for the definition of alternation hierarchies.)
The question is also posed in the article [11] of ten Cate. We show in
Chapter 2 that the syntactic alternation hierarchy of SOPML induces an
infinite corresponding hierarchy of definable classes of Kripke frames. The
result has been published in [39].

Chapter 3 is an exercise in arity reduction of existential second-order
quantifiers. The investigations concentrate on two systems of modal logic
with existential prenex quantification of accessibility relations and proposi-
tion symbols, Σ1

1(ML) and Σ1
1(PBML=). The system Σ1

1(ML) is the logic
obtained by extending ordinary multimodal logic with existential prenex
quantification of binary accessibility relation symbols and proposition sym-
bols. PBML= is the logic obtained by extending polyadic1 multimodal logic
with built-in identity relations (see Subsection 3.2.1) and with operators that
allow for the Boolean combination of accessibility relations; Σ1

1(PBML=) is
the extension of PBML= by existential prenex quantification of accessibility
relations and proposition symbols. PBML= stands for “polyadic Boolean
modal logic with identity”.

The principal result in Chapter 3 is that formulae of Σ1
1(PBML=) trans-

late into equivalent formulae of monadic Σ1
1. Recall that monadic Σ1

1 is the
extension of first-order logic with existential prenex quantification of unary
relation symbols. We also establish that Σ1

1(ML) translates into monadic
Σ1
1(MLE), which is the logic obtained by extending multimodal logic with

the global modality and existential prenex quantification of proposition sym-
bols. Both translations lead to decidability results for multimodal logics over

1Recall that a Kripke-style modal logic where accessibility relations are not required
to be binary, but can be of a higher arity, is called polyadic. See Chapters 2 and 3 of this
thesis or Chapter 1 of [7] for the related definitions.

10

various classes of frames. Chapter 3 is based on the article [25], which is
joint work with Lauri Hella. The investigations in the chapter are related to
a generalized perspective on modal correspondence theory and also an open
problem of Grädel and Rosen [23] asking whether Σ1

1(FO2) is contained in
monadic Σ1

1. See the chapter for further details. In addition to [25], modal
logic with quantification of binary relations has been studied for example in
[13, 42, 43, 53].

In Chapter 4 we study equalilty-free existential second-order logic with
function quantification, or fESOwo=. The system fESOwo= is the fragment of
Σ1
1 where second-order quantification is over function symbols only, and for-

mulae are equality-free. The original motivation for studying this fragment
stems from considerations related to Henkin quantifiers and independence-
friendly (IF) logic. Various interesting equality-free subsystems of IF logic
translate into fESOwo=. In particular, systems of independence-friendly
modal logic tend to translate into fESOwo=. For recent developments re-
lated to IF logic and IF modal logic, see for example [34, 35, 58, 65].

Despite the original motivations related to IF logic, we dwell very little
on IF logic in Chapter 4. In fact, we save the reader the trouble of getting
acquainted with IF logic altogether. After all, we believe that fESOwo=

is worthy of study simply because it is a relatively natural fragment of
Σ1
1. We establish that fESOwo= admits a simple truth preserving model

transformation that enables an easy access to inexpressibility results. We
observe that fESOwo= and FO are incomparable in expressive power over
relational models whose vocabulary contains a binary relation symbol. The
situation changes if we restrict attention to finite models whose vocabulary
contains only unary relation symbols. The principal result of Chapter 4
is that over finite models with a unary relational vocabulary, fESOwo= is
weaker in expressive power than first-order logic. The result is established
using an indirect argument that is, we believe, quite interesting in its own
right. The argument applies to a wide range of logics, not only fESOwo=.
We end the chapter by observing that fESOwo= is strictly more expressive
than equality-free first-order logic over finite models with a unary relational
vocabulary. Chapter 4 is based on the articles [40, 41].

In Chapter 5 we study fragments of systems SOPMLE and SO(ML). The
system SOPMLE is the logic obtained by extending SOPML with the global
modality. The system SO(ML) is the logic obtained by extending polyadic
modal logic with unrestricted quantification of accessibility relations (of any
arity) and proposition symbols.

Consider formulae of SOPMLE of the type ∃P ∀Qϕ, where ∃P and ∀Q
are strings of existential and universal propositional quantifiers, respectively,
and ϕ is free of propositional quantifiers. We call such formulae Σ2 formulae
of SOPMLE. We prove a range of results concerning the fragment. For
example, we identify a tool for establishing inexpressibility results that apply
to formulae of the fragment.

11

In Chapter 5 we also study the role of arity and alternation in second-
order quantification. Consider SOPML formulae of the type ∃P ϕ, where ϕ
does not contain propositional quantifiers. We call the fragment of SOPML
that contains these formulae the Σ1 fragment (of SOPML). We identify a
class of finite pointed models over which the expressivity of neither SOPML
nor Σ1

1(PBML=) exceeds the expressivity of the Σ1 fragment of SOPML, but
a formula of the type ∃R ∀P ϕ—where R is binary, P unary and ϕ is free of
second-order quantifiers—immediately takes us beyond the expressivity of
the Σ1 fragment of SOPML. Finally, we show that second-order logic is equi-
expressive with SO(ML), thereby obtaining a kind of a modal normal form
for second-order logic. The results in Chapter 5 are previously unpublished.

1.1 Preliminary Considerations

Technical issues required in the chapters of the thesis are developed in the
chapters themselves. In spite of that, we summarize the main technical
conventions here.

We denote models by M , N , M ′ etc. By a model we always mean a first-
order structure. (See Definition 1.1 of [15] for example.) We use this notion
of a model also in modal logic. The related details will be clearly developed
in the chapters. We consider models with a vocabulary containing relation
symbols and sometimes constant symbols. While it would be possible to
incorporate function symbols into the vocabulary of models in a natural
way here and there, we streamline the exposition by ignoring this possibility.
(Function symbols do play a part, however, in Chapter 4, where we consider
existential second-order logic with function quantification.) If M is a model,
we let Dom(M) denote the domain of the model. A pointed model is a pair
(M,w), where M is a model and w ∈ Dom(M).

In the context of predicate logic, functions that interpret first-order and
second-order variable symbols in the domain of a model are called assign-
ments. If f is a function with the domain S, then by f ux we mean a function
g with the domain S ∪ {x} such that

g(z) =

{
u if z = x,

f(z) if z 6= x.

Note that it may or may not be the case that x ∈ S.
We denote formulae of modal and predicate logic by Greek letters mostly.

We reserve the turnstile |= for predicate logic and the turnstile for modal
logic. If ϕ is a formula of predicate logic, then M,f |= ϕ means that the
model M satisfies ϕ under the assignment f . Recall that

∧
∅ is interpreted

to be a formula that is always true and
∨
∅ a formula that is always false.

The symbol > denotes a formula that is always true and the symbol ⊥ a
formula that is always false.

12

While we have attempted to make the exposition of all results relatively
rigorous and self-contained, acquaintance with logic in general and modal
logic in particular is assumed. Familiarity with finite model theory is helpful,
and in Chapter 5, acquaintance with the very basics of the theory of finite
automata and formal languages is required.

13

CHAPTER 2

Modal Logic and Monadic Second-Order
Alternation Hierarchies

In this chapter we establish that the quantifier alternation hierarchy of
formulae of second-order propositional modal logic (SOPML) induces an
infinite corresponding semantic hierarchy over the class of finite directed
graphs. This solves an open question posed in [5] and [11]. We also pro-
vide modal characterizations of the expressive power of monadic second-
order logic (MSO) and address a number of points that should promote
the potential advantages of viewing MSO and its fragments from the modal
perspective.

2.1 SOPML and Monadic Alternation Hierarchies

In this chapter we investigate the expressive power of second-order propo-
sitional modal logic (SOPML), which is the system obtained by extending
ordinary modal logic by propositional quantifiers ranging over sets of domain
elements. Modal logics with propositional quantifiers have been investigated
by a variety of researchers, see [4, 6, 9, 11, 16, 18, 33, 36, 37, 38, 59, 60] for
example.

Johan van Benthem [5] and Balder ten Cate [11] raise the question
whether the prenex quantifier alternation hierarchy of SOPML formulae in-
duces an infinitely ascending corresponding hierarchy of definable classes of
Kripke frames. This is an interesting question, especially as ten Cate shows
in [11] that formulae of SOPML admit a prenex normal form representation.
We show that the semantic counterpart of the quantifier alternation hierar-
chy of SOPML formulae is infinite over the class of finite directed graphs.
This automatically implies that the semantic hierarchy is infinite over the
class of Kripke frames. Alternation hierarchies have received a lot of at-
tention in finite model theory, see [51, 52, 47, 56, 57, 61] for example. As
SOPML is a semantically natural fragment of MSO (see Theorem 6 in [11]),
we feel that our result is relatively interesting also from the point of view of
finite model theory.

Our main tool in investigating quantifier alternation in SOPML is a
theorem of Schweikardt [57] which states that the alternation hierarchy of
monadic second-order logic is strict over the class of grids. Inspired by the
approach of Matz and Thomas in [52], we employ a strategy loosely based

14

on strong first-order reductions in order to transfer the result of Schweikardt
from the context of grids to the context of a special class of finite directed
graphs that we define. Over this class the expressive power of SOPML coin-
cides with that of MSO, and hence we easily obtain the desired result that
the alternation hierarchy of SOPML is infinite over finite directed graphs.
The precise definition of strong first-order reductions (found in [51]) is of no
importance for the investigations in this chapter, as we give a self-contained
exposition of all our results.

As a by-product of the investigations concerning alternation hierarchies,
we discuss a simple, effective procedure that translates MSO sentences to
equivalent formulae of second-order propositional modal logic with the global
modality (SOPMLE). The procedure is based on a translation that bears
a very close resemblance to a translation of ten Cate in [11], and the con-
siderations related to the procedure are inspired by the approach in [11].
The procedure establishes that the expressive power of SOPMLE over fi-
nite/arbitrary relational structures coincides with that of MSO, and a trivial
adaptation of the related argument shows that replacing the global modal-
ity with the difference modality does not change the picture. Such modal
perspectives on MSO could turn out interesting from the point of view of
finite model theory, for example.

The chapter is structured as follows. In Section 2.2 we fix the notation
and discuss a number of preliminary issues. In Section 2.3 we show that
MSO = SOPMLE with regard to expressive power. Using an approach anal-
ogous to that in Section 2.3, we then define in Section 2.4 a special class of
directed graphs over which MSO and SOPML coincide in expressive power.
In Section 2.5 we first work with MSO, transferring the result of Schweikardt
to the context of the newly defined special class of directed graphs. Then,
using the connection created in Section 2.4, we finally establish that the
SOPML alternation hierarchy is infinite over directed graphs.

2.2 Preliminary Definitions

In this section we introduce technical notions that occupy a central role in
the rest of the current chapter.

2.2.1 Syntax and Semantics

With a model we mean a first-order model of predicate logic, and we re-
strict attention to models associated with a vocabulary containing relation
symbols and possibly constant symbols.

We fix countably infinite sets VARFO and VARSO of first-order and
second-order variables, respectively. Naturally we assume that the sets are
disjoint. We let

VAR = VARFO ∪VARSO.

15

We let lower-case symbols x, y, z denote first-order variables. Upper-case
symbols X,Y, Z denote second-order variables. A union f of two functions

fFO : VARFO −→ Dom(M)

and
fSO : VARSO −→ Pow(Dom(M)),

where M is a model and Dom(M) its domain, is called an assignment.
Monadic second-order logic is interpreted in terms of models and assign-
ments, so we write M,f |= ϕ when a model M satisfies an MSO formula ϕ
under an assignment f .

Let PROP be the smallest set T such that the following conditions are
satisfied.

1. If x ∈ VARFO, then Px ∈ T .

2. If X ∈ VARSO, then PX ∈ T .

The elements of PROP are proposition variables. Let

S = S0 ∪ S1 ∪ S2 ∪ S+

be a vocabulary, where S0 is a set of constant symbols, S1 and S2 are sets of
unary and binary relation symbols respectively, and S+ is a set of relation
symbols of higher arities. We assume that S and PROP are disjoint. The
language L(S) of SOPML associated with the vocabulary S is the smallest
set T such that the following conditions are satisfied.

1. If c ∈ S0, then c ∈ T .

2. If P# ∈ PROP, where # ∈ VAR, then P# ∈ T .

3. If P ∈ S1, then P ∈ T .

4. If ϕ ∈ T , then ¬ϕ ∈ T .

5. If ϕ ∈ T and ψ ∈ T , then (ϕ ∧ ψ) ∈ T .

6. If R ∈ S2 and ϕ ∈ T , then 〈R〉ϕ ∈ T .

7. If R′ ∈ S+ is a k-ary relation symbol and ϕi ∈ T for i ∈ {1, ..., k − 1},
then 〈R′〉(ϕ1, ..., ϕk−1) ∈ T .

8. If P# ∈ PROP and ϕ ∈ T , then ∃P# ϕ ∈ T .

When SOPML is extended by the global modality, we obtain second-
order modal logic with the global modality, or SOPMLE (cf. SOEPDL
in [59]). The language LE(S) of SOPMLE associated with the vocabulary

16

S is the smallest set T satisfying the conditions listed above when defining
the language L(S) of SOPML, and also the following additional condition.

If ϕ ∈ T , then 〈E〉ϕ ∈ T.

Here we assume that E 6∈ S. The operator 〈E〉 is called the global diamond.
The elements of the sets L(S) and LE(S) are called S-formulae, or al-

ternatively, formulae of the vocabulary S. The set of symbols in S that
occur in an S-formula ϕ is called the set of non-logical symbols of ϕ. Analo-
gous conventions apply to formulae of predicate logic: formulae of predicate
logic associated with a vocabulary S are called S-formulae or formulae of
the vocabulary S, and the set of non-logical symbols in S that occur in an
S-formula ψ of predicate logic is the set of non-logical symbols of ψ. For ex-
ample, the MSO formulae ∃X∀x

(
P (x)∧X(y)

)
and ∀x

(
x = x ∨Q(c) ∨X(x)

)
are both formulae of the vocabulary {P,Q, c}. Here P and Q are relation
symbols, X a relation variable, c a constant symbol and x, y first-order vari-
ables. In addition to being a {P,Q, c}-formula, the first formula is also a
formula of the vocabulary {P,Q} and a {P, c}-formula, for example. The set
of non-logical symbols of the first formula is {P}, and the set {Q, c} is the
set of non-logical symbols of the second formula. Notice that the identity
symbol is not considered to be a non-logical symbol. The SOPMLE formula
〈E〉〈R〉(P ∧ Px) is, for example, a {c,R, P,Q}-formula. Here R,P,Q are
relation symbols, c a constant symbol and Px a proposition variable. The
set of non-logical symbols of the formula is {R,P}. Notice indeed that the
symbol E associated with the global diamond 〈E〉 is not considered to be a
non-logical symbol.

Formulae of SOPML and SOPMLE are interpreted with respect to pointed
models. Recall that a pointed model is a pair (M,w), where M is a model
and w ∈ Dom(M). In addition to pointed models, we also need objects that
interpret free occurrences of proposition variables in PROP. Any function

V : PROP −→ Pow(Dom(M)),

where M is a model, is called a valuation.
Let S be the vocabulary we defined above. Let M be an S-model with

w ∈ Dom(M) = W . (An S-model, or a model of the vocabulary S, is a model
M ′ such that the set of non-logical symbols that M ′ gives an interpretation
to is exactly the set S.) Let V be a valuation that maps PROP to Pow(W).
We let denote the modal truth relation, which we now define for the model
M and for S-formulae of SOPML in the following recursive fashion.

Let c ∈ S0, P ∈ S1 and R ∈ S2. Let R′ ∈ S+ be a k-ary relation symbol
for some integer k greater or equal to three. Let P# ∈ PROP, where # is a

17

variable symbol in VARFO ∪ VARSO. Let ϕ,ψ, ϕ1, ..., ϕk−1 be formulae of
SOPML of the vocabulary S. We define

(M,w), V c ⇔ w = cM ,
(M,w), V P ⇔ w ∈ PM ,
(M,w), V P# ⇔ w ∈ V (P#),
(M,w), V ¬ϕ ⇔ (M,w), V 6 ϕ,
(M,w), V (ϕ ∧ ψ) ⇔ (M,w), V ϕ and (M,w), V ψ,

(M,w), V ∃P# ϕ ⇔ ∃U ⊆W
(
(M,w), V U

P#
 ϕ

)
,

(M,w), V 〈R〉 ϕ ⇔ ∃u ∈W
(
wRMu and (M,u) ϕ

)
,

(M,w), V 〈R′ 〉 (ϕ1, ..., ϕk−1) ⇔ ∃u1...uk−1 ∈W such that
R′M (w, u1, ..., uk−1) and
(M,ui), V ϕi for each i.

The truth definition of SOPMLE is obtained by extending the above set
of clauses by the following additional clause.

(M,w), V 〈E〉ϕ iff ∃u ∈ Dom(M)
(
(M,u), V ϕ

)
.

As SOPML is a fragment of SOPMLE, in the remaining part of the current
subsection (Subsection 2.2.1) we only refer to SOPMLE formulae when fixing
conventions that apply to formulae of both SOPML and SOPMLE.

If a formula ϕ of SOPMLE does not contain free occurrences of propo-
sition variables, we may drop the valuation V and write (M,w) ϕ. An
SOPMLE formula without free proposition variables is called a sentence.
We extend the definition of the modal truth relation to the context of
models (as opposed to pointed models) in the following standard way.

M ϕ iff for all w ∈ Dom(M), (M,w) ϕ.

We also extend the truth relation of predicate logic to cover pointed models.
Let S be a vocabulary, M an S-model and ϕ(x) an S-formula of predicate
logic with exactly one free variable, the first-order variable x. We define

(M,w) |= ϕ(x) iff M,
w

x
|= ϕ(x),

where M, wx |= ϕ(x) means that M satisfies ϕ(x) when x is interpreted as
w.

Let S be a vocabulary and Hp be a class of pointed S-models. We say
that an S-sentence ϕ of SOPMLE defines the class C of pointed models with
respect to Hp, if

C = { (M,w) ∈ Hp | (M,w) ϕ }.

We write
MODHp(ϕ) = C.

18

Similarly, we say that an S-formula ψ(x) of MSO defines the class C of
pointed models with respect to Hp if

C = {(M,w) ∈ Hp | (M,w) |= ψ(x)}.

The formula ψ(x) is required to contain exactly one free first-order variable
and no free second-order variables. We write

MODHp(ψ(x)) = C.

Let H be a class of S-models. We say that an S-sentence ϕ of SOPMLE
defines the class C of models with respect to H if

C = {M ∈ H | M ϕ}.

This mode of definability is sometimes referred to as global definability. We
write

MODH(ϕ) = C.

Similarly, we say that an S-sentence ψ of MSO defines the class C of models
with respect to H if

C = {M ∈ H | M |= ψ}.

We write
MODH(ψ) = C.

Two MSO formulae ϕ and ψ are called uniformly equivalent, if the fol-
lowing three conditions are satisfied.

1. The two formulae have exactly the same set of free variable symbols.
That is, the subset of VAR of variables that occur free in ϕ is exactly
the same as the subset of VAR of variables that occur free in ψ.

2. The two formulae have exactly the same set U of non-logical symbols.

3. The equivalence
M,f |= ϕ ⇔ M,f |= ψ

holds for all U -models M and all variable assignments f that map the
set VAR to the set Dom(M) ∪ Pow(Dom(M)).

For example the formulae X(y) and X(y) ∨ y 6= y are uniformly equivalent.
The formulae P (x)∨¬P (x) and Q(x)∨¬Q(x) are not uniformly equivalent
since they fail to have the same set of non-logical symbols. (The set of non-
logical symbols of the formula P (x)∨¬P (x) is {P} and that of the formula
Q(x)∨¬Q(x) is {Q}.) The formulae x1 = x1 and x2 = x2 are not uniformly
equivalent since they fail to have the same set of free variable symbols.

Two SOPMLE formulae ϕ′ and ψ′ are uniformly equivalent, if the fol-
lowing three conditions are satisfied.

19

1. The two formulae have exactly the same set of free proposition vari-
ables. That is, the subset of PROP of proposition variables that occur
free in ϕ′ is exactly the same as the subset of PROP of proposition
variables that occur free in ψ′.

2. The two formulae have exactly the same set U of non-logical symbols.

3. The equivalence

(M,w), V |= ϕ′ ⇔ (M,w), V |= ψ′

holds for all pointed U -models (M,w) and all valuations that map the
set PROP to the set Pow(Dom(M)).

Let χ be a sentence of SOPMLE and π(x) a formula of MSO with exactly one
free variable, the first-order variable x. The sentence χ and the formula π(x)
are uniformly equivalent if they have exactly the same set U of non-logical
symbols, and if we have

(M,w) χ ⇔ (M,w) |= π(x)

for all pointed U -models (M,w). An SOPMLE sentence χ′ and an MSO
sentence π′ are called globally uniformly equivalent, if the sentences have the
same set U ′ of non-logical symbols, and if we have

M χ′ ⇔ M |= π′

for all U ′-models M .
When we informally leave out parentheses when writing formulae, the

order of preference of logical connectives is such that unary connectives have
the highest priority, and then come ∧,∨,→,↔ in the given order.

2.2.2 Grids and Graphs

Two classes of structures have a central role in the considerations that follow.

Definition 2.1. Let m,n ∈ N≥1 and let

D = {1, ...,m} × {1, ..., n}.

Let S1 and S2 be binary relation symbols. Define two binary relations SGd1

and SGd2 such that SGd1 contains exactly the pairs of the type(
(i, j), (i+ 1, j)

)
∈ D ×D

and SGd2 exactly the pairs of the type(
(i, j), (i, j + 1)

)
∈ D ×D.

20

The structure Gd =
(
D,SGd1 , SGd2

)
is a grid, and the grid Gd is said to

correspond to an m× n matrix. The element (1, 1) of the domain of a grid
is referred to as the top left element. We let GRID denote the class of grids.
Note that this class is not closed under isomorphism. In fact there would
be no problem calling GRID the set of all grids.

The other class of structures we shall consider is that of (nonempty)
directed graphs. A directed graph is a structure (W,R), where W 6= ∅ is a
finite set and R ⊆ W ×W a binary relation. When we refer to a graph we
always mean a nonempty, finite directed graph. We let GRAPH denote the
class of finite directed graphs.

2.2.3 Alternation Hierarchies

An MSO formula in monadic prenex normal form consists of a vector of
monadic second-order quantifiers followed by a first-order part. Levels of the
monadic second-order quantifier alternation hierarchy measure the number
of alternating blocks of existential and universal second-order quantifiers of
MSO formulae in monadic prenex normal form. It is natural to classify
SOPML formulae in an analogous way. Below we give formal definitions of
alternation hierarchies. We only define the levels containing formulae that
begin with an existential quantifier, as this suffices for the purposes of our
discourse.

Let S be a nonempty vocabulary not containing function symbols. Let
LFO(S ∪ VARSO) denote the first-order language associated with the set
S ∪VARSO. We define

Σ0(S) = LFO(S ∪VARSO)

and
Σn+1(S) = {∃X1, ...,∃Xk¬ϕ | k ∈ N and ϕ ∈ Σn(S)}.

The sets Σn(S) are levels of the syntactic alternation hierarchy of MSO.
We write Σn instead of Σn(S) when the vocabulary is clear from the

context. With [Σn] we refer to the equivalence closure of Σn. In other
words, [Σn] is the set of MSO formulae ϕ such that there exists some MSO
formula ϕ′ ∈ Σn that is uniformly equivalent to ϕ.

Levels of the syntactic alternation hierarchy are associated with natural
semantic counterparts. Let H be a subclass of the class of all S-structures.
We define

Σn(H) = {C ∈ Pow(H) | C = MODH(ϕ) for some sentence ϕ ∈ Σn(S)}.

Similarly, we let

Σn(Hp)
= {C ∈ Pow(Hp) | C = MODHp

(
ϕ(x)

)
for some formula ϕ(x) ∈ Σn(S)},

21

where Hp is a class of pointed S-models.
We then deal with the quantifier alternation hierarchies of SOPML for-

mulae of the vocabulary S. The zeroeth level of the syntactic hierarchy of
SOPML contains all SOPML formulae free of propositional quantifiers, and
any formula ∃P1...∃Pk ¬ϕ belongs to the level n + 1 iff ϕ belongs to the
n-th level. We let ΣML

n (S) denote the n-th level of this hierarchy. On the
semantic side, we define

ΣML
n (H)

= {C ∈ Pow(H) | MODH(ϕ) = C for some sentence ϕ ∈ ΣML
n (S)},

where H is a subclass of the class of S-models. Similarly, we define

ΣML
n (Hp)

= {C ∈ Pow(Hp) | MODHp(ϕ) = C for some sentence ϕ ∈ ΣML
n (S)},

where Hp is a class of pointed S-models.
If for all n ∈ N there exists a k > n such that Σn(K) 6= Σk(K), we say

that the alternation hierarchy of MSO is infinite over K. Here K can be a
class of models or a class of pointed models. We define infinity of SOPML
alternation hierarchies analogously.

2.3 SOPMLE = MSO

In this section we show that second-order propositional modal logic with the
global modality (SOPMLE) has the same expressive power as MSO. The
result is closely related (for example) to the fact that the system H(↓, E)
of hybrid logic is expressively complete for first-order logic, see [3] and the
references therein. In the light of the considerations in [1, 2, 11], the result
is not that surprising.

In order to establish that SOPMLE is expressively complete for MSO,
we define a simple translation from the set of MSO formulae into the set of
SOPMLE formulae. The translation was inspired by a very similar transla-
tion defined in [11].

Let M be a model and

f : VAR −→ Dom(M) ∪ Pow
(
Dom(M)

)
a related assignment. We let Vf denote the valuation mapping from the
set PROP to the set Pow

(
Dom(M)

)
such that the following conditions are

satisfied.

1. Vf (Px) = {f(x)} for all Px ∈ PROP such that x ∈ VARFO.

2. Vf (PX) = f(X) for all PX ∈ PROP such that X ∈ VARSO.

22

Consider the formula

uniq(Px) := 〈E〉Px ∧ ∀Py
(
〈E〉(Py ∧ Px)→ [E](Px → Py)

)
,

where [E] stands for ¬〈E〉¬. The formula states that the proposition variable
Px is satisfied by exactly one element.

Let S be a vocabulary. Let P ∈ S be a unary and R ∈ S a binary relation
symbol. Let R′ ∈ S be a k-ary relation symbol, where k is an integer greater
or equal to three. Let c ∈ S and c′ ∈ S be constant symbols. Let ϕ and
ψ be MSO formulae of the vocabulary S. We define the following recursive
translation Tr from the set of MSO formulae of the vocabulary S into the
set of S-formulae of SOPMLE.

Tr(P (x)) = 〈E〉(P ∧ Px)
Tr(X(y)) = 〈E〉(PX ∧ Py)
Tr(R(x, y)) = 〈E〉(Px ∧ 〈R〉Py)
Tr(R′(x1, ..., xk)) = 〈E〉

(
Px1 ∧ 〈R′〉(Px2 , ..., Pxk)

)
Tr(x = y) = 〈E〉(Px ∧ Py)
Tr(c = x) = 〈E〉(c ∧ Px)
Tr(x = c) = 〈E〉(Px ∧ c)
Tr(c = c′) = 〈E〉(c ∧ c′)
Tr(¬ϕ) = ¬Tr(ϕ)
Tr((ϕ ∧ ψ)) =

(
Tr(ϕ) ∧ Tr(ψ)

)
Tr(∃xϕ) = ∃Px

(
uniq(Px) ∧ Tr(ϕ)

)
Tr(∃X ϕ) = ∃PX Tr(ϕ)

Lemma 2.2. Let S be a vocabulary and let (M,w) be a pointed S-model
with the domain W . We have

M,f |= ϕ ⇔ (M,w), Vf Tr(ϕ)

for all MSO formulae ϕ of the vocabulary S and all assignment functions
f : VAR −→W ∪ Pow(W).

Proof. We prove the claim by induction on the structure of S-formulae ϕ
of MSO. The basis of the induction is established by a straightforward
argument. The case where ϕ = ¬ψ for some formula ψ is trivial, as is the
case where ϕ has a conjunction as its main connective. Therefore we may
proceed directly to the case where ϕ = ∃xψ for some formula ψ.

Assume first that M,f |= ∃xψ. Therefore we have M,f ux |= ψ for some
u ∈W . Hence

(M,w), Vf
{u}
Px

 Tr(ψ)

by the induction hypothesis. Thus

(M,w), Vf ∃Px
(
uniq(Px) ∧ Tr(ψ)

)
,

23

as required.
For the converse, assume that

(M,w), Vf ∃Px
(
uniq(Px) ∧ Tr(ψ)

)
.

Therefore

(M,w), Vf
U

Px
 uniq(Px) ∧ Tr(ψ)

for some U ⊆W . As

(M,w), Vf
U

Px
 uniq(Px),

we have U = {u} for some u ∈W . Therefore

(M,w), Vf
{u}
Px

 Tr(ψ),

and thus M,f ux |= ψ by the induction hypothesis. Therefore M,f |= ∃xψ,
as required.

Finally, the argument for the case where the formula ϕ is of the type
∃X ψ, is straightforward.

We are now ready for the main results of the current section.

