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Abstract

This thesis aims at extending traditional test collection-based evaluation (TCE)
experiments of information retrieval (IR) towards real life usage while remaining
within the bounds of TCE. In traditional TCE there are no interactive search
processes, nor explicit assumptions of users. Instead, batch-mode retrieval
experiments are assumed entailing one query per topic, well-defined and relatively
verbose requests, and binary relevance judgments. In real life, on the contrary,
interaction is vital. The users interact with IR systems by using a trial-and-error
process trying out multiple query candidates; they vary their browsing effort, and
may require only few, highly relevant documents. Importantly, users as well as
searching situations may differ from each other in many ways. The individual
studies of the thesis focus on query-based interaction using simulations.

Two different types of interaction simulations are performed: relevance feedback
(RF) and session strategy (SS) simulations. In both cases more than one query per
guery session is used. In RF simulations the initial query is modified by adding
feedback terms gathered automatically from relevant documents observed by the
simulated user. The interaction decisions include the eagerness of the user to browse
the list of retrieved documents; the effort to give document-level relevance
feedback, and the relevance threshold to accept a document as feedback. These
atributes are justified based on literature. In SS simulations direct query
reformulations are performed based on prototypical query modifications. We also
introduce the concept of negative higher-order relevance, and discuss evaluation
issues when interaction and graded relevance judgments are brought to the setting.

Our main experimental results suggest that mixed-quality RF is more effective
than an attempt to use solely highly relevant feedback, and that sequences of very
short queries are surprisingly effective in finding relevant documents. Because
interaction is an essential property of system usage in real life, we suggest that in the
future test collection-based IR research should not continue excluding interaction
but instead bring interaction simulations into the research forefront.
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1. Introduction

The fundamenta purpose of an information retrieval (IR) system is to help its user
finding useful information contained in documents. In the 1960s the Cranfield
experiments formed the prototype of future test collection-based IR testing to come.
In it, test questions are constructed, a document database is built, and intellectual
relevance decisions are acquired so that the correct solution for each retrieval task is
known beforehand. (Cleverdon, 1991; Voorhees, 2007)

The traditional test collections based on the Cranfield paradigm have some well
known limitations. In brief, real users are not directly involved and batch-mode
2002a). In redl life, on the contrary, various kinds of users are involved and various
searching situations occur. Interaction is essential in real life because the initial
query may fail for many reasons. Therefore, a searcher may repeatedly launch a
guery followed by browsing the result, until the session ends more or less
successfully or the user quits without success. We will return to these issues in
more detail later in this chapter.

In this thesis test collection-based evaluation (TCE) refers to the traditional
Cranfield-style information retrieval evaluation experiments performed in a
controlled laboratory setting. The relevance of every document in the test collection
is known with respect to each pre-defined topic. Given such a collection researchers
can reuse it and compare the effectiveness of aternative IR approaches.

The main justification of the TCE model comes from the observation that
character string-based matching of the topics of requests and documents can be
performed successfully. Natural language words extracted from the free text of the
documents can be used as search keys to define topical requests because the
existence of the words in the documents correlates with fair probability to the
topical content of the documents they represent (Kekdanen and Jarvelin, 2002a;
Ingwersen and Jarvelin, 2005). Yet character string-based matching is challenging
because natural language allows both searchers and authors to select concepts and



express them in many ways. Moreover, the expressions and the fragments of
expressions may be ambiguous. To make the situation even more complex,
individual people may have different opinions regarding what should be retrieved
(Voorhees, 2007) and how to retrieve it. Finally, various data structures and
algorithms are required to allow rapid searching as vast amounts of text need to be
searched.

The goals of research in TCE entail gaining theoretical understanding of the
basic problems of IR (representing requests and documents; matching them);
developing theories and methods to deal with these problems; and developing
matching methods successful in practice in serving the needs of the users
(Ingwersen and Jarvelin, 2005). Within the scope of atypica TCE experiment a set
of topical queriesis run as a batch-mode experiment; the test collection is a free-text
collection, consisting of, e.g., newspaper articles, and the evaluation is based on
relevance judgments made by human judges acting as relevance assessors. The size
of standard ad hoc test collections has grown to millions of documents, and
hundreds of topics may be used in experiments. The performance measures typically
focus on the ranked list or set of documents retrieved, and the effectiveness is
measured in terms of available single-query metrics averaged over the set of topics.

The following list of limitations of the TCE approach is mainly based on
Kekdédnen and Jarvelin (2002a), and Ingwersen and Jarvelin (2005). In the
traditional test collection-based evaluation experiments, typically,

users are abstracted away with their varying tasks and situations (V oorhees,
2007)

2002a)

single-query per topic is assumed (no interaction) (Bates, 1989; Belkin et al.,
1993)

relatively verbose queries are used (Jansen et al., 2000)

relevance is topical and static (Kekaainen and Jarvelin, 2002b)

and Jarvelin, 2002b)

low relevance threshold is used (V oorhees, 2001; Sormunen, 2002;
Kekd&nen and Jarvelin, 2002b; Scholer, 2009)
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evaluation is based on an averaged per-query viewpoint (Rocchio, 1971a)
evaluation is based on the quality of the ranked list retrieved (Keka dinen
and Jarvelin, 2002a)

independency of the retrieved documentsis assumed (K eka @ nen and
Jarvelin, 2002a)

long lists of retrieved documents may form the basis of system evaluation

Recent studies have shown that the batch-style evaluation results may differ from
the evaluation results of situations where real users are involved. Real users can
successfully compensate® for the system performance differences observed in non-

interactive batch experiments.

Real life information retrieval can be characterized as follows:
different searchers, tasks, and situations exist (Spink, 1997; Stenmark, 2008)
rea information needs” may be ill-defined; even if they are well-defined they
may be difficult to express (Belkin, 1980); the needs may change (Bates, 1989);
aswell as the searcher’s ability to articulate them (Kuhlthau, 1991; Vakkari,
2000)
searching is a dialogue between the user and the system rather than asingle
information need specification; the user may need to try out multiple queries
(Swanson, 1977; Belkin, 1980; Bookstein, 1983)
users often prefer short queries (Jansen et al., 2000; Vakkari, 2000) requiring
reformulations (Ruthven, 2008) often performed by using few tactical term-level
moves (Vakkari, 2002)
relevance is dynamic and has several manifestations (Saracevic, 1996b; Cosijn
and Ingwersen, 2000)
documents may not be equally relevant (Saracevic, 1975)

2000; Jarvelin et al., 2008)

! The users may, e.g., issue more queries and read more documents (Smith and Kantor, 2008).

2 A real information need is of personal interest and importance to the user as opposed to simulated
needs defined in the context of a simulated work task (see Borlund, 2000) or “topical heeds’ mani-
fested as topics of test collections.

® Partially relevant documents might be useful in some situations, e.g., at the formative stage of the
problem solving process initiating the search (Spink et al., 1998).
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evaluation takes place in multiple query context (Jansen et a., 2000)

not only the quality of the result is significant for the user (e.g., low query
formulation effort may be important)

documents are not independent” and the relevance judgment process may change
theinitial relevance criteria themselves (Beaulieu, 2000)

only few top documents may be inspected by the user (Jansen et al., 2000;
Ruthven, 2008); only these may actually matter for the user (Azzopardi, 2007)

Involvement of the users forms a continuum in IR experiments. In one extreme, in
the traditional test collection-based experiments, users may not be modeled
explicitly at all.> In the other extreme real users are unobtrusively observed in rea
world situations (e.g., Spink and Saracevic, 1998). Between these two extremesit is
possible to study real people performing simulated tasks (e.g., Belkin et a., 1995).
In the present study we select the fourth remaining route: we will focus on IR
interaction in the lab, without users, by simulating user behavior (see, e.g., White et
al., 2004)°. The concept of simulation will be discussed in Chapter 3.

The individual studies of this thesis model query-based’ interaction, in a test
collection environment, via simulations. Our goal is to expand TCE towards real
life by including simulation of interaction. Two types of simulations are performed:
relevance feedback (RF) and session strategy (SS) simulations. Both simulations
focus on multiple-query situations where more than one query is allowed per topic
during interaction.

Generally speaking, in case of our RF simulations the initial query is followed by
gathering RF information by pointing out relevant documents serving as the source
of feedback terms for the subsequent reformulated query (Studies | and Il). The
major interaction decisions modeled include patience to browse the retrieved result;

* E.g., information in separate documents may complement each other (Ruthven and Lalmas, 2003).
® Traditional batch experiments can be seen as limited (albeit implicit) user simulations. See Ahlgren
(2004) as an example of an explicit user simulation, modeling users with varying levels of patience
and valuations for different documents in a non-interactive setting.

® Our interaction simulations differ from the approach applied in the interactive track of TREC in
which the interactive search processis performed by test persons (Hersh and Over, 2001). We simu-
late surface-level user behavior (relevance feedback, query reformulations, and results browsing) in
the laboratory setting based on explicit assumptions on user behavior but without test persons actu-
aly performing interaction.

" Query-based systems utilize a request expression to retrieve information from its storage (Ruthven,
2008).
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the effort to give document-level RF, and the threshold of accepting documents as
relevant.

In case of SS simulations the effort of gathering RF documents is replaced
by direct query reformulations (Study V). Here we focus on various prototypical
guery reformulation strategies assuming an impatient user who attempts to find one
(either at least a marginally, or a highly) relevant document. We will also discuss
the novel concept of negative higher-order relevance (NHOR) currently gaining
little attention in TCE (Study I11).

We will address some of the limitations of the TCE model discussed above in our

simulations. In the present thesisin Studies -1V (i.e., SI-SIV) we will:

model searchers explicitly (SI-SIV)

simulate multiple-query interaction (SI, SlI, SIV)

utilize both verbose queries (typical in traditional TCE) (SI-SI1) and short

gueries (typical inred life) (SIV)

utilize graded relevance during simulated interaction (SI-Sll), and pay attention

especially to highly relevant documents in evaluation (SI-SIV)

discuss the issue of multiple query session evaluation (SI, SII, SIV)

discuss evaluation beyond the positive relevance conception (SI11)

focus specifically on top ranks during evaluation (SI1-SIV)

Our simulation experiments are based on atraditional test collection. Therefore the
topics used are well-defined and stable, and the relevance concept is topical and
static, and we assume independence of the relevant documents.

Automated evaluation has along history in IR (see, e.g., Cooper, 1973) but so far
non-interactive testing has dominated test collection-based evaluation. Recently the
need for simulated evaluation of interactive IR has gained growing attention (see
Fuhr et al., 2009). A recent SIGIR workshop initiative (Azzopardi et a., 2010)
proposes producing a survey of simulated evaluation of interactive IR, along with
methodological guidelines and a road map for future research. Together the four
studies of the present thesis seek to contribute to IR knowledge by expanding TCE
methodology via explaining, justifying and demonstrating interaction simulations,
and by discussing their limitations and future prospects. We shall look at the

following research questions.
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Sudy |

1. How effective is relevance feedback if we consider various thresholds of
relevance in evaluation?

2. How isthe quality and quantity of the RF related to retrieval effectiveness?

3. Can pseudo-RF successfully compete with the simulated RF?

In the first paper we develop and justify a simple interactive simulation model and
perform a user simulation varying the quality and quantity of the user-given
feedback. We compare the effectiveness of simulated user-RF to pseudo-relevance
feedback using total performance evaluation® and a traditional effectiveness measure

mean average precision (MAP).

Sudy |1
In this paper we continue user RF simulations, but focus on rank-based evaluation
(using the cumulated gain measure), and deepen the discussion on interactive

evaluation. Our research questions are;

1. How should we evaluate the effectiveness of simulated user RF considering
graded relevance assessments?

2. How successful are various RF strategies?

Sudy 111

In this paper we will introduce the novel concept of negative higher-order relevance
and perform traditional single-query experiments. Negative higher-order relevance
refers to the negative aspects of beyond-topical relevance, e.g., dissatisfaction,
frustration, and uncertainty experienced by the user. Our research questions are:

1. What is negative higher-order relevance and what isits justification?
2. How can we operationalize negative higher-order relevance?
3. What are the consequences of allowing explicit NHOR in IR evaluation?

