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1. INTRODUCTION

The discussion in neoclassical production theory has very
much been associated with the CES production function.
After the_ pathbreaking article by Arrow, Chenery, Minhas
and Solow! introducing the constant elasticity of
substitution (CES) production function, the study of
production theory has widely taken the form of
theoretical analysis of the role of the elasticity

of substitution?, empirical estimation of the
elasticity3 and straight generalisations of the CES
production function into certain classes of variable
elasticity of substitution production functions#.

on the other hand the study of production theory

has been directed towards the measurement of technical
change® and the aggregation of production functions®.

After "the most general form" of the CES production
functions was found and classified by Ruzio Sato in

1977, the discussion around pure CES technology

has not been a subject of extremely active theoretical
examination. The investigation has concentrated on
empirical work concerning CES technology and substitution.

Active work in the area of production theory has

under the last 4-5 years concentrated on the empirical
examination of the productivity changes in the western
economies?. The demand for electricity, material inputs and
energy has lately been specially analysed with KLEMF
production models8.

1 Arrow - Chenery - Minhas - Solow (1961)

2 For example Samuelson (1947), pp. 467-480 and Johansen (1972),
pp. 67-72 and pp. 218-224

3 For example, Nerlove (1967), pp. 55-122 and Kmenta (1967),
pp. 180-189 and Zarembka (1970), pp. 47-53

4 Among others Lu - Fletcher (1968), pp. 449-452 and
Lovell (1973), pp. 676-692 and Revankar (1971), pp. 61-72 and
Sato - Hoffman (1968), pp. 453-460 and Sato R. (1961),
pp. 33-41. An adaptation in regional economics in Finland is
made by Hirvonen - Hamdldinen - Haikala (1983)

5 For example, Kennedy -~ Thirlwall (1973), pp. 116-176 and
Jorgenson (1966), pp. 1-17. The latest examinations in
Finland are made by Karko (1988) and Summa (1986)

6 Among others Green (1964) and Sato K. (1975)

See, for example, Baily (1986), pp.443-451, Berndt - Fuss

(1986), pp.7-29, Griliches (1986), pp.141-154,

Jorgenson (1986), pp.1841-1915, Jorgenson (1988), pp.23-41

Jorgenson - Gollop - Fraumeni (1987)

8 See, for example, Dargay (1988) and Torma (1987).
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In the theoretical and empirical study of production

the flexible functional forms have been increasingly used
during the last years. Flexible functional forms can
approximate various unknown production technologies. They
place relatively few restrictions on the technology. These
forms can easily be formulated to have several inputs

and theX can even be estimated as a linear input demand
system.

The traditional neoclassical theory of production, with its
assumptions of costless possibilities of substitution and
choice of optimal «=zale, is a suitable tool for the analysis
of the long-run development of industrial structure at an
aggregate level. In general, it is not as good for the analysis
of short-run or medium-term problems of industrial structure
within an industry. These can be better analysed with the
putty-clay production theory assuming full substitution
possibilities ex ante, but fixed factor ratios and capacity
ex post optimization, leading to different vintages of
capital and a gradual transformation of the structure over
time. A good review and _analysis of this is given by

Forsund and Hjalmarssonz. The basic ideas are given already
by Salter and later developed further by Johansen3.
Adjustment costs in the theory of industrial production are
thoroughly analysed by Séderstrémé.

In this work we compare CES technology to a new production
technology which will be called par production technology.
This will be done by using the neoclassical concepts of
production theory. As the par production function is an
economical generalisation of the logarithmic mean, the
comparisons reveal new features in the CES technology as well.
As the logarithmic mean is originally a function of two
variables only, this justifies the "par" designation.

The present study has the following chief purposes:

(1) To introduce a new par production function
technology.

(2) To apply the resulting ideas to the
economic theory of income distribution.

(3) To compare the CES and par production function
techniques both theoretically and with sampling
experiments.

In chapter 2 some main aspects of neoclassical production
theory are reviewed. The par technology is introduced in
chapter 3. The most important characters are

compared between CES and par technologies especially in
chapters 4 and 5.

The Monte Carlo estimations in chapter 6 are based on
the estimation methods presented in chapter 5.

1 See Fuss, McFadden and Mundlak (1978), pPpr.219-268,
Considine and Mount (1984) pp.434-443

2 Férsund - Hjalmarsson (1987)

3 Johansen (1972) and Salter (1960)

4 soéderstrém (1974)



The CES and par technologies differ most in the following
two features. In CES technology the ratio of the income
shares is not limited and the shares vary from 0 to 1

or vice versa depending on the ratio of inputsl.

In par technology the ratio of the income shares

is finite and the limits are controlled by the

distribution limit parameter(s). This is the most important
feature of the par production technology. Both technologies
also supply a different system for the optimisation

as they demand separate forms for the income share
equations. Based on the linearizations made in many
situations in the study, the interesting and practical
result here is that the CES production technology mainly
represents the first order situations in the linearized
forms of the par production technology. This condition
serves as a base for discriminating the two production
technologies from each other in estimation situations.

In chapter 4 we find a very interesting analogy between the
CES income share equations and the statistical logistic
distribution function. This leads to the dispersion
parameter interpretation of the elasticity of substitution
and to a special interpretation of the Burr-Hatke equation
in the theory of income distribution.

In chapter 5.1 the economic formulation possibilities
for the logarithmic mean in the case of several
variables are presented.

Although the par production function seems to be rather
complicated mathematically, it supplies very interesting
economical analysing possibilities especially when we want
to test whether there are real distribution limits in the
empirical situation in question. In fact the par function
form is good for analysing several share equation situations
which are very common in economics. Using the parameterized
income shares as weights the par production function can

be exactly linearized in relation to the distribution

limit parameter(s).

As we compare the CES and par production technologies with
sampling experiments in chapter 6, the presented methods
and linearized forms are tested in the study as well.

The sampling experiments give us some practical pieces

of information to plan possible empirical estimations

when using the par production technology in examination.

The results of the study are summarized in the
conclusions in chapter 7.

1 In the Cobb-Douglas case the income shares are constants.



2. FEATURES OF THE CES PRODUCTION TECHNOLOGY AND
THE NEOCLASSICAL THEORY OF PRODUCTION

2.1 Some basic concepts of the production theory

Usually a variety of restrictions on the production function
are utilized in the production theory. To represent

a relatively complete catalog of assumptions

that are employed in the literature, we shall first note the
production function Y=Y (X), where X is a real-valued,
n-dimensional vector of nonnegative inputs and Y is the
outputl. These general properties can be stated as follows:?

1. (a) Monotonicity. If X*>X, then Y (X*)2Y(X).
(b) Strict monotonicity. If X*>X, then Y (X*)>Y(X).

2. (a) Quasi-concavity. The input requirement set
V(Y)={X:Y¥(X)2Y) is a convex set.
(b) Concavity. Y(8*X0+(1-8)*x*)>e*Y(X0)+(1-8)*Y (X*)
for all o<ex<l.

3. (a) Weak essentiality. Y(0,)=0, where 0, is the null vector.
(b) Strict essentiality. Y(Xq,..«,Xi=1,0,Xi{41r+++,Xp)=0
for all Xj.

4. The input requirement set V(Y) is closed and nonempty
for all ¥Y>o0.

5. Y(X) is finite, nonnegative, real-valued, and single valued
for all nonnegative and finite X.

6. (a) Y(X) is everywhere continuous; and
(b) Y(X) is everywhere twice-continuously differentiable.

In most studies the production function is assumed to be
homogeneous or homothetic.3

Properties la and 1b imply that additional units of any input
can never decrease the level of output, which means that the
marginal productivities are positive. This assumption is
almost universally maintained in production analyses.

Property 2a is essentially equivalent to assuming that the
law of the diminishing marginal rate of substitution holds.
Property 2b states a version of the law of the diminishing
marginal productivity, which means that as the utilization of
a particular input rises, holding all other inputs fixed, the
associated marginal increment in output must never increase.

1 1n general, Y could be interpreted as a vector of
nonnegative outputs. That is not, however, necessary here.

2 gee Chambers (1988) pp.9-14. Chambers presents a corresponding
analysis in case of the unit cost function as well.

3 A production function Y=Y (X3,...,Xp), is said to be homogeneous

of degree t if it has the property ut*Y=Y(u*X1,...,u*Xn). When
t=1, ¥(*) is linearly homogeneous. A production function is
homothetic, if it can be written Y=Y(J(X31,...,Xp)), where J(*)

is a homogeneous function and Y(°) a continuous, twice-
differentiable, finite, nonnegative and nondecreasing
function of the argument.



Property 3a means that production of a strictly positive
output without the committal of scarce resources is ruled out.
The property 3b implies that all inputs are essential to the
production process.

Property 4 is a feasibility assumption, which implies
that it is always possible to produce any positive output.

Property 5 is self-explanatory while property 6a is made to
rule out discontinuous jumps in the technology. Property

6b is extensively used since it permits the use of differential
calculus in the analysis.

Consider a twice differentiable quasi-concave production
function

(2.1) Y=Y(Xq1,..-,Xp)

where Y is output and Xj's (i=1,...,n) are the inputs.
For given input prices (Py,...,P,) cost minimization for
a given output level requires that

ey

(2.2) = Y; = P;j/T (i=1,...,n)

@ Xj

where I', the Lagrangian multiplier of the constrained
minimization problem, can be interpreted as marginal cost.
This minimization problem yields a cost function, which
gives for every vector of prices and output level, the
minimum possible level of costs C=C(Pq,...,Pnh,Y).

The first order partial derivatives of C will be

@c

= Cj(Py,...,Ppn,Y) (i=1,...,n)
@ P;
(2.3)
@ c
— = F(Pl,. ..,Pn,Y)
Y

(]

These partial derivatives form a system whose duality
relations to the relations in (2.2) and the production function
will be further analysed below.

When Y is assumed to be linearly homogeneous we can write the
total cost function C to be a product of the output Y
and the unit cost function f as follows

(2.4) C = Y*f

where f is a function of the input prices only



(2.5) £ = £(Py,...,Pp)

where again P;j is the price of the i'th input.

Because of the perfect symmetry between production

and cost functions, known as the duality theoryl, plus

the equality between total revenue and total cost which

is the equilibrium condition of a firm under pure
competition, the subsequent argument on the relationship
between the elasticity of substitution and the behaviour of
factor shares can be conducted in terms of both production
and cost functions.

Under competitive conditions, the relative share of factor Xj
is given by

Yi*X5 fi*Py
(2.6) wi = = (i=1,...,n)

Thus the relative share can be expressed in two alternative
ways, which enables us to analyze not only the direct effect
on factor shares of a change in the guantity of a factor via
the change in marginal product, but also the indirect effect
of a change in the price of a factor via the change in
quantity demanded on that factor. This is due to the fact
that the marginal effect on unit cost of a change in factor
price Pj is equal to the quantity demanded of factor i.

1 The duality theory has been examined in depth by many
writers, for example, Shephard (1953,1970), Ferguson (1979),
Fuss and McFadden (ed.) (1978) and Chambers (1988)
just to mention a few.



2.2 Changes in specific factor shares

First consider the effect of an increase in the quantity of
one specific factor upon the size of the relative share of
that factor. This is the problem investigated by Samuelson
and the result may be stated as: The relative share of one
factor increases or decreases as the quantity of that factor
increases depending on whether the "Samuelson" elasticity

of substitution is greater or smaller than unity, i.e.

@ wy

(2.7) > 0 when o4 > 1
@ Xy

=0 when 03 =1

<0 when o4 < 1

where oi is the "Samuelson" elasticity of substitution

=(1l-wj)*Y;
(2.8) oy = ———————
Yii*Xj

where Y;jj is the partial derivative of Y; with respect to Xj.
By the aforementioned duality theorem we can formulate

the dual problem to (2.7) which is concerned about the
effect of an increase in the price of Xj on wj. The result
is given by

@ wy

(2.9) >0 when o033 > 1
@ Py

=0 when og3 =1
< 0 when oggj <1

where oqj is the "dual Samuelson" elasticity of substitution
of factor Xj

=(1-wj)*fy
(2.10) o3y = ——————
£ii*Pj

where f;; is the partial derivative of f; with respect to Pj.
According to (2.9) the relative share of one factor increases
or decreases as the price of that factor increases depending
on whether the "dual Samuelson" elasticity of substitution

is greater or smaller than unity.

Using the concepts of partial elasticity of complementarity
and partial elasticity of substitution,

a more general result can be stated as: The relative

share of one factor increases or decreases as the quantity
(price) of another factor increases depending on whether the
partial elasticity of complementarity (substitution) between
the two factor in question is greater or smaller than unity



v
[

(2.11) B >0 when bij
=0 when bij =1
<0 when bij <1

where bjy is the partial elasticity of complementarity

Y*Yij

(2.12) bjy = (i><3)

Yi*Yj
Yj4 notes the partial derivative of Y; with respect
to Xj. As the dual result we have

@ wj

(2.13) > 0 when oij > 1
e Py
=0 when ojy =1

<0 when o0jy <1

where oi5 is the partial elasticity of substitution between
X3 and X5

fxfi4
(2.14) 044 = ) (i><3)
fi*fy

where fj4 notes the partial derivative of fj with respect

to P5. Tae partial elasticity of complementarity is found
by Sato and Koizumi (1971) in view of the suggestions due to
Hicks (1970). It is the dual concept to the well-known
definition of the Allen partial elasticity of substitution,
see Allen (1938).

Two factors X; and X5 are said to be g-complements or
g-substitutes according to whether bjs+ is positive or negative,
and p-complements or p-substitutes acCording to whether 035

is negative or positivel. Noting that both bj4y and g4

can be either positive or negative, we can say that 1% is

the degree of substitutability which is crucial in

determining the behavior of factor shares.

Here we have to note that the Samuelson elasticities and
the partial elasticities are related in the manner described
in chapter 2.4 of this study.

1 gee Hicks (1970), p.289-96



2.3 Changes in the ratio of relative factor shares

The effect of a change of the ratio of inputs on the ratio
of relative factor shares can be stated with the help of
direct and shadow elasticity of substitution as follows

@ (wi/wy)
—_— >0 when dj4 > 1

@ (Xj/X5)
=0 when djj =1
<0 when dj4 <1
(2.15)
@ (wi/wy)
—_— >0 when sjy > 1
@ (Pi/P5)
=0 when sjy =1
<0 when sj4 <1

where the direct elasticity of substitution dis and the
shadow elasticity of substitution sjj are defifed as

@ In(wj/wy)

djy = (i><3j)
@ 1n(Y4/¥1)
(2.16)
e In(P;/Py)
Sjy = ————————

e In(f4/£5)

The direct elasticity concept is a straightforward extension
of the original Joan Robinson definition (1934) made by
Sato and Koizumil. The shadow elasticity derives from McFadden2.

Sato and Koizumi have defined elasticities called group and
composite substitution elasticities in relation to the
distributive shares3. The serviceability of these seems not
to be specially relevant.

Recently Blackorby and Russell have criticized the use of
the Allen elasticities in production analyses and in the
analyses of distributive shares. According to their result
the so called Morishima elasticity of substitution,
defined by#%

Pi*fijy Pi*fij

(2.17) mj§y =

£5
is the only relevant and convenient concept at least in CES
type of production analyses.

£

Sato and Koizumi, pp.484-489

McFadden (1963), pp.78-83

Sato and Koizumi, pp.484-489

Blackorby and Russell (1989), pp.882-888. The Morishima
elasticity is first described in Morishima (1967), pp.144-150.
See also Blackorby and Russell (1981), pp.147-158.

FERENgS
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2.4 Elasticities of substitution and complementarity:
The general case

The duality relation between the Joan Robinson's elasticity

of substitutionl and John Hicks' elasticity of complementarity?
was formalized for the n factor case by Sato and Koizumi3

in 1973. This chapter is based on the analysis of

Moshe Syrquin and Gideon Hollender who generalized the

Sato and Koizumi analysis to the case of non-homothetic
technology4.

With only two inputs and a linearly homogeneous production
function, the two mentioned definitions of substitution and
complementarity elasticities are equivalent. In non-homothetic
technology there exists a type of duality and an interesting
decomposition into substitution and scale effects appears.

The (Allen) partial elasticity of substitution can be
expressed in terms of all elasticities of complementarity
as follows

€ Bij
(2.18) o4y = #o
ej*ey  |B|

and the dual concept, Hicks® partial elasticity of
complementarity can be expressed in terms of all partial
elasticities of substitution and an additional term which
measures the scale or output effect on marginal cost

€ Z3i5 @1lnr
(2.19) bij = * -
83 %6 |Z] @ Iny

in which 8i=Y;*X;j/Y is the output
elasticity of X; and €=38;=C/T*Y is the scale elasticity.
In case of constant returns to scale we have e€=1.

Bjj is the cofactor of matrix B and Zjj is the cofactor of
matrix z defined below:

J.Robinson (1934)

J.R.Hicks (1964,1st ed.1932) and Hicks (1970), pp.289-96
Sato R. and T.Koizumi, pp.44-56

M.Syrquin and G.Hollender, pp.515-519



1%

11 --- bin 1

B = . . .

bn1 - bnpn 1

1 .o 1 0

(2.20)

Ull oo e Uln 51

Z = . .
nl ++* Onn Sn

§1 ... énp ©

where the elasticities bj4 and oj j_are given by the
equations (2.12) and (2.12) The elast1c1t1es of demand for
the input Xi with respect to output along the expansion path
are noted with

@ In X3
(2.21) §; = —— -
@ In Y P

where the line above P means that input prices are kept
constant. For a homogenous of degree one production function
§i=1 for all i.

When constant returns to scale is postulated, the last term
in (2.19) vanishes and perfect duality emerges. This

is the situation which is analysed by Hicks- as well as
Sato and KoizumiZ.

In case of two inputs the relation between o¢;5 and bj

can be presented as follows. Since the'cost function is
homogenous of degree one in prices, we have

(2.22) 011%67 + 0312%65 = 0

1 Hicks (1970), pp.289-96
2 R.sato and T.Koizumi, pp.44-56
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The weighted average of the scale elasticities §; equals one

(2.23) 61*91 + 62*92 = 1

Substituting into (2.19) for the case n=2 we can obtain

€EX§1%6, @ InT
(2.24) b1y = by = b = -
o @ In Yy

If the production function is homothetic, we have §;=6,=1/¢
and therefore

1 @ 1lnrT
(2.25) b = -
o*e @ In Y

If we further add the assumption of homogeneity then

@ InT 1 - ¢

(2.26) =
@ In Y €
and
1
(2.27) (b - 1)*e = (— - 1)
o

where b is the elasticity of complementarity in two factor
case and o is the elasticity of substitution in two factor
case., Finally, when we have constant returns to scale,
then €=1 and

(2.28) b = 1/0

which is the original situation analysed by John Hicks and
Joan Robinson in the early thirties.
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2.5 On the classification of general CES functions
in the two factor case

The general family of CES production functions contains

a large number of different types, actually an infinite
number of functions, and the CES production functions are
in general not expressible in explicit forms. Thus those
who are accustomed to thinking of the production function as
an explicit relationship between inputs and outputs, may
consider the general family of non-homothetic CES functions
very strange. However, usually this implicitness

aspect presents no serious problems neither in theory

nor in estimation, for the concept of the production
function is simply the relationship, explicit or

implicit, between the inputs and the maximum level of
output resulting from them.

In the two factor case the elasticity of substitutionl between

inputs K (capital) and L (labor) is defined according to
equation (2.18) as follows

K*YK + L*YL

(2.29) o =
Yg*¥ry,  Yp*¥gy
K*L* (2%Ygy, - - )
¥, Y
K + L*m
@m em
K*L* (—— - —— * m~1)
@ K e L

where m = Yp/Yx is the marginal rate of substitution between
the inputs K and L. Rewriting (2.29) as

@m @ m
(2.30)  O*K*Lk(——) - o*K*L*m~l#(—) - K - L*m = 0
@ K e L

and letting m = ey, equation (2.31) may be expressed as

@u @€u 1 el
(2.31) eUx - = +
@ K @L o*L o0*K

where o = o(K,L,Y). If the elasticity of substitution o
is constant, equation (2.31) reduces to a rather simple
partial differential equation whose solution is

L In case of two inputs the constancy of the elasticities
described in chapters 2.2, 2.3 and 2.4 imply equivalent
production structures.
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(2.32) m = (K/L)Y/9#p(Y)

where D(Y) is an implicit function of production level Y
and D(Y)>0. This is the general expression for the marginal
rate of substitution corresponding to the general class of
CES production functionsl.