Theorem 2.3. Let S be a vocabulary. A subclass K of a class C of pointed
S-models is definable w.r.t. C by an MSO formula if and only if K is
definable w.r.t. C by an SOPMLE sentence.

Proof. Let ϕ be an arbitrary S-formula of MSO with exactly one free vari-
able, the first-order variable x. Let (M,w) be a pointed S-model with the
domain W , and let

f : VAR −→W ∪ Pow(W)

be an arbitrary assignment. The following equivalence holds by Lemma 2.2.

M,f wx |= ϕ ⇔ (M,w), Vf
{w}
Px

 Tr(ϕ)

We observe that the formula Tr(ϕ) has exactly one free proposition variable,
Px. We have the following equivalence.

(M,w), Vf
{w}
Px

 Tr(ϕ)

⇔
(M,w) ∃Px

(
Px ∧ uniq(Px) ∧ Tr(ϕ)

)
By the two equivalences, it is clear that the sentence

∃Px
(
Px ∧ uniq(Px) ∧ Tr(ϕ)

)
24

is an SOPMLE sentence uniformly equivalent to ϕ.
For the converse, we define a trivial generalization of the standard trans-

lation (see [7]). Let s be an injection from PROP to VARSO. If P# ∈ PROP,
let X# denote the variable s(P#). The translation operator St takes as an
input a formula of SOPMLE and a first-order variable. We define the oper-
ator St recursively by the following clauses.

1. Stx(c) := x = c

2. Stx(P) := P (x)

3. Stx(P#) := X#(x)

4. Stx(¬ϕ) := ¬Stx(ϕ)

5. Stx
(

(ϕ ∧ ψ)
)

:=
(
Stx(ϕ) ∧ Stx(ψ)

)
6. Stx(〈R〉ϕ) := ∃y

(
xRy ∧ Sty(ϕ)

)
7. Stx

(
〈R′〉(ϕ1, ..., ϕk)

)
:= ∃y1...∃yk

(
R′(x, y1, ..., yk) ∧ Sty1(ϕ1) ∧ ... ∧ Styk(ϕk)

)
8. Stx(〈E〉ϕ) := x = x ∧ ∃y Sty(ϕ)

9. Stx(∃P# ϕ) := ∃X# Stx(ϕ)

Here c is a constant symbol, P a unary relation symbol, P# a relation
variable in PROP, R a binary relation symbol and R′ a (k+ 1)-ary relation
symbol. It is easy to see that if ϕ is a sentence of SOPMLE, then Stx(ϕ) is
an MSO formula uniformly equivalent to ϕ.

Theorem 2.4. Let S be a vocabulary. A subclass K of a class C of S-models
is definable w.r.t. C by an MSO sentence if and only if K is definable w.r.t.
C by an SOPMLE sentence.

Proof. Let ϕ be an arbitrary MSO sentence of the vocabulary S. Notice
that Tr(ϕ) does not contain any free proposition variables. Let M ∈ K be
a model and f a related assignment.

Assume that M |= ϕ. Pick an arbitrary w ∈W . We have

M |= ϕ ⇔ M,f |= ϕ
⇔ (M,w), Vf Tr(ϕ)
⇔ (M,w) Tr(ϕ),

where the second equivalence follows by Lemma 2.2. Hence, as w was chosen
arbitrarily, we conclude that M Tr(ϕ).

25

Assume then that M Tr(ϕ). Pick an arbitrary u ∈ W . We have
(M,u) Tr(ϕ). Similarly to what we had above, we have

M |= ϕ ⇔ M,f |= ϕ
⇔ (M,u), Vf Tr(ϕ)
⇔ (M,u) Tr(ϕ).

Thus M |= ϕ. We conclude that

M |= ϕ ⇔ M Tr(ϕ).

For the direction from SOPMLE to MSO, ∀xStx(ψ) is an MSO sentence
globally uniformly equivalent to a sentence ψ of SOPMLE.

It is now straightforward to observe that with regard to expressive power,
SOPMLD = MSO, where SOPMLD denotes second-order propositional
modal logic with the difference modality. The language of SOPMLD is
obtained by extending the language of SOPML by a new unary opera-
tor 〈D〉—similarly to the way we obtained the language of SOPMLE. A
pointed model (M,w) satisfies the formula 〈D〉ϕ iff there exists a point
u ∈ Dom(M) \ {w} such that (M,u) satisfies ϕ. It is clear that SOPMLE
formulae can be expressed in SOPMLD. Therefore MSO formulae can be
expressed in SOPMLD. It is also clear that formulae of SOPMLD translate
into MSO.

2.4 Simulating Globality

The local nature of SOPML (cf. Proposition 4 of [11]) limits its expressive
power. In this section we define a class of structures over which this is not
the case. The key point is to insist that each structure contains a point
which connects to every point of the structure.

Definition 2.5. Let (W,R) be a structure with a binary relation R. Assume
that there is a point w ∈ W such that wRu for all u ∈ W . We call such
a point w a localizer. Structures with a localizer are called localized. If
(M,w) = ((W,R), w) is a pointed model where w is a localizer, we say that
(M,w) is l-pointed.

The notion of a localizer is similar to the notion of a spypoint applied in
hybrid logic literature (see the articles [2, 8] for example).

We then prepare ourselves for the next result (Lemma 2.6) by defining
local analogues of the formula uniq(Px) and the translation Tr defined in
Section 2.3.

Let uniqR(Px) be the formula

〈R〉Px ∧ ∀Py
(
〈R〉(Py ∧ Px)→ [R](Px → Py)

)
,

26

where [R] stands for ¬〈R〉¬. It is easy to see that if (W,R) is a model with a
localizer w ∈W , then

(
(W,R), w

)
, V U

Px
 uniqR(Px) if and only if U = {u}

for some u ∈W .
We then modify the translation Tr defined in Section 2.3 to suit the

context of localized {R}-models. Consider the clauses that define the trans-
lation Tr. Restrict attention to the parts that apply to {R}-models. Re-
place the occurrences of the global diamond 〈E〉 by the diamond 〈R〉, and
also replace uniq(Px) by uniqR(Px). We denote the obtained translation by
TrR. In other words, the translation TrR is the translation defined by the
following clauses.

TrR(X(y)) = 〈R〉(PX ∧ Py)
TrR(R(x, y)) = 〈R〉(Px ∧ 〈R〉Py)
TrR(x = y) = 〈R〉(Px ∧ Py)
TrR(¬ϕ) = ¬TrR(ϕ)
TrR((ϕ ∧ ψ)) =

(
TrR(ϕ) ∧ TrR(ψ)

)
TrR(∃xϕ) = ∃Px

(
uniqR(Px) ∧ TrR(ϕ)

)
TrR(∃X ϕ) = ∃PX TrR(ϕ)

The following lemma is a local analogue of Lemma 2.2.

Lemma 2.6. Let M = (W,R) be a localized model. Let w ∈W be a localizer
of M . We have

M,f |= ϕ ⇔ (M,w), Vf TrR(ϕ)

for all MSO formulae ϕ of the vocabulary {R} and all assignment functions
f : VAR −→W ∪ Pow(W).

Proof. The proof is essentially the same as that of Lemma 2.2.

The following lemma is a local analogue of Theorem 2.3.

Lemma 2.7. Let C be a class of l-pointed models. A class K ⊆ C of l-
pointed models is definable w.r.t. C by an MSO formula if and only if K is
definable w.r.t. C by an SOPML sentence.

Proof. Let the MSO formula ϕ(x) define K w.r.t. C. The formula

∃Px
(
Px ∧ uniqR(Px) ∧ TrR(ϕ)

)
is an SOPML sentence corresponding to ϕ. The proof is essentially the same
as that of Theorem 2.3. Instead of using Lemma 2.2, however, we apply the
analogous lemma that applies in the context where we do not have the global
modality at our disposal, i.e., Lemma 2.6.

27

Let C be a class of localized {R}-models. Let ϕ be an {R}-sentence of
SOPML such that for each model M ∈ C, there exists at least one point
w ∈ Dom(M) that satisfies ϕ, and furthermore, every point u ∈ Dom(M)
that satisfies ϕ, is a localizer. We say that ϕ fixes localizers on C.

The following lemma is a local analogue of Theorem 2.4.

Lemma 2.8. Let C be a class of localized {R}-models and assume there
exists an SOPML sentence ϕ that fixes localizers on C. A class K ⊆ C of
localized models is definable w.r.t. C by an MSO sentence if and only if K
is definable w.r.t. C by an SOPML sentence.

Proof. Let ψ be an MSO sentence that defines K w.r.t. C. Let M ∈ C be
a model and f a related assignment. Let U ⊆ Dom(M) be the set of points
w ∈ Dom(M) such that (M,w) ϕ. Notice that TrR(ψ) does not contain
free proposition variables. We have the equivalences

M |= ψ ⇔ M,f |= ψ
⇔ ∀w ∈ U

(
(M,w), Vf TrR(ψ)

)
⇔ ∀w ∈ U

(
(M,w) TrR(ψ)

)
⇔ ∀w ∈ U

(
(M,w) ϕ→ TrR(ψ)

)
⇔ M ϕ→ TrR(ψ),

where the second equivalence follows by Lemma 2.6.
For the converse, ∀xStx(χ) is an MSO sentence that corresponds to an

SOPML sentence χ.

2.5 The Alternation Hierarchy of SOPML is Infinite

In this section we prove that the alternation hierarchy of SOPML is in-
finite over the class of finite directed graphs. The following theorem of
Schweikardt [57] is the starting point of our argument.

Theorem 2.9. For all n ∈ N≥1, we have Σn(GRID) 6= Σn+1(GRID).

While a similar result holds for directed graphs2, on words and labeled
trees, for example, the alternation hierarchy of MSO is known to collapse to
the level Σ1. See [50] for a recent survey of related results.

In Subsection 2.5.1 we show how to encode grids by localized grid graphs,
a class of structures we shall define below (Definition 2.10). In Subsection
2.5.2 we then transfer the result of Theorem 2.9 to the context of localized

2See [51, 52]. In [51], the result for directed graphs is established via a reduction
from the class of grids to a certain subclass of directed graphs. Let us call this class C.
While we could prove Proposition 2.15 below via a reduction from the class C, we instead
prove it via a direct reduction from the class of grids. The two alternative approaches are
similar, but the approach via a direct reduction from the class of grids has presentational
advantages.

28

grid graphs (Proposition 2.15) and l-pointed localized grid graphs (Proposi-
tion 2.16). The transferred results will be needed in Subsection 2.5.3, where
we show that the alternation hierarchy of SOPML is infinite over pointed di-
rected graphs (Theorem 2.17) and ordinary directed graphs (Theorem 2.18).

2.5.1 Encoding Grids by Localized Grid Graphs

In this subsection we define a map that sends each grid to a localized directed
graph that encodes the structure of the grid.

Definition 2.10. Let α : GRID −→ GRAPH be a map that transforms a
grid Gd to a directed graph α(Gd) = (W,R) such that

W =
(
Dom(Gd)× {0}

)
∪
(
Dom(Gd)× {1}

)
and

R = {
(
(a, 0), (a, 0)

)
| a ∈ Dom(Gd) }

∪ {
(
(a, 0), (a, 1)

)
| a ∈ Dom(Gd) }

∪ {
(
(a, 0), (b, 0)

)
| (a, b) ∈ SGd1 }

∪ {
(
(a, 1), (b, 0)

)
| (a, b) ∈ SGd2 }

∪ {
(
(t, 0), (a, i)

)
| a ∈ Dom(Gd), i ∈ {0, 1} }

∪ {
(
(t, 1), (t, 0)

)
},

where t = (1, 1) is the top left element of the grid Gd. We call structures
in the isomorphism closure of α(GRID) localized grid graphs. We let LGG
denote this class of structures. We let LGGp denote the corresponding class
of l-pointed grid graphs. See Figure 1 for an example of a grid and the
corresponding localized grid graph.

S1

S2

7→

localizer

Figure 1: The figure shows a grid and its encoding. The localizer connects
to each point of the graph; for the sake of clarity, most arrows originating
from the localizer have not been drawn.

The point (t, 0) connects to every point in the graph α(Gd), i.e., it is a
localizer. This property enables us to overcome difficulties resulting from

29

the local nature of SOPML. We define the formula

ψt0(x) := xRx ∧ ∃y(xRy ∧ yRx ∧ x 6= y).

The formula asserts that x = (t, 0). Insisting that (t, 1)R(t, 0) will help us
with a number of technical issues, such as defining the formula

ψt1(x) := ¬xRx ∧ ∃y(xRy ∧ yRx),

which asserts that x = (t, 1).
We then show that the encoding α : GRID −→ GRAPH is injective in the

sense that if α(Gd) and α(Gd ′) are isomorphic, then Gd = Gd ′. Note that
the arrows originating from the localizer of a localized grid graph make the
graph in some sense irregular in comparison with the grid it corresponds to,
and therefore injectivity of the encoding α is not an entirely trivial matter.

Lemma 2.11. The encoding α : GRID −→ GRAPH is injective in the sense
that if α(Gd) and α(Gd ′) are isomorphic, then Gd = Gd ′.

Proof. Let α(Gd) = (W,R) = G and α(Gd ′) = (W ′, R′) = G′ for some grids
Gd and Gd ′. Assume that f : W −→ W ′ is an isomorphism between the
graphs. Let k be the number of elements w ∈ W with a reflexive loop. It
is clear that Gd corresponds to an m × n matrix such that m · n = k (cf.
Definition 2.1). The number of points w′ ∈ W ′ with a reflexive loop must
also be k, as the two graphs are isomorphic. Thus the grid Gd ′ corresponds
to an m′ × n′ matrix such that m′ · n′ = k. To conclude the proof it suffices
to show that n = n′.

We shall show that for each i ∈ N≥1, there is a first-order formula ϕi
such that for all M ∈ GRID, we have α(M) |= ϕi iff M corresponds to a
j × i matrix for some j. The claim of the lemma then follows: as G ∼= G′,
they satisfy the same first-order sentences, and thus there is some i such
that both G and G′ satisfy the sentence ϕi, whence n = i = n′.

We then show how to define the formulae ϕi. We deal with the case
where i = 1 first. We let

ϕ1 := ∃x
(
ψt1(x) ∧ ∃=1y(xRy)

)
,

where ∃=1y stands for “there exists exactly one y”. We then consider the
cases where i ≥ 2. We first define the formulae

π2(x) := ∃y∃z
(
ψt1(y) ∧ yRz ∧ ¬zRy ∧ zRx ∧ ¬xRx

)
,

succ(x, y) := ∃z(xRz ∧ zRy ∧ ¬yRy).

We then define ϕi (where i ≥ 2) in the following way.

ϕi := ∃x2...xi
(
π2(x2) ∧

(∧
2≤r<i

succ(xr, xr+1)
)
∧ ¬∃y(xiRy)

)
It is relatively easy to see that formulae ϕi have the desired meaning.

30

2.5.2 The Alternation Hierarchy of MSO over Localized Grid
Graphs

In this subsection we show that results analogous to Theorem 2.9 hold for
localized grid graphs (Proposition 2.15) and l-pointed grid graphs (Proposi-
tion 2.16). We begin by showing how to transform any grid-formula ϕ1 ∈ Σn

into a graph-formula ϕ2 ∈ Σn that in a sense says the same about localized
grid graphs as ϕ1 says about grids. In this subsection we work exclusively
on formulae of MSO.

Lemma 2.12. For every grid-formula ϕ1, there exists a graph-formula ϕ2

such that for all grids Gd and all assignments

f : VAR→ Dom(Gd) ∪ Pow
(
Dom(Gd)

)
,

we have
Gd, f |= ϕ1 ⇔ α(Gd), f ′ |= ϕ2,

where the assignment function f ′ is defined such that f ′(x) = (f(x), 0) and
f ′(X) = f(X) × {0} for all x,X ∈ VAR. Furthermore, for all n ∈ N, if
ϕ1 ∈ [Σn], then ϕ2 ∈ [Σn]. If ϕ1 is a sentence, then so is ϕ2.

Proof. Consider an MSO formula χ. Assume that χ is of the form Qχ′,
where Q is a (possibly empty) string of existential and universal monadic
second-order quantifiers, and χ′ is first-order. That is, χ is in monadic
prenex normal form. Furthermore, assume that no second-order variable
symbol occurs twice in Q. Let us call such formulae clean. We will prove
that for every clean grid-formula ϕ1 there exists a clean graph-formula ϕ2

with exactly the same second-order quantifier prefix as that of ϕ1 such that
for all grids Gd and all assignments

f : VAR→ Dom(Gd) ∪ Pow
(
Dom(Gd)

)
,

we have
Gd, f |= ϕ1 ⇔ α(Gd), f ′ |= ϕ2,

where f ′ is exactly as in the statement of the lemma.
We prove the claim by induction on the structure of clean grid-formulae

ϕ1. In addition to the case for atomic formulae, we will discuss the cases
where the grid-formula ϕ1 is of the type ¬π1, π1 ∧ π′1, ∃xπ1, ∃X π1 and
∀X π1. In the cases where ϕ1 is of the type ¬π1, π1∧ π′1, ∃xπ1, the formulae
π1 and π′1 are first-order.

Let us then show how to define ϕ2 in the case where ϕ1 is atomic. If ϕ1

is of the type x = y or type X(y), we let ϕ2 := ϕ1. If ϕ1 is of the type xS1y,
we let ϕ2 be the following formula.(

ψt0(x) ∧ ψt0(y) → ⊥
)

∧
(
ψt0(x) ∧ ¬ψt0(y)→ ∀z

(
zRy → (ψt0(z) ∨ z = y)

))
∧
(
¬ψt0(x) ∧ ψt0(y) → ⊥

)
∧
(
¬ψt0(x) ∧ ¬ψt0(y)→ xRy ∧ x 6= y

)
31

If ϕ1 is of the type xS2y, we define ϕ2 to be the following formula.(
ψt0(x) ∧ ψt0(y) → ⊥

)
∧
(
ψt0(x) ∧ ¬ψt0(y)→ ∃z

(
ψt1(z) ∧ zRy

))
∧
(
¬ψt0(x) ∧ ψt0(y) → ⊥

)
∧
(
¬ψt0(x) ∧ ¬ψt0(y)→ ∃z

(
xRz ∧ ¬zRz ∧ zRy

))
Assume then, for the sake of induction, that ϕ1 = ¬π1. The formula

π1 is first-order, and by the induction hypothesis, there exists a first-order
graph-formula π2 such that

Gd, f |= π1 ⇔ α(Gd), f ′ |= π2

for all grids Gd and related assignments f . Let ϕ2 := ¬π2. Similarly, in the
case where ϕ1 = π1 ∧ π′1, we let ϕ2 := π2 ∧ π′2, where the graph-formulae
π2, π

′
2 are again chosen by the induction hypothesis. In the case where

ϕ1 = ∃xπ1, we let ϕ2 := ∃x(xRx ∧ π2).
We then consider the case where ϕ1 = ∃X π1. Let π1 = Qχ1, where Q is

the string of monadic second-order quantifiers in π1. Let π2 be the formula
corresponding to π1 obtained by the induction hypothesis. Let π2 = Qχ2.
Define

ϕ′2 := ∃X
(
∀x(X(x)→ xRx) ∧ π2

)
.

It is easy to see that we have

Gd, f |= ϕ1 ⇔ α(Gd), f ′ |= ϕ′2

for all grids Gd and related assignments f , but we still need to modify the
quantifier structure of ϕ′2. We let ϕ2 be the formula

∃XQ
(
∀x(X(x)→ xRx) ∧ χ2

)
,

which we observe to be uniformly equivalent to ϕ′2 and of the desired form.
None of the quantifiers in Q bind the variable X, since ϕ1 = ∃X Qχ1 is a
clean formula.

Finally, let ϕ1 = ∀X π1 = ∀XQχ1, where χ1 is the first-order part of
ϕ1. This case is similar to the previous one. We obtain the formula Qχ2

corresponding to Qχ1 by the induction hypothesis, and let

ϕ2 := ∀XQ
(
∀x(X(x)→ xRx)→ χ2

)
.

The formula ϕ2 has the required properties.

Our next aim is to show that for each graph-sentence ϕ2 ∈ Σn, there
exists a grid-sentence ϕ1 ∈ Σn that says the same about grids as ϕ2 says
about localized grid graphs. In order to establish this, we first need to
address a number of technical issues.

32

We first fix VARFO = {x1, x2, x3, ...}. In spite of this, we still continue
using meta-variables x, y, z occasionally, for the sake of readability. We then
define a new set of symbols

VAR′ = VARFO

∪ (VARSO × {0})
∪ (VARSO × {1})
∪ (VARSO × {t0})
∪ (VARSO × {t1}).

We denote the new second-order variables of the type (X, 0), (X, 1), (X, t0)
and (X, t1) by X0, X1, Xt0 and Xt1 , respectively.

Let Gd be a grid. We partition the domain of the grid graph α(Gd) into
the following four sets.

Vt0 = {
(
(1, 1), 0

)
}

Vt1 = {
(
(1, 1), 1

)
}

V0 = {
(
(x, y), 0

)
∈ Dom(α(Gd)) | (x, y) 6= (1, 1) }

V1 = {
(
(x, y), 1

)
∈ Dom(α(Gd)) | (x, y) 6= (1, 1) }

Let κ : N≥1 −→ { 0, 1, t0, t1 } be a function. We say that an assignment

f : VAR −→ Dom(α(Gd)) ∪ Pow
(
Dom(α(Gd))

)
is of the type κ if f(xi) ∈ Vκ(i) for all i ∈ N≥1. We call the function κ an
assignment type.

Each assignment

f : VAR −→ Dom(α(Gd)) ∪ Pow
(
Dom(α(Gd))

)
is associated with a related assignment

fGd : VAR′ −→ Dom(Gd) ∪ Pow(Dom(Gd))

defined in a way we specify next. For first-order variables x ∈ VAR′, we
require that the condition

∀a ∈ Dom(Gd)
(
fGd(x) = a ⇔

(
f(x) = (a, 0) or f(x) = (a, 1)

))
is satisfied. For second-order variables X0, X1 ∈ VAR′ we let

fGd(X
0) = { a ∈ Dom(Gd) | (a, 0) ∈ f(X) } \ { (1, 1) },

fGd(X
1) = { a ∈ Dom(Gd) | (a, 1) ∈ f(X) } \ { (1, 1) }.

Recall that (1, 1) is the top left element of the grid Gd. For second-order
variables Xti , where i ∈ {0, 1}, we let

fGd(X
ti) =

{
{ (1, 1) } if

(
(1, 1), i

)
∈ f(X),

∅ otherwise.

We are now ready for the following lemma.

33

Lemma 2.13. For every graph-formula ϕ2 with its variables from VAR and
every assignment type κ, there exists a grid-formula ϕκ1 with its variables
from VAR′ such that for all grid graphs α(Gd) and all assignments

f : VAR→ Dom(α(Gd)) ∪ Pow
(
Dom(α(Gd))

)
of the type κ, we have

Gd, fGd |= ϕκ1 ⇔ α(Gd), f |= ϕ2.

Furthermore, for all n ∈ N, if ϕ2 ∈ [Σn], then also ϕκ1 ∈ [Σn]. If ϕ2 is a
sentence, then so is ϕκ1 .

Proof. Recall the definition of clean formulae from the proof of Lemma 2.12.
We will prove that for every clean graph-formula ϕ2 with its variables from
VAR and every assignment type κ, there exists a grid-formula ϕκ1 with its
variables from VAR′ such that for all grid graphs α(Gd) and all assignments

f : VAR→ Dom(α(Gd)) ∪ Pow
(
Dom(α(Gd))

)
of the type κ, we have

Gd, fGd |= ϕκ1 ⇔ α(Gd), f |= ϕ2,

and furthermore, the second-order quantifier prefix Q1 of ϕκ1 can be obtained
from the second-order quantifier prefix Q2 of ϕ2 by replacing each quantifier
∃X in Q2 by the string ∃X0∃X1∃Xt0∃Xt1 , and each quantifier ∀Y in Q2 by
the string ∀Y 0∀Y 1∀Y t0∀Y t1 .

We prove the claim by induction on the structure of clean graph-formulae
ϕ2. In addition to the cases for atomic formulae, we will discuss the cases
where the graph-formula ϕ2 is of the type ¬π2, π2 ∧ χ2, ∃xπ2, ∃X π2 and
∀X π2. In the cases where ϕ2 is of the type ¬π2, π2∧ χ2, ∃xπ2, the formulae
π2 and χ2 are first-order.

Assume first that ϕ2 is atomic. If ϕ2 is xi = xj , then we let

ϕκ1 =

{
xi = xj when κ(i) = κ(j),

⊥ when κ(i) 6= κ(j).

Let topleft(z) denote the formula ¬∃x(xS1z ∨ xS2z). If ϕ2 = xiRxj , we
define ϕκ1 according to the following table.

34

(κ(i), κ(j)) ϕκ1
(0, 0) xi = xj ∨ xiS1xj
(0, 1) xi = xj
(1, 0) xiS2xj
(1, 1) ⊥
(0, t0) ⊥
(t0, 0) >
(0, t1) ⊥
(t1, 0) ∃z(topleft(z) ∧ zS2xj)
(1, t0) ⊥
(t0, 1) >
(1, t1) ⊥
(t1, 1) ⊥
(t0, t0) >
(t0, t1) >
(t1, t0) >
(t1, t1) ⊥

Finally, if ϕ2 = X(xi), we let ϕκ1 = Xκ(i)(xi). We have now established a
basis for an argument by induction.

If ϕ2 = ¬π2, we use π2 and the induction hypothesis to find πκ1 . We then
let ϕκ1 := ¬πκ1 . Similarly, if ϕ2 = π2 ∧ χ2, we use the induction hypothesis
to find πκ1 and χκ1 , and then let ϕκ1 := πκ1 ∧ χκ1 .

Let ϕ2 = ∃xπ2 and let κ be an arbitrary assignment type. For the sake
of readability, when i ∈ {0, 1, t0, t1}, we let κ[x 7→ i] denote the assignment
type κ ix . We apply the induction hypothesis to the formula π2 in order to

find formulae π
κ[x 7→i]
1 , where i ∈ {0, 1, t0, t1}, such that

Gd, fGd |= π
κ[x 7→i]
1 ⇔ α(Gd), f |= π2

holds for all grid graphs α(Gd) and valuations f of the type κ[x 7→ i]. We
then use these four formulae and define ϕκ1 to be the formula

∃x
(

topleft(x) ∧ π
κ[x 7→t0]
1

∨ topleft(x) ∧ π
κ[x 7→t1]
1

∨ ¬topleft(x) ∧ π
κ[x 7→0]
1

∨ ¬topleft(x) ∧ π
κ[x 7→1]
1

)
.

We then consider the case where ϕ2 = ∃X π2. Let κ be an assignment
type and let π2 = Q2 χ2, where Q2 is the second-order quantifier prefix of π2.
We find a grid formula πκ1 = Q1 χ1 corresponding to the formula π2 and the
assignment type κ by the induction hypothesis. Here Q1 is the second-order
quantifier prefix of πκ1 . Consider the formula

ακ1 := ∃X0∃X1∃Xt0∃Xt1(β ∧ πκ1),

35

where β is the formula

∀x
(
X0(x) ∨X1(x)→ ¬topleft(x)

)
∧
∀x
(
Xt0(x) ∨Xt1(x)→ topleft(x)

)
.

The formula ακ1 is almost what we need, as we have

Gd, fGd |= ακ1 ⇔ α(Gd), f |= ϕ2

for all grid graphs α(Gd) and related assignments f of the type κ. However,
we still need to modify the second-order quantifier structure of ακ1 . We
define

ϕκ1 := ∃X0∃X1∃Xt0∃Xt1Q1(β ∧ χ1).

We observe that ϕκ1 is uniformly equivalent to ακ1 . Since the formula ϕ2 is
clean, none of the quantifiers in Q1 binds any of the variables X0, X1, Xt0 ,
Xt1 .

The case where ϕ2 = ∀X π2 is similar to the previous case. We find
the formula πκ1 = Q1 χ1 corresponding to the formula π2 and an assignment
type κ. We define

ϕκ1 := ∀X0∀X1∀Xt0∀Xt1Q1(β → χ1),

where β is the same formula as in the previous case. The formula ϕκ1 has
the required properties.

Corollary 2.14. For every monadic second-order graph-sentence ϕ2 there
exists a monadic second-order grid-sentence ϕ1 such that for all grid graphs
α(Gd),

Gd |= ϕ1 ⇔ α(Gd) |= ϕ2.

The sentence ϕ1 can be chosen such that it is on the same level of the
monadic second-order quantifier alternation hierarchy as ϕ2.

Proof. Choose an arbitrary κ and apply Lemma 2.13.

The next two propositions will be needed later on, but they are also inter-
esting in their own right as they characterize the MSO alternation hierarchy
with respect to localized graphs.

Proposition 2.15. We have Σn(LGG) 6= Σn+1(LGG) for all n ∈ N≥1.

Proof. Fix an arbitrary positive integer n. By Theorem 2.9 there is a class
of grids

C ∈ Σn+1(GRID) \ Σn(GRID).

36

Let ϕ1 ∈ Σn+1 define C w.r.t. the class GRID. We apply Lemma 2.12 to
find a graph-sentence ϕ2 ∈ Σn+1 such that

Gd |= ϕ1 ⇔ α(Gd) |= ϕ2

for all grids Gd. It is clear that ϕ2 defines, with respect to the class of
localized grid graphs, the isomorphism closure of the class α(C).

