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ABSTRACT

The progression and growth of prostate cancer (PC) has been shown to be dependent
on androgens. The standard treatment of advanced PC is androgen deprivation, which
reduces the levels of testosterone in the body. Initialy, the treatment inhibits tumor
growth effectively, but it ultimately fails and leads to the emergence of castration-
resigsant PC (CRPC). Presently, no truly effective treatment for CRPC has been
discovered. The androgen receptor gene (AR) is known to be altered in several ways
during PC progression. Thus, AR is believed to be the one of the major contributors to
the emergence of CRPC.

The objective of this thesis was to identify genetic alterations, other than gene
amplification, which result in the overexpression of AR during the progression of PC.
Furthermore, we investigated the effects of AR overexpression on the growth of PC
cells and on the transcription of protein-coding and microRNA (miRNA) genes using
cell line and xenograft models as well as clinical patient samples.

No novel genetic alterations were identified that could explain AR overexpression.
Overexpression of AR was found to enhance the growth of PC cells and the expression
of AR target genes under low androgen conditions. Overexpression of AR increased
significantly the number of upregulated genes. Additionally, several novel AR target
genes associated with regulation of the cell cycle and mitosis were identified. Thus,
one effect of the overexpression of AR seems to be the enhancement of the cell cycle
under low androgen conditions. I nhibition of these target genes significantly decreased
the growth of AR overexpressing cells. Novel androgen-regulated and differentially
expressed miRNAs, such as miR-18a, miR-141, miR-375 and miR-221, were also
identified in the study. The exogenous overexpression of miR-141 was found to
enhance the androgen-dependent growth of PC cells.

At present, androgen deprivation is the standard treatment for advanced PC, and it is
known that the overexpression of AR is a common event in CRPC. Thus, this thesis
provides important information, especially regarding AR target genes in PC cells
expressing high levels of AR.



YHTEENVETO

Eturauhassytvan etenemisen ja kasvun on todettu olevan riippuvainen androgeenien eli
miessukupuolihormonien toiminnasta. Edenneen eturauhasen sydvan standardihoito,
kastraatio, vahentéd elimiston vapaan testosteronin madardd ja estédkin aluksi
tehokkaasti syOvan etenemisen. Hoitoa jatkettaessa vasteen tiedetddn kuitenkin
hdviavan, ja eturauhassybpa muuttuu Kkastraatioresistentiksi. Uusiutuneeseen
kastraatioresistentiin  eturauhassyopéén e ole |0ydetty hyvéaa hoitomuotoa
Androgeenireseptorigeenin  (AR) tiedetd&n muuttuvan eri tavoin eturauhassyévan
edetessa ja AR:n oletetaankin olevan yksi tarkeimmista tekijoista kastraatioresistentin
sybvan kehittymisessa.

Taman  vatoskirjatutkimuksen  tavoitteena  oli ~ maarittdd  muita  kuin
geenimonistumisesta aiheutuvia geneettisa AR:n  yli-ilmentymisen selittéavia
muutoksia. Lisaks tutkittiin eturauhassydvén etenemisen aikana yleisesti todettavan
AR:n yli-ilmentymisen vaikutusta solukasvuun ja proteiingja koodaavien, seka
microRNA  (mIRNA) geenien ilmentymiseen hyddyntéen solulinja= ja
kudossiirremalleja, seka kliinisia syopanaytteita

Tutkimuksessa e |oydetty uusia AR:n yli-ilmentymista sdlittévia yleisia
vaikutusmekanismeja. Y li-ilmentyneen AR:n todettiin herkistdvan eturauhassydpasolut
matalille androgeeni-pitoisuuksille liséten syOpasolujen kasvua sekd kohdegeenien
ilmentymista. Yli-ilmentyneen AR:n todettiin lisdavan merkittévasti ylossadadeltyjen
geenien lukuméarda. Tutkimuksessa tunnistettiin useita aitkaisemmin julkaisemattomia
suoria AR:n kohdegeeneja joiden tiedetédén toimivan solusyklia ja mitoosia edistavina
tekij6ind. Kohonneen AR:n ilmentymisen yksi vaikutusmekanismi nayttadkin liittyvan
solusyklin liséantymiseen matalissa androgeenipitoisuuksissa. Naiden kohdegeenien
toiminnan estéaminen vaikutti lisdksi erityisesti AR:ia yli-ilmentavien solujen kasvun
hidastumiseen. Tyossa |0ydettiin uusia androgeenisdadeltyjd ja eturauhassybvassi
ilmenemiseltddn muuttuneita miRNA:ta, kuten miR-18a, miR-141, miR-375 ja miR-
221. Keinotekoisesti yli-ilmennetyn miR-141:n todettiin lisd8dvan eturauhassytpé-
solujen androgeeniriippuvaista kasvua.

Koska androgeenien vaikutuksen estaminen on edenneen eturauhassydvan vallitseva

merkittdvdd tutkimustietoa erityisesti AR:n  kohdegeeneista korkeasti AR:ia
ilment&vissa eturauhassydpasoluissa.



1 INTRODUCTION

Prostate cancer (PC) is the most common malignancy in males and is the second
highest cause of cancer-related mortality in developed countries (Curado et al. 2007,
Coleman et al. 2008). The mean age at diagnosis is approximately 71 years. The rates
of PC incidence have steadily increased in many developed countries over the last few
decades. The age-adjusted incidence was 103.9 per 100,000 males in Finland during
the period of 2002-2006. However, this trend seems to be reversed itself; in 2007 and
2008, the age-adjusted incidence was 85.6 and 83.1, respectively. In 2008, over 4200
new PC diagnoses were made in Finland, accounting for just over 30% of all new male
cancers, with more than 800 men dying from the disease that year. In 2009, the
prevalence of prostate cancer rose to over 35,000 in Finland. (Finnish Cancer Registry
2010, www.syoparekisteri.fi).

PC is a complex, multifactorial disease. Despite its high prevalence, the molecular
mechanisms that induce PC progression are poorly understood. Tumorigenesis is
generally shown to be driven by stepwise processes that involve the genetic alteration
of critical genes, resulting in altered expression and function (Vogelstein and Kinzler
1993, Hanahan and Weinberg 2000). As the majority of prostate cancers arise from
androgen-dependent secretory epithelial cells, androgen receptor (AR) signaling is one
common element that affects both the development and progression of PC. The
standard treatment for advanced PC is androgen deprivation, which has been used for
over half a century (Huggins and Hodges 1941). Under normal conditions, local
androgen metabolism maintains a balance between the proliferation and apoptotic cell
death of prostatic epithelial cells. In PC, this balance is disturbed to drive proliferation
and survival of the cancerous cells (Isaacs et al. 1994). The AR has also been shown to
be altered in several ways during the progression of hormone-independent, castration-
resistant PC (CRPC) (Visakorpi et al. 1995, Taplin et al. 1995, Dehm et al. 2008).

The first aim of this thesis was to identify novel genetic alterations that induce the
increased expression of AR using PC cell lines, xenograft models and clinical PC
samples. The other am of this thesis was to investigate AR overexpression under
conditions of varying androgen levels and the effect on the growth of PC cells using an
in vitro AR overexpression model. An additional aim was to identify novel downstream
candidate protein coding genes and microRNA genes that are involved in the
emergence of CRPC.
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2 REVIEW OF THE LITERATURE

2.1 Normal anatomy and function of the prostate gland

The prostate gland is a walnut-sized exocrine gland that belongs to the male
reproductive system. It islocated just below the bladder and surrounds the urethra. The
function of the progate is to store and secrete a slightly alkaline seminal fluid that
usually constitutes 25-30% of the total volume of semen along with spermatozoa.
Seminal fluid is generally composed of simple sugars, zinc and the proteolytic
enzymes, progatic acid phosphatase (PAP) and prostate-specific antigen (PSA). The
function of the seminal fluid is to protect the genetic material (DNA) of the
spermatozoa by aiding in sperm motility and promoting survival within the acidic
vaginal tract. Anatomically, the prostate can be divided into three different zones: the
peripheral zone, the central zone and the transition zone. Each glandular zone has a
specific architecture with varying composition of stromal and epithelial (both basal and
differentiated secretory luminal epithelial) cells (reviewed by Cunha et al. 1987, Taplin
and Ho 2001).

2.2 Androgen signaling in normal prostate

Androgens belong to the group of male steroid hormones that are produced by Leydig
cells in the testicles. The hypothalamus initially regulates androgen production. It
releases luteinizing hormone releasing hormone (LHRH) in short pulses when levels of
blood testosterone are decreased. The activation of the LHRH receptors of the anterior
pituitary gland leads to increased synthesis and release of luteinizing hormone (LH)
into the circulation, which induces steroidogenesis in Leydig cells. Some androgens,
like dehydroepiandrosterone (DHEA), are also produced in small amounts by the
adrenal cortex. In the progate, testosterone is transformed into a more active form,
dihydrotestosterone (DHT), by 5-alpha-reductase enzymes. Testosterone (T) can be
further metabolized into several different conjugates, such as androstenediol, which
stimulates the hypothalamus, or androsterone, which is secreted into the urine
(reviewed by Cunhaet al. 1987, Taplin and Ho 2001).

To function correctly, the prostate gland requires androgens, especially testosterone
and DHT. Progtate epithelia cells are androgen-dependent. The normal differentiation
of prostatic basal epithelial cells into secretory luminal epithelial cells is androgen-
regulated. Differentiation is the direct effect of androgens on progatic epithelial cells.
However, androgens also stimulate the proliferation of the epithelial cells via the
paracrinal support of the stromal cells. These cells secrete andromedins, which are
crucial for the survival of the epithelial cells. This survival support is mediated by
androgens and AR signaling. Without androgens, e.g., after castration, the stromal
support of the epithelia is blocked, causing the rapid apoptosis of prostatic epithelial
cells. The function of androgens is mediated by the androgen receptor (AR), whichisa
ligand-inducible transcription factor (reviewed by Leenders and Schalken 2003, Isaacs
and Isaacs 2004, Vander Griend et al. 2010).
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The androgen receptor (AR) modulates the expression of genes involved in
proliferation and differentiation. The AR belongs to the steroid receptor family of the
nuclear receptor superfamily. This family consists of the glucocorticoid, estrogene,
progesterone and mineralocorticoid receptors. Androgens and AR are important not
only in the prostate but also for the development and maintenance of the male sexual
phenotype during embryogenesis and for male sexua maturation at puberty. In
adulthood, androgens remain essential for the maintenance of reproductive function
(progtate gland) and sexual drive. They are also important in a wide variety of non-
reproductive tissues, including the skin, bone, muscle, and adipose tissues (Lubahn et
al. 1988, Jenster et al. 1991, reviewed by Gelmann 2002, Heinlein and Chang 2002,
Lee and Chang 2003).

2.2.1 Genetic structure of AR

Genes are composed of DNA located in specific and highly regulated regions. Regions
that encode proteins are called exons, and the regions between exons are called introns.
Every gene also contains untrandated expression regulation sites at the 5’ and 3’ ends
of the gene called the 5 and 3’ untrandated regions (UTRs), respectively. The
transcription of the gene starts when certain transcription factors (TFs) bind to the open
region of the promoter sites at the 5’ end of a gene. Gene promotion sites are often
highly conserved between species and consist of DNA sequences such as the TATA
box (5-TATAAA-3' sequence) and are often guanine and cytosine (GC) rich.

The human AR gene, located in the chromosome Xq11-12 region, is over 90 kb long
and contains eight exons (Chang et al. 1988, Lubahn et al. 1988 and Trapman et al.
1988). The genetic structure of AR is illustrated in Figure 1, which has been adapted
from Gelmann (2002). The first exon is approximately 1580 bp long and encodes the
main portion of the activation function-1 (AF-1) domain (AR protein function will be
discussed in the next paragraph). Exon 1 contains two highly polymorphic repeat
regions (CAG and GGN) (Chamberlain et al. 1994, Choong et al. 1998). The length of
the CAG (glutamine triplet) varies from 14 to 35 repeats, with an average of 21 + 2
repeats (Irvine et al. 1995). The C-terminal polyglycine (GGN) repeat has an average
of 16 repeats and shows a lesser degree of polymorphism than the CAG repeat (Macke
et al. 1993, Irvine et al. 1995). Two transcription activation units (TAUS) have been
identified in the N-terminal domain. The first (TAU-1) is responsible for AR
transactivation capability (Jenster et al. 1995, Callewaert et al. 2006).

The second domain, which is a DNA-binding domain (DBD), is encoded by exon 2
and partially by exon 3. This domain contains a DNA-binding structure formed by two
zinc fingers. A hinge region is located at the end of exon 3 and the beginning of exon
4, which contains the major nuclear localization signal (NLS). The hinge region is
needed for intraprotein interaction between AF-1 and AF-2 domains (AR protein
function is discussed in the next paragraph). The C-terminal domain is encoded by
exons 4-8 and forms a ligand-binding domain (LBD), which includes the transcription
activation function domains (AF-2) (Simental et al. 1991, Gelmann 2002).
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Figure 1. Genomic organization of the AR gene. The genome spans more than 90 kb,
which includes the exon organization shown in the second panel. The location of
repeat regionsin the first exon, which codes for the N-terminal domain, is shown in the
third panel. The diagram of the protein structure demonstrates how the exon
organization translates into discrete functional regions of the receptor. (Gelmann EP:
J Clin Oncol. Molecular Biology of Androgen Receptor. 20. (13), 2002: 3001-15.
Reprinted with permission from © 2002 American Society of Clinical Oncology. All
rights reserved.)

The AR gene has two transcription initiation sites (ARTIS | and ARTIS 1) in a 13-base
pair region (Faber et al 1991 and 1993). The core promoter (-74 to + 87) of AR lacks
both a TATA and CAAT box but has an SP1-binding site (-52-57) and a palindromic
homopurine (-129-70) repeat. ARTIS | and Il have been demonstrated to function as
independent overlapping pathways, in which SP1 binding induces the transcription of
AR through ARTIS Il but has no influence on ARTIS | (Faber et al. 1991 and 1993).
However, the regulation and the roles of these two overlapping pathways are unclear.
Several putative positively regulating cis-acting elements can be found upstream of AR
(Mizokami et al. 1994a, Takane et al. 1996). Functional studies of the promoter have
shown that the palindromic homopurine repeat is important for AR transcription and
may facilitate transcription initiation from the GC-rich region (Chen et al. 1997,
Takane et al. 1996). Mizokami et al. (1994) identified a CAMP-responsive element 518
bp upstream of the core promoter. They also found a putative suppression region from
-540 to -150 bp from the core promoter and another cis-acting region(s) at -1390 to -
940 bp. Other functional regulatory elements that may alter AR transcription have been
found in helix-loop-helix-like motifs 1 and 2, -179 and -37 bp upstream from the core
promoter (Takane et a 1996), and nuclear factor I/C (CCAAT-binding transcription
factor, NFIC) in the distal part of the promoter (Song et al. 1999). AR also regulates
itself via exonic androgen responsive elements (ARES) (Grad et al. 1999).

The untranslated regions (UTRs) of AR are very long. The 5 UTR is approximately 1.1
kb whilst this region usually spans a few hundred base pairs in most genes. The 5 UTR
contains SP1 sites, which are binding sites that are essential for AR trandation
(Mizokami et al. 1994b). The 3'UTR is even longer at approximately 7 kb according to
northern blot analysis (Lubahn et al. 1988, Trapman et al. 1988). AR has two
differently spliced mRNAs in its 3'UTR region (the major forms are 10.6 kb and 7 kb)
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(Faber et al. 1993 and 1991). The I UTR also contains highly conserved UC-rich
motifs and 3'-CCCUCCC poly(C)-binding protein (CP) motifs that are 4036 and 4071
bp downstream of the ARTIS. The UC-rich region is atarget of the Elav/Hu family of
RNA binding proteins such as HUR, which is involved in the stabilization of several
MRNASs containing AU-rich elements. The UC-rich region also simultaneously binds
CP1 and 2, which both have a role in the control of mRNA turnover and the rate of
trandation. Thus, these proteins are suggested to have a cooperative role in controlling
AR expression in prostate cancer (Wang et al. 2004). Many growth-related mRNAs are
known to have atypical 5’ UTRs, which are often long and GC-rich (Pickering et al.
2005). Interestingly, relatively recent findings have shown that short non-coding
microRNAs (miRNAS) are known to downregulate growth related genes, in particular,
by binding in a sequence-specific manner in their 3 UTR. miRNA controlled genes are
also known to contain often AU-rich elements in their UTRs (Vasudevan et al. 2008).

2.2.2 Protein structure and function of AR

The most important domains of AR include the amino-terminal activation function-1
(AF-1) domain, the DNA-binding domain (in the middle) and the carboxy-terminal
ligand-binding (LBD) activation function-2 (AF-2) domain. The LBD folds into 12
helices, which form a ligand-binding pocket also known to exist in other members of
the steroid receptor family. Ligand (DHT or T) binding to AR induces the folding of
helix 12 over the ligand pocket, enabling the interaction of AF-1 and -2 and the
dimerization and activation of the protein (Matias et al. 2000, Gelmann 2002). Without
its ligand, AR is located in the cytoplasm where it is bound with high affinity to a
complex of chaperone proteins, which belong to the heat shock protein family. In the
presence of ligand, the composition and conformation of the AR-chaperone complex is
changed causing the release of AR. This release allows intramolecular interactions,
activation and translocation of AR to the nucleus (Matias et al. 2000, Gelmann 2002,
McEwan 2004). In the nucleus, the dimerized receptor complex binds to a palindromic
AR response element (ARE) in the target genes, thus influencing their expression.
Androgens are capable of regulating the expression of hundreds of target genes in the
progtate gland including prostate-specific antigen (PSA) (Young et al. 1992), prostate-
acid phosphatase (PAP), many growth factors, and genes involved in cell cycle control
and apoptosis (Perry et al. 1996, Fasciana et al. 1996).

The interaction between the LBD and the N-terminal transactivation domain is needed
for the full ligand-dependent transactivation and stabilization of AR (Ikonen et al.
1997, Schaufele et al. 2005). In tota, ten phosphorylation, three acetylation, and two
sumoylation sites of AR have been documented to influence and regulate the
transcriptional activity, localization and stability of AR (Fig. 2, reviewed by McEwan
2004, Faus and Haendler 2006, AR coregulators to be discussed later). One site, Ser94,
is congtitutively phosphorylated, whereas S16, S81, S256, S308, $S424 and S650
exhibit elevated phosphorylation following ligand binding in response to androgen
(Zhou et al. 1995, Gioeli et al. 2002 and 2006). Phosphorylation of S650 by MAPK
kinases in the hinge region is shown to increase the nuclear localization of AR (Gioeli
et al. 2006). However, no single phosphorylation site seems to have a major impact on
AR activity since no mutated phosphorylation site alone has been shown to
dramatically affect the transcriptional activity of AR (Gioeli et al. 2006, Faus and
Haendler 2006)
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Three acetylation sites clustering within the hinge region, at positions 630, 632 and
633, of AR have been identified, forming a KXKK motif. They play a role in the
modulation of the transcriptional activity of AR by favoring nuclear translocation and
shifting the balance between coactivator and corepressor binding (Fu et al. 2000 and
2002, Thomas et al. 2004). Mutation of lysine residues to alanine in the acetylation
motif dramatically impairs AR function, preventing the stimulation of coactivators and
favoring the recruitment of corepressors (Fu et al. 2002, Gaughan et al. 2002).

AR has two sumoylation sites (K386 and K520) and was the first hormone receptor
shown to be sumoylated (Poukka et al. 2000). AR sumoylation is hormone-dependent
and involves the Ubc9 and E3 ligases of the PIAS family (Poukka 1999, Kotaja et al.
2002). The effects of sumoylation are mainly repressive but are also dependent on the
cell context. Mutation of the SUMO acceptor sites has been found to stimulate AR
activity. Furthermore, AR regulated promoters respond differently to expression
changes of enzymes involved in sumoylation, thus modulating AR-dependent
transcription activation in a gene-specific manner (Geserick et al. 2003).