To obtain the general CES family from (2.32) we need to
solve (2.32) by setting m = ¥;/Yg and then

Y ey
(2.33) K1/9%p(y)*— - 11/0s—— — o
@ K eL

where ¢ is constant and «>0>0. The general solution to the
partial differential equation in (2.33) is found to be

1
D1 (Y)*K™P + Dy(Y)*L™P = 1 (p=—-1) (o0 >< 1)
ag
(2.34)
D1 (Y)*1nK + Dy (Y)*1nL = 1 (p = 0) (0 = 1)

Thus the general class of nonhomothetic CES functions is,
in general, the implicit relationship between K, L and Y
defined by (2.34)2. The latter equation in (2.34) presents
the nonhomothetic Cobb-Douglas production function.

Equation (2.34) shows the most general class of CES
production functions, which can be presented only implicitly.
Unless it can be determined that D, (Y) and D,(Y) are related
in some particular manner, Y cannot be explicitly expressed
as a function of K and L.

An obvious classification manner based on equations (2.34) is
to divide general CES functions on one hand into homothetic
CES functions and on the other hand into non-homothetic

CES functions. When D;(Y) = h*D,(Y) where h is a constant,
we have the homothetic, the ordinary, family of CES
functions. All other relationships between Dq(Y) and Dy (Y)
define the non-homothetic family of CES functions, with

the exception, of course, that Dj (Y) and Dy (Y) must be chosen
in such a way that Y satisfies the usual properties of

a production function.

In fact there are many possible classification
methods depending upon the specific purposes in mind.
It has been shown by R.Sato that separable types of
non-homothetic CES functions can always be written as

B1*K™P + B,
B2*L7P + B4
1 Sato (1975) and Sato (1977 I), p.2

2 sato (1977 I), p.3
3 sato (1977 II), p.562

(2.35) Y = Y¥(
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where B;°s (i=1,2,3,4) are constants. R. Sato has analysed
the non-homothetic type of CES functions further with

the Lie theory of transformation groupsl. He has named the
following subgroups to the separable type of CES fami1y2:

Homothetic type: Y = Y(B1*L"P + B,*K™P)
ﬁl*L_p + ﬁ3
(2.36) Capital-homothetic type: Y = Y(———
Bz*K—p

pl*L‘P

Labor-homothetic type: Y = ¥Y(

where K refers to capital input and L to labor input.

The implicit way of defining the general CES production
functions does not present any insurmountable difficulty
from the point of view of both theoretical and

empirical production analysis. For example the relationship
in (2.34) may always be looked at as an explicit or
implicit formulation of the capital (or labor) requirement
function:

1 Dy (Y)
KP = - *L"P = Ry (Y,L)
D4 (Y) D4 (Y)
(2.37)
1 D4 (Y)
LP = - *K™P = R, (Y,K)

Dy (Y) Dy (Y)

Equations (2.37) define explicitly the amount of capital
(or labor) required to produce a given level of output
in cooperation with a given amount of labor (or capital).

It has been proved that it is not possible to obtain

a functional form for a production function which has an
arbitrary set of constant elasticities of substitution

if the number of factors is greater than two. This result is
contained in the impossibility theorems of Uzawa3 and
McFadden?. No doubt CES production functions (more generally
VES production functions as well) are still useful
production functions in economic theory and practice.

Lie M.S., Transformationsgruppen, Vol. I,II,III

Sato R. (1977 1), p.13

Uzawa (1962)

McFadden (1962,1963)

It is worth noting that the flexible functional forms
are increasingly used in production analysis.

See footnotes in chapter 1.

G WP
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2.6 On the theory of income distribution

Although, in the case of non-homothetic production functions,
the sum of factor income shares will not necessarily add up
to the total output value, the basic postulates of marginal
productivity theory are met if (1) the first and second order
conditions for profit maximization are fulfilled and

(2) the entrepreneur’'s maximum profit equals zero. If these
points are assumed, then each input is paid the value of

its marginal product and the total output value is just
exhausted. Since these conditions are satisfied by
homothetic production functions, it was mistakenly earlier
assumed that all production functions must be of this type.

In the case of general CES functions the behaviour of each
factor s income share is not directly related to the
factor ratio nor to substitution elasticity. However,

if the movements of income distributions are expressed in
the form of an income shares ratio, then the factor ratio
and the substitution elasticity play important determining
roles. For the non-homothetic CES case, the ratio of
labor s income to capital's income from (2.32) is

w (@ Y/@ L)*L
(2.38) NS A k1/0-1xp(y)
WK (@ Y/@ K)*K

where wg and wy, are the income shares of capital and
labor, respectively, under competition and k=K/L. Differentiating
(2.38) partially with respect to k and ¥, we obtain

@ (wy/wg) 1

= (= - 1)*k1/972xp(y)
e k o
(2.39)
@
—(—W—Li‘ili)— - kl/O—l*D" (Y)
ey

From (2.39) we can see that as long as the substitution
elasticity is greater (less) than unity, capital’'s income
relative to labor s income rises (falls) when the capital-labor
ratio increases and that as long as the non-homotheticity
coefficient D’ (Y) is positive (negative), labor's income relative
to capital's income rises (falls) whenever output increasesl.

Although the elasticity of substitution is unitary in the
nonhomothetic Cobb-Douglas situation, the relative income
distribution varies depending upon the non-homotheticity
coefficient.

1 The former part of the conclusion can be found already in
J.Hicks (1964, 1st ed. 1932) as well as Samuelson (1968), p.468.
The latter part of the analysis is based on the investigation
by R.Sato (1977,II), p.562.
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When we calculate the limiting values of (2.38) we get

lim (wg/wp) = © when o > 1
k=
=0 when ¢ < 1
(2.40)
=0 when ¢ > 1

lim (WK/WL)
k=20

= o0 when 0 < 1

These limiting values suggest that the CES production
technology cannot be fully representative with very high

or very low values of the input ratio k. In many cases it

is enough to find the tendency of changes in income share ratio
with respect to the changes in input ratio k. However, when
analysing relative shares in more general situations and

when forming complete systems for relative shares we could

use technologies where the corresponding limiting values

are positive constants. In situations where such more practical
limiting values are needed, the theory should be based on other
postulates than the CES production technology.

It is worth noting that the nature of the technological progress
has itself a direct impact on the relative factor shares. Only
when the technical progress is neutral, either Hicks-neutral,
Harrod-neutral or Solow-neutral, it has no effect on income
distribution ceteris paribusl. Both capital-saving and
labor-saving technical change effect the factor shares degending
upon the value of the substitution elasticity in question<.

Economical situations where it is in fact realistic
to assume that the shares of various factors are limited
to some extent are, for example

1. Shares of the various factors in the cost
of production3.
2. Share of income or total expenditure allocated
to the various consumer or investment goods4.
3. Share of full income devoted to leisure®.
4. Market shares of various firms or products
in an industry®.

In the technical production analysis it is a common practice

to assume that all inputs are needed in production. That means

the production function is assumed to fulfill the property

of strict essentiality. See chapter 2.1, the property 3b.

If that assumption is made, then it is more realistic to assume
finite limiting values of the income share ratio to exist than

to assume it to be infinite or zero on the other side.

L Heathfield, pp.64-67

2 Ferguson, pp.235-250 and pp.336-350

3 See, for example, Berndt and Christensen (1973,1974) and
Fuss (1977)

4 See, for example, Christensen and Manser (1977) and
Christensen, Jorgenson and Lau (1975) and
Berndt, Darrough and Diewert (1977)

5 For example, Wales and Woodland (1976,1977)

6 see, for example, Rao (1972) and Weiss (1968)
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To refer to an analogical situation in the consumer theory,
it would be very realistic to assume that the preferences

are such that only a limited part of the total expenditure
will ever be devoted to leisure no matter what the non-zero
prices are. On the other hand, the total expenditure share of
non-leisure time will never achieve unity at least not on the
macro level.

Of course, the market shares of products and firms in an
industry depend on many endogenous and exodenous factors

which include the marketing and firm strategies in the
prevailing competitive situation as well as technical

progress, financial situation in the relevant economic area,
changes of preferences, etc. The distribution channels for
certain homogenous groups of products vary considerably by
country. These are determined by historical facts and

change very slowly. In some countries a certain line of

business is done by thousands of small entrepreneurs, in

others the same business is transacted by large firms with

a large market share and high level of vertical integration

with other stages in the distribution.

I think it is very natural to assume that the limiting values of
the ratios of market shares are in general finite and controlled
by things which are partly exogenous to the firms in the line.

These are arguments for a technology which implies
finite limiting values to the ratios of income shares.l
This technology is presented in chapter 3.

1 The idea of restrictive inputs shares has been used to
develop classes of "restricted share production functions",
see Ferguson and Pfouts (1962) pp.328-337,

Newman and Read (1961) pp.l127-133 and Tsang (1973) pp.456-463.
Restricted marginal product production function has. been
examined by Sato, Koizumi and Wolkowitz (1975), pp.331-342.
The restricted share production functions are based on

a postulate of invariance of the factor share of an input with
respect to the same input or to the other input. Tsang

has assumed that labor’ s share is a linear function of

the capital-labor ratio. These formulations imply generalized
Cobb-Douglas production function forms, which can be used

to test whether relative factor scarcity affects the

income distribution significantly.
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3. THE PAR PRODUCTION TECHNOLOGY AND THE NEOCLASSICAL
THEORY OF PRODUCTION

3.1 The par production function defined

Think of a two factor mean function having the form

K-L
(3.1) Yo =— (K><L) (K>0,L>0)
In(K/L)
= K (K=L)

It is obvious that this is the logarithmic mean

function which has been used, for example, in statistical
index number theory (See e.g. Vartia 1976).

In spite of its many useful properties, the logarithmic

mean has not been an active tool in economic

analysis, as it is a simple mean function for two

variables only. Here we are going to broaden the

view by analysing (3.1) as a production function, analogically
to the CES production structure, to get a more general form
for economic analysis and neoclassical production theory.

Theoretically in (3.1) we have

Absolute difference

(3.1B) Mean =
Relative difference

The logarithmic mean for two variables is defined by
calculating relative difference as a difference of natural
logarithms. This is a different kind of mean function

from many other mean functions, because it

cannot be derived from the quite general power

mean function forml. There is not an acceptable
generalisation of the logarithmic mean for more than

two variables, neither.

The relative difference can, of course, be defined in
many different ways. This has been thoroughly analysed by
Yrjoé vartia (Vartia pp.9-25). However, to define a more
general form for relative difference, we have to define

a function, which is continuous and one valued over the
chosen limits of a relevant parameter.

1 rhe power mean function includes, for example,
geometric mean and harmonic mean. (Compare with Vartia p.11).
In fact, the constant elasticity of substitution
(CES) production function is based on the power mean
function. (See Arrow-Chenery-Minhas-Solow pp.229-231).
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Let the definition for a general relative difference bel

(X/L)
(3.2) H(K,L) = ‘[ tc-1lat when K>L
1
1
= - [ tc-1lat when K<L
(K/L)
which leads to
1
(3.3) H(K,L) = ; [ (K/L)C-1] (c><0)
= 1In(K/L) (c=0) (K>0,L>0)

It is convenient to limit the values of the
parameter so that -1<c<1, which is based on the following.

When this general relative difference is used
in (3.1) instead of its special case we get additionally
the following special cases

(3.4) Y_1 =K (c=-1)

=L (c=1).

Thus, depending upon the value of parameter c,

the mean function can get any value between its
maxima and minima. However, there is no certain
constant value of c¢ which in every case would lead to
the same mean value as, for example, the harmonic
mean does.

To make the mean function more general we will make

a simple monotonic transformation to each of the variables
in (3.1). Thus Y,K and L shall be replaced by

Y™@,K"@ and L~2. This kind of monotonic transformation

is used in constant elasticity of substitution production
functions as well.

1 This is a generalization of the relative change used for
example by Vartia 1976 (pp.11-13 and 124).

2 In any special case, when K and L are fixed ex ante,
there is a given ¢ which leads to a mean value
corresponding to any of the relevant and known mean
function values in the two factor case.
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These transformations lead to the definition of the

par production function, which in the two factor case is

a generalization of the logarithmic mean. This

function will include, as a special case, the Cobb-Douglas
production function and as a limiting case the Leontief
production function as well. The function is a stereo-type
because it is non-continuous with zero values of
parameters.

Let Y be the production output, K be capital input and
L labor input in the production process. The efficiency
parameter can be made equal to one by appropriate
choice of output units.

The par production function is

(3.5) Y, =) c*

K-a-r-a S(-l/a)
_— (a><0) (c><0) (K><L)

(K/L) ~a*coy

K-a-1,-a (-1/a)
={—-—-—} (a><0) (c=0) (K><L)
-a*1n(K/L)

1-c 1+c

(=) (=)
K L (a=0) (=-1<c<1) (K><L)

= K (K=L)
If a=-1, then

K-L
Yo, = c*;;;;;;—; (a=-1) (c><0) (K><L)

K-L
= —_— (a=-1) (c=0) (K><L)
In(K/L)

The Cobb-Douglas production function is a special

case of the par function when a=0. This is proved in
appendix A. In the above form the par function is
homogenous of degree one and it is convex on the

relevant area of variables. The convexity of the par
production function is examined in appendix H. The limiting
case, when a9 ©, is the Leontief production technology.

In the following we will drop the subindex from Y, to
simplify the notations.

Parameter c can be called the distribution limit
parameter. Parameter a has a lot to do with the
substitution and complementarity of the inputs.
Anyhow, it is not the elasticity of substitution.

To differentiate a from the elasticity of substitution
it can here be called the substitution parameter.
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3.2 Optimizing conditions

The first order condition for the profit maximum
(under the common neoclassical assumptions of costless
substitution and optimal choice of scale)

when the production function is of the par type, is

L K @ - (K/L)"a*Cxy-a
— % (a><0)
K (K/L)~@*Cxy-a _ -2

R
(3.6) -

1l

= — % — (a=0) (c>-1)

where R is the price for one capital input unit and

W is the price for one labor input unit. In general

we can conclude that the nonlinearities are here so

difficult that in general an explicit and one-valued solution
for input demand functions is not possiblel.

Forming the partial input elasticities we get

e Y K K™@ - (K/L)-@*Cxy-a
(3.7) ® = * — = (a><0)
@ K Y K& - L-a
= (1-c)/2 (a=0)
eY L (K/L) "a*Cxy-a - y-a
(3.8) ¢ = * — = (a><0)
eL Y K& - 173
= (1+c)/2 (a=0)

1 However, the input ratio can be solved approximately as
a function of the input prices as follows

3 1-c R
In(k/L) & (—)*[1n(—)-1n(7)] (a>-3)
3+a 1+c W

More about input demand, see appendix I.
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Solving (K/L)~@*Cxy~2 from (3.5) we can
write the input elasticities as follows

K-a - y—a
(3.9) $§ =—— - ¢ (a><0)
K~a - ,-a
= (1-c)/2 (a=0)
y"a - ,-a
¢ = ——————+ ¢ (a><0)
K-a - L—a
= (1+c)/2 (a=0)

Using (3.9) we can write the par production function
in a simple form

(3.10) Y78 = (1-%-c)*K™2 + (1-¢+c)*L"2 (a><0)
1-c 1+c
In(Y) = (—)*1In(K) + (—)*1n(L) (a=0)
2 2

where ¢ and ¢ are the input elasticities of capital

and labor. When a=0, (3.10) is the trivial Cobb-Douglas
production function. In the optimum, when a><0, (3.10)
gives an interesting form for further analysis

(3.11) Y™@ = (1-wg-c)*K~2 + (l-wp+c)*L™2 (a><0)

where wg and wy, are the income shares of capital and
labor. Equation (3.11) can be called the implicit form
of the par production function under optimization.

3.3 The interpretation of the parameters

Using the definition (3.5) we can write the input elasticities
of the par function as follows

K-a - y—a
(3.12) & =— - ¢
K—a - L-a
(K><L)
Y-a - L—a
¢ = —————— + ¢

K—a - L-a
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From (3.12) we can see, that the parameter c¢ is a distribution
limit parameter, because, as is proved in appendix B,

the limiting values of the income elasticities are

closely related to the value of parameter c as shown below.

We will make a notation k = K/L for the input ratio.

Using that we get the following results for the

distribution limits, when a><o0:

lim (&) =0 (c>0) (a>0)
k-po
= 1-¢ (c>0) (a<0)
= =C (c<0) (a>0)
= 1 (c<0) (a<o0)
lim (®) = 1-c (c>0) (a>0)
k=>0
=0 (c>0) (a<o0)
=1 (c<0) (a>0)
= -C (c<0) (a<o0)
(3.13)
lim (¢) =1 (c>0) (a>0)
k»
= cC (c>0) (a<o0)
= 1+c (c<0) (a>0)
=0 (c<0) (a<0)
lim (¢) = ¢ (c>0) (a>0)
k=20
=1 (c>0) (a<o0)
=0 (c<0) (a>0)
= 1+c (c<0) (a<o0)

Thus the input elasticity and the income share of K
will vary between 1 and -c when k varies from 0 to o,
in case c<0 and a>0, for example.

The parameter ¢ can be called the distribution limit parameter.
In appendix C there are some curves showing the income share of

inputs as a function of 1n(K/L). There the distribution limits
can easily be observed.
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The limiting values of the ratio of the input shares are

lim (wg/wp) = O when a >0 and c > 0
k=» o
1-c
= — when a < 0 and ¢ > 0
c
-C
= — when a > 0 and ¢ < 0
14+c¢C
= when a < 0 and ¢ < 0
(3.14)
1-c
lim (wg/wp) = — when a > 0 and ¢ > 0
k>0 c
=0 when a < 0 and ¢ > 0
= o when a > 0 and ¢ < 0
-c
= — when a < 0 and ¢ < 0
1+c

The par function form in (3.5) is the base for interpreting
the parameter a. Totally differentiating and letting
dlnY be equal to 0 on an isoquant, we get

(3.15) dlnY = [K~@-(K/L) @*C%a]*d1nK + [(K/L) @*C*A-1-2]xd1nL
(a><0)

1-c 1+c
(—)*dlnK + (—)*dlnL (a=0)
2 2

I

And thus the ratio of relative input changes on an isoquant will be

dlnk L™@ - A% (K/L)~a*c

(3.16) = (a><0)
dlnL K™2 - A% (K/L)~a*c
_ e (a=0)
c-1

where A is the constant level of Y™ on an isoquant. Specifically,
when c=0, we get

d1lnk L@ - a
(3.17) =
dlnL K& - A

(a><0) (c=0)

= -1 (a=0) (c=0)



26
Compared with the rather simple form of relative rate of
marginal technical substitution in the CES technology we have to
conclude that the form (3.17), when a><0, is a bit more complicated
than the corresponding CES form. On the basis of forms (3.16) and
(3.17) it can be seen that the parameter a is a substitution
parameter in the par technology.

In appendix D there are illustrations of some isoquants for
various values of the parameters a and c. When a-»® the
substitution will be minimized. Actually the Leontief production
function with constant proportion of the inputs is a special case
of the par function when a-®» . The substitution seems to grow
highest when a®x-3. See appendix H.

3.4 The cost function

The nonlinearities in the par production function are so
difficult that it is not possible to solve the total cost
function explicitly as a product of the output Y and

the unit cost function that degends only on the factor
prices and constant parameters However an interesting
implicit form for the cost function can be derived from
the implicit par function form under optimization

(3.18) Y~ = (1-wg-c)*K™2 + (l-wptc)*L™2

where wg and wy, are the income shares of the inputs.

We have defined the total cost function C to be a product of
the output Y and the unit cost function f

(3.19) C = Y*f

where f is a function of R, the factor price of K and
W, the factor price of L as follows

(3.20) £ = £(R,W)

Substituting (3.19) into (3.20) and using Shephard's
lemma which says that,

@c
(3.21) —— =K

@R

@c

— =L

e w

we shall have the implicit form for the unit cost function

(3.22)  £2 = (1-wg-c)*(wg) T3*R3 + (l-wp+c)*(wp) “2*Wd

1 When a=0, we can solve the cost function explicitly for the
Cobb-Douglas technology as commonly known.
2 Shephard (1970), p.170-171
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It is notable that in (3.22) the weights are functions only of the
income shares and the distribution limit and the substitution
parameters.

By substituting both (3.18) and (3.22) into (3.19) the results
can easily be verified.

3.5 The case of several variables

The difficulty in generalizing the logarithmic mean of the
form

K-L
(3.23) Y= ——
1n(K/L)

to the case of n variables (n>2) has been known for a long time.
Vartia reports of some trials which have been donel. Anyhow, there
is no accepted generalized form for the logarithmic mean neither
in statistics nor econometrics.

Here we will present a generalization for the par function.
This function includes the logarithmic mean as a special case.
The generalization is done in the implicit form.

This implicit form is, however, very practical and can be used
in empirical analysis as it is.

We start with the implicit par function form under
optimization (3.11) and (3.18)

Y~ = (1-wg-c)*K™@ + (l-wyp+c)*L™2

This form, as it is quasi separable? compared with the base par
function form in (3.5), can be written for n variables (n>2)

by invention. That requires some assumptions. We will

set a premium that

a. The weights add up to unity3 and

b. Each of the weights is nonnegative and
smaller or equal to unity.