We then show that there exists no graph-sentence ψ2 ∈ Σn that defines
the isomorphism closure of the class α(C) w.r.t. the class LGG. Assume ad
absurdum that such a ψ2 exists. Use Corollary 2.14 to choose a related grid-
sentence ψ1. Now, since α is injective, the grid-sentence ψ1 ∈ Σn defines the
class C w.r.t. the class of grids. This is a contradiction.

Proposition 2.16. We have Σn(LGGp) 6= Σn+1(LGGp) for all n ∈ N≥1.

Proof. Fix an arbitrary n ∈ N≥1. By Proposition 2.15 there exists some
sentence π ∈ Σn+1 that defines some class

C ∈ Σn+1(LGG) \ Σn(LGG)

with respect to the class LGG. Thus the l-pointed version

Cp = { (M,w) | M ∈ C, M, f
w

x
|= ψt0(x) }

of the class C is definable w.r.t. LGGp by the formula x = x ∧ π, which is
in [Σn+1].

Assume that Cp is definable w.r.t. LGGp by some formula ϕ(x) ∈ Σn.
Let ϕ(x) = Qψ(x), where ψ(x) is the first-order matrix of ϕ(x). The sen-
tence

Q∃x
(
ψt0(x) ∧ ψ(x)

)
∈ Σn

defines the class C w.r.t. LGG. This is a contradiction.

2.5.3 The Alternation Hierarchy of SOPML over Directed Graphs

We now prove that the alternation hierarchy of SOPML is infinite. We first
show this for pointed graphs and then for graphs.

Theorem 2.17. The alternation hierarchy of SOPML over the class of
pointed directed graphs is infinite.

Proof. Fix an arbitrary n ∈ N≥1. Then apply Proposition 2.16 in order to
find some class

Hp ∈ Σn+1(LGGp) \ Σn(LGGp)

of l-pointed grid graphs. By Lemma 2.7 there exists an SOPML sentence
that defines the class Hp w.r.t. the class LGGp.

Now, the class Hp cannot be definable w.r.t. the class LGGp by any
SOPML sentence on the n-th level of the alternation hierarchy of SOPML.
Assume ad absurdum that ϕ ∈ ΣML

n defines Hp w.r.t. LGGp. Now Stx(ϕ)
is an MSO formula in Σn that defines Hp w.r.t. LGGp.

37

Theorem 2.18. The alternation hierarchy of SOPML over directed graphs
is infinite.

Proof. Fix an arbitrary n ∈ N. By Proposition 2.15 there exists a class

H ∈ Σn+3(LGG) \ Σn+2(LGG)

of localized grid graphs. We shall first establish that the class H is definable
in SOPML w.r.t. LGG.

Consider the following SOPML sentence.

ψ := ∀Px
(
Px → 〈R〉Px

)
∧ ∀Px

(
Px → ∃Py

(
¬Py ∧ 〈R〉(Py ∧ 〈R〉Px)

))
In order to see that ψ fixes localizers on LGG, notice that the localizer is
the only point u of a localized grid graph that satisfies the conditions

1. uRu,

2. ∃v(v 6= u ∧ uRv ∧ vRu).

As the sentence ψ fixes localizers on LGG, Lemma 2.8 implies that the class
H is definable w.r.t. LGG by some SOPML sentence.

Assume then, for contradiction, that H ∈ ΣML
n (LGG). Thus there exists

an SOPML sentence π ∈ ΣML
n that defines the class H w.r.t. LGG. There-

fore the MSO sentence ϕ := ∀xStx(π) defines H w.r.t. LGG. To conclude
the proof, it now suffices to show that there is an MSO sentence in Σn+2

that is uniformly equivalent to ϕ.
We have π ∈ ΣML

n . Let π = Qπ′, where π′ is the part of π that is free
of propositional quantifiers. Consider the sentence

∀X Q
′ ∀x

(
X(x) ∧ ∀z

(
X(z)→ x = z

)
→ Stx(π′)

)
,

where Q
′

is the vector of quantified unary second-order relation variables
obtained from Q by replacing the quantified proposition variables in Q
by the corresponding quantified relation variables given by the injection
s : PROP −→ VARSO associated with the translation St. We assume that
the variable X does not occur in Q

′
. It is easy to see that this sentence is

uniformly equivalent to ϕ and in [Σn+2].

As the class of Kripke frames is a superclass of the class of finite directed
graphs, we immediately obtain the following corollary.

Corollary 2.19. The alternation hierarchy of SOPML over the class of
Kripke frames is infinite.

38

2.6 Chapter Conclusion

We have shown that the quantifier alternation hierarchy of SOPML induces
an infinite corresponding semantic hierarchy over the class of finite directed
graphs (Theorem 2.18). While establishing the result, we have defined the
notion of a localized structure and characterized the MSO alternation hi-
erarchy over localized (finite directed) graphs. Theorem 2.18 answers a
longstanding open problem from [5] (also addressed in [11]). The result is
also relatively interesting from the point of view of finite model theory, as
SOPML is a semantically natural fragment of MSO (cf. Theorem 6 in [11]).

In addition to obtaining the results related to alternation hierarchies, we
have observed that with regard to expressive power,

MSO = SOPMLE = SOPMLD.

Connections of this kind offer an interesting modal perspective on MSO. For
example, they immediately suggest alternative approaches to MSO games
(see [44] for the definition).

Finally, our techniques do not directly yield strictness of the alternation
hierarchy of SOPML. The reason for this is that conceivably, an MSO
formula ϕ ∈ Σn cannot necessarily be translated to an SOPML formula in
ΣML
n , as the first-order quantifiers of ϕ translate to second-order quantifiers.

Therefore, it remains to be investigated whether the SOPML alternation
hierarchy is strict over finite directed graphs.

39

CHAPTER 3

Monadic Σ1
1 and Modal Logic with

Quantified Accessibility Relations

In this chapter we investigate the expressive power of a range of modal log-
ics extended with existential prenex quantification of accessibility relations
and proposition symbols. Let polyadic Boolean modal logic with identity
(PBML=) be the logic obtained by extending standard polyadic multimodal
logic by built-in identity modalities (see Subsection 3.2.1) and by construc-
tors that allow for the Boolean combination of accessibility relations. Let
Σ1
1(PBML=) be the extension of PBML= with existential prenex quantifica-

tion of accessibility relations and proposition symbols. The principal result
of the chapter is that Σ1

1(PBML=) translates into monadic Σ1
1. As a corol-

lary, we obtain a variety of decidability results in multimodal logic. The re-
sult can also be seen as a step towards establishing whether every property of
finite directed graphs expressible in Σ1

1(FO2) is also expressible in monadic
Σ1
1. This question was left open in the article [23] of Grädel and Rosen.

The system Σ1
1(FO2) is the logic obtained by extending the two-variable

fragment of first-order logic (FO2) by existential prenex quantification of
relation symbols of any arity.

3.1 Modal Fragments of Σ1
1 and Modal Correspondence The-

ory

The objective of modal correspondence theory is to classify formulae of modal
logic according to whether they define elementary classes of Kripke frames.3

On the level of frames, modal logic can be considered a fragment of monadic
Π1

1, also known as ∀MSO, and therefore correspondence theory studies a
special fragment of ∀MSO. When inspecting a modal formula from the
point of view of frames, one universally quantifies the proposition symbols
occurring in the formula; it is rather natural to ask what happens if one also
quantifies binary relation symbols occurring in (the standard translation of)
a modal formula. This question is investigated in [42], where the focus is on
the expressivity of multimodal logic with universal prenex quantification of

3It is well known that if a class of Kripke frames is definable by a modal formula, then
the class is definable by a set of FO formulae iff it is definable by a single FO formula. See
[21] for example. Therefore it makes no difference here whether the term “elementary”
is taken to mean definability by a single first-order formula or definability by a set of
first-order formulae.

40

(not necessarily all of the) binary and unary relation symbols occurring in
a formula. One question that immediately suggests itself is whether there
exists any class of multimodal frames definable in this system, let us call
it Π1

1(ML), but not definable in monadic second-order logic. The question
can be regarded as a question of modal correspondence theory. This time,
however, the correspondence language is MSO rather than FO. In addition
to [42], modal logic with quantification of binary relations is studied for
example in [13, 43, 53].

In the current chapter we investigate two systems of multimodal logic
with existential second-order prenex quantification of accessibility relations
and proposition symbols, Σ1

1(PBML=) and Σ1
1(ML). The logic Σ1

1(ML) is the
extension of ordinary multimodal logic with existential second-order prenex
quantification of binary accessibility relations and proposition symbols. We
warm up by showing that Σ1

1(ML) translates into monadic Σ1
1(MLE), which

is the extension of multimodal logic with the global modality and existen-
tial second-order prenex quantification of only proposition symbols. The
method of proof is based on the notion of a largest filtration (see [7] for the
definition). We then push the method and show that Σ1

1(PBML=) trans-
lates into monadic Σ1

1, also known as ∃MSO. Note that both of these results
immediately imply that Π1

1(ML) translates into ∀MSO, and therefore show
that MSO is a somewhat dull correspondence language for correspondence
theory of Π1

1(ML).
It could be argued that {¬,∪,∩, ◦, ∗,^, E,D} is, more or less, the core

collection of operations on binary relations used in extensions of modal logic
defined for the purposes of applications. Here ¬, ∪, ∩, ◦, ∗, ^ denote the
complement, union, intersection, composition, transitive reflexive closure
and converse operations, respectively. The symbols E and D denote the
constant operations outputting the global modality and difference modality.
Logics using these core operations include for example PDL [17, 24], Boolean
modal logic [19, 45], description logics [31, 49], modal logic with the global
modality [22] and modal logic with the difference modality [55]. One of
the motivations for our study is that PBML= subsumes a large number
of typical extensions of modal logic. As a corollary, the translation from
Σ1
1(PBML=) into ∃MSO gives a range of decidability results for extensions of

multimodal logic over various classes of Kripke frames with built-in relations;
see Theorem 3.17 below.

We describe a possible application of Theorem 3.17. Let D be a class of
Kripke frames (W,R0) and consider the class

C = { (W, {Ri}i∈N) | Ri ⊆W ×W, (W,R0) ∈ D }

of multimodal Kripke frames. Assume the ∀MSO theory of D is decidable.
That is, the ∀MSO theory of the class of {R0}-reducts of structures in C is
decidable. For example, C could be the class of countably infinite frames

41

(W, {Ri}i∈N), where R0 is a dense linear ordering of W without endpoints;
the MSO theory of (Q, <Q) is known to be decidable [54]. Assume we would
like to know whether the satisfiability problem of multimodal logic—perhaps
extended with, say, the difference modality—with respect to C is decidable.
By Theorem 3.17 we directly see that, indeed, it is. Theorem 3.17 implies a
wide range of decidability results for multimodal logic. There exists a large
body of knowledge concerning structures and classes of structures with a
decidable MSO (and therefore ∀MSO) theory (see [62] for example).

Another motivation for the investigations in this chapter is related to
descriptive complexity theory [32]. Grädel and Rosen ask in [23] the question
whether there exists any class of finite directed graphs that is definable in
Σ1
1(FO2) but not in ∃MSO. Let BML= denote ordinary Boolean modal

logic with a built-in identity relation. Lutz, Sattler and Wolter show in the
article [46] that BML= extended with the converse operator is expressively
complete for FO2 over directed graphs. Therefore, in order to prove that
Σ1
1(FO2) ≤ ∃MSO over directed graphs, one would have to modify our

translation from Σ1
1(BML=) into ∃MSO such that it takes into account the

possibility of using the converse operation. We have succeeded neither in
this nor in identifying a Σ1

1(FO2) definable class of directed graphs that is
not definable in ∃MSO. However, we find modal logic a promising framework
for working on the problem.

3.2 Preliminary Definitions

In this section we discuss technical notions that occupy a central role in the
rest of the chapter.

3.2.1 Syntax and Semantics of Σ1
1(PBML=)

The semantics of PBML= is obtained by combining the semantics of Boolean
modal logic with the standard generalization of Kripke semantics to polyadic
modal contexts.

Let V be a vocabulary containing relation symbols only. Let V1 denote
the subset of V containing exactly all the unary relation symbols in V . Let
Vh be the subset of V containing all the relation symbols in V of higher
arities, i.e., arities greater or equal to two. We define the set MP(V) of
modal parameters over V to be the smallest set S satisfying the following
conditions.

1. For each k ∈ N≥2, let idk be a constant symbol. We assume that none
of the symbols idk is in V . We have idk ∈ S for all k ∈ N≥2.

2. If R ∈ Vh, then R ∈ S.

3. If M∈ S, then ¬M ∈ S.

42

4. If M∈ S and N ∈ S, then (M∩N) ∈ S.

Each modal parameter M is associated with an arity Ar(M) defined as
follows.

1. If M = idk, then Ar(M) = k.

2. If M = R ∈ Vh, then the Ar(M) is equal to the arity of R.

3. If M = ¬N , then Ar(M) = Ar(N).

4. If M = (N1 ∩ N2) and Ar(N1) = Ar(N2), then Ar(M) = Ar(N1). If
Ar(N1) 6= Ar(N2), then Ar(M) = 2.

The set of formulae of PBML= of the vocabulary V is defined to be the
smallest set F satisfying the following conditions.

1. If P ∈ V1, then P ∈ F .

2. If ϕ ∈ F , then ¬ϕ ∈ F .

3. If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .

4. If ϕ1, ..., ϕk ∈ F and ifM∈ MP(V) is a (k+ 1)-ary modal parameter,
then 〈M〉(ϕ1, ..., ϕk) ∈ F .

Operators 〈M〉 are called diamonds. The modal depth Md(ϕ) of a formula
ϕ is the maximum nesting depth of diamonds in ϕ.

1. Md(P) = 0 for P ∈ V1.

2. Md(¬ϕ) = Md(ϕ).

3. Md
(

(ϕ1 ∧ ϕ2)
)

= max({Md(ϕ1),Md(ϕ2)}).

4. Md
(
〈M〉(ϕ1, ..., ϕk)

)
= 1 + max({Md(ϕ1), ...,Md(ϕk)}).

Let M be a model with the domain A. The extension MM of a modal
parameterM over M is a relation of the arity Ar(M) over A. The extension
of R ∈ Vh over M is simply the interpretation RM of the symbol R. For
each k ∈ N≥2, the extension idMk of the symbol idk is the set

{ (w1, ..., wk) ∈ Ak | wi = wj for all i, j ∈ {1, ..., k} }.

Other modal parameters are interpreted recursively such that the following
conditions hold.

1. If M = ¬N , then MM = AAr(M) \ NM .

2. If M = (N1 ∩N2), then MM = NM
1 ∩NM

2 .

43

Note that if Ar(N1) 6= Ar(N2), then (N1 ∩N2)
M = ∅.

The satisfaction relation for PBML= formulae of the vocabulary V is
defined with respect to pointed V -models as follows.

1. If P ∈ V1, then
(M,w) P ⇔ w ∈ PM .

2. For other formulae, the satisfaction relation is interpreted according
to the following recursive clauses.

(M,w) ¬ϕ ⇔ (M,w) 6 ϕ.
(M,w), (ϕ1 ∧ ϕ2) ⇔ (M,w) ϕ1 and (M,w) ϕ2.
(M,w) 〈M〉(ϕ1, ..., ϕk) ⇔ there exist u1, ..., uk ∈ Dom(M)

such that (w, u1, ..., uk) ∈MM and
(M,ui) ϕi for all i ∈ {1, ..., k}.

For each V -model M and each formula ϕ of the vocabulary V , we let ||ϕ||M
denote the set

{ w ∈ Dom(M) | (M,w) ϕ }.

The set ||ϕ||M is called the extension of ϕ over M . When ϕ and ψ are
formulae of the vocabulary V , we write ϕ ψ if

(M,w) ϕ ⇒ (M,w) ψ

for all pointed V -models (M,w).
Let V be a vocabulary containing relation symbols only; V may be

empty, and V may contain relation symbols of any finite positive arity. A
formula ϕ of Σ1

1(PBML=) of the vocabulary V is a formula of the type

∃S1...∃Sn ψ,

where the variables Si are relation symbols (of any positive arity) and ψ
is a PBML= formula of the vocabulary V ∪ {S1, ..., Sn}. The sets V and
{S1, ..., Sn} are always assumed to be disjoint. Let (M,w) be a pointed
V -model. We define (M,w) ϕ if there exists an expansion

M ′ = (M,SM
′

1 , ..., SM
′

n)

of the model M such that (M ′, w) ψ. The set of non-logical symbols of
a Σ1

1(PBML=) formula χ of the vocabulary V is the set of relation symbols
(of any arity) that belong to V and occur in χ.

Let BML= be the fragment of PBML= where each modal parameter
occurring in a formula is required to be binary. The system ML is the
fragment of BML= where the modal parameters are required to be atomic
binary relation symbols that belong to the vocabulary considered. Note that
the modal parameter id2 is not considered to be part of the vocabulary. The

44

system MLE is the extension of ML with the global diamond 〈E〉, i.e., the
diamond 〈¬(id2 ∩ ¬id2)〉. Systems Σ1

1(ML) and Σ1
1(MLE) are the fragments

of Σ1
1(PBML=) defined by extending ML and MLE with existential prenex

quantification of binary and unary relation symbols. Monadic Σ1
1(MLE)

is the fragment of Σ1
1(MLE) where we only allow second-order quantifiers

quantifying unary relation symbols.
The systems Π1

1(PBML=), Π1
1(ML) and Π1

1(MLE) are the counterparts of
the systems Σ1

1(PBML=), Σ1
1(ML) and Σ1

1(MLE), but with universal second-
order quantifiers instead of existential ones.

Let ϕ be a formula of Σ1
1(PBML=) or Π1

1(PBML=) of the vocabulary V .
Let ψ(x) be a V -formula of predicate logic with exactly one free variable, the
first-order variable x. The formulae ϕ and ψ(x) of are called V -equivalent
if for all pointed V -models (M,w), we have

(M,w) ϕ ⇔ M,
w

x
|= ψ(x).

The formulae ψ(x) and ϕ are uniformly equivalent if they have the same
set U of non-logical symbols and if the formulae are U -equivalent. (Recall
that neither the identity symbol of predicate logic nor any of the symbols
idk is considered to be a non-logical symbol. For example the formulae
x = x ∧ ∃yR(y, y) and ∃S ∃P 〈S〉〈id2 ∩ R〉P are uniformly equivalent. The
set of non-logical symbols of both formulae is {R}.) Two Σ1

1(PBML=) for-
mulae ϕ1 and ϕ2 of the vocabulary V are V -equivalent if they are satisfied
by exactly the same pointed V -models. The formulae ϕ1 and ϕ2 are uni-
formly equivalent if they have exactly the same set U ′ of non-logical symbols
and if the formulae are U ′-equivalent. Two V -sentences of predicate logic
are uniformly equivalent if they have exactly the same set T of non-logical
symbols and if they are satisfied by exactly the same T -models.

The reason we have chosen to define PBML= exactly the way defined
above, is relatively simple. Firstly, BML= extended by the possibility of
using the converse modality, is expressively complete for FO2. We do not
know whether Σ1

1(FO2) is contained in ∃MSO, but we will show below that
Σ1
1(BML=) ≤ ∃MSO by establishing that even the extension Σ1

1(PBML=) of
Σ1
1(BML=) with polyadic modalities is indeed contained in ∃MSO. Finally,

the reason we have included the modalities idk for k ≥ 3 in the language of
PBML= is mostly due to technical presentation related issues. The reader
may, indeed, think that the modalities idk for k ≥ 3 are not very canoni-
cal. The modalities do, however, have some interesting features. Notice for
example that we can easily eliminate the use of conjunction from PBML=.
(We shall not make any use of this feature below, however.)

3.2.2 Types

In the current subsection we define the notion of a type for formulae of
PBML=.

45

Let V be a finite vocabulary such that V1 6= ∅. Let m′ be the maximum
arity of the modal parameters in Vh. In the case Vh = ∅, let m′ = 0. Let m
be an integer such that 2 ≤ m and m′ ≤ m. Define the set

SV = Vh ∪ { ¬R | R ∈ Vh } ∪ { idk, ¬idk | 2 ≤ k ≤ m }

of at most m-ary atomic and negated atomic modal parameters over V . Let
k be an integer such that 2 ≤ k ≤ m. Let SV (k) be the set that contains as
elements exactly the k-ary modal parameters in SV . Notice that SV (k) 6= ∅.
Let TV (k) denote the set whose elements are exactly the subsets T ⊆ SV (k)
such that the following conditions are satisfied.

1. Exactly one of the modal parameters idk and ¬idk is in the set T .

2. If R ∈ Vh is k-ary, then exactly one of the modal parameters R and
¬R is in the set T .

Let f be a function with the domain TV (k) that maps each T ∈ TV (k) to
an intersection N ∈ MPV of the elements of T . (There may be several ways
to choose the order of the members of T and bracketing when writing the
modal parameter N . The order and bracketing that f chooses does not
matter.) The set

{ f(T) | T ∈ TV (k) }

of modal parameters is the set of k-ary access types over V . We let ATPV (k)
denote the set of k-ary access types over V .

LetM be a k-ary access type over V , and let R ∈ Vh ∪ {idk} be a k-ary
atomic modal parameter. We write R ∈M if ¬R does not occur inM. Let
U ⊆ V and let N be a k-ary access type over U . We say that N is consistent
with M (or alternatively, M is consistent with N), if for all k-ary symbols
R ∈ Uh ∪ {idk}, we have R ∈M iff R ∈ N .

Let (M,w) be a pointed model of the vocabulary V . We define

τ0(M,w),m :=
∧

P ∈ V1,

(M,w) P

P ∧
∧

Q ∈ V1,

(M,w) 6 Q

¬Q.

The formula τ0(M,w),m is the type of (M,w) of the modal depth 0 and up to

the arity m. We choose the formulae τ0(M,w),m such that if for some pointed

V -models (M,w) and (N, v) the types τ0(M,w),m and τ0(N,v),m are uniformly

equivalent,4 then actually τ0(M,w),m = τ0(N,v),m. This means that the exact
syntactic form of the types of pointed V -models of the modal depth 0 and up

4Note that the types τ0(M,w),m and τ(N,v),m must have the same set of non-logical
symbols (the set V1), as the the models (M,w) and (N, v) are both V -models. Recall that
the set of non-logical symbols interpreted by a V -model is exactly the set V .

46

to the arity m is chosen such that if two such types are uniformly equivalent,
then they are in fact the one and the same formula. We let TP0

V,m denote
the set containing exactly the formulae τ such that for some pointed model
(M,w) of the vocabulary V , the formula τ is the type of (M,w) of the modal
depth 0 and up to the arity m. Clearly the set TP0

V,m is finite.
Let n ∈ N and assume we have defined formulae τn(M,w),m for all pointed

models (M,w), and assume also that TPnV,m is a finite set containing exactly
all these formulae. We define

τn+1
(M,w),m := τn(M,w),m

∧
∧
{ 〈M〉(σ1, ..., σk) | 1 ≤ k ≤ m− 1,

M∈ ATPV (k + 1),
σ1, ..., σk ∈ TPnV,m ,

(M,w) 〈M〉(σ1, ..., σk) }

∧
∧
{ ¬〈M〉(σ1, ..., σk) | 1 ≤ k ≤ m− 1,

M∈ ATPV (k + 1),
σ1, ..., σk ∈ TPnV,m ,

(M,w) 6 〈M〉(σ1, ..., σk) }.

The formula τn+1
(M,w),m is the type of (M,w) of the modal depth n+ 1 and up

to the arity m. Again we assume some standard ordering of the conjuncts
and some standard bracketing, so that if two types τn+1

(M,w),m and τn+1
(N,v),m

of pointed V -models (M,w) and (N, v) are uniformly equivalent, then the
types are the same formula. We let TPn+1

V,m be the set containing exactly the
formulae τ such that for some pointed model (M,w) of the vocabulary V ,
the formula τ is the type of (M,w) of the modal depth n+ 1 and up to the
arity m. We observe that the set TPn+1

V,m is finite.
We then list a number of properties of types that are straightforward to

prove. Let (M,w) be a pointed model of the vocabulary U , where U may be
infinite. Assume that U1 6= ∅. Let V ⊆ U be a finite vocabulary and let m be
as defined above, i.e., m is at least two and greater or equal to the maximum
arity of the symbols in Vh. Assume that V1 6= ∅. Let n ∈ N. Firstly, (M,w)
satisfies exactly one type in TPnV,m. Also, for all τ ∈ TPnV,m and all l ≤ n,

there exists exactly one type σ ∈ TPlV,m such that τ σ. Notice also that
for each type τ ∈ TPnV,m, there exists some pointed V -model that satisfies τ .
Let α ∈ TPnV,m and let ψ be an arbitrary formula of the vocabulary V and
of some modal depth n′ ≤ n. Assume that the maximum arity of the modal
parameters that occur in ψ is at most m. Now either α ψ or α ¬ψ, and
thus, for all points u, v ∈ ||α||M , we have (M,u) ψ iff (M,v) ψ. Finally,
ψ is V -equivalent to

∨
{α ∈ TPnV,m | α ψ}. Notice that

∨
∅ = ⊥, where

⊥ is defined to be the formula (P ∧ ¬P) for some P ∈ V1.

47

3.3 Σ1
1(ML) Translates into Monadic Σ1

1(MLE)

In this subsection we show how to translate Σ1
1(ML) formulae to uniformly

equivalent formulae of monadic Σ1
1(MLE). We begin by fixing a Σ1

1(ML)
formula ϕ. We will first show how to translate ϕ to a uniformly equivalent
formula ϕ∗(x) of ∃MSO. We will then establish that that the first-order
part of ϕ∗(x) translates to a uniformly equivalent formula of MLE.

Let ϕ := Qψ, where Q is a string of existential second-order quantifiers
and ψ a formula of ML. Let V ψ

1 and V ψ
2 denote the sets of unary and binary

relation symbols, respectively, that occur in ψ. Define

V ψ = V ψ
1 ∪ V

ψ
2 .

Let Qψ1 and Qψ2 denote the sets of unary and binary relation symbols, re-
spectively, that occur in Q. Define

Qψ = Qψ1 ∪Q
ψ
2 .

Let SUBψ denote the set of subformulae of the formula ψ.
We fix a unary relation symbol Pα for each formula α ∈ SUBψ. The

symbols Pα are assumed not to occur in ϕ. We then define a collection of
auxiliary formulae needed in order to define the translated formula ϕ∗(x).
Let

P ′, ¬α, (β ∧ γ), 〈R〉ρ, 〈S〉σ ∈ SUBψ,

where P ′ ∈ V ψ
1 , R ∈ V ψ

2 \Q
ψ
2 and S ∈ Qψ2 . We define

ψ
P ′ := ∀x

(
P
P ′ (x)↔ P ′(x)

)
,

ψ¬α := ∀x
(
P¬α(x)↔ ¬Pα(x)

)
,

ψ(β∧γ) := ∀x
(
P(β∧γ)(x)↔ (Pβ(x) ∧ Pγ(x))

)
,

ψ〈R〉ρ := ∀x
(
P〈R〉ρ(x)↔ ∃y(R(x, y) ∧ Pρ(y))

)
,

ψ〈S〉σ := ∀x
(
P〈S〉σ(x)↔ ∃y(AccessS (x, y) ∧ Pσ(y))

)
,

where

AccessS (x, y) :=
∧

〈S〉χ ∈ SUBψ

(
Pχ(y)→ P〈S〉χ(x)

)
.

Finally, we define

δψ :=
∧

α ∈ SUBψ

ψα

and

ϕ∗(x) := Q
∗
(δψ ∧ Pψ(x)),

48

where Q
∗

is a string of existential quantifiers that quantify the predicate
symbols P ∈ Qψ1 and also the symbols Pα such that α ∈ SUBψ.

We then prove that (M,w) ϕ implies M, wx |= ϕ∗(x). Assume that
(M,w) ϕ. Therefore there exists an expansion M2 of M by interpretations
of the binary and unary symbols in Qψ such that we have (M2, w) ψ.
We define an expansion M1 of M by interpretations of the unary symbols
occurring in Q

∗
. For the symbols P ∈ Qψ1 , we let PM1 = PM2 . For the

symbols Pα, where α ∈ SUBψ, we define PM1
α = ||α||M2 .

Lemma 3.1. Let 〈S〉σ ∈ SUBψ, where S ∈ Qψ2 , and let v ∈ Dom(M).
Then (M2, v) 〈S〉σ iff M1,

v
x |= ∃y

(
AccessS(x, y) ∧ Pσ(y)

)
.

Proof. Assume (M2, v) 〈S〉σ. Thus (v, u) ∈ SM2 for some point

u ∈ ||σ||M2 = PM1
σ .

To establish that

M1,
v

x
|= ∃y

(
AccessS(x, y) ∧ Pσ(y)

)
,

it therefore suffices to prove that for all 〈S〉χ ∈ SUBψ, if u ∈ PM1
χ , then

v ∈ PM1

〈S〉χ. Therefore assume that u ∈ PM1
χ for some formula 〈S〉χ ∈ SUBψ.

As ||χ||M2 = PM1
χ , we have u ∈ ||χ||M2 . Since (v, u) ∈ SM2 , we have

(M2, v) 〈S〉χ. As ||〈S〉χ||M2 = PM1

〈S〉χ, we must have v ∈ PM1

〈S〉χ, as desired.
Assume then that

M1,
v

x
|= ∃y

(
AccessS(x, y) ∧ Pσ(y)

)
.