Ac
Ac
SUMO-1 SUMO-1 Ac
w| 5m| a3 ||| 633
. 2
I AFl 2 LBD
I:; ﬁl“ﬂi z|n| zs&LmL 4z4| 5|_=J 650 Tﬂ\
P - e = e T
® ® @EeE®e&® ® ® G ®
4"
AL

Figure 2. Post-trandational modifications of the AR protein. Stes of phosphorylation
(P), sumoylation (SUMO-1) and acetylation (Ac) are shown. (McEwan 1J, Molecular
mechanisms of androgen receptor-mediated gene regulation: structure-function
analysis of the AF-1 domain Endocrine-Related Cancer (2004), 11, 281-293 Reprinted
with permission from The Endocrine Society, Copyright 2004 .)

Crosstalk between the phosphorylation, acetylation and sumoylation of AR has not yet
been extensively studied. However, some initial studies provide evidence that AR
acetylation mutants exhibit reduced phosphorylation and AR S94A phosphorylation
mutants respond less well to p300-mediated acetylation (Fu et al. 2004).
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2.2.3 AR coregulators

AR-mediated transactivation requires several auxiliary protein complexes. The
transcriptional activity of AR is modulated by the interaction of AR with hundreds of
coregulators and by posttranslational modifications of both AR and its coregulators
(reviewed by Heemers and Tindall 2007). According to Heemers and Tindall (2007),
AR coregulators may be divided into three general classes: 1) general transcription
factors, 2) AR coregulators with diverse properties, and 3) specific transcription
factors. The most commonly known and extensively studied coregulator is NCOA1
(SRC1), which was the first isolated nuclear receptor coactivator (Onate et al. 1995).
Group 1 includes coregulators of the direct interaction of AR with the general
transcription units GTF2F2 (THIF) and GTF2H3 (TFIIH), which facilitates AR
transcription activity in a direct or indirect manner (McEwan et al. 1997, Lee et al.
2000). Group 2 can be further divided into several subclasses according to their main
function in the nucleus. Especialy interesting subclasses are those that include AR
modifying properties such as phosphorylation, acetylation, sumoylation/ubiquitination,
mentioned above, as well as those that interact directly with the chromatin. Several
histone acetylases (HATS) have been shown to interact with the AR and modulate its
transactivating properties, such as the coactivators NCOA1 (SRC1, AIB1), NCOA2
(TIF2, SRC2), NCOA3 (SRC3), EP300 (p300), KAT2B (P/ICAF), KATS (Tip60) and
the corepressors SIRT1, NCOR1 and the HDACs (Heemers and Tindall 2007).
Interestingly, Tip60, p300 and P/ICAF have also been shown to directly acetylate AR
itself whilst AR activity is inhibited by the histone deacetylase activity of HDACL (Fu
et al. 2000, Gaughan et al. 2002). Group 3 consists of multiple specific transcription
factors including, e.g., Foxal, Octl, ETS1, AP-1, and EGR (Heemers and Tindall
2007). Overall, several dynamic changes in covalent histone modification status have
been associated with androgen/AR-stimulated transcription (Kang et al. 2004).

Coregulators that modify sumoylation and ubiquitination of AR are, e.g., SUMQOS3,
UBE2Il and PIAS proteins (Zheng et al. 2006, Poukka et al. 1999, Kotagja et al. 2002).
Several kinases, cell cycle regulators, chaperones and cytoskeletal proteins, as well as
signal integrators and transducers such as MAK, CDK6, HSPA4 (Hsp70), TGFB1I1
(ARAS5), ATAD2 (ANCCA) and STATS3, have been shown to directly interact with
AR (Yeah et al. 1996, Zou et al. 2009). Classical transcription factors such as JUN,
FOS, FOXA1 and POU2F1 (OCT1) have also been suggested to interact with AR
functioning as coactivators or repressors (Sato et al. 1997, Yu et al. 2005, Wang et al.
20090, reviewed by Heemers and Tindall 2007). The modulation and recruitment of
AR and its coregulators in the transcriptome is a slow and very complex mechanism, as
recently demonstrated by Wang et al. (2005 and 2009b).
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2.3 Cancer of the prostate gland

Prostate cancer (PC) originates from glandular epithelial cells. Histological changes
resembling in situ cancer are called prostatic intragpithelial neoplasias (PIN). The
tumor normally grows very slowly, remaining confined to the organ and leaving the
patient asymptomatic for decades. As the cancer advances, it first invades through the
capsule and spreads locally to the surrounding tissues. It finally metastasizes further to
lymph nodes and bones and to other organs such as the lungs and liver. Localized
intracapsular prostate cancer can be cured by radical prostatectomy. However, 20-40%
of cancers relapse (Van Poppel et al. 2009). Once the tumor has invaded the capsule,
the rate of relapse increases significantly (Carver et al. 2006, Bill-Axelson et al. 2008).
Locally advanced and metastasized PC is treated by androgen deprivation. Eventually,
an androgen independent cell population arises during hormonal treatment and
castration-resistant PC (CRPC) develops with an average expected survival period of
17 months (Fig. 3, Labrie et al. 2005, Isaacs and | saacs 2004, Petrylak et al. 2004).

The most widespread method for PC screening is via the serum measurement of
prostate-specific antigen (PSA). Increased levels of PSA may suggest the presence of
PC, but PSA levels can be also increased by, eg., infection or benign prostatic
hyperplasia (BPH). Thus, PSA is not a PC-specific marker (Gleason 1966, Papsidero et
al. 1985, Stamey et al. 1987). TNM classification and Gleason scoring are more
commonly used as prognostic tools for diagnosed cancer (Kattan et al. 1998, Epstein et
al. 2006). TNM classification evaluates the size of the tumor (T), lymph node
metastasis (N), and distal metastasis (M) (Chisholm et al. 1992). The Gleason score is
the sum of the primary and secondary grades of the glandular differentiation. Gleason
grades range from 1 (mild structural changes) to 5 (full disappearance of glandular
structure). Thus, the sum of scores ranges from 2 to 10. A high Gleason score predicts
apoorer prognosis for the patient (Epstein et al. 2006)
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Figure 3. Schematic representation of the evolution of prostate cancer. The
represented scale is an estimated average. The diagnosis (P3A, digital rectal
examination, and transrectal echography of the prostate) cannot be made until the
tumor reaches a relatively large volume (0.3 cc or more). PC is only curable when the
cancer is organ-confined. (Labrie F 2005, Gonadotropin-releasng hormone agonists
in the treatment of prostate cancer. Endocrine Reviews. 26, 361-793 Reprinted with
permission from The Endocrine Society, Copyright 2005)

2.3.1 Genetic predisposition

Hereditary factors have been demonstrated to be important in the development of
prostate cancer (reviewed by Gronberg 2000). Twin studies have estimated that up to
40% of the prostate cancer risk can be explained by heritable factors (Lichtenstein et
al. 2000). The genetic predisposition may consist of both high- and low-penetrance
genes. Mutations in high-penetrance susceptibility genes are generally very rare but
may increase the risk of cancer several fold, whereas mutations or single nucleotide
polymorphisms (SNPs) in the low-penetrance genes increase the risk of cancer only
modestly (Lichtenstein et al. 2000). Thus far, only elaC homolog 2 (ELAC2),
macrophage scavenger receptor 1 (MSR1), and ribonuclease L (RNASEL) have been
suggested to be high-penetrance genes. ELAC2 is involved in processing
endoribonuclease activity. MSR1 takes part in the regulation of scavenger receptor
activity in macrophages, and RNASEL is a component of the antivira and
antiproliferative system of interferons. However, they explain only a small proportion
of the genetic predisposition for PC. Several low-penetrance genes have been
suggested, but their significance remains unclear (Seppéla et al. 2003, Gillanders et al.
2004, Rokman et al. 2004).

A recent genome-wide association study of approximately 3350 PCs aswell as controls
identified SNPs at seven highly significant susceptibility loci on chromosomes 2, 4, 8,
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11 and 22 (Eeles et al. 2009). One SNP was located in 2931 (in intron 1 of ITGAG, the
gene encoding integrin alpha 6), and one was located in 8p21 (10 kb downstream of
NKX3-1, which codes for an androgen-regulated homeobox protein, NKX3-1). The
remaining SNPs were located at 2p21 (THADA), 4922 (PDLIM5), 4924 (TET2), 11p15
(IGF2) and 22913 (TTLL1). Another recent genome-wide association study found four
variants associated with the susceptibility to PC (Gudmundsson et al. 2009). The
variants were one in 3921.3, two in 8g24.21 and one in 11g13. Interestingly, human
prostatic acid phosphatase (ACPP), which has been used as a diagnostic marker for
PC, is located at one of the locations identified in this study (Li and Sharief 1993,
Sotelo et al. 2010). Another interesting finding was that two SNPs were located within
the 8924 region, a region containing enhancer elements that have been suggested to
regulate the transcription of the MYC oncogene (Sotelo et al. 2010). The fourth SNP
was located near the CCND1 (cyclin D1) gene in the 11g13 region. This gene is also
known to be amplified and functions as an oncogene in many cancers (Fu et al. 2004).

2.3.2 Somatic genetic changes in prostate cancer

Somatic genetic changes in PC can include mutations, copy number alterations,
translocations or epigenetic changes. Aberrations may include gain- or loss-of-function
changes depending on the change and the target gene (Vogelstein and Kinzler 1993,
Hanahan and Weinberg 2000). In the next chapters, the genes that are commonly
known to carry somatic alterations in prostate cancer are introduced, and they will be
further sub-divided into both gain- and loss-of-function categories. Some of these
genes are known to participate in AR signaling; however, gain-of-function alterations
within the AR gene itself will be discussed later in their own individual chapters.

2.3.2.1 Loss-of-function alterations in prostate cancer

The most common regions for loss-of-function changes (and the putative target genes
therein) are chromosome 5q (APC), 6q (not known), 8p (NKX3-1), 10g (PTEN), 13q
(RBI), 160, 17p, and 18q (Saramé&ki and Visakorpi 2007). Phosphatase and tensin
homolog (PTEN), located a 100923, negatively regulates intracellular levels of
dephosphorylated phosphoinositide substrates and functions as a tumor suppressor by
negatively regulating the AKT/PKB signaling pathway, which promotes cell survival
and inhibits apoptosis. The PTEN locus has been shown to be deleted and/or mutated
in roughly 40% of late stage prostate cancer cases (Li et al. 1997, Dong et al. 2006).
APC acts as an antagonist of the Wnt signaling pathway. Mutations of APC are known
to cause familial adenomatous polyposis (FAP) (Phelps et al. 2009). NKX3-1 is a well-
known AR target gene and will be discussed later.

Tumor protein p53 (TP53, 17p13.1) is a transcription factor that regulates cell cycle
arrest, apoptoss and DNA repair. It is commonly known as “the guardian of the
genome”, and the protein functions as a tumor suppressor. TP53 is commonly deleted
during the later stages of prostate cancer. Mutated TP53 protein has a prolonged half-
life, leading to the nuclear accumulation of the abnormal protein, which fails to bind
the consensus DNA binding site. Mutations of TP53, PTEN and RB1 are rare in PC.
(Visakorpi 1992, Isaacs WB 1995, Hollstein and Hainaut 2010, Taylor et al. 2010).
Hypermethylation of the glutathione S-transferase gene (GSTP1) is the most
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commonly reported epigenetic alteration in PC (reviewed by Meers et al. 2007). In
addition, hypermethylation of the well-known tumor suppressor, APC, has been
reported to occur frequently in the early stages of PC, suggesting its potential use as a
biomarker (Y egnasubramanian et al. 2004).

2.3.2.2 Gain-of-function alterations in prostate cancer

Somatic gain-of-function alterations, excluding mutations of the AR gene and ETS
fusion genes, are largely unknown. The AR gene and ETS fusion genes will be
discussed separately. Gain-of-function mutations in signature oncogenes, such as RAS
and EGFR, have been found in several other cancers (reviewed by Dong 2005).
However, only few have been identified in prostate cancer (Taylor et al. 2010). The
most common chromosomal gains in PC are located in the 7p/q, 8, 9p and Xq regions
of the genome. In addition, a chromosomal rearrangement in 21q has been observed in
over 50% of prostate cancers. The putative target genes include, 79: MCM7 and EZH2,
8qg: TCEB1, MYC, and EIF3S3, Xq: AR (discussed later) and 219: TMPRS2:ERG
fusion (discussed later) (Nupponen et al. 2000, Saraméki et al. 2001, Savinainen et al.
2004, Saraméki and Visakorpi 2007, Taylor et al. 2010).

MCM7 and EZH2, located in 7q, have both been suggested as potential prognostic
markers in prostate cancer (Laitinen et al. 2008, Ren et al. 2006, Saramaki et al. 2006,
Varambally et al. 2002). EZH2 functions in a multiprotein complex called polycomb
repressive complex 2 (PRC2). The primary activity of the EZH2 protein complex isto
trimethylate histone H3 lysine 27 (H3K27) at target gene promoters, leading to
epigenetic silencing. Overexpression of EZH2 promotes cell proliferation, colony
formation and increased invasion of benign cells both in vitro and in vivo (Saraméki et
al. 2006, reviewed by Simon and Lange 2008).

The most frequent high-level amplification in late stage prostate cancer is found at the
8q region. This region harbors MYC, a known oncogene; however, this region also
contains TCEB1 and EIF3H, which have been suggested to function as oncogenes
(Savinainen et al. 2006, Jadava et al. 2009). MYC (8g24.21) encodes the v-myc
myelocytomatosis viral oncogene homolog, which is a transcription factor involved in
cell cycle progression, apoptosis and cellular transformation. Amplification of MYC
has been shown to be a common event in late state PC. However, gene amplification is
not necessarily correlated with overexpression at the protein level (Edwards et al.
2003, Savinainen et al. 2004, Li et al. 2008). Still, overexpression of MYC in
transgenic mouse models results in prostatic intraepithelial neoplasia (PIN), and
together with loss of NKX3-1 it is associated in carcinogenesis (Zhang et al. 2000,
Ellwood-Yen et al. 2003, Williams et al. 2005).
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2.4 Androgen receptor (AR) signaling pathway in PC

The AR signaling pathway is dependent on androgen metabolism, ligand specificity,
the expression level of AR, ligand-independent activation and cofactor interactions.
Several aterationstake place in the AR signaling pathway during the development and
progression of PC. These changes include somatic mutations of AR that alow the
usage of a wider spectrum of ligands, the amplification of AR, leading to higher
expression levels and a shift from paracrine stromal growth support to an autocrine
mode. In addition, changes in the balance of AR coregulators and AR splice variants
allowing ligand-independent AR action have been suggested. It has also been shown
that many of the androgen-regulated genes become up-regulated during the progression
of the disease to CRPC (Holzbeierlein et al. 2004). Only a very few PCs and CRPCs
are considered to have an inactive AR signaling pathway. In the following chapters, the
most frequently studied alterations of AR and AR signaling in PC are introduced
(reviewed by Feldman and Feldman 2001, Isaacs and Isaacs 2004). Changes in
different parts of AR pathway signaling during PC progression are discussed
individually.

2.4.1 Changes in androgen metabolism

There is abundant evidence that androgens influence the development of PC. In alarge
randomized PC prevention trial, over 18,800 men aged 55 years or older were treated
with finasteride, aninhibitor of steroid 5«-reductase that converts tesosteroneto DHT.
Finasteride treatment was found to reduce the risk of developing prostate cancer by
20% (Thompson et al. 2003). Similar results were shown in a prevention trial in which
6729 men aged 50 to 75 were treated with another 5«-reductase inhibitor, dutasteride.
The relative risk reduction with dutasteride was 22.8% (Andriole et al. 2010). In
advanced prostate cancer, even when androgen deprivation therapy is used, the
intraprostatic DHT levels remain relatively high. Generally only a 50% reduction in
DHT levels is observed after androgen depletion (reviewed by Labrie et al. 2005).
Intracrine activity of the PC cells themselves has been suggested to be involved in
increasing DHT levels (Gao et al. 2001, Vander Griend et al. 2010). It has also been
reported that the expression of many enzymes involved in steroidogenesis are
upregulated during CRPC progression (Holzbeierlein et al. 2004, Montgomery et al.
2008, Locke et al. 2010, Leon et al. 2010). However, in the recent study, Hofland et al.
(2010) could only detect a low level of simultaneous expression of the enzymes
CYP17A1 and HSD3B1, which are essential for de novo synthesis of androgens, in 5 of
88 patients. SRD5A1 and AKR1C3 expression were shown to be increased during
androgen deprivation, suggesting the importance of DHT synthesis of an adrenal origin
androgens instead of from cholesterol (Fig. 4, adapted from Hofland et al. 2010). The
importance of androgen metabolism was confirmed by recent clinical trials with
abiraterone, a CYP17A1l inhibitor, which directly indicated that CRPC is till
androgen-dependent (Attard et al. 2008, 2009a and b, Ryan et al. 2010).
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Figure 4. Scheme of the classc steroid biosynthetic pathway. CYP, cytochrome
P450; HSD, hydroxysteroid dehydrogenase; CYB5, cytochrome bs; AKR, aldo-keto
reductase; SRD, 5-alpha reductase. (Hofland J et al. Evidence of limited contributions
for intratumoral steroidogenesis in prostate cancer. Cancer Research. 70(3):1256-64
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2010)

2.4.2 Somatic mutations of AR

AR mutations seem to be rare in early stage, untreated PC (Newmarck et al. 1992,
Culig et al. 1993, Taplin et al. 1995 & 2003, Wallen et al. 1999). However, the number
of AR mutations increases with progression of the disease and after hormonal
treatments. AR mutations can be identified in approximately 20-30% of late stage
CRPC tumors. Collectively, only two reports identify point mutations within AR in a
significant number of untreated tumor samples. Gaddipati and co-authors (1994) found
the LNCaP mutation (T877A) in 25% of the transurethral resections of prostate
(TURP) specimens from patients with untreated metastatic PC, whereas Tilley et al.
(1996) reported that roughly 50% of hormone naive PCs have a mutated AR. However,
the tumors used in these studies were late stage and rare forms of PC. Generally, the
highest frequency of mutations seems to be in PCs treated with antiandrogens
(especially in patients treated with flutamide). Mutation frequencies of 10-30% have
been reported in such cases (Suzuki et al. 1996, Taplin et al. 1999 and 2003, Buchanan
et al. 2001).

The most significant known AR mutations are known to affect the ligand specificity of
AR. The most frequently found point mutation of AR isthe T877A mutation (threonine
at position 877 is substituted to alanine). This mutation was the first AR mutation
identified in PC and was originally characterized in the LNCaP cell line (Veldscholte
et al. 1990). Thisamino acid is located on helix 11 at the ligand-binding pocket, which
interacts directly with the ligand. It aters the stereochemistry of the binding pocket and
broadens the ligand binding of AR (Sack et al. 2001). It allows other nuclear hormones
(estrogen and progestin), corticosteroids (cortisol and cortisone) and antiandrogens
(cyproterone and hydroxyflutamide) to activate AR (Culig et al. 1993 and 1999, Chang
et al. 2001, Steketee et al. 2002).
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In addition to the T877A, several other mutations at the AR-LBD, e.g., L701H,
V715M, V730M and H874Y, which enhance the transcriptional sensitivity of AR to
other steroids including adrenal androgens and/or antiandrogens, have been identified
(Suzuki et al. 1993, Culig et al. 1993, Newmark et al. 1992 and Taplin et al. 1995).
L701H was originally found in CRPC (Suzuki et al. 1993, Watanabe et al. 1997) and
in the MDA PCa 2a cell line, which also harbors the T877A mutation (Zhao et al.
1999). L701H mutated cells are highly responsive to glucocorticoids (cortisol and
cortisone) at the concentrations found in humans (Zhao et al. 1999, van de Wijngaart et
al. 2010).