The rest of the explication is invention.

1 yartia p.12
Separability as it is defined by Leontief (1947 I and II) or,
for example, by Berndt and Christensen (1974) is not met here.
In fact, the consistency in aggregation demands
that the sum of the weights can differ slightly from unity.
Vartia has noted this same property when he has defined
his indexes. However this assumption helps us in inventing
the generalized form for the par function.



28

The par function for n variables (n>2) can be written as

(3.24) Yy a = (1-wj+cy) *X4~2 (a><0)

1

)

1

Because the income shares wj (i=1,...,n) add naturally
up to unity we have to demand that

n
(3.25) Zcy = 2-n (n=1,2,...)
i=1

This guarantees that the weights in (3.24) add up to unity

n
(3.26) T (1-wjtcy) = 1
i=1

The corresponding unit cost function form would bel

n (1-witcy)
(3.27) f@ = & ——— % p;2 (a><0)
i=1 wid

where the parameters a and c; (i=l1l,...,n) are the same as in
(3.24) and Pj is the unit price of the input X; (i=1,...,n).
Note that the income shares can be written

Pj*X4
(3.28) Wi =

(i=1,...,n)
C

as well. Substituting (3.27), (3.28) and (3.24) into (3.19) the
consistency of the definitions can easily be verified.

When comparing the forms in (3.24) and (3.27) we see that
the par production function (3.24) is a mean function with
unitary sum of weights and (3.27) is a unit cost function
with a sum of weights which is more or less than unity
depending on whether a<0 (sum of weights less than unity)
or a>0 (sum of weights more than unity).

1 The corresponding form for Cobb-Douglas case is
n
Inf = A + I wj*1lnPj (a=0)
i=1

where A is a constant depending only on the original
distribution parameters in the production function.
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The other point of our premium demands that

(3.29) wi-1l < ¢cj < wj (i=1,...,n).

The estimation of the distribution limit parameters

has to be done with these premiums in mind. When we

take a closer look at the methods of fitting the par function
to data, the guidelines of choosing cj's will be

chosen as well.

To provide a basis for the discussion of estimation methods we
will note here that when the production function is of

the very basic par function form (3.23), then the

first order optimization conditions suggest that

the input elasticities are

K-Y
(3.30) ® =
K-1L
(a=-1) (c=0) (K><L)
Y - L
¢=
K -1

This is actually based on the normal logarithmic mean situation.
The condition (3.30) in fact includes the presumption
that under optimization the price ratio is

K-Y

(3.31) R/W = (L/K)*

and it suggests that there is a direct connection between
the price ratio and the parameter ¢, which is 0 in (3.31).
Can we in this case generalize the logarithmic mean
simply by writing (3.23) first in the form?2

(3.32) ¥ = (1-8)*K + (l-¢)*L

and then generalizing to n variables as follows

2-n
(1-wj+—) *X;
1 n

(3.33) ¥ =

Y=

1

where the parameters c¢j are equal for all i? I think not.
The reasoning is that (3.33) neglects the connection
between the parameters c¢j and the price relations

as well as other possible circumstances, for example,
consistency in aggregation.

1 The prevailing income shares can be calculated without
knowing the prices when we assume optimization to take place.
The corresponding cost function is f~1 = xp* (R-L1+w=1) .
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A simple test shows that when the number of

variables is more than two, the first order conditions do not
give exact consistent results for the price ratios nor the
income shares unless the sum of the parameters cj does

not slightly differ from 2-n. In general, the par function

and the corresponding cost function in case of n variables can
be presented with (3.24) and (3.27).

3.6 On the generalization possibilities of the par function

Until this stage we have assumed the par production function
to be linearly homogeneous. If we assume the scale elasticity
to be constant, we can write the par production function

in a general homogeneous form as follows

(3.34) v A*{ . K™a-1,7a §-(V/a) Ea><8;
. = cCk——— c><
(K/L)~8%C-1 (K><L)

where v is the degree of homogeneity and v=1 in case of
the linear homogeneity.
Referring to the CES classification (2.36) given by Sato R.1

we could state the general homothetic case of the par
technology as follows?

K a-1-a }—(1/a)
(3.35) Homothetic type: Y = ¥Y{} c¥——""— }
(K/L)~a%*C-3
(a><0) (c><0) (K><L)

where Y(*) is a continuous, twice-differentiable, finite,
nonnegative and nondecreasing function of the argument.

1 sato R. (1977 I), p.13

2 Whether the Sato-forms in (2.36) could directly be used
to generalize (3.35) to the non-homothetic "labor- and
capital-homothetic" cases can later be analysed
separately. The similarity of the basic separable
CES form and the quasi separable implicit par function
form (3.10) could then be utilized.
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Another possibility to generalize the par production

function is to use the method presented by K.Satol.

K.Sato has used a two-level CES production function, where
the lower level CES functions serve as inputs to the higher
level CES production function. Using this kind of formulation
would quarantee that the par substitution parameters aj
could vary between the input combinations. However,

we need to notice that the par function is not consistent in
aggregation using this kind of calculation method?2.

If the par function form (3.5) was formulated to mean
the unit cost function

(3.36) Z . R™a-y—a (-1/a) §a><8;
. = crR—— c><
(R/W) ~3%C- (R><W)

we could have got other kind of interesting results.
For example, using this formulation we can solve the log of
the input ratio as a Taylor expansion of the input prices.

The par technology is not self-dual which means that

the production function and the unit cost function have not
the same form. That is why assuming (3.36) implies

a production function which is not of the original par type.

In chapter 5.1 we have used an iterative calculation method
to estimate the par function in case of several inputs

and one observation. In case of several observations this
iterative method can be generalized using some kind of
definition for a criterion function3® to be optimized
according to the general rules of the nonlinear

estimation procedures.

Criteria for the design of functional forms in production
theory has been hamdled by Fuss, McFadden and Mundlak (1978)4.
The five criteria presented by them are parsimony in parameters,
ease of interpretation, computational ease, interpolative
robustness and extrapolative robustness. The par production
function is not very easy to compute. The other criteria

seem to be fulfilled by the par function. Especially,

estimation of the distribution limits, which are outside the
range of the observed data, can be done with the par

technology (meaning extrapolative robustness).4

1 sato K. (1967) pp.201-218

2 That is why this method can not, in general, be used to
calculate the logarithmic mean for n variables (n>2).

3 criterion functions are handled, for example,
by Walsh (1975).

4 gee Fuss, McFadden and Mundlak (1978), pp.224-225.
Criteria for the selection of functional forms in
econometrics, in general, is presented by Lau (1986),
pp.1515-1566.
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4. ON THE THEORY OF INCOME DISTRIBUTION

4.1 The CES and par income distribution compared

In case of the CES production function we have (compare with
equation (2.38))

R §
(4.1) In(—) = In(—) - (1+p)*1n(K/L)
W 1-§

which is an exact_equation based on the first order profit
maximum conditionl. The first order condition for the profit
maximum (3.6) in the par production function situation can
approximately, in the neighbourhood of a=0, be written as

R 1-c
(4.2) In(-) = In(—) - [1+a/3]*1n(K/L)
W 1+c
- (1/18)*c*a2*[1n(K/L) ]2

in which equations R and W are the input prices of

inputs K and L, respectively. p is the CES substitution parameter
and a is the par substitution parameter, § is the CES
distribution parameter and c is the par distribution limit
parameter. Equation (4.2) is proved in appendix E.

As the elasticity of substitution (2.14) can in the optimum
be written

@ 1n(W/R)
(4.3) 0= —
@ 1In(K/L)

we can on the basis of (4.1) and (4.2) conclude that a very good
approximation for the interrelation of the substitution
parameter a and the elasticity of substitution is given by

—— a ® 3%(—) (a>=-3)
3+a (o)

Q

(4.4) a/3 % p o

(0>0)

where o is the (direct) elasticity of substitution. According
to the information in appendix E and F the approximation
(4.2) yields on a wide range of |a| and |1lnk]|.

1 gee, for example, Chiang p.419. The equation (4.1) has
been derived from the linearly homogeneous CES form
Y78 = §*K™2 + (1-8)*L72.
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A table for the approximation errors of equation (4.2) in
percents is given in appendix F. The good fit is due to the
fact that the second order term in the Taylor expansion is
zero when c=0. See appendix E. If the form (4.2) is equipped
with the third and fourth order terms we get

R 1-c
(4.5) In(=) = In(—) - [1+a/3]*x - (1/18) *c*aZxx?2
W 1+c
2-3%c? c3+c
+ (———)*adxx3 + ( ) *adxxd
810 3240

where x=1n(K/L). Using the first and the third order terms in
the expansion a better fit is given, even in the area of

|a|<€4 and |1lnk|<2. A table for the approximation errors in
percents in this case (when c=0) is given in appendix F as well.l

Writing (4.2) as follows

WK 1-¢c
(4.6) In(—) = In(—) - (a/3)*1n(K/L)
Wi, 1+c

and by differentiating we get?

@ 1n(wg/wy)
(4.7) —— = - (a/3)
@ 1n(K/L)

which tells us that as long as the substitution parameter a
is greater (less) than zero, capital's income relative to
labor’'s income falls (rises) when the capital-labor ratio
increases. When a=0, we have constant income shares in the
Cobb-Douglas situation. Equation (4.6) is an approximation,
but with extreme values of the parameter a and the variable
(K/L) the same dependence can generally be calculated

from (3.6).

1 The exact form of the third and the fourth order
coefficients of the Taylor expansion of the form (3.6) was
pointed out to me by Antti Kanto after I had practically
given up the huge derivation.
In the neighbourhood of c=0 the form (4.7)
is exact enough. In case c<0 or ¢>0 the impact of the values
of the parameter c¢ and the variable x=1n(K/L) can be analysed
using a relevant number of higher order terms in the
derivation as well, resulting from the more exact approximation
in (4.5). The corresponding CES differentiation leads to

@ 1In (wg/wy)

@ 1n (K/L)
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In general the linearized forms of the par production
function seem to be close to the corresponding CES forms.
When only the first order term in the Taylor expansion of the
par production equation is examined, we in fact have an
equation implied by the CES production technology.

However, the CES production technology is not a special

case of the par production technology. The biggest difference
lies in the fact that the limits of variation of the

income share of L in par case are

IA

c £ Wy, 1 when c>0
(4.8)

0 £ wy, £ 1+c when c¢<0

while in CES case the corresponding values are always O and 1.

Many of the par equations which can be solved with the method

of linearization, are obviously technically very near to the

so called translog production function forms.

We can present the following example. Neglecting the second order
term in (4.2) we can solve 1ln(K/L) as a function of 1n(R/W)

as follows

K 3 1l-c 3
(4.9) In(=) = (—)*In(—) - (—)*1n(R/W) (a>-3)
L 3+a 1+c 3+a

When (4.9) is substituted into (4.2) we get after some
manipulation

w
(4.10) 1n(—§) = A + B*1n(R/W) + C*[1n(R/W)]?
W,
where
1-c a 1l-c c*a2 1-c
A = 1n(—) - (—)*In(—) - (1/2)*[——=]*[1n(—) ]2
1+c 3+a 1+c (3+a)2 1+c
a c*a? 1-c
B=(—) + [ 1*1n( )
3+a (3+a)2 1+c
c*a2 (a>-3)
C == (1/2)*[—]
(3+a)2

The same kind of second order form is implicated by, for example,
a third order translog cost function?.

1 Iook at the 1limiting values shown in (3.14).
2 gee Dalal, pp.355-360



35

An approximate unit cost function can also be solved in par
case with the Taylor method by first substltutlng the input
demand functions into C=R*RK+W*L keeplng in mind that
f=C/Y and then deriving the expansion. Thus, in general,

the par unit cost function can be presented in a linearized
form

(4.11) 1nf = @ + 1nW + B*1n(R/W) + p*[1ln(R/W)]12 + R,

in the convex and convergent area of the par production
functionl. 1In (4.11) Ry is the remainder in the Taylor series.
When the coefficients a, B and u are presented in terms of
the original parameters a and c, the result is somewhat
complicated.

1 see chapter 5.2 and appendix H of this study.
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4.2 The dispersion interpretation of the elasticity of
substitution

4.2.1 The Pearson equation and the Burr-Hatke approach
Most frequency functions of the well-known statistical

distributions satisfy a differential equation

df (x - a)*f
(4.12) — =
dx bg + by*x + by*x?

where f(x) is the frequency function and a and bj s are constants.
It can be easily verified that this is true, for example, in the
case of the normal distribution, the X2 distribution, Student's
distribution, the distribution of Fisher s ratio e22, the Beta
distribution and Pareto's distribution. Equation (4.12) can be
derived from the hypergeometric series as a limiting case and it
forms the base of the system of frequency curves introduced by
K.Pearsonl.

The fitting of distributions to observational data is usually
done on basis of the frequency curves. However, we usually do
need the theoretical frequencies for comparison with observations.
The question naturally arises whether we could not directly fit
the distribution function to data and obtain the frequency
function, if we need it, by the relative simple process of
differentiation.

Such an approach has been considered by Burr and Hatke?. Using
a generalization of the Pearson equation (4.12) consider

(4.13) dF = F*(1-F)*g(x) *dx

where g(x) is some convenient function, which must be non-negative
in O0<F<1 and in the range of x. The solution of (4.13) can be
derived as

1 1
(4.14) dF*(— + —) = g(x)*dx
F 1-F

and the distribution function F(x) is given by
(4.15) F(x) = [1 + e{=G(x)}3y-1
The function G(x) will later be called the Burr-Hatke equation
and it is defined by
b

(4.16) G(x) = [ g(t)at

-0

- See H.Cramer pp.248-249
2 Kendall-Stuart p.173
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where G(x) is a continuously increasing function of x with
limiting values 1lim G(x) = -» and 1lim G(x) = o,
X0 X=P

For example, if we choose
(4.17)  G(x) = 1n[(1+x%)P - 1]

then the distribution function will be

1
(4.18) F(x) =1 - ———
(1+x%) B

where O0<x<ee and «>0 and pB>0. Of course many other forms
can be chosen for (4.17) to find a convenient form for the
distribution function to fit the observational data in
question.

The fitting of the distribution function to data can be
done by several methods. Kendall and Stuart mention, for
example, the method of cumulative moments, the method of
range frequencies and the method of frequency-moments

or probability-moments. Of course nonlinear estimation
methods can in general be usedl.

1 Kendall-Stuart pp. 173-174
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4.2.2 The elasticity of substitution as a dispersion parameter

If we consider the variable x=1n(K/L) as an output from

a certain random process, we can examine its statistical
distribution function theoretically. Although the random process
which generates variable x usually includes specific
optimization stages, it always has exogenous random

elements as well. When input prices are considered random
exogenous factors, then x becomes random in nature as well.l

In the case of the CES production function, the log of the ratio of
inputs is a linear function of the log of the input prices in the
optimum. That is why the distribution of variable x is totally
defined by the distribution of the log of the ratio of input
prlces. When the dispersion of the log of the input price ratio

is one, then the dispersion of x is o0=1/(1+p). Assume the
production process and the distribution of 1n(W/R) to be such

that the distribution function of x=1n(K/L) is defined by

X~-m 1-6
(4.19) G(x) = (—) - In(—) (c>0) (6>0)
o é

where G(x) refers to the Burr-Hatke equation (4.16). Equation
(4.19) is linear with respect to x. In that case, from (4.15),
the distribution function of x=1n(K/L) will be

1

(4.20) F(x) =
In[(1-6)/68]1 - [(x-m)/0]
1l + e

The form (4.20) is the statistical distribution function of the
logistic distribution which has been used, for example, to
represent growth functions. It has been shown that the logistic
distribution arises in a purely statistical manner as a limiting
distribution (as n® ®) of the standardized mid-range (average

of largest and smallest sample value) of random samples of

size n. The logistic distribution is obtained as the limiting
distribution of an approriate multiple of the extremal

quotlent which is the ratlo of the largest and the smallest
value in a sample as well?

According to Johnson and Kotz the logistic distribution has
a similar shape as the normal distribution. That property
makes it profitable, on suitable occasions,

to replace the normal distribution by the logistic

to simplify the analysis without too great discrepancies

in the theory. Johnson and Kotz have compared

1 In this situation the entrepreneur is assumed to maximaze

the expected profit of the firm. The stochastic specification
of production models has been analysed by many writers,

for example, Zellner, Kmenta and Dreze (1966), pp.784-795,
Schim van der Loeff and Harkema (1981), pp.33-53.

See Johnson-Kotz, ch.22
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the standardized normal and the logistic distribution functions
and found out that the maximum difference between these two
distribution functions, with proper parameter values, is

under 0.01.

If we first assume that the variable 1n(W/R), which is the log
of the input price ratio, is logistically distributed having the
distribution function

1

1 + e-1n(W/R)

(4.21)  H{(1n(W/R)} =

then substituting the first order optimizing condition
In(W/R)=(p+1)*1In(K/L)=-1n[§/(1-6)] into (4.21) we get
the distribution function of x=1n(K/L)

1

(4.22) F(x) =
Infé/(1-6)] - x/0
1+ e

In equation (4.22) the location parameter m is zero. When the
input variable K is replaced with e™™*K in the original CES
production function, then the distribution function form
(4.20) will be the result. In general (4.22) is the same form
as (4.20).

In case we have §=0.5 the first two moments of the
distribution function (4.22) are

E(x) = m
(4.23)
Var(x) = 02*w2/3

where o is the elasticity of substitution and #=3.14159..

The above formulation shows that the elasticity of substitution
has a clear dispersion interpretation in the distribution of
x=1n(K/L) . Another interesting feature of this interpretation
and its connections to the theory of income distribution can

be found by transforming the income share of L as follows

WL
(4.24) w1,

W*L + R*K
1
1 + eln(K/L)-1n(W/R)

and further substituting the first order optimum condition
In(W/R)=(p+1) *1In(K/L)-1n[§/(1-6)] into (4.24) we get



40

1

(4.25) Wi,
In(é6/(1-6))-p*x
1 + e

1

In[é6/(1-6)]+[1-1/0]*x
1+ e

As the elasticity of substitution o in terms of the CES
substitution parameter p is o=1/(1+p), by comparing the
equations (4.22) and_(4.25), we immediately note that

with the assumptions! we have made the distribution function
of x=1n(K/L) can be derived from the income share equation
of wy, by replacing the substitution parameter p with the
elasticity of complementarlty2 b=p+1 in the income

share equation. It can be shown that this leads to the
following relatlonshlp

WK
(4.26) 1n(—)
Wy,

X - G(x%)

F(x)
X = In[—]
1 - F(x)

where wy and wp, are the income shares of K and L, G(x)
is the Burr-Hatke equation in (4.16) and F(x) is the
statistical distribution function of x=1n(K/L).

The result in (4.26) has not been presented in the theory

of income distribution before. The Burr-Hatke equation G(x)
seems to have clear implications for the distributive shares.
This interdependence is estimated with simulated data

in chapter 6.5 of this study.

As the Burr-Hatke equation is linear in the CES case, see
equation (4.19), it is no wonder that the log of the CES input
share ratio is unlimited as we have already noted in

equations (2.24) and (2.26).

When distribution limits exist, the Burr-Hatke equation
G(x) must limit the statistical distribution function of
x=1n(K/L) either from below and/or from above.

Under proper circumstances the matching of the CES income
distribution function and the statistical distribution function
of 1n(X/L) can be utilized. If the assumptions concerning the
distribution of 1ln(W/R) holds, then either distribution function
of 1n(X/L) can be solved directly from the income distribution

1 The assumptions of the logistic or nearly normal distribution
of 1n(W/R) and the CES production structure

2 See equation (2.28)

3 Proof in appendix J
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function or on the other hand the methods of fitting the
cumulative distribution function can be used to fit the
transformed income distribution function. The latter possibility
also supplies new estimation opportunities of the CES production
function.

The par income share equations can be written exactly in
the following way

1 o]
WK = + - (c><0)
1 - e+a*x 1 - e-a*c*x
1 1
= + (c=0)
1 - eta*X  Fay
(4.27)
1 o]
W, = + + C (c><0)
1 - e—a*x e-a*c*x -1
1 1
= - (c=0)

1 - e~a*x a*x

However, the transformation used in the CES case cannot be
succesfully used here, without further consideration, if we
need an absolute fit in the Cobb-Douglas case.

The linear form of (4.26) in the CES case and a corresponding
linearized form in the par case were presented and analysed in
chapter 4.4. Based on the approximation (4.5), an approximation
of the statistical distribution function of 1ln(K/L) in the par
case could be achieved by substituting a/3 by 1+a/3 that is
writing a+3 instead of the parameter a in the equation of wp,

in (4.27).
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5. METHODS OF FITTING THE PAR FUNCTION TO DATA

5.1 The log-mean generalization
5.1.1 The income shares are known

If the income shares of n inputs are known, then the output
(which can be interpreted as the log-mean for n variables
in case a=-1) can be calculated using the equation (3.24).
At the same time we need to calculate the parameters

ci (i=1,...,n).