Hence M1,
v
x
u
y |= AccessS(x, y) for some u ∈ PM1

σ = ||σ||M2 . Now, by

the definition of the formula AccessS(x, y), we observe that v ∈ PM1

〈S〉σ. As

||〈S〉σ||M2 = PM1

〈S〉σ, we have v ∈ ||〈S〉σ||M2 . Therefore (M2, v) 〈S〉σ, as
desired.

Lemma 3.2. Under the assumption (M,w) ϕ, we have M, wx |= ϕ∗(x).

Proof. We establish the claim of the lemma by proving that

M1,
w

x
|= δψ ∧ Pψ(x).

Since (M2, w) ψ and ||ψ||M2 = PM1
ψ , we have M1,

w
x |= Pψ(x). The non-

trivial part in establishing that M1 |= δψ is showing that M1 |= ψ〈S〉σ for

each 〈S〉σ ∈ SUBψ, where S ∈ Qψ2 . This follows directly by Lemma 3.1, as

PM1

〈S〉σ = ||〈S〉σ||M2 .

49

We then establish that M, wx |= ϕ∗(x) implies (M,w) ϕ. Therefore
we assume that M, wx |= ϕ∗(x). Therefore there exists an expansion M ′1
of M by interpretations of the unary symbols occurring in Q

∗
such that

M ′1,
w
x |= δψ ∧ Pψ(x). We define an expansion M ′2 of M by interpretations

of the binary and unary symbols that occur in Q. For the symbols P ∈ Qψ1 ,

we define PM
′
2 = PM

′
1 . For the symbols S ∈ Qψ2 , we let (v, u) ∈ SM ′2 if and

only if M ′1,
v
x
u
y |= AccessS (x, y).

Lemma 3.3. Let α ∈ SUBψ and v ∈ Dom(M). We have (M ′2, v) α iff
M ′1,

v
x |= Pα(x).

Proof. We establish the claim of the lemma by induction on the structure of
α. Since M ′1 |= δψ, the claim holds trivially for all atomic formulae P ∈ V ψ

1 .

Also, the cases where α is of form ¬β, (β ∧ γ) or 〈R〉β, where R ∈ V ψ
2 \Q

ψ
2 ,

are straightforward since M ′1 |= δψ.

Assume that (M ′2, v) 〈S〉σ, where S ∈ Qψ2 and 〈S〉σ ∈ SUBψ. There-
fore (v, u) ∈ SM ′2 for some u ∈ ||σ||M ′2 . Hence M1,

v
x
u
y |= AccessS (x, y) by

the definition of SM
′
2 . We have P

M ′1
σ = ||σ||M ′2 by the induction hypothesis.

Therefore u ∈ PM
′
1

σ , whence we have

M ′1,
v

x
|= ∃y

(
AccessS (x, y) ∧ Pσ(y)

)
.

Therefore, as M ′1 |= ψ〈S〉σ, we have M ′1,
v
x |= P〈S〉σ(x).

For the converse, we assume that M ′1,
v
x |= P〈S〉σ(x). As M ′1 |= ψ〈S〉σ, we

have
M ′1,

v

x
|= ∃y

(
AccessS (x, y) ∧ Pσ(y)

)
.

Hence there exists some element u ∈ PM
′
1

σ such thatM ′1,
v
x
u
y |= AccessS (x, y).

Therefore (v, u) ∈ SM
′
2 by the definition of SM

′
2 . Since u ∈ P

M ′1
σ and as

||σ||M ′2 = P
M ′1
σ by the induction hypothesis, we may therefore conclude that

(M ′2, v) 〈S〉σ.

By Lemma 3.3 we immediately observe that since M ′1,
w
x |= Pψ(x), we

must have (M ′2, w) ψ. Therefore (M,w) ϕ. This, together with Lemma
3.2, justifies the following conclusion.

Theorem 3.4. Each formula of Σ1
1(ML) translates to a uniformly equiva-

lent formula of ∃MSO. The translation is effective.

We then establish that ϕ∗(x) is in fact expressible in monadic Σ1
1(MLE).

This is easy. Fix a symbol S ∈ Qψ2 and let A be the subset of SUBψ that
contains exactly all the formulae of the form 〈S〉α. The formula

∃y
(
AccessS (x, y) ∧ Pσ(y)

)
50

is uniformly equivalent to the following formula of MLE.∨
B ⊆ A

(∧
〈S〉χ ∈ B

P〈S〉χ ∧ 〈E〉
(
Pσ ∧

∧
〈S〉χ ∈ B

Pχ ∧
∧

〈S〉χ ∈ A\B

¬Pχ
))

Thus we see that for each sentence ψα, where α ∈ SUBψ, there exists a
formula of MLE that is uniformly equivalent to the formula x = x ∧ ψα.
We may therefore draw the following conclusion.

Theorem 3.5. Each formula of Σ1
1(ML) translates to a uniformly equiva-

lent formula of monadic Σ1
1(MLE). The translation is effective.

The following corollaries are immediate.

Corollary 3.6. Let C be a class of unimodal Kripke frames (W,R0). Let I
be a set of indices such that 0 ∈ I and call

D = { (W, {Ri}i∈I) | Ri ⊆W × W, (W,R0) ∈ C }.

If the satisfiability problem of MLE w.r.t. the class C is decidable, then the
satisfiability problem of ML w.r.t. D is decidable.

Corollary 3.7. Each formula of Π1
1(ML) translates to a uniformly equiva-

lent formula of monadic Π1
1(MLE). The translation is effective.

3.4 Σ1
1(PBML=) Translates into ∃MSO

In this section we prove that each formula of Σ1
1(PBML=) can be translated

to a uniformly equivalent formula of ∃MSO.

3.4.1 An Effective Translation

In the current subsection we define an effective translation of formulae
of Σ1

1(PBML=) to uniformly equivalent formulae of ∃MSO. Let us fix a
Σ1
1(PBML=) formula ϕ and show how it is translated. Let ϕ := Q ψ,

where Q is vector of existential second-order quantifiers and ψ a formula of
PBML=. For presentation related results, assume w.l.o.g. that Md(ψ) ≥ 2
and that each symbol in Q occurs in ψ. We let m denote the maximum arity
of the modal parameters that occur in ψ. Since Md(ψ) ≥ 2, the formula ψ
must contain diamonds, and therefore m exists and m ≥ 2.

Let V ψ
1 denote the set of unary relation symbols that occur in ψ, and let

V ψ
h be the set of relation symbols of higher arities occurring in ψ. Let

V ψ = V ψ
1 ∪ V

ψ
h .

Some of the relation symbols in V ψ may occur in the quantifier prefix Q and
some may not. Let Qψ1 denote the set of unary relation symbols that occur

51

in Q. The set of relation symbols of higher arities occurring in Q is denoted
by Qψh . Let

Qψ = Qψ1 ∪Q
ψ
h .

For each k ∈ N≥2, we let ATPψ(k) denote the set containing exactly the
k-ary access types over V ψ. For each n ∈ N, we let TPnψ denote the set
TPnV ψ ,m of types. We define

TPψ =
⋃

i ≤ Md(ψ)

TPiψ.

We then fix a set of fresh (i.e., not occurring in ϕ) unary predicate
symbols. We fix a unique unary predicate symbol Pτ for each τ ∈ TPψ. We
also fix a unary predicate symbol P(M, β) for each pair (M, β) such that for

some k ∈ {1, ...,m− 1}, we have M∈ ATPψ(k+ 1) and β ∈ (TP
Md(ψ)−1
ψ)k.

The translation ϕ∗(x) of ϕ is the formula(
∃P
)
P ∈ Qψ1

(
∃Pτ

)
τ ∈ TPψ

(
∃P(M, β)

)
k ∈ {1,...,m−1}

M ∈ ATPψ(k+1),

β ∈ (TP
Md(ψ)−1
ψ)k

ψ∗(x) ,

where ψ∗(x) is a first-order formula in one free variable, x. We let Q
∗

denote
the above vector of monadic existential second-order quantifiers.

One fundamental idea in the translation we will define is that the symbols
Pτ are used in order to encode the extensions of the types τ ∈ TPψ. This is
manifest in the way the model M1 is defined below and also in the content
of Lemma 3.13. While the symbols Pτ store information about extensions
of types, the symbols P(M, β) are used in order to encode information about

the extensions of the access types M ∈ ATPψ(Ar(M)). We use the sym-
bols P(M, β) when we define the formulae AccessM(x, y1, ..., yk) below. The

formulae AccessM(x, y1, ..., yk) encode information about the extensions of
the access types M∈ ATPψ(k + 1) in a way made explicit in Lemmata 3.8
and 3.12.

Before fixing the translation ϕ∗(x) of ϕ, we define a number of auxiliary
formulae. The first formula we define ensures that for all n ∈ {0, ...,Md(ψ)},
the extensions of the predicate symbols Pτ , where τ ∈ TPnψ, always cover
all of the domain of a model and never overlap each other. We define

ψuniq := ∀x
(∧

0 ≤ i ≤ Md(ψ)

(∨
τ ∈ TPiψ

(
Pτ (x) ∧

∧
σ ∈ TPiψ,

σ 6= τ

¬Pσ(x)
)))

.

The next formula asserts that each symbol Pβ, where β ∈ TP
Md(ψ)−1
ψ , must

be interpreted such that for all symbols Pτ , where Md(τ) < Md(β), the

52

extension of Pβ is either fully included in the extension of Pτ or does not
overlap with it. We let

ψpack := ∀x∀y
∧

β ∈ TP
Md(ψ)−1
ψ

((
Pβ(x) ∧ Pβ(y)

)
→

∧
τ ∈ TP

<Md(ψ)−1
ψ

(
Pτ (x)↔ Pτ (y)

))
.

Let k be an integer such that 1 ≤ k ≤ m− 1 and letM∈ ATPψ(k+ 1).
The next formula encodes information about the relation that the (k+1)-ary
access type M defines over a V ψ-model.

AccessM(x, y1, ..., yk) :=

∨
(β1,...,βk) = β ∈ (TP

Md(ψ)−1
ψ)k

(
P(M, β)(x) ∧ Pβ1(y) ∧ ... ∧ Pβk(yk)

)
.

We then define formulae χτ (x) that recursively force the interpretations of
the predicate symbols Pτ to match the extensions of the types τ ∈ TPψ. The
content of this assertion is reflected in (the proof of) Lemma 3.13. First, let
τ ∈ TP0

ψ. We define

χτ (x) :=
∧

P ∈ V ψ1 ,

τ P

P (x) ∧
∧

Q ∈ V ψ1 ,

τ 6 Q

¬Q(x).

Now let τ ∈ TPn+1
ψ , where 0 ≤ n ≤Md(ψ)− 1. We define

χ+
τ (x) :=

∧
k ∈ {1,...,m−1},

M ∈ ATPψ(k+1),

(σ1,...,σk) ∈ (TPnψ)
k,

τ 〈M〉(σ1,...,σk)

∃y1...yk
(
AccessM(x, y1, ..., yk)

∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)
)
,

χ−τ (x) :=
∧

k ∈ {1,...,m−1},

M ∈ ATPψ(k+1),

(σ1,...,σk) ∈ (TPnψ)
k,

τ ¬〈M〉(σ1,...,σk)

¬∃y1...yk
(
AccessM(x, y1, ..., yk)

∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)
)
,

53

and

χτ (x) := Pτ ′(x) ∧ χ+
τ (x) ∧ χ−τ (x),

where τ ′ is the unique type in TPnψ such that τ τ ′.
Let k ∈ {1, ...,m− 1} and A ⊆ ATPψ(k + 1), where A 6= ∅. Let

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ)k.

The next formula encodes information about the set of (k + 1)-ary access
types that connect an element of the domain of a V ψ-model to k-tuples of
elements (u1, ..., uk) such that for all i, the element ui satisfies the type βi.
We define

ψ(A, β)(x) :=
∧
M ∈ A

∃y1...yk
(
AccessM(x, y1, ..., yk)

∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)
)
.

Our next aim is to define formulae ψcons and ψ′cons that ensure that
information about the extensions of the access types over V ψ is consistent
with the interpretation of the access types over V ψ \ Qψ, i.e., the access
types describing non-quantified accessibility relations.

Let k be an integer such that 1 ≤ k ≤ m − 1. Define a linear order
on ATPψ(k + 1). For each set S ⊆ ATPψ(k + 1), let S(i) denote the i-th
member of the set S with respect to this linear order. Let A ⊆ ATPψ(k+ 1)
be a nonempty set of access types. For each i ∈ {1, ..., |A|}, define a k-tuple
yi = (yi1 , ..., yik) of variable symbols. Fix the collection of tuples so that no
variable symbol is used twice. Let yj 6= yl denote the formula∨

n ∈ {1,..., k}

(¬ yjn = yln).

Let χA(i)(x, yi) denote a first-order formula stating that the (k + 1)-tuple
(x, yi) is connected according to the unique (k + 1)-ary access type over
V ψ\Qψ that is consistent with the access type A(i) ∈ A. Let β = (β1, ..., βk)

be a k-tuple of types in TP
Md(ψ)−1
ψ . We let

χ(A, β)(x) := ∃y1, ..., y|A|
(∧

j, l ∈ {1 ,..., |A|},

j 6= l

yj 6= yl ∧

∧
i ∈ {1 ,..., |A|}

(
χA(i)(x, yi) ∧ Pβ1(yi1) ∧ ... ∧ Pβk(yik)

))
.

54

We define

ψcons := ∀x
(∧

k ∈ {1,...,m−1},

A ⊆ ATPψ(k+1), A 6= ∅,

β ∈ (TP
Md(ψ)−1
ψ)k

(
ψ(A, β)(x) → χ(A, β)(x)

))
.

Let R ∈ ATPV ψ\Qψ(k + 1), i.e., R is a (k + 1)-ary access type over

V ψ \ Qψ. We let C(R) denote the set of (k + 1)-ary access types over V ψ

that are consistent with R. Let χR(x, y1, ..., yk) denote a first-order formula
stating that the (k + 1)-tuple (x, y1, ..., yk) is connected according to the

access type R. Let β = (β1, ..., βk) be a k-tuple of types in TP
Md(ψ)−1
ψ . Let

M be (k + 1)-ary access type over V ψ. We let

χ(R, β)(x) := ∃y1...yk
(
χR(x, y1, ..., yk) ∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)

)
and

ψ(M, β)(x) := ∃z1...zk
(
AccessM(x, z1, ..., zk) ∧ Pβ1(z1) ∧ ... ∧ Pβk(zk)

)
.

We define

ψ′cons := ∀x
(∧

k ∈ {1,...,m−1},

R ∈ ATP
V ψ\Qψ (k+1),

β ∈ (TP
Md(ψ)−1
ψ)k

(
χ(R, β)(x) →

∨
M ∈ C(R)

ψ(M, β)(x)
))
.

Finally, we define

δψ := ψuniq ∧ ψpack ∧ ψcons ∧ ψ′cons ∧
∧

τ ∈ TPψ

∀x
(
Pτ (x)↔ χτ (x)

)

and

ϕ∗(x) := Q
∗
(

δψ ∧
∨

α ∈ TP
Md(ψ)
ψ ,

α ψ

Pα(x)
)
.

We then fix an arbitrary pointed model (M,w) of the vocabulary V ψ\Qψ.
In the next subsection we establish that

(M,w) ϕ ⇔ M,
w

x
|= ϕ∗(x).

55

3.4.2 Σ1
1(PBML=) ≤ ∃MSO

We first show that (M,w) ϕ implies M, wx |= ϕ∗(x). Thus we assume that
(M,w) ϕ. Therefore there exists some expansion Mh of M by interpre-
tations of the symbols in Qψ such that (Mh, w) ψ. The subscript “h ” in
Mh stands for the word “higher” and indicates that Mh is an expansion of
M by interpretations of symbols of the arity one and of higher arities.

We then define an expansion M1 of M by interpreting the unary symbols
in Qψ1 and also the unary symbols of the type Pτ and P(M, β), where τ is a

type in TPψ, and whereM∈ ATPψ(k+ 1) and β ∈ (TP
Md(ψ)−1
ψ)k for some

k ∈ {1, ...,m− 1}.
For each P ∈ Qψ1 , we define PM1 = PMh . For each τ ∈ TPψ, we let

PM1
τ = ||τ ||Mh . Let k ∈ {1, ...,m− 1}. Let M∈ ATPψ(k + 1) and

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ)k.

We define PM1

(M, β)
to be exactly the set of elements v ∈ Dom(M) such

that for some (u1, ..., uk) ∈ (Dom(M))k, we have (v, u1, ..., uk) ∈ MMh and
ui ∈ ||βi||Mh for all i ∈ {1, ..., k}. In other words, we define

PM1

(M, β)
= || 〈M〉(β1, ..., βk) ||Mh .

Next we discuss a number of auxiliary lemmata, and then establish that
M1,

w
x |= ψ∗(x).

The following lemma establishes that the formula AccessM(x, y1, ..., yk)
encodes information about the action of the diamond operator 〈M〉 on Mh.

Lemma 3.8. Let n be an integer such that we have 0 ≤ n < Md(ψ).
Let k ∈ {1, ...,m − 1}, and let (τ1, ..., τk) be a tuple of types in TPnψ. Let
M∈ ATPψ(k + 1) and v ∈ Dom(M). We have

(Mh, v) 〈M〉(τ1, ..., τk)
⇔

M1,
v
x |= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Proof. Assume that (Mh, v) 〈M〉(τ1, ..., τk). Thus there exists some tuple

(u1, ..., uk) ∈ ||τ1||Mh × ...× ||τk||Mh

such that (v, u1, ...uk) ∈MMh . Let

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ)k

be the k-tuple of types in TP
Md(ψ)−1
ψ such that we have ui ∈ ||βi||Mh for all

i ∈ {1, ..., k}. Thus v ∈ PM1

(M, β)
, and therefore

M1,
v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk).

56

As ui ∈ ||τi||Mh = PM1
τi for all i ∈ {1, ..., k}, we have

M1,
v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk).

Therefore

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
,

as desired.
In order to deal with the converse direction, assume that

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Therefore, for some tuple

(u1, ..., uk) ∈ PM1
τ1 × ...× P

M1
τk

,

we have
M1,

v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk).

Therefore v ∈ PM1

(M, β)
for some tuple

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ)k

such that ui ∈ PM1
βi

for all i ∈ {1, ..., k}. We have Md(τi) ≤ Md(βi)
for all i ∈ {1, ..., k}. Also, by the definition of the model M1, we have
PM1
σ = ||σ||Mh for all σ ∈ TPψ, so each set PM1

σ is the extension of the type

σ. Therefore, as ui ∈ PM1
βi
∩ PM1

τi for all i ∈ {1, ..., k}, we conclude that

||βi||Mh ⊆ ||τi||Mh for all i ∈ {1, ..., k}. Hence

||β1||Mh × ...× ||βk||Mh ⊆ ||τ1||Mh × ...× ||τk||Mh .

Also, as v ∈ PM1

(M, β)
, we have (v, u′1, ..., u

′
k) ∈MMh for some tuple

(u′1, ..., u
′
k) ∈ ||β1||Mh × ...× ||βk||Mh .

Therefore we conclude that (Mh, v) 〈M〉(τ1, ..., τk), as desired.

We then establish a link between interpretations of the formulae χτ (x)
and interpretations of the predicate symbols Pτ in the model M1.

Lemma 3.9. Let v ∈ Dom(M) and τ ∈ TPψ. We have M1,
v
x |= Pτ (x) iff

M1,
v
x |= χτ (x).

57

Proof. As ||P ||Mh = PM1 for all P ∈ V ψ
1 , the claim follows directly for all

τ ∈ TP0
ψ. Therefore we may assume that τ ∈ TP≥1ψ . Throughout the proof,

we let τ ′ denote the unique type in TP
Md(τ)−1
ψ such that τ τ ′.

Assume that M1,
v
x |= Pτ (x). As PM1

τ = ||τ ||Mh , we have (Mh, v) τ .

As τ τ ′, we have (Mh, v) τ ′. Since PM1
τ ′ = ||τ ′||Mh , we conclude that

M1,
v
x |= Pτ ′(x).

We then establish that M1,
v
x |= χ+

τ (x) ∧ χ−τ (x). Let k ∈ {1, ...,m − 1}
and assume that τ 〈M〉(σ1, ..., σk), where we haveM∈ ATPψ(k+ 1) and

σi ∈ TP
Md(τ)−1
ψ for all i ∈ {1, ..., k}. As we have (Mh, v) τ , we also have

(Mh, v) 〈M〉(σ1, ..., σk). Therefore, by Lemma 3.8,

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Similarly, if τ ¬〈M〉(σ1, ..., σk), we conclude by Lemma 3.8 that

M1,
v

x
|= ¬∃y

(
AccessM(x, y1, ..., yk) ∧ Pσk(y1) ∧ ... ∧ Pσk(yk)

)
.

Thus M1,
v
x |= χ+

τ (x) ∧ χ−τ (x), as desired.
For the converse, assume that M1,

v
x |= χτ (x). In order to show that

M1,
v
x |= Pτ (x), we will establish that (Mh, v) τ . As PM1

τ = ||τ ||Mh , this
suffices.

As M1,
v
x |= Pτ ′(x) and PM1

τ ′ = ||τ ′||Mh , we immediately observe that
(Mh, v) τ ′.

Let τ 〈M〉(σ1, ..., σk), where M ∈ ATPψ and σi ∈ TP
Md(τ)−1
ψ for all

i ∈ {1, ..., k}. As M1,
v
x |= χ+

τ (x), we have

M1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
,

and therefore (Mh, v) 〈M〉(σ1, ..., σk) by Lemma 3.8. Similarly, if we have
τ ¬〈M〉(σ1, ..., σk), then, as M1,

v
x |= χ−τ (x), we conclude that

M1,
v

x
|= ¬∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
,

and therefore (Mh, v) ¬〈M〉(σ1, ..., σk) by Lemma 3.8. Thus (Mh, v) τ ,
and hence M1,

v
x |= Pτ (x), as desired.

We then conclude the first direction of the proof of the claim that
(M,w) ϕ iff M, wx |= ϕ∗(x).

Lemma 3.10. Under the assumption (M,w) ϕ, we have M, wx |= ϕ∗(x).

Proof. We have assumed that (M,w) ϕ and thereby concluded that there
exists a model Mh such that (Mh, w) ψ. We have then defined the model

58

M1, and we now establish the claim of the current lemma by proving that
M1,

w
x |= ψ∗(x). Recall that ψ∗(x) is the formula

δψ ∧
∨

α ∈ TP
Md(ψ)
ψ ,

α ψ

Pα(x) ,

where δψ denotes the formula

ψuniq ∧ ψpack ∧ ψcons ∧ ψ′cons ∧
∧

τ ∈ TPψ

∀x
(
Pτ (x)↔ χτ (x)

)
.

Let ψ′ denote a disjunction of exactly all the types α ∈ TP
Md(ψ)
ψ such

that α ψ. As ψ and ψ′ are V ψ-equivalent (and in fact uniformly equiva-

lent), we have (Mh, w) ψ′. Therefore (Mh, w) α for some α ∈ TP
Md(ψ)
ψ

occurring in the disjunction. Hence, as ||α||Mh = PM1
α , we conclude that

M1,
w
x |= Pα(x).

We then show that M1 |= ψcons. Let v ∈ Dom(M) and assume that
M1,

v
x |= ψ(A, β)(x) for some nonempty A ⊆ ATPψ(k+ 1) and some tuple of

types

(β1, ..., βk) = β ∈ (TP
Md(ψ)−1
ψ)k.

Recall that A(i) denotes the i-th access type in A with respect to the linear
ordering of ATPψ(k + 1) we fixed. As M1,

v
x |= ψ(A, β)(x), we conclude by

Lemma 3.8 that (Mh, v) 〈A(i)〉(β1, ..., βk) for each i ∈ {1, ..., |A|}. Thus
there must exist |A| distinct k-tuples

u1, ... , u|A| ∈ ||β1||Mh × ...× ||βk||Mh = PM1
β1
× ...× PM1

βk

such that (v, ui) ∈ (A(i))Mh for each i. Let Ri denote the access type over
V ψ \Qψ consistent with A(i). Recall that χA(i)(x, yi) is a first-order formula
stating that the tuple (x, yi) is connected according to the access type Ri.
We have (v, ui) ∈ RMh

i = RM1
i for each i, and thus

M1,
v

x

ui1
yi1

...
uik
yik
|= χA(i)(x, yi1 , ..., yik) ∧ Pβ1(yi1) ∧ ... ∧ Pβk(yik)

for each i.
We then establish that M1 |= ψ′cons. Let k ∈ {1, ...,m− 1} and let R be

a (k + 1)-ary access type over V ψ \Qψ. Let v ∈ Dom(M) and assume that

M1,
v

x

u1
y1
...
uk
yk
|= χR(x, y1, ..., yk) ∧ Pβ1(y1) ∧ ... ∧ Pβk(yk)

for some u1, ..., uk ∈ Dom(M). Let M be the (k + 1)-ary access type such
that (v, u1, ..., uk) ∈ MMh . Thus (Mh, v) 〈M〉(β1, ..., βk), whence by
Lemma 3.8, we have

M1,
v

x
|= ∃z1...zk

(
AccessM(x, z1, ..., zk) ∧ Pβ1(z1) ∧ ... ∧ Pβk(zk)

)
.

59

Clearly M is consistent with R and hence we have M ∈ C(R). Therefore
M1 |= ψ′cons.

We have M1 |= ψuniq ∧ ψpack directly by properties of types. Therefore,
in order to conclude the proof, we only need to establish that for each type
τ ∈ TPψ and each v ∈ Dom(M), M1,

v
x |= Pτ (x) ↔ χτ (x). This follows

directly by Lemma 3.9.

We then show that M, wx |= ϕ∗(x) implies (M,w) ϕ. Thus we assume
that M, wx |= ϕ∗(x). Therefore there exists an expansion M ′1 of M by in-
terpretations of the unary symbols Pτ and P(M, β), and also the symbols

P ∈ Qψ1 , such that M ′1,
w
x |= ψ∗(x).

We define an expansion of M by interpreting all the relation symbols
in Qψ. We call the resulting expansion M ′h. For each P ∈ Qψ1 , we define
PM

′
h = PM

′
1 . Let v ∈ Dom(M) and k ∈ {1, ...,m− 1}. Let

β = (β1, ..., βk) ∈ (TP
Md(ψ)−1
ψ)k.

Let Ak+1 ⊆ ATPψ(k+ 1) be the set of access typesM∈ ATPψ(k+ 1) such
that for some tuple

(u1, ..., uk) ∈ P
M ′1
β1
× ...× PM

′
1

βk
,

we have
M ′1,

v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk).

As M ′1 satisfies the formula ψcons, we see that there exists a bijection f from
the set Ak+1 to a set

B ⊆ PM
′
1

β1
× ...× PM

′
1

βk

such that for all M ∈ Ak+1, we have
(
v, f(M)

)
∈ RM

′
1
M , where RM is the

access type in ATPV ψ\Qψ(k + 1) consistent with M. Let S ∈ Qψh be a
relation symbol of the arity k + 1. We define, for each M∈ Ak+1,(

v, f(M)
)
∈ SM

′
h iff S ∈M.

Recall that we write S ∈ M if S occurs in the type M (i.e., ¬S does not
occur in M). We then consider the k-tuples in the set

(P
M ′1
β1
× ...× PM

′
1

βk
) \ B.

Let the tuple (u1, ..., uk) belong to this set. Let R be the access type in
ATPV ψ\Qψ(k + 1) such that (v, u1, ..., uk) ∈ RM

′
1 . As M ′1 satisfies ψ′cons, we

observe that there exists some M ∈ ATPψ(k + 1) consistent with R and
some tuple

(u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM

′
1

βk

60

such that

M ′1,
v

x

u′1
y1
...
u′k
yk
|= AccessM(x, y1, ..., yk).

Again let S ∈ Qψh be a relation symbol of the arity k + 1. We define

(v, u1, ..., uk) ∈ SM
′
h iff S ∈M.

For each v ∈ Dom(M) and k ∈ {1, ...,m− 1}, we go through each tuple

β ∈ (TP
Md(ψ)−1
ψ)k, and construct the extensions SM

′
h of the (k + 1)-ary

symbols S ∈ Qψh in the described way. This procedure defines the expansion
M ′h of M . As the model M ′1 satisfies ψuniq, the model M ′h is well defined.

Next we discuss a number of auxiliary lemmata and then establish that
(M ′h, w) ψ. The following lemma is a direct consequence of the way we

define the extensions SM
′
h of the relation symbols S ∈ Qψh .

Lemma 3.11. Let v ∈ Dom(M). Let k ∈ {1, ...,m− 1}, M∈ ATPψ(k+ 1)

and (β1, ..., βk) ∈ (TP
Md(ψ)−1
ψ)k. Then

(v, u1, ..., uk) ∈MM ′h

for some (u1, ..., uk) ∈ P
M ′1
β1
× ...× PM

′
1

βk
if and only if we have

M ′1,
v

x

u′1
y1
...
u′k
yk
|= AccessM(x, y1, ...yk)

for some (u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM

′
1

βk
.

The diamond 〈M〉 encodes information about the relation that the for-
mula AccessM(x, y1, ..., yk) defines over M ′1. The next lemma establishes
this link.

