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Abstract 

Prostaglandins (PGs) are ubiquitously produced and regulate various 

physiological and pathophysiological responses in the human body. In 

inflammatory joint diseases including rheumatoid arthritis (RA) and 

osteoarthritis (OA) prostaglandins have regulatory and proinflammatory effects 

and mediate inflammatory pain. Prostaglandins are formed from arachidonic acid 

in a reaction catalyzed by cyclooxygenase (COX) enzymes. Two forms of COX 

enzyme have been identified: constitutive isoform COX-1 and inducible isoform 

COX-2. COX-2 is induced in response to proinflammatory cytokines and 

bacterial products like endotoxins and is mainly responsible for the production of 

inflammatory prostaglandins (especially PGE2). In inflammatory arthritis,  

COX-2 expression is highly enhanced in chondrocytes and in the synovial tissue. 

In the joints, prostanoids produced by COX-2 pathway can exert catabolic or 

anabolic effects in the cartilage depending on the microenvironment, and 

modulate inflammation and inflammatory pain. 

 

The aim of the present study was to investigate the role of mitogen-activated 

protein kinases (MAPKs) in the regulation of COX-2 expression and PGE2 

production in chondrocytes and in intact cartilage as potential targets for drug 

development. Another major aim was to investigate the effects of disease 

modifying anti-rheumatic drugs (DMARDs) on COX-2 expression and further to 

study the mechanisms of action of aurothiomalate. 

 

Inhibitors of p38 and JNK MAPK pathways were found to regulate COX-2 

expression and PGE2 production by facilitating COX-2 mRNA degradation. 

Interestingly, also a DMARD aurothiomalate inhibited COX-2 expression and 

PGE2 production in chondrocytes and in human cartilage by destabilizing  

COX-2 mRNA. In addition, aurothiomalate also reduced levels of 
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phosphorylated (i.e. active) p38 MAPK and increased MAPK phosphatase 

(MKP)-1 expression. MKP-1 is an endogenous regulator of MAPK pathways, 

and it is known to inactivate p38 MAPK by dephosphorylation. In addition to 

COX-2 expression and PGE2 production, aurothiomalate inhibited also the 

production of inflammatory cytokine interleukin (IL)-6 and matrix 

metalloproteinase (MMP)-3 which is an enzyme involved in the degradation of 

cartilage matrix. Silencing of MKP-1 by short interfering RNA significantly 

impaired the ability of aurothiomalate to inhibit the phosphorylation of p38 

MAPK and the expression of COX-2, MMP-3 and IL-6. Similarly, 

aurothiomalate reduced COX-2, MMP-3 and IL-6 expression in human RA 

cartilage and in articular cartilage from wild type mice but not in cartilage from 

MKP-1 deficient mice.  

 

The findings provide a novel mechanism of action for aurothiomalate through 

increased MKP-1 expression, reduced p38 MAPK activation and suppressed 

expression of COX-2, MMP-3 and IL-6 that may at least in part explain the anti-

inflammatory and anti-erosive action of aurothiomalate. MKP-1 may therefore 

be a promising novel target for the development of disease modifying drugs for 

inflammatory joint diseases. 
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Tiivistelmä 

Prostaglandiinit säätelevät monia elimistön fysiologisia ja patofysiologisia 

toimintoja. Useissa tulehduksellisissa nivelsairauksissa, kuten nivelreumassa ja 

nivelrikossa, prostaglandiineilla tiedetään olevan tulehdusta ja kipua voimistavia 

vaikutuksia. Prostaglandiinit muodostuvat arakidonihaposta syklo-

oksigenaasientsyymin (COX) katalysoimassa reaktiossa. COX entsyymistä 

tunnetaan kaksi muotoa: konstitutiivinen COX-1 ja indusoituva COX-2. 

Bakteeriperäiset tuotteet, esimerkiksi endotoksiinit, ja tulehdusta voimistavat 

sytokiinit lisäävät COX-2:n ilmentymistä sekä tulehdusta ja kipua voimistavien 

prostaglandiinien, kuten prostaglandiini (PG) E2:n tuottoa. Tulehtuneessa 

nivelessä COX-2:n tiedetään ilmentyvän voimakkaasti kondrosyyteissä ja 

synoviakudoksessa. COX:n katalysoimissa reaktioissa muodostuneet 

prostanoidit voivat mikroympäristöstä riippuen säädellä ruston katabolisia tai 

anabolisia toimintoja sekä voimistaa tulehdusta ja kipua.  

 

Väitöskirjatyön tarkoituksena oli tutkia mitogeenien aktivoimien 

proteiinikinaasien (MAPK) roolia COX-2 entsyymin ilmentymisen ja tätä 

seuraavan PGE2 tuoton säätelyssä kondrosyyteissä ja rustossa. Lisäksi tutkittiin 

antireumaattisten lääkkeiden vaikutusta COX-2 entsyymin ilmentymiseen ja 

PGE2 tuottoon. Tutkituista antireumaattisista lääkkeistä tehokkaimmaksi COX-2 

entsyymin ilmentymisen ja PGE2 tuoton estäjäksi osoittautui aurotiomalaatti, 

jonka molekulaarista vaikutusmekanismia tutkittiin tarkemmin. 

 

Tulehduksessa tärkeimmät MAPK reitit ovat p38 ja JNK. Näiden estäjien 

havaittiin säätelevän COX-2 entsyymin ilmentymistä ja PGE2:n tuottoa 

nopeuttamalla COX-2:n lähetti-RNA:n hajoamista. Myös antireumaattisen 

lääkeaineen, aurotiomalaatin, havaittiin estävän COX-2 entsyymin ilmentymistä 

ja PGE2:n tuottoa nopeuttamalla COX-2:n lähetti-RNA:n hajoamista 
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kondrosyyteissä ja rustossa. Tämän lisäksi aurotiomalaatin havaittiin vähentävän 

p38 kinaasin fosforylaatiota ja lisäävän p38 kinaasia inaktivoivan MAPK 

fosfataasi (MKP)-1:n tuottoa soluissa. COX-2:n eston lisäksi aurotiomalaatin 

havaittiin estävän rustotuhoa välittävän matriksin metalloproteaasi (MMP)-3:n 

sekä tulehduksellisen sytokiinin IL-6:n tuottoa kondrosyyteissä ja rustossa. 

Käyttäen siRNA tekniikkaa ja MKP-1 poistogeenisten hiirten rustoa, todettiin, 

että aurotiomalaatti esti COX-2 välitteistä prostaglandiinituottoa sekä 

tulehdustekijöiden MMP-3 ja IL-6 tuottoa lisäämällä MKP-1 fosfataasin 

synteesiä. 

 

Tutkimuksessa löydettiin pitkään käytössä olleelle tehokkaalle reumalääkkeelle, 

aurotiomalaatille, täysin uusi molekulaarinen vaikutusmekanismi, joka voi 

selittää sen tulehdusta ja niveltuhoa lievittäviä vaikutuksia. Tietoa voidaan 

käyttää hyväksi kehitettäessä uusia tehokkaita lääkkeitä tulehduksellisten 

nivelsairauksien hoitoon.  
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Introduction 

Inflammation is body’s protective attempt to remove injurious stimuli as well as 

to start the healing process of damaged tissue. It is a complex, tightly regulated 

response against harmful stimuli e.g. pathogens, damaged cells or irritants. If the 

regulation fails or if the reaction turns against its own tissues, inflammation can 

lead to chronic inflammatory diseases like rheumatoid arthritis (RA). 

Inflammation can be classified being either acute or chronic. Acute inflammation 

is the initial response to harmful stimuli and it is characterized by the increased 

movement of plasma and leukocytes from the blood into the injured tissues. A 

cascade of events propagates and matures the inflammatory response, involving 

the local vascular system, the immune system, and various cells within the 

injured tissue. The ideal outcome of acute inflammation is the reversion of 

injured tissue back to normal. Chronic inflammation is characterized by the 

presence of inflammatory cells, mainly macrophages, lymphocytes and plasma 

cells within the injured tissue. In its chronic state, the inflammation is persistent 

and there is simultaneous tissue destruction and attempted repair. 

 

Prostaglandins (PG) are present in a wide variety of human tissues, where they 

play a central role in inflammation and regulate many physiological responses, 

including vascular tone, blood clotting, kidney function, gastric secretion and 

reproduction. Cyclooxygenase-2 (COX-2) is the key enzyme in the synthesis of 

PGs in inflammation. (Turini and Dubois 2002) COX-2 is highly expressed in 

chondrocytes and in the synovial tissue of patients with arthritis (Siegle et al. 

1998). Prostanoids produced by the COX-2 pathway mediate inflammation and 

inflammatory pain, and they can exert catabolic or anabolic effects in the 

cartilage depending on the microenvironment (Amin et al. 1999, Goldring and 

Berenbaum 2004). Prostanoids and COX-inhibitors have been reported to 

regulate collagen production, proteoglycan turnover, and the production of 
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matrix metalloproteinases in cartilage (Hardy et al., 2002, Fernandez et al., 2004, 

Goldring and Berenbaum 2004, Mastbergen et al. 2006). In addition, increased 

COX-2 expression seems to mediate shear stress –induced chondrocyte apoptosis 

(Healy et al. 2005). 

 
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases, 

which are part of the signaling cascade mediating the transmission of 

inflammatory signals to intracellular target proteins. MAPKs are known to 

regulate many cellular responses e.g. cytokine production, cell proliferation and 

apoptosis. MAPKs have to be phosphorylated before they can exert kinase 

activity; MAPK phosphatases (MKPs) are endogenous regulatory pathways 

which inactivate MAPKs via dephosphorylation. (Dong et al. 2002) 

 
RA is a chronic, progressive disease that is characterized by inflammation in the 

synovial membrane. It principally affects joints causing substantial damage and 

disability due to inflammation and pain, as well as the destruction of cartilage, 

bone and other joint structures. Generalized inflammation in other tissues such as 

lungs, heart, muscles and skin may also complicate the disease. RA is associated 

with severe morbidity, functional decline, permanent disability, and an increase 

in mortality. The etiology of RA is unclear, but inflammation is a key 

pathogenetic mechanism involved in joint destruction and determining 

symptoms and disability. The treatment of RA is based on early, aggressive 

therapy with disease-modifying antirheumatic drugs (DMARDs) to decrease the 

disease activity and prevent joint erosion. Non-steroidal anti-inflammatory drugs 

(NSAIDs) and anti-inflammatory steroids are used to suppress the symptoms. 

(Feldmann et al. 1996a) 

 

The results of the present study offer a novel mechanism for the anti-

inflammatory and anti-erosive action of a DMARD, aurothiomalate, and provide 

new targets for the drug development of arthritis.  
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Review of the literature 

1. Eicosanoids 

The first publications about fatty acid derivatives, later known as eicosanoids 

(from the Greek eicosa meaning twenty; for derivatives of twenty carbon fatty 

acids) were published in 1930. Firstly, Burr and Burr reported that when rats 

were fed without fat, this evoked growth deceleration, reproductive problems, 

scurfy skin, damage in kidney, and inordinate drinking (Burr and Burr 1930). 

Secondly, Kurzrok and co-workers depicted a factor that has fatty acid properties 

and was a vasodepressor and a smooth muscle-stimulant (Kurzrok and Lieb 

1930). This factor was named prostaglandin after the prostate gland where it was 

thought to be synthesized (von Euler 1935, Goldblatt 1935). The first 

prostaglandin subfamilies were marked with letters E and F because of their 

partition between ether and phosphate buffer (fosfat in Swedish); the E-types 

tended to remain extracted in ether whereas the F-types could be extracted in 

phosphate buffer (Bergström and Sjövall 1957). In 1964, Bergström and 

Samuelsson showed that prostaglandins were produced from a fatty acid, 

arachidonic acid (Bergström et al. 1964). The eicosanoid story continued in 1975 

when Samuelsson and co-workers found the platelet aggregator, thromboxane A2 

(TxA2) (Hamberg et al. 1975). One year later Moncada, Vane and co-workers 

described prostacyclin (PGI2) that was a potent inhibitor of platelet secretion and 

aggregation (Moncada et al. 1976). The leukotrienes were discovered in 1979 by 

Samuelsson and co-workers (Samuelsson et al. 1979). 

 
Eicosanoids are a group of lipid mediators formed after oxidation of the 20-

carbon fatty acid, arachidonic acid. They are critical regulators of several 

physiological and pathophysiological responses and coordinate cellular events 

towards proper tissue function. Eicosanoids are also recognized for their role in 
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inflammation, fever and pain. (Murphy et al. 2004) The major mechanism of 

action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of 

prostaglandin H synthase (PGHS, usually known as COX that is a short form of 

cyclooxygenase) resulting in a reduced synthesis of eicosanoids (Vane 1971, 

Warner and Mitchell 2004). Glucocorticoids also reduce eicosanoid synthesis but 

their mechanism of action is more complex. Glucocorticoids have been reported 

to induce the synthesis of lipocortins that are inhibitors of cytosolic 

phospholipase (cPLA)2 which releases arachidonic acid from cell membrane 

phospholipids (Di Rosa et al. 1984). Glucocorticoids are also able to down-

regulate expression of COX-2 and microsomal PGE synthase (mPGES)-1 (Raz 

et al. 1989, Ristimäki et al. 1996, Thorén and Jacobsson 2000). 

1.1 Biosynthesis of eicosanoids 

Arachidonic acid, which is released from cell membrane phospholipids by cPLA, 

is the premier eicosanoid precursor in mammalian cells. Subsequently, 

arachidonate is metabolized either by the 5-lipoxygenase (5-LO) pathway into 

leukotrienes (LTs) or by the COX pathway into PGs. Eicosanoids function as 

autocrine and paracrine lipid mediators by targeting specific 7-transmembrane 

G-protein coupled receptors. The signal is mediated via changes in intracellular 

cAMP, calcium, or diacylglyerol, depending on the type of associated G-protein. 

(Murphy et al. 2004) 

 

Prostanoids, including PGE2, PGD2, PGF2α, PGI2 and TxA2 are synthesized by 

most cells in the human body. The cells do not store prostaglandins; they are 

synthesized de novo from membrane-released arachidonic acid in response to 

cellular activation, such as mechanical trauma, cytokines, growth factors or a 

number of other (often cell specific) stimuli (e.g. bradykinin and thrombin in 

endothelium). (Murphy et al. 2004)  

 

Although several enzymes have been shown to regulate the cellular levels of free 

arachidonic acid, cPLA2 seems to be the most important in this respect. Cells 

lacking cPLA2 do not normally display eicosanoid synthesis. The activity of 
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cPLA2 is regulated by translocation from cytosol to membrane phospholipids 

which in turn is regulated by cell-specific and agonist-dependent events. (Evans 

et al. 2001) At the endoplasmic reticulum and nuclear membrane, arachidonic 

acid that is released by cPLA2 is presented to COX enzymes which transform it 

to PG endoperoxides PGG2 and PGH2 which, in turn, are metabolized to 

prostanoids by specific synthases, i.e. Tx synthase, PGI synthase, PGF synthase, 

PGD synthase and PGE synthase. 

 

Two isoforms of COX are known: COX-1 and COX-2. COX-1 can be regarded 

as the physiological enzyme that is responsible for basal, constitutive 

prostaglandin synthesis, whereas COX-2 is important in various inflammatory 

and other pathological conditions (Table 1). 

 
Table 1. Comparison of cyclooxygenase enzymes. 

  COX-1   COX-2 

Gene locus 9q32-q33.3   1q25.2-q25.3 

Size of gene 22 kb   8.3 kb 

Molecular weight 70 kDa   72 kDa 

Mode of expression Constitutive   Inducible 

 

In the reactions catalyzed by COX enzymes, arachidonic acid is first oxygenated 

to an endoperoxide-containing PGG2 that is later converted to PGH2 by a 

reduction of the hydroperoxyl moiety. COX-1 and COX-2 are very similar in 

their crystal structures. There are also differences, e.g. the catalytic site of COX-

2 is located in a wider channel than that of COX-1; bulky COX-2 inhibitors do 

not fit into the COX-1 channel. In the catalytical site, the main difference 

between COX-1 and COX-2 is at amino acid 523, where the former contains 

isoleucine, the latter valine. The presence of valine allows methylation, which 

leads to a type of “side pocket” formation in COX-2. This methylated side 

pocket has been targeted during development of COX-2 inhibitors (Hawkey et 

al. 1999). The structure and main differences in the active sites of COX-1 and 

COX-2 enzymes are presented in Figure 1. 
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COX-1 COX-2

COX-2 selective 
               drug

Ile at position
      523

Wider channel
than in COX-1

Side pocket:
Val at position
      523

 
Figure1. A schematic figure of the catalytic site of COX-1 and COX-2 enzymes. 
Ile=isoleucine, Val= valine. (Modified from Hawkey et al. 1999.) 
 

Downstream of PGH2 are the specific prostanoid synthase enzymes which are 

expressed in a cell specific manner. Tx synthase is found in platelets and 

macrophages, PGI2 synthase is located in endothelial cells and PGF synthase in 

uterus. In addition to these enzymes, two types of PGD synthases are found, one 

in brain and one in mast cells. (Coleman et al. 1994). Prostaglandin E synthase 

(PGES) catalyzes the conversion of the COX-product PGH2 to PGE2. In 1999 it 

was shown that this enzyme belonging to membrane-associated proteins 

involved in eicosanoid and glutathione metabolism (MAPEG) –family was 

responsible for PGE2 biosynthesis. (Jakobsson et al. 1999) Three distinct PGES 

isoforms have been identified. Cytosolic PGES (cPGES) is ubiquitously and 

constitutively expressed, and displays functional coupling with COX-1. In 

contrast, the microsomal PGES-1 (mPGES-1) is an inducible enzyme that 

exhibits functional coupling with COX-2. The most recently identified isoform, 

mPGES-2, is ubiquitously expressed in diverse tissues, but its function and 

regulation remain obscure. (Fahmi 2004, Samuelsson 2007)  

 

Many reports about high-affinity binding sites for prostanoids in various cells 

and tissues were published in the early 1970s (Kuehl and Humes 1972, Powell et 

al. 1974, Rao 1974a, Rao 1974b). Kennedy and co-workers integrated the 

information from earlier studies and published a novel classification of 

prostanoid receptors in 1982. They proposed that the name of each receptor 
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contains letter P which is preceded by a letter of the most potent natural 

prostanoid agonist at that receptor. The nomenclature of receptors for PGD, 

PGE, PGF, PGI and Tx become DP-, EP-, FP-, IP- and TP-receptors, 

respectively. (Kennedy et al. 1982) EP receptors have been further divided into 

four subtypes EP1, EP2, EP3 and EP4, based first on the differences in cellular 

responses to PGE2 and the use of selective agonists and antagonists (Coleman et 

al. 1994) and subsequently all four subtypes of EPs have been identified and 

cloned (Sugimoto and Narumiya 2007). (Figure 2) 

 
Cell activation:
proinflammatory cytokines, 
endotoxins, growth factors, 
mechanical trauma

 cPLA

COX-1

AA

COX-2

2

 COX-2  COX-1

 TxS

 PGIS

 PGFS

 PGDS

 PGES

 cPLA
2

PGH 2

TxA
PGT

Non-selective
   NSAIDs

COX-2 selective
     NSAIDs

PGT

PGT

TP
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IP

EPEP

PGT
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PGE

2
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2
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3
4

EP
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2
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1
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Figure 2. A schematic figure of prostaglandin synthesis and prostaglandin receptors. 
When cells are activated (e.g. by mechanical trauma, cytokines, growth factors or 
various inflammatory stimuli), cytosolic phospholipase (cPLA2) translocates to 
endoplasmic reticulum and nuclear membrane and arachidonic acid (AA) is released 
from cell membrane phospholipids. PGH2 is formed in reactions catalyzed by COX-1 
and COX-2. Traditional NSAIDs inhibit both COX-1 and COX-2 whereas COX-2 
selective NSAIDs inhibit only COX-2 enzyme.  
TxS=thromboxane synthase, PGIS=PGI synthase, PGFS=PGF synthase, PGDS=PGD 
synthase, PGES=PGE synthase, PGT=prostaglandin transporter, TP=thromboxane 
receptor, IP=PGI receptor, FP=PGF receptor, DP=PGD receptor, EP=PGE receptor  
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In contrast to prostaglandins, only inflammatory cells such as 

polymorphonuclear leukocytes, macrophages and mast cells principally produce 

leukotrienes. cPLA2 and 5-LO translocate to the nuclear envelope in response to 

cellular activation e.g. by the presence of immune complexes or bacterial 

products. 5-LO is the most important enzyme in leukotriene synthesis. It is a 

nonheme iron dioxygenase that is located in the nucleus or in the cytosol of the 

cell. (Peters-Golden and Brock 2001) 5-LO possesses a NH2-terminal domain 

that binds two calcium ions, and a large catalytic domain that binds iron (Chen 

and Funk 2001). 5-LO acts by transforming the arachidonic acid released to 

LTA4. There are three circumstance-dependent possibilities to continue from 

LTA4: hydrolysis, glutathione conjugation or transcellular metabolism to 

generate bioactive eicosanoids. LTB4, which is a potent neutrophil 

chemoattractant and a stimulator of leukocyte adhesion to endothelial cells, is 

formed mainly in the cytoplasm via the hydrolysis by the enzyme leukotriene A4 

hydrolase (LTA4H). Cysteinyl leukotrienes (LTC4, LTD4 and LTE4) are known 

from their slow and sustained smooth muscle contracting abilities. LTC4 is 

formed in a reaction catalyzed by LTC4 synthase (LTC4S) in which LTA4 is 

conjugated with glutathione. LTC4 is transported out of the cell and its peptide 

moiety is subjected to extracellular metabolism; this is the route by which LTD4 

and LTE4 are formed. (Gronert et al. 1999) Leukotriene synthesis is presented in 

Figure 3. 
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Figure 3. A Schematic figure of leukotriene synthesis. 5-LO=5-lipoxygenase, 
LTA4H=leukotriene A4 hydrolase, LTC4S=leukotriene C4 synthase.  
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1.2 Role of prostaglandins in inflammation 

Local redness, swelling, heat and pain are the classical signs of acute 

inflammation. Reddening, swelling and heat generation occur in response to 

increased blood flow and vascular permeability. Previously, it has been shown 

that PGs play a role in the inflammatory symptoms due to vasodilatation 

synergistically with other mediators (including bradykinin and histamine) to 

enhance blood flow, increase vascular permeability and evoke edema. PGE2 and 

PGI2 seem to be the most powerful prostaglandins mediating inflammation and 

they both can be found in high concentrations at sites of inflammation. (Davies 

et al. 1984, Fleming and Kelly 2004)  

 

COX-2 is highly expressed in chondrocytes and in the synovial tissue of arthritis 

patients (Siegle et al. 1998). Prostanoids produced by COX-2 pathway mediate 

inflammation and inflammatory pain, and they can exert catabolic or anabolic 

effects in the cartilage depending on the microenvironment (Amin et al. 1999, 

Goldring and Berenbaum 2004). Prostanoids and COX-inhibitors have been 

reported to regulate collagen production, proteoglycan turnover, and matrix 

metalloproteinase production in cartilage (Hardy et al. 2002, Fernandez et al. 

2004, Goldring and Berenbaum 2004, Mastbergen et al. 2006). 

 

PGE2 has also a mediator role in fever. EP3-deficient mice unlike the other EP 

receptor knockouts did not show febrile responses after challenge with PGE2,  

IL-1β or lipopolysaccharide (LPS) (Ushikubi et al. 1998). Interestingly, also 

COX-2 deficient mice have revealed a decreased febrile response after LPS (Li 

et al. 1999). 

 

PGE2 acts as a vasodepressor through the EP2 and EP4 receptors and plays a 

major role in acute inflammation by acting on the peripheral circulation and 

inducing hyperemia and swelling (Audoly et al. 1999, Zhang et al. 2000). 

Interestingly, vascular smooth muscle constriction has been reported to be 

mediated by EP1 and / or EP3 receptors (Audoly et al. 2001, Jadhav et al. 2004). 

This suggests that the balance between the functional activities of distinct EP 
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receptors may determine the effect of prostaglandin E2 on the vasculature. The 

role of PGI2 in inflammatory swelling was tested in a carrageenan-induced paw 

swelling –model. IP-deficient mice developed swelling only to similar levels as 

indomethacin-treated wild-type mice and indomethacin treatment did not 

decrease the swelling in IP-deficient mice. (Murata et al. 1997)  

 

The studies into the role of prostaglandins in pain have indicated that PGE2, 

PGE1 and PGI2 exert stronger effects than other PGs. This points to participation 

of EP or IP receptors in enhancing inflammatory pain. (Bley et al. 1998) EP3 

knockout mice were shown to have a decreased writhing response in an acetic 

acid –induced writhing model where mice were pretreated with LPS (Ueno et al. 

2001). Monoclonal antibody against PGE2 has been shown to inhibit 

phenylbenzoquinone –induced writhing in mice and carrageenan –induced paw 

hyperalgesia in rats similarly as indomethacin (Mnich et al. 1995, Portanova et 

al. 1996). Unlike EP knockout mice, IP knockout mice did not show any changes 

in their nociceptive reflexes when these were evaluated by hot plate and tail flick 

tests. This suggested that IP is not involved in nociceptive neurotransmission at 

the spinal and supraspinal levels. In the acetic acid –induced writhing test,  

IP-deficient mice showed significantly less responses than wild-type animals. In 

addition to these results, in wild-type mice, intraperitoneal injections of PGE2 or 

PGI2 induced responses whereas IP-deficient mice showed responses only to 

PGE2. (Murata et al. 1997) In summary, these results indicate that the pain 

sensation can be modulated by both EP and IP receptors. 

 

The main site of hyperalgesic prostanoid action is located in the periphery where 

prostaglandins are considered to sensitize the free ends of sensory neurons. EP1-, 

EP3-, EP4- and IP-receptors have been found in sensory neurons, and PGE2 and 

PGI2 seem to be important mediators of hyperalgesia (Higgs et al. 1983, Oida et 

al. 1995). The EP3 receptor has been shown to mediate hyperalgesia; in EP3 

deficient mice intrathecal injection of PGE2 produced hyperalgesia at higher 

doses than in wild type mice (Minami et al. 2001). Spinal injection of a  

COX-inhibitor has been shown to inhibit thermal hyperalgesia that is induced by 

the activation of spinal glutamate and substance P receptors (Malmberg and 
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Yaksh 1992). IL-1β has been shown to be the major inducer of COX-2 

upregulation in the central nervous system. Intraspinally administered 

interleukin-converting enzyme or a COX-2 inhibitor decreased inflammation-

induced central PGE2 production and mechanical hyperalgesia. (Samad et al. 

2001). PGs in the spinal cord are also believed to be part of the development of 

allodynia. In one study, EP1-deficient mice did not display allodynia after PGE2 

induction whereas wild-type mice and mice lacking EP3 exhibited allodynia in 

response to PGE2 (Minami et al. 2001). 

 
In addition to pro-inflammatory actions, prostanoids have also been reported to 

exert anti-inflammatory responses. The anti-inflammatory actions of prostanoids 

have been seen in allergic or immune inflammation and are usually linked with 

pro-inflammatory actions of other prostanoids. One example of this is the 

antagonism between PGD2 –DP and PGE2 – EP3 pathways in elicitation of 

allergic asthma (Matsuoka et al. 2000, Kunikata et al. 2005).   

2. Regulation of COX-2 expression and PGE2 production 

The cyclooxygenase reaction through which arachidonic acid is enzymatically 

converted to PGs was identified by Samuelsson and colleagues in the early 70s 

(Hamberg and Samuelsson 1973, Hamberg et al. 1974). The breakthrough in 

prostaglandin research occurred in 1971 when it was shown that commonly used 

NSAIDs inhibit the biosynthesis of prostaglandins (Ferreira et al. 1971, Smith 

and Willis 1971, Vane 1971). At the beginning of the 1980s, many research 

laboratories speculated about the existence of more than one COX enzyme. 

Habenicht and colleagues reported in 1985 about two-peak induction in 

prostaglandin synthesis (Habenicht et al. 1985). This study was indicative of the 

existence of constitutive and inducible forms of COX enzyme. In 1990, a study 

with LPS stimulated macrophages concluded “cells may contain two pools of 

COX, each with a differential sensitivity to LPS or dexamethasone” (Masferrer 

et al. 1990). Subsequently, COX-2 was discovered in 1991, as a primary 

response gene (Kujubu et al. 1991, Xie et al. 1991).  
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COX-2 expression is regulated both by transcriptional and post-transcriptional 

mechanisms. The human COX-2 gene is located on chromosome 1 q25.2-q25.3 

(Inoue et al. 1995). It is about 8.3 kb long and has 10 exons. Three transcripts of 

COX-2 have been described: 2.8, 4.0 and 4.6 kb in length. (Hla and Neilson 

1992, Jones et al. 1993)  

2.1 Transcriptional regulation of COX-2 

Sequence analysis of the 5’-flanking region of COX-2 gene reveals that there are 

many consensus cis-elements that regulate the transcription of COX-2. However, 

in all species studied, only a limited number of elements are known to be 

involved in the regulation of COX-2 gene expression, i.e. the cAMP response 

element (CRE), the C/EBP-NF-IL6 (CAAT/enhancer binding protein), NF-κB 

(nuclear factor κB) and NFAT (nuclear factor of activated T cells) sites and the 

E-box. (Klein et al. 2007) There are some interspecies differences in the 

sequences of human and murine COX-2 genes. For example, the murine COX-2 

promoter has one NF-kB motif and two C/EBP sites instead of the two NF-kB 

sites and one C/EBP motif found in human COX-2 promoter. (Tanabe and 

Tohnai 2002) The mechanisms of transcriptional regulation of COX-2 vary 

extensively depending on the stimulus and cell type.  

 

The CRE has been identified as one of the most important regulatory elements in 

the COX-2 promoter region (Tanabe and Tohnai 2002). Homo- or hetero-dimers 

of c-fos, c-jun, ATF family members on bZIP proteins and the cAMP response 

element binding protein (CREB) can bind to this CRE response element and 

activate COX-2 expression (Nakabeppu et al. 1988, Rauscher et al. 1988, Du et 

al. 1993, van Dam et al. 1993). The importance of CRE has been demonstrated 

in mutation studies. When both CRE and NF-IL-6 regulatory elements were 

mutated, the expression of COX-2 was reduced by 75 % in human endothelial 

cells in response to TPA and LPS treatment, whereas destruction of only the  

NF-IL-6 motif or CRE caused inhibition of 40 and 10 %, respectively (Inoue et 

al. 1995). In human endothelial cells and fibroblasts, mutation of the CRE site 
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converted COX-2 promoter into being unresponsive to IL-1β, TNF-α, PMA and 

prostaglandins (Schroer et al. 2002). In the human COX-2 promoter, the CRE 

and E-box elements overlap (Tanabe and Tohnai 2002). CRE is known to 

synergize with NF-κB and NF-IL-6 to a greater extent than the E-box to induce 

COX-2 gene transcription (Mestre et al. 2001). 

 

The expression of COX-2 requires the presence of at least one of the two  

NF-IL-6 motifs to be present in the promoter (Wadleigh et al. 2000). Activation 

at the NF-IL-6 motif is often linked with C/EBP transcription factors that can 

either induce or repress COX-2 gene expression (Kim and Fischer 1998).  