In the following we will present an iterative calculation method
to fit the par production function to data in case of n
variables (n>2) and one observation. The method is developed with
the system of "forward from the end". In general the unknown
variables here can be eitherl
(1) the total output Y53, and the distribution limit
parameters cj (i= 1,...,n) or
(2) the substitution parameter a and the distibution limit
parameters cj (i=1,...,n).

In case (1) above the substitution parameter a is given. In
that case we in fact need only one iteration round (with all of
its n-1 stages) to calculate the total output Y53, and

to simultaneously solve the distribution limit parameters.

In case (2) above where the total output is given, the exact match
can be estimated by a direct search procedure. In that case

the value of the substitution parameter a will be varied. One
iteration round (with all of its n-1 stages) is needed for each
value of the parameter a. The value of parameter a will be

varied according to general iteration rules until the exactness

of the chosen stopping rule is attained.

When we demand consistency in aggregation, then, in the last
stage of calculation, the group of equations to be solved is
of the form

(1-wy+cy)*X3™2 + (wy-C1)*Yp34 72

¥123...n a
(1-w2+c2)*X2 + (Wp=C2)*Y134...n

(5.1)

(1-wptcp) *Xp ™2 + (Wn=cn)*¥123...n-1
T (1-witcy)*X;72

-a

where there are n+l unknown variables (parameters c; and
the total output Y 55, . .p) and n+l equations.

1 The notation Y123. .n Means the output in the par technology
when all of the n 1nputs X; (1=1,...,n) are in use. The
concept of "subset output" is an assisting concept which is
connected only to the stages in the calculation, meaning
the "subset output" when there is only a subset of the
inputs (noted with subscripts of ¥Y) in calculation.
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In the second to last stage of calculation we have n groups of
equations to solve

¥234...n 0 = (1-Wp+Cp)*X573 + (wy-Cp)*¥3y5, . .n 2
= (1l-wz+c3) *X37% + (W3-C3)*Yp45,,.n
= (1-wn+cn)*xn'a_; (Wn-cn) *¥234,, .n-1"2
= Z (l-wjtcj)*Xj
(5.2)
Y134...n° 2 = ...
¥123...n-172 = .-

in which the income shares are calculated within the
corresponding subset of inputs and thus the parameters cj
differ in each of the n groups of equations as well as

in respect to the other stages of the calculation. In each
of these n groups of equations we have n unknown variables
(n-1 bits of parameters cj and the corresponding subset
output ¥y ,,i-1,i+1...n) and n equations.

In the k"th last stage we have n!(n-1)!...(n-k+2)!
groups of equations each of which has (n-k+2) unknown
variables and (n-k+2) equations.

Thus in the second stage, when k=n-2, we have
n!(n-1)!(n-2)!...3! groups of equations with 4
equations and 4 unknown variables in each. The total
amount of stages needed is n-1.

In the first stage we have only
n!
(n-2) 12!

pieces of subset outputs and corresponding pairs of inputs. The
calculation is done with (3.5) for the each two inputs in question.
When a=-1, these are the weighted log-means for two inputs.

The parameters cj must, in the first stage, be chosen so that for
each two inputs we have

—a*cy
Pj*Xj4 Xi_a - Yij_a*(xi/Xj)
(5.3) =
Ps*Xa ~a*cj
J° 4] - 1 -
Yij a*(Xi/Xj) - Xj a
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where Yj4 is the subset output of inputs Xi and Xs5. When the
income shares are known (which means that prices and quantities
are known), there is only one value for c;j which satisfies (5.3)
because the right hand side of (5.3) is a continously increasing
or decreasing function of cj depending on the value of

the parameter a.

Of course, the calculation will start from the first

stage and then continues through the needed n-1 stages until
the total output is found. This method is consistent in
aggregation.

The corresponding cost function can, of course, be used

when necessary. However, one can always use the identity

C=f*Y and get the same unit cost result on basis of the postulates
described in chapters 3.3 and 3.4.

Empirical calculations using this method show that, typically,
the sum of parameters c; in each stage is slightly above

2-j, where j is the number of variables in the calculation
stage in question. Thus the sum of the weights in (3.24)

is correspondingly slightly under unity.

The value of the parameter a has no effect on the calculation
procedure, unless it is not zero. So any relevant values of
parameter a can be used with this procedure. When a=0 we

have the Cobb-Douglas (geometric mean) situation with direct
calculation possibilities. When a=-1 this procedure supplies the
weighted logarithmic mean for the n inputs in question.
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5.1.2 Income shares are unknown

As noticed already in chapter 3.4, there is a direct connection
between the prices and the distribution limit parameters. When
there are no income shares at all in the calculation situation,
it is best that we choose a set of help variables in order to
be able to use the generalized calculation equations (3.24)

and (3.27) and the calculation procedure in chapter 5.1.1.

Let us denote the help variables 7j = wj-cj. Then the
equation (3.24) can be written

(5.4) Y™@ = T (1-mj)*X372

and in the case of two inputs it reduces to

Y34 78=(1-m) *X; " 34w*X3"@  (i,j=1,...,n;i=j). These together with
(574) can be directly substituted into the procedure introduced
in chapter 5.1.1. The iteration procedure can be used both when
the income shares are known and when they are unknown.

In the first stage the pairs of inputs and the

corresponding subset output must be calculated directly by using
the base logarithmic mean form (3.1) or the corresponding 7i's
must be solved with (3.30) and then the linear form (3.32) can
be used. The same recursive calculation method can then be used.
This way we can calculate the unweighted logarithmic mean (given
the parameter a) for n inputs.

One finds at once that this is a mean which is pretty

complicated to calculate. However, I think there is

a certain analogy between the calculation procedure

presented in chapter 5.1.1 and the methods which are

used to choose the so called best linear form for linear
regression. These can, in general, be divided into methods which
consider all possible regressions and into methods which stepwise
choose the best model which can be attained with changing only one
regressand at a time. The former always lead to the best solution
according to the chosen criteria, but extensive calculations are
required. The latter are easier to calculate, but the result

is not necessarily the best.

Our calculation procedure is laborious, but it always leads

to the same result which is right according to our criteria
consistency in aggregation, the invented form for the
generalization, the role of the distribution limit parameters and
the meaning of income shares under optimization. If the analogy
is there, I expect easier methods for calculation can later be
developed according to the same guidelines.
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5.2 The linear approximation method

A linear approximation for the separable homothetic type of
CES production functions was introduced by professor J.Kmenta
in 19671. This power series approximation can be

estimated directly by single-equation least squares. Later
J.Thursby and K.Lovell have shown that in the Kmenta
approximation the estimates are somewhat biased and therefore
the CES parameters are estimated consistently only under
favorable circumstances?.

The CES function in question can be written as
(5.5) InY = 1Inyg - (v/p)*1n(6*K"P+(1-8)*L7P) + u

where u is the stochastic error term assumed to be
independently and normally distributed with zero mean
and constant variance. § is the distribution parameter,
p is the substitution parameter as in (2.34)

while v is the degree on homogeneity.

Equation (5.5) can be derived by using Taylor s formula for
expansion around p=0. After disregarding the terms of third
and higher orders, the expansion leads to

(5.6) InY = 1np + v*§*%¥1nK + v*(1-§)*1nL

- (1/2) *p*v*6*(1-6)* (lnK-1nL)2 + u
which can according to Kmenta be separated into two parts,
one corresponding to the Cobb-Douglas form and one
representing a correction due to the departure of p
from zero. The latter part will disappear, when p=0.
It is proved in appendix G that the corresponding

linear approximation to the par production function, if it
is originally written

K2 - 3 (-v/a)
(5.7) Y = A* 4 c* } * gU (a><0;¢c><0)

(K/L)~a*C . 1

where v is the degree of homogeneity and u is the random term as
above, can be written in linear in parameter combinations fashion
as follows

1-c 1+c
(5.8) InY = 1InA + v*(——)*1nK + v¥*(
2 2

1-c2

)*1nL

- a*vk( ) *(1nK-1nL)2 + u

24

1 Kmenta, pp.180-189
2 Thursby and Lovell, pp.363-377
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which is very similar to (5.6). As shown already by M.McCarthy,
the power series approximation to the CES production function is
an approximation to functions other than CES as well

What is relevant here is how well (5.8) approximates (5.7)
within some range of practical importance.

The experimental tests have shown that in the CES case the bias
of using the linear approximation seems to increase in the case
of extreme values of the elasticity of substitution and

extreme values of input ratios. In fact the study by

Thursby and Lovell suggests that better estimation results

can be attained by centering the observations. Another result
of theirs is that satisfactory estimates for other

parameters than the substitution parameter can be attained
when the estimates for the substitution parameter are
unsatisfactory. Their critiques suggest that the linear
approximation should only be used with values

of the substitution parameter which are near to zero.

This is due to the area of convergence of the Taylor

series, which in the CES case demands that?2

(5.9) [In(R/L) | < [1/(p*é) |

Correspondingly the area of convergence in the case of the
par production function is

(5.10) [In(X/L)| < |2/(a*(1-c))| (-1<c<1)

These conditions show that when the variance of the ratio of
inputs is increased, the area of convergence of the approximation
will be worse. In this case the estimates will

be more biased because the goodness of fit of the approximation
with extreme values of the input ratio will decrease.

Referring to the distribution function of x=1ln(K/L) we can
use the Bienayme-Tchebycheff 1nequa11ty and note that

(5.11)  P(|x-m|>k*0) < 1/k?

If m=0, then, for example, in the CES case, the probability of
|1n(K/L)| bglng bigger than 1/(p*6) is smaller than

p2*62/ (1+p)

In chapter 6.3 we test the linear approximations (5.6) and

(5.8) in the case of CES production technology and par production
technology to examine and compare the properties of the
approximations in both cases.

1 M.Mccarthy, pp.190-192
2 J.Thursby and K.Lovell, pp.363-377
3 see H.Cramer, p.182-183 and p.256
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According to equation (4.5) we have

R 1-c
(4.5B) 1n(-) = ln(—) - [1+(1/3)*a]*1n(K/L)
W 1+c
- (1/18)*c*a2*[1n(K/L) ]2

which is an approximation made with the Taylor series expansion.
(4.5), (4.5B) as well as (4.6) can be used to estimate the
parameters in the par production function. Because equation (4.5B)
gives an especially good fit, we can develop the relation further
to get another proper form for empirical estimation situations.

The Cobb-Douglas unit cost function is of the forml

1-c 1+c 1+cC 1+c
(5.12) Inf = (—)*1nR + (—)*1lnW - (—)*1ln(—)
2 2 2 2
1-c 1-c
= (—)*1n(—)
2 2

where f is the unit cost for one unit of output Y, see
equation (3.19). If we transform (5.12) so that

1-c R 1+c 1l+c
(5.13) Inf = InW + (—)*1n(—) - (—)*1ln(—)
2 w 2 2

1-c 1-c
- () *1n(—)
2 2

and then solving for ln(R/W) and substituting into (4.6) and
neglecting the higher order terms we get after some manipulation

W 1+cC Y
(5.14) In(—) = In(—) + [1+(1/3)*a])*1n(-)
£ 2 L

Here we have the real wage rate? as a function of the labor
productivity. Of course, (5.14) is an approximation with only a
limited number of terms in the expansion as well as (4.5)

and (4.6). In emp1r1ca1 applications (5.14) is very good as
many studies confirm

1 Henderson-Quandt, p.85, compare with ch. 3.4 of this study
Assuming a competetive situation, where the output price is
equal to the average costs.

A similar form for the CES production technology has been widely
used, see, for example, Intriligator pp.275-276
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5.4 Nonlinear estimation of the share equations

The highly interesting difference in the implications

of the CES and par production technologies lies in the fact
that in the par case the distributive shares are limited

by the distribution limit parameters while in the CES case they
are not limited in such a way. The problem in an empirical
examination situation can actually be whether there

exist real distribution limits in the case in question.

One of the estimation possibilities in that case

is to use nonlinear estimation techniques to estimate

the share equations implied by the CES and par production
technologies.

In general, the estimation of the share equations demands

that there exists some systematic variation in the distributive
shares. Theoretically, the estimation results with the nonlinear
techniques should be better, when the variation in the
distributive shares is large. The increased variance in the
regressand decreases the variance of the estimates.

On the other hand the nonlinear estimation can be used

in case there is a big variance in the explaining

variable x=1n(K/L). In fact the estimation results should be
better when the variance of x is increased. This is due to

the fact that the variance of the distributive shares is
increased simultaneously. This is just the opposite of the

case of linearized forms, which do not allow the increased
variance of x without worse estimation results

caused by the limited area of convergency of the linear
approximations. Thus, when the variance of the variable
¥=1n(K/L) is large, it is worth trying to fit the share
equations with nonlinear methods of estimation.

In the CES case the income share of L can be written, after
substituting the first order optimizing condition
1n(W/R)=-1n[6/(1-6) ]+ (1+p) *1n(K/L) into the

equation wy=W*L/(R*K+W*L), as follows

1 -4

(5.15) Wy, =
(1-6) + &*(K/L)7P

In the par case, substituting (3.5) into (3.9) and setting the
input elasticity of L equal to the income share of L, the
corresponding equation is

1 c
(5.16) wp, = c + +
1 - (K/L)"@ (K/L)"3%C - 1
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which both are the income shares of L when p><0, a><0 and c¢><0.
It is worth noting that the equation (5.16) has a discontinuing
point in a=0 and/or K=L. In some cases this can cause
difficulties in estimation. However, if the possible
difficulties are caused only by some specific observations,
these difficulties can, in general, be avoided.

Nonlinear techniques have widely been used in econometrics,
in estimation of the CES production function parameters as well.
Actually there are a lot of methods developed just for the
purpose. To name some there are the Kumar&Kaplnskl method
the Corbo method? and the Thursby&Lovell method3

which all have been used to estimate the CES

production function parameters. An comparative study of
the estlmatlon characteristics of these has been made by
Thursby . A w1de survey of the nonlinear methods is

given by Walsh®. The method of Davidon-Fletcher-Powell®,
which is described by Walsh as well, is used in this study
when making the sampling experiments.

Kumar&Kapinski, pp.563-567
Corbo, pp.1466-1477
Thursby&Lovell, pp.363-377
Thursby, pp.295-299

Walsh (1978)

See Walsh, pp.110-120

Db WN
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5.5 Some notes on the stochastic specification of the share
equations

The estimation of n shares should in general be restricted

to a n-1 dimensional equation system because of the
singularity of the equation system. This is the case with most
of the studies madel.

Another important feature in the share equations is that

the specification should respect the fact that the shares
cannot be negative, nor can they exceed unity. By assuming that
the shares have a multivariate normal distribution there is
a positive probability that shares will not respect the
constraints. Since the mean will generally be different for
each observation and since the shares are constrained, it is
highly unlikely that the true density functions for all
observations are symmetric with a common covariance matrix.
This is why, in general, it can be argued that the normal
distribution is invalid as a stochastic specification for
share equations.

According to Woodland?, who has tested the Dirichlet
distribution (multivariate beta distribution) against the
normal distribution, the normal model performs

rather well even when the true model is not normal but is
the Dirichlet model. If there is no heteroscedasticity,

the normal specification seems to work good enough in share
equations as well.

However, the discussion of the normality of the random terms
should be done. Although the assumption of the normality of
the random terms seems to be harmless, wrong estimation results
will be given if autocorrelation, heteroscedasticity

etc. are strong4.

As we estimated the income share equations with the Monte Carlo
techniques in chapter 6.6, most of the empirical estimation
problems are neglected here.

See the references in chapter 2.6

Woodland, p.362

This problem can be examined with the logit-model as well,
see Considine and Mount (1984), pp.434-443.

4 Woodland, pp.381-383.

W N 2
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6. THE SAMPLING EXPERIMENTS

6.1 The target of the experiments

As we have now introduced a quite general par production
function form, there is of course an interest to examine
the estimation properties of that function. Especially we
are interested in checking the accuracy of the linear
approximations. On the other hand the examination of

the statistical properties should not be disturbed in

the first stage with the common econometric problems

of autocorrelation, heteroskedasticity or lack of data.
That is why we try to make general

conclusion on randomized Monte Carlo data, which is
generated exactly for that purpose. When we generate the
sampling data on one hand from the CES production
technology and on the other hand from the par production
technology, we have an ideal testing situation for comparing
the mentioned technologies with the estimation results.

As the "right" technology is known, the estimations

reveal the possible inaccuracy in conclusions based either
on the estimation techniques, the chosen approximation
forms or on the wrong specification of the production
technology.

The targets for the sampling experiments can thus be
expressed as follows:

a. Do the used estimation techniques discriminate the CES
and par production techniques from each other in this
laboratory sampling situation so clearly
that the model specification can be done reliably.

b. Ccan the estimation of the par production function
parameters be based on the described equations and
methods. Which method should be used for each parameter.

¢. Is there any estimation method which could be suggested
to be used to test in empirical estimation situations
whether the production technology is of the CES or the
par type.

d. Are there any situations where the par production technology
should be preferred to CES technology in empirical
estimation situations.

Of course these problems cannot be thoroughly analysed
in this study. However, we expect answers to these
questions by making some sampling experiments with Monte
Carlo techniques.

All the analyses were done with the SURVO 84C statistical
programl. The used hardwear was a Toshiba T5200/100
personal computer with PostScript and a HP Laserjet
Series II printer.

1 see Mustonen (1987, 1988 I and II)
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6.2 The design of the Monte Carlo data

In collecting our Monte Carlo data we artificially constructed
15 different data sets for each experiment, consisting

of 50 observations. Each of the 15 data sets was generated with
the same values of chosen production function parameters. The
random term distribution parameters were varied between the
different parameter combinations to create a reasonable comparing
situation between the CES and par estimation results. This was
done by trial and error. Within the 15 data sets all parameters
including the random term dispersion and location parameter were
kept constant. The three used parameter combinations are the
following

A. p=-0.33333 a=-1 c=0.6 6=0.2 X~ N(0,1)

B. p=+0.66666 a=+2 c=-0.5 6=0.75 x~N(0,1)

C. p=+2 a=+6 c=0.8 6§=0.1 x~N(0,1)
In generating the data we first randomized the variable x=1n(K/L)
using the normal distribution as noted above. Then the variable
K was randomized by the equation K=2#e®*Q, yhere u is rectangularly
distributed between 0 and 1. After that L was calculated from

IL=K*e™X, Values for the output variable were calculated in
the CES case with

(6.1) YC = e9*[§*K™P + (1-6)*L"P)(-1/p)
where YC is the CES output and e9 is a log-normal random term.

In the par case the output variable values were calculated with

Ka - ra (-1/a)

(6.2) YP = e9*[c* " ]
(R/L)78%C - 1

where YP is the par output and g is a random term as above.
The input price for L is set to be W=10*eY, where u is
rectangularly distributed between 0 and 1. For CES technology the

input price for K is then calculated assuming the optimizing
situation

(6.3) RC = Wx[§/(1-8)]*e~ (1+p) *x

where RC is the input price for K in the CES case. In the par case
the input price values for K were calculated with

K@ - yp~ax (K/L) —-a*c

(6.4) RP = W*(L/K)*{
YP~3%x (K/L)"a*C . p-a

In equation (6.4) the par output variable YP was calculated
without the random term.
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After these the income shares for L were calculated as

WLC

e9* [W*L/ (W*L+RC*K) ]
(6.5)

WLP = e9*[W*L/ (W*xL+RP*K) ]

where WLC is the income share of L in the CES case and WLP in
the par case respectively. The unit prices for the outputs were
calculated by

fC

1

e9* (W*L+RC*K) /YC
(6.6)
fP

e9* (WxL+RP*K) /YP

where the letters C and P refer to the CES and par technology.
Lastly we calculated the real wage variable values by

WEC

W/ fC
(6.7)
WEP

W/£P

and the output per worker or labor productivity variable values by

ve = Y¢/L
(6.8)

VP

YP/L

The estimated equations were all estimated with each of the
parameter combinations. The standardized normal distribution
was used for variable x=1n(K/L) in the case of the linear
approximation forms, the side relation estimation forms and in
case of the ratio of the income shares forms while

the higher value of the dispersion [x~N(0,4)] was additionally
used in the case of nonlinear estimation of the share eguations.

The random number generator used was given by the Survo 84C
statistical system. Survo uses the C-language functions rand and
srand in the microsoft C run-time library. This gives a series of
pseudorandom numbers from various seeds. The seed number in each
separate simulation situation was taken depending on current time
and on the preceding random numbers. This guaranteed the fact
that the produced random numbers were different in each trial.
The normally distributed random numbers were produced with the
help of the inverse distribution function of the normal
distribution using the rectangularly distributed random numbers
as parameters. This transformation function is supplied by the
Survo 84C system.