Lemma 3.12. Let n be an integer such that 0 ≤ n < Md(ψ), and let
k ∈ {1, ...,m−1}. Let (τ1, ..., τk) ∈ (TPnψ)k and M∈ ATPψ(k+1). Assume

that ||τi||M
′
h = P

M ′1
τi for all i ∈ {1, ..., k}. Let v ∈ Dom(M). Then

(M ′h, v) 〈M〉(τ1, ..., τk)

if and only if

M ′1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Proof. Assume that (M ′h, v) 〈M〉(τ1, ..., τk). Thus (v, u1, ..., uk) ∈ MM ′h

for some tuple

(u1, ..., uk) ∈ ||τ1||M
′
h × ...× ||τk||M

′
h = P

M ′1
τ1 × ...× P

M ′1
τk .

61

As M ′1 |= ψuniq, we observe that for each i ∈ {1, ..., k}, there exists exactly

one type βi ∈ TP
Md(ψ)−1
ψ such that ui ∈ P

M ′1
βi

. Therefore, by Lemma 3.11,
we have

M ′1,
v

x

u′1
y1
...
u′k
yk
|= AccessM(x, y1, ..., yk)

for some (u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM

′
1

βk
. Pick an arbitrary j ∈ {1, ..., k}.

1. If n = Md(ψ)− 1, then, as M ′1 |= ψuniq and uj ∈ P
M ′1
βj
∩PM

′
1

τj , we have

βj = τj , and thus u′j ∈ P
M ′1
τj .

2. If n < Md(ψ) − 1, then, since M ′1 |= ψpack and as uj ∈ P
M ′1
τj ∩ P

M ′1
βj

and u′j ∈ P
M ′1
βj

, we again have u′j ∈ P
M ′1
τj .

Therefore

M ′1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
,

as required.
For the converse, assume that

M ′1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pτ1(y1) ∧ ... ∧ Pτk(yk)

)
.

Therefore
M ′1,

v

x

u1
y1
...
uk
yk
|= AccessM(x, y1, ..., yk)

for some tuple

(u1, ..., uk) ∈ P
M ′1
τ1 × ...× P

M ′1
τk = ||τ1||M

′
h × ...× ||τk||M

′
h .

As M ′1 |= ψuniq, we infer that for each ui, there exists a type βi ∈ TP
Md(ψ)−1
ψ

such that ui ∈ P
M ′1
βi

. By Lemma 3.11, we therefore have

(v, u′1, ..., u
′
k) ∈ MM ′h

for some tuple

(u′1, ..., u
′
k) ∈ P

M ′1
β1
× ...× PM

′
1

βk
.

Pick an arbitrary j ∈ {1, ..., k}. As above, we have the following cases.

1. If n = Md(ψ)− 1, then, as M ′1 |= ψuniq and uj ∈ P
M ′1
βj
∩PM

′
1

τj , we have

βj = τj , and thus u′j ∈ P
M ′1
τj .

2. If n < Md(ψ) − 1, then, since M ′1 |= ψpack and as uj ∈ P
M ′1
τj ∩ P

M ′1
βj

and u′j ∈ P
M ′1
βj

, we again have u′j ∈ P
M ′1
τj .

62

Therefore, as we have P
M ′1
τi = ||τi||M

′
h for all i ∈ {1, ..., k}, we conclude that

(M ′h, v) |= 〈M〉(τ1, ..., τk), as desired.

The next lemma establishes that extensions of the types τ ∈ TPψ and
interpretations of the predicate symbols Pτ coincide.

Lemma 3.13. Let τ ∈ TPψ and v ∈ Dom(M). Then (M ′h, v) τ if and
only if M ′1,

v
x |= Pτ (x).

Proof. We prove the claim by induction on the modal depth of τ . If τ ∈ TP0
ψ,

then, as M ′1 |= ∀x(Pτ (x)↔ χτ (x)), the claim follows immediately.
Assume that (M ′h, v) τ for some τ ∈ TPn+1

ψ , where 0 ≤ n < Md(ψ).
We will show that

M ′1,
v

x
|= Pτ ′(x) ∧ χ+

τ (x) ∧ χ−τ (x),

where τ ′ is the type of the modal depth n such that τ τ ′. This directly
implies that M ′1,

v
x |= Pτ (x), since M ′1 |= ∀x(Pτ (x)↔ χτ (x)).

As τ τ ′, we have (M ′h, v) τ ′. Therefore M ′1,
v
x |= Pτ ′(x) by the

induction hypothesis. In order to establish that M ′1,
v
x |= χ+

τ (x) ∧ χ−τ (x),
let τ 〈M〉(σ1, ..., σk), where M ∈ ATPψ(k + 1), k ∈ {1, ...,m − 1} and
σi ∈ TPnψ for all i ∈ {1, ..., k}. Therefore (M ′h, v) 〈M〉(σ1, ..., σk). Since

by the induction hypothesis we have ||σi||M
′
h = P

M ′1
σi for all i ∈ {1, ..., k}, we

conclude by Lemma 3.12 that

M ′1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Similarly, if τ ¬〈M〉(σ1, ..., σk), then we have

M ′1,
v

x
|= ¬∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
by the induction hypothesis and Lemma 3.12. Thus M ′1,

v
x |= χ+

τ (x)∧χ−τ (x),
and hence M ′1,

v
x |= Pτ (x), as desired.

For the converse, assume that M ′1,
v
x |= Pτ (x), where τ ∈ TPn+1

ψ . Now,
since M ′1 |= ∀x(Pτ (x)↔ χτ (x)), we conclude that M ′1,

v
x |= χτ (x). Therefore

M ′1,
v
x |= Pτ ′(x), where τ ′ is the type of the modal depth n such that τ τ ′.

Thus (M ′h, v) τ ′ by the induction hypothesis.
Let k ∈ {1, ...,m − 1} and M ∈ ATPψ(k + 1). Assume that we have

τ 〈M〉(σ1, ..., σk) for some σ1, ..., σk ∈ TPnψ. As M ′1,
v
x |= χτ (x), we have

M ′1,
v
x |= χ+

τ (x), and therefore

M ′1,
v

x
|= ∃y1...yk

(
AccessM(x, y1, ..., yk) ∧ Pσ1(y1) ∧ ... ∧ Pσk(yk)

)
.

Hence, as we have ||σi||M
′
h = P

M ′1
σi for all i ∈ {1, ..., k} by the induction hy-

pothesis, we conclude that (M ′h, v) 〈M〉(σ1, ..., σk) by Lemma 3.12. Sim-
ilarly, if τ ¬〈M〉(σ1, ..., σk), we conclude that (M ′h, v) ¬〈M〉(σ1, ..., σk)

63

by the induction hypothesis and Lemma 3.12. We have therefore established
that (M ′h, v) τ , as required.

We then conclude the proof of the claim that M, wx |= ϕ∗(x) if and only
if (M,w) ϕ.

Lemma 3.14. Under the assumption M, wx |= ϕ∗(x), we have (M,w) ϕ.

Proof. We have assumed that M, wx |= ϕ∗(x) and thereby concluded that
there exists a model M ′1 such that M ′1,

w
x |= ψ∗(x). We have then defined

the model M ′h, and we now establish the claim of current the lemma by
showing that (M ′h, w) ψ.

As M ′1,
w
x |= ψ∗(x), we have M ′1,

w
x |= Pα(x) for some type α ∈ TPMd(ψ)

such that α ψ. Therefore (M ′h, w) α by Lemma 3.13. As α ψ, we
have (M ′h, w) ψ, as desired.

The following theorem now follows directly by virtue of Lemmata 3.10
and 3.14.

Theorem 3.15. Each formula of Σ1
1(PBML=) translates to a uniformly

equivalent formula of ∃MSO. The translation is effective.

The following corollary is immediate.

Corollary 3.16. Each formula of Π1
1(PBML=) translates to a uniformly

equivalent formula of ∀MSO. The translation is effective.

Theorem 3.15 implies a range of decidability results.

Theorem 3.17. Let V and U ⊆ V be sets of indices. Let D be a class of
Kripke frames (W, {Rj}j∈U). Consider the class

C = { (W, {Ri}i∈V) | Ri ⊆W ×W, (W, {Rj}j∈U) ∈ D }

of Kripke frames. Now, if the ∀MSO theory of D is decidable, then the
satisfiability problem for BML= w.r.t. C is decidable.

Proof. Given a formula ψ of BML=, we existentially quantify all the relation
symbols (unary and binary) occurring ψ, except for those in {Rj}j∈U . We
end up with a Σ1

1(BML=) formula ϕ, which we then effectively translate to
a uniformly equivalent ∃MSO formula ϕ∗(x), applying our result. We then
modify this formula to an ∃MSO sentence χ, which is uniformly equivalent
to the sentence ∃xϕ∗(x). Let χ′ denote a sentence of ∀MSO uniformly
equivalent to ¬χ. Using the decision procedure for the ∀MSO theory of D,
we then check whether the sentence χ′ is valid over D. If it is, then ψ is not
satisfiable w.r.t. C, and if χ′ is not valid over D, then ψ is satisfiable w.r.t.
C.

64

3.5 Chapter Conclusion

In this chapter we have investigated the expressive power of modal log-
ics with existential prenex quantification of accessibility relations. We have
shown that Σ1

1(PBML=) translates into ∃MSO, and also that Σ1
1(ML) trans-

lates into monadic Σ1
1(MLE). These results directly imply that Π1

1(PBML=)
translates into ∀MSO and Π1

1(ML) into monadic Π1
1(MLE). As corollaries of

the translations, we have obtained results that can be used in order to estab-
lish decidability results for (extensions of) multimodal logics with respect to
classes of frames with built-in relations.

In the future we expect to strengthen the obtained results. The main
objective is to try to understand for what kinds fragments L of first-order
logic the system Σ1

1(L) collapses into ∃MSO. The next planned step in-
volves considering graded (polyadic) modalities. While directly interesting,
investigations along these kinds of lines could elucidate the role the arities
of existentially quantified relations play in making the expressive power of
(existential) second-order logic.

It also remains to be seen whether our investigations provide a stepping
stone towards answering the question about existence of a class of finite di-
rected graphs definable in Σ1

1(FO2) but not definable in ∃MSO. To show that
Σ1
1(FO2) is contained in ∃MSO, one would have to extend the translation

from Σ1
1(BML=) into ∃MSO such that it takes into account the possibility

of using the converse operation.

65

CHAPTER 4

Expressivity of Equality-Free Existential
Second-Order Logic with Function
Quantification

Let fESO denote the version of existential second-order logic where formu-
lae consist of a vector of existentially quantified function symbols followed
by a first-order part. In this chapter we investigate fESO in the equality-
free setting, concentrating on questions related to expressive power. Let
fESOwo= denote the fragment of fESO where formulae are required to be
equality-free. Various natural equality-free fragments of logics in the family
of independence-friendly (IF) logic translate into fESOwo= via appropriate
Skolemization procedures, so insights concerning fESOwo= can be fruitful in
the study of such fragments. In particular, we believe that fESOwo= can be
more or less directly useful in investigations related to independence-friendly
modal logics of Tulenheimo and Sevenster and others. We consider a range
of questions concerning the expressivity of fESOwo= over models with a re-
lational vocabulary. For instance, we identify a model transformation which
preserves truth of fESOwo= formulae, thereby enabling an easy access to
inexpressibility results. Our principal result—from the technical point of
view—is that over finite models with a vocabulary consisting of unary re-
lation symbols only, the fragment fESOwo= of second-order logic is strictly
less expressive than first-order logic (with equality).

4.1 Equality-Free Existential Second-order Logic with Func-
tion Quantification

The topic of this chapter is the expressivity of equality-free existential second-
order logic with function quantification, or fESOwo=. In this system second-
order quantifiers range over function symbols only. Insights about sentences
of the equality-free logic fESOwo= can be more or less directly useful for ex-
ample in the study of the independence-friendly modal logics of Tulenheimo
[64] and Tulenheimo and Sevenster [63] and others. Independence-friendly
modal logic is part of the family of independence-friendly (IF) logics intro-
duced by Hintikka and Sandu in [30]. See also [29] for an early exposition
of the main ingredients leading to the idea of IF logic, and of course [26] for
an even earlier discussion of ideas closely related to IF logic.

66

Results concerning fESOwo= apply to a wide range of equality-free logics.
For example, consider the delightfully exotic looking Henkin expressions of
the type (

∀x1 ∃x2
∀x3 ∃x4

)
ϕ(x1, x2, x3, x4),

where a finite partially ordered quantifier precedes an equality-free FO for-
mula ϕ(x1, x2, x3, x4) with exactly the variable symbols x1, x2, x3, x4 occur-
ring free. By the original semantics of Henkin [26], each such expression
is equivalent to a sentence of fESOwo=. Hence, whatever is inexpressible
in fESOwo=, is automatically inexpressible with Henkin expressions of the
above type. And, of course, results concerning fESOwo= contribute to the
general program of studying fragments of second-order logic.

The study of fESOwo= presented in this chapter was originally motivated
by questions related to IF logic and Henkin quantifiers, and an account of
the answers to those questions can be found in [40] and [41]. The current
chapter is very much based on the articles [40, 41], but the account given here
discusses only the system fESOwo=. The logic fESOwo= is worth studying
in its own right, and furthermore, the reader is spared the trouble of getting
acquainted with IF logic.

We begin our study by providing a very simple proof of the fact that
fESOwo= can define properties not definable in first-order logic FO (with
equality), when the vocabulary under consideration contains a binary rela-
tion symbol. We then define a simple model transformation that preserves
truth of fESOwo= sentences, but not FO sentences. Therefore we observe
that fESOwo= and FO are incomparable with regard to expressive power.
We then ask whether fESOwo= and FO are also incomparable when attention
is limited to nonempty vocabularies containing only unary relation symbols.
Our principal result is that over finite models with such a vocabulary,

FOwo= < fESOwo= < FO,

where FOwo= denotes first-order logic without equality. So far we have not
succeeded in establishing these results without the use of somewhat involved
combinatorial arguments. In addition to proving the results, we of course
also wish to reflect upon and promote the proof techniques applied.

4.2 Preliminary Definitions

Let U be a vocabulary; U may contain relation symbols, function symbols
and constant symbols. Recall that a U -formula of FO (or alternatively, an
FO formula of the vocabulary U) is an FO formula such that the set of
non-logical symbols that occur in the formula is subset of U . The equality
symbol is not considered to be a non-logical symbol.

67

Let V be a vocabulary containing relation symbols only. Formulae of
the vocabulary V (or V -formulae) of the logic fESO are exactly the expres-
sions of the type ∃f ϕ, where ∃f is a finite vector of existentially quantified
function symbols and ϕ is an FO formula of the vocabulary

V ∪ { f | f occurs in ∃f }.

The function symbols are allowed to be nullary, i.e., to be constant symbols.
The formulae of fESO are interpreted according to the natural semantics.
The set of V -formulae of the logic fESOwo= is exactly the set of V -formulae
of fESO without equality. The set of non-logical symbols of a V -formula ψ
of fESO is the set V ′ ⊆ V of symbols in V that occur in ψ.

Let V be a relational vocabulary. Recall that a V -model (or alterna-
tively, a model of the vocabulary V) is a model such that the set of symbols
interpreted by M is exactly the set V . In the current chapter a finite V -
model is a model M of the vocabulary V such that Dom(M) is finite; the
vocabulary V may be infinite.

Let V be a relational vocabulary and C a class of V -models. Let ϕ
and ψ be V -sentences of predicate logic, possibly extended with generalized
quantifiers (see Section 4.5). The two sentences are C-equivalent if

M |= ϕ ⇔ M |= ψ

for all models M ∈ C.
Let V be a relational vocabulary and let C be a class of V -models. Let

L and L′ be two systems (i.e., logics) of predicate logic. Below when we
say that L ≤ L′ over C (or L ≤ L′ with respect to C), we mean that for
each V -sentence of L there exists a C-equivalent sentence of L′. We say that
L 6≤ L′ over C if it is not the case that L ≤ L′ over C. We say that L < L′

over C if L ≤ L′ over C and L′ 6≤ L over C.
Two sentences χ and χ′ of fESO are uniformly equivalent if they have

exactly the same set S of non-logical symbols and if the sentences are C-
equivalent, where C is the class of all S-models. Let ϕ′ and ψ′ be formulae of
first-order logic, possibly extended with generalized quantifiers. We say that
the formulae ϕ′ and ψ′ are uniformly equivalent in the finite if the following
conditions are satisfied.

1. The formulae ϕ′ and ψ′ have exactly the same set T of free variable
symbols.

2. The formulae ϕ′ and ψ′ have exactly the same set S of non-logical
symbols.

3. We have
M,h |= ϕ′ ⇔ M,h |= ψ′

for all finite S-models and all related variable assignments h interpret-
ing the variable symbols in T in Dom(M).

68

4.3 Expressivity of fESOwo= over Models with a Relational
Vocabulary

Let V be a relational vocabulary containing a binary relation symbol. We
begin the section by providing a very simple proof of the fact that over the
class of V -models, fESOwo= 6≤ FO.

Proposition 4.1. Let V be a relational vocabulary containing a binary re-
lation symbol R. Then there is a class of V -models definable by a sentence
of fESOwo=, but not definable by any sentence of FO. To witness this, a
sentence of the form ∃f∀xψ, where f is a unary function symbol and ψ is
quantifier-free, suffices.

Proof. Consider the following sentence ϕ of fESO.

∃f∀x
(
f
(
f(x)

)
= x ∧ f(x) 6= x

)
It is easy to see that this sentence is true in exactly those models whose
domain has an even or an infinite cardinality.

Let ϕ′ be the fESOwo= sentence obtained from ϕ by replacing each in-
stance of the identity symbol = by the symbol R, i.e., ϕ′ is the sentence

∃f∀x
(
f(f(x))Rx ∧ ¬ f(x)Rx

)
.

Let C be the class of finite V -models M such that

RM = { (a, a) | a ∈ Dom(M) }.

It is clear that with respect to C, the sentence ϕ′ defines the class Ceven of
models whose domain is even. A straightforward Ehrenfeucht-Fräıssé game
argument shows that the class Ceven is not definable with respect to C by
any FO sentence.

Let D denote the class of all V -models. Since there is no FO sentence
that defines w.r.t. C the same class of models as ϕ′, there is no FO sentence
that defines w.r.t. D exactly the same class of models as ϕ′.

4.3.1 Bloating Models

We now define a simple model transformation that preserves truth of fESOwo=

sentences.

Definition 4.2. Let V be a vocabulary such that each symbol in V is a
relation symbol of the arity one or two. (We restrict attention to at most
binary relation symbols for the sake of simplicity.) Let M be a V -model
with the domain A, and let a ∈ A. Let S be any set such that S ∩ A = ∅.
Define a V -model N as follows.

69

1. The domain of N is the set A ∪ S.

2. Let P ∈ V be a unary relation symbol. We define PN as follows.

(a) For all v ∈ A, v ∈ PN iff v ∈ PM .

(b) For all s ∈ S, s ∈ PN iff a ∈ PM .

3. Let R ∈ V be a binary relation symbol. We define RN as follows.

(a) For all v ∈ A×A, v ∈ RN iff v ∈ RM .

(b) For all s ∈ S and all v ∈ A, (v, s) ∈ RN iff (v, a) ∈ RM .

(c) For all s ∈ S and all v ∈ A, (s, v) ∈ RN iff (a, v) ∈ RM .

(d) For all s, s′ ∈ S, (s, s′) ∈ RN iff (a, a) ∈ RM .

We call the model N a bloating of M . Figure 2 illustrates how this model
transformation affects models.

We note that the notion of a bloating is closely related for example to
the notion of a surjective strict homomorphism (see Definition 2.1 of [10]).

Figure 2: The figure shows three connected models of a vocabulary con-
sisting of one binary and one unary relation symbol. The shaded areas
correspond to the extensions of the unary relation symbol. The model in
the middle is a bloating of the model on the left. The model in the middle
is obtained from the one on the left by adding two new copies of the middle
right element. The model on the right is a bloating of the model in the
middle, obtained by adding two copies of the middle left element.

Theorem 4.3. Let V be a vocabulary such that each symbol in V is a
relation symbol of the arity one or two. Truth of any V -sentence of fESOwo=

is preserved under bloatings.

70

Proof. Let ϕ be a V -sentence of fESOwo=. The sentence ϕ can be trans-
formed into a uniformly equivalent fESOwo= sentence ∃f ψ, where ∃f is
a finite string of existentially quantified function symbols (some of them
perhaps nullary) and ψ is a first-order sentence such that the following con-
ditions hold.

1. The sentence ψ is of the type ∀xψ′, where ∀x is a string of universal
first-order quantifiers and ψ′ is a quantifier-free formula.

2. The quantifier free part ψ′ of the sentence ψ is in negation normal
form, i.e., negations occur only in front of atomic formulae.

This normal form can be obtained by first transforming the first-order part
of ϕ into prenex normal form without nested quantification of the same vari-
able, and then Skolemizing the first-order part of the resulting sentence. The
quantifier-free part of the resulting sentence can then be put into negation
normal form. The freshly introduced Skolem functions are prenex quantified
existentially, so the set of non-logical symbols of ∃f ψ is the same as that
of the sentence ϕ. The process of transforming ϕ into the described normal
form does not introduce equality symbols, so ∃f ψ is a sentence of fESOwo=.

Let M and N be as in Definition 4.2. The models there had the domains
A and A ∪ S, respectively, and we used the element a ∈ A in order to
define N . Assume that M |= ϕ. Therefore M |= ∃f ψ. We expand M to a

model M ′ = (M,fM ′) such that M ′ |= ψ. We then expand N to a model

N ′ = (N, fN ′) as follows.

1. For each k-ary symbol f , we let fN
′
� Ak = fM

′
. Note that when

k = 0, i.e., when f is a constant symbol, then fN
′

= fM
′
.

2. For each k-tuple w ∈ (A ∪ S)k containing points from the set S, we
define the k-tuple w′, where every co-ordinate value s ∈ S of w is
replaced by the element a. We then set fN

′
(w) = fM

′
(w′).

We then establish that N ′ |= ψ. The proof is a simple induction on the
structure of the formula ψ. For each variable assignment h with codomain
A, we let g(h) denote the set of all variable assignments with codomain
A∪ S that can be obtained from h by allowing some subset of the variables
mapping to the element a to map to elements in S. We will show that for
every variable assignment h with codomain A and every subformula χ of ψ,

M ′, h |= χ ⇒ ∀h′ ∈ g(h)
(
N ′, h′ |= χ

)
.

The cases for atomic and negated atomic formulae form the basis of the
induction. The claim for these formulae follows directly with the help of the
observation that h(t) = h′(t) for all h and h′ ∈ g(h) and terms t that contain
function or constant symbols, i.e., terms that are not variable symbols. We

71

will next prove this claim by induction on the function symbol nesting depth
of terms.

The basis of the induction deals with the terms whose nesting depth is
one, i.e., terms of the type f(x1, ..., xk) and c, where the symbols x1, ..., xk
are variable symbols and the symbol c is a constant symbol. It is immediate
that h(t) = h′(t) for all h and h′ ∈ g(h) and all such terms t of the nesting
depth one.

Now let f(t1, ..., tk) be a term of the nesting depth n + 1. By the in-
duction hypothesis, we have h(ti) = h′(ti) for each one of the terms ti
that is not a variable symbol. For the terms ti that are variable symbols
and for which h(ti) 6= a, we also have h(ti) = h′(ti). For the terms ti
that are variable symbols and for which h(ti) = a, either h′(ti) = a or
h′(ti) ∈ S. We therefore observe that we obtain the tuple (h(t1), ..., h(tk))
from the tuple (h′(t1), ..., h

′(tk)) by replacing the elements u ∈ S of the tuple
((h′(t1), ..., h

′(tk)) by the element a. Therefore we infer, by the definition of
the function fN

′
, that

fN
′(
h′(t1), ..., h

′(tk)
)

= fM
′(
h(t1), ..., h(tk)

)
.

This concludes the induction on terms and thus the basis of the original
induction on the structure of ψ has now been established. We return to the
original induction.

The cases for connectives are trivial, and the quantifier case is relatively
straightforward. We discuss the details of the quantifier case here.

Assume that M ′, h |= ∀xα(x). We need to show that for all h′ ∈ g(h),
we have N ′, h′ |= ∀xα(x). Assume, for the sake of contradiction, that for
some h′′ ∈ g(h), we have N ′, h′′ 6|= ∀xα(x). Hence N ′, h′′ ux 6|= α(x) for some
u ∈ A∪S. To finish the proof, it suffices to show that h′′ ux ∈ g(h vx) for some
v ∈ A. This suffices, as the assumption M ′, h |= ∀xα(x) first implies that
M ′, h vx |= α(x), which in turn then implies, by the induction hypothesis,
that N ′, h′′ ux |= α(x).

If u ∈ A, let v = u. Then, as h′′ ∈ g(h), we have h′′ ux = h′′ vx ∈ g(h vx).
If u ∈ S, let v = a. Then, as h′′ ∈ g(h), we have h′′ ux ∈ g(hax) = g(h vx).

An immediate consequence of Theorem 4.3 is that FO 6≤ fESOwo= over
V -models because there exist first-order ∅-sentences (with equality) whose
truth is not preserved under bloating.

4.4 Expressivity of fESOwo= over Finite Models with a Unary
Relational Vocabulary

We now turn our attention to finite models with a unary relational vocab-
ulary. Over such finite models, the picture is quite different from the case
where there is a binary relation symbol in the vocabulary. We will establish

72

that over the class of finite V -models, where V is an arbitrary nonempty
vocabulary containing only unary relation symbols, we have

FOwo= < fESOwo= < FO.

We first show that fESOwo= < FO, and then that FOwo= < fESOwo=.

4.4.1 fESOwo= < FO over Finite Models with a Unary Relational
Vocabulary

Let V be an arbitrary nonempty vocabulary containing only unary rela-
tion symbols. In the current subsection we show that fESOwo= < FO over
the class of finite V -models.5 We begin by making a number of auxiliary
definitions.

Let U ⊆ V be a finite unary vocabulary. A unary U -type (with the free
variable x) is a conjunction τ with |U | conjuncts such that for each symbol
P ∈ U , exactly one of the formulae P (x) and ¬P (x) is a conjunct of τ ; if
U = ∅, then τ is the formula x = x. Let T = { τ1, ..., τ|T | } be the set of
unary U -types.6 The domain of each U -model M is partitioned into some
number n ≤ |T | of sets Si such that the elements of Si realize, i.e., satisfy,
the type τi ∈ T . An element a ∈ Dom(M) realizes (satisfies) the type τi if
and only if M, ax |= τi.

Let n ∈ N, and let k = 2n. Any relation

R ⊆ Nk \ {0}k

is a spectrum. We associate sentences of FO and fESOwo= with spectra in a
way specified in the following definition.

Definition 4.4. Let ϕ be a V -sentence of FO or fESOwo=. Let U ⊆ V be
the finite set of unary relation symbols that occur in the sentence ϕ. Let
T = { τ1, ..., τ|T | } be the finite set of unary U -types. Let ≤T denote a linear

ordering of the types in T defined such that τi ≤T τj iff i ≤ j. Define the
relation Rϕ ⊆ N|T | such that (n1, ..., n|T |) ∈ Rϕ iff there exists a finite U -
model M of ϕ such that for all i ∈ {1, ..., |T |}, the number of points in the
domain of M that satisfy τi is ni. We call such a relation Rϕ the spectrum
of ϕ (with respect to the order ≤T).

Notice that the class of V -models that the sentence ϕ defines in the finite
is completely characterized by the spectrum Rϕ ⊆ N|T |; there is a canon-
ical one-to-one correspondence between the isomorphism classes of finite

5In the case V = ∅, we trivially have fESOwo= < FO, since we define fESOwo= such
that there do not exists fESOwo= formulae of the vocabulary ∅ at all.

6We assume that types have some standard ordering of conjuncts and bracketing, so
that there exist exactly 2|U| different unary U -types; for each subset S of U , there is
exactly one unary U -type τ such that for each symbol P ∈ U , P (x) is a conjunct of τ iff
P ∈ S.

73

U -models that satisfy ϕ and tuples r ∈ Rϕ. See Figure 3 for an illustration
of a spectrum of an FO sentence with a unary relational vocabulary.

We now define a special family of spectra and then establish that this
family exactly characterizes the expressivity of FO over the class of (finite)
V -models.

|PM |

|A \ PM |

b b b

b

b

b

b

b

b

Figure 3: The figure illustrates a stabilizing spectrum (see Definition 4.5)
that corresponds to some FO sentence ψ whose set of non-logical symbols
is {P}, where P is a unary relation symbol. A plus symbol occurs at the
position (i, j) iff there exists a {P}-model M satisfying the sentence ψ such
that |PM | = i and |A \ PM | = j, where A = Dom(M). In other words, the
number of points in the domain of M satisfying the type P (x) is i, and the
number of points satisfying the type ¬P (x) is j. If ϕ is an FO sentence with
the set {P} of non-logical symbols, the spectrum of ϕ divides the xy-plane
into four distinct regions. The upper right region always contains either plus
symbols only or minus symbols only. In the top left region, any distribution
of plus and minus symbols is possible in the horizontal direction, but in
the vertical direction the distribution is uniform. The bottom right region
is similar to the top left region, but with an arbitrary distribution in the
vertical direction and a uniform distribution in the horizontal direction. In
the bottom left region, any distribution is possible. (The point (0, 0) always
contains a minus symbol, however, since we do not allow for models to have
an empty domain.)