 

There are two NF-κB consensus sites in the human COX-2 promoter. NF-κB is 

known to be activated by many pro-inflammatory factors and it has been shown 

to be involved in the regulation of COX-2 in many, but not all, cell types 

(Crofford 1999, Ke et al. 2007). Interestingly, NF-κB may be inhibited by some 

NSAIDs, such as acetylsalicylic acid. These drugs are able to target and activate 

the inhibitory element of NF-κB, i.e. IκB, and thus inhibit NF-κB –mediated 

signaling. (Kopp and Ghosh 1994, Cavallini et al. 2001) It is noteworthy that the 

salicylate concentrations needed to inhibit NF-κB are relatively high (mM) when 

compared to concentrations measured in vivo during drug treatment. 

 

The human COX-2 promoter is known to have two NFAT binding sites (Klein et 

al. 2007). Increased NFAT transcriptional activity can contribute to both 

carcinoma invasion and migration in vitro and it has been suggested that NFAT 

may promote tumor progression partly by up-regulating COX-2 (Buchholz and 

Ellenrieder 2007). There are several studies that indicate that the procarcinogenic 

role of COX-2 is mediated via NFAT. Increased COX-2 expression in colon 

carcinoma cells induced cell invasion in vitro and conversely, inhibition of 

NFAT reduced cell invasion (Corral et al. 2007). Activation of NFAT1 increased 

breast cancer cell line invasion in a COX-2 –dependent manner (Yiu and Toker 

2006). Furthermore, NFAT is known to be essential for UV-induced COX-2 

induction in keratinocytes (Flockhart et al. 2008). 
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2.2 Post-transcriptional regulation of COX-2 expression and PGE2 

production  

Regulation of mRNA stability and translation have been shown to be central in 

the regulation of COX-2 expression (Dixon et al. 2000). Exon 10 of the COX-2 

gene encodes the whole 3’-untranslated region (3’-UTR) that contains several 

copies of mRNA instability elements. mRNA stability and translation of many 

transiently expressed cytokines and proto-oncogenes have been reported to be 

regulated by AUUUA motifs (AU-rich element, ARE) that are present within the 

3’-UTRs. (Barreau et al. 2005) 

 

AREs have been shown to regulate gene expression by interacting with different 

RNA-binding proteins (Dean et al. 2004). Several RNA-binding proteins have 

been shown to bind the 3’-UTR of COX-2 mRNA: AU-rich element/poly(U)-

binding/degradation factor-1 (AUF1) (Lasa et al. 2000), β-catenin (Lee and 

Jeong 2006), Hu antigen R (HuR) (Dixon et al. 2001), tristetraprolin (TTP) 

(Sawaoka et al. 2003), T-cell intracellular antigen 1 (TIA-1) and TIA related 

protein (TIAR) (Cok et al. 2004). The function of the majority of these proteins 

is known. HuR and β-catenin have been reported to stabilize mRNAs (Dixon et 

al. 2001, Lee and Jeong 2006), TIA-1 and TIAR are reported to be translational 

silencers (Gueydan et al. 1999, Piecyk et al. 2000) and TTP is known to 

destabilize target mRNAs (Sawaoka et al. 2003). AUF1 may play a role in both 

the degradation and stabilization of target mRNAs (Guhaniyogi and Brewer 

2001).  

 

Various signaling pathways (including mitogen-activated protein kinases, AMP-

activated protein kinase, and protein kinase C family) are involved in the 

regulation of COX-2 expression at the post-transcriptional level in a cell-type 

dependent manner (Eberhardt et al. 2007). These signaling pathways act by 

directly or indirectly regulating the activity, localization or expression of the 

RNA-binding proteins.  
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The stability of COX-2 mRNA has been shown to be regulated by various 

pathophysiological and pharmacological factors. Taxanes, angiotensin II and 

gastrin all seem to be able to increase COX-2 mRNA stability by a mechanism 

related to HuR (Subbaramaiah et al. 2003, Doller et al. 2008, Subramaniam et al. 

2008). In addition, transforming growth factor β, glycogen synthase kinase-3β, 

IL-1β and Zn2+ (Sheng et al. 2000, Tamura et al. 2002a, Harding et al. 2006, 

Thiel et al. 2006, Wu et al. 2008) have been reported to increase COX-2 mRNA 

stability whereas dexamethasone and thalidomide were found to destabilize 

COX-2 mRNA (Ristimäki et al. 1996, Lasa et al. 2001, Jin et al. 2007).  

 

One interesting new area in the post-transcriptional regulation of COX-2 

expression is microRNAs (miRNAs). miRNAs are a novel family of small (~19-

22 nt) noncoding RNAs transcribed by genomes of most metazoa. They differ in 

sequences but are known to be involved in sequence-specific posttranscriptional 

regulation by affecting mRNA stability and/or translation. (Nilsen 2007) During 

embryo implantation, two uterine miRNAs, mmu-miR-199a* and mmu-miR-

101a interact with the 3’UTR of COX-2 mRNA in mouse uterus causing to its 

translational repression (Chakrabarty et al. 2007, Daikoku et al. 2008). In colon 

cancer cell lines, miR-101 has been shown to directly silence COX-2 through a 

translational mechanism (Strillacci et al. 2008). 

2.3 Signaling pathways regulating COX-2 expression 

A variety of factors have been reported to stimulate COX-2 expression. 

Proinflammatory factors (e.g. IL-1, TNF-α, IFN-γ, LPS, TPA), hormones (e.g. 

follicle-stimulating hormone, luteinizing hormone, estrogen), growth factors 

(e.g. EGF, PDGF, FGF) and oncogenes (e.g. v-Src, v-Ras) have been reported to 

induce COX-2 expression. (Tanabe and Tohnai 2002) LPS was the first inducer 

of COX-2 expression that was identified in macrophages (Lee et al. 1992). LPS 

binds to Toll-like-receptor-4 that is a transmembrane protein with an 

extracellular domain consisting of leucine-rich repeats and a cytoplasmic domain 

that is homologous to that of the IL-1 receptor (Rock et al. 1998). The signaling 

pathways of most common COX-2 inducers are shown in Figure 4. 
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Figure 4. Most common signaling pathways involved in the transcriptional regulation of 
COX-2 expression. TRADD=TNF receptor-1 associated via death domain, 
RIP=receptor interactive protein, death domain kinase, TRAF=TNF receptor-
associated factor, ASK=apoptosis signal-regulating kinase, NIK=NF-κB-inducing 
kinase, IKK=IκB kinase, NF-κB=nuclear factor kappa-light-chain-enhancer of 
activated B cells, MyD88=myeloid differentiation factor 88, IRAK=IL-1 receptor-
activated kinase, ECSIT=evolutionarily conserved signaling intermediate in Toll 
pathways, MKKK=MAPK kinase kinase, MKK=MAPK kinase, Erk1/2=Extracellular 
signal-regulated kinase 1 and 2, JNK= c-Jun N-terminal kinase, cAMP=cyclic 
adenosine monophosphate, PKA/C=protein kinase A/C, C/EBP=ccaat enhancer binding 
protein, ATF=activator transcription factor, AP1=activator protein-1, CREB=cAMP 
response element binding, NFAT=nuclear factor of activated T-cells, NFIL-6=nuclear 
factor interleukin-6, CRE=cAMP response element. (Modified from Tanabe and Tohnai 
2002) 
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A clinically interesting and important route of COX-2 mRNA and protein 

expression is the cAMP-dependent signaling pathway. Various studies have 

shown that activation of cAMP pathway may increase the level of COX-2 

mRNA and/or protein expression. (Klein et al. 2007) Klein and co-workers 

concluded that cAMP acts as a positive modulator of COX-2 expression (Klein 

et al. 2007). 

 

A serine-threonine kinase pathway, PI3K/Akt, has been shown to be a mediator 

of UVB-induced COX-2 expression in human keratinocytes (Tang et al. 2001, 

Takeda et al. 2004). PI3K-inhibitor studies in the endometrial cancer cell line, 

RL 95-2 demonstrated the inhibition of IκB phosphorylation, reduced NF-κB 

nuclear activity and decreased COX-2 expression, suggesting that PI3K/Akt 

regulates COX-2 expression via activation of NF-κB-mediated signaling (St-

Germain et al. 2004).  

 

Another serine-threonine kinase pathway, mitogen-activated protein kinases 

(MAPKs) has also been reported to regulate COX-2 expression (Tanabe and 

Tohnai 2002). Proinflammatory signals are mediated in the cell via activation of 

one or more members of this kinase family (Su and Karin 1996). 

Pharmacological inhibition or dominant-negative knockout of the MAPKs has 

been shown to reduce COX-2 induction and subsequent PGE2 production (Guan 

et al. 1998, Molina-Holgado et al. 2000). The MAP kinase pathways are 

discussed in more detail in chapter 3. 

 

Activator protein (AP)-1 is a transcription factor complex that is formed from 

heterodimers of Fos and Jun or homodimers of Jun proteins. MAPKs have been 

shown to directly phosphorylate proteins of the AP-1 complex and thus modulate 

AP-1 activity (Karin 1995). AP-1 binds to the CRE sequence and thus activates 

the expression of the COX-2 gene (Tanabe and Tohnai 2002). 

 

In addition to serine-threonine kinases, also cytosolic tyrosine kinases protein 

kinase C (PKC) and IκB kinases (IKKs) can influence COX-2 expression 

(Huang et al. 2003). Tumor necrosis factor (TNF)-α has been shown to activate 
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phospholipase C-γ2 and subsequently PKC-α and protein tyrosine kinase, which 

activated NF-κB via NF-κB-inducing kinase and IKK1/2 that led to induction of 

COX-2 expression in human lung epithelial cells (Chen et al. 2000). Inhibitors of 

tyrosine kinases have been reported to inhibit IL-1β –induced COX-2 expression 

(Akarasereenont et al. 1994). 

2.4 Pharmacological regulation of COX-2 expression and PGE2 

production 

The application of willow tree bark for stiff and painful joints was recommended 

in the Ebers papyrus, which is the first known reference to the anti-inflammatory 

action of salicylates in 1534 BC. In 1828 salacin (named after its source, Salix 

alba; the white willow) was first isolated from willow bark and in 1874 

acetylsalicylic acid was produced synthetically on an industrial scale (Hawkey 

2005). 

 

While the analgesic, antipyretic and anti-inflammatory properties of 

acetylsalicylic acid have been known since the end of the 19th century, its 

mechanism of action remained a mystery until the 1970s. In 1971, Sir John Vane 

showed that acetylsalicylic acid (aspirin)-like compounds act by inhibiting 

prostaglandin production (Vane 1971). This major discovery was awarded the 

Nobel Prize in Physiology and Medicine that Vane shared with Bergström and 

Samuelson in 1982.  

 

NSAIDs can be grouped according to their chemical structure, i.e. salicylates, 

arylalcanoid acids (diclofenac, indomethacin, nabumetone, sulindac), 2-aryl-

proprionic acids or profens (ibuprofen, flurbiprofen, ketoprofen, naproxen), N-

arylanthranilic acids or fenamic acids (mefenamic acid, meclofenamic acid), 

pyrazolidine derivatives (phenylbutazone), oxicams (piroxicam, meloxicam), 

sulfonanilides (nimesulide) and coxibs (celecoxib, etoricoxib, lumiracoxib, 

rofecoxib, valdecoxib) (Figure 5). Nimesulide and coxibs are considered as 

COX-2 selective drugs. As a group, though, the NSAIDs are structurally 

different and differ in pharmacokinetic properties, but ultimately the mechanism 
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of action, inhibition of prostaglandin synthesis, is very similar for all members of 

the NSAID group of drugs. (Flower et al. 1972, Hinz et al. 2007) 

 

     

Acetylsalicylic acid Diclofenac Ibuprofen

Mefenamic acid Phenylbutazone Piroxicam

Nimesulide Celecoxib

 AA

 

Figure 5. Chemical structures of some NSAIDs 

The efficacy and toxicity of NSAIDs is mainly due to inhibition of COX 

enzymes. COX-1 is a constitutive enzyme responsible for housekeeping 

functions in organs including stomach, kidney, intestine and platelets, whereas 

COX-2 is an inducible enzyme exerting its action at inflammatory sites. 

Traditional NSAIDs inhibit both COX-1 and COX-2 enzymes. Selective 

inhibitors of COX-2 were developed on the basis of the theory that COX-1 

mediates the biosynthesis of physiological prostanoids that regulate vascular tone 

and mucosal integrity, whereas COX-2 is the inducible isoform responsible for 

PG production in inflammation. (Hinz et al. 2007) In 1995, the first generation 

COX-2 selective NSAIDs, celecoxib and rofecoxib, entered clinical trials 

(Hawkey 2005). As predicted from biological experiments and animal models, 
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specific blockade of the COX-2 enzyme had a therapeutic analgesic effect which 

was associated with a lower risk of gastrointestinal complications, primarily 

perforations, ulcers and bleedings compared to “old” non-selective COX 

inhibitors (Wolfe et al. 2002).  

 

The VIGOR study, which compared rofecoxib and naproxen in gastrointestinal 

events, raised concern about COX-2 selective NSAIDs in particular, the putative 

increased cardiovascular risk (Bombardier et al. 2000). The APPROVE study 

(adenomatous polyposis prevention study with rofecoxib) confirmed the concern 

(Bresalier et al. 2005). In 2004, rofecoxib was withdrawn from the global market 

(Hawkey 2005). It was suggested that inhibition of COX-2 –dependent synthesis 

of vasoprotective prostacyclin in endothelial cells, while leaving the platelet 

COX-1 –derived formation of prothrombotic thromboxanes unaltered, results in 

an imbalance between the eicosanoids that leads to thrombotic reactions 

(Flavahan 2007). This may not be the only mechanism for the cardiovascular risk 

of COX-2 inhibitors. The adenoma prevention with celecoxib (APC) –study 

showed that acetylsalicylic acid administration did not abolish the potential 

cardiovascular injury of celecoxib (Solomon et al. 2005). The TARGET trial 

compared lumiracoxib, the most selective COX-2 inhibitor so far, with naproxen 

and ibuprofen and found no correlation between the incidence of myocardial 

infarction and treatment with lumiracoxib (Farkouh et al. 2004). Further, the 

MEDAL study compared etoricoxib and diclofenac in 34 701 patients with OA 

or RA and the results showed that rates of thrombotic cardiovascular events were 

similar in both treatment groups (Cannon et al. 2006). Kearney and co-workers 

did a meta-analysis of randomized trials comparing COX-2 selective inhibitors 

with traditional NSAIDs and concluded that selective COX-2 inhibitors are 

associated with a moderately increased risk of vascular events but that high dose 

regimens of some traditional NSAIDs are also associated with a similar excess 

risk (Kearney et al. 2006). A good explanation for the cardiovascular events of 

both NSAIDs and COX-2 inhibitors is that COX-2 –derived prostaglandins 

upregulate thrombomodulin (a thrombin inhibitor) expression in human smooth 

muscle cells and this leads to prothrombotic effects platelet-independently 

(Rabausch et al. 2005). Warner and Mitchell stressed that one property that is 

 
 
32 



common for NSAIDs and COX-2 inhibitors is that they both inhibit COX-2. This 

led to the conclusion that if COX-2 inhibitors provoke thrombotic events, the 

same has to be true for the traditional NSAIDs. (Warner and Mitchell 2008) 

 

An interesting new regulatory element on prostaglandin E2 production is enzyme 

mPGES-1. Macrophages derived from mPGES-1 knockout mice do not produce 

PGE2 in response to stimulation with LPS (Trebino et al. 2003, Samuelsson et al. 

2007). COX-2 and mPGES-1 seem to be coupled – long-term NSAID treatment 

has been shown to decrease both COX-2 and mPGES-1 production in articular 

cartilage from osteoarthritis patients (Alvarez-Soria et al. 2008). A new advance 

in the field of prostaglandin research is the development of dual inhibitors of 

mPGES-1 and 5-LO that potently inhibit both enzymes with significantly less 

pronounced inhibition on COX-enzymes (Koeberle et al. 2008). 

 

Anti-inflammatory steroids have been reported to regulate COX-2 expression 

and PGE2 production in multitude of ways. Glucocorticoids have been shown to 

induce the synthesis of lipocortins that are inhibitors of PLA2 which releases 

arachidonic acid from cell membrane phospholipids (Di Rosa et al. 1984). 

Glucocorticoids are also known to down-regulate COX-2 expression in both 

transcriptional and post-transcriptional manners. The glucocorticoid-mediated 

suppression of COX-2 gene has been reported to be mediated by AP-1 and NF-

κB transcription factors (Yang et al. 1990, Auphan et al. 1995). Anti-

inflammatory steroid dexamethasone has been shown to act also at the post-

transcriptional level by destabilizing COX-2 mRNA (Ristimäki et al. 1996, Lasa 

et al. 2001). Glucocorticoids control PGE2 production also at the level of 

mPGES-1. Dexamethasone has been reported to completely suppress the 

inducible effect of proinflammatory cytokines on mPGES-1 expression (Thorén 

and Jacobsson 2000). 
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3. Mitogen-activated protein kinases 

MAPKs are important signal transduction pathways in inflammation and have 

also been shown to participate in a variety of cellular processes, including cell 

differentiation, proliferation, movement and apoptosis. (Su and Karin 1996, 

Turjanski et al. 2007) 

3.1 MAPK signaling pathways 

The MAPK signaling cascade consists of evolutionary conserved enzymes that 

connect cell-surface receptors to regulatory targets within cells. The MAPKs are 

a family of serine/threonine kinases that are activated by dual phosphorylation at 

the tripeptide motif, Thr-X-Tyr, in response to extracellular stimuli. MAPK 

signaling pathways include extracellular signal-regulated kinase 1 and 2 

(Erk1/2), p38 and c-Jun N-terminal kinase (JNK). The sequence of the tripeptide 

motif is unique to each specific MAPKs: Erk (Thr-Glu-Tyr), p38 (Thr-Gly-Tyr) 

and JNK (Thr-Pro-Tyr). (Su and Karin 1996, Dong et al. 2002) 

 

The activation of the MAPK signaling pathway is due to a process where MAPK 

kinase kinase (MKKK or MEKK) phosphorylates and activates the next member, 

MAPK kinase (MKK or MEK). MKK is a dual-specificity protein kinase that 

leads the process forward: the phosphorylation of both threonine and tyrosine 

residues of the Thr-X-Tyr motif and the activation of the MAPK itself. (Chang 

and Karin 2001) Once activated, MAPKs phosphorylate target substrates on 

serine or threonine residues that are followed by a proline. The physiological 

substrates contain specific interaction motifs that define the substrate selectivity 

of different MAPKs. A schematic presentation of MAP kinase pathways is 

shown in Figure 6. 
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Figure 6. A schematic figure of MAPK signaling pathways. Ras=G protein encoding 
oncogene, Raf=serine/threonine kinase, MKK1/2=MAPK/ERK kinase 1 and 2, 
ERK1/2=extracellular signal-regulated kinase 1 and 2, TCF=ternary complex factors, 
SRF=serum response factor, Rac=a member of the Rho family of Ras-related proteins, 
MKKK=MAPK kinase kinase, MKK4/7=MAPK kinase 4 and 7, JNK=c-Jun N-terminal 
kinase, AP-1=activator protein-1, CDC42=cell division cycle 42, RHO=GTP-binding 
protein of Ras-like proteins, TAK=Tumor growth factor-β activated kinase, 
MKK3/6=MAPK kinase 3 and 6, ATF-2=activating transcription factor-2 

3.2 p38 pathway 

The p38 pathway is activated by several stimulants, including many 

inflammatory cytokines and cellular stress inducing factors like ultraviolet light. 

Also some normal physiological agents like hormones and ligands of G-protein 

coupled receptors and receptor tyrosine kinases can activate p38 cascade. 

(Martin-Blanco 2000)  

 

The p38 pathway consists of several MKKKs, including MKK kinases 

(MKKKs)1-4, mitogen-activated protein triple kinase (MLTK)-2 and -3, 

apoptosis-signal regulating kinase (ASK)-1, tumor progression locus (TPL)-2 
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and TBF-β-activated kinase (TAK)-1. The MKKs include MKK3 and MKK6. In 

addition, MKK4, an upstream kinase of JNK, can activate p38 in response to 

certain stimuli in some cell types (Bobick and Kulyk 2008). Downstream of p38 

itself is MAPK-activated protein kinase (MAPKAPK)-2. Most of the above 

members of MKKKs are not specific for the p38 pathway; they can 

phosphorylate members of other MAPK pathways as well. (Kyriakis and Avruch 

1996, Kyriakis and Avruch 2001) The substrates of the p38 pathway include 

other kinases, cytosolic proteins and transcription factors (Saklatvala 2004). 

 

There are four known p38 isoforms: the original isoform p38α, and p38β, p38γ 

and p38δ, which are all products of different genes. The human p38α MAPK 

was described as a molecular target of the pyridinyl imidazole inhibitors that 

were known to inhibit the production of IL-6 and TNF-α in LPS-treated human 

monocytes (Lee et al. 1994). Pyridinyl imidazole inhibitors were found to inhibit 

also p38β. p38α and p38β share also similar substrates like ATF-2 and 

MAPKAPK-2 (Zarubin and Han 2005). MKK3 is known to preferentially 

activate p38α and β whereas MKK6 activates all known p38 isoforms. (Roux 

and Blenis 2004) p38α differs from other isoforms in that it can be activated also 

by an MKK3/MKK6 –independent pathway. A noncatalytic scaffolding protein, 

TAK1-interacting protein (TAB1) can trigger the enzyme activity of p38α. (Ge 

et al. 2002) In addition to TAB1, Robidoux reported that in adipocytes, JNK 

interacting protein (JIP)-2 could create cell surface-linked complexes with 

MKK3 and p38α (Robidoux et al. 2005). Takaesu showed that in differentiating 

myocytes JNK-associated leucine zipper protein was able to activate both p38α 

and p38β (Takaesu et al. 2006). Of the four isoforms, p38α is the best 

characterized and according to current knowledge, it is the most physiologically 

relevant kinase in inflammation. The p38β gene shares >70% identity to p38α. 

Both p38α and β are expressed in several tissues. p38γ and p38δ share ~60% 

identity with p38α. p38γ is expressed largely in skeletal muscle, whereas p38δ is 

expressed in several adult tissues (i.e. lung, pancreas, small intestine, kidney, 

testis) as well as during development. (Kumar et al. 2003) Less is known about 

the role of p38γ and p38δ in inflammation. 
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Knockout of the p38α gene (p38α-/- mice) leads to lethality by embryonic day 

10; developing embryos exhibit faulty erythropoiesis and placental defects 

(Adams et al. 2000, Tamura et al. 2000). However, heterozygous mice (p38α+/-) 

which display decreased p38α expression and activity have a normal phenotype. 

(Tamura et al. 2000, Otsu et al. 2003) p38β knockout mice are viable and exhibit 

a normal phenotype. In addition, they display normal stress-activated signaling 

in primary mouse embryonic fibroblasts as well as normal T-cell development 

and responses to proinflammatory stimuli LPS and TNF in their immune 

systems. (Beardmore et al. 2005) Mice lacking p38γ or p38δ are fertile and 

phenotypically normal if housed under specific pathogen- and stress-free 

conditions. Similarly, the mice lacking both p38γ and p38δ genes have normal 

phenotype. (Sabio et al. 2005) 

 

p38 plays a critical role in the intracellular signaling cascades of various immune 

and inflammatory responses. p38 kinase can regulate gene expression by at least 

four different important routes. Firstly, p38 is able to regulate transcription of 

target genes via phosphorylation of transcription factors. Secondly, p38 can 

regulate the stability of mRNAs via downstream kinases. Thirdly, p38 is able to 

regulate mRNA translation into protein by the downstream kinases which 

phosphorylate AU-binding proteins that control translation. Fourthly, p38 can 

regulate the phosphorylation of histone H3 in chromatin at NF-κB binding sites 

in certain genes. 

 

p38 has been shown to regulate chemokine expression and the level of cellular 

chemotactic responses. Inhibition of p38 pathway has been shown to decrease 

MCP (monocyte chemoattractant protein)-1, MIP (macrophage inflammatory 

protein)-1α/β and MIP-2 expression and the cellular responses of MCP-1,  

MIP-1α and RANTES (regulated upon activation, normal T cell expressed and 

secreted) (Schieven 2005). Lee et al. showed that inhibition of p38 led to 

decreased TNF-α production, and IL-12 production was shown to be reduced in 

MKK3 knockout mice (Lee et al. 1994, Lu et al. 1999). Interestingly, LPS-

induced production of IL-1β, IL-6, IFN-γ and nitric oxide was markedly reduced 

in MAPKAPK-2 knockout mice and this resembled the effect of treatment with 
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the p38 inhibitor, SB203580 (Kotlyarov et al. 1999). In chondrocytes, 

monosodium urate has been shown to activate MMP-3 and iNOS expression in a 

p38-dependent manner (Liu et al. 2004). Recently, Lin and co-workers reported 

that the effect of glucosamine on MMP-3 could be mediated by p38 (Lin et al. 

2008a). 

 

One interesting role for p38 is the regulation of mRNA stability and mRNA 

translation of inflammatory proteins through ARE binding proteins in the 3’-

UTR of the mRNAs (Winzen et al. 1999, Clark et al. 2003). TNF-α is an 

important example of a gene involved in p38-mediated mRNA stabilization. 

Regulation of TNF-α  mRNA stability by the p38 pathway depends on the cell 

system being used (Clark et al. 2003). p38 is reported to regulate mRNA stability 

and mRNA translation by phosphorylating mRNA-binding proteins like TTP 

through MAPKAPK-2 and eukaryotic elongation factor 2 kinase (Knebel et al. 

2001, Hitti et al. 2006). 

 

p38 may also be involved in chondrogenesis. Stanton and co-workers have 

reported that the prechondrogenic mesenchymal cells of the mouse embryo limb 

bud express all p38 isoforms (Stanton et al. 2004). In addition, endogenous p38 

activation and spontaneous chondrogenesis have been shown in embryonic chick 

limb bud mesenchyme cell micromass cultures (Oh et al. 2000). When 

constitutively active, MKK6 was transfected to prechondrogenic limb 

mesenchyme and a clear enhancement in the expression of SOX9 (SRY box 

containing gene 9) was seen (Weston et al. 2002). 

3.3 JNK pathway 

Most stimuli that activate p38 pathway activate also the JNK pathway. 

Principally, inflammatory cytokines and environmental stress can activate JNK 

cascade. Interestingly, also protein synthesis inhibitors, like cycloheximide and 

anicomycin can activate JNK pathway. (Kyriakis and Avruch 2001)  
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The MKKKs upstream of JNK are MKKK1-4, mixed lineage kinases  

(MLKs) 2-3, Tpl-2, dual leucine zipper-bearing kinase (DLK), TAO1-2, TAK1 

and ASK1-2. These kinases phosphorylate the two kinases that activate JNK 

pathway: MKK4 and MKK 7. (Davis 2000, Kyriakis and Avruch 2001) TAK1 

has been reported to be important in JNK activation mediated by inflammatory 

cytokines, toll-like receptors (TLR)-3, -4 and -9, and B and T cell receptors (Sato 

et al. 2005, Shim et al. 2005, Wan et al. 2006). MKKK3 seems to be the target 

for JNK activation by TLR-8 (Qin et al. 2006) and TPL2 and MLK3 have been 

reported to have a role in TNF-α –induced JNK activation (Brancho et al. 2005, 

Das et al. 2005). MKKK1, MLK2-3 and DLK specifically target and 

phosphorylate MKK4 and MKK7, the other MKKKs can activate also other 

pathways. Both MKK4 and MKK7 can activate JNK pathway by dual 

phoshorylation at Thr-Pro-Tyr motif, but MKK4 seems to primarily activate 

Tyr185 and MKK7 Thr183 (Gerwins et al. 1997, Lisnock et al. 2000). In addition 

to protein kinases, also scaffold proteins e.g. JNK-interacting proteins (JIPs) can 

activate and potentiate the JNK cascade (Morrison and Davis 2003).  

 

Three JNK genes are known; i.e. JNK1, JNK2 and JNK3. The first two are 

expressed ubiquitously whereas JNK3 is more limitedly expressed and is 

restricted to brain, heart and testis. (Pulverer et al. 1991, Derijard et al. 1994, 

Kyriakis et al. 1994, Yang et al. 1997, Johnson and Nakamura 2007) Alternative 

splicing and exon usage means that there are multiple isoforms of JNK enzymes. 

These distinct forms of each JNK1, JNK2 and JNK3 seem to differ in their 

competence to bind and activate various substrate proteins. (Kallunki et al. 1994, 

Gupta et al. 1996) Alternative splicing in JNK proteins results in up to 10 

different protein products that vary in size from 46 kDa to 55 kDa. Many studies 

have shown that the JNK1 gene produces a 46 kDa protein, the JNK2 gene a 55 

kDa protein and the JNK3 gene 48 and 57 kDa proteins. The sequences of these 

different protein products show >80% homology. (Bogoyevitch 2006) 

 

Like p38 kinase, also JNK has a role as a regulator of immune and inflammatory 

signals through the phosphorylation cascade. Firstly, the main substrate tightly 

controlled by JNK is the c-Jun gene. c-Jun proteins that are already present in the 
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cell are phosphorylated by JNKs in response to extracellular stimuli (Pulverer et 

al. 1991). c-Jun phosphorylation on Ser63 and Ser73 leads to improved c-Jun-

dependent transcription. Secondly, a major target of JNK pathway is 

transcription factor AP-1 that is activated, in part, by phosphorylation of c-Jun 

and related molecules (Weston and Davis 2002). Thirdly, in addition to c-Jun, 

JNK phosphorylates also other AP-1 proteins, like JunB, JunD and ATF-2 

(Davis 2000). Furthermore, several other transcription factors have been shown 

to be phosphorylated by JNKs, like NF-ATc1, HSF-1 and STAT-3 (Kyriakis and 

Avruch 2001). 

 

JNK has also been shown to regulate the expression of inflammatory and other 

proteins by stabilizing mRNAs of CLMP, iNOS, IL-2, IL-3 and VEGF (Chen et 

al. 1998, Ming et al. 1998, Pages et al. 2000, Lahti et al. 2003, Sze et al. 2008). 