1 See Mustonen (1987), pp.44-45 and pp.103-104
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6.3 Tests with the linear approximation forms

In tables 1-6 there are the estimation results from the
sampling experiments which we made to estimate the equations
(5.6) and (5.8).

The fit measured with the R? is equally good in both the CES and
par case. The parameter values in combinations A and B were
estimated consistently in both the CES and par case. When the
value of the substitution parameter was increased the estimation
results became biased: In combination C the substitution
parameters p and a were both estimated to be smaller than the real
parameter value was, the bias being bigger in the par case than in
the CES case. The distribution parameter § and the distribution
limit parameter c was estimated quite consistently in all cases.
However, when the substitution parameter had a high value (p=2),
the distribution parameter § was clearly biased in the CES case.
See table 5.

The estimation results in tables 1-6 confirm the results of
Thursby and Lovell about the biasness of the CES estimates given
by the linear approximation methodl. We can note the same

fact concerning the par production function as well.

In tables 1 and 2 (parameter combination A) most of the second
order coefficients are not significant. In tables 5 and 6
(parameter combination C), where the substitution parameters
have the highest values, most of the second order coefficients
in the CES case are significant (table 5), while in the par case
they are not (table 6).

The real value of the degree of homogeneity was v=1, which was
estimated quite consistently in all cases.

We calculated the coefficient of variation?, the ratio

of the estimated dispersion and the estimated mean, for each of
the original parameters 6§, p, ¢ and a from the samples presented
in tables 1-6. The results are below:

Parameter Estimated values

combination § V(§) P V(p) c v(c) a v(a)

A 0.198 0.136 -0.368 -=0.457 0.577 0.083 -0.881 -0.806
(0.027) (0.168) (0.048) (0.710)

B 0.739 0.047 0.573 0.400 -0.511 -0.127 1.912 0.454
(0.035) (0.229) (0.065) (0.869)

C 0.192 0.255 1.473 0.303 0.785 0.068 1.961 0.370
(0.049) (0.447) (0.053) (0.726)

The dispersions of the original parameters are put in

brackets above. The dispersions were calculated from the samples
in tables 1-6. The coefficients of variation of the substitution
parameters, V(p) and V(a), are smaller in the CES case than in
the par case. In case of the parameters § and ¢ the coefficients
of variation seem to be smaller and tolerably equal in size.

1 see Thursby and Lovell, pp.363-377
See, for example, H.Cramer, pp.357-358
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Table 1: CES linear approximation, parameter combination A:

Real values p=-0.333 =-1 c=0.6 §=0.2
x~N(0,1) g~N(0,0.03)
Estimated values
Sample vVv*§ disp. v § (1/2)*v*p*§*(1-8) disp. p
1 0.167 0.0240 0.952 0.175 -0.0269 0.0134 -0.392
2 0.229 0.0241 1.041 0.220 -0.0374 0.0147 -0.419
3 0.194 0.0361 1.021 0.190 -0.0446 0.0196 -0.479
4 0.165 0.0286 0.972 0.170 -0.0197 0.0197 -0.287
5 0.224 0.0269 1.010 0.222 -0.0254 0.0146 -0.291
6 0.160 0.0320 0.972 0.165 -0.0298 0.0168 -0.445
7 0.233 0.0342 1.021 0.228 -0.0463 0.0259 -0.515
8 0.223 0.0401 1.013 0.220 -0.0458 0.0244 -0.527
9 0.177 0.0406 1.007 0.176 -0.0386 0.0246 -0.529
10 0.173 0.0346 0.972 0.178 -0.0011 0.0226 -0.015
11 0.209 0.0233 1.025 0.204 -0.0472 0.0136 -0.567
12 0.219 0.0289 1.015 0.216 -0.0226 0.0232 -0.263
13 0.244 0.0332 1.007 0.242 -0.0234 0.0214 -0.253
14 0.155 0.0261 0.995 0.156 -0.0307 0.0178 -0.469
15 0.207 0.0244 1.015 0.204 -0.0057 0.0142 -0.069
Average
0.199 0.0305 1.003 0.198 -0.0297 0.0191 -0.368

Table 2: Par linear approximation,

X~ N(0,1)

Real values p=-0.333 a=-
g~N(0,0.03)
Estimated values
Sample v#*(1-c)/2 disp. v c
1 0.2480 0.0255 1.033 0.520
2 0.1896 0.0295 1.001 0.621
3 0.2130 0.0292 0.997 0.573
4 0.2180 0.0265 0.993 0.561
5 0.2141 0.0371 0.997 0.571
6 0.2401 0.0336 0.994 0.517
7 0.2135 0.0398 0.977 0.563
8 0.2229 0.0338 0.993 0.551
9 0.1912 0.0252 0.984 0.612
10 0.1718 0.0360 0.994 0.654
11 0.1691 0.0249 0.970 0.651
12 0.2480 0.0244 1.001 0.504
13 0.2308 0.0274 1.007 0.542
14 0.2071 0.0359 1.004 0.587
15 0.1821 0.0349 0.975 0.626
Average
0.2106 0.0309 0.995 0.577

parameter combination A:

1 c=0.6

a*v*(1-c2) /24

-0.0301
-0.0196
-0.0250
-0.0202
-0.0367
-0.0357
-0.0008
-0.0171
+0.0120
=-0.0390
-0.0618
-0.0261
-0.0059
-0.0357
-0.0173

-0.0239

6=0.2

disp. a
0.0144 -0.990
0.0186 -0.748
0.0225 -0.893
0.0130 -0.706
0.0195 -1.306
0.0156 -1.169
0.0312 -0.028
0.0200 -0.588
0.0157 +0.460
0.0266 -1.635
0.0193 -2.576
0.0137 -0.841
0.0189 -0.202
0.0190 -1.309
0.0165 -0.683
0.0190 -0.881

R2

0.990
0.993
0.991
0.992
0.989
0.990
0.985
0.988
0.990
0.982
0.995
0.992
0.993
0.995
0.991

0.990

0.992
0.984
0.990
0.989
0.987
0.989
0.989
0.984
0.994
0.989
0.993
0.990
0.990
0.988
0.987

0.989



Table 3: CES linear
Real values

xaN(0,1)
Estimated v
Sample v*§ disp.
1 0.781 0.027
2 0.715 0.037
3 0.731 0.028
4 0.799 0.027
5 0.675 0.034
6 0.758 0.033
7 0.739 0.036
8 0.701 0.024
9 0.735 0.033
10 0.767 0.031
11 0.771 0.040
12 0.770 0.035
13 0.694 0.021
14 0.676 0.037
15 0.753 0.028
Average
0.738 0.031

Table 4: Par linear
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approximation, parameter combination B:

p=0.666 a=2 c==0.5 6=0.75
g~N(0,0.03)

alues

v § (1l/2)*v*p*§*x(1-§) disp. P
1.001 0.780 0.0672 0.0152 0.783
0.998 0.716 0.0762 0.0225 0.751
1.003 0.729 0.0455 0.0172 0.459
1.028 0.777 0.0688 0.0161 0.772
0.992 0.681 0.0461 0.0184 0.428
1.011 0.750 0.0444 0.0251 0.468
1.003 0.737 0.0654 0.0227 0.673
0.984 0.695 0.0637 0.0173 0.610
0.999 0.736 0.0663 0.0200 0.683
0.992 0.774 0.0693 0.0203 0.799
0.997 0.773 0.1142 0.0286 1.306
1.001 0.769 0.0485 0.0191 0.545
0.966 0.718 0.0511 0.0103 0.523
0.993 0.681 0.0380 0.0195 0.352
0.985 0.765 0.0541 0.0133 0.611
0.997 0.739 0.0633 0.0190 0.573

approximation, parameter combination B:

Real values p=0.666 a=2 c=-0.5 6=0.75
x~N(0,1) g~N(0,0.03)
Estimated values
Sample v*(1-c)/2 disp. Vv c a*v*(1-c2)/24 disp. a
1 0.8047 0.0365 1.027 -=0.566 0.0727 0.0178 2.500
2 0.7689 0.0420 1.000 -0.537 0.0762 0.0306 2.573
3 0.7707 0.0267 1.015 -=0.519 0.0572 0.0145 1.851
4 0.8217 0.0286 1.007 =0.632 0.0712 0.0177 2.846
5 0.7155 0.0296 0.990 -0.431 0.0493 0.0180 1.476
6 0.7511 0.0288 1.005 -0.495 0.0736 0.0226 2.338
7 0.7398 0.0292 1.002 -0.480 0.0457 0.0163 1.419
8 0.7096 0.0248 0.984 -0.443 0.0670 0.0180 2.000
9 0.7680 0.0336 0.995 -0.544 0.0228 0.0202 0.779
10 0.7366 0.0346 1.008 -0.461 0.0309 0.0184 0.943
11 0.8299 0.0366 1.026 -0.618 0.1047 0.0241 4.069
12 0.7624 0.0450 1.030 -0.481 0.0630 0.0237 1.968
13 0.6901 0.0276 0.986 -0.400 0.0308 0.0120 0.881
14 0.7564 0.0375 0.993 -0.524 0.0415 0.0140 1.372
15 0.7668 0.0284 0.997 -=0.539 0.0495 0.0165 1.673
Average
0.7595 0.0326 1.004 -=0.511 0.0571 0.0190 1.912

0.989
0.989
0.990
0.992
0.989
0.990
0.988
0.990
0.987
0.988
0.985
0.989
0.989
0.984
0.988

0.988

0.982
0.983
0.985
0.990
0.987
0.986
0.988
0.988
0.979
0.987
0.984
0.983
0.986
0.983
0.990

0.985



Table 5: CES linear approximation, parameter combination C:

Real values p=2
X~ N(0,1)

g~ N(0,0.03)

Estimated values

Sample vVv*§

1 0.342
2 0.180
3 0.187
4 0.160
5 0.254
6 0.185
7 0.152
8 0.193
9 0.227
10 0.161
11 0.187
12 0.183
13 0.129
14 0.179
15 0.164

Average
0.192

Table 6: Par linear approximation,

disp.

0.033
0.034
0.036
0.031
0.037
0.026
0.034
0.031
0.033
0.037
0.040
0.031
0.031
0.030
0.027

0.033

v é

1.008
1.002
1.002
0.986
1.047
0.972
0.979
0.998
1.020
0.988
0.979
0.995
1.004
0.997
0.981

0.997

Real values p=2
x~N(0,1)

Estimated values
Sample v*(1l-c)/2

1 0.127
2 0.073
3 0.065
4 0.136
5 0.120
6 0.129
7 0.116
8 0.124
9 0.085
10 0.124
11 0.080
12 0.129
13 0.105
14 0.060
15 0.140
Average

0.108

0.0346
0.0340
0.0345
0.0236
0.0470
0.0292
0.0291
0.0257
0.0304
0.0245
0.0246
0.0237
0.0291
0.0398
0.0283

0.0305

a=6
g~N(0,0.03)
disp. v c
0.988 0.743
0.986 0.853
1.000 0.870
1.031 0.737
1.016 0.765
0.997 0.741
1.002 0.768
1.013 0.754
0.972 0.825
0.985 0.749
0.991 0.838
1.026 0.748
0.973 0.784
0.999 0.880
1.004 0.722
0.999 0.785
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a=6

c=0.8

6=0.1

(1/2) *v*p*§*(1-§) disp.

0.339
0.179
0.186
0.163
0.242
0.191
0.155
0.193
0.222
0.162
0.191
0.184
0.129
0.180
0.167

0.192

0.2063
0.1436
0.0749
0.1445
0.1163
0.1155
0.0613
0.0960
0.1107
0.1479
0.0820
0.1707
0.0892
0.1286
0.1000

0.1192

parameter combination C:

c=0.8

a*v*(l—cz)/24

0.0620
0.0187
0.0279
0.0263
0.0436
0.0294
0.0393
0.0290
0.0201
0.0257
0.0277
0.0285
0.0111
0.0296
0.0342

0.0302

0.025
0.018
0.027
0.023
0.026
0.015
0.022
0.021
0.024
0.023
0.021
0.019
0.029
0.022
0.017

0.022

6=0.1

p

1.828
1.950
0.987
2.149
1.212
1.537
0.957
1.235
1.257
2.201
1.082
2.285
1.582
1.749
1.465

1.473

disp. a
0.0247 3.326
0.0183 1.632
0.0196 2.746
0.0108 1.378
0.0347 2.521
0.0259 1.561
0.0221 2.298
0.0166 1.615
0.0148 1.547
0.0171 1.406
0.0131 2.234
0.0176 1.595
0.0077 0.692
0.0125 3.141
0.0132 1.715
0.0179 1.961

R2

0.983
0.986
0.987
0.990
0.986
0.989
0.989
0.987
0.988
0.990
0.984
0.989
0.988
0.985
0.990

0.987

0.990
0.992
0.988
0.993
0.989
0.991
0.986
0.989
0.988
0.982
0.990
0.992
0.993
0.987
0.993

0.990
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6.4 The side relation estimation

In the side relation estimation situation we estimated the CES
side relation equation

U} Y
(6.9) 1n(—) = 1n(1-6) + (1+p)*1ln(-)
£ L

and the corresponding par approximation form (5.14). The
dispersion of the random term g was varied accordlng to the
parameter combination in order to set the R2 for CES around
0.98-0.99. Then the same random term dispersion was used
in the par case as well. The results are on the next three

pages.

The fit in the CES case is better in all parameter combinations
measured with R2. On the basis of the results in tables 7-12 one
can say that the side relation equation is not just the right

one to be used, when one expects the production technology

to be of the par type. The formulation (5.14) gives consistent
results for low values of the substitution parameter but

the fit is worse than in the CES case. That is why one can expect
that in empirical estimation situations the estimation
difficulties will increase.

In the CES case the estimation results seem to be unbiased even
in the case of p=+2. In general, the dispersions of the par
estimates are higher than the dispersions of the CES estimates.
In the CES case these estimation results seem to be unbiased and
consistent.

We calculated the coefficient of variationl, the ratio of
the estimated dispersion and the estimated mean, for each of
the original parameters §, p, ¢ and a from the samples

in tables 7-12. The results are below:

Parameter Estimated values

combination § V(8) p V(p) c v(c) a v(a)
A 0.200 0.015 -0.331 -0.076 0.609 0.011 -0.938 -0.076
(0.003) (0.025) (0.007) (0.071)
B 0.749 0.004 0.667 0.021 -0.535 -0.026 1.827 0.087
(0.003) (0.014) (0.014) (0.159)
C 0.103 0.087 1.991 0.011 0.849 0.012 1.958 0.288
(0.009) (0.022) (0.012) (0.288)

The dispersions of the original parameters are put in
brackets above. The dispersions were calculated from the
samples in tables 7-12. The higher the value of the par
substitution parameter a, the higher the value of V(a),
the coefficient of variation. The higher the value of the
CES substitution parameter p, the smaller the value of
V(p), the coefficient of variation. In case of the
parameters § and ¢ the coefficients of variation seem to
be tolerably equal in size.

1 See, for example, H.Cramer, pp.357-358
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CES side relation estimation, parameter combination A:

Real values p=-0.333 a=-1 c=0.6
x~N(0,1) g~N(0,0.0003)

Estimated values
In(1-6) disp. § (1+p) disp.

-0.2162 0.0024 0.194 0.655 0.0098
-0.2245 0.0026 0.201 0.673 0.0155
-0.2267 0.0022 0.203 0.650 0.0098
=-0.2214 0.0023 0.199 0.658 0.0102
-0.2242 0.0025 0.201 0.675 0.0121
=-0.2235 0.0025 0.200 0.682 0.0125
-0.2209 0.0026 0.198 0.683 0.0123
-0.2210 0.0025 0.198 0.658 0.0101
=-0.2274 0.0025 0.203 0.669 0.0126
=-0.2233 0.0030 0.200 0.669 0.0164
-0.2215 0.0024 0.199 0.686 0.0140
=-0.2219 0.0021 0.199 0.677 0.0088
-0.2260 0.0026 0.202 0.669 0.0159
-0.2263 0.0025 0.203 0.662 0.0103
-0.2196 0.0026 0.197 0.669 0.0111

=-0.2303 0.0025 0.200 0.669 0.0121

6=0.2

-0.345
=0.327
-0.350
=0.342
-0.325
-0.318
=-0.317
=0.342
=-0.331
-0.331
-0.314
-0.323
-0.331
-0.338
-0.331

-0.331

0.989
0.975
0.989
0.989
0.984
0.984
0.985
0.989
0.983
0.972
0.980
0.992
0.974
0.989
0.987

0.984

Par side relation estimation, parameter combination A:

Real values ==-0.333 ==1 c=0.6
x~N(0,1) g~N(0,0.0003)

Estimated values
In[(1+c)/2] disp. c (1+a/3) disp.

-0.2139 0.0034 0.615 0.646 0.0173
=-0.2250 0.0025 0.597 0.709 0.0124
-0.2173 0.0035 0.609 0.707 0.0176
-0.2190 0.0028 0.607 0.721 0.0132
-0.2174 0.0033 0.609 0.663 0.0158
=0.2103 0.0031 0.621 0.670 0.0145
-0.2240 0.0036 0.599 0.682 0.0160
-0.2185 0.0037 0.607 0.695 0.0323
=-0.2103 0.0041 0.621 0.721 0.0153
-0.2163 0.0031 0.611 0.644 0.0176
=-0.2173 0.0035 0.609 0.694 0.0162
-0.2163 0.0030 0.611 0.688 0.0140
-0.2156 0.0033 0.612 0.681 0.0152
-0.2205 0.0036 0.604 0.694 0.0179
-0.2165 0.0032 0.611 0.694 0.0166

=-0.2172 0.0033 0.609 0.687 0.0168

§=0.2

-1.062
-0.873
-0.879
-0.837
=1.011
=-0.990
-0.954
-0.915
-0.837
=1.068
-0.918
=-0.936
-0.957
-0.918
-0.918

-0.938

0.967
0.986
0.971
0.984
0.973
0.978
0.974
0.970
0.979
0.965
0.974
0.981
0.977
0.969
0.973

0.975
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Table 9: CES side relation estimation, parameter combination B:
Real values p=0.666 a=2 c=-0.5 6=0.75
X~ N(O0,1) g~ N(0,0.005)

Estimated values

Sample In(1-§) disp. § (1+p) disp. P R2
1 -1.3950 0.0122 0.752 1.685 0.0179 0.685 0.995
2 -1.3816 0.0119 0.749 1.677 0.0156 0.677 0.996
3 -1.3985 0.0131 0.753 1.668 0.0183 0.668 0.994
4 -1.3694 0.0112 0.746 1.685 0.0164 0.685 0.995
5 -1.4006 0.0117 0.754 1.657 0.0159 0.657 0.996
6 -1.3857 0.0133 0.750 1.640 0.0167 0.640 0.995
7 -1.3994 0.0130 0.753 1.673 0.0166 0.673 0.995
8 -1.3850 0.,0101 0.750 1.680 0.0124 0.680 0.997
9 -1.3790 0.0123 0.748 1.658 0.0194 0.658 0.993

10 -1.3773 0.0124 0.748 1.667 0.0174 0.668 0.995

11 -1.3603 0.0128 0.743 1.646 0.0182 0.646 0.994

12 -1.3714 0.0136 0.746 1.679 0.0190 0.679 0.994

13 -1.3890 0.0129 0.751 1.671 0.0154 0.671 0.996

14 -1.3745 0.0135 0.747 1.668 0.0224 0.668 0.991

15 -1.3768 0.0129 0.748 1.654 0.0154 0.654 0.996

Average

-1.3829 0.0125 0.749 1.667 0.0171 0.667 0.995

Tabel 10: Par side relation estimation, parameter combination B:
Real values p=0.666 a=2 c=-0.5 6=0.75
x~N(0,1) g~N(0,0.005)

Estimated values

Sample In[(1+c)/2] disp. ¢ (1+a/3) disp. a R?
1 -1.4288 0.0212 -0.521 1.689 0.0331 2.067 0.982
2 -1.4737 0.0261 -0.542 1.638 0.0349 1.914 0.979
3 -1.4666 0.0222 -0.539 1.599 0.0297 1.797 0.984
4 -1.4189 0.0180 -0.516 1.716 0.0265 2.148 0.989
5 -1.4401 0.0286 -0.526 1.705 0.0308 2.115 0.985
6 -1.4367 0.0169 -0.525 1.657 0.0264 1.971 0.988
7 -1.4472 0.0264 -0.530 1.635 0.0418 1.905 0.970
8 -1.4995 0.0227 -0.554 1.616 0.0250 1.848 0.989
9 -1.4287 0.0202 -0.521 1.525 0.0316 1.575 0.980
10 -1.4611 0.0195 -0.536 1.660 0.,0242 1.980 0.990
11 ~-1.4689 0.0292 -0.540 1.712 0.0353 2,136 0.980
12 -1.4565 0.0252 -0.534 1.617 0.0330 1.851 0.980
13 ~1.4924 0.0230 -0.550 1.697 0.0305 2,091 0.985
14 -1.5233 0.0225 -0.564 1.670 0.0259 2.010 0.989
15 -1.4353 0.0196 -0.524 1.595 10,0283 1.785 0.985
Average