H874Y was originally identified in CRPC patients treated with flutamide (Taplin et al.
1995). This mutation was also identified in the xenograft CWR22, which was derived
from a patient suffering from primary PC who also had symptoms of bone metastasis.
The original patient tumor was graded with a Gleason score 9 (Weinstain et al. 1994,
Tan et al. 1997). DHEA, estradiol, progesterone, and hydroxyflutamide induced a
greater transcriptional response from the H874Y mutant than the wild-type AR (Taplin
et al. 1995, Tan et al. 1997, Steketee et al. 2002). This site is located distant from the
ligand-binding pocket and affects the binding of coregulator proteins (enhancing e.g.
p160 mediated AR transactivation). Thus, H874Y indirectly affects ligand specificity
by causing a conformational change in the AR protein (Steketee et al. 2002, Duff et al.
2005). The 22Rv1 cell line, which is derived from the castration-resistant form of PC
xenograft CWR22 (CWR22R), also carries an LBD deletion and a duplication of the
DBD domain (exon 3). These mutations are not present in the androgen-sensitive
CWR22Pc cell line (Dagvadorj et al. 2008, Dehm et al. 2008).

V715M and W741C are less frequently studied, as these mutations are rare within PC.
However, they do result in functional changes in AR. V715M was originally found in
CRPC patients and is reported to be activated by adrenal androgens and progesterone
and is sensitive to low androgen concentrations (Culig et al. 1993, Thompson et al.
2001). The W741C mutation was found in bicalutamide treated patients (Haapala et al.
2001, Taplin et al. 2003). The growth of KUCaP xenografts carrying the W741C
mutation is accelerated by treatment with bicalutamide and flutamide (Y oshida et al.
2005, Terada et al. 2010). Additionally, the LNCaP cell line has been shown to acquire
the ability for bicalutamide-resistant growth via the W741C mutation when exposed to
long-term treatment with bicalutamid (Hara et al. 2003).

A smaller number of missense mutations have been detected in other domains of AR.
Missense mutations (K179R and C619Y) which affect the N-terminal and DBD
regions of the AR protein have been identified in two patients with untreated primary
prostate cancer (Tilley et al. 1996, Marcelli et al. 2000). K179R has been suggested to
play a more potent role in AR deregulation (Callewaert et a 2006), whereas C619Y
has been found to cause inactivation and mislocation of the receptor (Nazareth et al.
1999).

Buchanan et al. (2001b) found F671l1 at the boundary of the hinge and LBD regionsin
the TRAMP mouse model. This mutation broadens the range of AR ligand specificity
and increases the transactivation capacity by 2- to 4-fold. The AR/E231G transgenic
mouse model provided evidence that mutations within the N-terminal region of the AR
protein may have an oncogenic effect (Han et al. 2005). Such mutations led to the
development of PIN, which progressed further to the invasive, metastatic disease in
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100% of the mouse models studied. Neither the F6711 nor the E231G mutation have
been found to occur in human PC. The locations of all AR mutations found in PC and
have been shown to have a functional effect on AR action are shown in Figure 5.
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Figure 5. The genetic alterations of AR in PC. Functionally active regions are
illustrated under the structure and functionally active genetic changes involved in PC
are noted above the structure. *) Germline mutation, phosphorylation sites (8) marked
with pinheads. NTD = N-terminal Domain, DBD = DNA-binding Domain, NLS =
Nuclear Localization Sgnal, LBD = Ligand-binding Domain, AF1 & 2 = Activation
Function 1 & 2, TAU-1 & 5 = Transactivation Units 1 and 5, ARE1 & 2 = Androgen
Responsive Elements 1 and 2, SUMO-1 & 2 = Sumoylation sites 1 and 2, Ac =
Acetylation sites. (Current Clinical Oncology:Prostate Cancer: Sgnaling Networks,
Genetics and New Treatment Srategies by RG. Pestell and M.T. Nevalainen. 2008.
Somatic Genetic Changes in Prostate Cancer: Androgen Receptor Alterations. pp 99-
128. Reprinted by permission from ©2008 Humana Press).

2.4.3 Amplification and overexpression of AR

Almogt all PCs, except rare small cell carcinomas of the prostate, express AR at both
the MRNA and protein level. Expression of AR is maintained and often elevated during
prostate carcinogenesis from androgen-dependent PC to hormone-refractory CRPC,
especialy during long-term androgen ablation (Ruizeveld de Winter et al. 1994,
Kokontis et al. 1994, Visakorpi et al. 1995, Hobisch et al. 1995, Culig et al. 1999, L atil
et al. 2001, Linja et al. 2001, Edwards et al. 2003, Hofland et al. 2010). High AR
expression has been suggested to be associated with short recurrent-free survival
(Henshall et al. 2001, Lee et al. 2003, Donavan et al. 2009). Interestingly, AR always
localizes to the nucleus in clinical tumors, irrespective of circulating androgen levels
and androgen-dependence status, i.e., hormone-naive, recently castrated or cadtration-
resissant. This finding indicates that AR is continuously activated during PC
progression (Laitinen et al. 2007). The expression of AR is abolished in only a very
rare fraction of CRPCs, possibly through hypermethylation of the AR promoter
(Kinoshita et al. 2000).

24



Gain and amplification of the AR gene is one of the most frequent chromosomal gains
in CRPC (reviewed by Nupponen & Visakorpi 1999). Nearly 80% of CRPCs have
been reported to carry an elevated AR gene copy number (Edwards et al. 2003), with
20-30% showing a high level of AR gene amplification. In contrast, untreated primary
PCsvery rarely contain an AR gene amplification (Visakorpi et al. 1995, Koivisto et al.
1997, Bubendorf et al. 1999, Kaltz-Wittmer 2000, Edwards et al. 2003). Amplification
was detected in the untreated samples of only 2 cases out of 205 primary PCs,
indicating that the amplification is selected during the emergence of CRPC (Bubendorf
et al. 1999). Recently, two studies reported that AR gene amplification was found in
>50% of circulating tumor cells (CTC) from metastasized CRPC cases (Leversha et al.
2009, Attard et al. 2009b). However, AR gene amplification only partially explains the
overexpression of AR. The other till unknown mechanisms leading to AR
overexpression could include, e.g., genetic aberrations in the regulatory regions of AR
and miRNA deregulation.

The significance of the overexpression of AR in CRPC was first demonstrated by Chen
and co-authors (2004), who showed that the common nominator in gene expression
profiles of CRPC xenograft models as compared to androgen-dependent counterparts
was the increased AR level. They also showed that overexpression of AR alone was
necessary and sufficient to cause androgen-sensitive xenografts to become castration-
and bicalutamide-resistant.

2.4.4 AR splice variants

Three novel AR isoforms lacking the ligand-binding domain (designated as AR3, AR4,
and AR5, according to Guo et al. 2009, Fig. 6) have been reported in CRPC. AR3, one
of the major splice variants expressed in human prostate tissues, has been suggested to
be constitutively active (Guo et al. 2009, Hu et al. 2009). The molecular mechanisms
that lead to differential AR splicing are not known. I|mmunohistochemical analysis of
429 PC tissues showed that AR3 is significantly up-regulated during CRPC
progression and AR3 expression levels are correlated with the risk of tumor recurrence
after radical prostatectomy. Unlike wildtype AR, AR3 was shown to directly increase
AKT1 expression (Dehm et al. 2008, Guo et al. 2009, Hu et al. 2009).
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Figure 6. Schematic structure of the human AR splice variants. (Guo Z et al. 2009. A
novel androgen receptor splice variant is up-regulated during prostate cancer
progresson and promotes androgen depletion-resstant growth. Cancer Research.
69(6):2305-13 Reprinted by permisson from American Association for Cancer
Research, Copyright 2009)
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2.4.5 Changes in AR cofactors

AR cofactor imbalances have been studied in PC progression. Thus far, no AR cofactor
has been shown to influence a great number of cancers. However, some non-recurrent
cofactor changes have been reported in a small number of PC cases. More studies are
required to clearly define the changes of all the cofactors implicated in PC (reviewed
by Xu et al. 20093, Fujimoto et al. 2001, Linja et al. 2004, M&ki et al. 2006 and 2007,
Zou et al. 2009).

High expression levels of some AR cofactors have been reported in PC. The increased
expression of NCOA1l (SRC1), NCOA2 (TIF2, SRC2), KDM1A (LSD1), KDM4C
(IMJID2C), RNF6, TRIM68 and TGFB1I1 (ARAS5) has been linked with increased
activation of AR in PC (Fujimoto et al. 2001, Agoulnik et al. 2006, M&ki et al. 2006
and 2007, Miyajima et al. 2008, Xu et al. 2009b, Taylor et al. 2010). Increased levels
of NCOA2, BAG1 and ATAD2 (ANCCA) protein have also been associated with the
progression of CRPC or higher grade PCs (Fujimoto et al. 2001, Agoulnik et al. 2006,
M&ki et al. 2007, Zou et al. 2009). Interestingly, ATAD2 was also shown to be
upregulated by androgens (Zou et al. 2009).

Genetic alterations of AR co-regulators have not been intensively studied. Only a few
studies have reported somatic DNA copy number alterations or nonsense mutations of
known AR coregulators. Two cases of NCOAL gene amplification and one case of a
NCOA1 missense mutation in PC have been reported thus far (Linja et al. 2004, M&ki
et al. 2006). The low frequency of such aberrations suggests that genetic alterations in
NCOAL1 are not commonly involved in the progression of PC (Linja et al. 2001, M&ki
et al. 2006, Xu et al. 2009). Another AR coregulator reported to be amplified in PC is
BAG1, which has been shown to activate AR by interacting with the N-terminal region
of the receptor. BAG1 was found to be amplified in 7% of CRPC samples, with
significantly higher protein expression compared to primary PC samples (Shatkina et
al. 2003, Maki et al. 2007). Recently NCOA2 was also shown to be amplified and
overexpressed in PC (Taylor et al. 2010).

2.4.6 Well known AR target genes

Microarray studies of androgen-regulated genes suggest that approximately 2-4% of all
transcripts could be directly or indirectly regulated by androgens (Amler et al. 2000,
Nelson et al. 2002). AR regulates the expression of androgen-responsive genes by
binding to the androgen response elements (ARES) of target genes. Sequence analysis
and new chromatin immunoprecipitation (ChliP) technologies have identified, in
addition to classical ARES, several new noncanonical AR binding sites, which have
been shown to function even up to 300 kb up- or downstream from the target gene
(Wang et al. 20074). The most commonly known and studied AR target genes include
KLK2, KLK3(PSA) and TMPRSX2, which produce prostate gland enzymes including
phosphatases and several serine proteases secreted by the epithelia cells into seminal
plasma (Young et al. 1992, Perry et al. 1996). The following paragraphs introduce the
most well known AR target genes.
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2.4.6.1 ACPP (PAP)

The acid phosphatase prostate (ACPP) gene, aso known as prostate acidic
phosphatase (PAP), is located in chromosome 3g21-g23. ACPP encodes a 100 kDa
tyrosine and lipid phosphatase which is synthesized in the prostatic epithelial cells and
secreted into progatic fluid. There are two forms of PAP, a cellular and secreted form,
which have different biochemical properties. PAP has been shown to be directly
regulated by androgens in a biphasic manner and is highly expressed in both the
normal prostate and in PC (Gutman and Gutman 1938, Vihko 1979, Li and Sharief
1993, Henttu et al. 1992, Lin et al. 1993, Ulrix et al. 1998). PAP was used as early as
the 1930s as a biomarker for PC (Gutman and Gutman 1938, Huggins and Hodges
1941). Cellular PAP levels are decreased in advanced PC. PAP expression correlates
negatively with cell growth and cancer progression. It has been suggested that PAP
dephosphorylates HER-2, which in turn activates ERK/MAPK signaling (Sharma et al.
2005). Decreased PAP levels and increased tyrosine phosphorylation of HER-2
correlate with Gleason score and PC progression. The molecular mechanisms that
cause decreased PAP levels in PC are not known (Veeramani et al. 2005).

2.4.6.2 KLK3 (PSA)

Kallikrein-related peptidase 3 (KLK3), better known as prostate-specific antigen
(PSA), is located in chromosome 19913.41. KLK3 encodes a single chain glycoprotein
with a molecular mass of 33 kDa and functions as a serine protease. It belongs to the
family of the fifteen kallikrein members located in a cluster in the same chromosomal
region. All kallikrein genes encode five exons of similar size and have high sequence
homology with other family members. Many of these peptidases also have several
alternative splice variants and are known to be regulated by androgens (reviewed by
Lawrence et al. 2010). KLK3 was cloned in 1987 (Lundwall and Linja). KLK3
expression has been shown to be elevated in BPH and in highly differentiated PCs, but
it is decreased during PC progression (Abrahamsson et al. 1988, Hakalahti et al. 1993).
The use of KLK3 as a PC biomarker (the so-called PSA test) began in the mid 1980s
(Stamey et al. 1987). In a recent European study, which included more than 160,000
men aged 55 to 69, it was found that PSA-based screening reduced PC mortality by
20%. However, there was a high risk of overdiagnosis (Schroder et al. 2009).
Androgen regulation of KLK3 includes both the proximal promoter and the enhancer
ARE located 4 kb upstream from the TSS. Recruitment of AR and its coregulators
create a chromosomal loop from the enhancer to the core promoter (Young et al. 1992,
Riegman et al. 1991, Wang et al. 2005). Kallikrein family members have also been
suggested to play a putative role in PC progression. For example, KLK3 has been
suggested to directly degrade extracellular matrix glycoproteins and facilitate cell
migration (reviewed by Lilja 2003, Hollenberg et al. 2008).

2.4.6.3 TMPRSS2:ERG and other fusion ETS

The fusion of E-twenty-six family (ETS) genes with a hormone-dependent promoter
region occurs in 30-70% of therapy-naive prostate cancers (Tomlins et al. 2005 and
2007, Saraméki et al. 2008, reviewed by Kumar-Sinha et al. 2008, Tomlins et al.
2009). Thus far, rearrangements of the ERG, ETV1, ETV4 and ETV5 gene loci have
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been reported (Tomlins et al. 2005, 2006 and 2007, Helgeson et al. 2008). The most
common variants involve transmembrane protease, serine 2 (TMPRSX2) exon 1 or 2
fused to v-ets erythroblastoss virus E26 oncogene homolog (ERG) exon 2, 3, 4 or 5
(Tomlins et al. 2005 and 2007). These two genes are located at the same chromosomal
region, 21g22.3. TMPRSX2 is an androgen-regulated gene which is highly expressed in
the normal prostate and in PC (Lin et al. 1999, Vaarala et al. 2001). The gene encodes
a serine protease that contains a predicted protein of 492 amino acids in length.
Relatively recently, androgen regulation by cis-regulation of noncanonical ARES in
TMPRSX2 gene was discovered (Wang et al. 20074).

Additional 5 partners for ETV1, ETV4, ETV5 and ELK4 have also been identified.
These 5’ partners include SLC45A3, HERV-K_22011.23, CANT1 and KLK2, which are
prostate-specific and androgen-inducible (reviewed by Kumar-Sinha et al. 2008,
Tomlins et al. 2009). It is not clear how these gene fusions participate in
carcinogenesis in the prostate. However, in vitro studies of overexpressed ETV1 or
ERG have suggested their role in invasion via the urokinase plasminogen activator
(UPA, or PLAU) pathway. It has also been shown that transgenic mice that
overexpress ETV1 or ERG develop mouse prostatic intragpithelial neoplasia (mPIN),
but not tumors. (Tomlins et al. 2007, Cai et al. 2007, Klezovitch et al. 2008). These
fusion genes are early events that are most commonly associated with localized PC.
They are found in similar frequency in CRPC, suggesting their role in driving the
transformation but probably having less significance in the CRPC progression (Perner
et al. 2007, Saraméki et al. 2008, reviewed by Tomlins et al. 2009). Recently, two
studies with transgenic ERG overexpression in Pten heterozygous background mice
showed significant progression of high-grade PIN and PC by inducing downstream
checkpoint genes that would usually be blocked by AKT (Carver et al. 2009, King et
al. 2009, Squire 2009).

2.4.6.4 NKX3-1

The NK3 homeobox 1 (NKX3-1) gene encodes a transcription factor with tumor
suppressor functions. This gene is localized in the chromosomal region 8p21, which is
commonly deleted in PC. The expression of NKX3-1 is androgen-regulated and
stimulates the differentiation of prostatic epithelial cells. NKX3-1 expression is often
lost during the progression of PC (He et al. 1997, Asatiani et al. 2005, Bethel et al.
2007). However, some examples of NKX3-1 overexpression have been reported (Xu et
al. 2000). NKX3-1 has also been shown to regulate AR expression in LNCaP cells
(Possner et al. 2008). Interestingly, Wang et al. (2009a) recently suggested that in
mouse, in rare castration resistant Ar- and Nkx3-1 positive luminal epithelial PC stem
cells, Nkx3-1 is required for stem cell maintenance in vivo during hormonal treatment.
This finding may indicate that NKX3-1 is not a classical tumor suppressor gene but
could have arole in PC stem cell survival and differentiation in androgen-deprived
conditions.
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2.5 Endocrine treatments of prostate cancer

PC treatments that target AR signaling have been investigated heavily for over half a
century. The revolutionary finding was made in 1941 by Huggins and Hodges, who
showed that castration or estrogen treatment inhibits the growth of PC and that the
growth of PC was activated by androgen injections (Huggins and Hodges 1941). They
also noticed the association between hormonal manipulations and the serum level of
PAP. Currently, awide spectrum of AR-targeted therapies is available. These therapies
focus mainly on either preventing androgen production from the testes and/or blocking
the function of AR with antiandrogens.

2.5.1 Targeting androgen synthesis

Androgen synthesis can be prevented by classical orchiectomy or by continuous
stimulation of the pituitary with high concentrations of luteinizing hormone releasing
hormone (LHRH) agonist or antagonist. Continuous agonist stimulation results in
receptor desensitization and inhibition of LH release, which further inhibits the
production of testosterone by the testes. Several agonists, eg., goserelin and
leupropelin, are used in the clinic with well-proven equivalence to orchiectomy. LHRH
antagonigts directly affect the LHRH receptor regulatory system, causing a rapid
decrease in serum androgen levels (reviewed by Tammela 2004, Weckermann and
Harzmann 2004, Labrié et al. 2005). Since residual serum androgens, as well as
upregulated intracrine androgen synthesis, may be sufficient to promote CRPC growth
in patients receiving androgen-deprivation therapy, strategiesto further lower androgen
levels have been suggested. One of the promising new drugs that targets both adrenal
and tumor intracrine androgen synthesis is abiraterone. It is a selective irreversible
inhibitor of the p450 enzyme, 170-hydroxylase/C17,20-lyase (CYP17), which
catalyzes the biosynthesis of androgens from pregnane precursors. Recent phase 1/11
clinical trials of patients with CRPC have shown significant antitumor activity and up
to 70% of PSA response (Attard et al. 2008 and 2009a, Ryan et al. 2010).

2.5.2 AR targeting inhibitors

Direct AR inhibitors can be divided into steroidal or non-steroidal antiandrogens. They
gpecifically block T and DHT from binding the ligand-biding pocket of AR.
Nonsteroidal antiandrogens such as bicalutamide, flutamide and nilutamide inhibit the
activity of androgens by their competitive interaction with AR. Steroidal antiandrogens
(cyproterone acetate) also function in the pituitary axis and inhibit LH release.
However, with the use of steroidal antiandrogens, more complications have been
reported compared to LHRH analogs and non-steroidal antiandrogens (reviewed by
Tammela 2004, Loblaw et al. 2007). The binding of flutamide or bicalutamide to AR
prevents androgen binding and modulates AR-protein structure, allowing the binding
of AR corepressors (Yoon & Wong 2006). However, somatic AR mutations
(introduced above) that occur after the use of antiandrogens have been reported to
release the transcriptional inhibition (Chen et al. 2004, Steketee et al. 2002, Culig et al.
1999). To improve the inhibition of the androgen signaling axis, complete androgen
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blockade (CAB) therapies have been investigated. In CAB, castration is combined with
antiandrogen therapy. CAB has been shown to prolong life in CRPC patients, but the
significance is only marginal (Palmberg et al. 2000, Labrie et al. 2002 and Scher et al.
2004). Recently, new antiandrogens for CRPC have been developed. For example,
MDV-3100 binds to AR with 10-fold higher affinity than bicalutamide and inhibits
PSA secretion at 10-fold lower concentrations. Unlike bicalutamide, MDV-3100
impairs AR nuclear translocation and blocks DNA binding (Tran et al. 2009, Jung et
al. 2010). MDV-3100 is currently in a phase Il clinical trial for use in CRPC
(reviewed by Chen et al. 2008, Tran et al. 2009, Jung et al. 2010).