Definition 4.5. Let l = 2l
′

for some l′ ∈ N. Let R ⊆ Nl be a spectrum for
which there exists a number n ∈ N≥1 such that for all co-ordinate positions

74

i ∈ { 1, ..., l }, all integers k, k′ > n and all m1, ...,mi−1,mi+1, ...,ml ∈ N,

(m1, ...,mi−1, k,mi+1, ...,ml) ∈ R
⇔

(m1, ...,mi−1, k
′,mi+1, ...,ml) ∈ R.

Such a number n is a stabilizer of the spectrum R. A spectrum with a
stabilizer is a stabilizing spectrum.

Proposition 4.6. A spectrum R is a stabilizing spectrum if and only if R
is the spectrum of some FO sentence.

Proof. Assume that R ⊆ Nk is a stabilizing spectrum. Let n ∈ N≥1 be a
stabilizer of R. Define the set S = {0, 1, ..., n} ∪ {∞}, where ∞ is simply a
symbol. Define a function f : N −→ S as follows.

f(x) =

{
x if x ≤ n,

∞ if x > n.

Define
R0 = {

(
f(r1), ..., f(rk)

)
| (r1, ..., rk) ∈ R }.

Notice that the set R0 is finite.
Let (s1, ..., sk) ∈ R0. For each i ≤ k, define a first-order sentence χi such

that the following conditions hold.

1. If si ≤ n, then χi asserts that there are exactly si elements that satisfy
the type τi.

2. If si = ∞, then χi asserts that there are at least n + 1 elements that
satisfy the type τi.

Let ψ(s1,...,sk) be a conjunction of the sentences χi. Let ϕR be a disjunction
of the sentences ψ(s1,...,sk), where (s1, ..., sk) ∈ R0. The set R0 is finite, so
the disjunction is a first-order sentence. Since R is a stabilizing spectrum
with a stabilizer n, we observe that the disjunction ϕR defines the spectrum
R, i.e., R is the spectrum of the first-order sentence ϕR.

The fact that each spectrum of an FO sentence is stabilizing is established
by a straightforward Ehrenfeucht-Fräıssé game argument.

We next define some order theoretic notions and then prove a number
of order theoretic results that are needed in the proof of the main theorem
(Theorem 4.10) of the current section.

A structure M = (A,≤M) is a partial order if ≤M ⊆ A × A is a re-
flexive, transitive and antisymmetric binary relation. Given a partial order
M = (A,≤M), we let <M denote the irreflexive version of the order ≤M .
A partial order is said to be well-founded if no strictly decreasing infinite

75

sequence occurs in it. That is, a partial order M = (A,≤M) is well-founded
if for each each sequence f : N −→ A there exist numbers i, j ∈ N such
that i < j and f(j) 6<M f(i). An antichain S ⊆ A of a partial order
M = (A,≤M) is a set such that for all distinct elements s, t ∈ S, we have
s 6≤M t and t 6≤M s. In other words, the distinct elements s and t are in-
comparable. A well-founded partial order that does not contain an infinite
antichain is a partial well-order, or a pwo.

Let M = (A,≤M) and N = (B,≤N) be partial orders. The Cartesian
product M × N of the structures M and N is the partial order defined as
follows.

1. The domain of M ×N is the Cartesian product A×B.

2. The binary relation ≤M×N ⊆ (A × B) × (A × B) is defined in a
pointwise fashion as follows.

(a, b) ≤M×N (a′, b′) ⇔
(
a ≤M a′ and b ≤N b′

)
For each integer k ∈ N≥1 and each partial order M = (A,≤M), we let

Mk = (Ak,≤Mk
) denote the partial order where the relation ≤Mk⊆ Ak×Ak

is again defined in the pointwise fashion as follows.

(a1, ..., ak) ≤M
k

(a′1, ..., a
′
k) ⇔ ∀i ∈ {1, ..., k} : ai ≤M a′i

The structure Mk is called the k-th Cartesian power of M . We let (Nk,≤)
denote the k-th Cartesian power of the linear order (N,≤). When S ⊆ Nk,
we let (S,≤) denote the partial order with the domain S and with the
ordering relation inherited from (Nk,≤). In other words, for all s, t ∈ S, we

have s ≤(S,≤) t if and only if s ≤(Nk,≤) t. When u, v ∈ Nk, we simply write
u ≤ v in order to assert that u ≤(Nk,≤) v.

The following lemma is a paraphrase of Lemma 5 of the article [48],
where the lemma is credited to Higman [28].

Lemma 4.7. The Cartesian product of any two partial well orders is a
partial well order.

Variants of the following lemma are often attributed to Dickson [14].
The lemma follows directly from Lemma 4.7 above.

Lemma 4.8. (Dickson’s Lemma variant) Let k ∈ N≥1. The structure
(Nk,≤) does not contain an infinite antichain.

Proof. The structure (N,≤) is a pwo, and by Lemma 4.7, the property of
being a pwo is preserved under taking finite Cartesian products. Thus the
structure (Nk,≤) is a pwo. By definition, a pwo does not contain infinite
antichains.

76

Let l ∈ N≥1 and let R ⊆ Nl be a relation such that for all tuples u, v ∈ Nl,
if u ∈ R and u ≤ v, then v ∈ R. We say that the relation R is upwards closed
with respect to (Nl,≤). When the exponent l is known from the context or
irrelevant, we simply say that the relation R is upwards closed.

Theorem 4.9. If R is a spectrum that is upwards closed, then it is a stabi-
lizing spectrum.

Proof. Let l′ ∈ N and l = 2l
′
. Assume that R ⊆ Nl is a spectrum that

is upwards closed with respect to (Nl,≤). We shall establish that R is
stabilizing. As ∅ is trivially a stabilizing spectrum, we may assume that
R 6= ∅.

We begin the proof by defining a function f that maps each nonempty
subset of the set { 1, ..., l } to a natural number. Let I ⊆ { 1, ..., l } be
a nonempty set. Let R(I) denote the set consisting of exactly those tu-
ples w ∈ R that have a non-zero co-ordinate value at each co-ordinate
position i ∈ I and a zero co-ordinate value at each co-ordinate position
j ∈ { 1, ..., l } \ I. Define the value f(I) ∈ N as follows.

1. If R(I) = ∅, let f(I) = 0.

2. If R(I) 6= ∅, choose some tuple w ∈ R(I). Let W ⊆ R(I) be a maximal
antichain of (R(I),≤) such that w ∈W , i.e., let W be an antichain of
(R(I),≤) such that for all u ∈ R(I)\W , there exists some v ∈W such
that u < v or v < u. By Lemma 4.8, the set W is finite. Therefore
there exists a maximum co-ordinate value occurring in the tuples in
W . Let f(I) to be equal to this value.

(Notice that we have some freedom of choice when defining the function f ,
so there need not be a unique way of defining f .)

With the function f defined, call

n = max
(
{ f(I) | ∅ 6= I ⊆ { 1, ..., l } }

)
.

We will establish that n is a stabilizer of the relation R. We assume, for the
sake of contradiction, that there exist integers k, k′ > n and also integers
m1, ...,mi−1,mi+1, ...,ml ∈ N such that the equivalence

(m1, ...,mi−1, k,mi+1, ...,ml) ∈ R
⇔

(m1, ...,mi−1, k
′,mi+1, ...,ml) ∈ R

does not hold. Let k < k′. As the relation R is upwards closed, it must be
the case that

(m1, ...,mi−1, k,mi+1, ...,ml) 6∈ R
and

(m1, ...,mi−1, k
′,mi+1, ...,ml) ∈ R.

77

Otherwise we would immediately end up with a contradiction. Call

wk = (m1, ...,mi−1, k,mi+1, ...,ml)
and

wk′ = (m1, ...,mi−1, k
′,mi+1, ...,ml).

Let I∗ ⊆ { 1, ..., l } be the set of co-ordinate positions where the tuple wk′

(and therefore also the tuple wk) has a non-zero co-ordinate value. Let
W (I∗) denote the domain of the maximal antichain of (R(I∗),≤) chosen
when defining the value of the function f on the input I∗. The tuple wk′ can-
not be in the set W (I∗), since the co-ordinate value k′ is greater than n, and
therefore greater than any of the co-ordinate values of the tuples in W (I∗).
Hence, as W (I∗) is a maximal antichain of (R(I∗),≤) and wk′ ∈ R(I∗), there
exists a tuple u ∈ W (I∗) such that wk′ < u or u < wk′ . Since k′ > f(I∗),
we must have u < wk′ . Therefore, as also k > f(I∗), we conclude that
u < wk. As R is upwards closed and u ∈ R, we have wk ∈ R. This is a
contradiction.

The following theorem is the main result of the current section.

Theorem 4.10. Let V be a vocabulary such that each symbol in V is a
unary relation symbol. We have fESOwo= < FO over finite V -models.

Proof. By Theorem 4.3 it is immediate that FO 6≤ fESOwo= over finite
V -models. Therefore it suffices to show that fESOwo= ≤ FO over finite
V -models. To show this, let ϕ be an arbitrary V -sentence of fESOwo=. By
Proposition 4.6 it suffices to establish that the spectrum Rϕ of the sentence
ϕ is stabilizing. By Theorem 4.3, the spectrum Rϕ is upwards closed. Hence,
by Theorem 4.9, Rϕ is a stabilizing spectrum.

Note that if the vocabulary V under consideration is finite, then The-
orem 4.10 applies not only to fESOwo= but to any logic7 such that the
definable classes of models with a unary relational vocabulary are closed
under bloating. Here the restriction to models with a finite domain is re-
quired. Too see why, let L be a logic whose language consists of exactly one
formula, ψ. Let the semantics of L dictate that the formula ψ is true in a
model M if and only if the domain of the model M is infinite. Then truth
of L formulae is preserved under bloatings, but FO and L are incomparable
with regard to expressivity. Note also that our proof is nonconstructive in
the sense that without additional information, the current formulation of
the argument leaves it a conceivable possibility that there does not exist an
effective translation from the system L considered into FO.

7The term “logic” can here be identified with the compound expression “class of iso-
morphically closed classes of V -models”.

78

4.4.2 FOwo= < fESOwo= over Finite Models with a Unary Rela-
tional Vocabulary

In this subsection we show that over the class of finite V -models, where V
is a nonempty vocabulary containing only unary relation symbols, we have

FOwo= < fESOwo= .

Let P ∈ V and consider the fESOwo= sentence

∃f ∃g ∀x
(
P (f(x)) ∧

(
P (x) ↔ P (g(f(x)))

))
.

The sentence is true in a V -model M with three points, two of which sat-
isfy P (x). The sentence is not true in a V -model N with two points, one
satisfying P (x) and one not. However, we will show that there exists no
FOwo= sentence ϕ of the vocabulary V such that exactly one of the models
M and N satisfies ϕ. We establish this by applying a very simple back and
forth argument. In the article [10], a characterization of the expressivity of
FOwo= is formulated in terms back and forth systems. We show that M and
N satisfy exactly the same FOwo= sentences by employing the tools defined
in [10].

Definition 4.11. (cf. Definition 4.1 of [10].) Let M and N be U -
models, where U contains relation symbols only. A relation

p ⊆ Dom(M)×Dom(N)

is a partial relativeness correspondence if for any n-ary relation symbol
R ∈ U and any (a1, b1), ..., (an, bn) ∈ p,

(a1, ..., an) ∈ RM ⇔ (b1, ..., bn) ∈ RN .

Definition 4.12. (cf. Definition 4.2 of [10].) Let M and N be U -
models, where U contains relation symbols only. Let A = Dom(M) and
B = Dom(N). We write M ∼n N , where n ∈ N≥1, if there exists a sequence
(Ik)k∈{0,1, ... , n} of sets Ik of partial relativeness correspondences p ⊆ A×B
such that the following conditions hold.

1. Every Ik is a nonempty set of partial relativeness correspondences.

2. For each i ∈ {1, ..., n}, each p ∈ Ii and each a ∈ A, there exists a
q ∈ Ii−1 such that p ⊆ q and a ∈ Dom(q).

3. For each i ∈ {1, ..., n}, each p ∈ Ii and each b ∈ B, there exists a
q ∈ Ii−1 such that p ⊆ q and b ∈ Ran(q).

Proposition 4.13. (A weaker version of Proposition 4.5 of [10]) Let
M and N be U -models, where U is a finite vocabulary containing relation
symbols only. Then M and N satisfy exactly the same U -sentences of FOwo=

of the quantifier rank n ∈ N≥1 if and only if M ∼n N .

79

We then prove the main result of the current subsection.

Theorem 4.14. Let V be a nonempty vocabulary containing only unary
relation symbols. We have FOwo= < fESOwo= over the class of finite V -
models.

Proof. Let M and N be as defined in the beginning of the current subsection
(subsection 4.4.2), with QM = QN = ∅ for all Q ∈ V \ {P}. We separated
the models by a simple {P}-sentence of fESOwo=. To conclude the proof, it
suffices to establish that for all n ∈ N≥1, all finite U ⊆ V and all U -reducts
M � U and N � U of the models M and N , we have M � U ∼n N � U . Let
n ∈ N≥1 and let U ⊆ V be finite. Define the sets Ik of partial relativeness
correspondences in the following way.

1. In = { ∅ }.

2. Ik−1 = { p∪ {(a, b)} | p ∈ Ik and M, ax |= P (x) ⇔ N, bx |= P (x) }.

We immediately observe that the back and forth system (Ik)k∈{0,1, ... , n}
satisfies the required properties, and therefore M � U ∼n N � U .

4.5 Chapter Conclusion and a Remark on Generalized Quan-
tifiers

In this chapter we have investigated the expressive power of fESOwo= over
models with a relational vocabulary. The results obtained can be interesting
for example in the study of independence-friendly modal logics, and also
other systems in the family of independence-friendly logic. In fact, our
main result concerns models with a unary relational vocabulary, so the link
to independence-friendly modal logics there is somewhat indirect.

We have defined the notion of a bloating and shown that truth of fESOwo=

sentences is preserved under bloating. This establishes an easy access to
inexpressibility results for logics that translate into fESOwo=. We have
observed that over {R}-models, where R is a a binary relation symbol,
fESOwo= is incomparable with FO with regard to expressive power. How-
ever, we have also established that when limiting attention to finite models
with a nonempty unary relational vocabulary, we have

FOwo= < fESOwo= < FO.

The method of proof establishing the latter inequality via Dickson’s Lemma
is interesting in its own right. The most important notions we defined for
the purposes of the related argument are the notions of a spectrum and a
stabilizer. Indeed, stabilizing spectra seem to arise in various interesting
mathematical contexts. We end the chapter by demonstrating how stabiliz-
ing spectra can be used to characterize the extensions of first-order logic by

80

unary generalized quantifiers that are genuinely more expressive than FO in
the finite.

A unary generalized quantifier of a finite width is an isomorphically
closed class of modelsN = (W,PN1 , ..., P

N
k), where each Pi is a unary relation

symbol and k ∈ N≥1. The number k is the width of the quantifier. Let K
be a unary generalized quantifier of the finite width k. The extension of FO
with K is the system that extends the set of FO formulae according to the
following rule.

If ϕ1, ..., ϕk are formulae, then also QKxi1 , ..., xik
(
ϕ1, ..., ϕk

)
is a formula.

The semantics is extended such that M,f |= QKxi1 , ..., xik
(
ϕ1, ..., ϕk

)
iff

M ′ =
(
Dom(M), PM

′
1 , ... , PM

′
k

)
∈ K,

where PM
′

j = { a ∈ Dom(M) | M,f a
xij
|= ϕj }. If Q denotes a class of

unary generalized quantifiers, then FO(Q) denotes the extension of first-
order logic with all the quantifiers K ∈ Q.

Each unary quantifier K of a finite width k can be associated with a
spectrum RK ⊆ N(2k). The quantifier K is a class of models of the vocabu-
lary U = {P1, ..., Pk}. Let T = {τ1, ..., τ2k} be the set of unary U -types with
the free variable x, ordered by the relation ≤T such that τi ≤T τj iff i ≤ j.
We define (n1, ..., n2k) ∈ RK if and only if there exists a model M ∈ K such
that for each i ∈ {1, ..., 2k}, we have

| { a ∈ Dom(M) | M,
a

x
|= τi } | = ni.

The quantifier K is a stabilizing quantifier if the spectrum RK is stabilizing.
Note that even though the structure of the relation RK depends on how the
linear order ≤T is chosen, the property of being a stabilizing quantifier is
independent of the choice of ≤T . Also note that we have defined a spectrum
to be a relation over the natural numbers, so spectra only encode the action
of quantifiers over finite models. This suffices for our purposes.

Theorem 4.15. Let V be a finite relational vocabulary containing a rela-
tion symbol of the arity at least two. Let Q be a class of unary generalized
quantifiers of finite width. We have FO < FO(Q) over the class of finite
V -models if and only if Q contains a quantifier that is not stabilizing.

Proof. Assume first that Q does not contain a quantifier that is not sta-
bilizing. Let ϕ be an arbitrary sentence of FO(Q). Consider an arbitrary
subformula

ψ := QKxi1 , ..., xik
(
ψ1, ..., ψk

)
of ϕ, where the formulae ψi are first-order and K is neither the universal nor
the existential quantifier. Since K is a stabilizing quantifier, there exists an

81

FO formula ψ′ that is uniformly equivalent to ψ in the finite. This is estab-
lished by a straightforward argument similar to that employed in the proof
of Proposition 4.6, paying close attention at each stage to which variable
symbols are to be considered free and which ones bound. Substituting ψ′

for ψ in ϕ, we can eliminate an instance of the quantifier QK . Iterating the
procedure, we end up with a first-order sentence that is uniformly equivalent
to ϕ in the finite. Therefore it is not the case that FO < FO(Q) over the
class of finite V -models.

Assume then that Q contains a quantifier H that is not stabilizing. Let
m ∈ N≥1 be the width of H. Therefore H is a class of models of the
vocabulary U = {P1, ..., Pm}. Let T = {τ1, ..., τ2m} be the set of unary U -
types with the free variable x, ordered by ≤T according to the subindices.
Let RH be the spectrum of H according to the order ≤T .

Let n ∈ N≥1. Since the spectrum RH is not stabilizing, there exist some
integers k, k′ > n and some m1, ...mi−1,mi+1, ...,m2m ∈ N such that

(m1, ...mi−1, k,mi+1, ...,m2m) ∈ RH

and
(m1, ...mi−1, k

′,mi+1, ...,m2m) 6∈ RH .

Let us say that the co-ordinate position i witnesses instability of RH for
n. For each n ∈ N≥1, there exists some co-ordinate position that witnesses
instability of RH for n. Let p ∈ {1, ..., 2m} be a co-ordinate position that
witnesses instability of RH for infinitely many n ∈ N≥1. Let Kp denote the
class of finite U -models where each model contains at least 2m elements that
satisfy the type τp.

We assume without loss of generality that there is a binary relation
symbol S ∈ V . In the case there is no binary relation symbol in V , a
symbol of a higher arity can be used in order to encode a binary relation.
The resulting modification of the argument below is straightforward. We
define a map f that encodes each model in Kp by a corresponding V -model.
Let M ∈ Kp. Choose a set

AM = {a1, ..., a2m} ⊆ Dom(M)

such that M, aix |= τp for each ai ∈ AM . For each i ∈ {1, ..., 2m}, the
element ai ∈ AM is referred to as the i-th element of AM . We let f(M) be
the V -model defined as follows.

1. Dom
(
f(M)

)
= Dom(M).

2. For all ai, aj ∈ AM , we have (ai, aj) ∈ Sf(M) iff

(a) i+ 1 = j or

(b) i = j.

82

3. For all ai ∈ AM and all v ∈ Dom(M) \ AM , we have (ai, v) ∈ Sf(M)

iff M, vx |= τi.

4. For all ai ∈ AM and all v ∈ Dom(M) \AM , we have (v, ai) 6∈ Sf(M).

5. For all u, v ∈ Dom(M) \AM , we have (u, v) 6∈ Sf(M).

6. For all relation symbols T ∈ V , T 6= S, we have T f(M) = ∅.

Call
C = { f(M) | M ∈ Kp }

and
H ′ = { f(M) | M ∈ Kp ∩H }.

We then establish that H ′ is definable with respect to C by a sentence of
FO(Q). We define, for each i ∈ {1, ..., 2m}, a first-order {S}-formula χτi(x)
such that for all f(M) ∈ C and all u ∈ Dom(f(M)), we have

f(M),
u

x
|= χτi(x) ⇔ M,

u

x
|= τi.

The encoding f(M) of each model M ∈ C is constructed in such a way
that this is straightforward. For i ∈ {1, ..., 2m} \ {p}, the elements of f(M)
that should satisfy χτi(x) are exactly the S-successors of the i-th element of
AM that are in Dom(M) \ AM . The elements of f(M) that should satisfy
χτp(x) are the elements that belong to AM or are S-successors of the p-th
element of AM . Now, for each j ∈ {1, ...,m}, let ψPj (x) denote a disjunction
of exactly all the formulae χτi(x) such that τi |= Pj(x). Note that for all
f(M) ∈ C and all u ∈ Dom(f(M)), we have

f(M),
u

x
|= ψPj (x) ⇔ M,

u

x
|= Pj(x).

The {S}-sentence

QHx1, ..., xm
(
ψP1(x1), ... , ψPm(xm)

)
defines H ′ w.r.t. C.

We then show that the class H ′ is not definable w.r.t. C by any first-
order V -sentence. This follows by a straightforward Ehrenfeucht-Fräıssé
game argument. Let n ∈ N≥1. We will define two V -models, one in H ′ and
the other one in C \H ′, such that the duplicator (see [44]) wins the n-round
game played on the models.

Since the co-ordinate position p witnesses instability of RH for infinitely
many elements of N≥1, there exists some integers k, k′ > n + 2m and
l1, ..., lp−1, lp+1, ..., l2m ∈ N such that

wk =
(
l1, ..., lp−1, k, lp+1, ..., l2m

)
∈ RH

83

and
wk′ =

(
l1, ..., lp−1, k

′, lp+1, ..., l2m
)
6∈ RH .

Let Mk denote a U -model such that the number of elements of Mk that
satisfy the type τp is k, and for each i ∈ {1, ..., 2m} \ {p}, the number of
elements of Mk that satisfy the type τi is li. Let Mk′ denote a model defined
similarly, but with k replaced by k′. That is, Mk′ is a U -model such that
the number of elements of Mk′ that satisfy the type τp is k′, and for each
i ∈ {1, ..., 2m} \ {p}, the number of elements of Mk′ that satisfy the type τi
is li. The duplicator wins the n-round game played on the V -models f(Mk)
and f(Mk′). The duplicator plays according to the following strategy.

1. If the spoiler (see [44]) chooses an element already chosen in some
earlier round, the duplicator responds by choosing the corresponding
earlier chosen element in the other model.

2. If the spoiler chooses an element u not chosen in any earlier round, the
duplicator responds with an element u′ of the other model such that
the following conditions hold.

(a) The element u′ has not been chosen in any earlier round.

(b) If the element u is chosen from the model f(Mk) and u is the
i-th element of the set AMk

, then the duplicator chooses the i-th
element of the set AMk′ of f(Mk′).

(c) Symmetrically, if the element u is chosen from the model f(Mk′)
and u is the i-th element of the set AMk′ , then the duplicator
responds by choosing the i-th element of the set AMk

of f(Mk).

(d) If u is chosen from the model f(Mk) and we have u 6∈ AMk
and

Mk,
u
x |= τi(x), then the duplicator chooses an element u′ 6∈ AMk′

such that Mk′ ,
u′

x |= τi(x).

(e) Symmetrically, if u is chosen from f(Mk′) and we have u 6∈ AMk′

and Mk′ ,
u
x |= τi(x), then the duplicator chooses an element

u′ 6∈ AMk
such that Mk,

u′

x |= τi(x).

We observe that the duplicator can play n rounds maintaining this strategy,
and the strategy is indeed a winning strategy. Since n was chosen arbitrarily,
we conclude that H ′ is not definable with respect to C by any V -sentence of
FO. We conclude that FO < FO(Q) over the class of finite V -models.

The notion of a stabilizing spectrum generalizes to the context involving
all infinite cardinalities in addition to finite ones, and this leads to a natural
generalization of the notion of a stabilizing quantifier. However, Theorem
4.15 does not hold in the context involving infinite models in addition to
finite ones. Consider, for example, the quantifier “there exists infinitely
many”. This is a unary stabilizing quantifier of the width one, the smallest

84

stabilizer being ℵ0. The extension of FO with this quantifier is of course
stronger in expressive power over V -models than the (finitary system) FO
alone.

85

CHAPTER 5

On Fragments of SOPMLE and SO(ML)

Let SO(ML) denote the logic obtained by extending polyadic multimodal
logic by allowing for the unrestricted quantification of proposition symbols
and also relation symbols associated with diamonds. In this chapter we
investigate the expressivity of fragments of SO(ML) and also fragments of
second-order propositional modal logic with the global modality SOPMLE.
We identify a range of properties of simple fragments of the two logics. For
example, we obtain a simple tool for proving inexpressibility results for the
fragment of SOPMLE consisting of formulae of the type ∃P ∀Qϕ, where ϕ
is free of propositional quantifiers. The principal contribution of the chapter
is the relatively straightforward observation that SO(ML) is equi-expressive
with second-order logic SO. By showing this we identify a modal normal
form for second-order logic. Investigating (fragments of) second-order logic
from alternative perspectives—such as the ones provided by the systems
studied below—can elucidate the mathematical phenomena that give rise to
the expressivity of second-order logic.

5.1 SOPMLE and SO(ML)

In this chapter we investigate the expressivity of fragments of SO(ML) and
SOPMLE. We concentrate on the study of finite models, but unless oth-
erwise stated, the class of structures under investigation is not assumed to
be finite. We shall establish that both over models and pointed models,
SO(ML) = SO, and therefore the investigations below can also be regarded
as investigations of fragments of MSO and SO. (Recall from Chapter 2 that
SOPMLE = MSO with regard to expressive power.)

The chapter is structured as follows. In Section 5.2 we discuss a number
of preliminary issues. We begin Section 5.3 by observing that the argu-
ment of ten Cate in [11]—which establishes that formulae of SOPML with
diamonds corresponding to a binary relation admit a prenex normal form
representation—works almost as such also in the context of SOPML and
SOPMLE with polyadic modalities. We then show that already formulae of
the type ∃P ∀Qϕ of SOPMLE, where ϕ is free of propositional quantifiers,
can define any finite pointed directed graph up to isomorphism. We also
provide an analogous result that applies to SOPML. We call the fragment
of SOPMLE (SOPML), whose formulae are of the type ∃P ∀Qϕ specified

86

above, the Σ2 fragment.
Since any finite pointed directed graph is definable up to isomorphism

by a Σ2 formula of SOPMLE, there exists no model transformation that
preserves truth of Σ2 formulae of SOPMLE from a finite pointed directed
graph to a non-isomorphic pointed directed graph. However, in Section 5.4
we identify a family of model transformations such that for each k ∈ N, there
is a non-trivial transformation that applies to formulae of the Σ2 fragment
of SOPMLE with k existential propositional quantifiers. We use this tool
to prove simple hierarchy results concerning the expressivity of fragments of
SOPMLE and SOPML.

In Section 5.5 we make use of a class of pointed models that we call
pointed ornamented words in order to study fragments of SOPMLE and
SO(ML). A major part of the related investigations draws its inspiration
from the study culminating to Büchi’s theorem in descriptive complexity the-
ory. We observe that while the Σ1 fragment of SOPML 8 exactly captures
regular languages, neither an increase in the number of allowed alternations
of propositional quantifiers nor an increase of the arity of prenex quanti-
fied existential quantifiers (i.e., a transition to the fragment of Σ1

1 where
the first-order parts of formulae are standard translations of formulae of
polyadic modal logic) takes us beyond regular languages. What is needed is
an increase in both arity and the number of alternations. Finally, in Section
5.6, we show that SO(ML) and second-order predicate logic SO coincide in
expressive power. This result applies to pointed models as well as models.

5.2 Preliminary Definitions

We assume that the reader is familiar with the basics of the theory of finite
automata and regular languages. For an introduction to the subject, see for
example [27].

In the investigations below we shall make use of a version of the notion
of a bounded morphism (see [7]). Let k ∈ N, and let V = {R,P1, ..., Pk} be
a vocabulary, where R is a binary relation symbol and Pi are unary relation
symbols. A function f : W −→ U from the domain W of a model

M = (W,RM , PM1 , ..., PMk)

to the domain U of a model

N = (U,RN , PN1 , ..., P
N
k)

is a bounded morphism if and only if the following conditions are satisfied.

1. For all u ∈W and all i ∈ {1, ..., k}, we have u ∈ PMi iff f(u) ∈ PNi .

8The Σ1 fragment of SOPML is the fragment containing exactly the formulae of the
type ∃P ϕ, where ∃P is a vector of existential propositional quantifiers and ϕ is free of
propositional quantifiers.

87

2. For all u, v ∈W , if uRMv, then f(u)RNf(v).

3. For all u ∈ W and y ∈ U , if f(u)RNy, then there exists some v ∈ W
such that uRMv and f(v) = y.

We say that there is a bounded morphism from a pointed model (M,w) onto
(N,w′), if there is a surjective bounded morphism f from the domain of M
onto the domain of N such that f(w) = w′.