The stabilizing effect of JNK on CLMP and iNOS mRNA may be mediated by 

an RNA binding protein TTP (Korhonen et al. 2007, Sze et al. 2008). In terms of 

IL-2, the effects of JNK were reported to be regulated via the JNK-responsive 

element (JRE) in the 5’-UTR of IL-2 mRNA. Two RNA-binding proteins, Y 

box-binding protein and nucleolin, were found to recognize this element. (Chen 

et al. 2000)  

 

Deficiency of JNK1, JNK2 or JNK3 does not lead to lethality or even to any 

clear defects. Embryos lacking JNK1 (JNK1-/-) or JNK2 (JNK2-/-) survive but, 

JNK1-/- and JNK2-/- double mutants die at mid-gestation due to disrupted 

apoptotic programmes in specific regions of the brain and defective neural tube 

closure (Kuan et al. 1999, Sabapathy et al. 1999). Mice lacking JNK3 that is the 

form predominantly expressed in the nervous system, show normal structural and 

cellular organization of brains. Functionally, JNK3-/- mice seem to have 

protection against an epileptogenic substance, kainic acid. JNK3-/- mice showed 

lower c-Jun phosphorylation and transcriptional activation and less hippocampal 

cell loss compared to wild type animals. (Yang et al. 1997) Interestingly, neither 

JNK1-/- nor JNK2-/- mice were protected against kainic acid but mice expressing 

a mutant form of c-Jun (c-JunA63/A73) lacking the JNK phosphoacceptor sites, 

showed the same phenotype as JNK3-/- mice (Behrens et al. 1999).  
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The role of JNK in apoptosis is well documentated (Davis 2000, Weston and 

Davis 2002, Hasala et al. 2007b) but the mechanism of JNK in apoptosis is still 

under debate and seems to depend on stimulus and cell type (Liu and Lin 2005). 

Two antihistamines, diphenhydramine and chlorpheniramine, have been shown 

to enhance apoptosis in human eosinophils in a JNK mediated manner (Hasala et 

al. 2007a). Chang et al. showed that TNF-α -mediated JNK activation 

accelerates the loss of the NFκB-induced antiapoptotic protein, c-FLIP, that is an 

inhibitor of caspase-8 (Chang et al. 2006). TNF-α induced JNK activation is 

known to be two-phased. The first phase (30 min) is intense and transient and is 

followed by the second more sustained phase that lasts many hours. Ventura and 

colleagues reported that the early phase of JNK activation could mediate cell 

survival, while the later and more sustained phase of activation mediated 

proapoptotic signaling. (Ventura et al. 2006) A histone H2A variant, H2AX that 

is phosphorylated in apoptotic cells has been shown to be a JNK substrate. 

H2AX phosphorylation is necessary for DNA ladder formation and the 

JNK/H2AX pathway cooperates with the caspase3/caspase-activated DNase 

pathway resulting in cellular apoptosis. (Lu et al. 2006, Sluss and Davis 2006) 

 

There is no evidence to support an involvement of JNK pathway in chondrogenic 

differentiation within embryonic mesenchymal limb. Unlike Erk and p38, JNK 

phosphorylation cannot be detected in embryonic chick wing bud mesenchymal 

cells within 5-day period (Oh et al. 2000).  

3.4 ERK1/2 pathway 

ERK1 and ERK2 (also referred as p44/p42 MAP kinases) were the first 

identified and cloned MAPK (Sturgill et al. 1988, Ahn et al. 1991, Boulton et al. 

1991). ERK1/2 pathway is activated by growth factors, cytokines, viral infection, 

transforming agents and carcinogens (Johnson and Lapadat 2002). ERK1 and 

ERK2 share 83% amino acid identity and are expressed to various extents in all 

tissues. 
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ERK1/2 pathway consists of the MKKKs A-Raf, B-Raf, Raf-1 (Kyriakis et al. 

1992, Moodie et al. 1993) and c-Mos (Pham et al. 1995), and the MKKs 

MAPK/ERK kinases (MKK)1/2. MKKs are encoded by different genes but are 

very similar in terms of sequence, substrate specificity and regulation. (Zheng 

and Guan 1993b). ERK1/2 activation results in phosphorylation of various 

substrates in all cellular compartments including several membrane proteins 

(CD120a, Syk and calnexin), nuclear substrates (SRC-1, Pax6, NF-AT, Elk-1, 

MEF2, c-Fos, c-Myc and STAT3) and cytoskeletal proteins (neurofilaments and 

paxillin) (Chen and Cobb 2001). 

  

The mammalian ERK MAPK pathway is involved in many physiological 

processes, including cell proliferation, differentiation and survival (Pearson et al. 

2001). The activation of ERK1/2 induces proliferative signals that may 

contribute to normal and cancerous cell growth (Cowley et al. 1994). 

Consistently, in many human cancer types, abnormal activation of the ERK 

pathway, which is often due to mutation in the genes encoding molecules 

regulating ERK1/2, like Ras, is a common event (Hoshino et al. 1999). 

Interestingly, gene ablation studies of ERK1 and ERK2 have exposed that ERK2 

knockout in mice leads to embryonic lethality whereas ERK-1 knockout mice are 

viable (Pages et al. 1999, Saba-El-Leil et al. 2003). 

 

Given the prominent role of ERK1/2 signaling in the regulation of diverse 

parameters of cellular metabolism, it is not surprising that the spatial expression 

of active phosphorylated ERK1/2 is widely distributed at early stages of 

organogenesis in vertebrate embryos (Corson et al. 2003). The roles and patterns 

of ERK signaling are believed to be substantially altered during the 

developmental time course of chondrogenesis and can even vary according to 

anatomical location (Bobick et al. 2007). 

3.5 Inhibition of MAPK 

MAPKs are known to regulate the expression of cytokines and other mediators 

that are part of the pathogenic processes in inflammation. MAPKs maintain a 
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role not only in inflammation, but also in cellular-adaptive responses like 

apoptosis, regulation of cell-cycle and proliferation and development and 

differentiation. Pre-clinical studies with MAPK inhibitors have shown significant 

efficacy in many disease models, e.g. arthritis, pain, psoriasis, airway diseases 

and inflammatory bowel disease. Unfortunately, in clinical studies, most of the 

novel compounds have encountered problems related to toxicity and limited 

efficacy. 

3.5.1 p38 inhibitors 

p38 MAPK was originally discovered in a study into the effects of pyridinyl-

imidazole compounds on IL-6 and TNF-α production in human monocytes (Lee 

et al. 1994). The 38 kDa proteins characterized were first called “cytokine-

suppressive anti-inflammatory drug binding protein-1/2”, later they were shown 

to exhibit protein kinase activity and named p38α and β (Han et al. 1994, Lee et 

al. 1994). SB203580, a classical p38 inhibitor, is a representative of pyridinyl-

imidazole compounds (Cuenda et al. 1995). Several compounds in the pyrinidyl-

imidazole group inhibit phosphorylated p38 by binding to the ATP site (Young 

et al. 1997). These compounds have been useful in the discovery of p38 and in in 

vitro studies but they were not suitable for oral drug delivery (Adams et al. 

2001).  

 

VX745 is a p38 inhibitor generated after pyridinyl-imidazoles (Fitzgerald et al. 

2003). The selectivity of VX745 is based on the presence of Gly at residue 110. 

This is atypical as compared to other kinases and may well account for increased 

p38 selectivity. 

 

BIRB796 is characteristic of diaryl urea compounds of p38 inhibitors (Pargellis 

et al. 2002). The mechanism of action of BIRB796 differs from previous 

compounds; BIRB796 acts by causing a malfunction in the activation loop of 

p38 and inhibiting the activation of p38 by MKK6 (Sullivan et al. 2005).  
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The importance of p38 pathway in the regulation of many inflammatory 

mediators makes it very interesting drug target. Several p38 inhibitors have got 

into clinical trials, some of them have been unsuccessful but there are reports of 

favourable responses in animal models and clinical studies (Dominguez et al. 

2005, Goldstein and Gabriel 2005, Lee and Dominguez 2005).  

 

Interestingly, experimental RA models have shown that p38 inhibitors are 

effective in reducing symptoms, paw swelling, inflammation, cartilage 

breakdown and bone erosion in the rat streptococcal cell wall arthritis model, the 

collagen induced arthritis –model in mice and the adjuvant and collagen induced 

arthritis –model in rats (Badger et al. 2000, Mclay et al. 2001, Nishikawa et al. 

2003, Mbalaviele et al. 2006, Medicherla et al. 2006). In clinical studies, a large 

number of p38 inhibitors have been tested and found to be safe and effective in 

the reduction of IL-6, IL-8 and TNF-α production, C-reactive protein release in 

serum, and fever caused by endotoxin challenge in healthy volunteers (Fijen et 

al. 2001, Branger et al. 2002, Fijen et al. 2002, Parasrampuria et al. 2003, 

Schreiber et al. 2006). However, it seems that efficacy and safety of these 

compounds in RA patients is no better to placebo (Sweeney and Firestein 2006).  

 

In Crohn’s disease, BIRB796 failed to exert any a clinical benefits (Schreiber et 

al. 2006) whereas treatment with CNI1493, a non-selective p38 and JNK 

inhibitor led to a statistically significant improvement in the Crohn’s Disease 

Activity Index without causing any serious side effects (Hommes et al. 2002).  

3.5.2 JNK inhibitors 

An anthrapyrazolone JNK inhibitor, SP600125, was reported in late 2001. 

SP600125 was shown to be highly selective towards JNK (>300-fold selectivity 

over p38 and ERK and between 10 to 100-fold selectivity over 14 other kinases 

tested). SP600125 is a reversible ATP-competitor that inhibits JNK mediated c-

Jun phosphorylation. (Bennett et al. 2001) SP600125 was the first chemical 

inhibitor of JNK and it has been used in more than 1200 publications to reveal 

the importance of JNK pathway. 
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CC-401 is a second generation JNK inhibitor that inhibits JNK signaling by 

competitive binding to adenosine triphosphate-binding site in the active, 

phosphorylated, form of JNK, resulting in inhibition of the phosphorylation of 

JNK targets. CC-401 is a potent inhibitor of all three forms of JNK and has at 

least 40-fold selectivity for JNK compared to other related kinases, like p38, 

ERK1/2, inhibitor of κB kinase (IKK2), PKC and zeta-associated protein of 70 

kDa (ZAP70) (Uehara et al. 2004, Uehara et al. 2005). CC-401 has shown 

efficacy in a rat-model of immune-induced renal injury, and CC-401 and related 

compounds (CC0209766 or CC0223105) improved the survival rate in hepatic 

warm ischemia/reperfusion injury model from <40% to 60-100% (Uehara et al. 

2005, Flanc et al. 2007).  

 

In addition to SP600125 and CC-401, there are additional small molecule 

inhibitors of JNK that have largely been discovered in in vitro kinase assays 

against purified JNK. The small molecule JNK inhibitors include diaryl-

imidazoles, (benzoylaminomethyl)thiopene sulfonamides, dihydro-pyrrolo-

imidazoles, (benzothiazol-2-yl)acetonitrile, anilinoindazoles, anilino-bipyridines, 

pyridine carboxamides and anilino-pyrimidines (Scapin et al. 2003, Ruckle et al. 

2004, Gaillard et al. 2005, Graczyk et al. 2005, Swahn et al. 2005, Liu et al. 

2006, Swahn et al. 2006, Szczepankiewicz et al. 2006, Zhao et al. 2006, Liu et al. 

2007). With respect to these compounds, AS601245 ((benzothiazol-2-

yl)acetonitrile), has been tested in preclinical RA models and in models of 

cerebral and cardiac ischemia (Carboni et al. 2004, Ferrandi et al. 2004, Gaillard 

et al. 2005). In collagen-induced arthritis, AS601245 decreased paw swelling and 

reduced the clinical arthritis scores. Histologically cartilage erosion and synovial 

inflammation were decreased in AS601245-treated group. (Gaillard et al. 2005) 

 

Some natural products have been shown to inhibit JNK. Latifolians A and B 

from an extract of New Guinea vine, Gnetum latifolium, were demonstrated to 

inhibit JNK3 in vitro (Rochfort et al. 2005).  
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Peptide inhibitors that can target or interrupt JNK signaling complexes have also 

been reported to inhibit JNK pathway. The JNK pathway uses JNK interacting 

protein (JIP) family scaffold proteins. It has been shown that overexpression of 

full length JIP1 or specific parts of the protein, like JNK binding domain (JBD), 

inhibit JNK activity. Since other MAPKs do not use JIPSs, it appears that the 

short JIP1 JBD derived peptides are rather selective and inhibit only JNK and its 

upstream activators, MKK4 and MKK7. (Borsello et al. 2003)  

3.5.3 ERK1/2 inhibitors 

To date, no direct ERK1/2 inhibitors have been described. The inhibitors of the 

upstream regulators, MKK1/2 and Raf, represent the most extensively studied 

approach for blocking ERK signaling. It is reasonable to inhibit MKK1/2 or Raf 

as a means to block ERK1/2 activation. MKK1/2 are the only known catalytic 

substrates of Raf kinases and for one’s part, ERK1/2 is the only known substrate 

of MKK1/2. (Hoshino et al. 1999) 

 

PD98059, PD198306 and U0126, the first ERK1/2 inhibitors available, target 

ERK1/2 by inhibiting the kinase function of MKK1/2 (Dudley et al. 1995, 

Favata et al. 1998). These compounds are highly selective but they lack the 

pharmaceutical properties needed to be successful clinical candidates (Davies et 

al. 2000). However PD98059 has proved useful in elucidating the role of 

ERK1/2 pathway in various cellular events, and it has been used in more than 

7000 publications. The difference between MKK inhibitors and the majority of 

protein kinase inhibitors is that MKK inhibitors are non-ATP competitive. 

 

CI-1040 (PD184352) is a highly selective and potent, and an orally active 

inhibitor of MKK1/2 and the first MKK1/2 inhibitor that entered clinical trials 

(Sebolt-Leopold et al. 1999). Unfortunately the results from phase II studies in 

patients with advanced non-small cell lung carcinoma, breast cancer, colorectal 

cancer and pancreatic cancer were negative (Rinehart et al. 2004).  
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The second generation of MKK1/2 inhibitors include PD0325901 and AZD6244 

(ARRY-142886) (Sebolt-Leopold and Herrera 2004, Yeh et al. 2007). 

PD0325901 is a derivative of CI-1040 that is more than 50-fold more potent 

against MKK1/2 than the parent compound. It has also been reported to have 

improved bioavailability and longer duration of target inhibition compared to the 

original compound (Sebolt-Leopold and Herrera 2004). AZD6244 is an orally 

active benzimidazole derivative that is known to inhibit MKK1/2 in vitro (Yeh et 

al. 2007). Not only small molecule inhibitors, but also bacterial toxins have been 

reported to inhibit MKK function. Anthrax lethal factor, a protease from Bacillus 

anthracis, and Yersinia outer protein J have shown inhibitory potency against 

MKK1/2. (Orth et al. 1999, Bodart et al. 2002) 

 

Since ERK1/2 MAPK is known to promote cell proliferation, cell survival and 

metastasis, the primary drug target of its inhibitors has been cancer. However, 

the MKK/ERK pathway has been shown to play a role in metalloproteinase 

production in a variety of cell types (Brogley et al. 1999, Brauchle et al. 2000). 

One possible mechanism for the role of ERK1/2 in inflammation is that ERK1/2 

has as a downstream target Elk-1 that transactivates genes including transcription 

factor AP-1 that binds to the promoters of many cytokines and matrix 

metalloproteases (Wang et al. 2004). MKK1/2 activity has also shown to be up-

regulated in joint tissue taken from RA patients (Schett et al. 2000, Thiel et al. 

2007). Interestingly, an orally bioavailable MKK1/2 inhibitor, PD184352, was 

recently shown to prevent edema significantly, as well as clinical arthritis and 

histopathological changes in murine collagen-induced arthritis (Thiel et al. 

2007).  

 

There are several structurally different compounds that act as potential Raf 

kinase inhibitors (Smith et al. 2006). In addition to the small molecule inhibitors, 

Raf kinases can be inhibited by antisense inhibitors that block c-Raf-1 protein 

expression (ISIS-5132, a 20-base phosphorothioate DNA oligonucleotide) or by 

liposome-encapsulated antisense c-Raf-1 oligonucleotide (Gokhale et al. 2002). 
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Figure 7. Chemical structures of some MAPK inhibitors. The names of the inhibitors 
used in the present study are shown in bold. 

3.6 MAPK phosphatases 

MAPKs have to be phosphorylated on both threonine and tyrosine residues for 

kinase activity. Both protein serine/threonine phosphatases and protein tyrosine 

phosphatases have been shown to be the negative regulators of MAPKs by 

dephosphorylating the kinases. The MAPK phosphatase (MKP) family consists 

of the serine/threonine phosphatases, tyrosine phosphatases and dual-specificity 
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phosphatases (DUSPs) which can dephosphorylate both phosphothreonine and 

phosphotyrosine residues on activated MAPKs. (Keyse 2000, Farooq and Zhou 

2004) In human and mouse genome, at least 30 DUSP genes that share a 

common structure containing an N-terminal non-catalytic domain and a C-

terminal catalytic domain have been identified (Muda et al. 1996a, Theodosiou 

and Ashworth 2002). Of these 30 phosphatases, 10 members have shown 

substrate specificity for MAPKs (Lang et al. 2006). Based on gene structure, 

substrate specificity for different MAPKs, and subcellular localization, these 

MKPs can be subdivided into three groups. Subgroup I consists of 

DUSP1/MKP-1, DUSP2/PAC-1, DUSP4/MKP-2 and DUSP5. The members of 

subgroup I are inducible nuclear enzymes. Subgroup II consists of cytoplasmic 

phosphatases that all primarily dephosphorylate ERK1/2: DUSP6/MKP-3, 

DUSP7/MKP-X and DUSP9/MKP-4. The members of the third group include 

DUSP8, DUSP10/MKP-5 and DUSP16/MKP-7 which all show substrate 

specificity towards p38 and JNK MAPKs. (Lang et al. 2006, Salojin and Oravecz 

2007) Some basic properties of these 10 dual-specificity MKPs are shown in 

Table 2. The 20 remaining DUSPs are smaller proteins that are deficient in 

MAPK binding domain (MKB) in the presence of DUSP domain. Nonetheless, 

DUSP14/MKP6, DUSP3/VHR and DUSP22/VHX have been shown to function 

like MKPs (Marti et al. 2001, Alonso et al. 2002, Alonso et al. 2003) 

 

It seems that MKPs differ from their substrate MAPKs in their expression 

profile. During development, depending on the cell-type or cellular activation, 

MKPs show regulated expression whereas MAPKs are expressed more 

commonly (Charles et al. 1993, Sun et al. 1993, Dickinson et al. 2002, Christie et 

al. 2005). MKPs have been demonstrated to possess substrate selectivity towards 

different MAPK isoforms. DUSP6/MKP-3 was the first MKP that was shown to 

inactivate only ERK1/2 in vitro and in vivo and to have only little or no activity 

towards JNK or p38 (Groom et al. 1996, Muda et al. 1996b). After that finding it 

has been shown that also other MKPs are able to inhibit p38, JNK or ERK1/2 

altogether or with a degree of selectivity (Muda et al. 1996a, Tanoue et al. 1999, 

Slack et al. 2001, Tanoue et al. 2001). DUSP6/MKP-3 has been reported to 

recognize and bind ERK2 tightly with a conserved motif within the amino-
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terminal non-catalytic domain. This phenomenon is followed by increased 

DUSP6/MKP-3 catalytic activity in vitro. (Camps et al. 1998, Muda et al. 1998) 

Catalytic activation of MKPs has been thought to be a general mechanism for 

MKPs’substrate selectivity (Camps et al. 2000).  

 

Table 2. Key properties for dual-specificity phosphatase (DUSPs) / MAP kinase 
phosphatases (MKPs)s. (Modified from Owens and Keyse 2001) 
 

Gene MKP Subcellular localization       Substrate preference 
 
Subgroup I 
DUSP1 MKP-1 Nuclear        p38 ~JNK >> ERK1/2 
DUSP2  Nuclear        ERK ~ p38 >> JNK 
DUSP4 MKP-2 Nuclear        ERK ~ JNK >> p38 
DUSP5  Nuclear        ERK 
 
Subgroup II 
DUSP6 MKP-3 Cytoplasmic        ERK 
DUSP7 MKP-X Cytoplasmic        ERK 
DUSP9 MKP-4 Cytoplasmic        ERK > p38 
 
Subgroup III 
DUSP8  Cytoplasmic / nuclear       JNK, p38 
DUSP10 MKP-5 Cytoplasmic / nuclear       JNK, p38 
DUSP16 MKP-7 Cytoplasmic / nuclear       JNK, p38 

3.6.1 MAPK phosphatase-1 

MKP-1 was the first discovered MAPK selective phosphatase that was capable 

of dephosphorylating both phosphotyrosine and phosphothreonine residues (Sun 

et al. 1993). Mouse MKP-1 cDNA was first cloned in the screening of BALB/c 

373 cDNA library and was recognized as an immediate-early transcript that is 

induced by growth factors (Lau and Nathans 1985, Charles et al. 1992). The 

homolog for the murine gene, named 3CH134, was soon identified also from 

human origin (named as CL100) and it was reported to be induced by oxidative 

stress (Keyse and Emslie 1992). The gene was found to code a 39.5 kDa protein 

that had (I/V)HCXAGXXR(S/T)AG (characteristic phosphatase catalytic site) in 

the C-terminus and a typical kinase-interaction domain in the N-terminus. It was 

named MAPK phosphatase (MKP)-1 because of its ability to dephosphorylate 
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both phosphotyrosine and phosphothreonine residues. (Sun et al. 1993, Tamura 

et al. 2002b).  

 

3CH134 and CL100 were first shown to be selective towards ERK1/2 in vitro 

(Alessi et al. 1993, Charles et al. 1993, Sun et al. 1993, Zheng and Guan 1993a). 

Subsequently MKP-1 was found to dephophorylate MAPKs in the order 

p38>JNK>>ERK1/2 (Franklin and Kraft 1997). MKP-1 is ubiquitously 

expressed and it can be highly up-regulated by stimuli like endotoxin, 

anisomycin, UV, p53, osmotic and heat shock, 12-O-tetradecanoylphorbol-13-

acetate and growth factors (Tamura et al. 2002b). In human lymphoid organs, 

MKP-1 is constitutively expressed but one characteristictrant is that its 

expression is increased rapidly in response to cell activation. In LPS-stimulated 

murine macrophages, expression of MKP-1 rapidly increases and then returns to 

basal level in 2-3 hours (Chi et al. 2006).  

 

Transcription factors AP-1 (c-Fos, c-Jun, ATF2), SP1, SP3, glucocorticoid 

receptor and NF-κB have been shown to bind to MKP-1 promoter and to induce 

transcription (Kwak et al. 1994, Laderoute et al. 1999, Ryser et al. 2004, Xu et 

al. 2004, Issa et al. 2007). Interestingly, phosphorylation and acetylation of 

histone H3 has been reported to change the chromatin at the MKP-1 gene locus, 

this being followed by an increase in both the association of RNA polymerase II 

to MKP-1 gene promoter and its transcription (Li et al. 2001). 

 

In addition to transcriptional mechanisms, MKP-1 is also regulated at the post-

transcriptional level. Interestingly, the mRNA of MKP-1 contains several 

evolutionally conserved AREs in the 3’-UTR (Charles et al. 1992, Emslie et al. 

1994) and several RNA binding proteins have been reported to bind the MKP-1 

mRNA and modulate its stability. TTP has been shown to destabilize MKP-1 

mRNA in 3T3-L1 cells whereas NF90 and HuR have been reported to increase 

its stability in HeLa cells (Kuwano et al. 2008, Lin et al. 2008b). Interestingly, 

HuR has also been reported to increase MKP-1 mRNA translation, and NF90 is 

believed to suppress its translation (Kuwano et al. 2008). 
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MKP-1 is known to be an important negative regulatory participant in the 

inflammatory process. This observation led to a question about the effects of 

anti-inflammatory drugs on MKP-1 expression. MKP-1 expression was first 

shown to be increased in response to dexamethasone by Kassel and co-workers 

in mast cells (Kassel et al. 2001). The same phenomenon was demonstrated in 

RAW264.7 macrophages a few months later: Chen showed that in addition to 

dexamethasone, also CTB, a component of cholera toxin that is produced by the 

Gram negative bacterium Vibrio cholerae, was able to increase MKP-1 

expression (Chen et al. 2002). In 1997 Swantek and co-workers showed that 

dexamethasone inhibited LPS-induced JNK activation (Swantek et al. 1997). 

Evidence for enhanced MKP-1 expression after dexamethasone-treatment 

supported this finding. The effect of dexamethasone on COX-2 expression was 

found to be mediated by decreased p38 activity and increased MKP-1 expression 

in HeLa cells (Lasa et al. 2000, Lasa et al. 2001, Lasa et al. 2002). Interestingly, 

Zhao and co-workers reported that the ability of synthetic corticosteroids to 

induce MKP-1 expression was comparable to the anti-inflammatory potencies of 

these drugs (Zhao et al. 2005). Abraham et al. showed that in bone marrow 

macrophages from MKP-1-/- mice, dexamethasone did not inhibit p38 and JNK 

activity. Similarly, the effect of dexamethasone on many inflammatory genes 

was decreased. (Abraham et al. 2006)  

 

In 1996, the Bravo laboratory at Bristol-Myers Squibb Pharmaceutical Research 

Institute generated mice, embryonic stem cells and mouse embryo fibroblasts 

that are deficient of the MKP-1. They reported that MKP-1-/- mice were born at a 

normal frequency and they were fertile and did not present any phenotypic or 

histologic abnormalities. (Dorfman et al. 1996) Later, it has been shown that 

although MKP-1-/- mice do not show any significant abnormalities in lymphoid 

or myeloid development, the deletion of MKP-1 leads to markedly elevated 

levels of proinflammatory cytokines and also the other inflammatory mediators 

in response to LPS stimulation compared to wild type animals. This feature is 

accompanied by a significally increased mortality rate in response to endotoxin. 

In a low-dose endotoxin challenge model, the strong immune response is 

mediated by the release of macrophage-derived cytokines TNF-α, IL-6, IL-12 
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and IL-10 and the proinflammatory chemokines CCL3, CCL4 and CXCL2 

leading to LPS-induced hepatotoxicity and shock. (Chi et al. 2006, Hammer et 

al. 2006, Salojin et al. 2006, Zhao et al. 2006) MKP-1-/- mice have been shown to 

be more sensitive to the progression of septic shock syndrome, associated with 

hypotension, respiratory failure, increased nitric oxide production, and multiple 

organ failure which has appeared as renal, hepatic, and pulmonary damage after 

LPS-treatment (Zhao et al. 2006). MKP-1 is able to inhibit phosphorylation of 

p38 MAPK in different mouse and human cell types (Wang and Liu 2007). In 

studies using LPS-stimulated MKP-/- macrophages, MKP-1 has been shown to 

have only a limited effect on JNK phosphorylation (Hammer et al. 2006, Salojin 

et al. 2006). Interestingly, MKP-1 has been shown to be an important factor in 

preventing the development of autoimmunity, especially arthritis. Salojin and co-

workers reported that after collagen immunization MKP-1-/- mice developed 

more severe arthritis than their wild type counterparts (Salojin et al. 2006).  

4. Aurothiomalate 

From the earliest civilizations, gold has been described as rex metallorum and 

symbolized with the sign of the sun meaning the origin of power, richness and 

benefits to life. The first notes of the medical use of gold can be found from 

Chinese texts 2500 BCE. Metallic gold power has been used in India to treat 

asthma and arthritis for at least two millennia. The history of aurothiomalate, 

gold sodium thiomalate, in the treatment of RA began in the 1930’s when Dr. 

Forestier showed that it has anti-rheumatic properties (Forestier 1935).    

4.1 Aurothiomalate as one of the DMARDs 

Disease-modifying antirheumatic drugs (DMARDs) (including e.g. cyclosporin 

A, gold (aurothiomalate and auranofin), hydroxychloroquine, leflunomide, 

methotrexate, D-penicillamine, and sulfasalazine) can with early initiation lead 

to substantial improvement in symptoms of rheumatoid arthritis and retard 

radiographic progression (Tsakonas et al. 2000, Lard et al. 2001). These agents 
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share several common features, like slow onset of therapeutic effect and poorly 

understood molecular mechanism of action. Felson and co-workers published a 

meta-analysis of blinded clinical trials in 1990 and showed that the efficacy of 

aurothiomalate, methotrexate, D-penicillamine, and sulfasalazine are comparable 

and that efficacy of auranofin and hydroxychloroquine are somewhat weaker 

(Felson et al. 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Chemical structures of some DMARDs  
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Gold sodium chloride was claimed to be effective in the treatment of 

tuberculosis and syphilis in Chrestin’s 1811 publication. Robert Koch’s finding 

in 1890 that gold cyanide was bactericidal in vitro to tubercle bacilli was a 

continuation of that approach (Koch 1890, Kean and Kean 2008). After that 

finding, gold complexes were used in the treatment of human and bovine 

tuberculosis. In the 1930’s there was belief that RA and tuberculosis were related 

and a French physician, Jacques Forestier, began to treat his RA patients with 

gold. Forestier succeeded: gold complexes were found to be efficient and 

beneficial in the treatment of RA (Forestier 1934, Slot and Deville 1934, 

Forestier 1935) 

 

According to the ACR guidelines for the management of rheumatoid arthritis, 

DMARD therapy should be started as soon as possible after RA diagnosis to 

prevent or slow further joint damage (Saag et al. 2008). With single DMARD 

therapy, remission is achieved in too few patients, and therefore the current 

practice is moving towards combination therapy (Pincus et al. 1999, Korpela et 

al. 2004). In the literature of DMARD combination therapy, methotrexate has 

been considered as the foundation on which sulfasalazine, hydroxychloroquine 

or biological agents are added. According to ACR guidelines for the 

management of RA, gold salts belong to a second line of drugs used in the 

treatment of RA (Saag et al. 2008). In the Finnish Current Care guidelines for 

RA, aurothiomalate is regarded as a useful drug also in the initiation of medical 

treatment for RA (Working group set up by the Finnish Rheumatological Society 

2003).  

 

Antirheumatic biologic agents are protein modulators that target specific 

proinflammatory cytokines (TNF-α, IL-1, IL-6) or inflammatory cell surface 

proteins. TNF-α blockers are the most widely used biologicals in the treatment 

of RA, and they act more quickly than traditional DMARDs and have been 

shown to slow the rate of radiographic progression. (Bathon et al. 2000, Lipsky 

et al. 2000) Interestingly, Rau compared four clinical trials with aurothiomalate 

(two open, one placebo-controlled, and one comparison with methotrexate) and 

five trials with biologic agents [(three placebo-controlled (anakinra, an IL-1 
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receptor antagonist; and two adalimumab, TNF-α blocker trials), one dose 

escalation study (infliximab, a TNF-α blocker trial), and one comparison with 

methotrexate (etanercept, a TNF-α blocker trial)] and concluded that 

aurothiomalate did not perform significantly worse in clinical trials than the 

biological agents (Rau 2005).  

4.2 Aurothiomalate in non-clinical studies 

Aurothiomalate has been shown to suppress lymphocyte transformation in vitro 

(Davis et al. 1979), and to inactivate the first component of complement (C1) in 

serum, synovial fluid, and in functionally pure C1 (Schultz et al. 1974). In rabbit 

liver lysosomes and in human synovial fluid aurothiomalate has been reported to 

inhibit secretion of hydrolytic enzymes, like acid phosphatase, β-glucuronidase 

and cathepsin (Ennis et al. 1968). Kean and co-workers have shown that 

aurothiomalate can modulate the interaction of a serine esterase enzyme, 

thrombin, in human platelets, human platelet-rich plasma and human platelet-

poor plasma (Kean et al. 1984). This observation was confirmed in vivo in a 

rabbit model (Kean et al. 1991).  