30



3. AIMS OF THE STUDY

The purpose of the study was to investigate the molecular mechanisms leading to AR
overexpression and to establish an AR overexpression model that can be used to
identify and investigate the downstream AR target genes involved in PC progression.

The specific aims were the following:

1) To investigate whether mutations in the AR gene regulatory regions could
underlie its overexpression;

2) To establish anin vitro model of AR overexpression;

3) Toidentify AR downstream protein-coding genes involved in PC progression;

4) To identify AR downstream miRNAs involved in PC progression.
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4. MATERIALS AND METHODS

4.1 Cell lines and xenografts

DU145, LNCaP, PC3 and 22Rv1 PC cell lines were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). LAPCA cells were kindly given by
Prof. C. Sawyers (University of California at Los Angeles, Los Angeles, CA, USA).
VCaP and DuCaP were provided by Prof. J. Schalken (Radboud University Nijmegen
Medical Center, Nijmegen, The Netherlands). Cells were cultured under the
recommended conditions (original communications I-111).

Nineteen LuCaP series xenografts (LuCap 23.1, 23.8, 23.12, 35, 35V, 49, 58, 69, 70,
73, 77, 78, 81, 86.2, 92.1, 93, 96, 105, 115) were obtained from Prof. R. Vessella
(University of Washington, Seattle, WA, USA), and 13 PC series xenografts (PC-82,
133, 135, 295, 310, 324, 339, 346, 346B, 3461, 346BI, 374 and 374F) were obtained
from Prof. G. Jenster (University of Rotterdam, The Netherlands). Tumor samples
were collected either from intact male (LuCaP series) mice or both intact mice and 7 to
14 days after castration (PC xenografts) and were freshly frozen at -80°C (original
communications | and I11).

4.2 Clinical samples

All together, 52 freshly frozen clinical samples (6 BPH, 30 primary prostatectomy PC
and 14 CRPC samples described in original communication I, and 7 BPH and 15
CRPC samples described in original communication 111) were used in the study. Of
those, the BPH and CRPC samples were transurethal resections (TURP). The
endocrine therapy included either orchiectomy, LHRH analog, estrogens, orchiectomy
and estrogen, bicalutamide or unspecified hormone therapy. Samples were snap frozen
in liquid nitrogen. Tumor samples contained at least 60% cancer cells. Thirty normal
samples for general SNP analysis (60 chromosome X) were obtained from healthy
Finnish female blood donors. The use of the clinical material was approved by the
ethical committee of the Tampere University Hospital (original communications | and

11).
4.3 DNA and RNA extractions, DNA amplification and PCR

DNA and RNA were purified using routine phenol-chloroform and Trizol™
techniques. For mutation analysis, DNA samples were first amplified with a Genome
Phi™ genome amplification kit (Invitrogen) according to the manufacturer’'s
instructions. For PCR reactions, Accutype (Stratagene) or Platinum Taqg (Invitrogen)
added with 1:4 ratio Pfu (Fermentas) polymerases. The enzymes were used in
detergent-free buffer according to the manufacturer’s instructions. Primers and
annealing temperatures are listed in the origina publications. All primers were
designed with the publicly available Primer3 program (http://frodo.wi.mit.edu
/primer3/) (original communications I-111).
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4.4 DHPLC and sequencing

For promoter and 5 UTR mutation analyses, sample PCR fragments were each mixed
at a1:1 ratio with the corresponding normal PCR fragment, denatured (95°C for 3 min)
and renatured (65°C for 30 min). DHPLC (denaturing high-performance liquid
chromatography) was performed with an Agilent 1100 LC machine and a Varian
CP28353 Helix DNA column (50 x 3.0 mm) at a 12% diluent gradient over 8 min at
fragment-specific temperatures. Primers and DHPL C driving conditions were designed
with the freely available DHPLC Melt program (http://insertion.stanford.edu/melt.
html). Sequencing was performed with a BigDye® Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems) and run in the ABI3100 Genetic Analyzer according to the
manufacturer’s instructions (original communication 1).

4.5 mRNA and miRNA gRT-PCR reactions

First strand cDNA synthesis was carried out from total RNA using either AMV reverse
transcriptase (Finnzymes) or SuperScriptlll (Invitrogen) for miRNA-specific targets
according to the manufacturer’s instructions. To measure mRNA expression, a SYBR
Greenll Fast Start kit (Roche Diagnostics) was used according to the manufacturer’s
instructions using TBP (TATA-box binding protein) mRNA as a reference gene. For
measuring mature MIRNA expression, TagMan® MicroRNA Assays (Applied
Biosystems) and a Probe Fast Start kit (Roche Diagnostics) were used. A Light Cycler
apparatus (Roche Diagnostics) was used. The RT reactions and the gPCR reactions
were performed separately for each miRNA using RNUG6b as a small reference RNA
(original communications |l and 111).

4.6 Western blot

Protein extracts (12.5 ug) were separated by 12% SDS-PAGE and transferred to PVDF
membranes (Immobilon-P, Millipore Corp.) using the standard semidry transfer
technique (BIORAD Transblot, Bio-Rad Lab.). Mouse anti-AR 441 was used as the
primary antibody (NeoMarkers), and anti-mouse 1gG-HRP conjugate (DAKO A/S)
was used as the secondary antibody (origina communications |1 and I11).

4.7 Transfection methods

The parental LNCaP cells were stably transfected either with the pcDNA3.1(+) empty
expression vector (Invitrogen Inc., Carlsbad, CA, USA) or with the pcDNA3.1-AR
(Acc# _M23263) into the Notl/BamHI site in the pcDNAS3.1 vector) with
Lipofectamine Plus transfection reagent (Invitrogen, Inc.), according to the
manufacturer’s instructions. Transfected clones were selected under 400 pg/ml
geneticin (G418, Invitrogen, Inc.). Two clones expressing moderate and high levels of
AR protein (LNCaP-ARmo and LNCaP-ARhi) were selected for further studies and
maintained in 200 pg/ml geneticin-containing medium (original communication 11).

The LNCaP-pcDNA3.1 cells were transiently transfected with 20 nM PreemiR™ miR-
141 precursor (#PM 10860, Ambion, Inc., Austin, TX, USA), and the LNCaP-ARnhi
cells with 100 nM Anti-miR™ miR-141 inhibitor (#AM 10860, Ambion, Inc.) using
INTERFERINin™ siRNA transfection reagent (POLYPLUS-TRANSFECTION Inc.,
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NY, USA) under various DHT concentrations, according to manufacturer’s protocol.
The scrambled Anti- or PremiR™ negative controls (#AM17010, #AM17110,
Ambion, Inc.) were used as corresponding reference treatments (original
communication [11).

4.8 DHT and roscovitine treatments and cell proliferation assays

Before each hormone exposure experiment, cells were grown in 5% charcoal/dextran-
treated serum (CSS, HyClone, Inc.) in medium without phenol red for three or four
days. The medium was subsequently replaced with various concentrations of DHT
(Sterdoids, Inc., USA). Roscovitine (Calbiochem®, EMD Chemicals Inc., Germany)
was used for CDK1/2 growth inhibition treatments. The relative number of cells at
each time point was analyzed either by using the Beckman Coulter® Z2-series particle
counter (Beckman Coulter, Inc., USA) or AlamarBlue reagent (AbD Serotec, UK) and
luminometric detection using a fluorometer (Wallac 1420 Victor, PerkinElmer, USA)
(original communications 11 and 111).

4.9 Microarray hybridizations

AR and androgen regulation of different protein coding genes were studied with an
[lumina Microarray platform on a HumanRef-8 v2 chip and performed in the Finnish
DNA Microarray Center at the Turku Centre for Biotechnology. Total RNA (300 ng)
from each sample was transcribed in vitro, biotinylated and amplified with an Illumina
RNA TotalPrep Amplification kit (Ambion, #1L1791, USA), and hybridized to an
I llumina SentrixO HumanRef-8 V2 Expression Bead Chip (cat. no. BD-25-213). The
probes (>22,000) of the Illumina HumanRef-8 v2 chip are based on the well annotated
protein coding genes of the Reference Sequence (RefSeq) database 1, release 17
(original communication 11).

MiRNA expression was analyzed with Agilent human miRNA microarray v2 chips
(Agilent Technologies, Santa Clara, CA, USA) containing 723 human and 76 human
virdh miRNAs (Sanger Cambridge, Database v10.1, http://microrna.sanger.ac.uk)
according to the manufacturer’s instructions. Total RNA (100 ng) was labeled with
pCp-Cy3 and hybridized according to the manufacturer’s instructions (Agilent
Technologies, Santa Clara, CA, USA). miR-141 target gene expression was studied
with  Whole Genome Human 4x44K microarray chips (Agilent Technologies)
according to the manufacturer’ s instructions (original communication [11).

4.10 Data analysis

The data analysis was performed with the GeneSpring Analysis Platform, version GX
7.3.1 (Agilent Technologies, CA, USA) using standard normalization methods such as
median normalization and Lowess smoothing. The average linkage method was used
for unsupervised hierarchical clustering, and the similarities were estimated with
Pearson’'s correlation. For ontology classifications, all gene ontology (GO) lists
containing at least ten genes with p-values <0.001 (hypergeometric p-value without
multiple testing correction) were filtered and organized with the GeneSpring Ontology
browser (original communications 11 and 111).
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4.11 ChlIP-on-chip assays

ChlP-on-chip assays were performed with custom anti-AR antibody (BJ14-AR3) using
LNCaP cells that were treated with 100 nM DHT or vehicle for 2 h. Three micrograms
of the immunoprecipitated DNA samples were hybridized to Affymetrix whole
genome tiling arrays (GeneChip Human Tiling 2.0R Array Set, Affymetrix Inc.,
USA). The regions enriched for AR-binding sites (ARBS) were identified using the
MAT algorithm, scored at a p-value of 10™ and mapped to the differentially expressed
genesin the AR overexpression model (original communication I1).

4.12 Statistical methods

The unpaired, two-tailed Student’s t-test was used to examine the statistical
significance of the differences in growth and gene expression between the DHT-treated
and vehicle-treated cells (original communication 11 and I11). The significance of the
number of genes in different gene ontology classes between DHT-treated and untreated
cells, aswell as between different cell lines, was calculated by using the chi-square test
(original communication 11). To evaluate the significance of the gene expression levels
between the two cancer groups (PC and CRPC) and the non-cancer group (BPH), the
two-tailed Mann-Whitney U-test was used (original communication [11).
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5. RESULTS AND DISCUSSION

5.1 Mutations in the regulatory regions of the AR gene are
rare in PC

To study the possible mutations that may cause AR overexpression, the wide promoter
region, the entire 5’UTR and a 4.6 kb region of the putative 3'UTR were screened for
unknown mutations in PC cell lines, PC xenografts and in clinical samples. In the
promoter and the >2 kb upstream regulatory region, four single base changes were
found in the cell lines and xenografts. Single substitutions C-1863T, G-1474A, T-640G
and G-572T were found in LuCaP35, LuCaP69, LAPC4 and DU145, respectively. The
ateration found in LuCaP35 was also present in the CRPC sub-line of the xenograft
(LuCaP35V). In the 5-UTR, only C+456G, was found in the LAPCA4 céll line. In the
4.6 kb region of the putative 3' UTR, three substitutions were found: G4550C, T5729A
and C7696A were found in DU145, LAPC4 and LuCaP 73, respectively. In addition, a
single base deletion (4037delT) was found in DU145. None of these alterations were
recurrent nor were they present in the 30 PC, 6 BPH, 14 CRPC specimens or in the 60
normal female germ line DNA samples used in the study, indicating that the found
variants are rare mutations (original communication 1).

Of the mutations found, only the 4037delT mutation in DU145 is located in a known
functionally active motif (Faber et al. 1993, Mizokami et al. 1994a, Takane et al. 1996,
Chen et al. 1997, Yeap et al. 2002, Wang et al. 2004). However, the functional
analysis of the C(U)qC motif has shown that a single base substitution has no effect on
the stability of the AR mRNA (Yeap et al. 2002). On the other hand, DU145 cells are
completely AR negative, indicating that the mutation cannot be involved in AR
overexpression.

Single substitutions C-1863T and G-1474A were found in LuCaP35 and LuCaP69,
which both contain an amplification of the AR gene and express high levels of AR
(Linja et al. 2001). The amplification of the AR by itself is already a mechanism for
high AR levels. Both DU145 and LAPC4 had three single base mutations, indicating
that these cell lines are genetically unstable. DU145 has already been shown to lack
functional MLH1, leading to aloss of mismatch repair (Chen et al. 2001, Martin et al.
2009). These mutations were found only in the most genetically unstable cancer
samples with no recurrence; none were found in the clinical samples. Therefore, it is
unlikely that they contribute to the overexpression of AR in CRPC.

It is, however, possible that mutations existing outside the studied regions affect the
expression of AR. An interesting and ill poorly characterized example of this
possibility is the full length of the 3'UTR. The databases, such as GenBank, recognize
only a 4313 bp mRNA, whereas the size of the 3UTR is 7 kb long according to
northern analysis (Lubahn et al. 1988, Trapman et al. 1988). Due to the heterogenic
distribution of AT-repetitive sequences in the 3'UTR, only 4.6 kb of the 3'UTR region
could be sequenced. The function of the AT-repetitive sequence in the putative 3 UTR
is unknown. This type of repetition belongs to a non-random pattern of repeated
elements that are typically 60-80 nucleotides long. These repeats are also known as
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pyknons and are found more frequently in the 3'UTR regions of the human genome
(Rigoutsos et al. 2006). The pyknons include approximately 40% of the known
MiRNA sequences, suggesting a novel putative regulatory mechanism possibly linked
with posttranscriptional regulation and RNA interference (Meynert & Birney 2006,
Glinsky 2009).

Other mechanisms of protein overexpression might include several posttranslational
modification of the AR. Increased stability and the nuclear localization of AR in CRPC
cells has been associated with an increased sensitivity to the growth-promoting effects
of dihydrotestosterone (Gregory et al. 2001, Chen et al. 2004). Akt has been shown to
both stimulate and inhibit AR activity in LNCaP cells at high and low passage
numbers, respectively (Lin et al. 2003, Ghosh et al. 2005). Akt has been shown to
directly phosphorylate AR at Ser-210 and Ser-790. However, this phosphorylation
leads to the inhibition of AR-regulated p21-mediated apoptosis and has not been shown
to increase or stabilize AR levels (Lu et al. 1999, Lin et al. 2001). Cyclin dependent
kinase 1 (CDK1) has been shown to both phosphorylate and stabilize AR (Chen et al.
2006). CDK1 protein levels also correlate with a high Gleason grade (Kallakury et al.
1997). However, these mechanisms could only explain the observed overexpression of
the protein product, but not the changes in MRNA level.

mMiRNAs are a relatively recently discovered group of small non-coding RNAS
involved in the post-transcrptional regulation of mMRNA levels. miRNAs most often
target AU-rich 3'UTRs (Jing et al. 2005). Since the AR has arelatively AU-rich and a
very long 3'UTR, several miRNAs might regulate AR mMRNA. Deletion or
hypermethylation of AR-targeting miRNASs may increase the expression of AR mRNA.
On the other hand, a shortened AR 3'UTR might induce higher AR expression even in
the presence AR-targeting miRNAs. However, no AR targeting miRNAs have yet been
reported. One challenge in this field of research is the complexity of the putative
3'UTR of AR.
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5.2 Increased AR levels sensitize PC cells to low androgen
levels

5.2.1 The growth of the AR-overexpressing LNCaP cells

To study the consequences of overexpressed AR, three different levels of AR
expressing LNCaP clones were constructed and then selected for detailed studies and
further experiments. These constructs were the empty vector control-carrying LNCaP-
pcDNA3.1, the LNCaP-ARmo and the LNCaP-ARhi cells. LNCaP-ARmo cells
expressed approximately four times more AR mRNA and two to four times more AR
protein; whereas, LNCaP-ARhi cells expressed 13 times more mRNA and 5-6 times
more protein than the LNCaP-pcDNA3.1 cells. The most intense AR nuclear staining
was seen in the LNCaP-ARnhi cells. The proliferation rates of all three cell lines were
highest under 10 nM DHT conditions, with no differences between the cell lines.
However, in the presence of 1 nM DHT or lower, LNCaP-ARhi cells grew
gignificantly faster than the LNCaP-ARmo or LNCaP-pcDNA3.1 cells. The cells
overexpressing AR were also capable of growing longer in charcoal-stripped fetal
bovine serum (CSS) medium without any DHT supply (original communication 11).

The results coincide with earlier studies of Kokontis et al. (1994 and 1998), Gregory et
al. (2001) and Chen et al. (2004), indicating that high levels of AR sensitizes the
growth of the cells under low androgen levels. In low androgen levels, the growth is
enhanced by higher AR levels, and in higher DHT concentrations, the proliferation
effect is decreased in high AR-expressing cells, whereas the growth of low AR-
expressing cells is still enhanced. In the original studies of Kokonties et al. (1994),
LNCaP cells adapted to the low androgen levels. Chen et al. (2004) showed that the
common denominator for the PC cells adapted to growth in castrated mice was the
increased AR level. We showed that exogenously enhanced AR directly increases the
proliferation of PC cells in low androgen medium. The adaptation of the PC cells to
low androgen levels is also supported in CRPC cells in vivo. It has been shown that
intraprostatic DHT levels remain relatively high and, in general, only 50% reductions
have been observed, despite androgen deprivation therapy (Labrie et al. 2005).

5.2.2 The effect of increased AR levels on the transcription of target
genes

To study the effect of overexpressed AR on transcription, microarrays were performed
a different time points and DHT concentration for all of the different AR-
overexpressing cells. The number of androgen-responsive genes was clearly associated
with the AR expression level. The number of androgen-regulated genes was highest in
the LNCaP-ARhi and V CaP cells expressing the highest amount of AR. However, the
number of differentially expressed geneswas not significantly higher in the VCaP cells
compared to the LNCaP-ARhi cells. LNCaP-ARmo cells had concordantly more
androgen-regulated genes than the LNCaP-pcDNA3.1 cells, but less than the LNCaP-
ARhi or VCaP cells (original publication I1). Interestingly, in unsupervised hierarchical
clustering which was based on differentially expressed genes, the VCaP and the
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LNCaP-ARNhi cells clustered together despite their different genetic backgrounds. This
result indicates a very strong influence of AR on the genome-wide expression of PC
cells. The well-known androgen-regulated genes, such as PSA, ACPP, TMPRSX2 and
NKX3-1, were found to be sensitized up to 10-fold in the LNCaP-ARnhi cells compared
to the LNCaP-pcDNA3.1 cells. Approximately, a 10-fold higher DHT concentration
was required for the LNCaP-pcDNA3.1 cells than for the LNCaP-ARhi or LNCaP-
ARmo cells for an equivalent level of transcription. Thus, the higher AR level
sensitizes both the number of androgen-regulated genes as well as the level of
transcription of the target genes (original publication I1).

Several microarray studies have addressed androgen regulation of gene expression
(Amler et al. 2000, Nelson et al. 2002, Velasco et al. 2004, York et al. 2005,
Hendriksen et al. 2006, Steele et al. 2006), the effects of castration on gene expression
(Holzbeierlein et al. 2004, Hendriksen et al. 2006, Wang et al 2007b, Mostaghel et al.
2007, Ma et al. 2009) and expression profiles comparing different stages of PC
(Sirotnak et al. 2004, Chen et al. 2006, Murillo et al. 2006, Morgenbesser et al. 2007,
Kawada et al. 2007, Tamura et al. 2007). However, the data from these studies are only
partially concordant. Reasons for the discrepant findings could be the use of different
ligands in the different studies (T, DHT or synthetic androgen R1881), different
concentrations, different time points and heterogeneity of the PC cells in different
laboratories. Importantly, in all other studies, only one androgen concentration was
used. The expression profiles are also time-dependent. In our data, e.g., several genes
including tumor necrosis factor receptor superfamily member 10b (TNFRS-10B),
forkhead box O1 (FOXOL), tumor necrosis factor alpha-induced protein3 (TNFAIP3),
and serum/glucocorticoid regulated kinase (SGK) were upregulated strongly at the 4 h
time point, but showed less or very little upregulation at the 24 h time point (original
communication I1).