8 Evaluation concepts are discussed in more detail in Chapter 4.
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Sudy IV

In this paper we demonstrate laboratory-based session strategy simulations based on
guery data collected from test persons. We construct prototypical short query
sequences and test their effectiveness assuming impatient searchers. Our main
research questionis:

1. How effective are sequences of short queries combined with impatient browsing,

compared to using one long query and patient browsing?

The rest of the Summary is organized as follows. Chapter 2 will discuss the
limitations of the traditional test collection-based approach in more detail. Chapter 3
explains and justifies our simulations as a method for extending the traditional TBE
approach. Chapter 4 discusses the evaluation problem in laboratory-based user
interaction simulations. Chapter 5 summarizes the results, and Chapter 6 concludes

the Summary with discussion and conclusions.
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2. Test collection-based IR

2.1 The traditional test collection approach

The history of test collection-based information retrieval evaluation dates back to
the end of the Second World War. In that time, vast amounts of scientific and
technical reports became available, and providing access to this content challenged
both the mechanized systems and the documentation methods of the time. In the
Cranfield experiments (Cleverdon et al., 1966; Cleverdon, 1991) a comparative
evaluation was performed regarding several existing indexing and classification
methods. A laboratory setting, essentially, was introduced in these experiments in
order to study the performance of index languages in isolation (Cleverdon, 1991).
The experiments formed the prototype of future IR testing to come: test questions
were collected from test persons; a document database was built; and intellectual
relevance decisions were acquired so that the correct solution for each retrieval task
was known beforehand.

Test collection-based evaluation experiments’ in this thesis refer to the
traditional Cranfield-style information retrieval evaluation performed in a controlled
laboratory setting. The fundamental purpose of an IR systemisto help its usersfind
information contained in documents through string matching. This is challenging
because natural language is rich and complex and it allows searchers and authors to
express the same ideas in many different ways. Moreover, as vast amounts of text
need to be searched, this sets demands for the data structures and algorithms used in
order to allow rapid searching. Finaly, individual users may have different
opinions regarding what should be retrieved (V oorhees, 2007) and how to approach
it.

The traditional methodology abstracts away details of particular tasks and users.
Instead, an abstracted more general retrieval task can be solved in the test collection

° The expression traditional laboratory model of IR evaluation (Ingwersen and Jarvelin, 2005, p. 2)
refers to the same idea.
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environment. The test collection consists of three components. a set of documents
(the document database); a set of requests (topics); and a set of correct answers, i.e.,
the relevance judgments. Ideally, the relevance of every document in the database is
known with respect to each pre-defined request. The research problems studied in
such environment are related to various document and request representations
and/or the methods of matching them. An important feature of test collectionsis that
they are reusable. Given a test collection, researchers can quickly compare the
effects of alternative IR approaches. The goals of research in test collection-based
evaluation entail gaining theoretical understanding of the basic problems of IR
(document and query representation, matching); developing theories and methods to
deal with these problems; and developing matching methods successful in practice
to retrieve relevant documents for users based on their requests (Ingwersen and
Jarvelin, 2005).

The scope of the experiments can be characterized in terms of types of
experiments, test collections, requests, and performance measures used (Ingwersen
and Jarvelin, 2005). In atypical TCE experiment a set of topical queriesisrun as a
batch-mode experiment. The test collection is a free-text collection, consisting of,
e.g., newspaper articles; the requests are topical; and the relevance judgments are
made by individual judges acting as relevance assessors. The performance
measures typically take into account the quality of the retrieved result (a ranked list
or set of documents) and effectiveness is measured in terms of available single-
guery metrics, not assuming several queries per single topic, and averaged over the
set of topics or additionally expressed for each individual topic. The major
performance measures'® are based on recall and precision, e.g., mean average
precision (MAP), and more recently, on measures like cumulated gain (CG) and its
derivatives (discounted and session-based CG variants) (Jarvelin and Kekal&inen,
2000; 2002; Jarvelin et al., 2008).

19 The effectiveness measures are discussed in Chapter 4.
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2.2 Limitations of the traditional approach

The TCE model is justified based on the observation that character string-based
matching of requests and topically relevant documents can be performed
successfully. Natural language words extracted from the free text of the documents
can be used as search keys to define topical requests because the existence of the
words in the documents correlates with fair probability to the topical content of the
documents they represent (Ingwersen and Jarvelin, 2005).

The TCE model has been utilized extensively in IR, e.g., in various tracks of
TREC (Voorhees and Harman, 2000; Voorhees, 2001, 2007).
methodology has been successful in allowing controlled studies regarding the

As a whole this

performance of IR methods and systems based on their ability to find topically
relevant documents. It has helped in laying the foundation to the technical solutions

manifesting in the present day commercia IR systems, including many Web search

engines (V oorhees, 2007).
Table 1 recaps the limitations of TCE discussed in the introduction, relates them

tored life, and positions individual Studies |-V of the thesisin relation to them.

Table 1. Typical assumptions in traditional TCE (column 1), in real life (column 2),

and in Studies I-1V (columns 3-6).

Traditional Real Study | Study |1 Study 111 Study 1V
TCE Life
L1 User No explicit user | Various Explicitly mod- Explicitly mod- Negative higher- | Explicitly mod-
features modeling users, tasks, eled user behav- eled user behav- order relevance eled user behav-
and situa- ior (relevance ior (relevance aspect ior (direct query
tions occur feedback) feedback) modifications)
L2 Single Single; more Multiple Two: asimulated | Two: asimulated | Single Multiple queries,
versusmulti- | thanoneincase | queriesif RF query mod- RF query mod- direct query
plequery of relevance needed (real eled eled modifications
feedback interaction)
L3 Natureof | Well-defined Well orill- Well-defined Well-defined Well-defined Well-defined
topicsand topics; defined topics; topics; topics; topics;
queries Often verbose topics (user- | Verbosequeries | Verbosequeries | Verbosequeries Extremely short
queries given); (initial and RF) (initial and RF) queries
Often short
queries
L4 Natureof | Static; topical, Dynamic Static; topical; Static; topical; Static; topical, Static; topical;
relevance judged by an higher-order | graded relevance | graded relevance | limited higher- graded relevance
external asses- relevance order relevance;
sor; often binary | affected by graded and
the situation, negative rele-
task, and the vance
individual
L5 Document | Yes No; cumu- Yes Yes Yes Not applicable
independence lating and
redundant
information
matter

18




L6 Evalu- Various meas- User-deter- Focus towards Focus towards Focus towards Exactly one
ation issue ures used; up to mined; often | high recall top ranks; rele- top ranks; rele- (highly) relevant
top-1000 docu- focusto- (top-1000 vant information | vantinformation | document re-
ments retrieved wards few documents as- cumulates cumulates; the quired; top-10
evaluated top ranks sumed); mean importance of documentsin-
average precision avoiding non- spected per
relevance query; binary
success measure

Table 1 makes it apparent that many assumptions of the traditional laboratory
experiments (the first column) and observations from real life (the second column)
are diametrical opposites. In the remainder of the present chapter we will discuss
the six limitations of Table 1 individually.

2.2.1 Limitation 1: No explicit user modeling

In traditional TCE there is no explicit user modeling. Users with their tasks and
situations are effectively abstracted away. This is both an advantage and a
disadvantage (Voorhees, 2007). The experiments do not take into account an
individual user having a particular cognitive state, experiencing learning effects
during retrieval, possibly redefining the retrieval task, and who has a dynamic view
regarding relevance during the search. On the other hand the strength of the model
IS to ignore variation regarding the users, tasks and situations. These attributes are
not needed to study the limited goa of how well various representations and
matching methods work in retrieving or ranking topically relevant documents
(Kekdldinen and Jarvelin, 2002a).

In real life, searchers have varying cognitive states (Belkin, 1980) while
performing different kinds of work tasks. Consequently, different kinds of
searching behaviors emerge (Stenmark, 2008) and affect the actual result the users
will achieve. Interaction may involve user learning, problem redefinition, and
may be difficult to model. Yet it would be desirable — at least in principle - to
consider different users and usages of systems explicitly in test collection-based IR

experiments.
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2.2.2 Limitation 2: Single query per topic

In traditional TCE batch-mode experiments a single query per topic is used and
consequently the system’s performance is expressed by averaging the results for
such queries, over a set of test topics. Thisis justified because the systems should be

rewarded from a good one-shot topical performance based on user’s query as input -

20024).

In real life when users operate IR systems, interaction™ is the key element
(Swanson, 1977; Belkin, 1980; Bates, 1989). It is common that the user issues an
initial query and inspects some (top-N) documents retrieved. Spink (1997)
observed™ that in 40 % of the total interactive feedback occurrences a query was
followed by relevance judgments before a modified or reformulated query or
another command was entered. When an insufficient number of relevant documents
is observed, the user may adapt via launching a modified query™ or utilizing
relevance feedback (if available). Such query modifications may be in fact
unavoidable because even if the query does describe the topic well, it may have
severa interpretations (see, e.g., Sanderson, 2008) and retrieve documents not
serving the particular need of the user. The process of launching queries and
browsing their results is iterated until the searcher is satisfied or gives up. Such an

iterative processis fundamentally different compared to the traditional view.

2.2.3 Limitation 3: Well-defined topics and queries

In traditional TCE well-defined information needs and relatively verbose queries are
typical (Jansen et a., 2000). Well-defined topical needs allow making relevance

" Interaction can be understood in IR as sequences of events occurring in various connected levels.
Surface level interaction encompasses a user dialogue with the system, including searching, match-
ing, browsing, providing relevance judgments, feedback, and so on. On the cognitive level the user
considers retrieved data as cognitive structures. On the situational level the user interacts with the
task at hand which is producing the need for information. (Saracevic, 19964)

12 Real users performing mediated retrieval in a Boolean environment were observed.

13 Users have been observed to resort to rapid, multiple query attempts (even if no topical redefinition
takes place) even under heavy time pressure (Jarvelin et al., 2008), instead of continuing browsing
the initial retrieved result at extended lengths. Multiple attempts are typically carried out by making
small query modifications by changing, adding or subtracting terms (Jansen et al., 2000).
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judgments and constructing the recal base. Using “reasonable queries’ is
understandable assuming the implicit presupposition of using a single query per
topic in tests: failing queries do not make a lot of sense from the point of view of
comparing the effectiveness of IR techniques.

In rea life, on the contrary, the specifiability of the information needs forms a
continuum (Belkin, 1980). The information need of the searcher may not be well-
defined; it may change (Ruthven and Lalmas, 2003), and even if it is well
understood it may defy description as a query (Belkin, 1980). Moreover, inred life
a query lacking major facets of the underlying information need may be the
preferred choice of the user. Such a query can be justified if it serves its purpose by
leading to a good enough result, while simultaneously minimizing the effort to
construct expressions™ and inventing search words suitable as topic descriptors.™

In fact, it is redistic to assume that IR system users prefer using short queries -
from one to three words, and often only one word (Ruthven, 2008) — instead of
constructing verbose queries. An analysis of thousands of queries posed by Internet
search service users showed that the average number of terms used in a query was
only 2.21 (Jansen et al., 2000) and even smaller, 1.45 terms, in a study by Stenmark
(2008) focusing on intranet users. Vakkari (2000) analyzed the relationship
between students’ problem stages and search tactics in a longitudinal study, and
observed that the number of search terms varied from 2 to 5 in the early stages of
preparing a research proposal, and in the later stages from 3 to 11.%°

We conclude by stating that as the queries used in IR tests are the basis of
characterizing the effectiveness of IR techniques compared, it would be preferable
to use redistic queries (and sequences of queries) in test-collection based
experiments, as far as this is possible (see Kekdldinen and Jarvelin, 2002a;

Ingwersen and Jarvelin, 2005).