 

Aurothiomalate has been described to have an effect on various immunological 

responses. Aurothiomalate treatment was shown to significantly decrease the 

concentrations of circulating immunoglobulins (IgM and IgG) and rheumatoid 

factor (Gottlieb et al. 1975, Lorber et al. 1978) and it was also reported to affect 

cell mediated immune responses in vitro (Rosenberg and Lipsky 1979). De Wall 

and colleagues studied the effect of aurothiomalate on class II major 

histocompatibility complex (MHC) protein-peptide interactions and found out 

that aurothiomalate was capable of stripping peptides from MHC proteins and 

thus blocking the ability of antigen-presenting cells to activate T cells (De Wall 

et al. 2006). Wood and colleagues suggested that aurothiomalate’s effect was due 

to the thiol groups in its structure. They proposed that reactive aldehydes may be 

common mediators of cell death in RA joint destruction and that thiol groups act 

to reduce this aldehyde load (Wood et al. 2008). 
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Aurothiomalate has been shown to inhibit PGE2 production in peritoneal 

macrophages (Yamashita et al. 2003), rat astrocytes (Pistritto et al. 1999), human 

peripheral blood mononuclear cells (Ohta et al. 1986) and fibroblast-like 

synoviocytes (Stuhlmeier 2007). Stuhlmeier showed that aurothiomalate could 

block the release of PGE2 and prevent the activation of NFκB leading to the 

inhibition of IL-1β-induced hyaluronan accumulation (Stuhlmeier 2007). 

Aurothiomalate did not seem to inhibit PGE2 production in human 

polymorphonuclear leucocytes (Parente et al. 1986, Moilanen et al. 1988).  

 

In addition to PGE2 production, aurothiomalate seems to inhibit the synthesis of 

some other pro-inflammatory factors. It has been reported to suppress IL-8 

production in endothelial cells, peripheral blood mononuclear cells (Seitz et al. 

1992) and in rheumatoid synoviocytes (Loetscher et al. 1994) as well as to 

inhibit IL-12 production and IL-2 receptor expression in T cells (Sfikakis et al. 

1993). Seitz et al. have described inhibition of IL-1β production and caspase-1 

activity in THP-1 monocytes (Seitz et al. 2003). Aurothiomalate has also been 

shown to decrease serum IL-6 levels in RA patients (Lacki et al. 1995). In 

chondrocytes and in human OA cartilage aurothiomalate has been shown to 

inhibit iNOS expression and NO production (Vuolteenaho et al. 2005). Yanni et 

al. reported that administration of aurothiomalate resulted in reduced 

accumulation of monocytes and macrophages in RA synovial membranes and 

evoked a significant inhibition of TNF-α, IL-1β and IL-6 expression in these 

cells (Yanni et al. 1994). Gold has been shown to accumulate in endothelial cells 

and macrophages, and this may explain its direct toxicity to some organs 

(Nickels et al. 1983). Interestingly, Palosuo and co-workers showed that 

aurothiomalate therapy may facilitate the release of nephritis-associated 

ubiquitous tissue antigen into the circulation and that may lead to the 

manifestation of autoimmunity (Palosuo et al. 1978). Despite these findings, 

virtually nothing is known about the molecular effects of aurothiomalate on 

chondrocytes although it has been shown to retard cartilage degradation 

(Luukkainen et al. 1977a, Sander et al. 1999, Lehman et al. 2005).  
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4.3 Aurothiomalate in clinical studies 

In the first clinical trials of gold compounds in the treatment of RA in 1929, 

Forestier treated 16 patients with gold thiopropanol sodium sulphonate given 

once a week by intramuscular injection. Five patients had an excellent response, 

five patients were much improved and two had a minimal response. For four 

other patients, the data about the clinical response is lacking. In 1930 Forestier 

continued with 33 RA patients and confirmed the results of the first study. (Kean 

et al. 1985) In 1934, Forestier presented the results of 50 RA patients treated 

with gold compounds, recording a 70 to 80 % success rate. He claimed that 50 % 

of patients treated early in the disease state were permanently recovered 

compared to only 25 % of patients who had had RA for two or more years. 

(Forestier 1934) In 1935, Forestier published results of 550 RA patients treated 

with gold compounds and confirmed earlier results (Forestier 1935). After that, 

uncontrolled studies of treatment of RA with gold compounds showed that 50-80 

% of patients treated with gold compounds seemed to benefit from the treatment; 

meanwhile the adverse effects that occurred could be serious or even fatal 

(Snyder et al. 1939, Rawls et al. 1944). 

 

In 1945, Fraser and colleagues published a double-blind controlled trial of 

aurothiomalate (this was the first, double-blind controlled trial of any anti-

rheumatic drug) that confirmed Forestier’s original findings and showed an 

efficacy rate of 82 % in aurothiomalate-treated patients compared to 45 % in the 

control patients (receiving inactive control compound) (Fraser 1945). In 1957 the 

Empire Rheumatism Council executed a multi-centre trial in 24 centers through 

the United Kingdom. In this study of 99 aurothiomalate-treated patients 

(receiving 50 mg aurothiomalate weekly for 20 weeks) and one hundred control 

patients (receiving 0.5 µg aurothiomalate weekly for the same time) it was 

clearly demonstrated that in most patients receiving the higher dose of 

aurothiomalate there was a progressive improvement in multiple variables, like 

the number of inflamed joints, grip strength and the erythrocyte sedimentation 

rate. (The Research sub-committee of the Empire Rheumatism Council 1960, 

The Research sub-committee of the Empire Rheumatism Council 1961) In 1973, 

the American Rheumatism Association confirmed these results in another 
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double-blind multi-centre trial with 68 patients with RA (36 of them receiving 50 

mg aurothiomalate weekly for six months; 32 of them receiving sterile water) 

(Cooperating clinics committee of the American Rheumatism Association 1973).  

 

Sigler and co-workers reported the results of a 2 year double-blind study of 13 

RA patients receiving aurothiomalate compared to 14 RA patients receiving 

placebo. A significant improvement was reported in the aurothiomalate group. 

One notable facet of this study is the radiological evidence of arrest of bone and 

cartilage destruction and that the mean progression rate was significantly slowed 

in the aurothiomalate-treated group. (Sigler et al. 1974) The favourable effects of 

aurothiomalate on bone and cartilage erosions were confirmed in a much larger 

but uncontrolled study in 1977 (Luukkainen et al. 1977a). Luukkainen and 

colleagues reported also that the effects of aurothiomalate after 5 to 6 years were 

better in patients whose total aurothiomalate dosage was high (nearly 2 g) than in 

patients who had received a lower total dose since the treatment was 

discontinued because of adverse effects. They reported also that the earlier the 

treatment was initiated, the better was the result. (Luukkainen et al. 1977b)  

 

Four trials and 415 patients were included in a Cochrane review about injectable 

gold for rheumatoid arthritis. In these studies, aurothiomalate was found to be 

significantly beneficial when compared to placebo. The number of swollen 

joints, erythrocyte sedimentation rate, and physicians’ and patients’ global 

assessments were all better in aurothiomalate treated subjects than in the placebo 

group. (Clark et al. 2000) Recently Lehman and colleagues published a 48-week, 

randomized, double-blind, placebo-controlled multi-centre study of combination 

methotrexate and aurothiomalate, and showed that in patients with a suboptimal 

response to methotrexate, addition of weekly aurothiomalate caused a significant 

clinical improvement (Lehman et al. 2005).  

 

Based on the clinical studies presented above, aurothiomalate has been shown to 

effectively control RA symptoms and disease activity, and it has proved to be 

both anti-inflammatory and anti-erosive. Interestingly, when compared with 

biologic agents, aurothiomalate did not perform significantly worse in clinical 
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trials (Rau 2005). Although its efficacy is not in question, its clinical use has 

declined because of adverse effects and because of the recent rise in the use of 

biological DMARDs. However, biological therapies for RA are expensive and of 

little benefit in about 30% of cases, so that the pressing need for small molecule 

RA therapies remains. Some investigators have argued that the clinical value of 

gold compounds is due for reappraisal (Whitehouse 2008). At the same time, a 

deeper understanding of the therapeutic actions of aurothiomalate may lead to 

the identification of targets for new drugs for inflammatory joint diseases. 

Despite the long clinical history in the treatment of RA, a detailed knowledge of 

the molecular mechanism of action of aurothiomalate is still lacking. 
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Aims of the study 

Enzyme COX-2 is highly expressed in RA and OA synovia and cartilage and 

produces high amounts of proinflammatory prostaglandins in the joint. MAP 

kinases are important signaling pathways mediating inflammatory signals to 

intracellular target proteins. Inhibitors of p38 and JNK MAPKs are under 

development for use in the treatment of arthritis and they have shown efficacy in 

experimentally induced arthritis and joint pain.  

 

The aim of the present study was to investigate the role of the three MAP kinase 

pathways in the regulation of COX-2 expression and PGE2 production in 

chondrocyte and macrophage cell lines and in intact cartilage as potential targets 

for drug development. Another major aim was to investigate the effects of 

DMARDs on COX-2 expression and further to study the mechanism of action of 

aurothiomalate in more detail. 

 

The detailed aims were: 

 

1. to investigate the effects of MAPK inhibitors on COX-2 expression and PGE2 

production in chondrocytes and macrophages (I, II) 

 

2. to investigate the effects of DMARDs on COX-2 expression and PGE2 

production in chondrocytes and in intact human cartilage. And further, to 

investigate the effect of aurothiomalate on MMP-3 and IL-6 expression (III, IV) 

 

3. to test the hypothesis that aurothiomalate down-regulates COX-2, MMP-3 and 

IL-6 expression by increasing MKP-1 expression and decreasing p38 MAPK 

phosphorylation in chondrocytes and cartilage by using MKP-1 siRNA and 

MKP-1-/- mice (IV) 
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Materials and methods 

1 Reagents 

1.1 Antibodies 

The reagents used in this study were obtained as follows: goat polyclonal mouse 

and human anti-COX-2, rabbit polyclonal anti-c-Jun, anti-JNK1, anti-MKP-1, 

and anti-actin, donkey anti-goat IgG and goat anti-rabbit IgG antibodies (Santa 

Cruz Biotechnology Inc., Santa Cruz, CA, USA), rabbit polyclonal anti-

phospho-JNK (Thr183/Tyr185), anti-phospho-Erk1/2 (Thr202/Tyr204), anti-

Erk1/2, anti-phospho-p38 (Thr180/Tyr182), anti-p38 and anti-phospho-c-Jun 

(Ser63) antibodies (Cell Signaling Technology Inc., Beverly, MA, USA).  

1.2 Chemicals 

PD98059 (2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one, Erk1/2 

inhibitor), SB203580 (4-(4fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-

pyridyl)-1H-imidazol, p38 inhibitor), SB202474 (4-ethyl-2-(4-methoxyphenyl)-

5-(4-hydroxyphenyl)-5-(4pyridyl)-imidazole, inactive control compound for p38 

inhibitor), SP600125 (anthra(1,9-cd)pyrazol-6(2H)-one, JNK inhibitor), N1-

methyl-substituted pyrazolanthrone (N1-methyl-1,9-pyrazolanthrone, inactive 

control compound for JNK inhibitor) and cyclosporin A were obtained from 

Calbiochem (San Diego, CA, USA). Dexamethasone and methotrexate were 

kindly provided by Orion Corporation. (Espoo, Finland). Human recombinant 

IL-1β was purchased from R&D Systems Inc. (Minneapolis, MA, USA). All 

other reagents were obtained from Sigma (Sigma Chemical Co., St Louis, MO, 

USA). Pharmacological compounds used in this study are presented in Table 3. 
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Table 3. Pharmacological compounds used in the present study. 

      
Compound 
      
 
A771726   Active metabolite of leflunomide 
Actinomycin D  RNA polymerase II inhibitor 
Alsterpaullone  CDK2 inhibitor 
Aurothiomalate  DMARD 
Cyclophosphamide  JNK activator and an inhibitor of  

     protein synthesis 
Cyclosporin A  DMARD 
Hydroxychloroquine  DMARD 
Indirubin-3’-monoxime CDK2 inhibitor 
Leflunomide  DMARD 
Methotrxate  DMARD 
N1-methyl substituted  Negative control compound for  
     pyrazolanthrone       SP600125 
PD98059   MKK 1/2 inhibitor, inhibits ERK1/2  
        activation 
D-Penicillamine  DMARD 
SB202474 Negative control compound for 

     SB203580 
SB203580  p38 inhibitor 
Sodium orthovanadate  Tyrosine phosphatase inhibitor 
SP600125  JNK inhibitor 
Sulfasalazine  DMARD 

2 Tissue and cell cultures  

J774A.1 murine macrophages (American Type Culture Collection, Rockville, 

MD, USA), immortalized human T/C28a2 chondrocytes (Goldring et al. 1994) 

(kindly provided by Prof. Mary B. Goldring, Harvard Institutes of Medicine, 

Boston, MA, USA) and immortalized murine H4 chondrocytes (van Beuningen 

et al. 2002) (kindly provided by Dr Hank van Beuningen and Prof. Peter M. van 

der Kraan, University Medical Center Nijmegen, Nijmegen, The Netherlands) 

were grown at 37°C in 5% CO2 atmosphere, in Dulbecco’s modified Eagle’s 

medium with glutamax-I (Cambrex Bioproducts Europe, Verviers, Belgium) 

(J774A.1 cells) and in Dulbecco’s modified Eagle’s medium (Cambrex 

Bioproducts Europe, Verviers, Belgium) and Ham’s F-12 medium (Gibco, 
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Paisley, Scotland) (1:1, v/v) (T/C28a2 and H4 cells), containing 10% heat-

inactivated fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 

250 ng/ml amphotericin B (all from Gibco, Paisley, Scotland). Cells were seeded 

on 24-well plates for PGE2 measurements and on 24-well or six-well plates for 

Western blot and RT-PCR. Cell monolayers were grown for 48 h (H4) or 72 h 

(J774A.1 and T/C28a2) to confluence before the experiments were started and 

the compounds of interest were added in fresh culture medium. 

 

Cartilage tissue was obtained from the leftover pieces of total knee replacement 

surgery from patients with OA or RA. The study was approved by the ethics 

committee of Tampere University Hospital and the patients gave their written 

approval. Full thickness pieces of articular cartilage from femoral condyles, 

tibial plateaus and patellar surfaces were removed aseptically from subchondral 

bone with a scalpel and cut into small pieces. The cartilage samples were 

incubated at 37°C in 5% CO2 atmosphere in Dulbecco’s modified Eagle’s 

medium containing 10% heat-inactivated fetal bovine serum, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 250 ng/ml amphotericin B (all from 

Gibco, Paisley, Scotland, U.K.). The experimental procedure was done within a 

few hours after the operation. Cartilage samples were incubated on six-well 

plates for PGE2 and Western blot measurements for 24-48 h. 

 

Inbred C57BL/6 MKP-1-/- and wild type mice were a kind gift from Dr. Andrew 

Clark (Kennedy Institute of Rheumatology, London) and were originally 

generated by the R. Bravo laboratory at Bristol-Myers Squibb Pharmaceutical 

Research Institute (Dorfman et al. 1996). The study was approved by the Animal 

Care and Use Committee of the University of Tampere and the respective 

provincial committee for animal experiments. Female mice aged 10-12 weeks 

were used in the study. The mice were anesthesized by intraperitoneal injection 

of 0.05 mg/100 g body weight of medetomine (Domitor® 1 mg/ml, Orion Oyj, 

Espoo, Finland) and 7.5 mg/100 g body weight of ketamine (Ketalar® 10 mg/ml, 

Pfizer Oy Animal Health, Helsinki, Finland). Subsequently, the mice were 

euthanized by decapitation. Cartilage tissue was taken from the knees of mice 

hind legs. Full thickness pieces of articular cartilage from femoral condyles, 
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tibial plateaus and patellar surfaces were removed aseptically from subchondral 

bone with a scalpel. The cartilage samples were incubated at 37°C in 5% CO2 

atmosphere in Dulbecco’s modified Eagle’s medium containing 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 250 ng/ml amphotericin B (all from 

Gibco, Paisley, Scotland). Cartilage samples were incubated on 24-well plates 

for PGE2, cytokine and Western blot measurements and incubated for 48 h. 

3 Western blotting 

At the indicated time points, cells were rapidly washed with ice-cold phosphate-

buffered saline (PBS) and solubilized in cold lysis buffer (10 mM Tris-HCl, 5 

mM EDTA, 50 mM NaCl, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl 

fluoride, 1 mM sodium orthovanadate, 20 µg/ml leupeptin, 50 µg/ml aprotinin, 5 

mM sodium fluoride, 2 mM sodium pyrophosphate and 10 µM n-octyl-β-D-

glucopyranoside). Cartilage samples were incubated for 24-48 h, after incubation 

deep frozen in liquid nitrogen and then crushed into powder. Powder was added 

to cold lysis buffer and samples for Western blot analysis made as described 

below.  

 

Following incubation for 20 min on ice, lysates were centrifuged, and 

supernatants were mixed in a ratio of 1:4 with SDS loading buffer (62.5 mM 

Tris-HCl, pH 6.8, 10% glycerol, 2% sodium dodecyl sulphate (SDS), 0,025% 

bromophenol blue, and 5% β-mercaptoethanol) and stored at -20°C until 

analyzed. The protein concentration of the samples was measured by the 

Coomassie blue method (Bradford 1976).  

 

The samples were boiled for 10 min prior to Western blot analysis, equal 

aliquots of protein (20 µg) were loaded on a 10 % (COX-2) or 12 % (JNK, p38, 

Erk1/2, c-Jun, pJNK, pp38, pErk1/2, MKP-1) SDS-polyacrylamide 

electrophoresis gel and electrophoresed for 1 h at 120 V in a buffer containing 95 

mM Tris-HCl, 960 mM glycine, and 0,5% SDS. After electrophoresis, the 

proteins were transferred to Hybond enhanced chemiluminescence nitrocellulose 
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membrane (Amersham, Buckinghamshire, U.K.) with semidry blotter at 2.5 

mA/cm2 for 60 min. After transfer, the membrane was blocked in TBS/T (20 

mM Tris-base pH 7.6, 150 mM NaCl, 0.1% Tween-20) containing 5% nonfat 

milk for 1 h at room temperature and incubated overnight at 4º C with primary 

antibody in TBS/T containing 5% nonfat milk. Thereafter the membrane was 

washed four times with TBS/T for 5 min, incubated with secondary antibody 

coupled to horseradish peroxidase in the blocking solution for 0.5 h at room 

temperature, and washed four times with TBS/T for 5 min. Bound antibody was 

detected using SuperSignal West Pico chemiluminescent substrate (Pierce, 

Cheshire, U.K.) and FluorChem 8800 imaging system (Alpha Innotech Corp., 

San Leandro, CA, USA). The quantitation of the chemiluminescent signal was 

carried out with the use of FluorChem software version 3.1. 

4 RNA extraction 

At the indicated time points, cell monolayers were rapidly washed with ice-cold 

PBS, and cells were homogenized and purified using QIAshredderTM (QIAGEN 

Inc., Valencia, CA, USA). RNA extraction was carried out with the use of 

RNeasy® kit for isolation of total RNA (QIAGEN Inc.). 

5 Real-time PCR 

Total RNA (25 or 100 ng) was reverse-transcribed to cDNA using TaqMan® 

Reverse Transcription reagents and random hexamers (Applied Biosystems, 

Foster City, CA, USA). Parametres for the reverse-transcribe (RT) reaction were: 

incubation at 25°C for 10 min, RT at 48°C for 30 min, and RT inactivation at 

95°C for 5 min. cDNA obtained from the RT reaction (amount corresponding to 

approximately 1 ng of total RNA) was subjected to PCR using TaqMan® 

Universal PCR Master Mix and ABI PRISM® 7000 Sequence detection system 

(Applied Biosystems). The primer and probe sequences and concentrations were 

optimized according to the manufacturer’s guidelines in TaqMan Universal PCR 
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Master Mix Protocol part number 4304449 revision C. The primers and probes 

used in this study are listed in Table 4. Human β-actin was obtained from 

TaqMan Human β-actin Reagents kit (Applied Biosystems), containing VIC as 

5’-reporter dye and TAMRA as 3’-quencher. PCR reaction parameters were: 

incubation at 50ºC for 2 min, incubation at 95ºC for 10 min, and thereafter 40 

cycles of denaturation at 95ºC for 15 s and annealing and extension at 60ºC for 1 

min. Each sample was determined in duplicate. 

 
Table 4. Primer and probe sequences used in quantitative real-time PCR.. 

 
5’-CAACTCTATATTGCTGGAACATGGA-3’ 

 
forward human COX-2 primer 

(300 nM) 
5’-TGGAAGCCTGTGATACTTTCTGTACT-3’ reverse human COX-2 primer 

(300 nM) 
5’-TCCTACCACCAGCAACCCTGCCA-3’ human COX-2 probe 

(150 nM) 
5’-GCCAGGGCTGAACTTCGAA-3’ forward mouse COX-2 primer 

(300 nM) 
5’-CAATGGGCTGGAAGACATATCAA-3’ reverse mouse COX-2 primer 

(300 nM) 
5’-CTCACGAGGCCACTGATACCTATTGCATTG-3’ mouse COX-2 probe 

(150 nM) 
5’-GCATGGCCTTCCGTGTTC-3’ forward mouse GAPDH primer 

(300 nM) 
5’-GATGTCATCATACTTGGCAGGTTT-3’ reverse mouse GAPDH primer 

(300 nM) 
5’-TCGTGGATCTGACGTGCCGCC-3’ mouse GAPDH probe 

(150 nM) 
5’-TGTCCCCGGCAATGCT-3’ forward mouse HuR primer 

(300 nM) 
5’-TCACGAATCACTTTCACATTGGT-3’ reverse mouse HuR primer 

(300 nM) 
5’-CCTCATCGGCGTCTTGCCCAA-3’ mouse HuR probe 

(150 nM) 
5’-CAAGGATGCTGGAGGGAGAGT-3’ forward mouse MKP-1 primer 

(300 nM) 
5’-TGAGGTAAGCAAGGCAGATGGT-3’ reverse mouse MKP-1 primer 

(300 nM) 
5’-TTTGTTCATTGCCAGGCCGGCAT-3’ mouse MKP-1 probe 

(150 nM) 
5'-CTCAGAAAGCGGGCGTTGT-3' forward mouse TTP primer 

(300 nM) 
5'-GATTGGCTTGGCGAAGTTCA-3' reverse mouse TTP primer 

(300 nM) 
5'-CCAAGTGCCAGTTTGCTCACGGC-3' mouse TTP probe 

(200 nM) 
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A standard curve method was used to determine the relative mRNA levels as 

described in the Applied Biosystems User Bulletin number 2: A standard curve 

for each gene was created using RNA isolated from IL-1β-stimulated human 

T/C28a2 chondrocytes or LPS-stimulated J774 macrophages. Isolated RNA was 

reverse-transcribed as described and dilution series were made from the obtained 

cDNA, ranging from to 1 pg to 10 ng and were subjected to real-time PCR. The 

obtained threshold cycle values were plotted against the dilution factor to create 

a standard curve. Relative mRNA levels in test samples were then calculated 

from the standard curve. 

6 siRNA transfection to knockdown MKP-1 

H4 chondrocytes were transfected with MKP-1-specific siRNA, ON-TARGET 

SMART pool consisting of four siRNAs or negative control using Dharmafect I. 

To down-regulate MKP-1, the cells were seeded at 2.5 x 105 cells per well in 24-

well plates. Cells were incubated 24 h and then transfected with siRNA oligos 

targeted to murine MKP-1 or negative control. After 24 h, culture medium was 

changed to serum free, and after another 24 h incubations, the experiments were 

started and IL-1β and the tested compounds were added in fresh culture medium.  

Transfection efficacy was monitored with green fluorescent siRNA oligos 

(siGLO green indicator). Transfection efficacy was found to be 70-80 %. All 

oligos and transfection reagents were from Dharmacon Research (Dharmacon 

Research, Lafayette, CO, USA).  

7 Determination of cell viability 

Cell viability was tested by using colorimetric Cell Proliferation Kit II (Roche 

Diagnostics GmbH, Mannheim, Germany) that measures the cells’ ability to 

metabolise a tetrazolium salt XTT (sodium 3’-[1-(phenylaminocarbonyl)-3,4-

tetrazolium]-bis (4-methoxy-6-nitro)benzene sulfonic acid hydrate) to formazan 
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by mitochondrial dehydrogenase activity that only occur in viable cells. Cells 

were seeded on 96-well plates and incubated for 20 h at 37°C with the tested 

compounds. XTT (0.3 mg/ml) and an electron coupling reagent (N-methyl 

dibenzopyrazine methyl sulphate; 1.25 mM) were added and cells were 

incubated for another 4 h. The amount of formazan in culture medium was then 

measured spectrophotometrically. Triton-X treated cells were used as a positive 

control. 

8 PGE2 measurements 

PGE2 concentrations were determined by radioimmunoassay using reagents from 

the Institute of Isotopes (Budapest, Hungary). Cartilage tissue pieces were 

weighed and the results were expressed as ng of PGE2 / g of cartilage tissue.  

9 Enzyme-linked immunosorbent assay (ELISA) 

The concentration of human IL-6 (PeliPair® ELISA, Sanquin, Amsterdam, the 

Netherlands), murine IL-6, human MMP-3 (DuoSet® ELISA, R&D Systems 

Europe Ltd, Abindgon, U.K.) and murine MMP-3 (Quantikine® ELISA, R&D 

Systems Europe Ltd, Abindgon, U.K.) were determined by ELISA according to 

the manufacturer’s instructions.  

 

10 Statistics 

Results of cell and tissue culture experiments are expressed as the mean ± 

standard error of mean (S.E.M). When appropriate, statistical significance was 

calculated by analyses of variance followed by Dunnett multiple comparisons 

test. Differences were considered significant when P < 0.05. 
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Summary of the results 

1. IL-1β and LPS activate MAPKs and induce COX-2 

expression and PGE2 production in chondrocytes, 

cartilage and macrophages (I-IV) 

Resting cells (human T/C28a2 chondrocytes, murine J774 macrophages and 

murine H4 chondrocytes) did not contain detectable levels of phophorylated 

MAP kinases indicating low levels of active MAPKs. Stimulation with 

proinflammatory cytokine IL-1β (I, IV) or bacterial endotoxin LPS (II) rapidly 

enhanced phosphorylation of all the three studied MAPKs (p38, JNK and 

Erk1/2). In T/C28a2 chondrocytes p38 activation peaked at 20 min and in H4 

chondrocytes at 30 min after IL-1β. JNK peaked at 1 h after IL-1β in T/C28a2 

chondrocytes, at 30 min after IL-1β in H4 chondrocytes and at 30 min after LPS 

in J774 macrophages. Erk1/2 peaked at 20 min after IL-1β in T/C28a2 

chondrocytes. The levels of phosphorylated MAPKs also reduced rapidly after 

the peak, and in most cases had returned close to the pre-stimulation levels 

within 2 h after the stimulus. (Figure 9) 

 
Figure 9. The effect of IL-1β on JNK, p38, 

Time (min)and Erk1/2 MAPK phosphorylation in human 
T/C28a2 chondrocytes. The chondrocytes 
were stimulated with IL-1β (100 pg/ml). 
Incubations were terminated at  
the indicated time points. Two parallel 
immunoblots were run from same cell  
lysates using antibodies against  
phosphorylated JNK (pJNK), p38 
(pp38), and Erk1/2 (pErk1/2) and  
against total JNK, p38, and Erk1/2.  
(Reprinted with permission from: Nieminen et al. 2005, Mediators Inflamm 2005:249-
255 © Hindawi Publishing Corporation) 
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In unstimulated cells and cartilage, COX-2 mRNA and protein expression and 

PGE2 production remained at low levels. IL-1β (in chondrocytes and cartilage) 

and LPS (in macrophages) stimulated COX-2 expression and PGE2 production in 

a dose- and time-dependent manner. The peak in COX-2 mRNA levels was 

reached at 4 h (T/C28a2 and H4 chondrocytes) and at 6 h (J774 macrophages) 

after stimulus. In H4 chondrocytes, the COX-2 mRNA levels rapidly decreased 

after 4 h and reached basal level at 8 h whereas in T/C28a2 chondrocytes (Figure 

10A) and in J774 macrophages COX-2 mRNA levels slowly decreased to about 

50 % of the peak level and remained elevated during the 48 h follow-up. The 

COX-2 protein expression was at its maximum at 8 h after IL-1β in T/C28a2 

chondrocytes (Figure 10B) and at 24 h after IL-1β or LPS in H4 chondrocytes 

and in J774 macrophages, respectively. PGE2 production reached its maximum 

in all cells used at 24 h after addition of stimulus (Figure 10C). In cartilage 

cultures, COX-2 expression and PGE2 levels in the culture medium reached 

maximum at 48 h after IL-1β. Treatment with a COX inhibitor (ibuprofen 10 

µM) completely inhibited IL-1β or LPS –induced PGE2 production.  
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Figure 10. The effect of IL-1β on COX-2 mRNA and protein expression and PGE2 
production in human T/C28a2 chondrocytes. (A) Cells were stimulated with IL-1β (100 
pg/ml). Incubations were terminated at time points indicated and extracted total RNA 
was subjected to real time RT-PCR. COX-2 mRNA levels were normalized against 
GAPDH. Values are mean ± SEM, n=3. (B) Cells were stimulated with IL-1β (100 
pg/ml). Incubations were terminated at indicated time points and COX-2 detected by 
Western blot. (C) Cells were stimulated with IL-1β (100 pg/ml). Culture medium was 
collected at the indicated time points and PGE2 concentrations were measured by RIA. 
Values are mean ± SEM, n=6. (Reprinted with permission from: Nieminen et al. 2005, 
Mediators Inflamm 2005:249-255 © Hindawi Publishing Corporation, modified) 
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2. MAPK pathways regulate COX-2 expression and 

PGE2 production (I, II, IV) 

SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and PD98059 (inhibitor of 

ERK1/2 activation) were used to inhibit the three better characterized MAP 

kinase pathways.  

 

First we investigated the effects of MAPK inhibitors on COX-2 expression and 

subsequent PGE2 production in human T/C28a2 chondrocytes and found out that 

all used inhibitors (SP600125, SB203580 and PD98059) inhibited COX-2 

expression and PGE2 production in a dose-dependent manner (Figure 11).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. The effects of MAP kinase inhibitors SP600125, SB203580 and PD98059 on 
COX-2 protein expression and PGE2 production in IL-1β stimulated human T/C28a2 
chondrocytes. Human chondrocytes were incubated with IL-1β (100 pg/ml) and 
increasing concentrations of SP600125 (JNK inhibitor; A), SB203580 (p38 inhibitor; B) 
and PD98059 (Erk1/2 inhibitor; C). After 24 h, incubations were terminated and COX-2 
protein and PGE2 concentration were measured by Western blot and 
radioimmunoassay, respectively. Values are mean ± SEM, n=4, ** indicates P<0.01, 
* indicates P<0.05 as compared with cells treated with IL-1β alone. (Reprinted with 
permission from: Nieminen et al. 2005, Mediators Inflamm 2005:249-255 © Hindawi 
Publishing Corporation, modified) 
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The effect of MAPK inhibitors on COX-2 mRNA was tested at two time points, 

2 and 8 h after addition of IL-1β. In this experimental setting, the effect of JNK 

inhibitor differed from those of the p38 and ERK1/2 inhibitors. SB203580 and 

PD98059 inhibited COX-2 mRNA when measured 2 h after addition of IL-1β 

and the inhibitory effect was stronger at the 8 h time point whereas SP600125 

inhibited COX-2 mRNA expression only at the 8 h time point (Figure 12).  