LNCaP and VCaP cells contain the known genetic rearrangements of TMPRS2:ETV1
and TMPRSX2:ERG, respectively (Tomlins et al. 2005, Saraméki et al. 2008, Kumar-
Sinha et al. 2008). Over two-fold upregulation of ERG and ETV1 expression was
detected in the VCaP cells in 1 nM DHT and in LNCaP-pcDNA3.1 in 10 nM DHT
compared to untreated cells. In LNCaP-ARhi cells, ETV1 expression was higher under
lower androgen level conditions compared to LNCaP-pcDNA3.1 cells (original
communication I1). On the other hand, the ETV1 promoter has also been shown to be
directly AR-regulated (Cai et al. 2007). Of the other Ets family members, ELK4 and
EHF mRNA levels were also increased with androgens in LNCaP-ARnhi cells (original
communication 11). The ELK4 gene is known to be an AR target in human prostate
cancer cells with an association with cell growth in vitro (Makkonen et al. 2007).
ELK4 has also been reported to be fused with the SLC45A3 gene, which is strongly
regulated by androgens. This fusion is possibly due to an over trans-splicing
mechanism (Rickman et al. 2009). EHF is methylated and has been suggested to
function as a candidate tumor suppressor in AR-negative prostate cancer cells
(Cangemi et al. 2008).
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5.2.3 Gene ontology classes associated with androgen and AR
levels

To identify the pathways that are differentially regulated, gene ontology analyses were
performed for both up- and downregulated genes. LNCaP-ARhi cells had more
upregulated genes related to the mitotic cell cycle, regulation of cell cycle, organelle
organization and biogenesis, cellular protein metabolism and DNA metabolism when
compared to both LNCaP-pcDNA3.1 and LNCaP-ARmo cells at 24 h. At the 4 h time
point, intracellular signaling cascades, including phosphoinositide-mediated signaling
and the androgen receptor signaling pathway, cell cycle, and lipid metabolism
(including cholesterol biosynthesis) were also upregulated significantly. Only
apoptosis was significantly upregulated at the 4 h time point, but was no longer
upregulated at the 24 h time point (original communication 11).

DNA metabolism (DNA replication), cell cycle, cell organization and biogenesis
(spindle organization and biogenesis), cell divison and intracellular signaling
(phosphoinositide-mediated signaling) were found to be significantly upregulated in
LNCaP-ARnhi cells treated with 1 nM DHT, but not in LNCaP-pcDNA3.1 or LNCaP-
ARmo cells. At higher DHT concentrations, the same ontology classes were
upregulated in all cells. The number of upregulated genes was, however, always
highest in LNCaP-ARhi cells. The most significantly upregulated gene classes in
LNCaP-ARmo cells were lipid metabolism (cholesterol biosynthesis) and secretory
pathway genes (ER-to-Golgi transport). No significantly downregulated ontology
classes were found (original communication I1).

The gene expression profiles and ontology analysis are well in concordance with the
growth analysis data. DHT treatments showed the most significant increased growth in
1 nM DHT and the most significant upregulation of genes associated with
proliferation- and mitotic spindle-associated genes in LNCaP-ARnhi cells at the same
concentration (original communication 11). The upregulation of cell cycle genes and
enhanced steroidogenesis, DNA, RNA and protein metabolism have also been reported
by others (Gregory et al. 1998 and 2001, Sirotnak et al. 2004, Zimmerman et al. 2004,
Swinnen et al. 2004, Maet al. 2009, Mostaghel et al. 2009, Leon et al. 2010, Locke et
al. 2010, Vander Griend et al. 2010).

5.2.4 Direct AR target genes involved in growth during PC
progression

To see what genes are concordantly upregulated by androgens and AR, and are specific
for AR overexpression as well as PC progression, Venn diagrams were constructed
from the up- and downregulated genes and were studied in the clinical PC datasets. All
together, 55 genes showed a greater than two-fold higher expression in LNCaP-ARhi
cells compared to LNCaP-pcDNA3.1 or LNCaP-ARmo cells in 1 nM DHT, were
upregulated at least >1.5 fold and >2 fold by 1 nM DHT stimulation after 4 hand 24 h,
respectively, and were expressed at similar or higher levels in the VCaP as the LNCaP-
ARNhi cells a any DHT concentration (original communication I1). Of those genes, 27
were expressed significantly higher in CRPC or metastatic PC and were found to have
an AR binding site (ARB) <200 kb from the transcription start site (TSS), indicating
direct AR regulation. The list of genes consigts of cell cycle genes, e.g., CDK1, CDK2,
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cyclin A2, cyclin B2, and CDC20. All of them are involved in cell cycle, cell cycle
control, the mitotic spindle or DNA replication (original communication 11, Fig. 7).
Since several cell cycle genes were upregulated, we tested the effect of a small
molecule CDK1/2 and cyclin inhibitor, roscovitine, on the growth of the LNCaP-AR
cells. The growth of the LNCaP-ARhi cells was significantly more sensitive to the
roscovitine in the presence of androgens than the growth of the LNCaP-pcDNA3.1 and
LNCaP-ARmo cells (original communication I1).

Gene: ARB: 1. 2 function
ATAD2 ATPase family, AAA domain 1 AR-cofactor
CCNA2 cyclinA2 n Cellcycle
CCNB2 cyclinB2 1 Cell cycle

CDK1 CDKZ1, celldivision cyde 2 mn Cell cycle
CDC20 cell division cycle 20 homolog | Cellcycle

CDK2 cyclin-dependentkinase 2 | Cell cycle

CDCA7 Cell division cycleassiated 7 m Cellcycle
CDKN3 CDK inhibitor 3 ]l [ | Cell cycle regulation

FANCI Fanconianemia, complementation group | m Cell cycle regulation
HMGB2 high-mobility group box2 ]| I transcription
HMMR hyaluronan-mediated motility receptor I I centrosome
KIF20A kinesin family member 20A 1 microtubule
MAD2L1 MAD2 mitotic arrest deficient-like 1 | mitotic spindle

MCM4 minichromosome maintenance 1 DNAreplication

MELK maternal embryonic leu-zipper kinase m || Cellcycle
NCAPG non-SMC condensin | complex | Chr. condensation
NUSAP1 nucleolar and spindle associated prot. I mitotic spindle

PRC1 protein regulator of cytokinesis 1 I cytokinesis

PRIM primase, polypeptide 1, 49kDa 1 DNAreplication
PTTGL pituitary tumor-transforming 1 I I I Cellcycle regulation
RAD5AL RAD54-like (S. cerevisiag ! DNA pairing/repair

RNASEH2A  ribonuclease H2, subunit A I DNA-replication
SPAG5 spermassociated antigen 5 | mitotic spindle

TK1 thymidine kinase 1, soluble | I cellcycle

TYMS thymidylatesynthetase | DNA replication
UBE2C ubiquitin-conjugating enzyme E2C 1 I cell cycle

|

ZWINT ZW10 interactor mitotic spindle

B p-\alue <0.005
p-value <0.05
p-value >0.05
data notavailable

Figure 7. Direct AR target genes upregulated in CRPC or metastatic PC. Direct AR
target genes overexpressed in CRPC. ARB (AR binding sites) are indicated as thick
lines with the number of observed bindings varying from 1 to 5. Smplified figure from
original communication Il.

1. 25 metastatic PCvs.64 primary PC (Yu et al. JClin Oncol 2004)
2. 6hormone refractory PCvs. 7 primary PC (Varambally at al. Cancer Cell 2005)

Cyclin Al, B1 and CDK1, CDK2, CDK4 have previously been reported to be increased
by androgens in PC cells and decreased after castration in CWR22 xenografts (Lu et al.
1997, Gregory et al. 1998 and 2001, Wang et al. 2009b). Wang et al. (2009b) also
showed that greater AR binding to the enhancer elements of the M-phase genes CDK1,
cyclin A2, CDC20, UBE2C, NUSAP1 and PTTGL1 correlated with increased expression
in LNCaP-abl cells. On the contrary, the rest of the 27 mitotic phase-associated genes
such as cyclin B2, CDCA7, FANCI, KIF20A, MCM4, MELK and NCAPG have not
previously been reported to be directly androgen-regulated (Fig. 7). According to the
results of Wang et al. (2009b), AR selectively upregulates M-phase cell cycle genesin
CRPC cells by histone H3K4 methylation and by binding the FoxXA1 transcription
factor. In a study of 140 radical prostatectomy specimens, CDK1 protein expression
was correlated with a high Gleason score, advanced pathologic stage, nondiploid DNA
content, and metastases. On multivariate analysis, a high Gleason grade and CDK1
immunoreactivity predicted disease recurrence independently of the pathologic stage
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(Kalakury et al. 1997, 1999). Interestingly, CDK1 has previously been shown to
phosphorylate and stabilize AR (Chen et al. 2006). Thus, there may also be a positive
feedback mechanism between AR and CDK1. These results, together with the higher
sensitivity to roscovitine inhibition in LNCaP-ARhi cells, indicate the high
significance of M-phase genes for causing a growth advantage in the CRPC cells.

Approximately 40% of the 55 upregulated genes had no ARB within 200 kb of the
TSS. These genes also included several M-phase-associated genes known to be
upregulated in CRPC, such as aurora kinase A and B, topoisomerase (DNA) 1l alpha,
cell division cycle 25 homolog A and cell division cycle associated 3,4 and 5. It has
been demonstrated that the chromosomal binding sites of steroid hormone receptors are
often distal and can even be located as far as 1 Mb away from the TSS (Fullwood et al.
2009, Paakinaho et al. 2010). Thus, these genes might still be directly regulated by AR.

Biphasic androgen regulation of the MYC oncogene was detected in the LNCaP-AR
model (original communication 1), which is concordant with earlier studies (Katz et al.
1989, Wolf et al. 1992, Kokontis et al. 1994, Bieche et al. 2001). Similar to our
studies, the AR overexpressing cell line showed higher expression of MYC in low
levels of androgens than the parental cell line. In addition, the expression was
decreased under higher concentrations of DHT (Kokontis et al. 1994, original
communication Il). MY C regulates the cell cycle and apoptosis in a complex manner
(reviewed by Herold et al. 2009). MY C has been suggested, for example, to inhibit
cyclin-dependent kinase inhibitor 1A (CDKN1A, p21) and enhance the transcription of
E2F transcription factors (E2F1 and E2F2) in cancer cells via a mechanism that also
includes miRNAs (Wang et al. 2008, Leone et al. 2001, O'Donnell et al. 2005). On the
other hand, putative MY C regulation of AR expression has also been suggested (Grad
et al. 1999). Interestingly, ATAD2 has been suggested to act as coactivator of both
MY C and AR, and according to our results, it is androgen-regulated (Cir6 et al. 2009,
Zou et al. 2009, original communication I1).

MYC- and PI3K (PTEN-Akt pathway)-overexpressing, immortalized normal human
prostate epithelial cells (PrECs) have been shown to be very aggressive, closely
resembling human PC, when also transduced with AR and injected into the mouse
progate. Tumor size correlated directly with blood androgen levels (Berger et al.
2004). A simplified schematic presentation of AR-induced gene expression in PC with
possible feedback interactions isillustrated in Figure 8.
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5.3 Androgen regulation of microRNAs in prostate cancer

5.3.1 Androgen-regulated miRNAs

To study putative androgen- and AR-regulated miRNAs, AR-overexpressing cell lines
and castrated xenograft sample pairs were used for miRNA microarray studies.
Seventeen miRNAs were found to be >1.5-fold up- or downregulated in LNCaP or
VCaP cell lines 24 h after DHT treatment. Only two miRNAS, miR-29a and miR-29Db,
were >2-fold upregulated by 100 nM DHT. No miRNA was up- or down regulated
>1.5-fold after 4 h of DHT stimulation. A total of 103 miRNAs were >1.5-fold up- or
downregulated after castration in all of the xenografts. A total of 42 miRNASs were up-
or downregulated in AR-positive xenografts (n=9), whereas 49 were found in both AR-
positive and AR-negative xenografts; 12 miRNAs were only affected in the AR-
negative xenografts. Altogether, 34 miRNAs showed similar DHT regulation
according to sandardized RANK-based analysis of the combined data for both the cell
lines and the xenografts (original communication 111).

Three studies were previously published using R1881-stimulated LNCaP and/or
LAPCA4 cells (Shi et al. 2007, Ambs et al. 2008 and Ribas et a 2009). Compared to
those studies, similar androgen regulation was seen our study for miR-21, 29a, 29b and
221 in cell lines and for miR-17, 18b, 19b, 20a, 20b, 93 and 148a in xenografts. As
seen in MRNA studies, differences may result from variations in the ligands used, the
time points assessed and the cell lines used in the different studies. It is noteworthy that
in the Ribas et al. (2009) study, a 72 h time point was used, which means that the cells
were exposed to the synthetic androgen for three times longer than in our study.
Similar to our study, Ambs et al. (2008) used a 24 h time point and detected only one
upregulated miRNA in the parental LNCaP cells. The need for longer time points in
order to detect miIRNA regulation may indicate the slow progression of miRNA
maturation via the drosha and dicer enzymes (reviewed by Bartel 2009), or that the
regulation involves a very complex system that requires the assembly of several cis
acting co-regulators. It may also indicate that androgen regulation of these miRNAs is
not directly AR induced.

While 1.6% (349/22,177) of protein-coding genes showed >2-fold upregulation in
LNCaP-ARhi cells after 24 h at 100 nM DHT, only 2 of the 723 (0.3%) miRNAs
showed >2-fold upregulation in the same cells at the same time point and DHT
concentration (original communication Il1). This finding indicates that there are
probably less directly androgen-regulated miRNAs than mRNAs. In light of the recent
documentation which shows that many miRNAs specifically downregulate cell cycle
and proliferation genes (reviewed by Bueno et al. 2008), the reduction of androgen
regulated miRNA expression during CRPC progression seems reasonable. In fact, in
the PC xenograft panel, the number of differentially expressed miRNAs after castration
was highest in androgen-dependent compared to androgen-independent xenografts and
was lowest in the totally AR-negative and androgen-independent xenografts (original
communication I11).

DHT-regulated miRNAs in the PC cell lines were also very different from the miRNAs
induced or suppressed by castration in the xenografts. The expression level changes
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were also more moderate in the PC cell lines. One reason for this finding could be, as
discussed above, that DHT stimulation time was 24 h, whereas the time of castration
was 7-14 days before sample collection. Only four miRNAs were regulated with
similar intensity (>1.5 fold) in cell lines upon DHT stimulation and in xenografts after
castration. Strikingly, some of the miRNAs, which were upregulated in LNCaP and
V CaP cells, were also upregulated after castration (e.g., miR-29a and miR-29b) in both
AR-positive and -negative xenografts (original communication 1Il). Differential
regulation may also reflect the ongoing apoptosis after castration. In particular, the
MiRNAs altered in AR-negative xenografts cannot be directly regulated by the
classical AR-dependent pathway. The differential expression could be due to the non-
AR-mediated action of androgens (Heinlein and Chang 2002).

5.3.2 Differentially expressed miRNAs in clinical samples

To study the behavior of androgen-regulated miRNAs in clinical PC samples, both
untreated and CRPC samples were assessed for miRNA expression. Of the androgen-
regulated miRNAS, the expression levels of miR-18a, 18b, 19a, 20b, 21, 32, 126, 141,
148a, 203 and 375 were significantly upregulated in CRPC, and miR-100, 125b, 199a-
5p, 214 and 221 were consistently downregulated in CRPC compared to BPH. miR-
18a, -141, and -375 were aso dggnificantly upregulated and miR-221 was
downregulated in untreated PC samples (original communication 111).

Consigtent with our expression profiles of androgen-regulated miRNAs in clinical
samples, miR-21, miR-100, miR-125b, miR-141 and miR-221 were differentially
expressed in other studies as well. miR-21, miR-100, miR-141, miR-375 and miR-221
show concordant results with other studies both in terms of androgen-regulation and in
the expression profiles of clinical PC samples (Leite et al. 2009, Schaefer et al. 2009,
Ribas et al. 2009 and 2010, Spahn et al. 2010, Szczyrba et al. 2010). Oncogenic miR-
21 has been shown to be androgen-upregulated. It has also been shown to target
programmed cell death 4 (PDGF4) and is upregulated in PC (Ribas et al. 2009 and
2010, Lu et al. 2008). miR-125b, the first reported androgen-regulated miRNA, has
been shown to be both up- and downregulated in clinical samples and dysregulated by
androgens (Shi et al. 2007, Schaefer et al. 2010).

5.3.3 Effect of miR-141 on the growth of PC cells

Since miR-141 was concordantly androgen-upregulated and overexpressed during PC
progression, the biological effect of overexpressed miR-141 was studied in vitro. The
forced overexpression of miR-141 by transient transfection enhanced the growth of
LNCaP-pcDNA3.1 cells in the presence of low levels of DHT. Similarly, inhibition of
miR-141 by transient transfection (anti-miR-141) reduced the growth of LNCaP-ARnhi
cellsin low or depleted androgen medium. Ten putative miR-141 mRNA targets were
affected by transfections with miR-141 and anti-miR-141 over 1.5 fold. Of those,
diaphanous homolog 3 (Drosophila) (DIAPH3), clock homolog (mouse) (CLOCK),
zinc finger protein 800 (ZNF800) and OTU domain containing 4 (OTUD4) contained
predicted miR-141 binding sites (original communication 111).



miR-141 is an epithelial-specific microRNA belonging to an evolutionarily conserved
family of miRNAs including miR-200a, miR-200b, miR-200c, and miR-429. miR-141
has been shown to inhibit the differentiation of pre-osteoblasts to mature osteoblasts by
targeting the bone-generating transcription factor DIX5 and can also induce embryonic
stem cell differentiation in mice, which is regulated by Myc (Itoh et al. 2009, Lin et al.
2009). High expression of miR-141 has been reported in a wide range of common
epithelial cancers including breast, lung, nasopharyngeal and ovarian cancer (lorio et
al. 2007, Nam et al. 2008, Zhang et al. 2010, Szczyrba et al. 2010). Higher serum
levels of miR-141 have also been suggested as a novel biomarker for PC with high
sensitivity (Mitchell et al. 2008). The downregulation of miR-141 has been reported in
renal cancers and pair-matched gastric, colon, lung and breast cancers (Nakada et al.
2008, Du et al. 2009, Baffa et al. 2009). Interestingly, the putative miR-141 target gene
diaphanous homolog 3 (DIAPH3) has been reported to be deleted, controlling an
oncosomic secretion formation in PC cells (Di Vizio et al. 2009). The SNPs in the
other putative miR-141 target gene, clock homolog (CLOCK), have also been linked to
PC (Zhu et al. 2009). CLOCK genes are responsible for the circadian rhythms
important for hormone balance and have been suggested as possible tumor suppressor
genes (Fu et al. 2003). However, we were not able to confirm the reduction of the
putative target genes at the protein level. A summary and simplified schematic
presentation of AR-induced miRNAs and the protein coding genes putatively involved
in the emergence of PC and CRPC, according to our results and the literature, with a
possible feedback interaction isillustrated in Figure 8.
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Figure 8. Simplified schematic presentation of the AR signaling pathway in prostate
cancer. This figure shows the main activities associated with AR which promote PC
progresson, CRPC, cell growth and invasion. Solid lines indicate transcriptional
activation (arrowhead) or inhibition (blunt end), according to our stated results and
the previous literature. A dashed line indicates post-trandational regulation according
to the literature referred to in the text. Bold lines show the downstream biological
events.
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6. CONCLUSIONS

The main findings and conclusions of this thesis were:

Altogether, nine novel mutations were found in the promoter and UTR regions in
genetically unstable cell lines and xenografts. None of these alterations were recurrent,
nor were they present in the clinical prostate cancer specimens or normal controls. Six
single base changes were found in two geneticly unstable cell lines. Results indicate
that the found variants are rare mutations which are unlikely to be found in the
majority of PC or CRPC cases.