-1.4585 0.0228 -0.535 1.609 0.0305 1.827 0.984
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Table 11: CES side relation estimation, parameter combination C:

Real values p=2 a=6 c=0.8 §=0.1
x~N(0,1) g~N(0,0.0005)
Estimated values
Sample 1n(1-6§) disp. 5 (1+p) disp. p R?
1 -0.1114 0.0079 0.105 3.030 0.0276 2.030 0.996
2 -0.1055 0.0077 0.111 2.981 0.0225 1.981 0.997
3 -0.1110 0.0085 0.105 2.981 0.0435 1.981 0.990
4 -0.1189 0.0083 0.112 2.991 0.0233 1.991 0.997
5 -0.1092 0.0071 0.103 2.983 0.0212 1.983 0.998
6 -0.0982 0.0086 0.094 2.966 0.0267 1.966 0.996
7 -0.1170 0.0084 0.110 2.971 0.0509 1.971 0.986
8 -0.1048 0.0070 0.100 2.981 0.0357 1.981 0.993
9 -0.1156 0.0068 0.109 2.971 0.0243 1.971 0.997
10 -0.1048 0.0074 0.099 3,027 0.0184 2.027 0.998
11 -0.0833 0.0063 0.080 3.030 0.0171 2.030 0.998
12 -0.1173 0.0065 0.111 2.979 0.0208 1.979 0.998
13 -0.1091 0.0075 0.103 3.010 0.0304 2.010 0.995
14 -0.0975 0.0090 0.092 2.972 0.0377 1.972 0.992
15 -0.1131 0.0074 0.107 2.989 0.0355 1.989 0.993
Average

-0.1078 0.0076 0.103 2.991 0.0290 1.991 0.995

Table 12: Par side relation estimation, parameter combination C:
Real values p=2 a=6 c=0.8 §=0.1
Xx~N(0,1) g~ N(0,0.0005)

Estimated values

Sample In{(1l+c)/2] disp. c¢ (1+a/3) disp. a R2
1 -0.0768 0.0089 0.852 1.709 0.0887 2.126 0.885
2 -0.0868 0.0089 0.834 1.706 0.0919 2.117 0.878
3 -0.0770 0.0099 0.852 1.736 0.0967 2.208 0.870
4 -0.0776 0.0103 0.851 1.624 0.0822 1.871 0.891
5 -0.0834 0.0112 0.840 1.558 0.0804 1.673 0.887
6 -0.0838 0.0111 0.839 1.612 0.1007 1.837 0.842
7 -0.0745 0.0112 0.856 1.719 0.0955 2.158 0.871
8 -0.0773 0.0108 0.851 1.651 0.0918 1.952 0.871
9 -0.0795 0.0104 0.847 1.538 0.0715 1.613 0.906
10 -0.0799 0.0112 0.846 1.703 0.1070 2.108 0.841
11 -0.0745 0.0089 0.856 1.827 0.0901 2.480 0.895
12 -0.0602 0.0104 0.883 1.771 0.0947 2.314 0.879
13 -0.0756 0.0106 0.847 1.489 0.0674 1.467 0.911
14 -0.0856 0.0108 0.836 1.548 0.0954 1.643 0.846
15 -0.0819 0.0098 0.843 1.603 0.0751 1.808 0.905
Average

-0.776 0.0103 0.849 1.653 0.0886 1.958 0.879
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Equation (4.6) was estimated in the par case and in the
CES case the corresponding equation

w
(6.10) ln(-—IE) = 1n[6/(1-6)] - p*1n(K/L)
Wi,

was estimatedl. The estimation results can be found on the
next three pages. See tables 13-18. In general, the parameter
estimates of the par production function are better than in the
previous two cases. However, here the estimates are also
somewhat biased when the values of the real

substitution parameters (p and a) are increased.

The R? measure in tables 13-18, where the estimation results of
the first order equation are presented, seems to suggest that
the fit in the par case is worse than in the CES case. Here the
dispersion values of the parameter estimates are higher

in the par case than in the CES case.

Tables 19, 21 and 23 show the estimation results of the equation
(4.6) when the second order term is included in the equation.
The reliability of the estimates is clearly increased, when the
second order term is added to the regression equation.

Tables 20, 22 and 24 present the corresponding estimation
results for the CES production regressand when the second order
term is added to the regression equation. This estimation is
done with the same samples than we used in tables 19, 21 and 23.
Theoretically the coefficient for the second order term should
be zero in the case of the CES production function. This is what
we found out in the samples as well. However, in 12 out of

the 45 CES estimations presented in tables 20, 22 and 24, the
second order coefficient in the CES equation was found
significantly (1 % level) different from zero.

In the par case the corresponding significance level was
practically 0% in all cases and thus in every case we found

the second order coefficient different from zero.

When degrees in the regression were still increased (third and
fourth degrees in the regression included) the bias in the
estimates of the parameter a was vanished totally. These
estimations are not reported in this study.

In the estimation there were no restrictions put on the
coefficients of the second order terms.

1 This CES estimation method is introduced, for example, by
Wallis (1973), pp.56=-62
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We estimated totally 100 samples for each of the reported
parameter combinations using the second order equation

in order to study the specification error with this

method. The averages calculated from these estimations are below:

Par incame share ratio estimation, seocond arder equation (1n=100)

Averages
1< c Nurber of
Parameter In(—) disp. ¢ (a/3) disp. a =-(—)*? disp. R not signif.
canb. 1tc 18 secand_order
coeff.1
A -1.3860 0.0069 +0.600 -0.329 0.0058 ~0.987 ~0.031 0.0044 0.987 Nore
B +1.1040 0.0137 -0.502 +0.644 0.0118 +1.912 -0.095 0.0020 0.986 Nane
C =2.5230 0.1041 +0.852 +1.709 0.0927 +5.127 -0.463 0.0726 0.883 Nore
S incare share ratio estimation, secad arder equation (n=100)
Averages
é secand Number of
Parameter In(—) disp. 6 p disp. ader disp. R? significant
carb. 1-5 coeff. secord order
coefficentst
A -1.3863 0.0067 0.200 -0.329 0.0056 +0.0012 0.0042 0.990 6 cut of 100
B +1.0990 0.0139 0.750 +0.666 0.0121 +0.0000 0.0091 0.986 8 aut of 100
C -2.2168 0.0464 0.098 +1.995 0.0391 +0.0320 0.0305 0.985 34 aut of 100

The theory suggests that the second order coefficient should be
negative in case of the par production technology. Out of the

6, 8 and 34 (referring to parameter combinations A, B and C)
significant second order coefficients in CES case only 1, 3 and 6
cases were significant and negative. Thus tested against the
alternative par technology the CES estimation results are quite
discriminative.

On the basis of the results in tables 19-24 we argue that one
reliable method for discriminating the CES and par production
technologies is to estimate both the first and second order
equation for the log of the ratio of the distributive shares.
When the first order equation fits better, the technique

is of the CES type. When the second order equation fits better
(judged by the statistical methods of regression fitting),

the technique is of the par type.

In general, it can be noted that our results with this method
seem to be more precise and reliable than can be achieved with
the general translog apgrox1mat10n method in the CES
approximation situation

1 Tested on the 1% risk level
Compare with the estimation results reported by
Guilkey and Lovell, pp.137-147.
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Table 13: CES income share ratio estimation, parameter
combination A: Real values p=-0.333 a=-1 c¢=0.6 §6=0.2
x~ N(0,1) g~N(0,0.00005)

Estimated values

Sample 1n[(é/(1-6)] disp. & p disp. R2
1 -1.3729 0.0054 0.202 =-0.326 0.0052 0.987
2 -1.3840 0.0046 0.200 =-0.330 0.0051 0.989
3 -1.3941 0.0054 0.199 =-0.338 0.0059 0.985
4 -1.3953  0.0053 0.199 =-0.338 0.0062 0.984
5 -1.3903 0.0069 0.199 =0.335 0.0073 0.978
6 -1.3900 0.0061 0.199 =0.337 0.0055 0.987
7 -1.3765 0.0048 0.202 =-0.326 0.0052 0.988
8 -1.3820 0.0054 0.201 =-0.333 0.0060 0.985
9 -1.3882 0.0045 0.200 -0.337 0.0047 0.991

10 -1.3961 0.0052 0.198 =-0.340 0.0057 0.986

11 -1.3805 0.0052 0.201 =-0.325 0.0050 0.989

12 -1.3860 0.0060 0.200 =-0.330 0.0051 0.989

13 -1.3800 0.0061 0.201 =-0.334 0.0054 0.987

14 -1.3938 0.0056 0.199 =-0.334 0.0050 0.989

15 -1.3846 0.0050 0.200 =-0.334 0.0057 0.986

Average

-1.3863 0.0054 0.200 <-0.333 0.0055 0.987

Table 14: Par income share ratio estimation, parameter
combination A: Real values p=~0.333 a=-1 c=0.6 6=0.2

X ~N(0,1) g~ N(0,0.00005)
Estimated values
Sample In[(1-¢c)/(1+c)] disp. c (a/3) disp. a RZ
1 -1.4283 0.0102 0.613 -0.323 0.0091 -0.969 0.963
2 -1.4210 0.0070 0.611 -0.333 0.0072 -0.999 0.978
3 -1.4042 0.0065 0.606 -0.318 0.0066 -0.954 0.980
4 -1.4203 0.0082 0.611 -0.345 0.0088 -1.035 0.970
5 -1.4312 0.0076 0.614 -0.330 0.0069 -0.990 0.980
6 -1.3993 0.0060 0.604 -0.329 0.0080 -0.987 0.972
7 -1.4185 0.0070 0.610 -0.300 0.0067 =-0.900 0.976
8 -1.4243 0.0085 0.612 -0.328 0.0083 -0.984 0.970
9 -1.4267 0.0102 0.613 =-0.329 0.0093 -0.987 0.963
10 -1.4233 0.0090 0.612 -0.342 0.0091 -1.026 0.967
11 -1.4174 0.0072 0.610 -0.333 0.0072 -0.999 0.978
12 -1.4268 0.0107 0.613 -0.316 0.0100 -0.948 0.955
13 -1.4272 0.0074 0.613 -0.335 0.0071 -1.005 0.979
14 -1.4254 0.0091 0.612 -0.383 0.0080 -1.149 0.979
15 -1.4197 0.0092 0.611 -0.347 0.0086 -1.041 0.971
Average

-1.4209 0.0083 0.611 -0.333 0.0081 -0.998 0.972



66

Table 15: CES income share ratio estimation, parameter
combination B: Real values p=0.666 a=2 c¢=-0.5 §6=0.75
X~N(0,1) gm~N(0,0.003)

Estimated values

Sample In[§/(1-6)] disp. § P disp. R2
1 1.0973 0.0139 0.750 0.663 0.0137 0.980
2 1.0925 0.0126 0.749 0.674 0.0130 0.983
3 1.0989 0.0107 0.750 0.663 0.0122 0.984
4 1.1013 0.0116 0.750 0.666 0.0115 0.986
5 1.0807 0.0104 0.747 0.680 0.0104 0.989
6 1.0961 0.0109 0.750 0.660 0.0129 0.982
7 1.1050 0.0092 0.751 0.657 0.0080 0.993
8 1.0900 0.0142 0.748 0.689 0.0141 0.980
9 1.1114 0.0109 0.752 0.657 0.0109 0.986

10 1.1050 0.0116 0.751 0.644 0.0128 0.981

11 1.0939 0.0104 0.749 0.664 0.0098 0.990

12 1.1044 0.0101 0.751 0.662 0.0104 0.988

13 1.0884 0.0112 0.748 0.674 0.0136 0.981

14 1.1331 0.0105 0.757 0.675 0.0095 0.991

15 1.1009 0.0099 0.750 0.675 0.0111 0.987

Average

1.0999 0.0112 0.750 0.667 0.0116 0.985

Table 16: Par income share ratio estimation, parameter
combination B: Real values p=0.666 a=2 c¢=-0.5 6=0.75
X~N(0,1) g~N(0,0.003)

Estimated values

Sample In[(1-c)/(1+c)] disp. c (a/3) disp. a R2
1 1.2194 0.0185 -0.544 0.634 0.0185 1.902 0.961
2 1.2161 0.0205 -0.543 0.658 0.0194 1.974 0.960
3 1.2053 0.0224 -0.539 0.688 0.0206 2.064 0.959
4 1.2238 0.0323 -0.545 0.598 0.0272 1.794 0.910
5 1.2027 0.0178 -0.538 0.616 0.0185 1.848 0.956
6 1.2121 0.0203 -0.541 0.641 0.0194 1.923 0.958
7 1.1850 0.0215 -0.532 0.618 0.0236 1.854 0.935
8 1.1786 0.0222 -0.529 0.662 0.0218 1.986 0.951
9 1.1824 0.0175 -0.531 0.603 0.0189 1.809 0.955
10 1.2164 0.0217 -0.548 0.602 0.0225 1.806 0.937
11 1.1942 0.0210 -0.535 0.631 0.0220 1.893 0.945
12 1.2274 0.0268 -0.547 0.572 0.0246 1.716 0.91°
13 1.2070 0.0277 -0.540 0.664 0.0260 1.992 0.931
14 1.1789 0.0175 -0.529 0.650 0.0178 1.950 0.965
15 1.2201 0.0207 -0.544 0.622 0.0202 1.866 0.952

Average
1.2046 0.219 -0.539 0.631 0.0214 1.892 0.946
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CES income share ratio estimation, parameter
combination C: Real values p=2 a=6 c=0.8
x~ N(0,1) g~ N(0,0.0001)

Estimated values
1n[é/(1-6)] disp. § p disp. R?

-2.,2976 0.0319 0.091 2.113 0.0368 0.987
-2.1314 0.0559 0.106 1.891 0.0543 0.966
-2.1695 0.0536 0.103 1.921 0.0526 0.967
-2.1130 0.0485 0.108 1.811 0.0518 0.962
-2.0733 0.0860 0.112 1.761 0.0831 0.913
-2.2740 0.0527 0.093 2.062 0.0672 0.956
-2.1677 0.1005 0.103 1.855 0.1002 0.886
-2.2289 0.0780 0.097 2.043 0.0762 0.944
-2.0812 0.0661 0.112 1.769 0.0629 0.945
-2.1729 0.0855 0.102 1.932 0.0821 0.925
-2.1194 0.1115 0.107 1.840 0.1071 0.863
-2.4850 0.1222 0.077 2.285 0.1303 0.867
-2.0400 0.0736 0.115 1.637 0.0723 0.916
-2.1051 0.0437 0.109 1.913 0.0436 0.976
-2.1188 0.0675 0.107 1.850 0.0733 0.933

-2.1719 0.0718 0.103 1.910 0.0729 0.934

Par income share ratio estimation, parameter
combination C: Real values p=2 a=6 c¢=0.8
X~N(0,1) g~N(0,0.0001)

Estimated values
Inf{(1-c)/(1+c)] disp. ¢ (a/3) disp. a

-2.8376 0.1115 0.889 1.414 0.1180 4.242
-2.6128 0.1059 0.863 0.981 0.0913 2.943
-2.9859 0.1413 0.904 1.256 0.1289 3.768
-2.7223 0.1066 0.875 1.041 0.1070 3.123
-2.7411 0.0915 0.879 1.230 0.0989 3.690
-2.8262 0.1186 0.888 1.140 0.1168 3.420
-2.7259 0.0931 0.877 1.402 0.1077 4.206
-2.8345 0.1110 0.889 1.270 0.1098 3.810
-2.8453 0.1313 0.890 1.225 0.1429 3.675
-2.6658 0.1153 0.870 1.122 0.1156 3.366
-2.7398 0.1143 0.879 1.161 0.1163 3.483
-2.9302 0.1389 0.899 1.605 0.1568 4.815
-2.8655 0.1059 0.892 1.311 0.1135 3.933
-2.7376 0.1071 0.878 1.370 0.1252 4.110
-2.9633 0.1493 0.901 1.373 0.1416 4.125

-2.8023 0.1161 0.885 1.260 0.1194 3.781

§

§

=0.1

=0.1

R2

0.764
0.748
0.688
0.668
0.775
0.670
0.790
0.766
0.642
0.696
0.684
0.709
0.748
0.718
0.667

0.716
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Table 19: Par income share ratio estimation, second order

equation, parameter combination A: Real values p=-0.333
a=-1 c=0.6 6§=0.2 x~N(0,1) g~N(0,0.00005)
Estimated values
1~c c
Sample 1n(——) disp. <c (a/3) disp. a -(—)*a? disp. R2
1+c 18
1 -~1.3921 0.0071 0.602 -0.324 0.0056 =-0.972 -0.021 0.0038 0.987
2 -1.3883 0.0071 0.601 -0.331 0.0047 ~-0.993 -0.036 0.0044 0.991
3 -1.3886 0.0066 0.601 -0.324 0.0052 -0.972 -0.030 0.0037 0.988
4 -1.3914 0.0078 0.602 -0.334 0.0055 =-1.002 -0.032 0.0033 0.988
5 -=1.3953 0.0067 0.603 -0.319 0.0045 -0.957 =-0.024 0.0046 0.991
6 -1.3885 0.0073 0.601 -0.324 0.0078 -0.972 ~-0.032 0.0060 0.980
7 -1.3747 0.0056 0.596 -0.329 0.0050 -0.987 -0.037 0.0042 0.989
8 -1.3764 0.0072 0.597 +-0.321 0.0065 -0.963 -0.035 0.0047 0.987
9 -1.3924 0.0065 0.602 -0.330 0.0052 -0.990 ~-0.033 0.0042 0.989
10 -1.3811 0.0071 0.598 -0.315 0.0059 -0.945 -0.021 0.0043 0.984
11 ~1.3657 0.0087 0.593 -0.333 0.0086 +-0.999 ~-0.045 0.0055 0.986
12 ~1.3827 0.0074 0.598 -0.332 0.0052 -0.996 -0.032 0.0037 0.990
13 -1.3764 0.0055 0.597 -0.323 0.0041 -0.969 ~-0.029 0.0023 0.992
14 -1.3883 0.0058 0.601 -0.323 0.0051 -0.969 -0.030 0.0038 0.990
15 -1.3838 0.0068 0.599 -0.325 0.0049 -0.975 -0.029 0.0028 0.990
Average
-1.3844 0.0069 0.599 -0.326 0.0059 -0.977 -0.031 0.0041 0.988
Table 20: CES income share ratio estimation, second order
equation, parameter combination A: Real values p=-0.333
a=-1 c¢=0.6 6=0.2 x~N(0,1) g~N(0,0.00005)
Estimated values
§ second
Sample 1ln(—) disp. é P disp. order disp. R2?
1-§6 coeff.
1 -1.3903 0.0069 0.199 -0.328 0.0054 0.0097 0.0037 0.987
2 -1.3882 0.0068 0.200 =~0.333 0.0046 *-0.0033 0.0043 0.992
3 -1.3884 0.0065 0.200 -0.327 0.0051 *-0.0022 0.0037 0.989
4 -1.3910 0.0074 0.199 -0.337 0.0052 * 0.0000 0.0031 0.989
5 -1.3942 0.0065 0.199 -0.322 0.0044 * 0.0077 0.0045 0.992
6 -1.3887 0.0072 0.200 -0.325 0.0077 * 0.0019 0.0058 0.984
7 -1.3748 0.0055 0.202 -0.331 0.0050 *-0.0038 0.0042 0.990
8 -1.3760 0.0069 0.202 -0.324 0.0063 * 0.0038 0.0045 0.986
9 -1.3925 0.0064 0.199 -0.333 0.0051 * 0.0000 0.0041 0.989
10 -1.3798 0.0067 0.201 -0.320 0.0055 0.0095 0.0040 0.986
11 -~1.3654 0.0083 0.203 -0.334 0.0083 0.0127 0.0053 0.984
12 ~1.3828 0.0072 0.201 -0.334 0.0051 *-0.0005 0.0036 0.990
13 =-1.3759 0.0052 0.202 -0.328 0.0039 *-0.0024 0.0022 0.994
14 ~1.3885 0.0057 0.200 =-0.326 0.0050 * 0.0034 0.0037 0.991
15 -1.3835 0.0063 0.201 -0.330 0.0046 * 0.0019 0.0026 0.991
Average
-~1.3840 0.0066 0.201 -0.329 0.0054 0.0023 0.0040 0.923
* = The coefficient is not significant on the 1% risk level
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Table 21: Par income share ratio estimation, second order

equation, parameter combination B:
c=-0.5

a

=2

Estimated values

1-c
Sample 1n(—) disp. ¢
1+c
1 1.0909 0.0122 -0.497
2 1.0981 0.0150 -0.500
3 1.1247 0.0132 -0.510
4 1.1028 0.0112 -0.502
5 1.1123 0.0151 -0.505
6 1.0980 0.0096 -0.500
7 1.1094 0.0150 -0.504
8 1.1008 0.0107 -0.501
9 1.1205 0.0130 -0.508
10 1.0960 0.0123 -0.499
11 1.1094 0.0139 -0.504
12 1.0983 0.0124 -0.500
13 1.1166 0.0161 -0.507
14 1.1063 0.0146 -0.503
15 1.1127 0.0132 -0.505
Average
1.1806 0.0132 -0.503

§=0.75

(a/3)

0.641
0.669
0.635
0.663
0.633
0.621
0.643
0.646
0.646
0.632
0.624
0.632
0.654
0.619
0.643

0.640

x~N(0

disp.