 

                  
Figure 12.  The effects of SP600125, SB203580 and PD98059 on COX-2mRNA levels in 
IL-1β stimulated human T/C28a2 chondrocytes. Human chondrocytes were incubated 
with IL-1β (100 pg/ml) and with or without SP600125, SB203580 and PD98059. 
Incubations were terminated at the indicated time points, and the extracted total RNA 
was subjected to real-time RT-PCR. COX-2 mRNA levels were normalized against  
β-actin mRNA. Values are mean ± SEM, n=6, ** indicates P<0.01 as compared to cells 
treated with IL-1β only. (Reprinted with permission from: Nieminen et al. 2005, 
Mediators Inflamm 2005:249-255 © Hindawi Publishing Corporation) 
 

SP600125 inhibited LPS-induced COX-2 expression and PGE2 production also 

in macrophages. In agreement with the finding in T/C28a2 chondrocytes, JNK 

inhibitor did not inhibit COX-2 mRNA expression at the early time point (3 h) 

whereas at the later time point (24 h) the inhibition was significant. These results 

suggested that SP600125 did not affect the early transcriptional events involved 

in COX-2 expression but may rather regulate COX-2 mRNA stability. This 

hypothesis was investigated in mRNA degradation assay with actinomycin D. 

Cells were treated with LPS or a combination of LPS and SP600125 for 6 h (the 

peak level of COX-2 mRNA in these cells), and thereafter an inhibitor of 

transcription, actinomycin D, was added to the culture medium. Total RNA was 

extracted before, and 2, 4, and 6 h after addition of actinomycin D. In the 
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absence of actinomycin D, COX-2 mRNA levels declined faster in cells treated 

with a combination of SP600125 and LPS than in cells treated with LPS alone. 

However, actinomycin D inhibited COX-2 mRNA degradation and SP600125 

had no effect in the presence of actinomycin D. (Figure 13A) In murine H4 

chondrocytes, the p38 inhibitor (SB203580) destabilized IL-1β –induced COX-2 

mRNA as measured by the actinomycin D assay (Figure 13B). 

 
 
 

 
 

Figure 13. The effects of SP600125 and SB203580 on COX-2mRNA decay. (A) J774 
macrophages were incubated with LPS (10 ng/ml) or with a combination of LPS and 
SP600125 (10 µM). After 6 h, an inhibitor of transcription actinomycin D (1 µg/ml) or a 
solvent control was added into the cell culture. (B) H4 chondrocytes were incubated 
with IL-1β (100 pg/ml) or with a combination of IL-1β and SB230580 (1 µM). After 4 h 
actinomycin D (1 µg/ml) was added into the cell culture. 
Incubations were terminated at the indicated time points and the extracted total RNA 
was subjected to RT-PCR. COX-2 mRNA levels were normalized against GAPDH 
mRNA. Values are mean ± SEM, n=3. (Reprinted with permission from: Nieminen et al. 
2006, Int Immunopharmacol 6:987-996 © Elsevier Ltd., modified) 
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3. Aurothiomalate inhibits COX-2 expression and PGE2 

production, and enhances degradation of COX-2 mRNA 

(III,IV) 

The effects of six DMARDs (aurothiomalate, cyclosporin A, 

hydroxychloroquine, leflunomide, its metabolite A771726, methotrexate and 

sulfasalazine) were studied on COX-2 expression in H4 chondrocytes. 

Aurothiomalate inhibited COX-2 expression by 54 % whereas other tested 

DMARDs had a minor or no effect (Table 5). In the subsequent studies, 

aurothiomalate’s effects and mechanisms of action were investigated in more 

detail. 

 
Table 5. Effects of disease modifying anti-rheumatic drugs on IL-1β -induced COX-2 
expression in H4 chondrocytes. 

 

Compound 

 

Concentration 

(µM) 

 

COX-2 protein  

(% of IL-1β induced) 

 

IL-1β 

  

100 

+ Aurothiomalate 10 46.1 ± 6.8 ** 

+ Methotrexate 10 76.8 ± 2.0 

+ A771726 10 78.9 ± 9.3 

+ Sulfasalazine 10 87.7 ± 10.7 

+ Cyclosporin A 10 89.7 ± 17.6 

+ Leflunomide 10 95.2 ± 1.4 

+ Hydroxychloroquine 10 100.1 ± 11.6 

Cells were incubated for 24 h with the tested DMARD (10 µM) and IL-1β (100 pg/ml). 
COX-2 protein was measured by Western blot. Results are expressed as mean ± SEM, 
n=3. ** indicates P<0.01 as compared with cells treated with IL-1β alone. (Reprinted 
with permission from: Nieminen et al. 2008, Eur J Pharmacol 587:309-316 © Elsevier 
Ltd.) 

 
Aurothiomalate reduced IL-1β -induced COX-2 protein expression and PGE2 

production in a concentration dependent manner in H4 chondrocytes (Figure 

14A,B). Gold was found to be the effective component in aurothiomalate’s 
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ability to inhibit COX-2 expression and PGE2 production; thiomalic acid itself 

did not inhibit COX-2 expression whereas the inhibitory effect of the 

combination of gold chloride and thiomalic acid was similar to that of gold 

chloride alone which was close to that of aurothiomalate (Figure 14C,D). 

 

 

Figure 14. The effect of aurothiomalate on IL-1β –induced COX-2 protein expression 
and PGE2 production in H4 chondrocytes. (A,B) Chondrocytes were incubated with 
 IL-1β (100 pg/ml) and with increasing concentrations of aurothiomalate. After 24 h, 
incubations were terminated and COX-2 protein was measured by Western blot (A) and 
PGE2 concentrations in the culture medium were measured by RIA (B). (C,D) 
Chondrocytes were stimulated with IL-1β (100 pg/ml) and treated with aurothiomalate 
(25 µM), gold chloride (25 µM), thiomalic acid (25 µM) or a combination of gold 
chloride (25 µM) and thiomalic acid (25 µM). After 24 h, incubations were terminated 
and COX-2 protein was measured by Western blot (C) and PGE2 concentrations in the 
culture medium were measured by RIA (D). Values are mean ± SEM, n=3-4.  
** indicates P<0.01 as compared with cells treated with IL-1β alone. (Reprinted with 
permission from: Nieminen et al. 2008, Eur J Pharmacol 587:309-316 © Elsevier Ltd.) 

With respect to the mRNA levels, aurothiomalate had no effect on COX-2 

mRNA expression when measured 3 h after addition of IL-1β, but had a marked 

inhibitory effect when measured 6 h after IL-1β. This data suggested that 
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aurothiomalate does not probably regulate COX-2 transcription, but instead may 

rather regulate COX-2 mRNA stability. The hypothesis was tested in the COX-2 

mRNA degradation assay, in which COX-2 mRNA levels decreased faster in 

cells treated with IL-1β in combination with aurothiomalate than in cells treated 

with IL-1β alone in conditions where transcription was inhibited by actinomycin 

D. Interestingly, the results with aurothiomalate were in line with these obtained 

with the p38 MAPK inhibitor SB203580. COX-2 mRNA half-life was about 3 h 

in cells treated with IL-1β only, it was reduced to less than 1.5 h in cells treated 

with a combination of IL-1β and aurothiomalate and it was about 2 h in cells 

treated with a combination of IL-1β and SB203580. (Figure 15) 

 

                         
 
Figure 15. The effect of aurothiomalate and SB203580 on COX-2 mRNA decay. H4 
chondrocytes were incubated with IL-1β (100 pg/ml) or with a combination of IL-1β 
and aurothiomalate (25 µM) or a combination of IL-1β and SB203580 (1 µM). After 4 h 
actinomycin D (1 µg/ml) was added into the cell culture. 
Incubations were terminated at the indicated time points and the extracted total RNA 
was subjected to RT-PCR. COX-2 mRNA levels were normalized against GAPDH 
mRNA. Values are mean ± SEM, n=3.(Reprinted with permission from: Nieminen et al. 
2008, Eur J Pharmacol 587:309-316 © Elsevier Ltd., modified) 
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4. Aurothiomalate enhances MKP-1 expression and 

reduces p38 MAPK phosphorylation (IV) 

In HeLa cells, dexamethasone has been shown to destabilize COX-2 mRNA by 

decreasing p38 activity and increasing MKP-1 expression (Lasa et al. 2000, Lasa 

et al. 2001, Lasa et al. 2002). Aurothiomalate and the p38 inhibitor had similar 

effects on IL-1β -induced COX-2 expression and both had a destabilizing effect 

on COX-2 mRNA. On the basis of these results, we hypothetized that the effects 

of p38 and aurothiomalate may be somehow coupled. Interestingly, 

aurothiomalate reduced levels of phosphorylated p38 MAPK in IL-1β –treated 

cells (Figure 16A). Because that could be due to enhanced dephosphorylation of 

p38, we tested the effect of aurothiomalate on MKP-1 expression. The results 

showed that aurothiomalate enhanced MKP-1 expression by about 3-fold 

compared to cells treated with IL-1β alone (Figure 16B). Gold was found to be 

the effective component in aurothiomalate’s ability to induce MKP-1 expression; 

thiomalic acid itself did not enhance MKP-1 expression whereas the effect of the 

combination of gold chloride and thiomalic acid was similar to that of gold 

chloride alone which was comparable to that of aurothiomalate (Figure 16C). 
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Figure 16. The effect of aurothiomalate on p38 MAPK phosphorylation and MKP-1 
expression. (A) H4 chondrocytes were incubated with IL-1β (100 pg/ml) or with a 
combination of IL-1β (100 pg/ml) and aurothiomalate (25 µM). After 1 h, incubations 
were terminated and phosphorylated (pp38) and total p38 were measured by Western 
blot. (B) H4 chondrocytes were incubated with IL-1β (100 pg/ml) or with a combination 
of IL-1β (100 pg/ml) and aurothiomalate (25 µM). After 1.5 h, the incubations were 
terminated and MKP-1 protein was measured by Western blot. (C) Chondrocytes were 
stimulated with IL-1β (100 pg/ml) and treated with aurothiomalate (25 µM), gold 
chloride (25 µM), thiomalic acid (25 µM) or a combination of gold chloride (25 µM) 
and thiomalic acid (25 µM). After 1.5 h, incubations were terminated and MKP-1 
protein was measured by Western blot.  
Values are mean ± SEM, n=4. **indicates P<0.01 as compared to cells treated with 
IL-1β alone. 
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5. MKP-1 mediates the effects of aurothiomalate on 

COX-2, MMP-3 and IL-6 expression (IV) 

Based on the results described above, we hypothesized that MKP-1 mediates the 

effects of aurothiomalate on COX-2 expression and PGE2 production. The 

involvement of MKP-1 in the mechanism of action of aurothiomalate was first 

investigated by using sodium orthovanadate (an inhibitor of tyrosine 

phosphatase) to inhibit MKP-1 activity. Sodium orthovanadate (10 µM) itself 

slightly increased IL-1β -induced COX-2 expression. In the presence of sodium 

orthovanadate, aurothiomalate did not have any statistically significant effect on 

COX-2 expression in H4 chondrocytes whereas in the absence of sodium 

orthovanadate, aurothiomalate inhibited COX-2 expression by 55 % (Figure 

17A).  

 

To further investigate the role of MKP-1 on aurothiomalate’s effect on COX-2 

expression, the experiment was repeated in H4 chondrocytes which were 

transiently transfected with MKP-1 -specific siRNA to down-regulate MKP-1 

expression. As a control for the MKP-1 siRNA, a sequence that was not 

complementary to any known mRNAs was transfected (negative control, 

siNEG). MKP-1 expression was clearly enhanced in response to IL-1β and IL-1β 

plus aurothiomalate in cells transfected with siNEG but to a much lesser extent if 

at all, in cells transfected with MKP-1 siRNA. Accordingly, aurothiomalate 

reduced p38 phosphorylation in siNEG –treated cells but not in MKP-1 siRNA–

treated cells (Figure 17B).  

 

In cells transfected with MKP-1 siRNA and treated with IL-1β and 

aurothiomalate, aurothiomalate’s inhibitory effect on COX-2 expression was 

diminished from 50 % (p<0.01) in siNEG cells to 20 % (n.s.) in MKP-1 siRNA 

cells at the protein level and from 40 % (p<0.01) in siNEG cells to 10 % (n.s.) in 

MKP-1 siRNA cells at the mRNA level. In cells transfected with siNEG, the 

inhibitory effect of aurothiomalate was similar to that in non-transfected (WT) 

cells both at the protein and mRNA levels (Figure 17C,D). 
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Figure 17. The effect of aurothiomalate on COX-2 expression in the presence of 
tyrosine phosphatase inhibitor or when MKP-1 was down-regulated by siRNA. (A) H4 
chondrocytes were stimulated with IL-1β (100 pg/ml) and treated with aurothiomalate 
(25 µM), sodium orthovanadate (10 µM) or with a combination of aurothiomalate (25 
µM) and sodium orthovanadate (10 µM). After 24 h, incubations were terminated and 
COX-2 protein were measured by Western blot.(B,C) H4 chondrocytes were transiently 
transfected with MKP-1 –specific siRNA and were incubated with IL-1β (100 pg/ml) or 
with a combination of IL-1β and aurothiomalate (25 µM). Incubations were terminated 
at indicated timepoints (MKP-1: 1.5 h; p38, pp38: 1 h; COX-2: 24 h) and proteins were 
measured by Western blot. (D) H4 chondrocytes were transiently transfected with  
MKP-1 –specific siRNA and were incubated with IL-1β (100 pg/ml) or with a 
combination of IL-1β and aurothiomalate (25 µM). After 6 h, incubations were 
terminated and the extracted total RNA was subjected to RT-PCR. COX-2 mRNA levels 
were normalized against GAPDH. (A-D) Values are mean ± SEM, n=4-6. ** indicates 
P<0.01 as compared with cells treated with IL-1β alone.  
(C,D) siNEG: cells transfected with negative control (sequence that is not 
complementary to any known genes); MKP-1 siRNA: cells transfected with MKP-1 
siRNA; WT: wild type cells, i.e. non-transfected cells. 
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In the further experiments, we used cartilage from wild type and MKP-1-/- mice. 

Interestingly, in mice cartilage samples, aurothiomalate inhibited IL-1β –induced 

COX-2 expression by 83 % in cartilage from wild type mice whereas in samples 

from MKP-1-/- mice, aurothiomalate had no inhibitory effect on COX-2 

expression (Figure 18). 

 

 

 

 
 

Figure 18. The effects of IL-1β and aurothiomalate on COX-2 expression in articular 
cartilage from MKP-1-/- mice. Cartilage samples from wild type (WT) and MKP-1-/- 
(KO) mice were incubated with IL-1β (100 pg/ml) or with a combination of IL-1β (100 
pg/ml) and aurothiomalate (25 µM). After 48 h, incubations were terminated and  
COX-2 protein was measured by Western blot.  
Values are mean ± SEM, n=3. ** indicates P<0.01 as compared with cells treated with 
IL-1β alone. 
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In human RA cartilage, aurothiomalate inhibited IL-1β –induced COX-2 protein 

expression by 58 % (Figure 19A). It was noted that also MMP-3 and IL-6 

production was significantly inhibited by aurothiomalate in intact human (Figure 

19B,C) and murine (Figure 20C,D) cartilage and in chondrocytes (Figure 

20A,B). 

 

 
 
 
Figure 19. The effect of aurothiomalate on IL-1β –induced COX-2 expression and 
MMP-3 and IL-6 production in human cartilage. (A) Human cartilage samples were 
incubated with IL-1β (10 ng/ml) or with a combination of IL-1β and aurothiomalate (25 
µM). After 24 h, incubations were terminated and COX-2 protein was measured by 
Western blot. (B,C) Human cartilage samples were incubated with IL-1β (10 ng/ml) or 
with a combination of IL-1β and aurothiomalate (25 µM). After 24 h, incubations were 
terminated and MMP-3 (B) and IL-6 (C) concentrations were measured in the culture 
medium by ELISA. 
Values are mean ± SEM, n=5. ** indicates P<0.05 as compared with cells treated with 
IL-1β alone. 
 

Interestingly, not only aurothiomalate’s effect on COX-2 seems to be dependent 

on MKP-1. In the presence of MKP-1 siRNA in chondrocytes or in cartilage 
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samples from MKP-1-/- mice aurothiomalate did not have any effect on MMP-3 

or IL-6 production (Figure 20). 

 

 
 
Figure 20. The effect of aurothiomalate on IL-1β –induced MMP-3 and IL-6 production 
in chondrocytes in which MKP-1 was down-regulated with siRNA, and in cartilage from 
MKP-1-/- mice. (A,B) Chondrocytes were transfected with MKP-1 –specific siRNA and 
were incubated with IL-1β (100 pg/ml) or with a combination of IL-1β and 
aurothiomalate (25 µM). After 24 h, incubations were terminated and MMP-3 (A) and 
IL-6 (B) production were measured from culture medium by ELISA. (C,D) Cartilage 
samples from MKP-1-/- (MKP-1 KO) and wild type (WT) mice were incubated with 
IL-1β (100 pg/ml) or with a combination of IL-1β and aurothiomalate (25 µM). After 48 
h, incubations were terminated and MMP-3 (C) and IL-6 (D) concentrations were 
measured in the culture medium by ELISA. ** indicates P<0.01, * indicates P<0.05 as 
compared with cells treated with IL-1β alone. 
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Discussion 

The study was carried out to investigate the role of MAPK pathways in the 

regulation of COX-2 expression in chondrocytes. Another major aim was to 

investigate the effects of DMARDs on COX-2 expression and further to study 

the mechanism of action of aurothiomalate. MAPK inhibitors were found to 

inhibit COX-2 expression and subsequent PGE2 production. Interestingly, the 

effect of aurothiomalate on COX-2 expression was similar to that seen with 

inhibitor of p38 MAPK. These results were the impetus to study the effect of 

aurothiomalate on MAPK pathways. The mechanism behind aurothiomalate’s 

inhibitory action on COX-2 expression was found to be related to its ability to 

induce MKP-1 expression and reduce p38 MAPK phosphorylation and by that 

mechanism it was able to inhibit p38 MAPK activity, COX-2 expression and 

MMP-3 and IL-6 production. 

1 Methodology 

The study was done in a methodologically progressive manner – starting from 

immortalized cell lines and chemical inhibitors and ending up with siRNA 

technology, human cartilage samples and knockout mice.  

 

The use of immortalized cell lines (in this study: human T/C28a2 chondrocytes, 

murine J774 macrophages, murine H4 chondrocytes) has both advantages and 

disadvantages. The advantages include a stable, uniform cell population that 

maintains its properties after several passages and makes the results comparable 

week after week or even from one year to the next. There are also disadvantages; 

immortalization often leads to loss of some characteristic features of primary 

cells and thus the cell lines may not always be true representatives of the primary 
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cells. With human cartilage samples (obtained from the leftover pieces of knee 

replacement surgery of OA / RA patients) the greatest advantage is to be allowed 

to study the reactions of chondrocytes within the cartilage matrix, their natural 

environment. The disadvantages of these samples include the heterogeneity 

between samples caused by different disease stage and different patient-related 

variables that may influence the results. In this study, cartilage tissue samples 

were obtained also from MKP-1 knockout and wild type mice. The MKP-1 

knockout and wild type mice were healthy and age- and sex-matched. In the 

present study, the results obtained from immortalized cell lines and human and 

mice cartilage samples were consistent and mutually confirmative. 

 

Standard molecular and cellular biology methods were used to study protein 

(Western blot) and mRNA (quantitative real-time RT PCR) expression and 

cytokine (ELISA) and PGE2 (RIA) production. In Western blot, ELISA and RIA 

the detection methodology is based on the antigen-antibody –reaction. 

Laboratory techniques for these methods were as standardized as possible (i.e. in 

Western blot, the protein concentrations of each sample were measured and the 

same amount of protein was loaded to each well, and actin was used as an 

additional loading control of the protein content). All used antibodies were 

commercial and tested by the manufacturer; the reliability of results depends 

widely on the antibody’s sensitivity and crossreactivity with other proteins. 

Quantitative real-time RT-PCR was used to measure COX-2 and MKP-1 mRNA 

in cell culture samples. Housekeeping genes GAPDH and β-actin were used to 

normalize the RT-PCR results of the genes of interest. 

 

Actinomycin D is an inhibitor of RNA polymerase II and it is widely used as an 

inhibitor of transcription. With the actinomycin D assay, one can estimate the 

rate of mRNA decay. In the present study, the actinomycin D assay was applied 

for measuring COX-2 mRNA stability in H4 chondrocytes. In J774 

macrophages, LPS-induced COX-2 mRNA levels were reduced at a slower rate 

in actinomycin D -treated cells than in control cells. This effect may be due to 

reduced production of an mRNA degrading factor in the presence of actinomycin 

D, or due to a more direct (unspecific) stabilizing effect of actinomycin D on 
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COX-2 mRNA. Actinomycin D has earlier been shown to inhibit degradation of 

COX-2 mRNA as well as transferrin receptor mRNA (Seiser et al. 1995, Dixon 

et al. 2000). These factors should be taken into account when interpreting the 

results. 

 

MAP kinase inhibitors were used to investigate the role of three different MAPK 

pathways in the regulation of COX-2 expression and subsequent PGE2 

production. The general weakness in using signaling pathway inhibitors is that 

compounds may inhibit also other pathways than those desired (Davies et al. 

2000, Bain et al. 2003). This should be taken into account when interpreting the 

results. 

 

The study about the possible mediator role of MKP-1 in aurothiomalate’s effect 

on COX-2 expression was started by using an inhibitor of tyrosine phosphatases 

(sodium orthovanadate). The results obtained with this non-selective inhibitor 

were promising and encouraged us to proceed to use MKP-1 siRNA. The siRNA 

technique is a novel method to down-regulate protein expression (Kong et al. 

2007) by using a synthetic siRNA oligonucleotide targeted against the gene of 

interest. Though it offers many advantages, siRNA method has its own 

disadvantages as well: transfection efficacy depends on the cell type, transfection 

reagents may be toxic to cells and siRNAs may have unexpected off-target 

effects (Aagaard and Rossi 2007). In this study we monitored the transfection 

efficacy with fluorescent indicator and the down-regulation of the target protein 

with Western blot, tested toxicity of transfection reagents by XTT test and used a 

mixture of four siRNAs targeting MKP-1 to minimize off-target effects. Finally, 

to confirm the results with MKP-1 siRNA, we used inbred C57BL/6 MKP-1 

knockout and wild type mice that were originally generated by the R. Bravo 

laboratory at Bristol-Myers Squibb Pharmaceutical Research Institute (Dorfman 

et al. 1996). The animals were genotyped to monitor the knockout of MKP-1. 

The benefit in the use of knockout animals compared to siRNA technology is 

that the gene of interest is totally silenced. In the whole body system knocking 

out a certain gene may, however, cause compensation by other genes / gene 
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products which may modify the results and lead to over- or underestimation of 

the importance of the gene knocked out. 

2 The role of MAP kinases in the regulation of COX-2 

expression and PGE2 production 

In the present study, the p38 inhibitor SB203580, the JNK inhibitor SP600125 

and the MKK1/2 inhibitor PD98059 were used as pharmacological tools to study 

the roles of p38, JNK and Erk1/2 pathways in COX-2 expression and PGE2 

production.  

 

The inhibitory effects of SB203580, SP600125 and PD98059 on COX-2 

expression and PGE2 production were studied in immortalized human T/C28a2 

chondrocytes. Inhibition of the three kinase activities resulted in reduction of 

PGE2 production and COX-2 expression in a dose-dependent manner. 

Interestingly, when SB203580 and SP600125 were added 6 h after the 

challenging agent (IL-1β) they did not inhibit PGE2 production whereas 

PD98059 had an inhibitory effect also when added at this later time point. This 

suggested that PD98059 may have some inhibitory effect on COX-2 activity in 

chondrocytes as has been earlier reported in arachidonic-acid-stimulated human 

platelets (Borsch-Haubold et al. 1998). According to these results, SB203580 

and SP600125 did not inhibit COX-2 activity but instead reduced COX-2 

expression. 

 

At mRNA level, SP600125 did not inhibit IL-1β-induced COX-2 mRNA when 

measured at an early timepoint (2 h). When measured 8 h after IL-1β, SP600125 

reduced COX-2 mRNA levels significantly. Further studies of SP600125 were 

carried out in J774 macrophages. Similar to the results obtained in human 

chondrocytes, SP600125 inhibited LPS-induced COX-2 expression and PGE2 

production in a dose-dependent manner also in J774 macrophages. At the mRNA 

level, the inhibitory effect of SP600125 on COX-2 mRNA was only seen at a 
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late timepoint (24 h) whereas there was no effect at the early timepoint (2 h). 

One would expect a significant inhibition in mRNA levels also at the early 

timepoints after the stimulus if the regulation was occuring at the transcriptional 

level. The results with these two cell lines indicated that JNK has only a minor or 

no effect in the early events of COX-2 transcription and that it rather regulates 

COX-2 expression at the posttranscriptional level. During the time period 6-12 h, 

the levels of COX-2 mRNA elevated by LPS declined significantly more rapidly 

in SP600125-treated cells than in cells treated with LPS only. In the presence of 

actinomycin D, LPS-induced COX-2 mRNA levels declined much more slowly 

than in the control cells, and SP600125 had no effect on COX-2 mRNA decay. 

These results suggested that inhibition of JNK pathway leads to reduced COX-2 

mRNA stability or that SP600125 inhibits mechanisms that are related to 

sustained transcription of COX-2 but are not involved in the early transcriptional 

activation of COX-2. The inhibitory effect of SP600125 on COX-2 expression 

has earlier been shown in RAW264 macrophages and in primary rat microglia 

cultures (Hou et al. 2005, Waetzig et al. 2005). The JNK pathway has been 

reported to regulate mRNA stability of CLMP, iNOS, IL-2, IL-3 and VEGF 

(Chen et al. 1998, Ming et al. 1998, Pages et al. 2000, Lahti et al. 2003, Sze et al. 

2008). The stabilizing effect of JNK on CLMP and iNOS mRNA may be 

mediated by an RNA binding protein, TTP (Korhonen et al. 2007, Sze et al. 

2008).  

 

In the experiments with SB203580 and PD98059, both compounds inhibited 

COX-2 mRNA expression in human chondrocytes when measured 2 h after 

addition of IL-1β and the inhibitory effect was stronger when measured 8 h after 

addition of IL-1β. The p38 MAPK pathway has been shown to stabilize COX-2 

mRNA in mammary carcinoma cells, in HeLa-TO cells and in the human 

tsT/AC62 chondrocyte cell line (Jang et al. 2000, Lasa et al. 2001, Thomas et al. 

2002). Consistently with this, in our further studies we found that SB203580 

could reduce COX-2 mRNA stability in H4 chondrocytes. 
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3 Regulation of COX-2 expression and PGE2 production 

by aurothiomalate 

Out of six tested DMARDs (aurothiomalate, cyclosporin A, hydrxychloroquine, 

leflunomide, its active metabolite A771726, methotrexate and sulfasalazine) 

aurothiomalate was the only compound that inhibited COX-2 expression and 

PGE2 production significantly in H4 chondrocytes. Aurothiomalate was found to 

inhibit COX-2 expression and PGE2 production also in human OA and RA 

cartilage. Aurothiomalate has been earlier shown to inhibit PGE2 production in 

peritoneal macrophages, rat astrocytes and human peripheral blood mononuclear 

cells (Pistritto et al. 1999, Yamashita et al. 2003). Interestingly, aurothiomalate 

was found to destabilize COX-2 mRNA (original finding) which may well 

explain its inhibitory effects on COX-2 expression and PGE2 production in 

inflammation. Aurothiomalate’s inhibitory effect on COX-2 expression and 

PGE2 production was achieved at clinically relevant drug concentrations. Steady-

state serum gold levels during aurohiomalate treatment have been reported to be 

in the range 8.5-28.5 µM (Gerber et al. 1972), and its concentrations in synovial 

fluid are similar to those found in plasma (Freyberg et al. 1941). 

 

Aurothiomalate is a gold salt of thiomalic acid. We tested the effects of gold and 

thiomalic acid separately and noted that gold inhibited COX-2 expression and 

PGE2 production to the same extent as did aurothiomalate whereas thiomalic 

acid itself had no effect on COX-2 expression or PGE2 production. These results 

are consistent with in vivo studies which demonstrated that the derivatives of 

thiomalate without gold had no effect in rat adjuvant arthritis model (Walz et al. 

1983). 

 

mRNA stabilizing factor HuR has been reported to bind to 3’-UTR of COX-2 

mRNA (Dixon et al. 2000, Sengupta et al. 2003). HuR has been shown to 

regulate COX-2 mRNA stability in colon cancer cells, mammary epithelial cells 

and in breast and gastric carcinoma (Dixon et al. 2001, Subbaramaiah et al. 2003, 

Denkert et al. 2004, Mrena et al. 2005, Denkert et al. 2006). Aurothiomalate 
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inhibited IL-1β –induced HuR mRNA levels. This may partly explain 

aurothiomalate’s destabilizing effect on COX-2 mRNA. However, the limitation 

of this study was that we only studied the effect of aurothiomalate on HuR 

mRNA levels and were not able to investigate if that was translated to HuR 

protein.  

4 The role of mRNA stability in the regulation of COX-2 

expression – significance in the development of new 

drugs 

COX-2 mRNA levels peaked after 4 h in T/C28a2 and H4 chondrocytes and 

after 6 h in J774 macrophages after stimulus (IL-1β in chondrocyte cell lines and 

LPS in J774 cells) whereafter the mRNA level declined rapidly in H4 

chondrocytes and reached basal level at 8 h whereas in T/C28a2 chondrocytes 

and in J774 macrophages COX-2 mRNA levels rapidly decreased to about 50 % 

of the peak level, and remained that high up to the 48 h follow-up. When an 

inhibitor of transcription, actinomycin D, was added to LPS / IL-1β –treated 

cells at the 4 h (H4 chondrocytes) or at 6 h (J774 macrophages) timepoints, it did 

not have any effect on COX-2 mRNA levels compared to cells treated only with 

the challenging agent. This suggested that there is only marginal or no 

transcription after mRNA levels have reached the maximum. The JNK inhibitor 

had no effect on COX-2 mRNA levels when measured at 2 h (T/C28a2 

chondrocytes) or 3 h (J774 macrophages) after the stimulus. Timepoints 

represented a situation where COX-2 mRNA levels were rapidly increasing. In 

contrast, when measured at later timepoints, 8 h (T/C28a2 chondrocytes) or 24 h 

(J774 macrophages), the JNK inhibitor had a significant effect on COX-2 mRNA 

levels suggesting that inhibition of JNK can modify the rate of COX-2 mRNA 

degradation. The situation with p38 inhibitor was more complicated. In T/C28a2 

chondrocytes, the p38 inhibitor inhibited COX-2 mRNA levels both at 2 and 8 

hour timepoints suggesting that the p38 pathway may be involved in the cellular 

events leading to upregulation of COX-2 gene transcription. However, the 
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inhibitory effect of p38 inhibitor at the 8 hour timepoint was stronger than at 2 

hour timepoint suggesting that p38 can regulate COX-2 expression also at the 

post-transcriptional level. When measured in H4 chondrocytes, the p38 inhibitor 

did not have any effect on COX-2 mRNA levels when measured 3 h after IL-1β 

whereas when measured 6 h after IL-1β, the p38 inhibitor inhibited COX-2 

mRNA levels significantly indicating that p38 can modify the rate of COX-2 

mRNA degradation. In summary, these results suggest that the effect of 

regulatory pathways may vary depending on the cell line. In addition both JNK 

inhibitor and p38 inhibitor significantly inhibited COX-2 protein expression and 

PGE2 production in all of the cell lines studied. These results highlight the 

importance of the regulation of COX-2 mRNA stability in the control of COX-2 

protein expression and PGE2 production.  