In the presence of 1 nM DHT or lower, high AR-expressing cells grew significantly
faster than lower level AR-expressing LNCaP cells. The cells overexpressing AR were
also capable of growing longer in CSS medium without any DHT supplementation.
The results indicate that AR overexpression increases the proliferation of PC cells in
low androgen medium and the growth is balanced by the level of both the ligand and
the receptor.

The number of androgen-responsive genes was clearly associated with AR expression
level. The number of androgen-regulated genes was highest in LNCaP-ARhi and VCaP
cells expressing the highest amount of AR. VCaP and the LNCaP-ARhi cells clustering
together in unsupervised hierarchical clustering indicates a very strong influence of AR
on the genome-wide gene expression in PC cells. Well-known androgen-regulated
genes, such as PSA, ACPP, TMPRSS2 and NKX3-1, were found to be sensitized up to
10-fold in the LNCaP-ARnhi cells compared to the LNCaP-pcDNA3.1 cells.

Altogether, 55 genes were >2-fold induced in low androgen levels and were more
highly expressed in high AR-containing cells. Of those, 27 had an AR binding site
<200 kb from the TSS and were expressed at significantly higher levels in CRPC. All
of these genes were mitosis- or cell cycle-associated genes. The growth of the LNCaP-
ARNhi cells was consistently more sensitive to the inhibition of CDK1 and CDK2 by the
small molecule inhibitor, roscovitine, than the growth of LNCaP-pcDNA3.1 and
LNCaP-ARmo cells. Results indicate that at least one of the main mechanisms of
CRPC growth is the direct ability of AR to enhance the transcription of cell cycle- and
mitosis-associated genes.

Only two miRNAs were >2-fold upregulated by 100 nM DHT and no miRNAs were
>1.5-fold up- or downregulated at lower, physiological DHT concentrations. One to
two weeks after castration, more androgen-regulated miRNAs were found. The highest
number of castration-affected miRNAs was found in androgen-dependent xenografts
and the lowest was found in androgen-independent and AR-negative xenografts. Of the
androgen- or castration-regulated miRNAS, the expression levels of miR-18a, -141,
and -375 were significantly upregulated and miR-221 was downregulated in untreated
PC and CRPC. The transient transfection studies with miR-141 suggest that miR-141
might have a role in supporting androgen-dependent and independent-growth, but
overexpression of miR-141 alone was not sufficient to induce androgen-independent
growth in PC cells.
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BACKGROUND. Mechanisms, other than gene amplification, leading to overexpression of
AR in androgen ablation-resistant prostate cancer remain unknown and could include genetic
alterations in the promoter or untranslated regions (UTR) of the AR gene.

MATERIALS AND METHODS. DNAs from five prostate cancer cell lines, 19 LuCaP xeno-
grafts, 44 clinical tumors, and 36 non-malignant controls were used for screening mutations in
the upstream regulatory region, promoter and the 5'- and 3-UTRs of the AR gene with denatu-
rating high performance liquid chromatography (DHPLC) and sequencing.

RESULTS. Ten different sequence variations were found in prostate cancer cell lines and
xenografts. However, none of them were recurrent or were found in clinical prostate cancer
specimens or in normal controls.

CONCLUSIONS. Recurrent mutations in the promoter or UTRs of AR seem to be rare, and
thus not likely mechanisms for the increased expression of the gene in the androgen ablation-

resistant prostate cancer. Prostate 66: 1585—-1591,2006. © 2006 Wiley-Liss, Inc.

KEY WORDS:

INTRODUCTION

The growth of prostate cancer is dependent on
androgens. Therefore, endocrine therapy has been a
standard treatment in advanced prostate cancer for
more than a half century [1]. During the hormonal
therapy, an ablation-resistant or androgen-indepen-
dent tumor clone eventually emerges leading to the
clinical progression of the disease.

Recent findings suggest that AR plays a major role in
the emergence of the hormone-refractory prostate
carcinoma. We have shown that about 30% of abla-
tion-resistant prostate cancers contain AR gene ampli-
fication leading to overexpression of the gene [2,3].
Mutations in the coding region of the AR have been
found in 10-30% of the ablation-resistant prostate
cancer treated with antiandrogens, such as flutamide or
bicalutamide [4-6]. In addition, Chen and co-workers
have shown that overexpression of AR is required and
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sufficient to transform androgen-dependent prostate
cancer xenografts to ablation-resistant ones [7]. The
study indicated also that the only common nominator
in the expression profiles of androgen-dependent and-
independent xenografts was the increased expression
of AR in the independent counter parts. The finding is
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in a good agreement with studies showing an overall
increased expression of AR in a majority of ablation-
resistant clinical prostate cancer specimens [2,3,8-11].
Although, when a large series of bone metastases from
patients who had expired from advanced androgen-
independent disease were examined by immunohis-
tochemistry there was extreme variability in expression
levels of the androgen receptor among the lesions in
individual patients [12].

The regulatory regions of the AR gene are incom-
pletely known (Fig. 1). The core promoter (—74 to +-87)
of ARhasno TATA or CAAT box, but does have an SP1-
binding site (—52-57) and a palindromic homopurine
(—129-70) repeat. Two AR transcription initiation sites,
ARTIS I (-12/-11/-10) and ARTIS II (—=1/+1), have
been demonstrated to function as independent over-
lapping pathways, where SP1-binding is inducing
the transcription through ARTIS II, but has no
influences on ARTIS I [13,14]. Regulation and the role
of these two overlapping pathways are still unclear.
Upstream several putative positively regulating
cis-acting elements can be found [15,16]. Functional
studies of the promoter have shown that the palidromic
homopurine repeat is important for AR transcription
and may facilitate transcription initiation from the GC-
box [15,17]. Mizokami et al. [15] identified a cAMP
responsive element —518 bp upstream of the core
promoter. They also found a putative suppression
region from —540 to —150 bp from core promoter and
another cis-acting region(s) in —1,390 to —940 bp. Other
functional regulatory elements, which may alter the AR
transcription, have been found for HL (helix-loop-
helix-like) motifs 1 and 2, —179 and —37 bp upstream
from the core promoter [16], and for NF-kB and TNFa
in distal part of rat AR promoter [18].

AR is known to have a long (1.1 kb) 5-UTR and a
very long (~7 kb) 3/-UTR [19-21]. The 5'-UTR contains

(GGGA), -129

CRE -518
\ HL2 -37

HL1 -179 Sp1-56

ARS 313

a stem-loop structure and is essential for AR translation
[21]. Recently the androgen-independent LNCaP-Al
cell line, which overexpresses AR, was found to have a
loss of an unidentified suppressor complex that binds
to a suppressor element 313 bp downstream from
ARTIS II [22]. 3’-UTR contains highly conserved UC-
rich motifs and 3’-CCCUCCC poly(C)-binding protein
(CP) motifs 4,036 and 4,071 bp downstream of the
ARTIS. The UC-rich region is a target for Elav/Hu
family of RNA binding proteins, such as HuR, that are
involved in stabilation of several AU-rich elements
containing mRNAs. UC-rich region binds also simul-
taneously CP1 and 2, which have a role in control of
mRNA turnover and translation rate, and thus these
proteins are suggested to have a co-operative role in
controlling AR expression in prostate cancer [23].

Two single cases of germ-line alterations have been
identified in the 5'-UTR and one in the promoter region,
two of these in prostate cancer patients [24], and oneina
healthy male blood donor [25]. The alterations that
were found in one prostate cancer patient were G-10T
within the ARTIS I and C203A within a GC rich region
of the 5-UTR [24]. The third alteration ,which was
found in the one healthy man out of 100 blood donors,
was 25delT in a conserved region of 5’-UTR. In the same
study no germ-line alterations were found among 92
prostate cancer patients [25]. In addition, one somatic
change in 3’-UTR of a prostate cancer specimen has
been reported [26].

Since the amplification of AR gene can explain only
partly the overexpression of the gene in the ablation-
resistant prostate cancer, we decided to screen muta-
tions in prostate cancer cell lines, xenografts, and
clinical samples, the promoter and the 5'-UTR regions,
which could alter the transcriptional rate of AR gene,
and the 3'-UTR, which could affect the stability of the
androgen receptor mRNA.

UC- motif 4031 ATTAA...CATAAA >
l PolyA 10409... 10636

1
sH 7|ls] sutR
S;(l:;‘;g DU145 4037-T T5729A
LAPCa DU145 wpcs C7696A
P oy
LAPC4
LuCaP 35v G4550C
DU145
Fig. 1. Schematic structure of the AR promoter (2.3 kb), 5 - and 3'-UTR regions (l.I and 6.8 kb, respectively) and coding regions (exons | —

8,2.7 kb).The core promoter region (— 74to+87) thatincludes Spland HL2 binding sites, and other functionally known motifsaremarkedabove,
andthealterationsfoundinthe present studyare marked witharrowsbelow the schematicstructure of thegene.The coordinatesare calculated
from transcription initiation site (ARTIS Il) using GenBank sequences (accession numbers NM.000044 and AL049564 for upstream regulatory
regionand AL356358 for the 3'UTR).
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MATERIALS AND METHODS

Materials

DU145, LNCaP, PC-3, and 22Rv1 prostate cancer
cell lines were obtained from the American Type
Culture Collection (ATCC, Manassas, VA), and LAPC4
was kindly provided by Dr. Charles Sawyers (UCLA,
Los Angeles, CA) and were cultured under the
recommended conditions. Freshly frozen samples of
19 xenografts (LuCaP 23.1, 23.8, 23.12, 35, 35 V, 49, 58,
69, 70, 73, 77, 78, 81, 86.2, 92.1, 93, 96, 105, 115) were

made available for the analyses by one of the co-authors
(R.L.V.). Freshly frozen clinical samples (6 benign
prostate hyperplasia, 30 untreated and 14 ablation-
resistant prostate cancers) were obtained form the
Tampere University Hospital (Tampere, Finland). The
specimens were histologically examined for the pre-
sence of tumor tissue (>50% of cells) using hematoxylin
and eosin-stained slides. Among the untreated carci-
nomas, the distribution of WHO-grade among was: 9
grade I, 14 grade II, and 7 grade IIl. The TNM-stage
distribution was: 14 T2NOMO, 1 T2N1MO0, 10 T3NOMO,

TABLE I. Primers for DHPLC and Sequencing

Binding region Fragment Annealing
Primers® from ARTIS II° size (bp) temperature (°C) Sequence in 5’ — 3’ orientation
PROG6for —2,264-2,284 400 58/55 CTGCAAAGAACAGGAGGAGAA
PROG6rev —1,885-1,904 58/55 ATGTTGCTTCCACATCACCA
PROS5for —1,923-1,943 436 58/55 GGCAACAGTTTTCAGATGTGG
PROGrev —1,508-1,572 58/55 ATGGCTACAGCCTTCCTTGA
PRO4for —1,589-1,609 531 58/55 TGTGGTGGGATTAAATGTTGC
PRO4rev —1,079-1,098 58/55 ATTCTGGGGAGGCTCTCTGT
PRO3for —-1,119-1,138 572 58/55 CAAAAGAGACCCAGGCAAAA
PRO3rev —567-586 58/55 CTCAGCCCCAAGAATCAGAG
PRO2for —659-678 525 58/55 GGGTGATTTTGCCTTTGAGA
PRO2rev —154-173 58/55 GGCTTTGGAGAAACAAGTGC
PRO1for —228-247 527 60/58 GCAGGAGCTATTCAGGAAGC
PRO1rev +261-280 60/58 CTACCAGGCACTTTCCTTGC
5'UTR-1for +240-259 400 60/58 GCTGCTAAAGACTCGGAGGA
5'UTR-1rev +620-639 60/58 CAGGAGGAGGTGGAGAGAGA
5'UTR2 for +507-526 192 60/58 CACATTGCAAAGAAGGCTCT
5'UTR2 rev +678-698 60/58 GAAGACCTGACTGCCTTTTCA
5'UTR-3 for +658-677 272 58/55 CGGAGCCAGAGATCAAAAGA
5'UTR-3 rev +910-929 58/55 CGTGCAGAAGAAGACACACG
5'UTR-4 for +886-905 388 58/55 CCTAGCAGGGCAGATCTTGT
5'UTR-4 rev +1,170-1,189 58/55 TTCTGGAAAGCTCCTCGGTA
3'UTR-1for 3,822-3,841 828 58 CAAGTGCCCAAGATCCTTTC
3'UTR-1rev 4,631-4,650 58 GGCAGGTACTGATGCTCCAT
3'UTR-2afor 4,445-4,464 623 58 CCCAAAGAGGCCAATAGTGA
3'UTR-2arev 5,049-5,068 58 AGGTGGGGAAAAGGTAGTGG
3'UTR-2bfor 4,971-4,990 691 58 TGGAGCCAGAGGAGAAGAAA
3'UTR-2brev 5,643-5,662 58 CATCTGGCTTTAGGCTTTGC
3'UTR-3for 5,455-5,474 750 58 AGCTAAAGGGGCTACCCAGA
3'UTR-3rev 6,186-6,205 58 TAGGTTCCCCTCTCCCTTGT
3'UTR-4for 6,112-6,131 875 58 ATCCACAAGGGTTTCCTTCC
3'UTR-4rev 6,968-6,987 58 TGCCAACTTGTTTGGAGATG
3'UTR-5for 6,901-6,920 758 58 GCCACTCAGACCCACTTAGC
3'UTR-5rev 7,640-7,659 58 CCTTTATGCCCTGCCAGATA
3'UTR-6afor 7,534-7,553 592 58 TCCACATGATGCACAAATGA
3'UTR-6arev 8,107-8,126 58 CCCCTGCCCTTATGAATTTIT
3'UTR-6bfor 7,990-8,009 539 58 AGGCAGATCTGTTCTCACCA
3'UTR-6brev 8,510-8,529 58 CATCCAAAGTGGGCAGAAAT

“Primers PRO1 to PRO6 and 5UTR1 to 5’'UTR4 were used for DHPLC analysis of promoter and 5'-UTR regions, respectively. Primers
3'UTR1 to 3'UTR6b were used to sequencing analysis of 3'UTR sequence.
P According to NM_000044 and deduced from AL049564 for promoter and AL356358 for 3'-UTR.
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TABLE II. DHPLC Running Conditions

Size  Temperatures Gradient
Fragment (bp) O (% of Buffer B® in 8 min)
PRO6 400 53, 55, 57 55-67
PRO5 436 56, 58, 59 59-71
PRO4 531 56, 58, 59 56-68
PRO3 572 57,59, 61 57-67
PRO2 525 59, 61, 63 55-67
PRO1 527 64, 65, 66 55-67
UTRI1 400 61, 64, 65 58-70
UTR2 192 61, 63, 65 49-61
UTR3 272 57,59, 60 55-67
UTR4 388 62, 63, 65 57-69

2Helix "™ buffer B, 25% acetonitrile, 1% triethylamine, 0.6% acetic
acid, 0.01% ethylenediaminetetraacetic acid disodium salt
(Varian, Inc., Palo Alto, CA).

1 T3ANXMO, 1 T3NXM1, 1 TANXMO, 1 TANXM]1, and 1
TXNOMO. The ablation-resistant samples were from
patients who had experienced a local progression of the
disease during hormonal therapy. The therapy mod-
alities were: four orchiectomy, three LHRH (luteinizing
hormone-releasing hormone) analog, two estrogen,
two orchiectomy and estrogen, one orchiectomy and
bicalutamide, one LHRH analog and bicalutamide,
and one unknown. The median time from the onset
of the androgen ablation to the progression was
38 months (range: 15-68).

Thirty normal samples were obtained from healthy
Finnish female blood donors. DNA samples, extracted
with routine techniques, were first amplified with
GenomiPhi™ - DNA amplification kit (Amersham, GE

Healthcare, UK) according to the manufacturer’s instruc-
tions and diluted 1:5 for the subsequent PCR reactions.

PCR

The primers and annealing temperatures used
are listed in Table I. All primers were designed with
Primer3-program (http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3_ www.cgi). Amplification of the
promoter and the 5-UTR fragments was done with
Accutype polymerase (Stratagene, La Jolla, CA) in
detergent-free buffer according to the manufacturer’s
instructions. After 5 min denaturation at 98°C, the
10 cycles consisted of denaturation at 98°C for 50 sec,
annealing at 60°C or 58°C for 40 sec, and elongation at
72°C for 2 min, followed by additional 25 cycles
consisting of denaturation at 98°C for 50 sec, annealing
at 57 or 55°C for 40 sec, and elongation at 72°C initially
for 2 min, and subsequently additional 10 sec in each
cycle followed by final elongation at 72°C for 10 min.
Amplification of the 3-UTR fragments was done
with Platinum Taq (Invi’crogenT , Carlsbad, CA)
added with 1:4 ratio of Pfu polymerases (Fermentas,
Inc. Hanover, MD) in 1.0 or 1.5 mM MgCl, supple-
mented Platinum-buffer according to the manufac-
turer’s instructions. After 3 min denaturation at 96°C,
the 35 cycles consisted of denaturation at 96°C for 40 sec,
annealing at 58°C for 30 sec, and elongation at 72°C for
1 min followed by final elongation at 72°C for 2 min.

Denaturating High Performance Liquid
Chromatograph (DHPLC)

For heteroduplex analysis, each fragment was mixed
in a 1:1 ratio with a normal correspondingly amplified

TABLE Ill. Sequence Alterations in ARPromoter and UTR-regions

Base pairs
Sample Region from ARTISII® Change Sequence variations (changed base bolded)
DU145 Promoter —572 G—T GATTCTTGGGTCTGAGGGTT
DU145 3'UTR 4,037 Del T CTATTTGCTGGGC-TTTTTTTTCTCT
DU145 3'UTR 4,547 Ins A TTCTGCCAAATGCCTATTGC
DU145 3'UTR 4,550 G—C TTCTGCCAAATGCCTATTGC
LAPC4 Promoter —640 T—-G GAGAAATGCAGGGTITAAAGG
LAPC4 5'UTR 456 C—G GCTGCCAGCCGGAGTTTGCA
LAPC4 3'UTR 5,729 T—A ACATTGCCCAAACTCACTCA
LuCaP 35 Promoter  —1,863 C—T TCITTCAGACTCAGGTTTGA
LuCaP 35V Promoter = —1,863 C—T TCTTTCAGACTCAGGTTTGA
LuCaP 69 Promoter —1,474 G—A CACCTCCTCAAGTGAAAGGG
LuCaP 73 3'UTR 7,696 C—A CAGCCCTGCAACAAAGCTGC

?AR transcription initiation site. Base pair position according to according to NM_000044 and
deduced from AL049564 for promoter and upstream regulator regions and for AL356358 for 3'-UTR.

The Prostate DOI 10.1002/pros



Androgen Receptor Gene Mutations 1589

DNA fragment and denatured at 95°C for 5 min and
then reannealed over 30 min using a temperature
gradient from 95 to 65°C. DHPLC analysis was
performed using Agilent 1100 LC HPLC instrumenta-
tion (Agilent Technologies, Palo Alto, CA) equipped
with Varian CP28353 Helix DNA Column (50 mm x
3.0 mm) (Varian, Inc., Palo Alto, CA) in a 12% gradient
at suitable temperatures for 8 min. The optimal melting
temperatures and gradients (Table II) for each PCR
amplicon were obtained by analysis of the wild
type sequence, using the DHPLC Melt Program
at the Stanford Genome Technology Center web
site (http:/ /insertion.stanford.edu/), and by empirical
testing.

Sequencing

For sequencing analysis, the PCR reactions were
purified using either QIAquick PCR purification
columns (Qiagen, Inc. Valencia, CA) or MultiScreen™
Filtration System (Millipore, Billerica, MA). Sequen-
cing was performed using the BigDye®™ Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster
City, CA) and the ABI PRISM™ 3100 sequencer
(Applied Biosystems) according to the manufacturer’s
instructions. All found alterations were confirmed by
an independent amplification of the PCR fragment and

Normal control

G-572T in DU145

T-640G in LAPC4

subsequent re-sequencing from the original non-whole
genome amplified samples.

Controls

For DHPLC analysis, commercially available
DYS271-control (Varian, Inc.) and one base substitution
primers for each fragment were used to test the
suitability of the column and assay conditions.