4 Ruthven (2008) notes that people may prefer short and unstructured queries.

1> Using short queries may make sense even if long queries would provide a better retrieved result.
Shorter queries may be more efficient in terms of communicating with the system. Azzopardi (2009)
observed that the change in total performance divided by the change in query length was maximized
when the query length was two terms - implying diminishing returns for the subsequent added terms.
18| ibrary and Information Science Abstracts (L1SA) database and a search system with Boolean
operators were used in the study.
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2.2.4 Limitation 4: Topical relevance

In traditional TCE topical relevance'’ forms the basis of evaluation. Also,
traditionally, binary relevance judgments have been used, often with alow relevance
threshold (Sormunen, 2000). Its advantages include simple performance
calculations; low relevance assessment costs, and maximizing the number of
relevant documents for attaining stable effectiveness measures (Sormunen, 2002).
Although the general topical relevance criterion does not take into account the
individual state of knowledge of a user or situational factors, retrieval methods can
be compared based on the limited task of retrieving topically relevant documents
studying how well the system helps the user getting access to the subject material he
needs, while also limited because in the ideal situation it would be desirable to
measure the positive impact the IR system has for the particular user considering his
search situation as awhole (Hersh, 1994).

In particular, one may question whether the lowest relevance threshold should be
used in evaluation (i.e., marginally relevant documents are accepted as relevant) as
the standard practice has assumed, especialy in such collections in which the
marginally relevant documents, by definition, do not convey any useful information
(Sormunen, 2000).*® The relevance grade reflects the amount of topical information
“in the document” as judged by a human relevance assessor’® (e.g., a non-relevant
document or a marginally, regularly, or highly relevant document observed). Using
graded judgments is justified because topically highly relevant documents can be
recognized reliably (Sormunen, 2002; VVakkari and Sormunen, 2004).%

In real life beyond-topical relevance factors may be significant for the user, e.g.,
time pressure (related to situational relevance) and lack of accomplishment (related

to motivational relevance) may affect the user’s behavior during interactive search

Y Topical relevance can be defined as the relation between the topic (subject) expressed in a query
and topic covered by information objects (Saracevic, 2006).

18 Recently, Scholer and Turpin (2009) have suggested that marginally relevant documents should be
grouped with non-relevant documents - not with relevant documents.

19 See Sormunen (2000), p. 63, and Ahigren (2004), pp. 164-165 for instructions for the assessors.

% Yet individual judges constructing graded recall bases may utilize different thresholds between
relevance categories even if identical judging instructions are given to them. Moreover, end users
may have different relevance profiles: not only may they have higher or lower criteria for relevance
but also other user features like gender and age may affect the documents perceived usefulness
(Scholer and Turpin, 2009).

22



process (Saracevic, 2006). Moreover, one may argue that even if the aboutness of
the text is stable, the user's interpretations and thereby the perceived topical

relevance may change during interaction (Cosijn and Ingwersen, 2000).

2.2.5 Limitation 5: Document independence

In traditional TCE the relevance of the individual documents must be judged
independently from each other during the construction of the recall base of the test
collection (see, e.g., instructions for the assessors in Ahlgren, 2004, pp. 164-165).

In redl life, on the contrary, as Beaulieu (2000) states, individual documents are
likely to be judged in relation to other retrieved documents. Moreover, the
judgment process itself may lead to the reassessment of the initial relevance criteria
themselves. A person evaluates documents in terms of his current state of
knowledge, which may change upon receipt of information (Belkin, 1980). Also
during the evaluation of the retrieved result the possible information overlap® in the

2.2.6 Limitation 6: Challenges of traditional evaluation

In traditional TCE incomplete evaluation measures like recall and precision are used
which focus on the quality of the result retrieved. They exclude aspects related to
the interactive search process. However, even if only the retrieved result is taken
into account, it would be desirable from the user point of view to consider the part
of the retrieved result the user actually sees. Therefore the documents in top ranks
deserve special attention in interactive test collection-based evaluation. Users may

differ regarding the lengths of documents sequences they are prepared to browse.??

of relevant documents seen later during retrieval is diminished partialy due to redundancy (overlap-
ping information) in distinct documents, thus considering the document dependence issue (Jéarvelin
sequences assuming that the user may purposefully select the same document multiple times using
varying relevance criteria as search process evolves (Azzopardi, 2007).

2 Top ranks are in the focus in traditional TCE evaluation in measurements like P@10 or
nDCG@10. However, rank-wise browsing within a multiple query search processis not a part of the
traditional TCE model because there is no concept of interactive search sessions and multiple que-
ries.
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The utility of aretrieval system could be defined not only in terms of how much
the user gained in terms of useful information - but also costs or frustrations
(Korfhage, 1997; Yang et a., 2007). Different users may have varying levels of
satisfaction in receiving relevant documents and varying tolerance for frustration in
receiving non-relevant documents (Korfhage, 1997), affecting their interactive
behavior. It would be desirable to take such user features into account during
evaluation. Such varying user behavior can be modeled during interaction

simulations.

2.3 Bringing real life features into the model

From within the traditional model itself we cannot answer what are the
consequences of abstracting away real life attributes (the limitations discussed
above). Recent empirical tests involving real users have shown discrepancy
between non-interactive batch evaluation results and interactive user evaluation
results. Hersh et al. (2000) showed that the weighting scheme giving the maximum
improvement over the baseline in non-interactive batch evaluation did not do so
when real users performed a simulated task. Turpin and Scholer (2006) observed no
significant relationship between the search engine effectiveness measured by mean
average precision and real user success in a precision-oriented task. In a recall-
oriented task a statistically significant but weak relationship was observed. Turpin
and Hersh (2001) observed that a superior system to the baseline (in batch
evaluation, measured by mean average precision) was not superior in an interactive
situation.

Real users are able to successfully compensate for the performance differences
by using interaction - e.g., by issuing more queries and reading more documents.
Smith and Kantor (2008) observed that users of degraded systems were as
successful as those using a non-degraded system, and suggest that they achieved this
by altering their behavior. In the current thesis, our point of departure is the
traditional single query per topic assumption which we expand via multiple query
simulations. Thisisarelatively new way of approaching laboratory-based IR.

When the limits of the traditional TCE model are expanded through simulations,

we need to model real life interactive user behavior and consider evaluation which is
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justifiable from the user point of view. The next chapter will explain our simulation
approach. We will discuss real life IR interaction issues and bring them explicitly
into the model in order to perform simulations. We will explicate our responses
regarding the six limitations discussed earlier and suggest some solutions to them by

using simulated experiments. The evaluation issue will be discussed separately in
Chapter 4.
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3. Simulating IR interaction

3.1 Modeling and simulation activity

A simulation can be defined as a symbolic model of a real-world situation created
for the purpose of studying rea-world problems (Adams and Rollings, 2007). Asa
starting point some system (physical or conceptual) is considered which consists of a
collection of interacting entities producing some form of behavior. This behavior
can be observed over an interval of time. A model is a representation or abstraction
of the system in some form other than itself and acts as a surrogate for the system.
Smulation consists of experimentation using the model (Birta and Arbez, 2007).
Modeling and simulation are motivated by gaining insight into the features of
system’s behavior to provide deeper understanding, or to serve a more practical
goal, eg., to make changes in the system. Modeling activity is concerned with
developing a specification for behavior generation usable as a vehicle for
experimentation. An appropriate model needs to be considered in relation to the
problems to be solved. To have validity, a simulation must represent relevant
features of the real world (or any kind of simulation target) as closely as possible
though aspects represented may be simplified or abstracted out (Adams and
Rollings, 2007).

3.2 Extending the traditional approach

In Section 2.2 we presented some implicit limitations of the traditional TCE

approach. Next we will discuss performing user simulations® in case of a multiple

2 Ahlgren (2004) simulates the user dimension in a traditional single query setting by modeling pa-
tient and impatient users giving large or small differences regarding the values of the documents be-
longing to various relevance levels.
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query situation® — a dimension so far lacking from the mainstream of the test
collection-based IR studies. We will list our responses regarding the six limitations
discussed in Section 2.2, and then discuss our ssmulations in more detail.

3.2.1 Response 1. Modeling user behavior

In the present thesis we will simulate explicitly the user dimension. We will model
varying user (interaction) features and vary them systematically. Our god is to
simulate plausible interactive user behavior, justify it, and to demonstrate the effects
of various “what if” scenarios regarding user behavior. User simulations performed
in the laboratory allow studying systematically the effects of various interactive
search strategies. If real users were used instead, it would be problematic to have
control over specific types of user strategies™, avoid learning effects, and support

repeatability of experiments.

3.2.2 Response 2: Allowing multiple queries

One of the main factors in our thesis is that we focus on the multiple query aspect.
Instead of implicitly assuming single query processes, we model scenarios where
multiple queries are launched in a search session as a sequence. Using terminology
by Jarvelin et al. (2008) we call the topical multiple-query sequences sessions. We
will focus on selected interactive user features in our simulations. In both RF and SS
simulations two basic attributes are considered: the patience to browse the (initial)
retrieved result (B) and the threshold to accept documents from various relevance
levels as relevant (R). Additionally, in case of RF simulations we take into account
the patience of the simulated searcher to collect feedback (F). In case of SS
simulations we vary the specific prototypical query modification strategy (SS) used
to reformulate queries in case a particular query failed. We will justify the selection
of these attributes based on earlier studies on user behavior.

2 White et al. (2005) simulate the time dimension (implicitly) by modeling a searcher observing se-
quences of document representations (e.g., atitle or a top-ranking sentence) and study how well vari-
ous implicit feedback models learned the term distribution across the relevant documents and helped
to improve search effectiveness.

% For example, people may be reluctant to use RF (Dennis et al., 1998).
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3.2.3 Response 3: Traditional topics; query types

The topics we use in our simulation experiments are traditional (static, well-defined
topics), thus, our simulated user does not switch topic. The queries used in the tests
are constructed using natural language keywords. We use both long queries (in RF

simulations, Studies | and I1) and short queries (in SS simulations, Study V).

3.2.4 Response 4: The role of higher-order relevance

Even accepting that static topics are used in simulations, truly user-based simulation
would require that the searchers’ relevance assessments are used instead of a recall
base. Our study is limited by the fact that we will utilize traditional topical
relevance conception in our simulation experiments, because the relevance data
available in the test collections contain graded relevance judgments based on the
amount of topical information in individual documents?’.

In real life higher-order relevance aspects (cognitive, situational and
motivational) are present during the searching process. In our simulation
experiments we assume that the patience of ssimulated users may be affected in
various situations by factors like time pressure (situational level of interaction). We
assume that the user’s patience and impatience trandates to surface level behavior
so that the user’'s tolerance to browse the retrieved result and give relevance
feedback may vary. In Study I11 we will aso discuss the concept of negative higher-
order relevance having desirable properties from the point of view of visualizing
user experience. We will discuss the higher-order relevance aspect separately in
Study I11.

% Query formulation is explained in more detail in Sections 3.3.4 and 3.4.4.

" We do not attempt to reach in our simulations the level of cognitive user-centered approach and
consider how well the user and the retrieval mechanism interact under real-life operational conditions
(Borlund, 2000).
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3.2.5 Response 5: Document dependence and independence

Because our simulations are based on a standard test collection, we do not intend to
solve the document independence problem. In Study Il we discuss how the
discounted CG measure alows taking into account user-internal features of
relevance. Partially due to acknowledging the document dependence problem? we
will focus in Study IV on the special case of such a simulated user who wants to
find only one (highly) relevant document, thus avoiding the document independence

problem.