0.0110
0.0149
0.0106
0.0132
0.0117
0.0093
0.0124
0.0090
0.0103
0.0118
0.0113
0.0106
0.0134
0.0110
0.0119

0.0115

1)

(o}

Real values p=
g~N(0,0.003)

a -(—)*a? disp

18

1.923 0.017 0.0075
2.007 0.090 0.0115
1.905 0.098 0.0049
1.989 0.082 0.0092
1.899 0.086 0.0095
1.863 0.102 0.0048
1.929 0.101 0.0085
1.938 0.090 0.0066
1.938 0.097 0.0080
1.896 0.090 0.0067
1.872 0.104 0.0079
1.896 0.102 0.0078
1.962 0.091 0.0116
1.857 0.111 0.0111
1.929 0.099 0.0072

1.920 0.091 0.0082

Table 22: CES income share ratio estimation, second order
equation, parameter combination B: Real values p=

a=2 c=-0.5
Estimated values
s
Sample 1ln(——) disp. §
1-6

1 1.0838 0.0115 0.747
2 1.0931 0.0154 0.749
3 1.1200 0.0157 0.754
4 1.0910 0.0119 0.749
5 1.1127 0.0160 0.753
6 1.0914 0.0090 0.749
7 1.1017 0.0150 0.751
8 1.0943 0.0116 0.749
9 1.1139 0.0135 0.753
10 1.0848 0.0122 0.747
11 1.1024 0.0143 0.751
12 1.08%92 0.0123 0.748
13 1.1113 0.0170 0.752
14 1.1029 0.0147 0.751
15 1.1185 0.0143 0.754

Average
1.1007 0.0136 0.750

* = The

coefficient is not significant

§=0.75

p

0.665
0.696
0.660
0.679
0.656
0.649
0.666
0.674
0.672
0.664
0.650
0.655
0.677
0.634
0.669

0.664

x~N(0,1)

disp.

0.0104
0.0153
0.0126
0.0140
0.0124
0.0087
0.0124
0.0097
0.0107
0.0117
0.0117
0.0105
0.0142
0.0111
0.0164

0.0121

second
order
coeff.

* 0.012
*-0.007
* 0.002
*-0.003
*-0.020
0.012

* 0.004
*-0.004
*-0.002
* 0.003
* 0.010
* 0.009
*-0.007
* 0.010
-0.027

=-0.001

g~N(0,0.003)

0.666

. R2

0.989
0.981
0.987
0.989
0.985
0.990
0.984
0.993
0.989
0.989
0.990
0.989
0.986
0.985
0.980

0.987

0.666

disp. R?

0.0071
0.0118
0.0058
0.0098
0.0101
0.0045
0.0085
0.0071
0.0083
0.0067
0.0081
0.0077
0.0123
0.0111
0.0104

0.0086

0.989
0.979
0.987
0.986
0.985
0.992
0.984
0.991
0.988
0.988
0.988
0.989
0.983
0.986
0.980

0.986

on the 1% risk level
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Par income share ratio estimation,

equation, parameter combination C:
x~N(0,1)

Table 23:
a=6 c=0.8
Estimated values
1-c
Sample 1In(——) disp. ¢
1+c
1 -2.4833 0.0953 0.846
2 -2.8533 0.1933 0.891
3 =-2.8006 0.1605 0.885
4 -2.3761 0.0520 0.830
5 =2.5100 0.0659 0.850
6 -2.5787 0.1067 0.859
7 =2.4295 0.1258 0.838
8 =-2.4625 0.0580 0.843
9 -2.6333 0.1267 0.866
10 -2.5129 0.0891 0.850
11 -2.4988 0.1109 0.848
12 -2.5620 0.1083 0.857
13 =-2.7999 0.1486 0.885
14 -2.4534 0.0886 0.842
15 -2.6091 0.1334 0.863
Average
-2.5709 0.1109 0.857

6=0.1

(a/3)

1.432
1.887
1.454
1.891
1.698
1.552
2.059
1.649
1.715
1.708
1.815
1.558
1.565
1.932
1.551

1.698

disp.

a

second order
Real values p=2
g~N(0,0.00001)

(o]
-(—)*a?
18

0.0990 4.296 <=0.231
0.1503 5.661 -0.442
0.1397 4.362 -0.189
0.0588 5.673 -0.813
0.0621 5.094 =0.473
0.1064 4.656 -0.320
0.1016 6.177 -0.823
0.0521 4,947 -0.559
0.1066 5.145 -0.438
0.0706 5.124 -0.561
0.0839 5.445 -0.603
0.0924 4.674 -0.407
0.1270 4.695 -0.171
0.0949 5.796 -0.694
0.1082 4.653 -0.389

0.0969 5.093 -0.474

Table 24: CES income share ratio estimation,
equation, parameter combination C:
Xx~N(0,1)

a=6 c=0.8
Estimated values
§
Sample 1ln(——) disp. §
1-6§
1 -2.2393 0.0387 0.096
2 =-2.2906 0.0516 0.092
3 =-2.2885 0.0479 0.092
4 -=2,1551 0.0404 0.104
5 -2.2004 0.0133 0.100
6 =-2.2490 0.0379 0.095
7 =2.2108 0.0275 0.099
8 -2.1948 0.0306 0.100
9 -2.1780 0.0720 0.102
10 -2.1792 0.0469 0.102
11 -2.2204 0.0269 0.098
12 -2.2315 0.0806 0.097
13 -2.3266 0.0526 0.089
14 -2.2066 0.0188 0.099
15 -2.2192 0.0463 0.098
Average
-2.2260 0.0421 0.098
* = The

6§=0.1

p

disp.

1.863 0.0393
2.036 0.0367
1.934 0.0385
2.151 0.0353
1.938 0.0125
1.963 0.0356
1.957 0.0222
2.065 0.0215
2.078 0.0590
2.025 0.0350
1.952 0.0201
2.026 0.0659
1.975 0.0434
1.973 0.0180
1.966 0.0315

1.993 0.0343

coefficient is not significant

S

order

disp.

0.0652
0.1460
0.0740
0.0591
0.0425
0.0898
0.0823
0.0472
0.0712
0.0599
0.0728
0.0633
0.0827
0.0659
0.0779

0.0733

second order

Real values

p=2

0.847
0.793
0.742
0.960
0.945
0.842
0.899
0.957
0.859
0.930
0.921
0.874
0.808
0.902
0.827

0.874

g~N(0,0.00001)

econd

coeff.

(o}

1.140 0.

disp.

0264

* 0.049 0.0371
0.082 0.0213
-0.154 0.0345
0.037 0.0086
0.081 0.0294

* 0.033 0.0180

*-0.039 0.

0151

*-0.068 0.0544
*-0.029 0.0290
0.044 0.0176
* 0.006 0.0462
0.144 0.0319

* *

0.020 0.0128
0.032 0.0225

0.092 0.0270

R2

0.980
0.985
0.982
0.988
0.998
0.986
0.995
0.995
0.964
0.986
0.995
0.954
0.979
0.997
0.988

0.985

n the 1% risk level
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6.6 Nonlinear estimation of the share equations

In the estimation of the share equations we have here used
the Davidon-Fletcher-Powell method, which is a

quite usual method for_ nonlinear estimation with good
convergency propertiesl.

The estimated equations were written in regression in the
following forms. The CES type share equation was

1 -6

(6.11)  wp, =
(1-8) + 6*(K/L)"P

and the par type share equation was
1 (o]

(6.12) wp =c + +
1 - (K/L)"@ (R/L)~a*c - 3

which are both income shares of L when a><0 and c><0. No
difficulties were found with the discontinuing points of
the denominators of (6.12).

The estimation was done in two stages: In the first stage we
estimated both share equation types for both of the real
regressands and chose the best share function form for both

CES wy, and par wp, using R2 as a criteria. In the second stage we
solved the parameters for both share function types using

the best regression form.

The results on the next six pages seem to suggest

that, generally, the share function structure in CES and par
technology is so different, especially on basis of the
nature of the distribution limits in these two production
techniques, that the income shares need to be handled

with the right functional forms to be reliably estimated.

In all but one of the 90 samples reported in tables 25-30,
the R? griteria gave the right functional form for the
regressands. The conclusion here is that the analysis of

the income shares (or shares in other contexts) can serve as
a basis for discriminating the CES and par techniques

from each other.

1 see walsh, pp.110-120
The discrimination can be done statistically, for example, by
means of the Pesaran test and the comprehensive classical F test,
see Harvey (1977), pp.464-471. Several nonparametric tests have
been used by Ramsey and Zarembka (1971), pp.471-477.
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We estimated totally 100 samples for each of the reported
parameter combinations in order to study the specification
error in this kind of testing. The averages calculated
from the estimations are below:

R? values when the real regressand

CES-type par-type
Parameter Share Share Share Share Number of
canmbination function function function function misspecifications
CES-type par-type CES-type par-type
A X ~N(0,1) 0.977 0.960 0.960 0.973 2 out of 100
x ~ N(0,4) 0.949 0.888 0.882 0.924 0 out of 100
B x ~ N(0,1) 0.995 0.953 0.954 0.995 0 out of 100
x ~N(0,4) 0.970 0.869 0.860 0.965 0 out of 100
C x ~ N(0,1) 0.986 0.691 0.653 0.882 0 out of 100
X ~ N(0,4) 0.995 0.770 0.619 0.907 0 out of 100

Estimates from the best regressions

(averages)
Best CES-type Best par-type
P é a c
A x ~ N(0,1) -0.333 0.200 -=1.000 0.600
x ~ N(0,4) -0.333 0.201 -1.000 0.600
B X ~ N(0,1) 0.665 0.750 1.999 -0.500
x ~ N(0,4) 0.667 0.750 2.002 -0.500
c x ~N(0,1) 1.998 0.100 6.007 0.801
X ~ N(0,4) 1.995 0.101 6.010 0.800

The discriminating properties were better when the real values

of the substitution parameters p and a were increased.

The specification error practically vanished with

the higher values of the substitution parameters (meaning low
substitution). This is due to the fact that the income shares

are constants in the case of the Cobb-Douglas production function
and nearly constants in the neighbourhood of a=x0 and p=0.

With higher values of parameters p and a the dispersion of

the random term could be increased. The increasing of the variance
of x=1n(K/L) gave us the possibility to increase the random term
dispersion as well. The used random term dispersions correspond
well to the fact that the regressands are income shares limited
from 0 to 1.

In all nonlinear regressions presented the estimated
coefficients were significant on the 0.1 % risk level.



73

Table 25: Nonlinear estimation of the share equations, parameter
combination A: Real values p=-0.333 a=-1
c=0.6 §=0.2 Xx~N(0,1) g~ N(0,0.0001)

R? values when the real regressand

CES-type par-type Estimates from the best regressions
(marked with *)

Share Share Share Share Best CES-type Best par-type

function function function function

Sample CES-type par-type CES-type par-type p s a c
1 *0.984 0.947 0.964 *0.977 -0.331 0.201 =-0.977 0.599
2 *0,977 0.933 0.949 *0.969 -0.322 0.203 -0.939 0.599
3 *0.984 0.951 0.961 *0.980 -0.343 0.196 =-0.977 0.602
4 *0.967 0.951 0.959 *0.964 -0.318 0.201 -0.944 0.594
5 *0,967 0.955 0.954 *0.965 -0.314 0.202 =-0.935 0.597
6 *0.959 0.939 *0.954 0.953 -0.329 0.200 -0.914 0.604
7 *0.954 0.938 0.937 *0.948 -0.344 0.198 -1.035 0.602
8 *0.984 0.960 0.973 *0.980 -0.340 0.199 -1.014 0.602
9 *0.982 0.959 0.971 *0.971 -0.340 0.198 -1.015 0.604
10 %0.982 0.969 0.973 *0.981 -0.328 0.198 -0.980 0.605
11 *0.979 0.948 0.956 *0.975 -0.326 0.200 -0.967 0.600
12 *0.971 0.956 0.937 *0.968 -0.339 0.197 -1.027 0.605
13 *0.983 0.964 0.958 *0.979 -0.340 0.199 -1.030 0.602
14 *0.990 0.979 0.973 *0.988 -0.326 0.200 =-0.975 0.602
15 *0.971 0.964 0.958 *0.968 -0.326 0.200 -0.979 0.600
Average  0.976 0.954 0.958 0.971 -0.331 0.199 -0.984 0.601

Table 26: Nonlinear estimation of the share equations, parameter
combination A: Real values p=-0.333 a=-1
c=0.6 6=0.2 X~ N(O,4) g~N(0,0.001)

R? values when the real regressand

CES~type par-type Estimates from the best regressions
(marked with *)

Share Share Share Share Best CES-type Best par-type

function function function function

Sample CES-type par-type CES-type par-type p § a c
1 *0.974 0.916 0.922 *0.956 -0.347 0.195 -1.071 0.605
2 *0,920 0.884 - %0.899 -0.316 0.205 =-0.937 0.593
3 *0.953 0.908 0.923 *0.933 -0.316 0.205 -0.911 0.594
4 *0.975 0.873 0.866 *0.946 -0.329 0.199 =-0.984 0.604
5 *0.962 0.911 0.891 *0.941 -0.352 0.194 -1.109 0.609
6 *0.962 0.912 0.869 *0.940 -0.328 0.199 -1.004 0.604
7 *0.957 0.922 0.899 *0.938 -0.329 0.204 -0.999 0.593
8 *0.949 - 0.861 *0.924 -0.337 0.201 -1.043 0.599
9 *0.892 0.856 0.829 *%0.853 -0.342 0.199 -1.041 0.601

10 *0.966 0.923 0.902 *0.945 -0.319 0.205 -0.929 0.593

11 *0,948 0.877 0.898 *%0.917 -0.353 0.238 =-1.061 0.610

12 *0.972 0.871 - %0.951 -0.329 0.199 -0.943 0.601

13 *0.897 0.870 0.881 *0.884 -0.348 0.202 -1.025 0.594

14 *0.957  0.900 - *0,926 -0.323 0.204 -0.946 0.594

15 *0,961 0.921 0.878 *0.944 -0.325 0.258 =1.000 0.593

Average  0.950 0.896 0.885 0.926 -0.333 0.207 -1.000 0.599

- = The estimation was unsuccessful
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Table 27: Nonlinear estimation of the share equations, parameter
combination B: Real values p=0.666 a=2

Sanple

VOOV WM

Average

c=-=0.5

§=0.75 x~N(0,1) g~N(0,0.001)

R? values when the real regressand

CES-type

par-type Estimates from the best regressions
(marked with *)

Share Share Share Share Best CES-type Best par-type
function function function function

CES-type par-type CES-type par-type P J a c
*0.994 0.971 0.965 *0.993 0.658 0.749 1.989 -0.500
*0.995 0.957 0.955 *0.994 0.658 0.750 1.982 -0.501
*#0.995 0.957 0.982 *0.994 0.690 0.752 2.042 -0.501
*0.997 0.977 0.973 *0.997 0.658 0.751 1.975 -=0.502
*0.995 0.981 0.974 *0.995 0.660 0.751 1.990 -0.501
*0.993 0.944 0.948 *0.991 0.655 0.749 1.963 -0.500
*#0.995 0.900 0.917 *0.993 0.669 0.750 2.007 -0.500
*0.993 0.962 0.950 *0.992 0.666 0.749 2.025 -0.498
*0.995 0.952 0.972 *0.994 0.681 0.751 2.020 -0.499
*0.995 0.940 0.948 *0.994 0.677 0.750 2.022 -0.499
*0.992 0.969 0.970 *0.992 0.669 0.750 2.006 -0.500
*0.993 0.970 0.965 *0.993 0.670 0.747 2.022 -0.495
*0.993 0.940 0.955 *0.993 0.668 0.748 1.995 -0.496
*0.994 0.983 0.973 *0.994 0.645 0.751 1.943 -0.504
*0.995 0.969 0.960 *0.993 0.652 0.749 1.966 -0.499

0.994 0.958 0.960 0.993 0.665 0.750 1.995 -0.500

Table 28: Nonlinear estimation of the share equations, parameter
combination B: Real values p=0.666 a=2

Sample

W OONOUL&WN R

10
11
12
13
14
15

Average

=-0.5

§=0.75 X~ N(0,4) g~ N(0,0.01)

R? values when the real regressand

CES-type

Share Share
function function function function

par-type Estimates from the best regressions
(marked with *)
Share Share Best CES-type Best par-type

CES-type par-type CES-type par-type p J a c
*0.983 0.899 0.886 *0.975 0.691 0.743 2.099 -0.487
*0.966 0.850 0.834 *0.957 0.662 0.746 1.907 -0.493
*0.982 0.912 0.892 *0.973 0.676 0.745 2.139 -0.495
*0.970 0.893 0.905 *0.970 0.703 0.746 1.993 -0.484
*0.977 0.911 0.894 *0.977 0.623 0.745 1.899 -0.503
*#0.981 0.856 0.835 *0.970 0.694 0.752 2.061 =0.499
*0.961 0.920 0.853 *0.955 0.605 0.751 2.024 -0.521
*0.984 0.852 0.862 *0.976 0.688 0.754 2.027 =0.500
*0.977 0.890 0.882 *0.968 0.689 0.750 2.056 -0.496
*0.967 0.834 0.864 *0.950 0.687 0.751 1.971 -0.494
*0.973 0.872 0.820 *0.963 0.673 0.751 2.106 -0.504
*0.964 0.838 0.807 *0.946 0.659 0.749 1.987 -0.500
*0.979 0.853 0.792 *0.963 0.669 0.747 2.023 -0.495
*0.983 0.908 0.865 *0.978 0.620 0.755 1.902 -0.519
*0.975 0.885 0.865 *0.968 0.696 0.745 2.123 -0.491

0.975 0.878 0.857 0.966 0.669 0.749 2.021 -0.499
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Table 29: Nonlinear estimation of the share equations, parameter
combination C: Real values p=2 a=6
c=0.8 §=0.1 X~N(0,1) g~N(0,0.001)

R? values when the real regressand

CES-type par-type Estimates from the best regressions
(marked with *)

Share Share Share Share Best CES-type Best par-type

function function function function

Sample  CES-type par-type CES-type par-type p J a c
1 *0.980 0.696 0.653 *0.854 1.999 0.099 6.132 0.805
2 *0.983 0.675 0.594 +*0.881 1.978 0.104 6.970 0.797
3 *0.983 0.638 0.622 *0.867 2.002 0.099 6.275 0.805
4 *0.989 0.619 0.618 *0.885 2.083 0.094 6.514 0.800
5 *¥0,992 0.676 0.473 *0.896 1.894 0.108 4.557 0.800
6 *0.990 0.733 0.780 *0.913 1.936 0.108 5.104 0.787
7 *0.,984 0.724 0.670 *0.881 1.997 0.100 5.235 0.799
8 *0.985 0.765 0.797 *0.877 1.969 0.104 4.313 0.785
9 *0.982 0.688 0.559 *0.890 1.967 0.105 6.379 0.792

10 *0.982 0.738 0.747 *0.891 2.044 0.097 6.295 0.800

11 *0.988 0.717 0.706 *0.871 1.987 0.101 5.603 0.800

12 *0.995 0.626 0.595 #%0.919 1.989 0.099 6.061 0.804

13 *0.990 0.634 0.624 *0.860 2.018 0.097 6.668 0.808

14 *0.983 0.651 0.642 *0.902 2.051 0.099 8.352 0.800

15 *0.984 0.737 0.724 *0.917 2.012 0.101 6.439 0.795

Average 0.986 0.688 0.654 0.887 1.995 0.101 6.193 0.798

Table 30: Nonlinear estimation of the share equations, parameter
combination C: Real values p=2 a=6
c=0.8 §=0.1 x~N(0,4) g~N(0,0.001)

R? values when the real regressand

CES-type par-type Estimates from the best regressions
(marked with *)

Share Share Share Share Best CES-type Best par-type

function function function function

Sample CES-type par-type CES-type par-type P § a c
1 *0,993 0.732 0.519 *0.896 1.960 0.102 5.605 0.804
2 *0,996 0.782 0.568 *0.920 1.979 0.104 6.863 0.804
3 *0,994 0.796 0.678 *0.895 1.944 0.107 4.958 0.794
4 *0.996 0.777 0.664 *0.926 2.024 0.097 7.132 0.807
5 *0.992 0.677 0.563 *0.854 1.892 0.111 4.497 0.786
6 *0,997 0.784 0.661 *0.908 1.911 0.107 4.060 0.798
7 *0,995 0.791 0.571 *0.901 2.042 0.094 5.332 0.798
8 *0.996 0.833 0.576 *0.923 2.049 0.097 7.314 0.795
9 *0.996 0.701 0.641 *0.920 1.969 0.105 5.638 0.794

10 *0.994 0.796 0.737 *0.932 2.018 0.098 9.086 0.805

11 *0,997 0.757 0.652 *0.929 1.977 0.104 6.424 0.799

12 *0.996 0.801 0.692 *0.913 1.982 0.100 3.915 0.797

13 *0,997 0.799 0.639 *0.952 1.991 0.101 7.346 0.804

14 *(0.998 0.707 0.531 *0.919 1.973 0.105 6.630 0.798

15 *0.996 0.805 0.577 *0.910 1.895 0.113 5.470 0.796

Average 0.996 0.769 0.618 0.913 1.974 0.103 6.018 0.798
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7. CONCLUSIONS

The most important property of the par production

technlques compared with the CES production techniques is

in the variation limits of the distributive shares. That

is why we have specially examined these differences in

the theory of income distribution. The analysis of

the distributive shares deserves more attention in the
production theory than it has got. Maybe the lack of
analysis has been the result of the lack of proper tools and
methods. In this study we have presented the par production
technology, which is a practical addition to the methods

of analysing the distributive shares. Broadly taken,

the par technigues can be used to analyse the shares in

many contexts to reveal the distribution limits on the
markets. Based on the relatively simple mathematical forms
and equations, however, the CES production technology seenms
to be more practical and useful for handling many of

the other problems in production theory. In fact, the conclusion
is that the par and CES production techniques are
complementary to each other. Whether the par production
technology should be used instead of the CES or vice versa
depends on the target of the examination.