Let ϕ be a sentence of SOPMLE of the type ∀P ψ, where ∀P is a vector of
universal propositional quantifiers and ψ is free of propositional quantifiers.
The sentences of the type of ϕ are called Π1 sentences of SOPMLE. The
following proposition is easy to verify and can be regarded as part of the
folklore of modal logic.

Proposition 5.1. Let k ∈ N and let V = {R,P1, ..., Pk} be a vocabulary
where R is a binary relation symbol and Pi are unary relation symbols. Let
(M,w) and (N, v) be pointed V -models and assume there is a surjective
bounded morphism from (M,w) onto (N, v). Then, for all Π1 sentences ϕ
of SOPMLE of the vocabulary V , (M,w) ϕ implies (N, v) ϕ.

5.3 Basic Properties of SOPMLE and SOPML

In [11], ten Cate shows that formulae of SOPML with a binary accessibility
relation admit a prenex normal form representation. Each formula of the
vocabulary {R,P1, ..., Pk}, where R is a binary relation symbol and Pi are
unary relation symbols, can be written in a form that begins with a string of
propositional second-order quantifiers, and this string is followed by an or-
dinary modal formula. The argument of ten Cate in [11] generalizes directly
to the context of SOPML (and also SOPMLE) with polyadic modalities, as
we shall next observe.

Similarly to what we defined in Chapter 2, we let uniq(P) denote the
formula

〈E〉P ∧ ∀Q
(
〈E〉(Q ∧ P)→ [E](P → Q)

)
.

Here 〈E〉 is the global diamond. Let k ∈ N≥2 and let R be a k-ary relation
symbol. Let P and Q be unary relation variables. Let i ∈ {1, ..., k− 1}, and
let (>, ..., P, ...,>) denote the (k − 1)-tuple, where the i-th position has the
formula P , and every other position has the formula > := P ∨¬P . Similarly,
let (>, ..., P ∧ Q, ...,>) and (>, ..., P ∧ ¬Q, ...,>) denote the (k − 1)-tuples
where the i-th positions have the formulae P ∧Q and P ∧ ¬Q respectively,
and all other positions have the formula >. Let uniqiR(P) denote the formula

〈R〉(>, ..., P, ...>)
∧ ∀Q

(
〈R〉(>, ..., P ∧Q, ...,>)→ ¬〈R〉(>, ..., P ∧ ¬Q, ...,>)

)
.

The following uniform equivalences are immediate.

88

1. 〈E〉 ∃P ϕ ≡ ∃P 〈E〉ϕ

2. 〈E〉∀P ϕ ≡ ∃Q∀P
(
uniq(Q) ∧ 〈E〉(Q ∧ ϕ)

)
3. 〈R〉

(
ϕ1 , ..., ϕi−1, ∃P ψ(P), ϕi+1, ..., ϕk−1

)
≡ ∃P ′ 〈R〉

(
ϕ1 , ..., ϕi−1, ψ(P ′), ϕi+1, ..., ϕk−1

)
4. 〈R〉

(
ϕ1 , ..., ϕi−1, ∀P ψ(P), ϕi+1, ..., ϕk−1

)
≡ ∃Q∀P ′

(
uniqiR(Q) ∧ 〈R〉

(
ϕ1 , ..., ϕi−1, Q∧ψ(P ′), ϕi+1, ..., ϕk−1

))
Here ψ(P ′) is the formula obtained from ψ(P) by replacing the free occur-
rences of P in ψ(P) by P ′. We assume that the variables Q,P ′ do not occur
free in the formulae ϕ, ψ(P), ϕ1, ..., ϕk−1.

In the light of the above uniform equivalences, it is rather easy to con-
clude the following.

Proposition 5.2. (cf. Proposition 3 of [11].) Both SOPMLE and
SOPML admit a prenex normal form representation of formulae. That is,
for each SOPMLE (SOPML) formula there exists a uniformly equivalent
SOPMLE (SOPML) formula that is of the form Qψ, where Q is a string of
propositional quantifiers and ψ does not contain propositional quantifiers.

5.3.1 Σ2 Formulae and Finite Models

In this subsection we investigate the Σ2 fragments of the logics SOPMLE
and SOPML over finite models. We show that any finite pointed {R}-model,
where R is a binary relation, can be characterized up to isomorphism by a
Σ2 formula of SOPMLE. We also establish an analogous result that applies
to SOPML.

Let (M,w) and (M ′, w′) be pointed models. We write (M,w) ∼= (M ′, w′)
if the models M and M ′ are isomorphic via an isomorphism f that maps w
to w′. We call pointed models (M,w) and (M ′, w′) isomorphic if and only
if we have (M,w) ∼= (M ′, w′).

Proposition 5.3. Let R be a binary relation symbol. For each finite pointed
{R}-model (M,w) there exists a Σ2 sentence ϕ of SOPMLE such that for all
pointed {R}-models (M ′, w′), we have (M ′, w′) ϕ iff (M,w) ∼= (M ′, w′).

Proof. Let M = (W,RM). Let |Dom(M)| = n and assume w.l.o.g. that
W = {1, ..., n} and w = 1. Let uniq∗(P,Q) denote the formula

〈E〉P ∧
(
〈E〉(P ∧Q)→ [E](P → Q)

)
.

89

Define the following formulae.

ψ1 :=
∧

1≤i≤n
uniq∗(Pi, Q)

ψ2 := [E]
∨

1≤i≤n

(
Pi ∧

∧
j ∈{1,...,n}, j 6= i

¬Pj
)

ψ3 := [E]
∧

i,j ∈{1,...,n}, (i,j)∈RM

(
Pi → 〈R〉Pj

)
ψ4 := [E]

∧
i,j ∈{1,...,n}, (i,j) 6∈RM

(
Pi → ¬〈R〉Pj

)
Let ϕ be the formula

∃P1...∃Pn∀Q
(
P1 ∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4

)
.

Let (M ′, w′) = ((W ′, RM
′
), w′) be a model and assume that we have

((W ′, RM
′
), w′) ϕ. Thus

(M∗, w′) :=
(
(M ′, PM

∗
1 , ..., PM

∗
n), w′

)
 P1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ∀Qψ1

for some sets
PM

∗
1 , ..., PM

∗
n ⊆W ′.

The formula ∀Qψ1 ensures that each set PM
∗

i is a singleton set. The formula
ψ2 makes sure that if u ∈ W ′, then there is some i ∈ {1, ..., n} such that
PM

∗
i = {u}, and furthermore, PM

∗
j ∩ PM∗l = ∅ for all j, l ∈ {1, ..., n} such

that j 6= l. Thus we observe that the sets PM
∗

i partition W ′ into n singleton
sets. Define a bijection f : W −→ W ′ such that for each i ∈ {1, ..., n}, we
have f(i) ∈ PM∗i . It is easy to see that f is an isomorphism from M to M ′

and f(w) = f(w′).
For the converse implication, it is clear that any pointed {R}-model

isomorphic to (M,w) satisfies ϕ.

We then establish an analogue of Proposition 5.3 that applies to SOPML.
Let (M,w) =

(
(W,RM), w

)
be a pointed model. Define

1. W 0
w = {w},

2. W i+1
w = W i

w ∪ { v ∈W | uRMv for some u ∈W i
w}.

For each i ∈ N, define

RM
i
w = { (u, v) ∈W ×W | u ∈W i−1

w , v ∈W i
w, (u, v) ∈ RM }.

Here W−1w = ∅. Let d ∈ N. We call the pointed model

(Md
w, w) =

(
(W d

w, R
Md
w), w

)
90

the d-generated submodel of (M,w). A pointed model (N, v) whose d-
generated submodel is the model (N, v) itself, is called a root generated
pointed model of the depth d.

Proposition 5.4. Let d ∈ N and let R be a binary relation symbol. For each
finite {R}-model (M,w) there exists a Σ2 sentence ϕ of SOPML of the modal
depth d such that for all pointed {R}-models (N, v), we have (N, v) ϕ iff
(Md

w, w) ∼= (Nd
v , v).

Proof. Define

〈R〉0ϕ := ϕ,

[R]0ϕ := ϕ,

〈R〉i+1ϕ := 〈R〉〈R〉iϕ,
[R]i+1ϕ := [R][R]iϕ.

Also define

〈R〉≤i ϕ :=
∨

j ∈ {0,...,i}

〈R〉j ϕ,

[R]≤i ϕ :=
∧

j ∈ {0,...,i}

[R]j ϕ.

Let M = (W,RM). The statement of the proposition is trivial for the case
where d = 0, so assume that d > 0. Let |Dom(M)| = n and assume w.l.o.g.
that W = {1, ..., n} and that w = 1. Let uniq∗(P,Q) denote the formula

〈R〉≤dP ∧
(
〈R〉≤d(P ∧Q)→ [R]≤d(P → Q)

)
.

Define the following formulae.

ψ1 :=
∧

1≤i≤n
uniq∗(Pi, Q)

ψ2 := [R]≤d
∨

1≤i≤n

(
Pi ∧

∧
j ∈{1,...,n}, j 6= i

¬Pj
)

ψ3 := [R]≤d−1
∧

i,j ∈{1,...,n}, (i,j)∈RM

(
Pi → 〈R〉Pj

)
ψ4 := [R]≤d−1

∧
i,j ∈{1,...,n}, (i,j) 6∈RM

(
Pi → ¬〈R〉Pj

)
Let ϕ be the formula

∃P1...∃Pn∀Q
(
P1 ∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4

)
.

The argument establishing that ϕ has the desired property is analogous to
the proof of Proposition 5.3.

91

5.4 Σ2 Formulae of SOPML and SOPMLE with a Bounded
Number of Existential Quantifiers

By Proposition 5.3 it is impossible to design a model transformation that
preserves truth of Σ2 formulae of SOPMLE from a finite pointed {R}-model
(M,w) to a pointed {R }-model (N, v) such that (N, v) 6∼= (M,w). Proposi-
tion 5.4 establishes an analogous result that applies to finite root generated
pointed models; for an arbitrary d ∈ N, there exists no model transforma-
tion that transforms a finite root generated pointed {R}-model (M,w) of
the depth d to a root generated pointed {R}-model (N, v) 6∼= (M,w) of the
depth d such that truth of all Σ2 formulae of SOPML of the modal depth
d is preserved from (M,w) to (N, v). In order to prove inexpressibility re-
sults that apply to Σ2 formulae of SOPMLE and SOPML, we will define
for each k ∈ N a model transformation that preserves truth of Σ2 formulae
of SOPMLE with at most k existential propositional quantifiers. We then
use the transformations in order to prove a number of simple expressivity
related hierarchy results.

We begin by defining a number of notions needed later on. If M is a
model, we let Type(M) denote the isomorphism type of M . When we write
M ∼=f M

′ we mean that

f : Dom(M) −→ Dom(M ′)

is an isomorphism from the model M to the model M ′.

Definition 5.5. Let M = (W,RM) be a model with a binary relation and
let l ∈ N≥2. Let N1, ..., Nl be finite disjoint submodels of M such that
Ni
∼= Nj for all i, j ∈ {1, ..., l}. Assume that N1, ..., Nl are non-adjacent,

i.e., no two points ui ∈ Dom(Ni) and uj ∈ Dom(Nj), where i 6= j, satisfy
uiR

Muj . Let F be a set of isomorphisms

fij : Dom(Ni) −→ Dom(Nj),

one for each pair (i, j) ∈ {1, ..., l} × {1, ..., l}, such that any automorphism
obtained by composing the functions in F is an identity function. Assume
that the following conditions hold.

1. If there is an i ∈ {1, ..., l} such that uRMvi for some some

u ∈ W \
⋃

k∈{1,...,l}

Dom(Nk)

and some vi ∈ Dom(Ni), then uRMfij(vi) for all j ∈ {1, ..., l}.

2. If there is an i ∈ {1, ..., l} such that viR
Mu for some some

u ∈ W \
⋃

k∈{1,...,l}

Dom(Nk)

and some vi ∈ Dom(Ni), then fij(vi)R
Mu for all j ∈ {1, ..., l}.

92

We call the disjoint union

N = N1

⊎
...
⊎
Nl = M �

⋃
k∈{1,...,l}

Dom(Nk)

an adjacency-free isotropic sector of M . We call Type(Ni) a sector compo-
nent type of N . Note that there may be several different sector component
types associated with N , depending on what is identified as a single compo-
nent of N ; a sector component Ni may consist of two or more non-adjacent
submodels of M . The number of components of a given type t is the sector
width of N with respect to the type t.

We then define a model transformation that involves deleting compo-
nents of an isotropic sector.

Definition 5.6. Let M = (W,RM) be a model with a binary relation RM .
Let N = N1

⊎
...
⊎
Nl be an isotropic sector of M and let each of the com-

ponents Ni have exactly n elements. Let f : N≥1 −→ N≥1 be a function.
Assume that 0 < f(n) ≤ l′ < l and let

S = Dom(M) \
(
(Dom(Nl′+1) ∪ ... ∪ Dom(Nl)

)
.

We say that the model M � S is obtained from the model M by an
f -conformal deletion. Any model that is isomorphic to a model that can
be obtained from M by a finite series of f -conformal deletions, is called an
f -conformal minor of M .

Assume that a model M ′ is obtained from a model M by a finite series
of f -conformal deletions. Let w ∈ Dom(M ′). We define that any pointed
model (N, u) such that (N, u) ∼= (M ′, w), is an f -conformal minor of (M,w).

Proposition 5.7. Let k ∈ N and let ϕ be a Σ2 sentence of SOPMLE with
at most k existential quantifiers. Assume ϕ is a sentence of the vocabulary
{R}, where R is a binary relation symbol. Let f : N≥1 −→ N≥1 be the
function such that f(x) = 2 k·x for all x ∈ N≥1. Let (M,w) be a pointed
{R}-model and (M ′, w′) its f -conformal minor. Now, if (M,w) ϕ, then
(M ′, w′) ϕ.

Proof. Since (M ′, w′) is an f -conformal minor of (M,w), there exists some
submodel M ′′ of M obtained from M by a series of f -conformal deletions
such that w ∈ Dom(M ′′) and (M ′′, w) ∼= (M ′, w′). We assume w.l.o.g. that
(M ′, w′) is (M ′′, w). Furthermore, we assume w.l.o.g. that M ′ = M ′′ is
obtained from M by a single f -conformal deletion that affects a sector

N = N1

⊎
...
⊎
Nl

93

of the modelM , deleting the componentsNl′+1, ...Nl, where l′ ≥ 2 k·|Dom(N1)|.
In other words, at least 2 k·|Dom(N1)| components remain in the sector after
the deletion. We have

M ′ = M � (Dom(M) \ T),

where
T = Dom(Nl′+1) ∪ ... ∪Dom(Nl).

Call
N ′ = N � (Dom(N) \ T).

Since N is an isotropic sector, there must exist a collection F of isomor-
phisms between the components Ni of N that witness this. We let fij ,
where i, j ∈ {1, ..., l}, denote the members of such a witnessing collection.

Let
ϕ = ∃P1...∃Pk∀Q1...∀Qk′ ψ,

where k′ ∈ N and ψ is free of propositional quantifiers. Now, since

(M,w) ∃P1...∃Pk∀Q1...∀Qk′ ψ,

there exist sets PM
∗

1 , ..., PM
∗

k ⊆ Dom(M) such that such that

(M∗, w) :=
(
(M,PM

∗
1 , ..., PM

∗
k), w

)
 ∀Q1...∀Qk′ ψ.

For each i ∈ {1, ..., l}, let N∗i denote the model M∗ � Dom(Ni). We have

| { Type(N∗i) | i ∈ {1, ..., l} } | ≤ 2 k·|Dom(N1)| .

On the other hand, the sector N ′ of the model M ′ consists of the components
N1 , ..., Nl′ , so the sector width of N ′ is l′ ≥ 2 k·|Dom(N1)|. Thus we can define
an expansion M ′∗ = (M ′, PM

′∗

1 , ..., PM
′∗

k) of M ′ such that PM
′∗

i and PM
∗

i

agree outside N , and furthermore, the following three conditions hold.

1. For each component N∗i , where i ∈ {1, ..., l}, there exists a component
M ′∗ � Dom(Nj), where j ∈ {1, ..., l′}, such that fij is an isomorphism
from N∗i to M ′∗ � Dom(Nj).

2. For each component M ′∗ � Dom(Nj), where j ∈ {1, ..., l′}, there exists
a component Ni

∗, where i ∈ {1, ..., l}, such that fij is an isomorphism
from N∗i to M ′∗ � Dom(Nj).

3. For each i ∈ {1, ..., l′}, let N ′i
∗ denote M ′∗ � Dom(Ni). Let

• C = { Ni
∗ | 1 ≤ i ≤ l },

• C ′ = { N ′i
∗ | 1 ≤ i ≤ l′ }.

Also, let

94

• [N∗m]C = { Ni
∗ ∈ C | Ni

∗ ∼=fim N∗m },
• [N∗m]C ′ = { N ′i

∗ ∈ C ′ | N ′i
∗ ∼=fim N∗m }.

We have | [N∗m]C ′ | ≤ | [N∗m]C | for all m ∈ { 1, ..., l }.

The three conditions above enable us to define a surjection

f : Dom(N) −→ Dom(N ′)

such that for each component N∗i , we have f � Dom(N∗i) = fij for some
j ∈ { 1, ..., l′ } such that N ′j

∗ ∈ [N∗i]C ′ . Let g be the identity function on
Dom(M) \ Dom(N). It is easy to see that the function h = f ∪ g is
a surjective bounded morphism from (M∗, w) onto (M ′∗, w). Hence, by
Proposition 5.1, as

(M∗, w) ∀Q1...∀Qk′ ψ,

also
(M ′

∗
, w) ∀Q1...∀Qk′ ψ.

This directly implies that

(M ′, w) ∃P1...∃Pk∀Q1...∀Qk′ ψ,

as desired.

It is now easy to prove the following two propositions.

Proposition 5.8. Let R be a binary relation symbol. For each k ∈ N,
there exists a Σ1 sentence of SOPML with k + 1 existential propositional
quantifiers that defines a class of pointed {R }-models that is not definable
by any Σ2 sentence of SOPMLE with k existential propositional quantifiers.

Proof. Let M = (W,RM) be a model such that the following conditions
hold.

1. The domain W is finite.

2. There is an element u ∈W , called the centre, such that we have uRMv
for all v ∈W \ {u}. Furthermore, if u′RMv′ for some u′, v′ ∈W , then
u′ = u and v′ 6= u.

Call such structures stars. Let C denote the class of all stars, and let Cp
denote the class containing each pointed model (M,w) where M is a star
and w is the centre of the star M . Let ϕ be the formula

∃P1...∃Pk+1

(∧
S⊆{1,...,k+1}

〈R〉
(∧
i∈S

Pi ∧
∧

j ∈{1,...,k+1}\S

¬Pj
))

.

It is easy to see that for all (M,w) ∈ Cp, we have (M,w) ϕ iff the centre
of M connects to at least 2 k+1 elements. By Proposition 5.7, it is immediate

95

that there is no Σ2 formula of SOPMLE with at most k existential propo-
sitional quantifiers that defines this property w.r.t. the class Cp. Therefore
there is no {R }-formula in the Σ2 fragment of SOPMLE with at most k ex-
istential propositional quantifiers that defines w.r.t. the class of all pointed
{R }-models exactly the same class as ϕ.

Let R be a binary relation symbol and let k ∈ N≥1. Let ∀P1...∀Pk ϕ be
an {R }-sentence of SOPML. Let K be the class of {R }-models that the
sentence ∀P1...∀Pk ϕ defines. We say that the class K of Kripke frames is
frame definable by a formula with k types of proposition symbols.9 Note that
here we are talking about expressivity with respect to models rather than
pointed models. We make the following very simple observation.

Proposition 5.9. For each k ∈ N≥1, there is a class of Kripke frames that
is frame definable by a formula with k + 1 types of proposition symbols, but
not frame definable by a formula with k types of proposition symbols.

Proof. Let k ∈ N≥1, and let A be the class of stars whose centre has less
than 2 k+1 successors. The sentence

∀P1...∀Pk+1

(
〈R〉> → ¬

(∧
S⊆{1,...,k+1}

〈R〉
(∧
i∈S

Pi ∧
∧

j ∈{1,...,k+1}\S

¬Pj
)))

defines A with respect to the class C of all stars.
Assume ad absurdum that some {R }-sentence of SOPML

∀P1...∀Pk ψ,

where ψ is free of propositional quantifiers, defines the class A with respect
to the class C of stars. Therefore the second-order formula

∀xStx(∀P1...∀Pk ψ)

defines A w.r.t. C. Hence the formula

∃xStx(∃P1...∃Pk ¬ψ)

defines the class B = C \A w.r.t. C. Thus the SOPML formula

χ := ∃P1...∃Pk ¬ψ ∨ 〈R〉 ∃P1...∃Pk ¬ψ

defines Bp w.r.t. Cp, where Cp is the class of pointed models (M,w) where
M is a star and w is the centre of the star, and Bp is the class of pointed

9The formula P ∨ ¬P contains two occurrences (tokens) of proposition symbols, but
only one type of a proposition symbol. The formula (P ∨¬P)∨ (Q∧P) contains two types
of proposition symbols; there are three occurrences of symbols of one type (the type of P)
and one occurrence of symbols of the other type (the type of Q).

96

models (N, v) where N ∈ B and where v is the centre of N . The formula χ
is uniformly equivalent to the Σ1 formula

χ′ := ∃P1...∃Pk
(
¬ψ ∨ 〈R〉¬ψ

)
of SOPML. The formula χ′ therefore defines the class of Bp w.r.t. Cp, and
Bp is the class of pointed models (M,w) such that the centre w of the star
M has at least 2 k+1 successors. By Proposition 5.7, it is immediate that
there is no Σ1 sentence of SOPML of the vocabulary {R } with at most k
existential quantifiers that defines the class Bp with respect to the class Cp.
This is a contradiction.

5.5 Modal Fragments of SO and Regular Languages

Let k ∈ N and let {a1, ..., ak} be a finite nonempty set of symbols. Let

V = {<,Qa1 , ..., Qak}

be a vocabulary where < is a binary relation symbol and the symbols Qai
are unary relation symbols. Let n ∈ N≥1 and let W = {1, ..., n}. Let <M

be the strict linear order of natural numbers restricted to W , i.e.,

<M = { (i, j) ∈W ×W | i < j }.

Let
QMa1 , ..., Q

M
ak
⊆ W

be unary relations such that the following conditions hold.

1. For all i, j ∈ {1, ..., k} such that i 6= j, we have QMai ∩Q
M
aj = ∅.

2. For all i ∈ {1, ..., n} there exists some j ∈ {1, ..., k} such that i ∈ QMaj .

In other words, a subset of {QMa1 , ..., Q
M
ak
} partitions the set W . The model

M =
(
W,<M , QMa1 , ..., Q

M
ak

)
is a word model over the letters {a1, ..., ak}.

We identify finite strings over {a1, ..., ak} with word models over the
letters {a1, ..., ak} in a one-to-one fashion. A string

u = ai1 ...aim

of the length m is identified with the word model Mu such that

Dom(Mu) = {1, ...,m}

and for all j ∈ {1, ...,m}, we have j ∈ QM
u

aij
. We do not allow for the

domain of a model to be empty, and therefore the empty string does not

97

have a model associated with it. Of course we could modify our encoding
scheme and overcome this problem; for example we could add an isolated
point to the domain of each word model, and the empty string would then
be encoded by a model whose domain would simply contain this isolated
point. However, for our purposes the above encoding scheme is fine.

Let λ denote the empty string and let

{a1, ..., ak}+ = {a1, ..., ak}∗ \ {λ}.

That is, {a1, ..., ak}+ is the set that contains exactly all finite strings over
the alphabet {a1, ..., ak}, except for the empty string. Let L ⊆ {a1, ..., ak}+
be a language over the alphabet {a1, ..., ak}. Let ϕ be a sentence of predicate
logic of the vocabulary V = {<,Qa1 , ..., Qak}. We say that the sentence ϕ
defines L, if the sentence ϕ is satisfied by exactly those word models over
{a1, ..., ak} that are identified with a string in L. A proof of the following
theorem can be found for example in [44], where the exposition allows also
for empty models to exist.

Theorem 5.10. (A variant of Büchi’s theorem) Let A be a finite
nonempty set of symbols. A language L ⊆ A+ is regular iff L is definable by
an MSO sentence.

Let A be a finite nonempty set of symbols and let M be a word model
over the letters A. Let N be the expansion of M by the binary relation SN

interpreted as the successor relation over the elements of the domain of M ,
i.e.,

SN = { (i, j) ∈ Dom(M)×Dom(M) | j = i+ 1 }.

Let (N, v) be the pointed model where v is the minimum element with
respect to the order <N , i.e., v = 1. The model N is a pointed ornamented
word model over the letters A. We also call pointed ornamented word models
p-o-words.

Pointed ornamented word models are identified with finite strings in the
obvious one-to-one fashion. Let V be the vocabulary of p-o-words over the
letters A. Let ϕ be a V -sentence of a system of modal logic, for example
SOPML. We say that the sentence ϕ defines the language L ⊆ A+ if and
only if the set of p-o-words over the letters A that satisfy ϕ is exactly the
set of p-o-words that are identified with a string in L.

The next proposition characterizes the expressivity of the Σ1 fragment
of SOPML over p-o-words. The article [20] discusses related results in the
context of temporal logic.

Proposition 5.11. Let A be a finite nonempty set of symbols. A language
L ⊆ A+ is definable by a Σ1 formula of SOPML iff L is regular.

98

Proof. Let A = {a1, ..., ak} and let L ⊆ A+ be a regular language. Therefore
L is the language accepted by some deterministic finite automaton

N = (Q, δ, qs, F),

where Q = {q1, ..., qn} is the set of states of N , δ is the transition function
mapping each pair (q, a) ∈ Q × A to some state in Q, qs ∈ Q is the start
state and F ⊆ Q the set of accepting states.

We define a number of formulae that enable us to write a Σ1 formula of
SOPML that defines the language accepted by N with respect to the class of
all p-o-words over the letters A. If ψ is a SOPML formula, let [<]′ψ denote
the formula ψ ∧ [<]ψ. Fix a proposition variable Xqi for each state qi ∈ Q.
These proposition variables will correspond to states that the automaton N
is in when scanning an input word. Define

ϕpart := [<]′
∨

i∈{1,...,n}

(
Xqi ∧ (

∧
j ∈{1,...,n}, j 6=i

¬Xqj)
)
.

The formula ϕpart ensures that the variables Xq1 , ..., Xqn are interpreted
such that the corresponding sets always partition the domain of a p-o-word.

Define
ϕstart :=

∧
a∈A

(
Qa → Xδ(qs,a)

)
.

The formula ϕstart simulates the first state transition of the automaton.
Define

ϕtrans := [<]′
(∧
i∈{1,...,n}, j ∈{1,...,k}

(
(Xqi ∧ 〈S〉Qaj)→ 〈S〉Xδ(qi,aj)

))
.

The formula ϕtrans simulates the state transitions of the automaton after
the first transition.

Let ⊥ be the formula (Xqs ∧ ¬Xqs) and define

ϕend := [<]′
(

[<]⊥ →
∨
q ∈F

Xq

)
.

The formula ϕend simulates the accepting/rejecting procedure. The Σ1 for-
mula

∃Xq1 ...∃Xqn(ϕpart ∧ ϕstart ∧ ϕtrans ∧ ϕend)

of SOPML defines the language L.
For the converse direction, assume that L ⊆ A+ is definable with respect

to the class of all p-o-words over the letters A by a Σ1 formula ϕ of SOPML of
the vocabulary {<,S,Qa1 , ..., Qak}. Let ψ(y, z) denote a first-order formula
of the vocabulary {<} that defines the successor relation on any word model.
Let χ(x) denote the ∃MSO formula obtained from Stx(ϕ) by replacing each

99

atom of the type S(y, z) by the first-order formula ψ(y, z). The formula χ(x)
is a formula of the vocabulary {<,Qa1 , ..., Qak} that defines the language L
w.r.t. the set of all p-o-words over A. Let χ(x) = ∃X χ′(x), where χ′(x) is
the first-order part of χ(x). Let min(x) be a first-order {<}-formula stating
in a word model that x is the minimum element. The ∃MSO sentence

∃X ∃x
(
min(x) ∧ χ′(x)

)
defines the language L with respect to the class of word models over A. By
Theorem 5.10, the language L is regular.

5.6 SO(ML) = SO

In this section we investigate the logic SO(ML), which is the system obtained
by allowing for the unrestricted quantification of proposition symbols and
accessibility relations in polyadic multimodal logic.

Recall the definition of the syntax of SOPML from Chapter 2. We define
the syntax of SO(ML) by extending the syntax of SOPML. As in Chapter 2,
let VARFO and VARSO denote the sets of first-order and monadic second-
order variable symbols used in predicate logic, and let

PROP = { Px | x ∈ VARFO } ∪ { PX | X ∈ VARSO }

be the set of proposition variable symbols. Let the set

VAR+
SO = { Yi,n | i ∈ N≥1, n ∈ N≥2 }

be the set of relation variable symbols of arities higher than one used in
the syntax of second-order predicate logic SO. A symbol Yi,n is an n-ary
relation symbol. We define SO without quantification of function symbols,
so the set of variable symbols used in SO is

USO = VARFO ∪VARSO ∪VAR+
SO,

where the three sets on the right hand side are of course assumed to be
disjoint. The set of variable symbols used in SO(ML) is the set

UML = PROP ∪VAR+
SO.