 

Post-transcriptional regulation of COX-2 expression at the level of mRNA 

stability seems to be an important mechanism during inflammation. AREs have 

been shown to regulate gene expression by interacting with different RNA-

binding proteins (Dean et al. 2004). Several RNA-binding proteins have been 

shown to bind the 3’-UTR of COX-2 mRNA: AUF1 (Lasa et al. 2000), β-catenin 

(Lee and Jeong 2006), HuR (Dixon et al. 2001), TTP (Sawaoka et al. 2003), T-

cell intracellular antigen 1 (TIA-1) and TIA related protein (TIAR) (Cok et al. 

2004). HuR and β-catenin have been reported to stabilize COX-2 mRNA (Dixon 

et al. 2001, Lee and Jeong. 2006), TIA-1 and TIAR are claimed to be 

translational silencers (Gueydan et al. 1999, Piecyk et al. 2000) and TTP and 

AUF1 are known to destabilize COX-2 mRNA (Lasa et al. 2000, Sawaoka et al. 

2003). Interestingly, p38 has been shown to be involved in the upregulation of 

LPS-induced TTP mRNA and protein expression in several human and murine 

cell lines (Jalonen et al. 2005, Brook et al. 2006). 

 

Various signaling pathways are involved in the regulation of COX-2 expression 

at the post-transcriptional level in a cell-type dependent manner (Eberhardt et al. 

2007). The p38 MAPK pathway has been shown to stabilize COX-2 mRNA in 

mammary carcinoma cells, in HeLa-TO cells and in the human tsT/AC62 

chondrocyte cell line (Jang et al. 2000, Lasa et al. 2001, Thomas et al. 2002). 
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The involvement of MK2 has been shown to be critical in p38-dependent COX-2 

mRNA stabilization (Winzen et al. 2004). This was the first study to show that 

the JNK pathway is involved in the regulation of COX-2 mRNA degradation. 

PKC has been reported to be involved in the regulation of COX-2 mRNA 

stability in human mammary epithelial cells, rat intestinal epithelial cells and in 

rat glomerular mesengial cells (Subbaramaiah et al. 2003, Yu et al. 2003, Doller 

et al. 2007, Doller et al. 2008, Doller et al. 2009). These signaling pathways act 

by directly or indirectly regulating the activity, localization or expression of the 

RNA-binding proteins.  

 

The stability of COX-2 mRNA has been shown to be regulated by various 

pathophysiological and pharmacological factors. TGF-β, glycogen synthase 

kinase-3β, IL-1β and Zn2+ (Sheng et al. 2000, Tamura et al. 2002a, Harding et al. 

2006, Thiel et al. 2006, Wu et al. 2008) have all been reported to increase  

COX-2 mRNA stability. In addition, taxanes, angiotensin II and gastrin have 

been shown to be able to stabilize COX-2 mRNA (Subbaramaiah et al. 2003, 

Doller et al. 2008, Subramaniam et al. 2008, Doller et al. 2009). The mechanism 

of COX-2 mRNA stabilizing effect for taxanes, angiotensin II and gastrin seems 

to be related to HuR. This study now adds aurothiomalate to the group of drugs 

that are reported to destabilize COX-2 mRNA along with dexamethasone and 

thalidomide (Ristimäki et al. 1996, Lasa et al. 2001, Jin et al. 2007). The effect 

of aurothiomalate on COX-2 mRNA destabilization was very similar to that of 

dexamethasone: it was associated with inhibition of p38 MAPK phosphorylation 

and induction in MKP-1 expression (Lasa et al. 2002). 

 

One interesting new methodological technique to be utilized in the post-

transcriptional regulation of COX-2 expression is microRNAs (miRNAs). 

miRNAs are a novel family of small (~19-22 nt) noncoding RNAs transcribed by 

the genomes of most metazoa. They differ in sequences but are known to be 

involved in sequence-specific posttranscriptional regulation by affecting mRNA 

stability and/or translation. (Nilsen 2007). A report from the group of Dey 

recently described the interaction of miRNAs and COX-2. During embryo 

implantation, two uterine miRNAs, mmu-miR-199a* and mmu-miR-101a 
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interact with the 3’UTR of COX-2 mRNA in mouse uterus leading to its 

translational repression (Chakrabarty et al. 2007, Daikoku et al. 2008). In colon 

cancer cell lines, miR-101 has been shown to directly silence COX-2 through a 

translational mechanism (Strillacci et al. 2008). It would be interesting to 

examine the effect of miRNAs (miR-146 and miR-155) related to inflammation 

on COX-2 expression. These two miRNAs have been shown to be inducible by 

proinflammatory stimuli like IL-1, TNF-α and TLRs. (Sheedy and O'Neill 2008) 

Those RNA sequences have also been detected in synovial fibroblasts and 

rheumatoid synovial tissue (Stanczyk et al. 2008). 

5 The role of MKP-1 in the regulation of COX-2 

expression and MMP-3, IL-6 and PGE2 production 

The effect of aurothiomalate on COX-2 mRNA stability was comparable to that 

of the p38 inhibitor, SB203580. Interestingly, aurothiomalate was found to 

decrease IL-1β –induced p38 phosphorylation and to increase MKP-1 

expression. Aurothiomalate’s effect on COX-2 expression was found to be 

comparable to that reported for dexamethasone. Dexamethasone is believed to 

destabilize COX-2 mRNA (Ristimäki et al. 1996, Lasa et al. 2001) by increasing 

expression of MKP-1 and phosphatase-mediated inhibition of p38 MAPK (Lasa 

et al. 2002). The effect of aurothiomalate on MKP-1 expression seemed to be 

different from that obtained with the other tested compounds (cyclosporin A, 

hydroxychloroquine, leflunomide, its active metabolite A771726, methotrexate 

and sulfasalazine); none of them enhanced MKP-1 expression. The increasing 

effect of aurothiomalate on MKP-1 expression was found to be due to gold and 

not thiomalate as was the inhibitory effect on COX-2 expression (see above). 

 

The role of MKP-1 in mediating aurothiomalate’s inhibitory effect on COX-2 

expression was tested in murine chondrocytes and in MKP-1-/- mice. Firstly, 

sodium orthovanadate (an inhibitor of phosphotyrosyl phosphatases) was used to 

inhibit MKP-1 activity and the effect of aurothiomalate on COX-2 expression 
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was studied in those conditions. Sodium orthovanadate itself had a minor 

enhancing effect on COX-2 expression and in the presence of sodium 

orthovanadate, aurothiomalate did not inhibit IL-1β –induced COX-2 expression. 

Secondly, MKP-1 was down-regulated by siRNA targeted to MKP-1. The 

treatment with the MKP-1 siRNA reduced IL-1β or IL-1β and aurothiomalate –

induced MKP-1 protein expression by over 80 %. In conjunction with this effect, 

the levels of phosphorylated p38 increased significantly. The inhibitory effect of 

aurothiomalate on COX-2 expression diminished from 50 % (control cells) to 

less than 20 % (cells treated with MKP-1 siRNA). Thirdly, the effect of 

aurothiomalate on COX-2 expression was studied in cartilage samples from 

MKP-1 knockout and wild type mice. In samples from wild type mice, 

aurothiomalate inhibited COX-2 expression by more than 80 % whereas there 

was no inhibitory effect on COX-2 expression in samples from MKP-1 knockout 

mice. 

 

RA cartilage is known to produce many proinflammatory and destructive factors 

that are involved in the pathogenesis of arthritis (Feldmann et al. 1996b). 

Aurothiomalate has been reported to reduce serum IL-6 levels in RA patients 

(Lacki et al. 1995) and to inhibit IL-6, TNF-α and IL-1β production in 

mononuclear cells from RA synovial membrane (Yanni et al. 1994). 

Aurothiomalate has also been shown to suppress IL-8 production in endothelial 

cells, peripheral blood mononuclear cells (Seitz et al. 1992) and rheumatoid 

synoviocytes (Loetscher et al. 1994) as well as being able to inhibit IL-12 

production and IL-2 receptor expression in T cells (Sfikakis et al. 1993). In  

THP-1 monocytes, aurothiomalate has been shown to inhibit IL-1β production 

and caspase-1 activity (Seitz et al. 2003). In addition to the COX-2 – PGE2 –

pathway, we studied the effects of aurothiomalate on the production of the 

proinflammatory cytokine, IL-6, and a cartilage destructive factor, MMP-3, in 

chondrocytes and in intact cartilage. Aurothiomalate was found to inhibit the 

production of IL-6 and MMP-3 in human RA and murine cartilage as well as in 

H4 chondrocytes. In conditions, where MKP-1 was knocked down in H4 

chondrocytes by siRNA or in cartilage from MKP-1 deficient mice, 

aurothiomalate had no inhibitory effect on either IL-6 or MMP-3 production. 
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Overall these results indicate that it is the aurothiomalate-induced MKP-1 

expression that mediates the suppressive effects of this gold compound on the 

expression of COX-2, MMP-3 and IL-6. Interestingly, MKP-1 has been shown 

to be an important factor in preventing the development of autoimmunity, 

especially arthritis. Salojin and co-workers demonstrated that after collagen 

immunization, MKP-1-/- mice developed more severe arthritis than wild type 

mice. (Salojin et al. 2006)  

 
MAP kinase inhibitors have been developed for the treatment of inflammatory 

diseases. Another way to inhibit MAPK pathways is to up-regulate MKP 

expression. The results of the present study showed that aurothiomalate reduced 

COX-2, MMP-3 and IL-6 expression by a mechanism related to aurothiomalate’s 

ability to induce MKP-1 expression and reduce p38 phosphorylation and in that 

way it could inhibit p38 MAPK activity (Figure 21). The results offer a novel 

mechanism to explain the anti-inflammatory and anti-erosive action of 

aurothiomalate and indicate that MKP-1 could represent an interesting drug 

target for the development of new drugs to treat arthritis. 

 

In the future it would be interesting to determine whether the anti-inflammatory 

effects of aurothiomalate on other cell types (for example macrophages and 

synovial cells) are also dependent on MKP-1. Other questions to be answered are 

how the expression of MKP-1 is enhanced by aurothiomalate and whether the 

enhanced expression of MKP-1 is typical only for gold but extends also to the 

other molecules that are chemically related to gold. Thus this data introduces 

MKP-1 as a novel therapeutic target in inflammatory diseases. The 

understanding of the mechanisms of action of the old DMARD, aurothiomalate, 

may open new approaches to develop novel anti-inflammatory and anti-erosive 

compounds that do not have the toxicity problems associated with gold 

compounds.  
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Figure 21. Summary of the effects of aurothiomalate found in the present study. 
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Summary and conclusions 

The aim of the present study was to investigate the role of three MAP kinase 

pathways, i.e. p38, JNK and Erk1/2 in the regulation of COX-2 expression and 

PGE2 production in chondrocytes and in intact cartilage as potential targets for 

development of drugs to combat inflammatory arthritis. Another major aim was 

to investigate the effects of DMARDs on COX-2 expression and further to study 

the mechanism of action of aurothiomalate. The major findings and conclusions 

are as follows: 

 
1. The p38 inhibitor, SB203580, the JNK inhibitor, SP600125 and the 

Erk1/2 inhibitor, PD98059 all inhibited IL-1β induced COX-2 expression 

and PGE2 production in human T/C28a2 chondrocytes. The JNK 

inhibitor inhibited COX-2 expression and PGE2 production also in J774 

macrophages and p38 inhibitor in H4 chondrocytes by a mechanism that 

was related to reduced stability of COX-2 mRNA.  

 
2. Aurothiomalate, a traditional DMARD used in the treatment of RA since 

the 1920s, was found to inhibit COX-2 expression and PGE2 production 

in H4 chondrocytes and in human cartilage at concentrations that are 

clinically achievable. Interestingly, aurothiomalate destabilized COX-2 

mRNA in H4 chondrocytes in a similar to the p38 inhibitor, SB203580.  

 

3. In addition to COX-2 expression and PGE2 production, aurothiomalate 

was found to reduce MMP-3 and IL-6 production in H4 chondrocytes and 

in intact human and murine cartilage, and these effects were preceded by 

increased MKP-1 expression and reduced p38 phosphorylation. Knock-

down of MKP-1 by siRNA significantly impaired the ability of 

aurothiomalate to inhibit the phosphorylation of p38 MAPK and the 

expression of COX-2, MMP-3 and IL-6. Similarly, aurothiomalate 
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reduced COX-2, MMP-3 and IL-6 expression in human RA cartilage, and 

in articular cartilage from wild type mice but not in cartilage from  

MKP-1-/- mice. These results indicate that it is enhanced MKP-1 

expression that is mediating the inhibitory effect of aurothiomalate on the 

inflammatory and destructive factors COX-2, MMP-3 and IL-6 in 

cartilage. 

 

MAPK inhibitors are under development for treatment of inflammatory diseases 

and results from various animal models have shown these agents to have anti-

inflammatory properties. Inhibition of COX-2 expression as found in the present 

study may partially explain the anti-inflammatory effects of the MAPK 

inhibitors.  

 

Aurothiomalate is known to have both anti-inflammatory and anti-erosive effects 

in the treatment of RA. Despite a long clinical history in the treatment of RA, the 

detailed molecular mechanisms behind its anti-inflammatory and anti-erosive 

action have not been clarified. The findings of the present study provide a novel 

mechanism to explain the anti-inflammatory and anti-erosive action of 

aurothiomalate i.e. increased MKP-1 expression, reduced p38 MAPK activation 

and suppressed expression of COX-2, MMP-3 and IL-6. One further conclusion 

is that MKP-1 can be concidered as a promising novel target for the development 

of disease modifying drugs for use in the treatment of inflammatory joint 

diseases. 
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Inducible prostaglandin synthase (cyclooxygenase-2, COX-2) is expressed in rheumatoid and osteoarthritic cartilage and produces
high amounts of proinflammatory prostanoids in the joint. In the present study we investigated the effects of the inhibitors of
mitogen-activated protein kinase (MAPK) pathways Erk1/2, p38, and JNK on COX-2 expression and prostaglandin E2 (PGE2)
production in human chondrocytes. Proinflammatory cytokine IL-1β caused a transient activation of Erk1/2, p38, and JNK in im-
mortalized human T/C28a2 chondrocytes and that was followed by enhanced COX-2 expression and PGE2 production. PD98059
(an inhibitor of Erk1/2 pathway) suppressed IL-1-induced COX-2 expression and PGE2 production in a dose-dependent manner,
and seemed to have an inhibitory effect on COX-2 activity. SB203580 (an inhibitor of p38 pathway) but not its negative control
compound SB202474 inhibited COX-2 protein and mRNA expression and subsequent PGE2 synthesis at micromolar drug concen-
trations. SP600125 (a recently developed JNK inhibitor) but not its negative control compound N1-methyl-1,9-pyrazolanthrone
downregulated COX-2 expression and PGE2 formation in a dose-dependent manner. SP600125 did not downregulate IL-1-induced
COX-2 mRNA expression when measured 2 h after addition of IL-1β but suppressed mRNA levels in the later time points suggest-
ing post-transcriptional regulation. Our results suggest that activation of Erk1/2, p38, and JNK pathways belongs to the signaling
cascades that mediate the upregulation of COX-2 expression and PGE2 production in human chondrocytes exposed to proinflam-
matory cytokine IL-1β.

INTRODUCTION

Prostaglandins (PGs) are present in a wide variety
of human tissues, where they regulate physiological re-
sponses, including vascular tone, blood clotting, kid-
ney function, gastric secretion and reproduction [1]. In
arthritis, prostaglandins (especially PGE2) are produced
in much higher amounts, and they mediate inflammation,
tissue destruction, and inflammatory pain. PGs are syn-
thesized from arachidonic acid by cyclooxygenase (COX)
enzymes [2, 3]. Two isoforms of COX have been identi-
fied: COX-1 is constitutively expressed and produces low
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physiological levels of prostanoids, whereas the expression
of the inducible isoform, COX-2, is increased in response
to proinflammatory cytokines or bacterial products [4].
COX-2 is highly expressed in rheumatoid (RA) and os-
teoarthritic (OA) cartilage [5, 6]. Interleukin (IL)-1 is a
key cytokine involved in the joint destruction in RA and
OA and it has been shown to enhance COX-2 expression
in articular chondrocytes [5, 7, 8].

Mitogen-activated protein kinases (MAPKs) are a
family of serine/threonine kinases, that are part of the sig-
nal transduction pathways which connect inflammatory
and other extracellular signals to intracellular responses,
for example, gene expression. The three better character-
ized MAPK pathways are extracellular signal-regulated ki-
nase 1 and 2 (Erk1/2), p38, and c-Jun N-terminal kinase
(JNK). The growth-factor-induced Erk1/2, and the stress-
activated p38 and JNK protein kinases are phosphorylated
in response to extracellular stimuli at conserved threo-
nine and tyrosine residues and have regulatory functions
in inflammation [9, 10]. Inhibitors of p38 and JNK are
under development for treatment of arthritis and they
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have shown efficacy in experimentally induced arthritis
and joint pain [11, 12]. Inhibition of MAPKs is likely to
result in suppression of inflammatory mediators, which in
turn leads to the desired therapeutic effects. We hypothe-
sized that one of the inflammatory pathways in the carti-
lage, that might be down-regulated by MAPK inhibitors,
is COX-2-PGE2 pathway. The aim of the present study
was to investigate if inhibitors of JNK (SP600125), p38
(SB203580), and Erk1/2 (PD98059) MAP-kinase path-
ways downregulate IL-induced COX-2 expression and
PGE2 production in human chondrocytes.

MATERIALS AND METHODS

Materials

Reagents were obtained as follows: SP600125
(anthra[1,9-cd]pyrazol-6(2H)-one), SB203580 (4-(4-
fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-
imidazole), and PD98059 (2-(2′-amino-3′-methoxy-
phenyl)-oxanaphthalen-4-one) were from Calbiochem
(La Jolla, Calif); goat polyclonal human COX-2, rabbit
polyclonal JNK, donkey anti-goat polyclonal, and goat
anti-rabbit polyclonal antibodies were from Santa Cruz
Biotechnology, Inc, (Santa Cruz, Calif); and rabbit
polyclonal phospho-JNK, phospho-Erk1/2, Erk1/2,
phospho-p38, and p38 antibodies were from Cell Signal-
ing Technology, Inc, (Beverly, Mass). All other reagents
were from Sigma Chemical Co (St Louis, Mo).

Cell culture

Immortalized human T/C28a2 chondrocytes [13]
were grown in Dulbecco’s modified Eagle’s medium
(Cambrex Bioproducts Europe, Verviers, Belgium) and
Ham’s F-12 medium (Gibco, Paisley, Scotland) (1:1,
v/v). Culture media contained 10% heat-inactivated fe-
tal bovine serum, 100 U/mL penicillin, 100 µg/mL strep-
tomycin, and 250 ng/mL amphotericin B (all from Gibco,
Paisley, Scotland). Cells were seeded on 24-well plates
for prostaglandin E2 measurements and on 6-well plates
for Western blot and RT-PCR. Cell monolayers were
grown for 72 h to confluence before the experiments were
started and the compounds of interest were added in fresh
medium.

Prostaglandin E2 assays

At the indicated time points, the culture medium
was collected for prostaglandin E2 (PGE2) measure-
ment. PGE2 concentrations were determined by radioim-
munoassay using reagents from the Institute of Isotopes
(Budapest, Hungary).

Western blot analysis

At the indicated time points, cells were rapidly washed
with ice-cold PBS and solubilized in cold lysis buffer con-
taining 10 mM Tris base, 5 mM EDTA, 50 mM NaCl, 1%
Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride,

2 mM sodium orthovanadate, 10 µg/mL leupeptin,
25 µg/mL aprotinin, 1.25 mM NaF, 1 mM sodium py-
rophosphate, and 10 mM n-octyl-β-D-glucopyranoside.
After incubation for 20 min on ice, lysates were cen-
trifuged (14 500 g for 10 min), and supernatants were
mixed in a ratio of 1:4 with SDS loading buffer (62.5 mM
Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 0.025% bro-
mophenol blue, and 5% β-mercaptoethanol) and boiled
for 5 min. Protein concentrations in the samples were
measured by the Coomassie blue method [14]. After
boiling for 5 min, equal aliquots of protein (20 µg) were
loaded on a 10% SDS-polyacrylamide electrophoresis gel
and electrophoresed for 4 h at 100 V in a buffer containing
95 mM Tris-HCl, 960 mM glycine, and 0.5% SDS. After
electrophoresis, the proteins were transferred to Hybond-
enhanced chemiluminescence nitrocellulose membrane
(Amersham, Buckinghamshire, UK) with semidry blotter
at 2.5 mA/cm2 for 60 min. After transfer, the membrane
was blocked in TBS/T (20 mM Tris-base pH 7.6, 150 mM
NaCl, 0.1% Tween-20) containing 5% nonfat milk for
1 h at room temperature and incubated overnight at
4◦C with COX-2, JNK, p38, Erk1/2, phospho-specific
JNK, phospho-specific p38, or phospho-specific Erk1/2
antibodies in TBS/T containing 5% nonfat milk. There-
after the membrane was washed 4 times with TBS/T
for 5 min, incubated with secondary antibody coupled
to horseradish peroxidase in the blocking solution for
0.5 h at room temperature, and washed four times with
TBS/T for 5 min. Bound antibody was detected using
SuperSignal West Pico chemiluminescent substrate
(Pierce, Cheshire, UK) and FluorChem 8800 imaging
system (Alpha Innotech Corp, San Leandro, Calif). The
quantitation of the chemiluminescent signal was carried
out with the use of FluorChem software version 3.1.

RNA extraction and real-time RT-PCR

At the indicated time points, cell monolayers were
rapidly washed with ice-cold PBS, and cells were ho-
mogenized using QIAshredder (QIAGEN, Valencia,
Calif). RNA extraction was carried out with the use of
RNeasy kit for isolation of total RNA (QIAGEN). Total
RNA (25 ng) was reverse-transcribed to cDNA using
TaqMan reverse transcription reagents and random
hexamers (Applied Biosystems, Foster City, Calif). cDNA
obtained from the RT reaction (amount corresponding
to approximately 1 ng of total RNA) was subjected to
PCR using TaqMan Universal PCR Master Mix and
ABI PRISM 7000 Sequence detection system (Applied
Biosystems). The primer and probe sequences and
concentrations were optimized according to manufac-
turer’s guidelines in TaqMan Universal PCR Master Mix
Protocol part number 4304449 revision C and they were
5′ - CAACTCTATATTGCTGGAACATGGA - 3′ (human
COX-2 forward primer, 300 nM), 5′-TGGAAGCCTGT-
GATACTTTCTGTACT-3′ (human COX-2 reverse primer,
300 nM), 5′-TCCTACCACCAGCAACCCTGCCA-3′ (hu-
man COX-2 probe containing 6-FAM as 5′-reporter dye
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Figure 1. The effects of IL-1β on JNK, p38, and Erk1/2 MAPK
activation in human T/C28a2 chondrocytes. The chondrocytes
were stimulated with IL-1β (100 pg/mL). Incubations were ter-
minated at the indicated time points. Two parallel immunoblots
were run from same cell lysates using antibodies against the Thr-
183/Tyr-185, Thr-180/Tyr-182, and Thr-202/Tyr-204 phospho-
rylated (ie, activated) JNK (p-JNK), p38 (p-p38), and Erk1/2 (p-
Erk1/2) and against total JNK, p38, and Erk1/2. The experiment
was repeated three times with similar results.

and TAMRA as 3′-quencher, 150 nM). Human β-actin
was obtained from TaqMan Human β-actin Reagents kit
(Applied Biosystems), containing VIC as 5′-reporter dye
and TAMRA as 3′-quencher. PCR reaction parameters
were as follows: incubation at 50◦C for 2 min, incubation
at 95◦C for 10 min, and thereafter 40 cycles of denatura-
tion at 95◦C for 15 s and annealing and extension at 60◦C
for 1 min. Each sample was determined in duplicate.

A standard curve method was used to determine the
relative mRNA levels as described in the Applied Biosys-
tems User Bulletin: a standard curve for each gene was
created using RNA isolated from IL-1β-stimulated hu-
man T/C28a2 chondrocytes. Isolated RNA was reverse-
transcribed and dilution series of cDNA ranging from 1 pg
to 10 ng were subjected to real-time PCR. The obtained
threshold cycle values were plotted against the dilution
factor to create a standard curve. Relative mRNA levels in
test samples were then calculated from the standard curve.

Statistics

Results are expressed as the mean ± SEM. Statistical
significances were calculated by analyses of variance sup-
ported by the Dunnett’s multiple comparisons test. Dif-
ferences were considered significant at P < .05.

RESULTS

IL-1β-activated JNK, p38, and Erk1/2 in human
T/C28a2 chondrocytes

The ability of IL-1β to activate JNK, p38, and Erk1/2
pathways was studied by Western blot analysis using an-
tibodies directed against Thr-183/Tyr-185, Thr-180/Tyr-
182, and Thr-202/Tyr-204 phosphorylated (ie, activated)
JNK, p38, and Erk1/2, respectively. JNK activation was
seen 20 min after addition of IL-1β. The activation peaked
at 1 hour and decreased thereafter. The activation of p38
and Erk1/2 was detected 3–6 min after addition of IL-1β,
peaked at 10–20 min, and declined after 1 hour (Figure 1).
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Figure 2. The effects of IL-1β on COX-2 protein expression and
PGE2 production in human T/C28a2 chondrocytes. (a) Human
chondrocytes were incubated for 24 h in the presence of increas-
ing concentrations of IL-1β, and COX-2 protein was measured
by Western blot. (b) Human chondrocytes were incubated for
24 h in the presence of increasing concentrations of IL-1β, and
PGE2 concentrations in the culture medium were measured by
radioimmunoassay. COX inhibitor ibuprofen (10 µM) was used
as a control compound. Mean ± SEM, n = 4− 6. In (a), a repre-
sentative gel is shown under the bars.

IL-1β-induced COX-2 expression and PGE2 production
in human T/C28a2 chondrocytes

IL-1β enhanced COX-2 expression in a concentration-
dependent manner, being detectable at 10 pg/mL and in-
creasing up to 1000 pg/mL (Figure 2a). Radioimmunoas-
say of prostaglandin E2 (PGE2) in the culture medium was
carried out to investigate PGE2 production. IL-1β induced
PGE2 production in a concentration-dependent manner.
Increased PGE2 production was detected at 10 pg/mL of
IL-1β and was maximal at 100 pg/mL remaining elevated
up to 1000 pg/mL (Figure 2b).
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SP600125, SB203580, and PD98059 suppressed
IL-1β-induced PGE2 production in human

T/C28a2 chondrocytes

Inhibitors of JNK (SP600125), p38 (SB203580), and
Erk1/2 (PD98059) reduced IL-1β-induced PGE2 pro-
duction in T/C28a2 chondrocytes in a concentration-
dependent manner (Figures 3a, 3b, 3c). In the further
studies, SP600125, SB203580, and PD98059 were added
in T/C28a2 chondrocyte cultures at the same time or 6 h
after IL-1β. In contrast to the inhibitory effect seen when
added at the same time, SP600125 (10 µM) and SB203580
(1 µM) did not inhibit PGE2 production when added 6 h
after IL-1β. PD98059 (10 µM) inhibited the production of
PGE2 also when added 6 h after IL-1β, but the inhibition
was notably less than when added to cells at the same time
as the stimulus (Figure 3g).

SP600125, SB203580, and PD98059 inhibited COX-2
expression in human T/C28a2 chondrocytes

In the further studies, we measured the effects of
SP600125, SB203580, and PD98059 on IL-1β-induced
COX-2 protein expression. Western blots using antibody
against COX-2 showed that the three inhibitors caused
a concentration-dependent reduction in IL-1β-induced
COX-2 protein levels (Figures 3b, 3d, 3f). Negative control
compounds were available for SP600125 and SB203580
and their effects on COX-2 expression were also tested.
N1-methyl-substituted pyrazolanthrone is structurally re-
lated to SP600125 but it is over 100-fold less potent
inhibitor of JNK than SP600125 [15]. N1-methyl-1,9-
pyrazolanthrone (10 µM) had no effect on COX-2 expres-
sion while SP600125 (10 µM) reduced COX-2 expression
by 70%. SB202474 is structurally related to SB203580 but
does not inhibit p38 [16]. SB202474 (1 µM) did not sup-
press COX-2 expression while SB203580 (1 µM) inhibited
COX-2 expression by 40%.

SP600125, SB203580, and PD98059 inhibited COX-2
mRNA expression in human T/C28a2 chondrocytes

We used real-time RT-PCR to investigate the effects of
SP600125, SB203580, and PD98059 on COX-2 mRNA ex-
pression. IL-1β induced transient COX-2 expression that
peaked 4 h after addition of IL-1. SB203580 and PD98059
reduced IL-1β-induced COX-2 mRNA expression signif-
icantly when measured either 2 h or 8 h after IL-1β stim-
ulation. In contrast, SP600125 had no marked effect on
IL-1β-induced COX-2 mRNA expression at the 2 h time
point, whereas the level of COX-2 mRNA was reduced by
about 75% at the 8 h time point (Figure 4).

DISCUSSION

In the present study, we found that inhibitors of JNK,
p38, and Erk1/2 pathways downregulate IL-1-induced
COX-2 expression and PGE2 production in human chon-
drocytes.