3.2.6 Response 6: Challenges of interactive evaluation

As discussed earlier, when the effectiveness of the retrieved result is evaluated in
interactive IR from the user point of view, it would be desirable to consider the part
of the result that the user actually sees. Therefore, knowing that the patience of the
users to view the retrieved result varies, the number of top ranks considered during
interactive session deserves attention.

Jansen et al. (2000) analyzed viewing behavior of Internet searchers and
observed that users did not frequently browse the results “beyond the first page or
so” (assuming ten documents per page). The mean number of pages examined per
user was 2.35 and most users did not access any results past the first page. The
authors argue that using a classical measurement of precision any search results
beyond rank 10 would be meaningless for most users.

Our basic idea is to relate the user patience modeled to the length of the
document sequence inspected during evaluation. We will discuss the document
sequence formation problem (the ordering and length of the sequence), and how to

evaluate the sequence, in case of RF and SS simulations in Chapter 4.

% E.g., the relevant information in relevant documents retrieved may be overlapping.
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3.2.7 From systems to models

Our model specification begins with the description of plausible interactions within
the system under investigation. IR systems can be considered as dynamic real life
systems where interaction takes placein time. To justify any algorithmic simulation
of (surface level) interactions, we will first discuss user interactions in the cognitive
level. We will abstract a sequence of eventsin time as steps taken by the searcher —
in particular, rank-wise browsing and feedback. We will characterize our IR

interaction simulations as four phases:

System characterization
Verbal model description
Formalized model description
Experimental procedure

PO PE

Next we will characterize the real life system assumed in the separate cases of RF
and SS. Then we will verbally describe our RF and SS models, which are simplified
abstractions of the system.? This is followed by a more formalized version of the

model. Last, the experimental procedure is described.

3.3 Relevance feedback simulations

3.3.1 System characterization

An initia understanding of relevant features of the plausible real life RF interaction
(i.e., system™) must be developed to form the basis for avalid RF model.

We assume ared life situation where a person is interacting with a query-based
search system. The first query acts as an entry to the search system followed by
possible subsequent phases of browsing and query reformulations (Marchionini,
1993). Relevance feedback is given based on the result retrieved: the searcher
inspects some sequence of the documents retrieved (from top to bottom, see

 In course of the modeling process we present the research questions related to our point of view
regarding the system.

% Even an “open” real life system characterization isitself a simplification (and amodel). Obviously,
it is possible to pay attention selectively to various aspects of the system in more detail in relation to
specific research questions to be solved - thus leading to different models.
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Joachims et a. (2005)) to identify which documents are relevant and which are not
(e.g., Spink, 1997; Efthimiadis, 1996). Information in the relevant documents
retrieved and seen by the user can be utilized for producing a modified query (a new
search command input).3* The modified query will (hopefully) be closer to what the
user desires (Rocchio, 1971b).

The RF process described above obviously has many dimensions. The number of
documents inspected and selected for RF may vary. The feedback terms may be
selected and weighted in many ways - by the searcher or by the system. Moreover,
the users may have various criteria for a successful search.* It is also known that
the textual characteristics of documents belonging to various relevance levels vary:
highly relevant documents discuss a larger number of topical aspects and they use a
larger set of unique expressions (Sormunen et al., 2001).

Based on these observations we will address the following research questionsin
Study I:

1. How effective is relevance feedback if we consider various thresholds of
relevance in evaluation?

2. How is the quality and quantity of the RF related to retrieval effectiveness?*

3. Can pseudo-RF successfully compete with the simulated RF?

Simulations allow us to explore the limits of the effectiveness of user feedback
based on using higher or lower relevance thresholds during collecting the feedback
documents and during evaluation, and assuming higher or lower effort in collecting
the feedback. In Study Il we will address the additional research questions:

1. How should we evaluate the effectiveness of ssimulated user RF considering
graded relevance assessments?
2. How successful are various RF strategies?

3! The user may select feedback terms himself based on the documents, or the terms may be extracted
automatically by the system. The idea of automatic term extraction is justified because relevant
documents may contain useful terminology (Ruthven and Lalmas, 2003) and because users are able
to identify relevant documents, especially highly relevant documents (Vakkari and Sormunen, 2004).
%2 A user might desireto retrieve, e.g., few highly relevant documents, or lots of mixed-level docu-
ments (Kek&ldinen and Jarvelin, 2001; Voorhees, 2002).

* Note that even if the user requires, e.g., highly relevant documents, he might purposefully accept
documents as feedback based on alower relevance threshold.
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Next we will describe how our simulation approach allows answering these research
questions in atest collection-based setting.

3.3.2 Verbal model description

The simulated RF process (its surface-level manifestation) is described next. The
retrieval system returns aranked list of documents as a response to the initial query.
The smulated user giving RF will browse at most (some number) B documents
retrieved, from the first rank onwards, and recognize at most (some number) F as
feedback documents, in case they satisfy a quality criteria defined by relevance
threshold R.

Browsing limit, attribute B above, is justified because the user’s willingness to
study retrieved sets is limited, and it may vary individually in different situations
(futility point) (Blair, 1984).%

Willingness to provide feedback, attribute F, is needed as a separate attribute
because even if the user is willing to browse through along list (high value of B) he
may give up collecting feedback after finding the first (or first few) relevant
documents.®

Last, relevance threshold attribute R is justified, because the users may want to
focus on giving highly relevant feedback (Kekdénen and Jarvelin, 2002a;
Voorhees, 2001). We are interested in studying via simulations whether this is a
good idea.

In case of pseudo-RF al B top documents observed are used as feedback. In all
RF scenarios of the present study the feedback terms are automatically extracted
from the RF documents and the RF query is formed and launched automatically
(Harman, 1988).

% Some users avoid browsing the retrieved results beyond the first few documents retrieved (Jansen
et al., 2000) before attempting another query, thereby making small values of B reasonable. On the
other hand some users, e.g., patent searchers, may require high recall (Kando, 2000) and be willing to
scan through long lists of retrieved documents, thereby making high values of B and high fina
evaluation lengths reasonable.

% This dimension is essential because in real life people may be reluctant to provide feedback (Ruth-
ven and Lalmas, 2003; Jordan et al, 2006).
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3.3.3 Model formalization

The user model used in Studies| and Il isatuple M = <R, B, F> where

RT {1, 2, 3} is the requirement of relevance (at least marginally / fairly /
highly relevant documents™® were accepted as feedback documents)

BT {1, 5, 10, 30} is the willingness to browse documents (at most B top
documents)

FT1 {1,5, 10, 30} isthe willingness to provide feedback (at most F feedback
documents), F £B

3.3.4 Experimentation procedure

We used a TREC database and retrieval system InQuery (Broglio et al., 1994) and
its sum operator®’ to envelope the query keys. In RF experiments we simulated a
user who is willing to formulate a verbose initial query by extracting and
lemmatizing all words in the title and description fields of the topic description of
the test collection. In rea life the user’s ability to identify query concepts and
articulate them is affected by, e.g., his subject and search knowledge (Vakkari,
2002) and his willingness to produce search keys is limited (Jansen et al., 2000;
Stenmark, 2008). As keywords may be ambiguous (e.g., “left”) and result in more
than one lemma (“leave’, “left”) all the lemmas produced were included within a
synonym (syn) set producing an initial query of the form:

#sum(#syn(keyl, key2,...), #syn(... key n), ...)

Top 50 documents are retrieved using the initial query. Specific value

combinations defined by the user scenario <R, B, F> were used together with the

% The test collection utilized in all our simulationswas the reassessed TREC 7-8 collection (Sormu-
nen, 2002) containing 41 topics from ad hoc tracks, 528155 documents, and graded relevance judg-
ments. There were on the average 29 documents per topic belonging to relevance level 1 (marginally
relevant documents); 20 at level 2 (fairly relevant documents); and 10 belonging to level 3 (highly
relevant documents) per topic.

37 See Ahlgren (2004) for a detailed description of the InQuery’s operators and ranking principle.
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recall base to recognize feedback documents in case of each user scenario and each
initial topical search.

The 30 best feedback terms® were extracted®, using a RATF formula (Pirkola et
al., 2002) from the set of feedback documents.

The expansion keys were added in form of a sum structure (below: keys el, €2,

...) a the end of theinitial query, to form the final feedback query for each scenario:
#sum(#sum(#syn(keyl, key2,...), #syn(... key n), ...) #sum(el, €2, ...))

As the last step, each feedback query was run in the test collection, and its
effectiveness was evaluated.

Our simulations included specific value combinations (triplets) of R, B, and F.
We assume that real users vary greatly; in Study | we experimented using value
combinations <R, B, F> where BT {1, 5, 10, 30}, F 1 {1, 5, 10, 30} (F £B), and R
T{1, 2, 3} thus producing 30 simulated RF scenarios. The effectiveness of the
initial query and each ssimulated RF scenario was analyzed using mean average
precision (MAP) under three separate evaluation criteria: stringent, regular, and
liberal relevance thresholds. In Study I, we experimented using a subset of value
combinations, namely <R, 1, 1>, <R, 5, 1>, <R, 5, 5>, <R, 10, 5>, <R, 10, 10>,
<R, 30, 30>, where R1 {1, 2, 3}, producing 6 x 3 = 18 simulated user scenarios.
The effectiveness of the scenarios was analyzed using cumulated gain (CG) at the

top ranks in order to focus on the user viewpoint in evaluation.

3.3.5 Pseudo RF

In pseudo-RF (Study 1) the feedback terms were extracted without human
intervention from a set of top documents retrieved and added to the initial query.
The number of documents used for feedback can vary, and there are many ways to

select the keys. We experimented with document set sizes of 1, 5, 10, and 30, and

% Also in arecent study adding 30 keys was observed to be a preferred choice in RATF-based expan-
sion compared to adding 10 or 20 keys (Jarvelin, 2009).
¥ Details of this process, including the RATF formula, are described in Study |.
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used the same method (the RATF formula) for extracting the terms as in case of
simulated user RF.*

3.4 Session strategy simulations

3.4.1 System characterization

When real searchers directly modify queries (without RF), the process is inherently
complex. The user’'s initial state of knowledge leading to the query may be
muddled, and it may change during the search process. Even if the need is well-
defined, it may be difficult for the user to express it as a searchable query. (Belkin,
1980) A query may fail for many reasons, e.g., it may miss pertinent terms or
contain ambiguous or too broad query terms and therefore retrieve documents not
serving the particular need (Jarvelin et al., 2008). From our simulation point of view
we pay attention to the fact that in real life it is common that the users prefer using
short queries (Vakkari, 2000; Jansen et al., 2000), they may revise their queries,
there may be a need for multiple query iterations (Belkin, 1980; Ruthven, 2008) and
the users may avoid excessive browsing (Azzopardi, 2007). Moreover, e.g., in Web
searching searchers may view surprisingly little information without examining
pages before attempting reformulation (Lorigo et al., 2006).

Our starting hypothesis is that the user behavior observed does satisfy user needs
in many situations. Therefore, we are interested in seeing how effective short query
sessions™ are in a simulated situation. This motivates our main research question in
Study 1V:

How effective are sequences of short queries combined with impatient browsing,

compared to using one long query and patient browsing?

“0 The PRF case can be characterized asa 3-tuple <R, B, F> whereR = 0 and F = B: in PRF the B
top documents are always used as feedback (thus F = B) regardless of their level of relevance (thusR
=0). Asmentioned, we used browsing lengths B such that BT {1, 5, 10, 30} .

L In our simulations a session spans a sequence of one to five queries, all of which are related to one
particular topic. This differs from the time-based session conception given in Jansen et al. (2000).
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We will use two separate relevance thresholds (liberal and stringent) in evaluation
defined for the ssimulated user.

3.4.2 Verbal model description

We state that the simulated user will launch an initial query; the retrieval system
returns a ranked list of documents; and the user will browse some of the documents
retrieved. During this browsing the user will either succeed in observing (enough)
relevant documents or faillsto do so. At some specific (rank) point regarding each
particular query the user will stop browsing and instead launch another query (also
followed by subsequent browsing) — which may be done repeatedly — or the user

will give up the entire session.