RESULTS AND DISCUSSION

Although mutations in the coding region of AR have
thoroughly been studied in prostate cancer [4-6,27,28],
alterations in the regulator regions of the gene have not
been systematically analyzed. However, the common
overexpression of AR in ablation-resistant prostate
cancer suggests that such alterations could be common.
In order to screen for mutations in the regulatory
regions of AR, we first utilized prostate cancer cell lines
and xenografts (n = 24), since almost all of them derive
from ablation-resistant prostate cancers. Also, these
models contain high frequency of genetic alterations
suggesting that common mutations, if present in
ablation-resistant prostate cancer, should be found in
the cell lines and xenografts [29,30].

In the promoter and upstream regulatory region,
four single base changes were found in the cell lines

Normal sequence

G-572T in DU145

Mo

GATTCTTGGGTCTGAGGGTTC

T-640G in LAPC4

|

GAGAAATGCAGGTTAAAGGC

Fig. 2. Analyses of heteroduplexes with DHPLC. Above is shown a normal homoduplex sample (one peak curve) and below two mutation
samples (three peak curves). Both changes are single base substitutions.On the right side are shown the exact sequences of each fragment.
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and xenografts (Table III). One (G-572T) was found in
AR negative cell line DU145 and another (T-640G)
in AR positive LAPC4 cell line. Two other alterations,
C-1863T and G-1474A, were found in xenografts LuCaP
35 and 69, respectively, which both express high-levels
of AR, and also contain amplification of the AR gene [3].
The alteration found in the LuCaP 35 was also present
in the subline of the xenograft (LuCaP 35 V). In the
5-UTR, only one change, C456G, was found in LAPC4
cell line. None of the alterations are located in the
known functional regions of the promoter or the
5-UTR.

AR contains a very long but poorly characterized 3'-
UTR. The databases, such as GenBank, recognize only a
4313 bp long mRNA, whereas according to Northern
analysis, the size of the major form of the mRNA is
about 11 kb, indicating about 6.8 kb long 3/-UTR [18].
However, only a small part of the 3-UTR has been
sequenced from cDNA, and thus the sequence has to be
inferred from the genomic sequence. Here, we ana-
lyzed 4.6 kb of the putative 3'-UTR. Three substitutions,
G4550C in DU145, T5729A in LAPC4, and C7696A in
LuCaP 73 were found. In addition, there was one single
base deletion (4037delT) and single base insertion
(4547insA) in DU145. Except the 4037delT, the muta-
tions are not located in the known functionally active
elements or motifs [14-17,21-23] (Fig. 1). The func-
tional analyses by Yeap et al. [23] showed that one base
substitution in the C(U)yC-motif, the region where
delT was found in DU145, has no effect on the stability
of the mRNA-protein interaction. Thus, the functional
significance of these rare alterations, if any, remains
unpredictable.

To find out the frequency of each alteration in clinical
prostate cancer as well as to deduce whether they
are polymorphisms, 44 prostate cancer specimens,
six BPH specimens, and 30 (60 chromosomes)
normal female germ-line DNAs were analyzed for
these variants. None of these alterations were in these
samples indicating that the variants are rare mutations.
Of the 10 mutations, 4 were found in cell line DU145
and 3 in LAPC4 suggesting that these cell lines are
possible genetically instable, and thus, contain high
frequency of sequence alterations. Indeed, DU145 has
been shown to lack functional MLH1 leading to loss of
mismatch repair [31].

To screen mutations in the promoter and 5'-UTR of
the AR, we utilized DHPLC. It is a very specific and
sensitive HPLC-based heteroduplex-analysis at partly
denaturing temperatures in a gradient of organic
diluent [32]. The sensitivity and specificity of DHPLC
have been reported to be from 96% up to as high as
100% in blind analysis [32]. We analyzed all samples in
a gradient of 1.5% per minute of Helix'™ Buffer B for
8 min in three different temperatures suggested by the

The Prostate DOI 10.1002/pros

DHPLC-melt program and empirical testing (Table II).
All samples showing additional peaks in DHPLC
(Fig. 2) were sequenced from non-GenomiPhi ™
amplified template. Also 80 other PCR fragments were
screened by both DHPLC and sequencing with fully
concordant results. In addition, synthetic mutation
controls were constructed for all fragments and they
were all detected by DHPLC. Due to the heterogenic
distribution of AT-repetitive sequences in 3'-UTR,
which would have make the DHPLC analysis practi-
cally impossible, we used direct sequencing for the
3’-UTR mutation screening. Altogether, we believe our
analyses should have been sensitive enough to detect
most, if not all, sequence variations present in the
samples. However, it is naturally possible that muta-
tions, affecting the expression of AR, exist outside the
regions that were analyzed here.

CONCLUSIONS

Altogether, only five cancer samples showed non-
recurrent sequence alterations in the promoter as well as
5- and 3'-UTR of AR. The data indicate that recurrent
mutations in these regions are rare in prostate cancer and
thus not likely to contribute to the common over-
expression of AR in ablation-resistant prostate cancers.
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Abstract

Androgen receptor (AR) is known to be overexpressed in
castration-resistant prostate cancer. To interrogate the
functional significance of the AR level, we established two
LNCaP cell sublines expressing in a stable fashion two to four
times (LNCaP-ARmo) and four to six times (LNCaP-ARhi)
higher level of AR than the parental cell line expressing the
empty vector (LNCaP-pcDNA3.1). LNCaP-ARhi cell line grew
faster than the control line in low concentrations, especially in
1 nmol/L 5a-dihydrotestosterone (DHT). Microarray-based
transcript profiling and subsequent unsupervised hierarchical
clustering showed that LNCaP-ARhi cells clustered together
with VCaP cells, containing endogenous AR gene amplification
and overexpression, indicating the central role of AR in the
overall regulation of gene expression in prostate cancer cells.
Two hundred forty genes showed >2-fold changes on DHT
treatment in LNCaP-ARhi at 4 h time point, whereas only 164
and 52 showed changes in LNCaP-ARmo and LNCaP-
pPcDNA3.1, respectively. Many androgen-regulated genes were
upregulated in LNCaP-ARhi at 10-fold lower concentration of
DHT than in control cells. DHT (1 nmol/L) increased
expression of several cell cycle-associated genes in LNCaP-
ARhi cells. ChIP-on-chip assay revealed the presence of
chromatin binding sites for AR within +200 kb of most of
these genes. The growth of LNCaP-ARhi cells was also highly
sensitive to cyclin-dependent kinase inhibitor, roscovitine, at
1 nmol/L DHT. In conclusion, our results show that over-
expression of AR sensitizes castration-resistant prostate
cancer cells to the low levels of androgens. The activity of
AR signaling pathway is regulated by the levels of both ligand
and the receptor. [Cancer Res 2009;69(20):8141-9]

Introduction

Prostate cancer is the most common male malignancy in many
western countries (1, 2). The growth and the differentiation of
normal prostate epithelial cells as well as development of prostate
cancer are dependent on androgens (3). Androgen ablation, the
gold standard treatment for advanced prostate cancer, initially
inhibits tumor growth but ultimately fails and leads to emergence
of castration-resistant prostate cancer (CRPC), which has also been

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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called as androgen-independent prostate cancer. However, a recent
clinical trial on abiraterone indicated directly that CRPC is still
androgen-dependent (4). It has been shown that CRPC cells
upregulate the expression of many of enzymes involved in
steroidogenesis, suggesting that cancer cells themselves produce
androgens during androgen withdrawal (5-7). In addition, the
experimental models of CRPC have shown that many of the
androgen-regulated genes are upregulated in CRPC (8-11).

Androgen action is mediated by the androgen receptor (AR;
ref. 12). It has been shown that AR is overexpressed in vast majority
of CRPC (13, 14). In addition, ~30% of CRPC carry AR gene
amplification (15). Somatic mutations of AR in prostate cancer
have also been extensively studied. The mutations seem to be rare
in untreated tumors but are found in 10% to 30% of tumors treated
with antiandrogens, such as flutamide and bicalutamide (16, 17).
Receptor mutations may broaden the ligand specificity converting
even the antagonist effect of antiandrogens to agonist one (10, 18).
It has also been suggested that crosstalk between AR signaling and
other pathways, such as mitogen-activated protein kinase, epi-
dermal growth factor receptor, and Akt pathways, takes place,
especially in androgen-depleted environment (12). In addition,
alterations in the expression of AR coregulators have been sug-
gested, but not proven, to be involved in the progression of
prostate cancer (19). Functional evidence that AR is involved in the
emergence of CRPC was presented by Chen and colleagues (20)
who showed that ectopic expression of a high AR content was
sufficient to transform androgen-dependent prostate cancer cells
to androgen-independent ones. Also, Kokontis and colleagues (21)
have shown previously that adaptation of LNCaP cell line to low
levels of androgens is associated with increased expression of endo-
genous mutant AR. Together with the findings that AR over-
expression is common in CRPC, the experimental data suggest that
the overexpression of this receptor is a key mechanism for the
progression of prostate cancer.

To mimic the conditions of high AR expression in CRPC, we have
established a cell line model by a stable transfection of AR into an
androgen-responsive prostate cancer cell line, LNCaP. Two sublines
with moderate (LNCaP-ARmo) and high (LNCaP-ARhi) levels of AR
overexpression were produced. The model cell lines were
subsequently used to examine the influence of AR levels on cell
growth and expression of downstream genes of the AR signaling
pathway. The aim was to investigate whether AR overexpression
hypersensitizes cells to the low levels of androgens, as we have
suggested previously (15), as well as to identify the candidate
downstream genes that are involved in the emergence of CRPC.

Materials and Methods

Cell culture protocols and transfections. LNCaP cells (American Type
Culture Collection) were cultured under the recommended conditions.
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Figure 1. A, relative expression levels of AR
mRNA (AR/TBP) as measured by Q-RT-PCR. The
AR mRNA level is ~ 13 times higher in LNCaP-
ARhi and 4 times higher in LNCaP-ARmo cells
than in controls (parental LNCaP and LNCaP-
pcDNAS3.1). Mean + SE of three replicates.
B, Western analysis of the AR protein levels.
LNCaP-ARhi cells had 4- to 6-fold and LNCaP-
ARmo cells had 2- to 4-fold higher AR protein
levels than control cells (LNCaP and LNCaP-
pcDNAS.1). Nuclear and cytoplasmic protein levels
were quantified by ImageJ software program and
normalized against pan-actin (loading control).
The combined fold change is also shown.

. DuCaP PC-3 cells were used as a negative control.
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. LNCaP-pcDNA3.1
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. PC-3

Either pcDNA3.1(+) empty expression vector (Invitrogen) or pcDNA3.1(+)
inserted with the AR coding region [accession #_M23263; digested with Sall
and Nhel from pSG5 expression vector and subcloned pTarget vector
(Invitrogen) and finally into NotlI/BamHI site in pcDNA3.1] were stable
transfected into LNCaP with Lipofectamine Plus transfection reagent
(Invitrogen) according to the manufacturer’s instructions. Transfected
clones were selected with 400 pg/mL geneticin (G418; Invitrogen), and
several clones were expanded. AR mRNA level was determined by using
Northern blot analysis and quantitative real-time reverse transcription-PCR
(Q-RT-PCR). Subsequently, dozen clones, showing the highest overexpres-
sion of AR mRNA, were analyzed further for their AR protein levels using
Western blotting. Finally, two clones, expressing moderately (LNCaP-ARmo)
and highly (LNCaP-ARhi) increased levels of AR protein, were selected for
further analyses. Cells transfected with an empty vector (LNCaP-pcDNA3.1)
were used as a control. The transfected cells were cultured in medium
containing geneticin (200 pg/mL). DuCaP and VCaP cells were kindly
provided by Dr. Jack Schalken (Radboud University Nijmegen Medical
Center) and grown under the recommended conditions. LAPC4 cell line was
kindly provided by Dr. Charles Sawyers (Sloan-Kettering Institute) and
cultured under the recommended conditions.

Before each experiment with hormone exposure, cells were grown in
charcoal-stripped serum (CSS; Hyclone) in medium without phenol red for
4 days. Subsequently, the medium was replaced for the experiment with that
containing various concentrations of 5a-dihydrotestosterone (DHT; Ster-
aloids) or roscovitine (Calbiochem, EMD Chemicals).

Cell proliferation assays. After 3 days of incubation in charcoal-
stripped serum medium, the cells were trypsinized, counted, and placed in
12-well dishes in charcoal-stripped serum medium with desired concen-
tration of DHT. The amount of cells at each time point was analyzed using
Alamar Blue reagent (AbD Serotec) and luminometric detection using a
fluorometer (Wallac 1420 Victor; Perkin-Elmer). Alternatively, the cells were
trypsinized and the number of cells was calculated with Beckman Coulter
72-series particle counter according to the manufacturer’s instructions.
Each experiment was done in quadruplicate for DHT-induced growth

analysis and in triplicate for roscovitine exposures. For the relative growth
curves, the luminometric values or the number of the cells in each well in
each follow-up day were divided by the mean values or number at day 1.

Q-RT-PCR. Subconfluent cells were collected from dishes and their total
RNA was extracted using Trizol (Invitrogen) according to the manufac-
turer’s instructions. First-strand cDNA synthesis was carried out from total
RNA using AMV reverse transcriptase (Finnzymes) according to the
manufacturer’s instructions. The primers for Q-RT-PCR were designed with
Primer3 program.® Primer sequences are listed in Supplementary Table SI.
SYBR Green II-Fast Start kit (Roche Diagnostics) and Light Cycler apparatus
(Roche Diagnostics) were used for Q-RT-PCR essentially as described
previously (13). 7BP (TATA box binding protein) mRNA was used as a
reference. The specificity of the reactions was confirmed, in addition to the
melting curve analysis, with 1.5% agarose gel electrophoresis.

Western blot. The soluble cytoplasmic and nuclear proteins were
extracted from subconfluent cells using the modified method of Dignam
and colleagues (22). Both cytoplasmic and nuclear proteins (12.5 pug each)
were separated in 12% SDS-PAGE and blotted to polyvinylidene difluoride
membrane (Immobilon-P; Millipore). After blocking, membranes were
incubated with the primary antibody (mouse anti-AR 441 and mouse anti-
pan-actin, clone ACTNO5; NeoMarkers), washed, and incubated with the
secondary antibody (anti-mouse IgG-horseradish peroxidase conjugate;
DAKO). After washing, the protein bands were visualized on autoradiog-
raphy film (Kodak) using chemiluminescence detection (Western Blotting
Luminol reagent; Santa Cruz Biotechnology). Intensity differences were
quantified by Image] image analysis software program.* Equal loading was
confirmed by staining with antibody against pan-actin.

Microarray analysis. Microarray hybridizations were done in the
Finnish DNA Microarray Centre at Turku Centre for Biotechnology. First,

% http://frodo.wi.mit.edu/primer3/input.htm
4 http://rsb.info.nih.gov/ij/index.html
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300 ng total RNA of each sample was transcribed in vitro, biotinylated and
amplified with Illumina RNA TotalPrep Amplification kit (Ambion), and
hybridized to Illumina Sentrix HumanRef-8_V2 Expression BeadChip accord-
ing to the manufacturer’s instructions. The probes of Illumina HumanRef-8 v2
chip are based on the content from the National Center for Biotechnology
Information RefSeq database 1, release 17 containing >22,000 well-annotated
transcripts. The data were analyzed with GeneSpring Analysis Platform
version GX 7.3.1 (Agilent Technologies). First, lowest signal value was set to be
3-fold higher compared with negative control (water) signals. All individual
values below that were set to this lowest signal value.

For unsupervised hierarchical clustering, samples were normalized per
chip by the 50th percentile and per gene by the median. Average linkage
method was used for clustering, and the similarities were estimated with
Pearson’s correlation. For the analyses of DHT dose responses, data were
normalized with repeated median polishing per chip and gene. Subse-
quently, signal values in each treatment were divided by the signal value of
the 0 nmol/L DHT treatment of the same cell line at the same time point.
To identify differently expressed genes in the faster-growing LNCaP-ARhi
cells at 1 nmol/L DHT, the data were normalized with intensity dependent
Lowess normalization. Twenty percent of the data were used to calculate
the Lowess fit at each point. This curve was used to adjust the control value
(LNCaP-pcDNA3.1 or LNCaP-ARmo were used as control samples for
LNCaP-ARhi) for each measurement. For ontology classifications, all gene
ontology lists containing at least 10 genes with P < 0.001 (hypergeometric
P value without multiple testing correction) in either LNCaP-pcDNA3.1, or

LNCaP-ARmo, or LNCaP-ARhi were filtered and organized with GeneSpring
Ontology browser.

The array data were submitted using MIAMExpress to the ArrayExpress
database (accession number E-MEXP-2286).

ChIP-on-chip assays. ChIP-on-chip assays were done with anti-AR anti-
body (BJ14-AR3; ref. 23) in nontransfected LNCaP-1F5 cells that were cul-
tured in the absence of hormone for 4 days and then exposed to 100 nmol/L
DHT or vehicle for 2 h. The immunoprecipitation enriched and input
chromatin samples were amplified by ligation-mediated PCR followed by
fragmentation and labeling of DNA. Three micrograms of samples from
input and immunoprecipitated samples were hybridized to Affymetrix
whole-genome tiling arrays (GeneChip Human Tiling 2.0R Array Set;
Affymetrix). The regions enriched for AR-binding sites were identified by
MAT algorithm (24) and mapped to the most recent human genome
sequence (Hgl18), and sites that were enriched above input were scored at a
P value of 10~*. These AR-binding sites were then subsequently mapped to
the differentially expressed genes in the AR overexpression model.

Results

Establishment of AR-overexpressing LNCaP. Two AR-over-
expressing clones were selected for experiments. These were
LNCaP-ARmo, with ~4-fold higher AR mRNA and ~ 2- to 4-fold
higher AR protein level, and LNCaP-ARhi, with 13-fold higher AR

3=

0 nmol/L DHT B

0.1 nmol/L DHT

Figure 2. Relative growth of the LNCaP-AR C
model cells in the presence of (A) 0 nmol/L DHT,

(B) 0.1 nmol/L DHT, (C) 1 nmol/L DHT, and

(D) 10 nmol/L DHT. The greatest advantage in
proliferation rate for AR-overexpressing cells was
seen in 1.0 nmol/L DHT. E, growth of cells in charcoal-
stripped serum medium without androgens during

3 wk. The highest growth rate was seen in
LNCaP-ARhi cells. The growth of LNCaP-ARmo was
between LNCaP-ARhi and control cells. Mean + SE of
four replicates. Y axis, relative growth against day 1.
*, P <0.05; **, P <0.01; ***, P < 0.001, below the

=3
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Figure 3. Unsupervised hierarchical clustering of mRNA expression in DHT-treated LNCaP-AR and VCaP cells. LNCaP-ARhi cells cluster together with VCaP cells
(except 0 mol/L DHT treated), and LNCaP-pcDNA3.1 cells together with LNCaP-ARmo cells.

mRNA and 4- to 6-fold higher AR protein level, than those in the
control LNCaP-pcDNA3.1 cells (Fig. 1). Immunofluorescence
staining showed that the AR protein is located in nucleus when
cells are grown in the presence of androgens (Supplementary
Fig. S1). In addition, overexpression of AR seemed to enhance
the nuclear transport after DHT exposure. The most intense
nuclear staining was seen in the LNCaP-ARhi cells after 1 h exposure
to 10 nmol/L DHT.

Growth curve analyses. The proliferation rates of these cells
were analyzed in the presence of various DHT concentrations. The
growth of LNCaP-ARhi cells was stimulated with lower concen-
trations of DHT than control LNCaP-pcDNA3.1 or LNCaP-ARmo
cells (Fig. 2). Especially, in the presence of 1 nmol/L DHT, LNCaP-
ARhi cells grew clearly faster than LNCaP-ARmo or LNCaP-
pcDNA3.1 cells (P < 0.01). The cells overexpressing AR were also
capable of growing better in charcoal-stripped serum medium
without DHT (Fig. 2E). However, the growth finally plateaued in all
cell lines.