Consistently with earlier findings using primary ar-
ticular chondrocytes [17, 18], our results show that IL-
1β causes a rapid activation of JNK, p38, and Erk1/2
MAP kinases in immortalized human T/C28a2 chondro-
cytes. These events were followed by enhanced COX-2
expression and subsequent PGE2 production. Inhibition
of JNK activity by SP600125, p38 activity by SB203580,
and Erk1/2 activity by PD98059 resulted in a reduc-
tion in the amount of PGE2 produced. However, when
SP600125 and SB203580 were added 6 h after IL-1β, they
did not affect PGE2 production. These findings suggest
that SP600125 and SB203580 did not inhibit COX-2 activ-
ity, but rather reduced the expression of COX-2. PD98059
inhibited the production of PGE2 also when added 6 h
after IL-1β, but the inhibition was notably smaller than
in those experiments where PD98059 was added at the
same time as IL-1β. This suggests that PD98059 may
have also some inhibitory effect on cyclooxygenase ac-
tivity in activated chondrocytes, as has been earlier re-
ported in arachidonic-acid-stimulated human platelets
[19]. Western blot analysis showed that all the three in-
hibitors (SP600125, SB203580, and PD98059) caused also
a concentration-dependent reduction in COX-2 protein
levels in IL-1-treated chondrocytes.

In the real-time RT-PCR studies, SP600125 had prac-
tically no effect on IL-1β-induced COX-2 mRNA expres-
sion in human T/C28a2 chondrocytes when measured 2 h
after IL-1β, whereas when measured 8 h after the addition
of IL-1β, a significant reduction in the levels of COX-2
mRNA was observed in the presence of SP600125. These
results suggest that inhibition of JNK pathway does not
affect the early events in IL-1-induced COX-2 expression
but it may regulate the process at post-transcriptional
level.

SB203580 and PD98059 had a significant effect on
COX-2 mRNA expression when measured 2 h after ad-
dition of IL-1β. Our results are consistent with previous
reports showing that p38 and Erk1/2 MAP kinase path-
ways are involved in the cellular events leading to upregu-
lation of COX-2 gene transcription in human monocytes
and in RAW264 macrophages [20, 21, 22, 23, 24]. In ad-
dition, p38 has also reported to stabilize COX-2 mRNA in
mammary carcinoma cells, in HeLa-TO cells, and another
chondrocyte cell line [25, 26, 27].

We have earlier shown that, in J774 macrophages,
SP600125, SB203580, and PD98059 do not have an effect
on nuclear translocation and DNA binding activity of NF-
κB [28, 29, 30] which plays a role in stimulating COX-2
expression [31]. In addition to NF-κB, the expression of
COX-2 is regulated by other factors including NF-IL6 and
AP-2 [32, 33]. Further studies are needed to determine the
molecular mechanisms which mediate the effects of JNK,
p38, and Erk1/2 inhibitors on COX-2 expression.

Inhibitors of p38 and JNK are under development
for treatment of arthritis and they have been shown
to have antiinflammatory and antierosive effects in ex-
perimentally induced arthritis, and to relief inflamma-
tory pain [10, 11]. The inhibition of MAP kinases and
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Figure 3. The effects of SP600125, SB203580, and PD98059 on PGE2 production and COX-2 protein expression in IL-1β-stimulated
human T/C28a2 chondrocytes. Human chondrocytes were incubated with IL-1β (100 pg/mL) and increasing concentrations of (a),
(b) SP600125 (JNK inhibitor), (c), (d) SB203580 (p38 inhibitor), and (e), (f) PD98059 (Erk1/2 inhibitor). After 24 h, incubations were
terminated, and PGE2 concentrations in the culture medium were measured by RIA ((a), (c), (e)) and COX-2 protein was measured
by Western blot ((b), (d), (f)). (g) SP600125 (10 µM), SB203580 (1 µM), and PD98059 (10 µM) were added to the cell culture at the
same time (0 h) or 6 h after IL-1β (6 h). After 24 h, PGE2 concentrations were measured in the culture medium by RIA. Mean ± SEM,
n = 4, ∗∗ indicates P < .01 as compared with the respective control. In (b), (d), and (f) a representative gel is shown under the bars.
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Figure 4. The effects of SP600125, SB203580, and PD98059 on
COX-2 mRNA levels in IL-1β-stimulated human chondrocytes.
Human chondrocytes were incubated with IL-1β (100 pg/ml)
and with or without SP600125, SB203580, and PD98059. Incu-
bations were terminated at the indicated time points, and the
extracted total RNA was subjected to real-time RT-PCR. COX-2
mRNA levels were normalized against β-actin mRNA. Mean ±
SEM, n = 6,∗∗ indicates P < .01 as compared with cells treated
with IL-1β only.

subsequent inhibition of the synthesis of a number of
important proinflammatory cytokines like IL-1, TNF-α,
IL-6, IL-8, and matrix metalloproteases has been identi-
fied as a mechanism contributing to the antiinflammatory
activity of these compounds [10, 11, 12, 15, 34, 35]. The
present results show that inhibitors of JNK, p38, and
Erk1/2 MAP kinases also downregulate COX-2 expression
and PGE2 production in human chondrocytes which is
likely involved in the mechanisms of their therapeutic ef-
fects in arthritis and other inflammatory diseases.
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Abstract

Inducible prostaglandin synthase (cyclooxygenase-2, COX-2) is highly expressed in inflammation. The signaling mechanisms
involved in the up-regulation of COX-2 are not known in detail. In the present study we investigated the role of c-Jun NH2-terminal
kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in COX-2 expression and prostaglandin (PG) E2

production in murine J774 macrophages activated by bacterial lipopolysaccharide (LPS).
LPS caused a transient activation of JNK which was followed by increased COX-2 expression. Anthra(1,9-cd)pyrazol-6(2H)-one

(SP600125), an inhibitor of JNK, inhibited phosphorylation of c-Jun with an IC50 of 5–10 μM. At the same concentrations SP600125
suppressed also LPS-induced COX-2 protein levels and PGE2 production. SP600125 did not alter LPS-induced COX-2mRNA levels
whenmeasured 3 h after addition of LPS, whereas mRNA levels were significantly reduced in SP600125-treated cells whenmeasured
24 h after addition of LPS. LPS-induced COX-2 mRNA levels reduced faster in cells treated with SP600125 than in control cells.
Cycloheximide (that is known to activate JNK) enhanced COX-2 expression and its effect was inhibited by SP600125.

The present results suggest that JNK pathway is involved in the up-regulation of COX-2 expression possibly by a mechanism
related to the stability of COX-2 mRNA.
© 2006 Elsevier B.V. All rights reserved.
Keywords: COX-2; JNK; Macrophage; MAPK; SP600125; PGE2
1. Introduction

Prostaglandins (PGs) are present in a wide variety of
human tissue. PGs play a central role in inflammation
and regulate various physiological responses including
vascular tone, blood clotting, kidney function, gastric
secretion and reproduction [1]. PGs are formed from
arachidonic acid by the prostaglandin synthesizing
cyclooxygenase (COX) enzymes [2,3]. Two isoforms
⁎ Corresponding author. Fax: +358 3 3551 8082.
E-mail address: eeva.moilanen@uta.fi (E. Moilanen).

1567-5769/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.intimp.2006.01.009
of COX have been identified: COX-1 is constitutively
expressed and produces low physiological levels of
prostanoids, whereas the expression of the inducible
isoform, COX-2, is increased e.g. in response to pro-
inflammatory cytokines and bacterial products [4].

The c-Jun NH2-terminal kinase (JNK) belongs to a
signaling cascade of mitogen-activated protein kinases
(MAPKs) which are a group of serine/threonine kinases
that mediate the effects of inflammatory and other
extracellular signals to intracellular target molecules
[5,6]. JNK has been identified as a stress-activated
protein kinase that phosphorylates c-Jun on two sites in
the NH2-terminal domain [7,8]. Certain cytokines and

http://dx.doi.org/10.1016/j.intimp.2006.01.009
mailto:eeva.moilanen@uta.fi
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cellular stress can activate JNK pathway [9]. JNK
activation leads to the phosphorylation of transcription
factors (most importantly the c-Jun component of AP-1)
and other regulatory cellular proteins [10,11].

The aim of the present study was to investigate if JNK
pathway regulates COX-2 expression and PGE2 pro-
duction in activated macrophages. We used a recently
described inhibitor of JNK (SP600125) [12] as a
pharmacological tool to inhibit this MAP-kinase path-
way in murine J774 macrophages stimulated by LPS.

2. Materials and methods

2.1. Materials

Reagents were obtained as follows: SP600125 (anthra[1,9]
pyrazol-6(2H)-one) and N-methyl-substituted pyrazolanthrone
(N1-methyl-1,9-pyrazolanthrone) were from Calbiochem (La
Jolla, CA); goat polyclonal mouse COX-2, rabbit polyclonal c-
Jun and JNK, donkey anti-goat polyglonal, and goat anti-
rabbit polyclonal antibodies were from Santa Cruz Biotech-
nology, Inc. (Santa Cruz, CA); rabbit polyclonal phospho-JNK
(Thr183/Tyr185), and phospho-c-Jun (Ser63) antibodies were
from Cell Signaling Technology Inc. (Beverly, MA). All other
reagents were from Sigma Chemical Co. (St. Louis, MO).

2.2. Cell culture

J774 murine macrophages (American Type Culture Col-
lection, Rockville, MD) were cultured in Dulbecco's modified
Eagle's medium with glutamax-I. Culture media contained
10% heat-inactivated fetal bovine serum, 100 U/ml penicillin,
100 μg/ml streptomycin, and 250 ng/ml amphotericin B (all
from Gibco, Paisley, Scotland). Cells were seeded on 24-well
plates for PGE2 measurements and on six-well plates for
Western blot and RT-PCR assays. Cell monolayers were grown
for 72 h to confluence before the experiments were started and
the compounds of interest were added in fresh culture medium.
0 10 30 1 1,5 2 2,5

min h

Fig. 1. The effect of LPS on JNK activation. Murine J774 macrophages we
indicated time points. Parallel immunoblots were run from same cell lysat
activated JNK (p-JNK), total JNK, Ser63-phosphorylated c-Jun (pc-Jun), an
results.
2.3. Prostaglandin E2 assays

At the indicated time points, the culture medium was
collected for PGE2 measurement. PGE2 concentrations were
determined by radioimmunoassay using reagents from the
Institute of Isotopes (Budapest, Hungary).

2.4. Western blot analysis

At the indicated time points, cells were rapidly washed with
ice-cold PBS and solubilized in cold lysis buffer containing
10 mM Tris base, 5 mM EDTA, 50 mM NaCl, 1% Triton-X-
100, 0.5 mM phenylmethylsulfonyl fluoride, 2 mM sodiu-
morthovanadate, 10 μg/ml leupeptin, 25 μg/ml aprotinin, 1.25
mM NaF, 1 mM sodium pyrophosphate and 10 mM n-octyl-β-
D-glucopyranoside. After incubation for 20 min on ice, lysates
were centrifuged (14,500×g for 10 min), and supernatants were
mixed in a ratio of 1:4 with SDS loading buffer (62.5 mMTris–
HCl, pH 6.8, 10% glycerol, 2% SDS, 0,025% bromophenol
blue, and 5% β-mercaptoethanol) and boiled for 5 min. Protein
concentrations in the samples were measured by the Coomassie
blue method [13]. After boiling for 5 min, equal aliquots of
protein (20 μg) were loaded on a 10% SDS-polyacrylamide
electrophoresis gel and electrophoresed for 4 h at 100 V in a
buffer containing 95mMTris–HCl, 960mMglycine, and 0,5%
SDS. After electrophoresis, the proteins were transferred to
Hybond enhanced chemiluminescence nitrocellulose mem-
brane (Amersham, Buckinghamshire, UK)with semidry blotter
at 2.5 mA/cm2 for 60 min. After transfer, the membrane was
blocked in TBS/T (20 mM Tris–base pH 7.6, 150 mM NaCl,
0.1% Tween-20) containing 5% nonfat milk for 1 h at room
temperature and incubated overnight at 4 °Cwith COX-2, JNK,
phospho-specific JNK, c-Jun or phospho-specific c-Jun
antibodies in TBS/T containing 5% nonfat milk. Thereafter
the membrane was washed 4× with TBS/T for 5 min, incubated
with secondary antibody coupled to horseradish peroxidase in
the blocking solution for 0.5 h at room temperature, andwashed
four times with TBS/T for 5 min. Bound antibody was detected
using SuperSignal West Pico chemiluminescent substrate
3
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Fig. 3. The effect of LPS on COX-2 expression in J774 macrophages.
In A, J774 macrophages were incubated for 24 h in the presence of
increasing concentrations of LPS. In B, J774 macrophages were
incubated in the presence of LPS (10 ng/ml). Incubations were
terminated at the indicated time points. In A and B, COX-2 protein
expression was measured by Western blot. In C, J774 macrophages
were incubated in the presence of LPS (10 ng/ml). Incubations were
terminated at the indicated time points and the extracted total RNAwas
subjected to RT-PCR. COX-2 mRNA levels were normalized against
GAPDH. Mean±S.E.M., n=3. ⁎⁎Indicates Pb0.01 as compared with
cells cultured in the absence of LPS.
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(Pierce, Cheshire, U.K.) and FluorChem 8800 imaging system
(Alpha Innotech Corp., San Leandro, CA). The quantitation of
the chemiluminescent signal was carried out with the use of
FluorChem software version 3.1.

2.5. RNA extraction and real-time RT-PCR

At the indicated time points, cell monolayers were rapidly
washed with ice-cold PBS, and cells were homogenized using
QIAshredder (QIAGEN, Valencia, CA). RNA extraction was
carried out with the use of RNeasy kit for isolation of total RNA
(QIAGEN). Total RNA (25 ng) was reverse-transcribed to
cDNA using TaqMan Reverse Transcription reagents and
random hexamers (Applied Biosystems, Foster City, CA).
cDNA obtained from the RT reaction (amount corresponding to
approximately 1 ng of total RNA) was subjected to PCR using
TaqMan Universal PCR Master Mix and ABI PRISM 7000
Sequence detection system (Applied Biosystems). The primer
and probe sequences and concentrations were optimized
according to manufacturer's guidelines in TaqMan Universal
PCRMasterMix Protocol part number 4304449 revision C and
were: 5′-GCCAGGGCTGAACTTCGAA-3′ (mouse COX-2
forward primer, 300 nM), 5′-CAATGGGCTGGAAGACA-
TATCAA-3′ (mouse COX-2 reverse primer, 300 nM), 5′-
CTCACGAGGCCACTGATACCTATTGCATTG-3′ (mouse
COX-2 probe, 150 nM, containing 6-FAM as 5′-reporter dye
and TAMRA as 3′-quencher), 5′-GCATGGCCTTCCGTGT-
TC-3′ (mouse glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) forward primer, 300 nM), 5′-GATGTCATCATACT-
TGGCAGGTTT-3′ (mouse GAPDH reverse primer, 300 nM),
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5′-TCGTGGATCTGACGTGCCGCC-3′ (mouse GAPDH
probe, 150 nM, containing 6-FAM as 5′-reporter dye and
TAMRA as 3′-quencher). PCR reaction parameters were as
follows: incubation at 50 °C for 2 min, incubation at 95 °C for
10 min, and thereafter 40 cycles of denaturation at 95 °C for
15 s and annealing and extension at 60 °C for 1 min. Each
sample was determinated in duplicate.

A standard curve method was used to determine the relative
mRNA levels as described in the Applied Biosystems User
Bulletin: A standard curve for each gene was created using
RNA isolated from LPS-stimulated J774 macrophages.
Isolated RNA was reverse-transcribed and dilution series of
cDNA ranging from 1 pg to 10 ng were subjected to real-time
PCR. The obtained threshold cycle values were plotted against
the dilution factor to create a standard curve. Relative mRNA
levels in test samples were then calculated from the standard
curve. When calculating the results COX-2 mRNA levels were
first normalized against GAPDH.

2.6. Statistics

Results are expressed as the mean±S.E.M. Statistical
significances of the differences were calculated by analyses of
variance supported by the Dunnett's multiple comparisons
test. Differences were considered significant at Pb0.05.

3. Results

3.1. LPS activated JNK in J774 macrophages

The ability of LPS to activate JNK pathway was studied by
Western blot analysis with an antibody directed against Thr183/
Tyr185 phosphorylated JNK. JNK activation increased rapidly
after addition of LPS, peaked at 30 min, and declined thereafter
(Fig. 1). C-Jun is a direct target of JNK, which phosphorylates
c-Jun at residue Ser63 [14]. Levels of Ser63-phosphorylated c-
Jun increased in cells after LPS stimulation, and remained
elevated up to the 3 h follow-up (Fig. 1).

3.2. SP600125 inhibited LPS-induced c-Jun phosphorylation
in J774 macrophages

The ability of SP600125 to inhibit JNK activity in murine
J774 macrophages was studied by measuring the phosphory-
lation of c-Jun residue Ser63 by Western blot. SP600125
inhibited LPS-stimulated Ser63 phosphorylation of c-Jun in a
concentration-dependent manner, and the reduction of phos-
phorylation was 40% at 5 μM concentration and N90% at
20 μM concentration of SP600125 (Fig. 2).

3.3. LPS induced COX-2 expression in J774 macrophages

Western blot analysis of COX-2 protein showed that LPS
(10–1000 ng/ml) enhanced COX-2 expression in a concen-
tration-dependent manner in J774 macrophages (Fig. 3A). Fig.
3B and C show the time courses of LPS-induced COX-2
protein and COX-2 mRNA expression, respectively.
3.4. SP600125 inhibited COX-2 expression and PGE2

production in J774 macrophages

SP600125 reduced LPS-induced COX-2 protein expres-
sion in a concentration dependent manner (Fig. 4A).
SP600125 had also a clear inhibitory effect on LPS-induced
PGE2 production (Fig. 4B). N1-methyl substituted pyrazolan-
throne is a compound structurally related to SP600125 but it is
over 100-fold less potent inhibitor of JNK than SP600125 [12]
and it was used as a negative control compound in the present
study. N1-methyl-1,9-pyrazolanthrone (10 μM) did not inhibit
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COX-2 expression, whereas SP600125 (10 μM) reduced
COX-2 expression by 70% (Fig. 4C).

3.5. SP600125 inhibited COX-2 mRNA expression in J774
macrophages

We used real-time RT-PCR to investigate the effects of
SP600125 on LPS induced COX-2 mRNA expression.
SP600125 did not inhibit COX-2 mRNA expression when
measured 3 h after addition of LPS (Fig. 5A). In contrast, when
measured 24 h after LPS, COX-2 mRNA levels were reduced
by more than 90% in SP600125-treated cells (Fig. 5B).

In the further studies we measured the effects of SP600125
on COX-2 mRNA degradation by actinomycin D-assay. Cells
were treated with LPS or a combination of LPS and SP600125
for 6 h (which represents the peak level of COX-2 mRNA
expression see Fig. 3C), and thereafter an inhibitor of
transcription, actinomycin D (1 μg/ml) or a solvent control,
was added into the culture. Total RNA was extracted before
and 2, 4, and 6 h after addition of actinomycin D. In the
absence of actinomycin D, COX-2 mRNA levels reduced
clearly faster in cells treated with a combination of SP600125
and LPS than in cells treated with LPS alone (Fig. 6A).
However, actinomycin D inhibited COX-2 mRNA degradation
(Fig. 6B) and SP600125 had no effect in the presence of
actinomycin D (Fig. 6C).

3.6. Cycloheximide enhanced COX-2 mRNA expression and
JNK activity in LPS-treated J774 macrophages

Cycloheximide has been reported to enhance JNK activity
[15].Western blots of Thr183/Tyr185-phosphorylated JNK and
Ser63-phosphorylated c-Jun showed that cycloheximide (0.1
μg/ml) enhanced LPS-induced JNK activation and c-Jun phos-
phorylation as compared with cells treated with LPS alone.
SP600125 markedly inhibited LPS-induced JNK and c-Jun
phosphorylation also in cycloheximide-treated cells (Fig. 7A).

To investigate whether cycloheximide would have an
opposite effect to that of SP600125, LPS-stimulated J774
Fig. 6. The effect of SP600125 on COX-2 mRNA half-life in LPS
stimulated J774 macrophages. In A, J774 macrophages were incubated
with LPS (10 ng/ml) or with a combination of LPS and SP600125
(10 μM). After 6 h solvent control was added into the cell culture.
Incubations were terminated at the indicated time points and the
extracted total RNA was subjected to RT-PCR. COX-2 mRNA levels
were normalized against GAPDH. In B, J774 macrophages were
incubated with LPS (10 ng/ml). After 6 h actinomycin D (Act D) or
solvent control was added into the cell culture. Incubations were
terminated at the indicated time points and the extracted total RNAwas
subjected to RT-PCR. COX-2 mRNA levels were normalized against
GAPDH. In C, J774 macrophages were incubated with LPS (10 ng/ml)
or with a combination of LPS and SP600125 (10 μM). After 6 h
actinomycin D (Act D) was added into the cell culture. Incubations
were terminated at the indicated time points and the extracted total
RNA was subjected to RT-PCR. COX-2 mRNA levels were
normalized against GAPDH. Mean±S.E.M., n=3.
cells were treated with cycloheximide, SP600125 and their
combination, and RNA was isolated after 12 h incubation.
Cycloheximide (0.1 μg/ml) increased LPS-induced COX-2
mRNA expression over 6-fold and SP600125 reduced the
effect by 65% (Fig. 7B).
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3.7. Alsterpaullone and indirubin-3′-monoxime did not inhibit
COX-2 expression in J774 macrophages

In addition to its inhibitory effect on JNK, SP600125 has
been shown to inhibit cyclin-dependent kinase 2 (CDK2) [16].
CDK2 inhibitors alsterpaullone and indirubin-3′-monoxime
have been shown to inhibit CDK2 with IC50 values of 15 nM
[17] and 0.44 μM [18], respectively. To test whether inhibition
ofCDK2would result in reducedCOX-2 expression,we treated
cells with LPS and CDK2 inhibitors alsterpaullone (50 nM) and
indirubin-3′-monoxime (1μM). Alsterpaullone and indirubin-
3′-monoxime did not reduce COX-2 expression (Fig. 8).
4. Discussion

In the present study, we found that a JNK inhibitor
SP600125 reduced COX-2 expression and PGE2
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production in activated J774 macrophages possibly
through enhanced COX-2 mRNA decay.

Consistently with earlier findings in Jurkat T cells
[12] we found that SP600125 inhibited LPS-induced
phosphorylation of c-Jun (which is a target of JNK) with
an IC50 of 5 to 10 μM in J774 macrophages. SP600125
inhibited also COX-2 expression and PGE2 production
at corresponding drug concentrations. N1-methyl-1,9-
pyrazolanthrone, a negative control compound that is
chemically related to SP600125 but does not inhibit
JNK at used concentrations [12], did not inhibit COX-2
expression. In addition to JNK, SP600125 has been
reported to inhibit cyclin-dependent kinase 2 (CDK2)
[16]. Therefore we tested the effects of two other CDK2
inhibitors, alsterpaullone [17] and indirubin-3-mono-
xime [18] on COX-2 expression. Neither of these
compounds inhibited COX-2 expression in our exper-
imental setting. These data suggest that the suppressive
effect of SP600125 on COX-2 expression found in the
present study is likely to be mediated by its inhibitory
effect on JNK.

Cycloheximide is used as a protein synthesis
inhibitor, but it is also known to stimulate JNK activity
even at concentrations lower than those needed for
inhibition of protein synthesis [15]. In the present study
cycloheximide (0.1 μg/ml) enhanced JNK activity and
COX-2 mRNA expression, and both of these effects
were inhibited by SP600125. These data further support
the idea that JNK enhances COX-2 expression in
activated macrophages, and that the suppressive action
of SP600125 on COX-2 expression is mediated by its
inhibitory effect on JNK.

In the present study, SP600125 reduced LPS-induced
COX-2 protein expression but it did not inhibit COX-2
mRNA expression when measured 3 h after LPS. In
contrast, when measured 24 h after addition of LPS, the
reduction of COX-2 mRNA expression was greater than
90% in SP600125-treated cells. These data suggest that
SP600125 did not alter the early transcriptional effects
of COX-2 in LPS-treated cells. In the further studies we
tried to estimate the effects of SP600125 on COX-2
mRNA degradation. LPS induced a transient COX-2
mRNA expression which peaked at 6 h after addition of
LPS. LPS-induced COX-2 mRNA levels reduced
clearly faster in SP600125-treated cells than in control
cells when followed from 6 h to 12 h after addition of
LPS. These results point to reduced stability of COX-2
mRNA in the presence of SP600125. Another explana-
tion would be that SP600125 inhibits mechanisms that
are related to sustained transcription of COX-2 but are
not involved in the early transcriptional activation of
COX-2 in response to LPS. In another series of
experiments, actinomycin D was added into the cell
culture at 6 h after addition of LPS to inhibit
transcription. Unexpectedly, LPS-induced COX-2
mRNA levels reduced much slower in actinomycin D-
treated cells than in control cells, and SP600125 had no
effect on COX-2 mRNA decay in the presence of
actinomycin D. The former effect could be due to
reduced production of a mRNA degrading factor in the
presence of actinomycin D, or due to a more direct
stabilizing effect of actinomycin D on COX-2 mRNA
(i.e. an effect that is not related to inhibition of
transcription). Actinomycin D has also earlier been
reported to stabilize COX-2 mRNA as well as
transferrin receptor mRNA [19,20]. Taken together,
the present data suggest that SP600125 reduced COX-2
mRNA levels in LPS-treated macrophages possibly by
destabilizing COX-2 mRNA by a mechanism that is
reversed by actinomycin D.

There is increasing body of evidence to support the
idea that regulation of COX-2 mRNA stability is a
significant mechanism to regulate COX-2 expression.
The AU-rich region (ARE) within the 3′-untranslated
region (3′-UTR) of COX-2 mRNA has been reported
to be important for the regulation of mRNA decay and
translation [19,21,22]. Sengupta et al. reported recently
that the RNA-binding protein HuR may be an effector
molecule that regulates COX-2 expression by binding
to and stabilizing ARE-containing regions in COX-2
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mRNA [23]. Tristetraproline (TTP) is another protein
that binds to AREs and it has been shown to
destabilize COX-2 mRNA [24] possibly through a
p38-dependent manner [25]. Taxanes seem to increase
COX-2 mRNA stability by a mechanism related to
HuR [22], whereas dexamethasone has been reported
to destabilize COX-2 mRNA [26,27]. In addition,
protein kinase C-βII [22,28] and JNK (present study)
pathways may be involved in the regulation of COX-2
mRNA stability.

JNK has previously been shown to regulate the
expression of iNOS, IL-2, IL-3 and vascular endothelial
growth factor (VEGF) by stabilizing their mRNAs [29–
32]. Our present findings suggest that JNK regulates
also COX-2 expression by decreasing its mRNA decay.
In the case of IL-2, the effects of JNK were reported to
be mediated via JNK-responsive element (JRE) in the
5′-UTR of IL-2 mRNA. Two RNA-binding proteins, Y
box-binding protein and nucleolin, were reported to
recognize this element [33]. The detailed mechanism by
which JNK mediates its effects on mRNA stability
remains to be studied.

SP600125 was introduced as the first small-
molecular inhibitor of JNK in primary human CD4
cell culture [12]. It has recently been shown to inhibit
COX-2 expression in RAW264 macrophages, primary
rat microglia cultures and human chondrocytes [34–
36]. In the present study we confirmed that effect in
LPS-treated J774 macrophages and provided further
support for the idea that the inhibitory effect of
SP600125 on COX-2 expression is due to inhibition of
JNK activity. In addition, the results show that
SP600125 down-regulates LPS-induced COX-2
mRNA levels not at early transcriptional phase but at
later time-points following exposure to LPS.

In conclusion, the present results show that
SP600125, an inhibitor of JNK, reduces COX-2
expression and PGE2 production in LPS-treated
macrophages possibly by enhancing COX-2 mRNA
decay. The results suggest that JNK has an important
role in the regulation of COX-2 expression following
inflammatory stimuli.
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Chondrocyte
is expressed in rheumatoid and osteoarthritic cartilage and produces pro-
inflammatory prostanoids in the joint. In the present study, we investigated the effects of disease modifying
anti-rheumatic drugs on COX-2 expression in chondrocytes. Unlike the other tested drugs, aurothiomalate
was found to inhibit COX-2 expression in chondrocytes. In the further studies, effects and mechanisms of
action of aurothiomalate were investigated in more detail. Aurothiomalate inhibited IL-1β-induced COX-2
protein expression and PGE2 production in chondrocytes in a dose-dependent manner. Because
aurothiomalate did not alter IL-1β-induced mRNA levels when measured 0–3 h after addition of IL-1β, its
effects on COX-2 mRNA degradation were tested by Actinomycin D assay. The half-life of COX-2 mRNA was
reduced from 3 h to less than 1.5 h in aurothiomalate-treated cells. The 3′-untranslated region (3′-UTR) of
COX-2 mRNA contains an ARE element which has been shown to bind mRNA stabilizing factor HuR.
Interestingly, aurothiomalate inhibited HuR expression which may explain its destabilizing effect on COX-2
mRNA. Aurothiomalate reduced COX-2 expression and PGE2 production also in human cartilage at drug
concentrations which have been measured in serum and synovial fluid during treatment with
aurothiomalate. The results show that aurothiomalate reduces COX-2 expression and PGE2 production in
chondrocyte cultures and in human cartilage. The action is likely mediated by enhanced COX-2 mRNA
degradation possibly through a mechanism related to reduced expression of HuR. The results provide a novel
mechanism of action for aurothiomalate which may be important in the treatment of arthritis.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Prostaglandins are present in a wide variety of human tissues.
Prostaglandins play an important role in inflammatory diseases
including rheumatoid arthritis and osteoarthritis, and regulate various
physiological responses like vascular tone, blood clotting, kidney
function, gastric secretion and reproduction (Dubois et al., 1998).
Prostaglandins are formed from arachidonic acid which is present in
the cellular membranes. Arachidonic acid released from the mem-
branes is metabolized by prostaglandin G/H synthase (cyclooxygen-
ase, COX) to prostanoids (Needleman et al., 1986; Turini and Dubois,
2002). Two isoforms of COX have been identified. COX-1 is
constitutively expressed and produces low physiological levels of
prostanoids. In an inflammatory focus, the expression of the inducible
isoform COX-2 is increased in response to pro-inflammatory cytokines
esearch Group, Medical School,
551 8082.

l rights reserved.
and bacterial products and it produces prostaglandins, especially
prostaglandin E2 (PGE2), which are important mediators of inflamma-
tion (Vane et al., 1998; Turini and Dubois, 2002).

In arthritis, COX-2 is expressed in chondrocytes and in the synovial
tissue (Amin et al., 1997; Siegle et al., 1998). Pro-inflammatory
cytokines IL-1 and TNF-α enhance COX-2 expression and PGE2
production in articular chondrocytes (Geng et al., 1995; Berenbaum
et al., 1996; Nieminen et al., 2005). Prostanoids produced by COX-2
pathway can exert catabolic or anabolic effects in the cartilage
depending on the microenvironment (Amin et al., 1999; Goldring and
Berenbaum 2004). Prostanoids and COX-inhibitors have been
reported to regulate collagen production, proteoglycan turnover, and
matrix metalloproteinase production in cartilage (Hardy et al., 2002;
Fernandez et al., 2004; Goldring and Berenbaum, 2004; Mastbergen et
al., 2006). In addition, increased COX-2 expression seems to mediate
shear stress-induced chondrocyte apoptosis (Healy et al., 2005). In
inflammation, COX-2 expression is regulated both at transcriptional
and post-transcriptional level. Depending on the stimulus and the cell
type, transcription factors NF-κB, CREB and AP-1 have been proposed
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to be important for COX-2 expression (Herschman, 2004), but less is
known about the post-transcriptional regulation of COX-2 expression.
Regulation of COX-2 mRNA stability may be therapeutically important
as dexamethasone has been found to down-regulate COX-2 expres-
sion by destabilizing its mRNA (Ristimäki et al.,1996; Lasa et al., 2001).
It has been shown that the 3′-untranslated region (3′-UTR) of COX-2
mRNA is able to bind HuR, which is a mRNA stabilizing factor (Dixon et
al., 2000; Sengupta et al., 2003). HuR has been reported to be involved
in the regulation of COX-2 mRNA stability in colon cancer cells (Dixon
et al., 2001; Denkert et al., 2006), mammary epithelial cells
(Subbaramaiah et al., 2003) and in breast (Denkert et al., 2004) and
gastric (Mrena et al., 2005) carcinoma.