3.4.3 Model formalization

The user model described above may be encapsulated as a 3-tuple M = <R, B, SS>

where, in our experiment,

RT {1, 3} where Ris the requirement for target document relevance (liberal
or stringent)

BT {10, 50} where B is the user’s willingness to browse documents (at most
B top documents)

SST1{Sl, S2, S3, $4} where SS denotes session strategies™ describing how
the prototypical query sequences are formed.

Next we will explain the experimentation procedure used in session strategy

simulations.

“2|n Study IV four strategies S1-S4 were compared, i.e., SS 1 {Sl, 2, S3, $4}, see Section 3.4.4.
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3.4.4 Experimentation procedure

Searchers modify their queries interactively because the initial query may not be
satisfactory (Fidel, 1985). We will ssmulate idealized session strategies based on
query modifications observed in the interactive query data by Lykke et al. (2009).%
To construct query sessions, we first had two groups of seven test persons each to
intellectually analyze the 41 topics used in the experiment. Regarding each topic a
printed topic description and a task questionnaire were presented for test persons.
They were asked to select and think up good search words from the topical
descriptions, and form various query candidates: (i) the query they would try as the
first query; (ii) the query they would try secondly assuming the first query did not
succeed; (iii) queries of various lengths ranging from one to three or more words.

Using these word sets we constructed systematically* topical query sequences
for simulations based on idealized session strategies. We constructed three types of
idealized short-query session strategies (S1-S3) and one traditional strategy based
on one verbose query (the baseline strategy S4). We restricted our attention to a
situation where the user browses at most the top-10 documents (B=10) retrieved
(S1-S3) for each query, and the success criterion was to find one relevant document.
Two relevance thresholds (R=1 or R=3) were used®. We measured how many 10-
document sequences needed to be inspected by the simulated searcher in order to
reach success for each topic. We allowed a maximum of five queries per topic; if all
five queries failed, the topical session failed. Two sets of query sequences were
created for each SS type based on data collected from the two corresponding groups
of test persons — students and staff members.*°

Sequences of one-word queries
In session strategy S1 one-word queries are tried out one-by-one as a sequence.*’ If
the user encounters 10 consecutive non-relevant documents, he will move on to the

next query. New queries are attempted until the topical session ends successfully, or

“3 See Section 2.1 in Study 1V.

“ See Section 3.3in Study 1V.

> R = 1 denotes that marginally (or more) relevant documents are accepted as relevant; R = 3 denotes
that only the highly relevant documents are accepted as relevant.

“6 We did not include staff members who had an extensive background regarding the specific test
collection (e.g., IR researchers who had used the test collection in their own research experiments).

4" A one-word query consists of a single search term which is an unbroken string of characters (let-
ters or digits with no space between).
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the simulated user runs out of query candidates (and the topical session fails). In

other words, the following topical query sequence is attempted in S1:

key 1-> key 2 -> key 3 -> key 4 -> key 5

Strategy S1 simulates a user who tries to minimize his effort regarding each
individual query. This strategy is justified because one-word queries are common in
real life and people may try them as sequences. We purposefully experimented with
this “most extreme” strategy even though it seemed obvious that it may perform

poorly.

Incremental query extension

In session strategy S2 the simulated user starts the topical session using a one-word
query. In case of failure the user adds one word to the query®® every time until the
session succeeds or the simulated user runs out of queries. At most five queries® are

formed also in this strategy.

key1-> keylkey2-> key 1 key2key3-> key 1 key2key 3key 4 -> ...
Strategy S2 simulates alazy searcher who tries to cope with minimal effort and adds
words one at a time in case of failure. This strategy was observed in the query
session data (in 13 out of 60 sessions) analyzed in Study V.
Variations on a theme of two words
In session strategy S3 the simulated user always uses three-word queries but the two

first search keys are fixed and the third key is varied, in other words

key 1key2key3-> key 1 key 2 key 4 ->key 1 key 2key 5-> ...

“ Unstructured #sum queries of Lemur retrieval system were used in al SS experiments because
facet structure was not considered.

“9We argue that 5 queries is a reasonable number. A simulated study involving real users performing
simulated tasks observed that the length of the search sessions ranged from 1 to 11 queries with a
mean of 2.85 and amedian of 2 queries per session (Price et a., 2007).

38



This strategy was common in the query session data analyzed in Study 1V (38 of 60
sessions). Also Vakkari (2000), who analyzed the relationship between the users
problem stages and search tactics, observed a pattern where the user retains one or
two terms and varies one term by substituting it with a new term.

All three prototypical query strategies S1-S3 are justified because they were
observed in empirical data by Lykke et a. (2009). Moreover, they are interesting
per se because searchers may use such queries as building blocks during trial-and-
error type search processesin real life. Testing them iswell motivated in a multiple
guery situation even though in a single query situation they may not seem to be

particularly interesting.

The baseline query

Last, the baseline query strategy $4 consisted of one verbose query, in which case at
most the top-50 documents were browsed by the simulated user, in 10 document
chunks.
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4. Evaluating simulated IR interaction

In this chapter we first explicate some problems related to evaluating simulated
interactive information retrieval in test collections. We will describe some solutions
to the problems and explain our RF and SS evaluations performed in Studies| —1V.

We conclude this chapter by discussing statistical testing.

4.1 Evaluating interactive IR in a test collection

Interactive information retrieval covers a wide range of research related to studying
diverse end users of information access systems. It is shaped by research on
information seeking and search behavior, and by research on the development of
new methods of interacting with electronic resources. (Ruthven, 2008) Currently,
there is a lack of research activities in modeling interactive IR systems (Ruthven,
2008). Also evaluating them is currently a major chalenge within IR (Azzopardi,
2007). The IR research community has recently acknowledged the need to develop
simulated evaluation of interactive search scenarios (see, e.g., Fuhr et al., 2009;
Azzopardi et al., 2010).

The concept interaction has been characterized in various ways in different fields
like human-computer interaction and information seeking/searching behavior (see,
e.g., Beaulieu, 2000). A necessary condition to interaction is that some form of
feedback takes place (Spink, 1997).° When interactive IR is evaluated in a
simulated setting based relevant documents™ retrieved, two issues must be settled.

% |n traditional IR model feedback refers to an automatic function of an IR system where the user’'s
query is automatically reformulated by the system (Spink, 1997). In interactive models feedback is
seen in a context involving both the system and the user. In the current study we assume that inter-
action manifests, as Spink (1997) describes, as a search activity which consists of cycles of interac-
tive feedback loops incorporating the user and the system inputs and outputs, together with user in-
terpretations and judgments.

*1 We use relevance judgments of the recall base of the test collection in simulations, not judgments
of test persons who make their own relevance assessments. We also acknowledge, but do not attempt
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First, how should we construct the sequence of documents which acts as the basis
for evaluation (i.e., the ordering and length of the sequence)?*? Secondly, once
some document sequence exists, what kind of measurement should be used to
evaluate interactive search process, taking some specific type of user into account?
Next we discuss these two issues — the sequence construction problem (its ordering

and length), and the measurement problem.

4.1.1 Constructing the document sequence

A starting point for IR evaluation is that the effectiveness of any retrieved document
set or sequence can be evaluated as such (called the total performance evaluation)
using appropriate effectiveness measures. However, it is problematic to evauate
documents retrieved as a result of some interactions this way, because the relevant
documents already seen® by the user (or simulated user) may be moved upwards in
the ranked list. One may argue that such re-ranking makes the eval uation appearing
artificially better than it really is (called the ranking effect).

Various solutions to this problem have been suggested in the literature. In case
of relevance feedback three classical solutions to the total performance evaluation
problem include traditional freezing, full freezing,® or splitting the collection into
test and control groups. (Chang et al., 1971; Salton, 1989; Ruthven and Lamas,
2003)

In traditional freezing the ordering of the document sequence for the RF query is
constructed so that the relevant documents retrieved earlier are frozen in their
original ranks and the non-relevant documents retrieved earlier are removed from
the collection. The ranks of the non-relevant documents are occupied by the items
newly retrieved in a subsequent search iteration (the RF query) (Salton, 1989). This

approach can be criticized as being somewhat artificial from the user point of view.

to deal with the fact that real user’s knowledge state may change on receipt of information affecting
the optimal order of presentation of texts for the user (Belkin, 1980).

°2 Regardless of the type of interaction leading the user to the document (e.g., relevance feedback,
direct query reformulation, or following links) the user will encounter some specific document se-
guence. We may assume that only one document can be examined by a searcher at any one point in
time. It is this sequence that determines the effectiveness as experienced by the user. (Azzopardi,
2009b) Therefore, evaluating interactive information access systems could be based on these se-
guences accessed through the course of some particular interaction (Azzopardi, 2007).

> Documents may have been retrieved for the topic by some earlier query.

* Table 1 in Study Il illustrates various freezing approaches.
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In full freezing all documents (also non-relevant ones) seen by the user during the
initial browsing are frozen at their ranks. All the yet unseen documents returned by
RF are placed into the following rank positions. This naturalistic approach to the
ordering problem can be justified by stating that it imitates the viewpoint of a user
who has in fact wasted effort in browsing some particular sequence of documents
regardless of their relevance level.

In test and control group solution the document collection is first split into two
sub-collections. The modified (relevance feedback) query is constructed using the
feedback from the test group documents. In this situation the document ordering in
the control group becomes unproblematic and the ranked positions of the documents
retrieved using both the initial query and the modified query can be accepted as such
(i.e., the total performance measure can be used). (Ruthven and Lalmas, 2003)

Regarding the length of the document sequence evaluated, the main principle in
Section 4.2 is that the perceived utility is “the only utility that does the patron any
good”. Therefore, one should consider in evaluation the quality of the retrieved
result regarding exactly those ranks that the user will observe. (Cooper, 1973)

As users are different regarding their patience to browse documents during
interaction, there cannot be a natural single answer to the question of how many
ranks should be considered in evaluation (e.g., “the first 1000 ranks).* Therefore, if
different users are modeled, one needs to justify the last rank position inspected in
each case. For example, if we simulate a user who iswilling to study only short lists
of retrieved documents (per query), dueto, e.g., time pressure (Price et al., 2007) we
may focus on few top ranks only during evaluation. Note that mean average
precision may include the implicit assumption that top-1000 documents will be
inspected. Cumulated gain (CG), instead, sums the gain values from rank 1 to rank i
(when i ranges from 1 to the last rank position inspected) *° allowing the cumulated
value inspected to varying last rank positions needed. We argue this type of
evaluation approach is justified in user simulations where the rank-wise inspection
of the retrieved result by the user is modeled — compared to the system-based view

*® As an example Pollock (1968) describes an “officer” who is willing to inspect only the first three
documents to find one relevant document, or differently, an “analyst” who might be content with a
long list containing 400 documents. A desirable measure of effectiveness should take into account
such different uses of the list when the length of the document sequence is considered in evaluation.
% E.g., retrieved documents turned to alist of gained values G = <3,2,3-1,-1,-1...> will cumulate as

42



manifested in measurements such as MAP. We will discuss this issue in the next

section.

4.1.2 Measuring the sequence

Real users may have various goals regarding both the retrieved result needed
(Scholer, 2009) and the properties of the interactive process itself (e.g., as un-
explicated restrictions) (Jarvelin et a., 2008). The primary goa of finding the
desired objects during interaction may be affected by the need to find them in some
particular way. For example, the user may prefer to avoid wasting effort both in
entering query words, and in browsing the result list —and not only in the latter. The
desire to optimize balancing between such efforts can be modeled by using
simulations. Therefore, when the effectiveness of the simulated interaction is
evaluated, the evaluation measures need to be justified from the point of view of the
user modeled.