On the other hand the choice of the functional form

for production technology can be based practically on the
best fit in the empirical estimation. More generally, the
distributive cr1ter1a based, for example, on the entropy measure
could be adopted

The substitution parameters in both the par and CES cases seen
to have a similar role in defining the substitution between
the inputs of production. Approximately, the interrelationship
can even be expressed as ax3*p. Thus the dependency, which

the relative income shares have with the substitution
parameters in guestion, applies in both the par and CES
situation. The Cobb-Douglas special case is included in both
of the compared production techniques.

As the impossibility theorem, proved by Uzawa? in 1968, implies
that the CES production function cannot be generalized to

n (n>2) variables with arbitrary values of the partial
elasticities of substitution, the basic reason for this
conclusion may lie in the fact that for all of the input
variables in question the relative income shares cannot vary
51mu1taneously "unlimitedly" between 0 and 1. To have constancy
in the arbltrary values of the partial substitution

parameters in question, it could be inferred, the relative income
shares should have limited areas which are more narrow than

0 and 1 in case the number of input variables is bigger than 2.
Whether this is the case, can be examined in the future.

1 About efficient functional forms in regression see, for
example, Maasoumi (1986), pp.301-309. See also Harvey (1977)
and Ramsey and Zarembka (1971), who have used several tests
in order to discriminate functional forms in regression.

2 see Uzawa (1968)
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The par production function can be used in theoretical and
empirical analysis both in the basic nonlinear and the
linearized form. The utility of using par techniques is, of
course, totally dependent on the situation. The sampling
experiments we have made in this study show clearly that there
is a clear difference between using CES and par techniques in
different situations.

In the following we try to answer the questions put in
chapter 6.1 concerning the sampling experiments.

a.

The used estimation techniques discriminate the par and
CES production techniques clearly when the nonlinear
estimation of the share equations is used. The fit of
the "right" equation is better in all but 1 of the 90
experiments we made. The nonlinear method clearly
estimates the values of the parameters with the greatest
unbiasedness of the estimation methods we used.

Another method which discriminates the par and CES
situations clearly is the input share ratio estimation
made with the linear and linearized forms of the analysed
relationships in question.

When the estimation is made with the linearized forms of

the production functions, there seems to be bias in the
values of the estimates concerning both production

functions. The same kind of bias seems to exist in the values
of the distribution limit parameter estimates when the

side relation method is used to estimate the par production
function. However the bias seems to exist only with extreme
values of the parameters.

The tests we made with the income share ratio equation

seem to be practical in two senses: The test discriminates
the par and CES production technologies from each other and
when the higher degrees in the linearized form are included
in the estimated equation of the par case, the bias in

the estimates seems to vanish. Thus the method of estimating
the income share ratio can be used with high reliability.

Based on items a and b above, the method of

estimating the income share ratio equation (the higher
degrees included) and the method of estimating the share
equations with nonlinear methods can be suggested.

When the problem to be examined clearly involves
distribution limits and this fact affects

the handling of the problem and the making of conclusions
for further activities, the par production technology
should be preferred. Where such things do not exist, the
CES production technology should be preferred, because

of the easier handling and simpler mathematical form.
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As the par production structure is convex only for a given

area of parameter values, albeit the relevant area,

difficulties in the compact theory of the par production structure
arise unless simplifications are done. In this study these

have been accomplished by the method of linearizing. The result
seems to be practical and useful. Whether the linearized

forms or the basic nonlinear forms are used is totally up

to the examiner, as the par production technology seems to

work not only in the linear least squares situation, but

in nonlinear estimation situations as well.

The methods of econometric analysis of the technical change

are rather advanced in the case of the CES production structure.
As we have not analysed technical change in this study at

all, it is worth noting that when the linear approximation
forms for the par production structure functionally

correspond to the CES structure in their simplest forms,

the same general methods of measuring the technical change

in estimation can be used in the par case as well.

This study is a study in the method of neoclassical theory

of production with implications to the theory of income
distribution. The production structure is the basic tool in
many of the problems in economics. This study must

leave the wide field of possible applications for later efforts.
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APPENDIX A: Proof that the Cobb-Douglas production function form
is a limiting form of the par production function
when a-»0

First we have to assume that in the par function form

{ . K28 - -a (-1/a)
o]
(K/L)~a*C - 1

we have K>L and c><0 and a>0. When K<L and/or a<0 the same result
will be attained, but in derivation the signs have to be
separately noticed. When c=0 the derivation is somewhat

easier.

(A.1) Y

Dividing both sides of (A.1) with L we get

Y { k™d - 1 (-1/a)
(A.2) — =4dckt—m8m—— }
L k

-a¥*c _ 1

where k=K/L and taking the natural logarithm further

In(k™@-1) - 1n{(1/c)*(k~@*C-1))

(A.3) 1n(Y/L) =
a

We will make an obvious notation

m(a)

(A.4) in(Y/L) =
n(a)

and derive the limiting value of (A.4) with L Hopital's rule
as follows

1

n’ (a)
(A.5)
~k~@x1nk  c*k~@*Cx1nk
+
k™@ -1 k™a*c - 1

i

m (a)

Further we find that

-k~87@*Cx1nk + k~3x1nk +c*k~@7a*Cxlnk - cxk~@*Cx1nk

(A.6) m (a) =
(k™8 - 1)*(k™a*Cc - 1)

and make a notation again
g(a)
h(a)

(A.7) m (a) =
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Using L Hopital s rule we get

g"(a)

(A.8) lim m’ (a) lim
a-»0 h"(a)

c*(1nk)3 - c2%(1nk)3

z*c*(lnk)2
and further by substituting (A.8) and n"(a) = 1 into
(A.4) we get

1-c
(A.9) lim {ln(¥/L))} = (—)*1lnk
a-»0 2

which gives us the needed limiting form

1-c 1+cC
(A.10) 1nY = (——)*lnK + (
2

)*1nL

representing the Cobb-Douglas production function.
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APPENDIX B: The limiting values of the par input elasticities

According to (3.12) the partial input elasticity of capital is

K-a - Y-a
(B.1) = ————-¢ (K><L) (a><0)
K4 - L~

Substituting (3.5) into (B.1l) we get

k~a c
(B.2) ® = - - c (K><L) (a><0) (c><0)
k=@ - 1 k~a*c - 1

where k=K/L. From (B.2) the limiting values lim & in (3.13) can
directly be calculated for various values of a and ¢
when k=>® and k- 0.

When c=0 we get correspondingly
k—a 1

(B.3) ® = + (K><L) (a><0) (c=0)
k™a - 1 a*lnk

from which the limiting values can be noted in case c=0. When
a=0 we have the Cobb-Douglas production function with constant
partial elasticities, ¥=(1-c)/2.

For the partial input elasticity of labor ¢ the limiting
values can be calculated with ¢=1-% according to (3.12).
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APPENDIX C: Par income share curves as a function of

x=1n(K/L)

Income share curves of K for various a and ¢=0
%
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APPENDIX C: Par income share curves as a function of
x=1n(K/L)

Income share curves of K for various ¢ and a=-1
%
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par production function isoquant curves for

various values of parameters a and ¢C
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APPENDIX D: Par production function isoguant curves for
various values of parameters a and c

Isoquants of Y(K,L) when a=-1 and ¢=+0.75
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APPENDIX D: Par production function isoquant curves for
various values of parameters a and c

Isoquants of Y(K,L) when a=+2 and ¢=+0.75
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APPENDIX D: Par production function isoquant curves for
various values of parameters a and c

Isoquants of Y(K,L) when a=+5 and ¢=+0.75
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APPENDIX D: Par production function isoquant curves for
various values of parameters a and c

Isoquants of Y(K,L) when a=+20 and ¢c=+0.75
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APPENDIX D: Par production function isogquant curves for
various values of parameters a and c

Isoquants of Y(K,L) when a=-1,2,5 and ¢=-0.75
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APPENDIX E: Derivation of the linear approximation forms
in chapter 4.1

In equation (3.6) we have the first order profit maximum
condition for the par production function form

R L K@ - (K/L)-a*Cxy-a
(E.1) - = — % (K><L) (a><0)
W K (K/L)"@*Cxy—a - p-a

Writing (E.1) first as follows?l

wg 1 - (Y/K)™@ - ¢ + c*(K/L)2
(E.2) — = (K/L) 8%
Wy, (Y/L)~@ 4+ c*(K/L)"@ - ¢ - 1

and substituting further (3.5) into (E.2) we get

WK k™a*C o ] . cxk~a*C 4 cxkd-a*C
(E.3) — = (K/L)7a*
YL

1+ c*k-a-a*c - gxk—a*c _ k—a*c
If we make an obvious notation

WK
(E.4) — = k™2
W,

where k=K/L, we can calculate the limiting value for Q

by noting the nominator and denominator of Q as follows

h(a)
g(a)

(E.5) Q(a) =

1 The variables wg and wy are the income shares

R*K
wg = ——
R*K + W*L
W*L
W =

R*K + W*L
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and then using the quantient derivation rule and L Hopital's
rule we get

1-c
lim Q(a) = —
a—0 1+¢
1-c
(E.6) lim O (a) = — * (2/3)*1nk
a->0 1+c
1-c
lim Q" (a) = — * (c/18)*(1nk)2
a-»0 1+cC

from which we get the form

WK 1-c
— = (—)*{1+(2/3) *a*x+(c/18) *a2*x2})*x~a
WL 1+C

(E.7)
When k™2 is developed as

(E.8) k~@ = e~a*Xx

1 - a*x + (1/2)*a2*x2 - (1/6)*a3*x3

R

we further get

1-c 2+c
(E.9) In(wg/wy) = In(—) + 1n{1-(1/3)*a*x+(
1+c 36

) *al*x2)

from which by Taylor expansion we get

2+C
T(a) = 1In{1-(1/3)*a*x+( )*a2*x2}
7(0) =0
(E.10)
T (0) = =(1/3)*x
T"(0) = -(1/18)*c*x?
so that
1-c
(E.11) In(R/W) = lIn(——) = [1+(1/3)*al*x - (1/18)*c*a2*x2
1+C

which we have in equations (4.2) and (4.5). Note that 7" (0)
is zero when c¢c=0 and thus (E.11) gives an especially good
approximation.
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APPENDIX F: Tables for the approximation errors
of equations (4.2) and (4.5) in percents

In equation
1-c

(F.1) In(R/W) = 1ln(—) - [1+(1/3)*a]*1lnk
1+c

the values of the right hand side differ from the left
hand side as follows (c=0):

| 1nk|
(%) = = =2 =3 =4 =5 =6
|a]=0.5 0 0.0 0.1 0.2 0.4 0.6 0.9
=1.0 0 0.2 0.7 1.5 2.5 3.7 4.9
=1.5 0 0.5 2.0 4.2 6.6 9.1 11.4
=2.0 0 1.1 4.1 8.1 12.1 15.8 19.1
=2.5 0 2.0 6.9 12.8 18.3 23.2
=3.0 0 3.1 10.3 18.1 25.0
=3.5 0 4.5 14.1 23.8
=4.0 0 6.0 18.2 29.7
In equation (4.5) we have
1-c
(F.2) In(R/W) = In(—) - [1+(1/3)*a]*lnk - (1/18)*c*a2*(1lnk)?2
1+c
2-3%c2 c3+c
+(———)*a3*(1nk)3 + ( )*a%* (1nk)4
810 3240
When c=0, the corresponding errors in percents are:
| 1nk|
(%) = = =2 =3 =4 =5 =6
|a|=0.5 0 0.0 0.0 0.0 0.0 0.0 0.1
=1.0 0 0.0 0.0 0.2 0.5 1.1 2.1
=1.5 0 0.0 0.2 1.0 2.9 6.1 10.9
=2.0 0 0.1 0.8 3.5 9.2 18.5
=2.5 0 0.1 2.1 8.6 21.5
=3.0 0 0.3 4.4 17.3
=3.5 0 0.7 8.2 30.7
=4.0 0 1.2 13.8
=4.5 0 1.9
=5.0 0 2.9

from which it can be concluded that the approximation does
represent the right function value widely. However, when higher
order terms are included in the approximation, the area of

good representation is somewhat more narrow.

The theoretical values of the left hand side of the equations
(F.1) and (F.2) are calculated as a rate of marginal
technical substitution which is the ratio of the marginal
productivities of the par production function (3.5).
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APPENDIX G: A linear approximation form for the par production
function in the neighbourhood of a=0

The par production function

k7@ -1 (a><0) (c><0) (K><L)

(G.1) Y@ = c*
(K/L)~@*c - 3

can be written as follows
x™a -1

(G.2) (1/c)*V"8q = ——— (a><0) (c><0) (K><L)
k-a*c -

where V=Y/L and k=K/L. We will note
k@ - 1 _ h(a)

(G.3) M(a) = (a><0) (c><0) (K><L)
k™a*c¢ - 1 g(a)

First we assume that c>0. When c<0, the same results can be
attained by multiplying (G.2) with -1. Further we will note

kK a - 1

(G.4) €(a) = 1n(l/c) - a*lnV = ln(——) = 1lnM(a)
k-a*c - 3

Using L Hopital's rule we get

€(0) = -1lnc
c-1
(G.5) € (0) = (—)*1nk
2
1-c2
e"(0) = (—)*(1nk)?
12
So that approximately
c-1 1-c2
(G.6) €e(a) ® -lnc + (—)*a*lnk + ( ) *a2* (1nk) 2
2 2%12

From (G.6) we get further by using the definitions (G.3) and
(G.4)

1-c 1+c 1-c2
(G.7) lnY = (—)#*1nK + (—)*1nL - (
2 2 24

) *a*[1n(K/L) 12

which is the needed second order linear approximation form
for the par production function. The special case c=0
leads to the same formula. The Cobb-Douglas situation (a=0)
is also of the form (G.7).
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APPENDIX H: On the approximative convexity conditions of
the par production function

In the equation (4.2) we have in fact

dL l1-c
(H.1) In(-—) = 1n(—) - [1+(1/3)*al*x - (1/18)*c*a*x2
dK 1+c

where x=1n(K/L)=1lnk. For the approximation to be convex we
have to have

@ 1n(-dL/dK)
(H.2) <0
e x

so that the convexity condition will be (approximately, as
the equation (4.2) is only an approximation)

(H.3) - (1+a/3) - (1/9)*c*a2*x < 0
When c=0 we get a condition a>-3 for the approximation to be
strictly convex.

When c><0 we can solve the second erder equation (H.3) to get

-3  3%/(l-4%Cc*x)

(H.4) a =
2%Cc*x

from which it can be concluded that the approximation is convex
for all values of the parameter a when c*x>1/4. This area is
shaded in the following picture

Area of convexity for various values of ¢ and x
c

1
0.8 :::
0.6
0.4
0.2
0 -
] - Pl Van
0.2
-0.4 ]
-0.6 e et
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in(K/L)
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In the following table there are the convexity limits for x
according to various values of the parameters a and ¢, which
are based on equation (H.3):

c=0.9 c=0.5 c=0.1 c=-=0.1 c=-0.5 c=-0.9
a=-2 x>-0.8 x>-1.5 x>=7.5 X<7.5 x<1l.5 x<0.8
a=-1 X>=6.7 x>-12 X>-60 x<60 x<12 xX<6.7
a=+1 x>=13.3 x>-24 x>-=120 x<120 xX<24 X<13.3
a=+3 xX>-2.2 X>=-4 x>-20 x<20 xX<4 X<2.2
a=+5 x>-1.1 x>=1.9 x>-9.6 X<9.6 x<1.9 x<1l.1

Because the equation (4.2) is an approximation, the limits
calculated for higher values of the parameter a are not
representative. The conclusion based on the above table
is, however, that in the neighbourhood of a=0 the
approximation equation is convex for the relevant area of
values of the parameters a and c.
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APPENDIX I: Approximative solution of the par input demand
functions

According to the equation (4.5) we have

R 1l-c
(T.0) In(-) = In(—) - [1+(1/3)*al*1n(K/L)
1Y 1+c

when higher order terms with respect to a are neglected.

Solving (I.0) for 1n(K/L) we get

3 1-c R
(I.1) In(k/L) = (—)* [In(—) - 1n(7)]
3+a 1+c W

which is an approximative solution when a>-3. An one-valued
solution is possible only under strict convexity. See
appendix H. Solving (I.1) for 1nK we get

3 1-c 3 R
(I.2) 1nK = 1nL + (—)*ln(——) - (—)*1n(-) (a>-3)
3+a 1+c 3+a W

To get an approximation for the input demand functions we
substitute the Cobb-Douglas production function condition

2 1+cC
(I.3) 1nK = (—)*1nY - (—)*1nL
1-c 1-c

into equation (I.2). Then we get the approximative demand
functions for the inputs as follows

1-c 1-c 3 R
InL = 1nY - (—)*A + (——)*(——)*1ln(-)
2 2 3+a w
(I.4) (a>-3)
1+cC 1+cC 3 R
InK = 1nY + ( )*¥A = (—)*(—)*1n(-)
2 3+a W
3 1-c
where A=(——)*1ln(—).

3+a 1+c
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A better approximation for the input demand functions is
given, if the approximation form (G.7) is used instead
of (I.3). In that case we get

1l-c¢c 1-c 3
InL = 1InY - (—)*A + B + [(—)*(—) + C]*1n(R/W)
2 2 3+a
+ D*[1n(R/W) ]2
(I.5)
1+c 1+c 3
1nK = InY + (—)*A + B - [(—)*(—) + C]*1In(R/W)
2 2 3+a
+ D*[1n(R/W)]]2
where
3 1-c
A = (—)*In(—)
3+a 1+c
1-c2 3*a 1-c
B = ( ) *[ 1*[1n(—) 12
8 (3+a) 2 1+c
(I.6)
1-c2 3*a 1-c
c = ( )*[ 1*In(—)
4 (3+a) 2 1+c
1-c2 3*a

D = ( )*[
8 (3+a) 2
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APPENDIX J: Proof for equation (4.26)

In equations (4.22) and (4.25) we have

1
F(x) =

A-(x/0)
1l + e
(7.1)
1

WL=
A+x-(x/0)
1+ e

where A=1n[é§/(1-6)]. From (J.1l) we get

1
In{ - 1] = A - (x/0)
F(x)
(J.2)
1
In[— - 1] = A - (x/0) + X
YL

Substitution of the former into the latter leads to

1
[— - 1]
‘U F(X) 1 - WL
(J7.3) eX = = *
1 W, 1 - F(x)
( - 1]
F(x)
F(x)
and noting that G(x) = ln[—] and wg = 1 - Wy, We get
1 - F(x)
WK
(J.4) In(—) = x - G(x)
YL
F(x)
=x - ln[—]
1 - F(x)

which we have in equation (4.26).
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