Disease modifying anti-rheumatic drugs suppress inflammation,
and retard cartilage degradation and bone erosion in arthritis. The
molecular mechanisms of action of many traditional disease modify-
ing anti-rheumatic drugs are not known in detail. Their effects on
macrophages and synovial cells have been investigated but very little
is known on their effects on cartilage and inflammatory factors pro-
duced by affected chondrocytes. In the present study, we investigated
the effects of traditional disease modifying anti-rheumatic drugs on
COX-2 expression in chondrocytes. Unlike the other tested com-
pounds (cyclosporin A, hydroxychloroquine, leflunomide, its active
metabolite A771726 (3-cyano-3-hydroxy-N-(4-trifluoromethylphenyl)-
crotonamide), methotrexate and sulfasalazine), aurothiomalate was
found to be effective at clinically relevant drug concentrations. There-
fore, we investigated its effects and mechanisms of action in chon-
drocyte cultures and in human cartilage in more detail.

2. Materials and methods

2.1. Materials

Reagents were obtained as follows: goat polyclonal mouse COX-2
and actin antibodies were from Santa Cruz Biotechnology, Inc. (Santa
Cruz, CA, USA). Recombinant human IL-1β was purchased from R&D
Systems Inc. (Minneapolis, MA, USA). Hydroxychloroquine and
methotrexate were kindly provided by Minna Ruotsalainen, Orion
Pharma (Espoo, Finland) and cyclosporin A was supplied by
Calbiochem (La Jolla, CA, USA). All other reagents were from Sigma
Chemical Co. (St. Louis, MO, USA).

2.2. Cell culture

Immortalized murine H4 chondrocyte cell line developed in the
Laboratory of Experimental Rheumatology, University Medical Centre,
Nijmegen, The Netherlands (van Beuningen et al., 2002) was used in
cell culture experiments. Chondrocytes were grown at 37 °C in 5% CO2

atmosphere in Dulbecco's modified Eagle's medium (Cambrex
Bioproducts Europe, Verviers, Belgium) and Ham's F-12 medium
(Gibco, Paisley, Scotland, UK) (1:1, v/v). Culture media contained 10%
heat-inactivated fetal bovine serum, 100 U/ml penicillin, 100 µg/ml
streptomycin, and 250 ng/ml amphotericin B (all from Gibco, Paisley,
Scotland, UK). Cells were seeded on 24-well plates for prostaglandin
E2 measurements and on six-well plates for Western blot and RT-PCR.
Cell monolayers were grown for 48 h to confluence. Thereafter IL-1β
and the tested compounds were added in fresh culture medium and
incubated for indicated times.

2.3. Cartilage tissue

Cartilage tissue was obtained from the leftover pieces of total knee
replacement surgery from patients with osteoarthritis. The study was
approved by the ethics committee of Tampere University Hospital and
the patients gave their written approval. Full thickness pieces of
articular cartilage were removed aseptically from subchondral bone
with a scalpel and cut into small pieces. The cartilage samples were
incubated at 37 °C in 5% CO2 atmosphere in Dulbecco's modified
Eagle's medium containing 10% heat-inactivated fetal bovine serum,
100 U/ml penicillin, 100 µg/ml streptomycin, and 250 ng/ml
amphotericin B (all from Gibco, Paisley, Scotland, UK).

2.4. XTT test

Cell viability was tested using Cell Proliferation Kit II that mea-
sures cells' ability to metabolize sodium 30-[1-(phenylaminocarbonyl)-
3,4-tetrazolium]-bis-(4-methoxy-6-nitro) benzene sulphonic acid
hydrate (XTT) to formazan by mitochondrial dehydrogenase activity
that only occurs in viable cells (Boehringer Mannheim, Indianapolis,
IN, USA).

2.5. Prostaglandin E2 assays

At the indicated time points, the culture mediumwas collected for
PGE2 measurement and kept at −20 °C until assayed. Cartilage tissue
pieces wereweighed and the results were expressed as ng of PGE2/g of
cartilage tissue. PGE2 concentrations were determined by radio-
immunoassay using reagents from the Institute of Isotopes (Budapest,
Hungary).

2.6. Preparation of cell lysates for Western blot analysis

At the indicated time points, cells were rapidly washed with ice-
cold PBS and solubilized in cold lysis buffer containing 10 mM Tris–
HCl, 5 mM EDTA, 50 mM NaCl, 1% Triton-X-100, 0.5 mM phenyl-
methylsulfonyl fluoride, 1 mM sodiumorthovanadate, 20 µg/ml
leupeptin, 50 µg/ml aprotinin, 5 mM sodium fluoride, 2 mM sodium
pyrophosphate and 10 µM n-octyl-β-D-glucopyranoside. After incuba-
tion for 20 min on ice, lysates were centrifuged, and supernatants
weremixed in a ratio of 1:4 with SDS (sodium dodecyl sulfate) loading
buffer (62.5 mM Tris–HCl, pH 6.8, 10% glycerol, 2% SDS, 0.025%
bromophenol blue, and 5% β-mercaptoethanol) and stored at −20 °C
until analyzed. Protein concentrations in the samples were measured
by the Coomassie blue method (Bradford, 1976).

2.7. Preparation of cartilage samples for Western blot analysis

After 48 h incubation cartilage was deep frozen in liquid nitrogen
and then crushed into powder. Powder was added to cold lysis buffer
and samples for Western blot analysis made as described above.

2.8. Western blot analysis

Prior to Western blot analysis, the samples were boiled for 10 min.
Equal aliquots of protein (20 µg) were loaded on a 10% SDS–
polyacrylamide electrophoresis gel and electrophoresed for 1 h at
120 V in a buffer containing 95 mM Tris–HCl, 960 mM glycine, and
0.5% SDS. After electrophoresis, the proteins were transferred to
Hybond enhanced chemiluminescence nitrocellulose membrane
(Amersham, Buckinghamshire, UK) with semidry blotter at 2.5 mA/
cm2 for 60 min. After transfer, the membrane was blocked in TBS/T
(20 mM Tris–base pH 7.6, 150 mM NaCl, 0.1% Tween-20) containing
5% nonfat milk for 1 h at room temperature and incubated overnight
at 4 °C with COX-2 (SC-1745) or actin (SC-1616) antibody (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA) in TBS/T containing 5%
nonfat milk. Thereafter the membrane was washed 4× with TBS/T for
5 min, incubated with secondary antibody (SC-2020) coupled to
horseradish peroxidase (Santa Cruz Biotechnology, Inc., Santa Cruz,
CA, USA) in the blocking solution for 0.5 h at room temperature, and
washed four times with TBS/T for 5 min. Bound antibody was
detected using SuperSignal West Pico chemiluminescent substrate
(Pierce, Cheshire, UK) and FluorChem 8800 imaging system (Alpha
Innotech Corp., San Leandro, CA, USA). The quantitation of the
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chemiluminescent signal was carried out with the use of FluorChem
software version 3.1.

2.9. RNA extraction and real-time RT-PCR

Cell homogenization, RNA extraction and reverse transcription of
RNA to cDNAwere performed as described previously (Nieminen et al.,
2006). The primer and probe sequences and concentrations were
optimized according to manufacturer's guidelines in TaqMan Universal
PCRMasterMix Protocol part number 4304449 revision C andwere: 5′-
GCCAGGGCTGAACTTCGAA-3′ (mouse COX-2 forward primer, 300 nM),
5′-CAATGGGCTGGAAGACATATCAA-3′ (mouse COX-2 reverse primer,
300 nM), 5′-CTCACGAGGCCACTGATACCTATTGCATTG-3′ (mouse COX-2
probe, 150 nM, containing 6-FAM as 5′-reporter dye and TAMRA as
3′-quencher), 5′-TGTCCCCGGCAATGCT-3′ (mouse HuR forward primer,
300 nM), 5′-TCACGAATCACTTTCACATTGGT-3′ (mouse HuR reverse
primer, 300 nM), 5′-CCTCATCGGCGTCTTGCCCAA-3′ (mouse HuR
probe, 150 nM, containing 6-FAM as 5′-reporter dye and TAMRA as
3′-quencher), 5′-CTCAGAAAGCGGGCGTTGT-3′ (mouse TTP forward
primer, 300 nM), 5′-GATTGGCTTGGCGAAGTTCA-3′ (mouse TTP reverse
primer, 300 nM), 5′-CCAAGTGCCAGTTTGCTCACGGC-3′ (mouse TTP
probe, 200 nM, containing 6-FAM as 5′-reporter dye and TAMRA as
3′-quencher), 5′-GCATGGCCTTCCGTGTTC-3′ (mouse glyceraldehyde-
Fig.1. The effects of aurothiomalate on IL-1β-induced COX-2 protein expression and PGE2 pro
increasing concentrations of aurothiomalate. After 24 h, incubations were terminated, and CO
ml) and increasing concentrations of aurothiomalate. PGE2 concentrations in the culture me
stimulated with IL-1β (100 pg/ml) and treated with aurothiomalate (25 µM), gold chloride (2
acid (25 µM). After 24 h, incubations were terminated and COX-2 protein was measured b
radioimmunoassay (D). Dotted line represents the level of COX-2 expression and PGE2 prod
with cells treated with IL-1β alone.
3-phosphate dehydrogenase (GAPDH) forward primer, 300 nM), 5′-
GATGTCATCATACTTGGCAGGTTT-3′ (mouse GAPDH reverse primer,
300 nM), 5′-TCGTGGATCTGACGTGCCGCC-3′ (mouse GAPDH probe,
150 nM, containing 6-FAM as 5′-reporter dye and TAMRA as 3′-
quencher). PCR reaction parameterswere as follows: incubation at 50 °C
for 2 min, incubation at 95 °C for 10 min, and thereafter 40 cycles of
denaturation at 95 °C for 15 s and annealing and extension at 60 °C for
1 min. Each sample was determinated in duplicate.

A standard curve method was used to determine the relative
mRNA levels as described in the Applied Biosystems User Bulletin: A
standard curve for each gene was created using RNA isolated from IL-
1β-stimulated H4 chondrocytes. Isolated RNAwas reverse-transcribed
and dilution series of cDNA ranging from 1 pg to 10 ng were subjected
to real-time PCR. The obtained threshold cycle values were plotted
against the dilution factor to create a standard curve. Relative mRNA
levels in test samples were then calculated from the standard curve.
When calculating the results, COX-2, HuR and TTP mRNA levels were
first normalized against GAPDH.

2.10. Statistics

Results are expressed as the mean±S.E.M. When appropriate,
statistical significances of the differences were calculated by analyses
duction in chondrocytes. A, H4 chondrocytes were incubatedwith IL-1β (100 pg/ml) and
X-2 protein was measured byWestern blot. B, cells were incubated with IL-1β (100 pg/
dium were measured by radioimmunoassay after 24 h incubation. C and D, cells were
5 µM), thiomalic acid (25 µM) or a combination of gold chloride (25 µM) and thiomalic
y Western blot (C) and PGE2 concentrations in the culture medium were measured by
uction in the absence of IL-1β. Mean±S.E.M., n=3–4. ⁎⁎ indicates Pb0.01 as compared



Fig. 2. The effects of aurothiomalate on IL-1β-induced COX-2 mRNA expression in
chondrocytes. H4 chondrocytes were incubated with IL-1β (100 pg/ml) or IL-1β
(100 pg/ml) and aurothiomalate (25 µM). Incubations were terminated at the indicated
time points (A: 3 h, B: 6 h), and the extracted total RNA was subjected to real-time RT-
PCR. COX-2 mRNA levels were normalized against GAPDH. The dotted line represents
the level of COX-2 mRNA expression in the absence of IL-1β. Mean±S.E.M., n=3.
⁎⁎ indicates Pb0.01 as compared with cells treated with IL-1β alone.
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of variance supported by the Dunnett's multiple comparisons test.
Differences were considered significant at Pb0.05.

3. Results

3.1. Effects of aurothiomalate, cyclosporin A, hydroxychloroquine,
leflunomide, A771726, methotrexate and sulfasalazine on
COX-2 expression in H4 chondrocytes

COX-2 expression and PGE2 productionwere very low in resting cells
(Fig. 1A and B). IL-1β (100 pg/ml) enhanced COX-2 protein expression
and PGE2 production in H4 chondrocytes. We tested the effects of
different disease modifying anti-rheumatic drugs (aurothiomalate,
cyclosporin A, hydroxychloroquine, leflunomide, its active metabolite
A771726, methotrexate and sulfasalazine; all 10 µM) on COX-2
expression in H4 chondrocytes and found that aurothiomalate inhibited
COX-2 expression by 54% whereas other tested drugs had minor or no
effect (methotrexate 23% inhibition, A771726 21% inhibition, sulfasala-
zine 12% inhibition, cyclosporin A 10% inhibition, leflunomide 5%
inhibition and hydroxychloroquine no inhibition) (Table 1).

3.2. Aurothiomalate inhibited COX-2 expression and PGE2 production in
H4 chondrocytes in a dose-dependent manner

Aurothiomalate reduced COX-2 protein expression in a concentra-
tion-dependent manner (0.1 µM: 20% inhibition, 1 µM: 42% inhibition,
10 µM: 63% inhibition and 50 µM: 74% inhibition of IL-1β induced
COX-2 expression) (Fig. 1A). Aurothiomalate had also a clear, dose-
dependent inhibitory effect on IL-1β-induced PGE2 production (Fig.
1B). In further studies we used aurothiomalate at the concentration of
25 µM which is clinically achievable during treatment with aurothio-
malate (Gerber et al., 1972).

In order to investigate whether the effect of aurothiomalate on
COX-2 expression and PGE2 production was due to the effect of gold,
thiomalate or the combination of them, we studied the effects of gold
chloride and thiomalic acid and their combination on COX-2
expression and PGE2 production in H4 chondrocytes. Gold chloride
(25 µM) suppressed IL-1β-induced COX-2 expression and PGE2
production by more than 80%, whereas thiomalic acid (25 µM) did
not have any effect on COX-2 expression or PGE2 production. The
inhibitory effect of the combination of gold chloride and thiomalic
acid was similar to that of gold chloride alone which was close to that
of aurothiomalate (Fig. 1C and D).

To rule out direct cytotoxic effects, XTT test was used. The test
measures cells' mitochondrial dehydrogenase activity that only occurs
in viable cells. Triton-X (0.1%) was used as a positive control of cell
death. None of the used compounds showed cytotoxic effects when
tested in similar conditions where the experiments were carried out
(data not shown).
Table 1
Effects of disease modifying anti-rheumatic drugs on IL-1β-induced COX-2 expression
in H4 chondrocytes

Compound Concentration
(µM)

COX-2 protein (% of IL-1β induced)

IL-1β 100

+Aurothiomalate 10 46.1±6.8a

+Methotrexate 10 76.8±2.0
+A771726 10 78.9±9.3
+Sulfasalazine 10 87.7±10.7
+Cyclosporin A 10 89.7±17.6
+Leflunomide 10 95.2±1.4
+Hydroxychloroquine 10 100.1±11.6

Cells were incubated for 24 h with the tested disease modifying anti-rheumatic drug
(10 µM) and IL-1β (100 pg/ml). COX-2 protein was measured by Western blot. Results
are expressed as mean±S.E.M., n=3.

a Indicates Pb0.01 as compared with cells treated with IL-1β alone.
3.3. Aurothiomalate inhibited COX-2 mRNA expression in
H4 chondrocytes

We used real-time RT-PCR to investigate the effects of aurothio-
malate on IL-1β-induced COX-2 mRNA expression. Aurothiomalate
(25 µM) did not inhibit COX-2 mRNA expression when measured 3 h
after addition of IL-1β (Fig. 2A). In contrast, when measured after 6 h
incubation, IL-1β-induced COX-2 mRNA levels were reduced by about
80% in aurothiomalate-treated cells as compared to the cells cultured
with IL-1β in the absence of aurothiomalate (Fig. 2B).
Fig. 3. The effects of aurothiomalate on COX-2 mRNA half-life in IL-1β-stimulated
chondrocytes. H4 chondrocytes were incubated with IL-1β (100 pg/ml) or with a
combination of IL-1β (100 pg/ml) and aurothiomalate (25 µM). After 4 h incubation
actinomycin D (Act D) was added into the cell culture to stop transcription. Incubations
were terminated at the indicated time points (1, 2 and 4 h) after addition of Act D and
the extracted total RNA was subjected to real-time RT-PCR. COX-2 mRNA levels were
normalized against GAPDH. Mean±S.E.M., n=3.



Fig. 5. The effects of aurothiomalate on IL-1β-induced COX-2 protein expression and
PGE2 production in human cartilage. Cartilage samples were incubated with IL-1β
(10 ng/ml) or a combination of IL-1β (10 ng/ml) and aurothiomalate (25 µM). After 48 h,
incubations were terminated, and COX-2 protein was measured by Western blot (A),
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3.4. Aurothiomalate decreased COX-2 mRNA half-life in H4 chondrocytes

In further studies, we measured the effects of aurothiomalate on
COX-2 mRNA degradation by Actinomycin D assay. H4 chondrocytes
were exposed to IL-1β or a combination of IL-1β and aurothiomalate
for 4 h (which represents the peak level of COX-2 mRNA expression in
response to IL-1β in these cells), and thereafter an inhibitor of
transcription, actinomycin D (1 µg/ml) or a solvent control, was added
into the culture. Total RNA was extracted before and 1, 2 and 4 h after
addition of actinomycin D. Real-time RT-PCR analysis showed that
when transcription was blocked with actinomycin D, the levels of COX-
2 mRNA decreased faster in aurothiomalate-treated cells than in
untreated cells (Fig. 3). The half-life of COX-2 mRNA was approxi-
mately 3 h in cells treated with IL-1β only, but it was reduced to
less than 1.5 h in cells treated with a combination of IL-1β and
aurothiomalate.

3.5. Aurothiomalate reduced HuR mRNA levels but did not have an effect
on TTP mRNA in H4 chondrocytes

The 3′-untranslated region (3′-UTR) of COX-2 mRNA contains an
ARE element which has been shown to bind regulatory protein HuR
which stabilizes COX-2 mRNA (Dixon et al., 2001; Katsanou et al.,
2005). We investigated whether aurothiomalate has an effect on HuR
mRNA expression. Aurothiomalate inhibited HuR mRNA expression
when measured 2 and 6 h after addition of IL-1β (Fig. 4A). At 6 h time
point aurothiomalate reversed totally the IL-1β-induced HuR mRNA
expression. Tristetraproline (TTP) is another ARE-binding protein, and
it has been shown to destabilize COX-2 mRNA (Sawaoka et al., 2003).
Aurothiomalate had no effect on IL-1β-induced TTP mRNA expression
(Fig. 4B).
Fig. 4. The effects of aurothiomalate on IL-1β-induced HuR and TTPmRNA expression in
chondrocytes. H4 chondrocytes were incubated with IL-1β (100 pg/ml) or a
combination of IL-1β (100 pg/ml) and aurothiomalate (25 µM). Incubations were
terminated at the indicated time points (after 2 h or 6 h), and the extracted total RNA
was subjected to real-time RT-PCR. HuR (A) and TTP (B) mRNA levels were measured
and normalized against GAPDH. Mean±S.E.M., n=3. ⁎⁎ indicates Pb0.01 as compared
with cells treated with IL-1β alone.

and PGE2 concentrations in the culture medium were measured by radioimmunoassay
(B). The dotted line represents the level of COX-2 expression and PGE2 production in the
absence of IL-1β. Mean±S.E.M., n=5–6. ⁎⁎ indicates Pb0.01 as compared with cells
treated with IL-1β alone.
3.6. Aurothiomalate inhibited COX-2 expression and PGE2 production in
human cartilage

To study the clinical relevance of the finding, we investigated the
effects of aurothiomalate on COX-2 expression and PGE2 production in
human cartilage. Because of the limited amount of the tissue, only one
drug concentration could be tested. The aurothiomalate concentration
of 25 µM was selected for the experiments on the basis of the
knowledge of the pharmacokinetics of aurothiomalate (Gerber et al.,
1972; Freyberg et al., 1941). Aurothiomalate (25 µM) reduced IL-1β-
induced COX-2 protein expression (Fig. 5A) and PGE2 production by
about 50% (Fig. 5B) in human cartilage.

4. Discussion

In the present study, we investigated the effects of traditional
disease modifying anti-rheumatic drugs on COX-2 expression in
chondrocytes. Unlike cyclosporin A, hydroxychloroquine, leflunomide,
its active metabolite A771726, methotrexate and sulfasalazine,
aurothiomalate was effective at clinically relevant drug concentra-
tions, and its effects and mechanisms of action were investigated in
more detail. We found that aurothiomalate reduced COX-2 expression
and PGE2 production in activated H4 chondrocytes and in human
cartilage, and the mechanism of action was related to reduced COX-2
mRNA stability and HuR expression.

Consistently with earlier findings in peritoneal macrophages
(Yamashita et al., 2003), rat astrocytes (Pistritto et al., 1999) and
human peripheral blood mononuclear cells (Ohta et al., 1986), we
found that aurothiomalate inhibited PGE2 production in chondrocyte
cultures and in human cartilage. Whereas aurothiomalate seems not
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to inhibit PGE2 production in human polymorphonuclear leucocytes
(Parente et al., 1986; Moilanen et al., 1988). The inhibitory effect on
PGE2 production has been supposed to be involved in the anti-
inflammatory effects of aurothiomalate (Vargas et al., 1987) but the
mechanisms mediating its suppressive effects on PGE2 production
were not known. In the present study, aurothiomalate inhibited COX-2
expression and PGE2 production in chondrocyte cultures and in
human cartilage at drug concentrations that are clinically achievable.
The steady-state serum gold levels during aurothiomalate treatment
have been reported to be 8.5–28.5 µM (Gerber et al., 1972), and its
concentrations in synovial fluid are related to those found in plasma
(Freyberg et al., 1941).

Aurothiomalate is a gold salt of thiomalic acid. In order to in-
vestigate whether the effects of aurothiomalate on COX-2 expression
and PGE2 production were due to the effect of gold, thiomalate or
the combination of them, we studied the effects of gold chloride
and thiomalic acid and their combination on COX-2 expression and
PGE2 production. Our results showed that gold chloride suppressed
IL-1β-induced COX-2 expression and PGE2 production, whereas
thiomalic acid had no effect. The inhibitory effect of the combination
of gold chloride and thiomalic acid was related to that of gold
chloride alone and that of aurothiomalate. This is in line with pre-
vious findings showing that the derivatives of thiomalate without
gold had no effect in rat adjuvant arthritis (Walz et al., 1983). Gold
chloride has previously been shown to inhibit also TNF-α, IL-1β and
IL-6 production in LPS-treated human THP-1 monocytes (Stern et al.,
2005).

In the present study, aurothiomalate reduced IL-1β-induced COX-2
protein expression but did not inhibit COX-2 mRNA levels when
measured 3 h after addition of IL-1β. In contrast, when measured 6 h
after addition of IL-1β, aurothiomalate reduced IL-1β-induced mRNA
expression by about 80%. This suggested that aurothiomalate treat-
ment facilitated COX-2 mRNA degradation, and this hypothesis was
tested by the mRNA degradation assay. Actinomycin D, an inhibitor of
transcription, was added to the cells 4 h after IL-1β which represents
the peak level of IL-1β-induced COX-2mRNA expression in these cells.
The half-life of COX-2 mRNAwas reduced from 3 h to less than 1.5 h in
cells treated with aurothiomalate. To our knowledge, the destabilizing
effect of aurothiomalate on COX-2 mRNA has not been reported
earlier, and that mechanism could well explain its inhibitory effects on
COX-2 expression and PGE2 production in inflammation.

Post-transcriptional regulation of COX-2 expression at the level of
mRNA stability seems to be an important mechanism during
inflammation. It has been shown that the 3′-untranslated region (3′-
UTR) of COX-2 mRNA is able to bind HuR, which is a mRNA stabilizing
factor (Dixon et al., 2000; Sengupta et al., 2003). HuR belongs to a
family of ELAV (embryonic-lethal abnormal vision)-like proteins and it
is ubiquitously expressed (Good, 1997; Nabors et al., 1998). HuR has
been reported to be involved in the regulation of COX-2 mRNA
stability in colon cancer cells (Dixon et al., 2001; Denkert et al., 2006),
mammary epithelial cells (Subbaramaiah et al., 2003) and in breast
(Denkert et al., 2004) and gastric (Mrena et al., 2005) carcinoma.
Because aurothiomalate reduced COX-2 mRNA stability, we measured
its effects on HuRmRNA levels. Interestingly, aurothiomalate inhibited
HuR mRNA levels when measured 2 and 6 h after addition of IL-1β,
and at the 6 h time point, aurothiomalate totally reversed IL-1β-
induced HuR mRNA expression. Inhibition of HuR expression may
explain at least in part aurothiomalate's ability to destabilize COX-2
mRNA. Tristetraproline (TTP) is another protein that binds to AREs,
and it has been shown to destabilize COX-2 mRNA (Sawaoka et al.,
2003) possibly through a p38-dependent mechanism (Tchen et al.,
2004). We studied the effects of aurothiomalate also on TTP mRNA
expression. Aurothiomalate had no effect on IL-1β-induced TTPmRNA
expression in H4 chondrocytes. However, the results do not rule out
the possibility that aurothiomalate may alter the activation or activity
of TTP.
Little is known on the pathophysiological and pharmacological
factors that regulate COX-2 mRNA stability. Taxanes seem to increase
COX-2 mRNA stability by a mechanism related to HuR (Subbaramaiah
et al., 2003). Also transforming growth factor β (Sheng et al., 2000;
Harding et al., 2006) and glycogen synthase kinase-3β (Thiel et al.,
2006) have been reported to increase COX-2 mRNA stability whereas
dexamethasone and thalidomide were found to destabilize COX-2
mRNA (Ristimäki et al., 1996; Lasa et al., 2001; Jin et al., 2007). In
addition, protein kinase C-βII (Yu et al., 2003; Subbaramaiah et al.,
2003) and JNK (Nieminen et al., 2006) pathways may be involved in
the regulation of COX-2 mRNA stability. The present study adds
aurothiomalate to the compounds that down-regulate COX-2 expres-
sion by destabilizing its mRNA.

Disease modifying anti-rheumatic drugs suppress inflammation,
and reduce cartilage degradation and bone erosion in arthritis. The
detailed molecular mechanism of action of many traditional disease
modifying anti-rheumatic drugs is poorly understood. Their effects on
leukocytes and synovial cells have been investigated but very little is
known on their effects on chondrocytes in affected cartilage. In
arthritis, COX-2 is highly expressed in the cartilage, and its expression
is enhanced by pro-inflammatory cytokines IL-1 and TNF-α (Hardy et
al., 2002; Abramson and Yazici 2006). Because chondrocytes seem to
be a forgotten target in arthritis, we decided to investigate the effects
of traditional disease modifying anti-rheumatic drugs on COX-2
expression and PGE2 production in chondrocytes. Interestingly,
aurothiomalate was effective whereas cyclosporin A, hydroxychlor-
oquine, leflunomide, its active metabolite A771726, methotrexate and
sulfasalazine had only little or no effect. Aurothiomalate has proved to
be anti-inflammatory and anti-erosive in the treatment of arthritis,
and it has been shown to control symptoms and disease activity of
rheumatoid arthritis (Luukkainen et al., 1977; Munro et al., 1998;
Sander et al., 1999, Lehman et al., 2005). However, its adverse effects
have limited its use. The present results extend our understanding on
the molecular mechanisms of action of aurothiomalate and they can
be utilized in the drug development for arthritis.

Gold was originally introduced to the treatment of tuberculosis.
Although ineffective in tuberculosis it was found serendipitously to
have anti-rheumatic properties, and has been used to treat patients
with rheumatoid arthritis since the 1920s (Forestier, 1935). Despite
extensive clinical history in the treatment of rheumatoid arthritis, the
mechanisms of anti-inflammatory action of gold compounds have not
yet been fully defined. Aurothiomalate has been reported to suppress
IL-8 production in endothelial cells, peripheral blood mononuclear
cells (Seitz et al., 1992) and rheumatoid synoviocytes (Loetscher et al.,
1994) as well as to inhibit IL-12 production and IL-2 receptor
expression in T cells (Sfikakis et al., 1993). Seitz has reported inhibition
of IL-1β production and caspase-1 activity in THP-1 monocytes (Seitz
et al., 2003). Aurothiomalate has also been shown to inhibit serum IL-6
levels in rheumatoid arthritis patients (Lacki et al., 1995). Yanni
reported that administration of aurothiomalate resulted in reduced
accumulation of monocytes and macrophages in rheumatoid arthritis
synovial membranes and significant inhibition of TNF-α, IL-1β and IL-
6 expression in these cells (Yanni et al., 1994). The pharmacology of
gold compounds in rheumatoid arthritis has been presented and
discussed in an excellent review by Noriega and Harth (1997).
However, very little is known about the molecular effects of auro-
thiomalate on chondrocytes although it has been shown to retard
cartilage degradation (Luukkainen et al., 1977; Sander et al., 1999,
Lehman et al., 2005). Recently, aurothiomalate was shown to inhibit
iNOS expression and NO production in H4 chondrocytes and in
human osteoarthritic cartilage (Vuolteenaho et al., 2005). In the
present study, we found that aurothiomalate reduced PGE2 produc-
tion and COX-2 expression in chondrocyte cultures and in human
cartilage and that was related to inhibition of COX-2 mRNA stability
and to reduced HuR expression. Because HuR is a factor that regulates
the stability of the mRNAs of COX-2 and many other inflammatory
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genes, some of the above mentioned effects of aurothiomalate on
inflammatory mediators may be explained by the same molecular
mechanism, that we relate to reduced COX-2 expression, i.e. through
suppressed HuR expression and enhanced degradation of the target
mRNA.

In conclusion, the present results show that aurothiomalate
reduces COX-2 expression and PGE2 production in IL-1β-treated
chondrocytes and in human cartilage. The mechanism of action is
most likely related to aurothiomalate's ability to enhance COX-2
mRNA degradation. Aurothiomalate inhibited also the expression of a
mRNA stability regulating protein, HuR, which provides a provisional
mechanism for COX-2 mRNA destabilization. The results offer a novel
mechanism for the anti-inflammatory action of aurothiomalate, and
stress chondrocytes and their products as important targets in drug
development for arthritis.
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