Different measures have be used in the traditional TCE to evaluate the retrieved
result (typically the sequence of documents retrieved), including test-collection
based relevance feedback studies including mean average precision (MAP)* and
cumulated gain (CG) based measures. Once the ordering and the length of the
document sequence have been decided, various measures can be used to measure the
“goodness’ of the document sequence based on the existence of relevant documents
in the sequence.® Different measures will emphasize different properties of the
sequence. Therefore, the selection of the measure depends on what user preferences
the evaluator wants to study (Kek&l dinen, 2005).

2002b). The relative effectiveness of retrieval systems may change when the basis

* In non-interactive retrieval situations well-known effectiveness measures for evaluating the quality
of the set of documents retrieved include precision (P), which is the share of relevant documents
among al documents retrieved (Rocchio, 1971a): P at specific rank (e.g., P@10, i.e., P based on the
first 10 documents retrieved); average precision (AP) which is the average of the P values calculated
at the rank of each relevant document (non-retrieved documents get the precision value zero); and the
mean average precision (MAP) — the mean of AP values over multiple topics; or measures like cu-
mulated gain or its rank-wise discounted versions.

% Traditional recall bases cannot address the fact that users may learn during the retrieval process. In
real life even the same document can attract different judgments from the same judge depending on
where it appears in the stream of documents observed (Azzopardi, 2009b).
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of evaluation is changed (e.g., highly relevant versus at least marginally relevant
documents are accepted as relevant) (Voorhees, 2001).

In the CG measure the degree of relevance of each document is taken into
account as a gained value for its ranked position in the result list. The length of the
document sequence evaluated may vary while the gain is summed progressively
from the first to the last rank inspected (Kekalainen, 2005). The principle of CG-
based measures is that at the last rank it gives a single composite estimate of the
search utility for the user after the search has ended.®® The resulting single
combined measure is directly user-oriented and it allows defining various weighting
schemes related to different relevance levels depending on the user modeled, and it
is intuitive showing at each rank the gain a user gets at a given cut-off point of the
result set. The length of the document sequence evaluated can be related to the
behavior of the simulated user (assuming more or less patient users).

Next we will explain how the document sequence construction and

measurements were performed in our individual studies.

4.2 Evaluations performed in the individual studies

Sudy |

In this paper we measured the effectiveness of different simulated usersin simulated
RF when the quality and quantity of RF is varied, and when the user requires
documents belonging to different relevance levels during the final evaluation.

In our first study we used a system-oriented measure MAP in evaluation. MAP
does not take into account that degree of relevance may vary in documents
(Kekdéinen, 2005) yet separate relevance thresholds can be used. We needed to
consider how to measure effectiveness in interactive IR using graded relevance
judgments. We measured MAP values for the RF and PRF scenarios using three
distinct relevance thresholds.

The ordering within the document sequences retrieved for both the initial query

and the RF query were kept as such (total performance evaluation). Freezing was

% Jarvelin et al. (2008) introduces session-based CG, an extension to CG, which penalizes further
queriesin amultiple-query session because each new query formulation requires further effort.
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not utilized in the first study because we wanted to compare the effectiveness of
simulated graded RF to pseudo-RF as such. A problem with such an approach is that
it allows reordering of the relevant documents observed. However, we may assume
a user who is simply interested in the quality of the final search result —in such a
situation reordering is not problematic. We wanted to directly compare the result of
simulated user-given RF (when its quantity and quality changes) to the effectiveness
of pseudo-RF, because there was no prior information about such a novel setting.
The length of document sequences used for evaluating the interactive sequences
was top 1000 documents. This is the traditional approach which implicitly models
users who are willing to dig deep down the list of retrieved documents. We used the
traditional measure in our first interaction simulation experiment because our focus
was on developing an interactive user model for RF simulations and MAP served as
an established way to consider performance. It serves as a reasonable starting point
in our formative research process considering interactive user simulations in test

collections.

Sudy |1

Here we continue to study smulated RF and use a subset of 6 simulated RF
scenarios from the first study. Because “total performance evauation” (i.e., no
freezing) was used in the first study, we wanted to focus in this study on how the
evaluation of effectiveness of simulated RF scenariosis affected (if it is), employing
different evaluation assumptions.

The ordering of the document sequence in evaluation in Study 11 was based on
freezing all documents — both the relevant and the non-relevant documents — seen by
the simulated user at their ranks.®® This is justified because the user has already
wasted effort in browsing and inspecting the documents seen despite their level of
relevance. Because the past sequence of retrieved documents will be left asit is, it
is obviously an advantage not to browse sequences of non-relevant documents any
longer than necessary —like in readl life.

The length of the sequence is considerably shorter in Study 11 compared to Study
I. We varied the patience of the simulated user both during the simulated feedback
phase and during the evaluation phase. We measured the effectiveness up to the last

0 Seefreeze all casein Table 1in Study 1.
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rank position of interest (rank 10, 20, or 100, depending on the scenario). The
sequence length used in evaluation in this study was related to users having varying
levels of patience. In the impatient user scenario only the documents initially
retrieved within the top 5 ranks could be used as feedback, and the user would
browse altogether only the first 10 ranks. In the most patient user scenario we
assume that relevant documents initially retrieved within the topmost 30 ranks are
first used as feedback, and the simulated user will browse altogether the first 100
documents retrieved during topical search session.

The measurement of the sequence was based on cumulated gain (Jarvelin and
values the user actually gets when he browses a document sequence of specified
length while the documents may belong to various relevance levels. We assumed a
steep weighting scheme™ 0-1-10-100 because we modeled users who appreciate
highly relevant documents.? We did not use discounting®™ because our scenarios
explicitly determined the patience of the users to examine a specific number of top
ranks retrieved. Therefore, as we knew that the simulated user will inspect the
varying lengths of top ranks, we wanted to determine the direct cumulated gain he

gets by inspecting these ranks.®*

Sudy 11
In this study we do not perform interactive simulations. We suggest taking into
account both the user’'s gains and costs, belonging partialy to the higher-order

relevance®™ domain, and define an extension to the CG-based measures using

® In weighting scheme 0-1-10-100 non-relevant documents are given weight 0 by the simulated user;
marginally relevant documents weight 1; fairly relevant documents 10; and the highly relevant
documents weight 100. Thisisjustified because the marginally relevant documents do not contain
extraneous topical information by definition (Sormunen, 2002) whereas highly relevant documents
contain |ots of topical information and are valuable for the simulated user.

62 These weights are used also in Kekaldinen (2005) and Jarvelin et al. (2008). They model a user
who values highly relevant documents one hundred times more than marginally relevant documents,
and ten times more than fairly relevant ones. The weights are not based on empirical evidence, thus
they represent a“what if” scenario regarding the assumed values.

% Discounting models the phenomenon that it is less likely that the user will ever examine the docu-
ment due to time, effort, and cumulated information from the documents already seen. See Jarvelin
and Kekalénen (2000).

% Discounting would have squeezed all the performance curves downwards and closer to each other.
% The traditional test collections are based on topical relevance, and the relevance assessments of the
documents reflect the “amount of” relevant information “in the document”. This mindset seemsto
imply that non-relevant documents should be given zero weights. However, in case of higher-order
relevance, the relevance is arelationship entailing not only non-negative aspects.
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explicit negative gain values.®® They allow us to visudize the frustration inherent in
encountering non-relevant documents. Negative higher-order relevance refers to the
negative aspects of beyond-topical relevance, e.g., dissatisfaction, frustration, and
uncertainty experienced by the user. We suggest that research should recognize the
existence of negative user sentiments caused by observing sequences of non-
relevant documents during the search process.”’

Recognizing negative sentiments during browsing is inherently related to the idea
of interaction. The avoidance of wasting effort in non-relevant documents
encountered may cause the user to prefer attempting another query (thereby
encouraging interaction) instead of continuing browsing. Positive-only values miss
this phenomenon as they seem to suggest that the user might continue browsing at
extended lengths. As it may be important for the users to avoid non-relevant
documents, explicit negative values are useful as they allow making this aspect

visible.

Sudy IV
In this study we simulated a user attempting to rapidly find one (highly) relevant
document by performing direct query reformulations. The short sequences of
documents inspected (10 documents) simulate an impatient (albeit quite realistic)
user who wants to avoid non-relevant documents and reformulates the query
immediately in case of failure instead of continuing browsing, while taking chances
with using purposefully “obviously incomplete” queries. Therefore the success
measure used was a simple binary success measure. Success was determined as
being able to find one relevant document using distinct two relevance thresholds
(either amarginally or a highly relevant document was required).

The ordering of the short sequences of documents retrieved (top-10 documents)

by each individual query (and inspected by the simulated user) was left untouched.

% We suggest in Study 111 that negative higher-order relevance can be operationalized simply by
allowing negative gain values in CG-based measures. Using such values will lead to CG and DCG
curves which may alternate up and down, instead of only being able to go upwards, thereby alowing
the researcher to recognize concepts like progression towards success (or failure); raising (and de-
scending) expectations, turning points in sentiments, and (more or less severe) frustration experi-
enced by the user while encountering non-relevant documents.

67 Using positive-only values for CG (or DCG) will have the consequence of having the performance
curves keep going upwards (and never descending — not even at very high ranks) which can be con-
sidered counter-intuitive from the user point of view.
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In other words we accepted the ordering of the top-10 documents retrieved by each
query and retrieval engine as such. A maximum of 5 queries were launched for
each particular topic (and, correspondingly, at most five “pages’ each containing 10
documents, were inspected for each topic).

The length of the document sequences inspected in this study was short because
of the type of the searcher simulated. As explained earlier, in all session strategies
S1-$4 (see Section 3.4.4) we were interested in seeing how many “chunks of 10
documents” the user must browse to succeed® - or whether he fails altogether for
the topic. In case of short-query strategies (S1-S3) each individual query either
succeeded or failed within the top-10 documents it retrieved. In case of the long
baseline query (strategy S4) we inspected a maximum the top-50 documents, while
observing how many chunks of 10 documents must be browsed to find the relevant

document.

4.3 Statistical testing

The purpose of significance testsin IR evaluation is to find out whether differences
observed in the effectiveness of the methods compared could have occurred by
chance (Hull, 1993). In IR the setting is typically arranged so that the associations
between the dependent variables, e.g., effectiveness measures of mean average
precision, cumulated gain, or the ordinal of the successful query within topic, and
the independent variables — in our case a specific type of simulated interaction - can
be identified.®®* When the measured values for the approaches are compared,
statistical tests are used to make a conclusion whether the differences between the
methods are statistically significant.”

Non-parametric tests have less power to correctly reject null hypothesis than

parametric tests, but their requirements on sample sizes and the distributions are not

% In the best case the relevant document would be located within the first 10 documents, and in the
worst case no relevant documents are observed after browsing through 50 documents.

% In our studies the null hypothesis states that that there is no difference between the retrieval meth-
ods compared based on the effectiveness.

" Statistical testing acknowledges that the conclusion made is false with the specific probability. We
are interested in avoiding type | error, that is, the wrong claim that “A is better than B”, athough in
fact itisnot. It is aso possible to err in the opposite direction and fail to acknowledge A being better
than B although it is (type I error).
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as strict as those of their parametric counterparts.”> Therefore, non-parametric
significance tests are often seen as ajustified choice in IR experiments.

We used the Friedman test which is a non-parametric ANOVA version (Hull,
1993). We used the test in RF and SS simulations in Studies Il and 1V. The
formative Studies | and I11 focused on constructing the view regarding the usage of
test collections with interaction, and therefore statistical testing was not performed
in them. We utilized Friedman test in the current study due to the properties of the
data and because we compared more than two methods in our studies. The
Friedman test calculates first whether significant differences overall between the
methods are found. If such differences are found, a pair-wise comparison between
different methods is done to show which methods differ significantly from each
other.