As in Chapter 2, let
S = S0 ∪ S1 ∪ S2 ∪ S+

be a vocabulary, where S0 is a set of constant symbols, S1 and S2 are sets of
unary and binary relation symbols, respectively, and S+ is a set of relation
symbols of higher arities. We assume the sets S, PROP and VAR+

SO are
disjoint. The set of SO(ML) formulae of the vocabulary S is the smallest
set T such that the following conditions are satisfied.

100

1. If c ∈ S0, then c ∈ T .

2. If P# ∈ PROP, then P# ∈ T .

3. If P ∈ S1, then P ∈ T .

4. If ϕ ∈ T , then ¬ϕ ∈ T .

5. If ϕ ∈ T and ψ ∈ T , then (ϕ ∧ ψ) ∈ T .

6. If R ∈ S2 and ϕ ∈ T , then 〈R〉ϕ ∈ T .

7. If Yi,2 ∈ VAR+
SO and ϕ ∈ T , then 〈Yi,2〉ϕ ∈ T .

8. If R′ ∈ S+ is a k-ary relation symbol and ϕi ∈ T for all i ∈ {1, ..., k−1},
then 〈R′〉(ϕ1, ..., ϕk−1) ∈ T .

9. If Yi,k ∈ VAR+
SO is a k-ary relation variable symbol, k ∈ N≥3, and if

ϕj ∈ T for all j ∈ {1, ..., k − 1}, then 〈Yi,k〉(ϕ1, ..., ϕk−1) ∈ T .

10. If P# ∈ PROP and ϕ ∈ T , then ∃P# ϕ ∈ T .

11. If Yi,n ∈ VAR+
SO and ϕ ∈ T , then ∃Yi,n ϕ ∈ T .

An SO(ML) formula that does not contain free variables is called an
SO(ML) sentence. The set of non-logical symbols of an SO(ML) formula ϕ
of the vocabulary S is the set S′ ⊆ S of symbols that occur in S and ϕ.

Let c ∈ S0, P ∈ S1 and R ∈ S2. Let P# ∈ PROP be a proposition
variable. Let Yi,2 ∈ VAR+

SO be a binary and Yl,n ∈ VAR+
SO an n-ary rela-

tion variable, n ∈ N≥2. Let k ∈ N≥3, and let R′ ∈ S+ be a k-ary relation
symbol and Yj,k ∈ VAR+

SO a k-ary relation variable. Let ϕ,ψ, ϕ1, ..., ϕk−1
be formulae of SOPML of the vocabulary S. Let (M,w) be a pointed model
of the vocabulary S, and let W = Dom(M). Let V be a valuation function
that interprets the variables in UML in the model M . We define

(M,w), V c ⇔ w = cM ,
(M,w), V P ⇔ w ∈ PM ,
(M,w), V P# ⇔ w ∈ V (P#),
(M,w), V ¬ϕ ⇔ (M,w), V 6 ϕ,
(M,w), V (ϕ ∧ ψ) ⇔ (M,w), V ϕ and (M,w), V ψ,

(M,w), V ∃P# ϕ ⇔ ∃U ⊆W
(
(M,w), V U

P#
 ϕ

)
,

(M,w), V ∃Yl,n ϕ ⇔ ∃K ⊆Wn such that (M,w), V K
Yl,n

 ϕ,

(M,w), V 〈R〉ϕ ⇔ ∃u ∈W
(
wRMu and (M,u) ϕ

)
,

(M,w), V 〈Yi,2〉ϕ ⇔ ∃u ∈W such that (w, u) ∈ V (Yi,2)
and (M,u) ϕ,

101

(M,w), V 〈R′ 〉 (ϕ1, ..., ϕk−1) ⇔ ∃u1...uk−1 ∈W such that
R′M (w, u1, ..., uk−1) and
(M,ui), V ϕi for each i,

(M,w), V 〈Yj,k 〉 (ϕ1, ..., ϕk−1) ⇔ ∃u1...uk−1 ∈W such that
(w, u1, ..., uk−1) ∈ V (Yj,k) and
(M,ui), V ϕi for each i.

We let Σ1SO(ML) denote the fragment of SO(ML) where formulae have
a prefix consisting of a block of existential second-order quantifiers, and the
prefix is followed by a formula free of second-order quantifiers. Similarly,
we let Σ2SO(ML) be the fragment of SO(ML) where formulae have a prefix
consisting of a block of existential second-order quantifiers followed by a
block of universal second-order quantifiers, and after this prefix there is a
formula free of second-order quantifiers.

Let A = {a, b }, and let Wp denote the set of p-o-words over the letters A.
By Theorems 3.15 and 5.10, it is easy to see that there exists no Σ1SO(ML)
sentence that defines w.r.t. Wp a set corresponding to a non-regular lan-
guage. By Proposition 5.11 and Theorem 5.10 it is easy to see that the
Σ1 fragment of SOPML is equi-expressive with MSO over Wp. Therefore,
all together, starting from the Σ1 fragment of SOPML, neither increasing
the number of quantifier alternations of propositional quantifiers (moving to
SOPML) nor increasing the arity of quantifiable existential relations (mov-
ing to Σ1SO(ML)) leads to an increase in expressivity over Wp. What is
needed is an increase in both arity and alternation. It follows immediately
from well known results that the set of palindromes in A+ is not a regu-
lar language. However, the set of p-o-words corresponding to palindromes
in A+ is definable with respect to Wp by a sentence of Σ2SO(ML), as the
following proposition establishes.

Proposition 5.12. Let A be a finite nonempty set of symbols. The set of
p-o-words corresponding to palindromes in A+ is definable with respect to
Wp by a sentence of Σ2SO(ML).

Proof. Again let [<]′ψ denote the formula ψ∧ [<]ψ. Let X1 be a proposition
variable and let > and ⊥ denote the formulae X1 ∨ ¬X1 and X1 ∧ ¬X1,
respectively. We begin by defining a number of auxiliary formulae. Let us
first define

ϕout−deg := [<]′
(
〈R〉> ∧

(
〈R〉X1 → [R]X1

))
,

where R is a binary relation variable, to be existentially quantified later. The
formula ϕout−deg will ensure that the extension of R must have out-degree
one everywhere.

Let us then define

ϕmin−max := 〈R〉[S]⊥.

102

Recall that S is in the vocabulary of p-o-words, corresponding to the suc-
cessor relation. The formula will ensure that the extension of R connects
the minimum element of the linear order of a p-o-word to the maximum
element.

Define

ϕnext−prev := [<]′
((
¬X1 ∧ ¬〈S〉X1 ∧ 〈R〉X1

)
→ 〈S〉〈R〉〈S〉X1

)
.

This formula will ensure that if uRv such that u 6= v and not uSv, then
S(u) R S−1(v), where S(u) denotes the S-successor of u and S−1(v) the
S-predecessor of v.

Finally, define

ϕmatch := [<]′
(∧
a∈A

(
Qa → 〈R〉Qa

))
.

This formula will ensure that if uRv, then there is a letter a ∈ A such that
u and v are both in the extension the same proposition symbol Qa.

The formula

∃R∀X1

(
ϕout−deg ∧ ϕmin−max ∧ ϕnext−prev ∧ ϕmatch

)
defines the set of p-o-words corresponding to palindromes in A+ with respect
to the class of p-o-words over the letters A.

We then conclude the chapter by showing that SO(ML) = SO. A formula
of predicate logic ϕ(x) that contains exactly one free variable (the first-order
variable x) is uniformly equivalent to a modal sentence ϕ′, if ϕ(x) and ϕ′

have exactly the same set S of non-logical symbols, and if also

M,
w

x
|= ϕ(x) ⇔ (M,w) ϕ′

for all pointed S-models (M,w). We will now show that for every second-
order formula without function symbols and with exactly one free variable
(which is a first-order variable), there is a uniformly equivalent sentence of
SO(ML). The converse statement is obvious by (a trivial generalization of)
the standard translation.

Theorem 5.13. Let ψ(x) be a formula of SO without function symbols
and with exactly one free variable, the first-order variable x. There exists a
sentence of SO(ML) that is uniformly equivalent to ψ(x). Conversely, for
each sentence of SO(ML), there exists a uniformly equivalent formula of SO
with exactly one free first-order variable and no other free variables. There
exist effective translations in both directions.

103

Proof. The proof of the current theorem is based on the proofs of Lemma
2.2 and Theorem 2.3.

Let ψ(x) be formula of second-order logic without function symbols and
with exactly one free variable, the first-order variable x. We will define a
sentence ψ′ of SO(ML) that is uniformly equivalent to ψ(x).

Let S be the set of non-logical symbols that occur in ψ(x). Let M be
an S-model and let f be a variable assignment function that interprets each
variable in USO in M . Let Yj,2 ∈ VAR+

SO be a binary relation variable
symbol that does not occur in the formula ψ(x). We let VM

f denote the
valuation mapping that interprets each variable symbol in UML in M such
that the following conditions hold.

1. VM
f (Px) = {f(x)} for all Px ∈ PROP such that x ∈ VARFO.

2. VM
f (PX) = f(X) for all PX ∈ PROP such that X ∈ VARSO.

3. VM
f (Yi,n) = f(Yi,n) for all Yi,n ∈ VAR+

SO \ {Yj,2}.

4. VM
f (Yj,2) = Dom(M)×Dom(M).

Define

uniqYj,2(Px) := 〈Yj,2〉Px ∧ ∀Py
(
〈Yj,2〉(Py ∧ Px)→ [Yj,2](Px → Py)

)
.

Let X ∈ VARSO and P,R,R′, c, c′ ∈ S. Let Y ∈ VAR+
SO be a second-order

variable of the arity two. Let k ≥ 3, and let Y ′ ∈ VAR+
SO be a second-order

variable symbol of the arity k. Let Z ∈ VAR+
SO be a symbol of an arity at

least two. Let TrYj,2 denote the translation defined by the following clauses.

TrYj,2(P (x)) = 〈Yj,2〉(P ∧ Px)
TrYj,2(X(y)) = 〈Yj,2〉(PX ∧ Py)
TrYj,2(R(x, y)) = 〈Yj,2〉(Px ∧ 〈R〉Py)
TrYi,2(Y (x, y)) = 〈Yj,2〉(Px ∧ 〈Y 〉Py)
TrYj,2(R′(x1, ..., xn)) = 〈Yj,2〉

(
Px1 ∧ 〈R′〉(Px2 , ..., Pxn)

)
TrYj,2(Y ′(x1, ..., xk)) = 〈Yj,2〉

(
Px1 ∧ 〈Y ′〉(Px2 , ..., Pxk)

)
TrYj,2(x = y) = 〈Yj,2〉(Px ∧ Py)
TrYj,2(c = x) = 〈Yj,2〉(c ∧ Px)
TrYj,2(x = c) = 〈Yj,2〉(Px ∧ c)
TrYj,2(c = c′) = 〈Yj,2〉(c ∧ c′)
TrYj,2(¬ϕ) = ¬TrYj,2(ϕ)
TrYj,2((ϕ ∧ ψ)) =

(
TrYj,2(ϕ) ∧ TrYj,2(ψ)

)
TrYj,2(∃xϕ) = ∃Px

(
uniqYj,2(Px) ∧ TrYj,2(ϕ)

)
TrYj,2(∃X ϕ) = ∃PX TrYj,2(ϕ)
TrYj,2(∃Z ϕ) = ∃Z TrYj,2(ϕ)

The translation is almost identical to the translations Tr and TrR defined
in Chapter 2. We claim that

M,f |= ϕ ⇔ (M,w), VM
f TrYj,2(ϕ)

104

for all S-formulae ϕ of SO not containing the relation symbol Yj,2, all pointed
S-models (M,w) and all assignment functions f interpreting the symbols in
USO in M . The claim follows by an argument that is practically identical to
the proof of Lemma 2.2, the only non-trivial case of the inductive argument
being the case concerning formulae of the type ∃xα. Using the claim we
infer that

M,f
w

x
|= ψ(x) ⇔ (M,w), VM

f

{w}
Px

 TrYj,2(ψ(x))

for all pointed S-models (M,w) and related assignment functions f . Notice
that the formula TrYj,2(ψ(x)) has exactly two free variables, Px and Yj,2.
Let m ∈ N≥1, m 6= j. Noting that the formula

∀Ym,2∀Py
(
〈Ym,2〉〈Ym,2〉Py → 〈Ym,2〉〈Yj,2〉Py

)
asserts in any pointed model that Yj,2 must be interpreted as the total binary
relation, it is now easy to observe that the sentence

∃Yj,2∃Px∀Ym,2∀Py
((
〈Ym,2〉〈Ym,2〉Py → 〈Ym,2〉〈Yj,2〉Py

)
∧

Px ∧ uniqYj,2(Px) ∧ TrYj,2(ψ(x))
)

is uniformly equivalent to ψ(x).
The translation from SO(ML) into SO is a trivial extension of the stan-

dard translation.

Of course a similar result applies to models as well as pointed models.
A sentence ϕ of SO(ML) is globally uniformly equivalent to a sentence of
second-order predicate logic ϕ′ if ϕ and ϕ′ have exactly the same set S of
non-logical symbols, and if also

M |= ϕ′ ⇔ ∀w ∈ Dom(M)
(

(M,w) ϕ
)

for all S-models M .

Theorem 5.14. There exists a globally uniformly equivalent sentence of
SO(ML) for each SO sentence that does not contain function symbols. Con-
versely, for each SO(ML) sentence there is a globally uniformly equivalent
sentence of SO. There exist effective translations in both directions.

Proof. The proof of the current theorem is a simple variation of the proof
of Theorem 5.13.

Let ψ be a sentence of SO and let S be the set of non-logical symbols
occurring in ψ. Assume that S does not contain function symbols. Let Yj,2
be a relation variable symbol not occurring in ψ. As above, we have

M,f |= ϕ ⇔ (M,w), VM
f TrYj,2(ϕ)

105

for all S-formulae ϕ of SO not containing the relation variable Yj,2, all
pointed S-models (M,w) and all assignment functions f interpreting the
variable symbols in USO in M . Notice that now TrYj,2(ψ) has exactly one
free variable, Yj,2. Again let m ∈ N≥1, m 6= j. The formula

∃Yj,2∀Ym,2∀Py
((
〈Ym,2〉〈Ym,2〉Py → 〈Ym,2〉〈Yj,2〉Py

)
∧ TrYj,2(ψ)

)
.

is globally uniformly equivalent to the sentence ψ.

We conclude the section by observing that SO(ML) admits a prenex
normal form representation of sentences. Two formulae ϕ and ψ of SO(ML)
are uniformly equivalent, if the following conditions are satisfied.

1. Exactly the same set U ⊆ UML of variables occur free in both formulae.

2. The formulae have exactly the same set S of non-logical symbols.

3. We have
(M,w), V ϕ ⇔ (M,w), V ψ.

for all pointed S-models M and all valuation functions V interpreting
the variable symbols in UML in the model M .

Similarly, two formulae ϕ′ and ψ′ of SO are uniformly equivalent, if the
following conditions are satisfied.

1. Exactly the same set U ⊆ USO of variables occur free in both formulae.

2. The formulae have exactly the same set S of non-logical symbols.

3. We have
M,f |= ϕ′ ⇔ M,f |= ψ′

for all S-models M and all variable assignments f interpreting the
variable symbols in USO in the model M .

Theorem 5.15. Each sentence of SO(ML) can be effectively transformed
into a uniformly equivalent sentence of SO(ML) in prenex normal form,
i.e., a form where formulae begin with a prefix of second-order quantifiers,
and the prefix is followed by a part free of second-order quantifiers.

Proof. Let ϕ be an arbitrary sentence of SO(ML). It is well known that any
formula of SO can be effectively transformed into a uniformly equivalent
SO formula in a form where a block of second-order quantifiers is followed
by a first-order part. Let ψ(x) denote a formula of SO that is uniformly
equivalent to Stx(ϕ) and written in a form Qχ(x), where Q is a vector of
second-order quantifiers and χ(x) is a first-order formula. Here Stx denotes
a generalization of the standard translation operator.

106

Use the procedure in the proof of Theorem 5.13 to convert ψ(x) to the
uniformly equivalent SO(ML) sentence

∃Yj,2∃Px∀Ym,2∀Py
((
〈Ym,2〉〈Ym,2〉Py → 〈Ym,2〉〈Yj,2〉Py

)
∧

Px ∧ uniqYj,2(Px) ∧ TrYj,2(ψ(x))
)
.

Call this sentence α. Since ψ(x) is of the form Qχ(x), where χ(x) is first-

order, we observe that TrYj,2(ψ(x)) is of the form Q
′
β, where Q

′
is a vector

of second-order quantifiers and β is essentially an SOPML formula; β may
contain relation variables from VAR+

SO, but all second-order quantifiers in β
are propositional quantifiers. We know that SOPML admits a prenex normal
form representation of formulae by Proposition 5.2, and by the uniform
equivalences justifying Proposition 5.2, it is clear that the formula β can
be transformed into prenex normal form. Hence we conclude that we can
transform α into prenex normal form.

5.7 Chapter Conclusion

In this chapter we have investigated fragments of SOPMLE and SO(ML)
and proved a number of straightforward expressivity-related results. Even
though technically a relatively simple result, the principal discovery of the
chapter is that SO(ML) is equi-expressive with SO and also that SO(ML) ad-
mits a prenex normal form representation. These results establish a modal
normal form for second-order logic. The normal form is an example of a
result that can provide alternative approaches to proving theorems about
second-order logic. After all, it seems that modal logic is often a lot sim-
pler to use than first-order logic. However, it is obvious that the normal
form based on modal logic is not the only interesting normal form possible.
Indeed, it would be interesting to identify even simpler normal forms for SO.

107

CHAPTER 6

Concluding Remarks

In the above chapters we have investigated various fragments of second-order
logic, the common denominator of the fragments being that they are all di-
rectly related to extensions of modal logic. In Chapter 2 we answered an
open problem from [5] and [11] by showing that the alternation hierarchy of
SOPML is infinite. In Chapter 3 we established that Σ1

1(ML) translates into
monadic Σ1

1(MLE) and Σ1
1(PBML=) into ∃MSO, thereby identifying frag-

ments of Σ1
1 that translate into ∃MSO. We showed how these observations

lead to decidability results for extensions of multimodal logic over various
classes of frames. In Chapter 4 we investigated the equality-free system
fESOwo=, which can be useful for example in the study of independence-
friendly modal logic. The main contribution of that chapter was the argu-
ment establishing that over finite models with a unary vocabulary, fESOwo=

is weaker than FO. In Chapter 5 we proved a variety of results concerning
fragments of SOPLME and SO(ML). Among other things, we showed that
SO(ML) is equi-expressive with second-order logic, and thereby obtained a
modal normal form for second-order logic.

One of the two main open problems to be addressed in the future is
the question whether the alternation hierarchy of SOPML is strict. The
other one is the question of Grädel and Rosen asking whether Σ1

1(FO2) is
contained in ∃MSO. To show this, one would have to extend the translation
from Σ1

1(BML=) into ∃MSO developed in Chapter 3 such that it takes into
account the possibility of using the converse operation. In addition to these
two open problems, there are various other topics worth studying related
to the investigations in this thesis. For example, the program suggested
in Chapter 3 that involves classifying fragments L of FO such that Σ1

1(L)
is contained in ∃MSO, is worth mentioning here. The next planned step
related to this program involves considering graded modalities.

Understanding modal fragments of second-order logic serves at least two
purposes rather directly. Firstly, developing the understanding of fragments
of second-order logic—also fragments that would not be characterized as
modal—is central in second-order model theory. A developed theory of
second-order logic can help solve difficult problems in finite model theory,
for instance. Secondly, theorems about modal fragments of second-order
logic can be used as tools in investigations of modal systems geared towards
applications. Various different kinds of theorems concerning a very expres-

108

sive modal logic L immediately apply to all weaker logics that translate
into L. Given the success of modal logic in relation to applications, it is
quite clear that modal logic deserves a developed mathematical background
theory.

109

References

[1] C. Areces, P. Blackburn and M. Marx. Hybrid logic is the bounded
fragment of first order logic. In Proceedings of WoLLIC, pages 33-50,
1999.

[2] C. Areces, P. Blackburn and M. Marx. Hybrid logics: characterization,
interpolation and complexity. Journal of Symbolic Logic, 66(3):977-
1010, 2001.

[3] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter
and J. van Benthem, editors, Handbook of Modal Logic. Elsevier, 2006.

[4] S. Artemov and L. Beklemishev. On propositional quantifiers in prov-
ability logic. Notre Dame Journal of Formal Logic, 34(3):401-419, 1993.

[5] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

[6] M. B́ılková. Uniform interpolation and propositional quantification in
modal logics. Studia Logica, 85(1):1-31, 2007.

[7] P. Blackburn, M. de Rijke and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[8] P. Blackburn and J. Seligman. Hybrid Languages. Journal of Logic,
Language and Information, 4(3):251-272, 1995.

[9] R.A. Bull. On modal logic with propositional quantifiers. Journal of
Symbolic Logic, 34(2):257-263, 1969.

[10] E. Casanovas, P. Dellunde and R. Jansana. On elementary equivalence
for equality-free logic. Notre Dame Journal of Formal Logic, 37(3):506-
522, 1996.

[11] B. ten Cate. Expressivity of second order propositional modal logic.
Journal of Philosophical Logic, 35(2):209-223, 2006.

[12] B. ten Cate. Model Theory for Extended Modal Languages. Ph.D. thesis,
ILLC, University of Amsterdam, 2005.

[13] T. Costello and A. Patterson. Quantifiers and Operations on Modalities
and Contexts. In Proceedings of KR’98, pages 270-281, 1998.

[14] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. American Journal of Mathe-
matics, 35(4):413-422, 1913.

[15] H.-D. Ebbinghaus, J. Flum and W. Thomas. Mathematical Logic. 2nd
edition, Springer, 1994.

110

[16] K. Fine. Propositional quantifiers in modal logic. Theoria, 36(3):336-
346, 1970.

[17] M. Fischer and R. Ladner. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18(2):194-211, 1979.

[18] M. Fitting. Interpolation for first order S5. Journal of Symbolic Logic,
67(2):621-634, 2002.

[19] G. Gargov, S. Passy and T. Tinchev. Modal environment for Boolean
speculations. In D. Skordev, editor, Mathematical Logic and its Appli-
cations, Plenum Press, New York, 1987.

[20] A. Gheerbrant and B. ten Cate. Craig interpolation for linear temporal
languages. In Proceedings of CSL, pages 287-301, 2009.

[21] V. Goranko and M. Otto. Model theory of modal logic. In P. Blackburn,
F. Wolter and J. van Benthem, editors, Handbook of Modal Logic. El-
sevier, 2006.

[22] V. Goranko and S. Passy. Using the universal modality: gains and
questions. Journal of Logic and Computation, 2(1):5-30, 1992.

[23] E. Grädel and E. Rosen. Two-variable descriptions of regularity. In
Proceedings of LICS, pages 14-23, 1999.

[24] D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[25] L. Hella and A. Kuusisto. Monadic Σ1
1 and modal logic with quantified

binary relations. In Proceedings of M4M6, Electronic Notes in Theoret-
ical Computer Science, vol. 262, 2010.

[26] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic
Methods: Proceedings of the Symposium on Foundations of Mathemat-
ics, Warsaw, 29 September 1959, pages 167-183, Pergamon Press, 1961.

[27] J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. 2nd edition, Addison Wesley,
2000.

[28] G. Higman. Ordering by divisibility in abstract algebras. In Proceedings
of the London Mathematical Society, 2:326-336, 1952.

[29] J. Hintikka. Quantifiers vs. quantification theory. Dialectica, 27:329-358,
1973.

[30] J. Hintikka and G. Sandu. Informational independence as a semantical
phenomenon. In J.E. Fenstad et al., editors, Logic, Methodology and
Philosophy of Science VIII, pages 571-589, North-Holland, 1989.

111

[31] U. Hustadt and R.A. Schmidt. Issues of decidability for description
logics in the framework of resolution. In R. Caferra and G. Salzer,
editors, Automated Deduction in Classical and Non-Classical Logics,
Lecture Notes in Artificial Intelligence, vol. 1761, pages 191-205, 2000.

[32] N. Immerman. Descriptive Complexity. Springer, 1999.

[33] D. Kaplan. S5 with quantifiable propositional variables. Journal of
Symbolic Logic, 35(2):355, 1970.

[34] J. Kontinen, A. Kuusisto, P. Lohmann and J. Virtema. Complexity
of two-variable dependence logic and IF-logic. In Proceedings of LICS,
2011.

[35] J. Kontinen and J. Väänänen, editors. Dependence and Independence
in Logic. Proceedings of the ESSLLI workshop on dependence and in-
dependence in logic, 2010.

[36] P. Kremer. Defining relevant implication in a propositionally quantified
S4. Journal of Symbolic Logic, 62(4):1057-1069, 1997.

[37] P. Kremer. On the complexity of propositional quantification in intu-
itionistic logic. Journal of Symbolic Logic, 62(2):529-544, 1997.

[38] S. Kripke. A Completeness theorem in modal logic. Journal of Symbolic
Logic, 21(1):1-14, 1959.

[39] A. Kuusisto. A modal perspective on monadic second-order alternation
hierarchies. In Proceedings of AiML, 2008.

[40] A. Kuusisto. Logics of imperfect information without identity. In Pro-
ceedings of the ESSLLI Workshop on Dependence and Independence in
Logic, 2010.

[41] A. Kuusisto. Expressivity of imperfect information logics without iden-
tity. To appear in Studia Logica.

[42] S. Lehtinen. Generalizing the Goldblatt-Thomason Theorem and Modal
Definability. Ph.D. thesis, Acta Universitatis Tamperensis, University
of Tampere, 2008.

[43] D. Leivant. Propositional dynamic logic with program quantifiers. In
Proceedings of MFPS XXIV, Electronic Notes in Theoretical Computer
Science, vol. 218, pages 231-240, 2008.

[44] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[45] C. Lutz and U. Sattler. The complexity of reasoning with Boolean
modal logics. In Proceedings of AiML, pages 329-348, 2000.

112

[46] C. Lutz, U. Sattler and F. Wolter. Modal logic and the two-variable
fragment. In Proceedings of CSL, pages 247-261, 2001.

[47] J.A. Makowsky and Y.B. Pnueli. Arity and alternation in second-order
logic. Annals of Pure and Applied Logic, 78(1-3):189-202, 1996.

[48] M. Malicki and A. Rutkowski. On operations and linear extensions of
well partially ordered sets. Order 21(1):7-17, 2004.

[49] F. Massacci. Decision procedures for expressive description logics with
intersection, composition, converse of roles and role identity. In Pro-
ceedings of IJCAI, pages 193-198, 2001.

[50] O. Matz and N. Schweikardt. Expressive power of monadic logics on
words, trees, pictures, and graphs. In J. Flum, E. Grädel and T. Wilke,
editors, Logic and Automata: History and Perspectives, pages 531-552,
Amsterdam University Press, 2007.

[51] O. Matz, N. Schweikardt and W. Thomas. The monadic quantifier alter-
nation hierarchy over grids and graphs. Information and Computation,
179(2):356-383, 2002.

[52] O. Matz and W. Thomas. The monadic quantifier alternation hierarchy
over graphs is infinite. In Proceedings of LICS, pages 236-244, 1997

[53] R. Pesonen. Propositional State Transition Logics. Thesis in Minor Sub-
ject, University of Tampere, 2008.

[54] M.O. Rabin. Decidability of second-order theories and automata on in-
finite trees. Transactions of the American Mathematical Society, 141:1-
35, 1969.

[55] M. de Rijke. The modal logic of inequality. Journal of Symbolic Logic,
57(2):566-584, 1992.

[56] N. Schweikardt. The monadic quantifier alternation hierarchy over grids
and pictures. In Proceedings of CSL, pages 441-460, 1997.

[57] N. Schweikardt. The Monadic Second-Order Quantifier Alternation Hi-
erarchy over Grids and Pictures. Diplomarbeit, Johannes Gutenberg-
Universität Mainz, 1997.

[58] M. Sevenster. Decidability of independence-friendly modal logic. The
Review of Symbolic Logic, 3:415-441, 2010.

[59] N.V. Shilov and K. Yi. On expressive and model checking power of
propositional program logics. In Ershov Memorial Conference, pages
39-46, 2001.

113

[60] C. Stirling. Games and modal mu-calculus. In Proceedings of TACAS,
pages 298-312, 1996.

[61] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1-22, 1976.

[62] W. Thomas. Constructing infinite graphs with a decidable MSO-theory.
In Proceedings of MFCS, pages 113-124, 2003.

[63] T. Tulenheimo and M. Sevenster. Approaches to independence friendly
modal logic. In J. van Benthem, D. Gabbay and B. Löwe, editors, Inter-
active Logic. Selected Papers from the 7th Augustus de Morgan Work-
shop, London, pages 247-280, 2007.

[64] T. Tulenheimo. Independence-Friendly Modal Logic. Ph.D. thesis, Uni-
versity of Helsinki, 2004.

[65] J. Väänänen. Dependence Logic. Cambridge University Press, 2007.

114