Expression profiling. For genome-wide expression profiling,
LNCaP-ARhi, LNCaP-ARmo, and LNCaP-pcDNA3.1 cells were
grown in the presence of various DHT concentrations (0, 1, 10,
and 100 nmol/L), and total RNA was extracted at 4 and 24 h time

points. In addition, VCaP cells that contain endogenous AR gene
amplification and strong overexpression of AR (ref. 24; Fig. 1) were
treated and analyzed in a similar fashion. Unsupervised hierarchi-
cal clustering of androgen-regulated transcripts revealed that VCaP
and LNCaP-ARhi cells clustered together, whereas androgen-
dependent transcripts of LNCaP-ARmo cells clustered together
with those of LNCaP-pcDNA3.1 cells (Fig. 3).

More genes were upregulated than downregulated in the LNCaP-
AR cells by DHT. Venn diagrams for upregulated and down-
regulated genes are shown in Fig. 4. In LNCaP-pcDNA3.1 cells,
expression of 52 and 118 genes was changed >2-fold at any DHT
concentration compared with vehicle at 4 and 24 h, respectively. In
LNCaP-ARmo and LNCaP-ARhi, the number of genes with altered
expression was higher; in ARmo 164 and 379 at 4 and 24 h time
points, respectively, and in ARhi 240 and 475 at 4 and 24 h time
points, respectively (P < 0.0001, X test). In VCaP cells, expression
of 430 genes was changed >2-fold at the 4 h time point and 428
genes at the 24 h time point. The upregulated and downregulated
genes by DHT exposure in LNCaP-pcDNA3.1, LNCaP-ARmo,
LNCaP-ARhi, and VCaP are listed in Supplementary Tables S2 to S5.

Next, we analyzed gene ontology categories for all genes
upregulated and downregulated at 24 h of DHT treatments. In
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LNCaP-pcDNA3.1 cells, DHT upregulated transcripts belonged to
the following five gene ontology categories (at least 10 upregulated
genes with P < 0.001): intracellular signaling cascade, cell cycle, cell
division, protein metabolism, and DNA metabolism (Supplemen-
tary Table S6). In LNCaP-ARhi and LNCaP-ARmo cells, the same
five gene ontology categories were also upregulated as those in
LNCaP-pcDNA3.1 cells, but the number of upregulated genes was
significantly higher in each category. In addition, six other main
ontologies were enriched in LNCaP-ARmo and/or LNCaP-ARhi
cells. These categories were lipid metabolism, secretory pathway,
cell organization and biogenesis, chromosome segregation, re-
sponse to endogenous stimulus, and cell proliferation (Supplemen-
tary Table S6). Ontologies that showed highly significantly (P <
0.0001, %> test) more upregulated genes in LNCaP-ARhi cells
compared with LNCaP-pcDNA3.1 or LNCaP-ARmo cells were genes
associated with mitotic cell cycle, regulation of progression through
cell cycle, organelle organization and biogenesis, cellular protein
metabolism, and DNA metabolism (Supplementary Table S6). Of
upregulated ontologies, intracellular signaling cascade, cell cycle,
and lipid metabolism were also upregulated significantly (P < 0.01)
already at 4 h time point. Only one ontology category, apoptosis, was
significantly upregulated at 4 h time point but not at 24 h time point.
The downregulated genes were not enriched in any of the categories
with more than two genes in any of the cell lines.

When upregulated ontologies were examined separately at var-
ious DHT concentrations (Fig. 5), particularly DNA metabolism, cell
cycle, cell organization and biogenesis, cell division, and intracel-

lular signaling cascade were found to be highly significantly
upregulated in LNCaP-ARhi cells already in 1 nmol/L DHT
concentration (Fig. 54). At 10 and 100 nmol/L DHT concentrations,
the same ontologies were upregulated but with higher number of
genes. At 10 and 100 nmol/L DHT concentrations, cell cycle, DNA
metabolism, lipid metabolism, cell organization and biogenesis, cell
division, and chromosome segregation were highly significantly
upregulated also in LNCaP-pcDNA3.1 or LNCaP-ARmo cells. The
number of upregulated genes in these categories were, however,
always highest in LNCaP-ARhi cells. The most significantly
upregulated ontologies in LNCaP-ARmo cells were lipid metabo-
lism and secretory pathway.

Expression of known AR target genes. Expression of well-
known AR target genes, such as PSA, TMPRSS2, NKX3-1, and
TMEPAI, was found to be increased by 4- to 10-fold in LNCaP-ARhi
and LNCaP-ARmo compared with LNCaP-pcDNA3.1 at 4 and 24 h time
points (Fig. 6). Likewise, expression of well-known downregulated
AR target genes, such as PAP and PSMA, was attenuated more in
LNCaP-ARhi and LNCaP-ARmo cells than in control cells. On
average, for an equal level of upregulation of genes, a 10-fold higher
DHT concentration was required for LNCaP-pcDNA3.1 cells than for
LNCaP-ARhi or LNCaP-ARmo cells. Q-RT-PCR of PSA and six
selected genes, unknown previously to be regulated by androgens,
confirmed the microarray data (Supplementary Fig. S2).

LNCaP and VCaP cells contain genetic rearrangements affecting
Ets transcription factors, ETVI and ERG, respectively (25, 26). In
VCaP cells, ERG expression was upregulated by androgens

A B

LNCaP-ARhi LNCaP-ARmo

(111 genes)

LNCaP-pcDNA3.1

(SL)

Nt
LNCaP-pcDNA3.1

(28 genes)

LNCaP-ARhi
(349 genes)

LNCaP-ARmo
262 genes)

(24 genes)
LNCaP-pcDNA3.1
(100 genes)
C D
LNCaP-ARhi LNCaP-ARhi LNCaP-ARmo
LNCaP-ARmo (126 genes)
(75 genes) 53 genes) (117 genes)

LNCaP-pcDNA3.1
(18 genes)

Figure 4. Venn diagrams of DHT responding genes in LNCaP-AR cell panel for upregulated genes at (A) 4 h and (B) 2 h. Ninety and 180 genes were found to be
upregulated (>2-fold) only in LNCaP-ARnhi at 4 and 24 h time points, respectively. Venn diagrams of genes downregulated by DHT in LNCaP-AR panel at (C) 4 h
and (D) 24 h. Forty-four and 65 genes were found to be downregulated (>2-fold) only in LNCaP-ARhi at 4 and 24 h time points, respectively.
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(Supplementary Fig. S3). Unfortunately, lllumina RefSeq8-v2 probes
for ETVI failed to detect any expression. However, Q-RT-PCR
analysis showed >2-fold increase of ETV1 mRNA (Supplementary
Fig. S§3). Of Ets family members, only ELK4 mRNA level was in-
creased with androgens in LNCaP-ARhi cells at 24 h time point
(Supplementary Fig. S3). The ELK4 gene is known to be an AR
target in human prostate cancer cells with association to cell growth
in vitro (27).

Kokontis and colleagues (21) have shown previously that LNCaP
cells overexpressing endogenous AR show higher expression of
MYC in low levels of androgens, and the expression is decreased in
lower concentrations of the androgens than in the parental cell
line. In similar fashion, here the highest MYC expression was found
in VCaP and LNCaP-ARhi cells in the low DHT levels, and the

expression was decreased in higher concentrations of DHT
(Supplementary Fig. S4).

Identification of candidate AR downstream genes. Because
the LNCaP-ARhi cells gained a growth benefit ir vitro with 1 nmol/L
DHT concentration compared with LNCaP-ARmo cells or empty
vector-transfected LNCaP-pcDNA3.1 cells, we were particularly
interested in the genes that are upregulated or downregulated in
LNCaP-ARhi cells at 1 nmol/L DHT. Expression of 173 genes were
found to be altered >2-fold (127 upregulated and 46 downregulated)
in LNCaP-ARhi cells and compared with LNCaP-pcDNA3.1
or LNCaP-ARmo cell at 24 h after DHT exposure (Supplementary
Table S7). Of these genes, we examined whether any of the
upregulated genes were expressed in VCaP cells to the same
or higher level than in LNCaP-ARhi cells. Ninety-nine such genes

e

1 nmol/L DHT

The number of The number of
upregulated genes upregulated genes

The number of
upregulated genes

LNCaP-ARhi
LNCaP-ARmo
LNCaP-pcDNA3.1

Figure 5. Androgen upregulated (>2-fold)
gene ontology classes at different DHT
concentrations. The histograms show

the number of upregulated genes in
LNCaP-pcDNA3.1, LNCaP-ARmo,

and LNCaP-ARhi at 1 nmol/L

(A), 10 nmol/L (B), and 100 nmol/L

(C) DHT concentrations at

the 24 h time point. Gray columns, highly
significantly (P < 0.001, a hypergeometric
P value without multiple testing
correction) upregulated ontologies.
Different ontology classes are numbered
as follows: 1, GO:19538 protein
metabolism; 2, GO:6259 DNA
metabolism; 3, GO:6629 lipid
metabolism; 4, GO:7049 cell cycle;

5, GO:16043 cell organization and
biogenesis; 6, GO:51301 cell division;

7, GO:8283 cell proliferation;

8, GO:7242 intracellular signaling
cascade; 9, GO:9719 response to
endogenous stimulus; 70, GO:7059
chromosome segregation;

11, GO:45045 secretory pathway.

LNCaP-ARhi
LNCaP-ARmo
LNCaP-pcDNA3.1
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were found (Supplementary Table S8), and 66 of those were also >2-
fold upregulated with 1.0 nmol/L DHT compared with vehicle-
treated LNCaP-ARhi cells. The expression of 56 of these 66 genes
were also >1.5-fold upregulated by DHT already at 4 h time point in
LNCaP-ARhi. These genes were determined using Oncomine
Research Edition.” Almost all of them (51 of 56, 91%) showed
significantly upregulated expressions in prostate cancer, at least, in
one of the data sets, and 49 of 56 (88%) genes were upregulated, at
least, in two independent sets in metastasized prostate cancer
compared with primary prostate cancers (Supplementary Table S9).
ChIP-on-chip analysis of genome-wide AR binding in LNCaP-1F5
cells after a 2 h DHT exposure indicated that a majority of these 56

5 http://www.oncomine.org

genes (34 of 56, 61%) possessed AR-binding site within a 200-kb
window from transcription start sites of the genes (Supplementary
Table S9). Two of 34 had an AR-binding site in the proximal
promoter, 15 of 34 had an AR-binding site within -100 kb upstream
of transcription start site, and 16 of 34 had AR-binding sites
downstream of transcription start site. Eight of 34 had AR-binding
site both upstream and downstream of transcription start site. The
androgen response elements within the AR-binding sites were
analyzed using MotifMatch (28). Using a high cutoff score of 9 and
with a strict 3-bp spacing for typical class I canonical androgen
response element (AGAACAnnnTGTTCT), we could find a
canonical androgen response element in following genes: NDC80,
NCAPG, FANCI, C12o0rf48, PRIM1, IQGAP3, KIF20A, CDC2, HMGB?2,
SPAGS, TK1, PRC1, MCM4, and PCNA.
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Effect of roscovitine on growth of LNCaP-AR cells. Because
the expression of both CDC2 (alias CDK1) and CDK2 were in-
creased in 1 nmol/L DHT, especially in LNCaP-ARhi, and the genes
have AR-binding site according to ChIP-on-chip data, the effect of
CDK1/2 inhibition was tested. The growth of LNCaP sublines was
assayed in different concentrations of CDK1/2 inhibitor roscovitine
and DHT. The growth of LNCaP-pcDNA3.1, LNCaP-ARmo, and
LNCaP-ARbhi cells was significantly (P < 0.001, unpaired two-tailed
t test) inhibited with 15 pmol/L roscovitine in 10 nmol/L DHT
(Supplementary Fig. S5). The LNCaP-ARhi cells showed the growth
inhibition also by 7.5 umol/L roscovitine (P = 0.0002). In addition, the
growth of LNCaP-ARhi (P = 0.0253), but not LNCaP-pcDNA3.1 or
LNCaP-ARmo, was suppressed by roscovitine in 1 nmol/L DHT.

Discussion

AR is a key protein in both development and progression of
prostate cancer. It is expressed in almost all prostate carcinomas
from the beginning of the disease to the castration-resistant stage
(8, 13, 14). The standard treatment of advanced prostate cancer is
hormone ablation. Although androgen withdrawal attenuates AR-
mediated signaling and initially prevents tumor growth, several
changes occur in AR action during the treatment that lead to
reactivation of AR signaling and eventually to emergence of the
lethal form of the disease, the CRPC (12). One of the key mech-
anisms in the emergence of CRPC is amplification of the AR gene
leading to overexpression of AR protein (13, 15). This suggests that
CRPC cells are not androgen-independent but may be hypersensitive
to low androgen level. To study the functional consequences of AR
overexpression and the role of the AR level in more detail, we generated
two LNCaP cell lines that overexpressed AR to different levels.

AR overexpression seemed to increase the ability of prostate
cancer cells to grow and proliferate in the absence of or at a low
concentration of DHT. The level of AR affected the growth in
different androgen concentrations. The LNCaP-ARhi cells with the
highest level of AR expression had the fastest growth rate, whereas
the growth of LNCaP-ARmo cells was between that of the LNCaP-
ARhi and the control cells (LNCaP-pcDNA3.1). Both LNCaP-ARhi
and LNCaP-ARmo were also able to grow longer in the medium
without androgens. Instead, control cell proliferation ceased after
the first week. The data indicate that increased expression of AR
sensitized the growth of the cells to low hormone concentrations.
Even a modest increase in AR expression level can help tumor cells
to proliferate at a low androgen concentration as has also been
suggested previously by Chen and colleagues (20). Kokontis and
colleagues (21) have shown previously that androgens have
biphasic effect on the growth of LNCaP cells. Androgens stimulate
the growth, but in higher concentrations the induction of
proliferation is diminished. In addition, they showed that, in the
LNCaP cells overexpressing endogenous AR on adaptation to
growth in low levels of androgens, the repression of proliferation
takes place in lower androgen levels than in parental cell lines. Here,
we found similar AR level-dependent biphasic effect of androgens
(Supplementary Fig. S6). Thus, the optimal level of growth in-
duction is dependent on the level of both ligand and the receptor.

Several microarray studies have addressed androgen regulation
of gene expression in LNCaP cells (20, 29, 30). However, the data in
these studies are only partially concordant. Reasons for the
discrepant findings could be different time points used, different
ligands, different ligand concentrations, and heterogeneity of the
LNCaP cells themselves in different laboratories. For example, in

our data, several genes, such as TNFRSFI10B, APRIN, TNFAIP3, and
SGK, which were upregulated strongly at the 4 h time point,
showed very little, if any, upregulation anymore at 24 h. An
important aspect is also that AR in the parental LNCaP cells is
mutated allowing other steroids and even antiandrogens, such as
flutamide, function as agonist (18). To alleviate these problems, we
transfected wild-type AR ¢cDNA into LNCaP cells and used the
natural ligand at two different time points with four different
concentrations. In our experimental model, we cannot fully separate
the effect of wild-type and mutated AR. However, at least in LNCaP-
ARmo and LNCaP-ARhi cells, the majority of AR is wild-type. Thus,
the differences between these two sublines can be assumed to be due
to the different levels of the expression of wild-type AR.

In our models, the number of androgen-responsive genes was
clearly associated with AR expression level. LNCaP-ARhi cells pos-
sessed more androgen-responsive genes than LNCaP-ARmo cells
that, in turn, had more those genes than LNCaP-pcDNA3.1 cells. We
analyzed also VCaP cells, which contain high-level amplification of
the AR gene leading to strong (up to 12-fold) overexpression of AR
protein (ref. 24; Fig. 1). Its growth is androgen-sensitive (31).
Interestingly, the number of the androgen-responsive genes in VCaP
cells was even higher than in LNCaP-ARhi. In unsupervised
hierarchical clustering, VCaP and LNCaP-ARhi cells clustered together
despite that they are different cell lines with different genetic
backgrounds. This indicates a very strong influence of AR to the
genome-wide expression of prostate cancer cells. Of the well-known
androgen-regulated genes, such as PSA and TMPRSS2, induction of
gene expression took place at a 10-fold lower concentrations of DHT in
LNCaP-ARhi and LNCaP-ARmo cells than in LNCaP-pcDNA3.1 cells.
Thus, it seems that the level of AR sensitizes the cells to androgens not
only in terms of growth but also by increasing number of genes
responding to DHT.

Because the growth advantage in LNCaP-ARhi cells was
especially prominent at 1 nmol/L DHT, we were interested in
genes whose expression was altered at that concentration. Because
VCaP cells are also androgen-sensitive and contain AR gene amplifi-
cation, we postulated that androgen target genes that are important
for progression of CRPC should be detected in both LNCaP-ARhi and
VCaP cells. All in all, 56 genes were induced in 1 nmol/L DHT in
LNCaP-ARhi (but not in LNCaP-ARmo or LNCaP-pcDNA3.1) already
at 4 h and were also highly expressed in VCaP. According to Onco-
mine data resource, 51 of 56 (91%) of these genes have been shown to
exhibit significant upregulation in primary prostate cancer and/or
metastatic prostate cancer samples (Supplementary Table S9).
Unfortunately, the Oncomine data from studies comparing directly
hormone-naive and castration-resistant cancers were not available for
all of those genes. The list of genes consists of cell cycle genes, for
example, CDKI, CDK2, cyclin B, cyclin E, and aurora kinase A and B. All
of them are known to have an effect on cell proliferation or
chromosome condensation and be upregulated in prostate cancer.
ChIP-on-chip assay revealed that the majority (61%) of these genes have
AR-binding sites within a 200-kb window from transcription start sites.
Our experiments with roscovitine, a CDK1/2 inhibitor, showed that
LNCaP-ARhi cells were more sensitive to the inhibition than the
LNCaP-pcDNA3.1 and LNCaP-ARmo, indicating the importance of
these androgen-regulated genes for the growth benefit of the AR-
overexpressing cells. Because it has been shown previously that
CDK1 phosphorylates and stabilizes AR (32), there may be a positive
feedback mechanism between expression of AR and CDK1.

Previous studies have shown that increased AR expression is
associated with the growth of castration-resistant cancers and with
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transformation of androgen-dependent prostate cancer cells to
androgen-independent ones (10, 20, 21). In addition, association of
AR expression level with cell invasion has also been suggested (11).
These studies have been performed with different cell lines or
xenograft models. In our LNCaP-AR model cells, high AR level was
significantly associated with increased proliferation at a low andro-
gen concentration and with an increased number of genes being
associated to cell cycle and DNA replication. The finding that only
LNCaP-ARbhi cells showed the growth advance, and high number of
cell proliferation associated genes that were androgen-responsive, is
in good agreement with observations that clinical CRPC often have
>10-fold overexpression of AR (13, 14).

The results also indicated that AR can have an effect on different
cellular processes depending on the receptor level. In LNCaP-ARmo
cells, the number of responding genes associated with cell cycle
was not increased; instead, genes in other ontology categories, such
as lipid, sterol, and cholesterol biosynthesis, were highly signifi-
cantly enriched. For example, the androgen-regulated lipid meta-
bolism genes reviewed by Chen and colleagues (33) were all
androgen-regulated, at least, in one of the cell line used in our data.
Of those lipid metabolism genes, especially DHCR24, FASN,
HMGCSI1, LDLR, PPAP2A, and SCAP were strongly androgen-
upregulated in LNCaP-ARmo. Also, the ontology category of secretory
pathway, including endoplasmic reticulum to Golgi transport genes,
showed higher number of responsive genes in LNCaP-ARmo
compared with LNCaP-ARhi. These observations suggest that the
amount of AR may also have other effects rather than simple

In conclusion, increased expression of AR seems to sensitize
prostate cancer cells in multiple ways and give them several
biological benefits during hormone ablation. High AR protein level
helped the cells to sustain and increase their proliferation in envi-
ronment with no androgen or a low androgen concentration. Micro-
array analyses of AR-regulated genes gave further evidence for the
biological benefits of AR overexpression. They showed enhanced
expression of several cell cycle-associated genes at 1 nmol/L DHT,
especially in LNCaP-ARhi cells. In addition, expression of genes
associated with biosynthesis of lipids and other cellular structures
was elevated in LNCaP-ARhi cells. AR expression level seemed also to
predict the activity of AR; the more AR expression, the more
androgen responsive genes. Further studies are warranted to
investigate whether the genes upregulated at low androgen
concentrations could functions as drug targets for CRPC treatment.
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