The Friedman test seeks to verify whether k related samples come from the same
populations, or populations with the same median (i.e., that the systems or methods
compared are equivalent). The data are arranged in b rows and k columns, where
rows represent units (e.g., b individual topics) and the columns represent the
respective treatments (e.g., k matching methods compared). The scores of each row
are ranked from 1 to k, and the test determines the probability that the rank totals for
each treatment (matching method associated with the column) differ significantly
from the values that would be expected by chance (Conover, 1980). The test
compares the absolute values of the difference between the column-wise rank sums
R and R, where R (R;) istherank sum for theith (jth) trestment condition, i<j, to a
critical zvalue (Siegel and Castellan, 1988, pp. 174-183).

In Study Il the statistical testing was based on cumulated gain values for each
topic. Both the final cumulated gain value and the averaged cumulated gain value
from the first rank to the final rank were used. In Study IV the effectiveness was
measured as the ordinal of the successful query for each topic within a topical
session.  Significant differences were observed between the interactive search
approaches compared (RF strategies in Study 11; SS strategies in Study 1V) in both

studies.

™ Problems of statistical testing in IR experiments have been related to small sample sizes, the nature
of test requests (selectionsinstead of random samples), and to the distribution of recall values over
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5. Summary of the individual studies

In this chapter we will summarize the four individua Studies and focus on the

research results.’

5.1 Study |

This paper opens our test collection-based user simulation approach. We will
approach user relevance feedback issue by simulations because experiments with
real users are time-consuming and also problematic due to learning effects,
repeatability and control. In this paper we will define a user model and use it to

guantify some major interaction decisionsinvolved in simulated user RF.

Resear ch questions

In this study our research questions are:

1. How effective is relevance feedback if we consider various thresholds of
relevance in evaluation?

2. How isthe quality and quantity of the RF related to retrieval effectiveness?

3. Can pseudo-RF successfully compete with the simulated RF?

Methods
We performed a simulation by constructing and utilizing the user model <R, B, F>"
which explicates some basic interaction decisions of the user. When document level

feedback is used, the quality and quantity of this feedback may vary.

At this point we had no idea whether the user should use higher or alower relevance

level threshold during RF. We were interested in seeing whether it makes sense to

2\We will refer to the result tables and figures in the original Studies and do not duplicate them here.
" See Section 3.3.3.
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use “mixed quality” RF (accepting documents from all relevance levels) or demand
“high quality” RF (accept only highly relevant documents) assuming that during
fina evaluation the relevance threshold can vary. Our simulation model (Section
3.3.3) allows using these attributes - varying the relevance threshold to accept
documents as feedback (e.g., only highly relevant documents are accepted); the
maximum browsing length regarding the retrieved documents studied by the
simulated user (e.g., the first 10 documents initially retrieved); and maximum
number of feedback documents given (e.g., using only the first relevant document
observed as a feedback document).

Evaluation of the final retrieved set was measured after the feedback based on
altogether 30 user scenarios (three different relevance thresholds during feedback
multiplied by ten different value combinations of browsing and feedback efforts)

using aclassical precision-based measure MAP.

Results

For the first and the second research questions, our results indicate that RF can be
effective at al three evaluation levels.”® The best RF scenarios aso clearly
outperformed the PRF scenarios. Regarding the third research question, also
pseudo-RF improved the initial retrieval.” Interestingly, when stringent relevance
threshold was used in evaluation the best simulated user RF scenario clearly
outperformed PRF, but instead when a liberal evaluation threshold was used, the
performance of the user scenariosin RF was close to the PRF resullts.

This simulation study left us with the open question of how one should perform
evaluation during RF considering the user viewpoint. For example, if we accept
MAP evaluation (based on the top-1000 documents retrieved) and allow reordering
of the relevant documents observed, and assume a user demanding highly relevant
documents during final evaluation — as we did in Study | — then using high quality
RF is superior compared to using mixed quality RF.”® However, what happens
during the RF scenarios to the rank-wise results, in particular, when reordering of

the seen result isnot allowed? We will continue studying these issuesin Study I1.

™ See Tables 5-7in Study |.
™ See Table 8in Study |.
® See Study |, Table 5.
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5.2 Study Il

In this study we focus on user-oriented eval uation issue using cumulated gain-based
evaluation (Jarvelin and Kekdéinen 2000, Jarvelin and Kekdldinen 2002). This
approach alows rank-wise inspection of the results and it is directly user-oriented.
As Azzopardi (2007) argues, IR evaluation could be based on those and only those
documents (within the ranks of any sequence inspected) that the assumed user will
actually see. Therefore, cumulated gain-based measures are especialy well-suited
for ssimulations. Different simulated scenarios explicitly model users who are more
or less patient to browse the lists of retrieved documents. The gain values can be
presented regarding the appropriate ranks — e.g., only the first top ranks in case of
impatient users, and longer ranked sequences in case of more patient users.

Research questions

In this study two research questions were addressed:

1. How should we evaluate the effectiveness of simulated user RF considering
graded relevance assessments?’’

2. How successful are various RF strategies?

Methods
We used full freezing of the results in which all documents browsed (i.e., seen by
various kinds of simulated users) are frozen at their ranks. We modeled impatient
users alowing a small browsing window size during the relevance feedback phase
(at most the top-5 documents). In case of such impatient users one may argue that it
makes sense to consider during final evaluation only those documents that the user
is assumed to see (Azzopardi, 2007). Therefore we assumed in evaluation that the
simulated user will inspect only the first 10 documents retrieved.”

We aso modeled a moderately patient user assuming he may examine more
documents, and give more feedback (at most top-10 documents during the feedback

" Binary relevance has been used historically in test collection-based RF experiments. In such
collections the idea that a user might demand documents from a specific level of relevance (e.g.,
highly relevant documents) but purposefully give, e.g., lower level feedback, is not obvious.

"8 See Figures 1-3 in Study 1.
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phase); therefore in evaluation we assumed that the simulated user will inspect the
first 20 documents retrieved altogether.”

In the patient user case we model a user who may first examine at most top-30
documents during feedback phase. In the evaluation phase we assumed altogether
up to the top-100 documents inspected by the user.®* In all cases we varied the
relevance threshold used to accept documents as feedback.

Results

The overall result can be summarized as follows. Despite full freezing the RF
scenarios generally performed significantly better than the baseline scenario
measured by final CG. However, significant improvements were not found in one
case: when the user set unrealistic demands for the combined quality and quantity of
the RF documents. When the demand for feedback quality is increased, there is less
such feedback available.

Compared to Study | results, the general perception regarding the simulated
scenarios changes. The highly relevant documents seemed to be very effective
when reordering was allowed and evaluation was based on MAP (Study ).
However, if al the documents seen are frozen (i.e., reordering of relevant
documents is not allowed), and rank-wise inspection of the result (CG) is assumed,
it makes sense to use mixed-level feedback (Study 1), especially for impatient and
moderately patient users. If the user is very “picky” and only accepts highly
relevant documents as feedback, then no such feedback may be available in small
browsing windows. In such cases no improvement can be made regarding the
baseline.

For very patient users it makes sense to give lots of feedback - of mixed quality
(i.e,, using a low relevance threshold) - although compared to the high quality
feedback scenario the final gain values at the last rank are close to each other. The
general conclusion regarding mixed-quality RF is supported by topic-by-topic
results: if a small browsing window is used in collecting feedback, high quality
feedback may simply not be available.

" See Figures 4-6.
8 See Figures 7-9.
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5.3 Study Il

In this study we continue to focus on the problem of user point of view during
evauation. We utilize a dichotomy topical versus higher-order relevance where the
latter refers to the beyond-topical relevance criteria (Kekdénen and Jarvelin,
2002a). Cumulated gain (CG) (Jarvelin and Kekdéainen, 2000) allows rank-by-rank
inspection of the retrieved result. Its discounted version (DCG) (Jarvelin and
by diminishing the value of relevant documents at |ater ranks.®*

The novel concept of explicit negative higher-order relevance introduced in
Study I11 underlines the importance of avoiding browsing non-relevant document
sequences from the user point of view. High negative values for non-relevant
documents can be utilized to model a user who does not tolerate well non-relevant
documents (because he, e.g., gets tired easily, or is impatient or busy due to his
work task or search strategy). The view developed in this study led us to use very
short browsing windows repeatedly in Study V.

Resear ch questions

In this study our research questions are:

1. What is negative higher-order relevance and what isits justification?

2. How can we operationalize negative higher-order relevance?

3. What are the consequences of allowing explicit NHOR in IR evaluation?

Methods

We focus on non-relevant documents in the observed document sequence. Studies
on real users show that users often seem to have “short attention span” in
formulating queries (short queries are popular), reformulating them (small
modifications are common), and toward browsing the retrieved results (only the top-
10 documents or the first results page is observed). The users aso often require
good documents but not necessarily many of them — even one highly relevant

document may suffice. One way to consider the worth of non-relevant documents -

8 Thisisjustified because the information already cumulated, redundancy, and effort render relevant
documents at later ranks less valuable for the user.
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the conventional approach — is to assign zero values to documents containing a zero
amount of (useful) topical information. In other words, the user modeled is
indifferent toward them. When the results of interactive user studies are considered,
this seems to be far from the truth. As a solution we explain and justify using direct
negative gain values in cumulated gain-based evaluation to operationalize explicit

negative higher-order relevance.

Results

The novel concept of negative higher-order relevance introduced in Study I11 is
useful as it makes visible the fact that not only users want to find relevant
documents (to maximize gain) but they specifically may want to avoid non-relevant
documents, e.g., as part of minimizing costs. Therefore the user, in order to stop
further progression in an obviously “wrong direction”, will rather discard browsing
and try something else instead (e.g., aquery re-formulation).

Our main result is that the concept of bi-directional gain/cost invites one to
recognize novel concepts which traditional measures do not suggest.*? The most
imminent is bi-directional progression — towards success or failure. Bi-directional
progression also raises questions about maximum utility and the questions related to
the concepts of failure and success.®® In real life the users normally stop browsing
after observing sequence of non-relevant documents (although in some situations
users may be patient and browse very long lists of retrieved documents). The
considerations presented in the third paper, together with the earlier two papers, lead
to the setting of the fourth paper, which will be explained next.

5.4 Study IV

This study was born out of the ideas and results of the three previous studies.
Although MAP showed great improvements (Study 1), the rank-wise inspection
measured by CG (Study I1) gave somewhat disappointing results regarding the

positive effect of RF. Statistically significant improvements were observed but

8 Conventional relevance weights exclude explicit negative values. Therefore, even at very high
ranks the performance curves keep going upwards. This may be considered counter-intuitive from
the point of view of a user.

8 See Figures 4-5 in Study 111.
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intuitively speaking the improvements seem to be of arather modest size. Also, one
feedback round was not enough to radically improve the result retrieved.

The results of Study Il suggest that no feedback may be available in small
browsing windows inspected, especially if high quality feedback is demanded. Yet
the user may not be motivated to continue browsing the “failed” list of documents
retrieved (to find feedback). In fact, the need for query modification may be most
pressing in such situations where the initial query failed.

Faced with such concerns we decided in Study 1V to model direct query
modifications, instead of trying to find positive RF based on the initia search in
vain. The idea to use direct query modifications was inspired by Jarvelin et al.
(2008).%* Also the concepts discussed in Study |11 had an impact on Study IV: first,
we conceptualize the effectiveness in sessions in terms of success or failure, and
secondly, we acknowledge the “negativity” of users as an important aspect by
focusing on impatient users - who prefer short queries (in most cases only 1-3
words), tolerate limited browsing (10 documents per query), and quit after finding
one relevant document. Importantly, we experiment with using up to five queries
per one topical session, instead of using only one feedback round (Studies | and 11).
In the light of traditional test collection-based IR experiments, the retrieval scenario
of Study 1V is somewhat unconventional. However, compared to real life one may
argue that it represents a conventional way to conduct searching.

The concept of interaction decisions toward query formulation (and
reformulation); browsing patience; and the relevance levels (from Studies | and I1)
are continued here. The study utilizes query data collected from test persons while
the effectiveness of three prototypical short query session strategies®™ and one

baseline strategy were compared under the laboratory conditions using simulation.

Resear ch questions
In this study our research questionis:
1. How effective are sequences of short queries combined with impatient browsing,

compared to using one long query and patient browsing?

8 Yet differently, Jarvelin et al. (2008), had real test persons performing simulated interactive search
tasks, while we performed surface level interaction simulationsin the laboratory without users.
% See Section 3.4.4.
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Methods

In Study 1V realism is addressed by the involvement of test persons to intellectually
collect words which are systematically utilized in session simulations to construct
short-query sequences.?® In the simulations we control how the query sequences are

formed and how long the result list is browsed within a session.

Results
Our main experimental result was that even when highly relevant documents were
required for success, the simple strategies were successful. In more than a half of
the topics after the user had tried out only very few queries (e.g., only three
individual query words) a highly relevant document was retrieved.®” We also
considered query formulation, query launching and browsing costs together. If only
one query per topic is assumed, short queries seem inferior, but they make sense as
sequences if the user wants to minimize the number of search terms used and
accepts taking chances with individual queries.

The binary success measure we used is also justified. In our simulation we
required finding only one relevant document® (using two relevance thresholds) but

this type of simulations could be performed by assuming other success criteria.

8 This approach resembles the simulated work task situation described by Borlund (2000) yet in
simulated work tasks test persons are involved during the various phases of the retrieval.

8 See Table 2in Study IV.

8 Sakai (2006) argues that finding exactly one relevant document with a satisfactory relevance level
and high precision is an important IR task.
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6. Discussion and Conclusions

The starting point of our study was the observed discrepancy between red life
information retrieval process and the implicit assumptions of the traditional test
collection-based evaluation. We proposed using user interaction simulations to
bridge the gap between the observed differences.
Considering the justifications given for the simulated approach given in Chapters
2 and 3 there must be good reasons why interaction simulation approach does not
constitute the mainstream of the laboratory based IR. We suggest that reasons for
thisinclude the following:
lack of tradition to simulate real life interaction processesin RF and SS using
traditional test collections without users®
the dominance of single-query batch experimentation
“multi-problem” nature of real life simulations; we encountered simultaneously
the problems of needing to (i) discover and justify real life behavior which we
abstract in simulations;™ (ii) implement the interaction processes; (iii) run the
experiment using manageabl e and acceptabl e attribute value combinations
(browsing lengths during RF, the maximum number of RF documents used,
etc.); and (iv) address the evaluation of the results.
lack of methodological tradition; issues like freezing and residual collections
have been discussed in the literature but in graded relevance environment we

encountered novel problems.™

8 White et al. (2004) simulate searchers following various relevance paths between granular docu-
ment representations, like title or top-ranking sentences, which can be explored in various orders.
The information along these pathsis used for implicit RF, using various term extraction models, to
select expansion terms describing the information viewed by the searcher.

%\ nformation retrieval is affected by the task, situation and user, including the user’s experience re-
garding the task, topic searched, the search system, techniques; costs and effects; and his creativity.
Obvioudly it is difficult to simulate such (possibly essential) user attributes related to interactive be-
havior.

° For example, assuming that graded RF is given, how should we evaluate the result when a different
relevance threshold may be purposefully used in feedback and final evaluation.
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We first characterized the complexity of real life search process to explicate the
differences between real life searching and the traditional TCE approach, and to
justify our simulations as valid. We presented a verbal description of a ssimplified
interactive RF process together with a more forma description. Then we
constructed simple scenarios for experimenting with simulated user relevance
feedback. We paid specia attention towards highly relevant document because real
users often prefer finding the best documents (see, e.g., Sakai, 2006).%

Our initial intention in Study | was to measure how the quality and quantity of
relevance feedback is related to search effectiveness when the user attempts to give
RF by recognizing feedback within a limited-size browsing window. We aso
wanted to compare direct feedback (RF documents selected by the simulated user)
to pseudo-relevance feedback (all top documents accepted as feedback). High
guality feedback performed best when stringent evaluation criterion was used, while
mixed quality RF performed best when the liberal evaluation criterion was used.
Pseudo-RF also improved search results by each relevance level but it was not very
competitive when the stringent relevance criterion was used.

In Study 11 we focused on the user point of view and performed full freezing of
the initial results retrieved and “seen” by the simulated user, while measuring the
effectiveness rank-wise based on gain cumulated. Also in this setting RF gave
significant improvements compared to the baseline. However, our main conclusion
was that mixed-quality RF made sense. If a small browsing window is used in
collecting feedback, high quality RF may simply not be available. Even when a
large browsing window was used, mixed quality RF was beneficial.

In Study Il we focused on negative user sentiments. The concept negative
higher-order relevance makes such sentiments visible and allows explaining user
stopping behavior which is important in an interactive context. In the course of
writing this paper the idea of considering topical queries from the point of view of
successful versus failed sessions became apparent.

The last paper was born out of the ideas and results of all three previous studies.
Although MAP showed great improvements in Study I, the rank-wise inspection
measured by CG in Study Il combined with full freezing gave somewnhat
disappointing results regarding the positive effect of RF. Statistically significant

%2 The utility of marginally relevant documents is questionable when they do not contain information
adding to the topical description (Kekéldinen and Jarvelin, 2002b, Scholer and Turpin, 2009).
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improvements were observed and they were in the positive direction, but intuitively
speaking the improvements seemed to be of a rather modest size. Moreover, no
feedback may be available in short browsing windows inspected, especiadly if high
quality feedback is demanded. A real user might avoid browsing the “failed” list of
documents. In fact, the need for query modification may be most pressing in those
situations where theinitial query failed.

Therefore, in Study IV we modeled query modifications directly. We
conceptualized the effectiveness of sessions in terms of success or failure. We
acknowledged the existence of negative sentiments by focusing on very impatient
users. Such users prefer short queries, tolerate only short browsing, and quit after
finding one relevant document. We also raised the number of query attempts up to
five queries per topical session. These features are justified because real searchers
may have limited willingness to devote time for inventing search keys and browsing
the retrieved result, while they do utilize the interaction possibility to the full. The
results showed that such approach typically leads to good enough result. Our
research results can be briefly summarized as follows (Table 2).

Table 2. Main results of Studies I-IV summarized

Study | Study 11 Study 11 Study IV
Main 1. Simulated user RF can be 1. User viewpoint 1. NHOR-based 1. Sequences of ex-
results effective at al relevance justifies freezing and curves visualize per- tremely short queries
levels. directly rank-based formance towards are surprisingly ef-
2. High quality RF performs methods like cumu- failure or success. fective —even though
best at stringent evaluation lated gain-based 2. Straightforward to the users did not
criterion; “mixed quality” RF | evaluation operationalize using interact with the list
performs best using liberal 2. RF significantly negative gain values. of the documents
evaluation criterion improves effective- 3. Visualization of retrieved.
3. Pseudo-RF improved ness despite full important user senti-
search results by each rele- freezing; high initial ments; allows ex-
vance level but was not very effort pays off if the plaining stopping
competitive when stringent user is patient during behavior.
criterion was used. evaluation. Mixed
quality RF makes
sense.

Our present study is limited by the fact that we did not vary the attributes of query
and index types, ranking algorithms, and RF methods — as is typicaly done in
traditional TCE experiments. Instead, we varied in RF simulations the maximum
browsing length, the maximum number of RF documents used, and the relevance
level in accepting documents as feedback. In pseudo-RF, we varied the number of
feedback documents used. In session strategy simulations we varied the session

strategies used. As our simulations were based on an existing test collection, we
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used well-defined topics, topical relevance judgments, and we assumed document
independence during evaluation. Differently, in rea life the information needs may
be ill-defined; the concept of relevance is dynamic and it has several manifestations;
and the documents are not independent from each other. We also abstracted away
the issues related to document structure and search interfaces and modeled a
simplified situation during RF and SS where the simulated user was assumed to
inspect al documents - and aways the whole documents - from rank 1 to N.
However, in real life some interactions may be more likely than others due to, e.g.,
interface issues. For example, the user might be guided by misleading document
summaries and not inspect all documents entirely (Turpin et al., 2009). Moreover,
we assumed in RF simulations that the relevance level of the feedback document
was estimated correctly by the ssmulated user. However, in real life the user might
make errors and give (at least partially) incorrect relevance feedback. More fine-
grained models can be developed in the future to include such RF issues into
simulations.

Figuring out good query keys and combinations of keys may be a more important
problem than ranking well for any query (Jarvelin et a., 2008). The single query
approach does not help us to identify which moves are effective between differently
behaving queries.*® Query and browsing-based simulations can be used to study this
issue. Most query reformulations continue to be manual athough people use
available terminological support for query expansion. Because rapid, direct
intellectual query reformulations seem to be an attractive option for real end users,
studying such interaction via simulations is justified. It would be possible to study,
e.g., the effectiveness of sequences of short queries assuming that they are implicitly
structured (see Ruthven, 2008).

The SS simulations could be constructed based on the types of query
modification strategies popular in real lifein various stages of search tasks (see, e.g.,
Vakkari, 2001), extending the types of idealized strategies used in Study IV.

Moreover, the effectiveness of query modification approaches suggested in the

% We may see the effectiveness of a system or a search approach in a new light if we change the
view of the process modeled and the evaluation. Azzopardi (2009a) argues that by focusing evalua-
tion on the query, as opposed to the system, a number of interesting research questions arise; e.g.,
how to model how users generate queries; how much effort should be spent querying; and what is the
relationship between query effort and retrieval effectiveness.
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online searching literature, e.g., “pair-wise facets” and “briefsearches’ (Efthimiadis,
1996) could be explored via simulations in relation to a given success criterion. The
effectiveness of various interactive query and browsing strategies could be studied
even if they are not currently popular in rea life.

To support such simulations extended test collections can be developed in the
future. Such collections would cover the possible “terminological worlds’
reasonably available for the simulated searcher during a session. To construct
extended collections the main concepts and the conceptual relationshipsin the topics
are analyzed, and their expressions in the (relevant) documents are observed by test
persons, e.g., performing a simulated work task. Such collections would facilitate
systematic construction of various query sequences (see Keskustalo and Jarvelin,
2010a; Keskustalo and Jéarvelin, 2010b; Keskustalo et al., 2010).

Regarding the evaluation aspect it is important to notice that particular metrics
used in a batch experiment may not reflect the user task — e.g., assuming precision-
based user tasks, metrics like MAP containing a recall component may be
meaningless in the user domain (Scholer and Turpin, 2009). Rank-wise inspection
(combined with full freezing) based on, e.g., CG-based metrics is well suited for
user simulations because it directly adopts the user point of view (see Jarvelin et d.,
2008).

Our simulations of user interaction aimed at extending the traditional laboratory
view of IR by modeling various “what if” scenarios. Our models were justified by
the user behavior observed in rea life. In the future test persons could be involved
to empirically validate (a posteriori) the extent to which a particular ssimulation is an
accurate representation of the rea world. Future research should also explicate
interactive user behavior and users success criteria regarding both the retrieved
result and their preferences for searching action — how to reach their goal. We have
demonstrated such formative simulations based on a traditional test collection.
Because valid evaluation must take into account the kind of behavior taking placein
real usage sSituations, we expect that test collection-based interactive user

simulations will become a popular way to perform experimentsin the future.
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Errata

The “Average Search Length” column in Tables 2-4 in Paper | contains errors. The
correct figures, from top to bottom, are as follows:

Table 2: 30.0, 29.6, 27.2, 14.3, 10.0, 9.8, 6.3, 5.0, 3.5, 1.0.

Table 3: 30.0, 27.4,21.1, 6.4, 10.0, 9.1, 3.6, 5.0, 2.4, 1.0.

Table 4: 30.0, 24.7, 14.8, 4.4, 10.0, 8.7, 2.5, 5.0, 1.9, 1.0.
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