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Abstract

The mechanisms leading to latency and reactivation of human tuberculosis are still unclear, mainly due to the lack of
standardized animal models for latent mycobacterial infection. In this longitudinal study of the progression of a
mycobacterial disease in adult zebrafish, we show that an experimental intraperitoneal infection with a low dose (,35
bacteria) of Mycobacterium marinum, results in the development of a latent disease in most individuals. The infection is
characterized by limited mortality (25%), stable bacterial loads 4 weeks following infection and constant numbers of highly
organized granulomas in few target organs. The majority of bacteria are dormant during a latent mycobacterial infection in
zebrafish, and can be activated by resuscitation promoting factor ex vivo. In 5–10% of tuberculosis cases in humans, the
disease is reactivated usually as a consequence of immune suppression. In our model, we are able to show that reactivation
can be efficiently induced in infected zebrafish by c-irradiation that transiently depletes granulo/monocyte and lymphocyte
pools, as determined by flow cytometry. This immunosuppression causes reactivation of the dormant mycobacterial
population and a rapid outgrowth of bacteria, leading to 88% mortality in four weeks. In this study, the adult zebrafish
presents itself as a unique non-mammalian vertebrate model for studying the development of latency, regulation of
mycobacterial dormancy, as well as reactivation of latent or subclinical tuberculosis. The possibilities for screening for host
and pathogen factors affecting the disease progression, and identifying novel therapeutic agents and vaccine targets make
this established model especially attractive.
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Introduction

Tuberculosis (TB) is caused by Mycobacterium tuberculosis, a highly

specialized pathogen capable of evading the immune defense by

various strategies. The success of the pathogen and the shortcom-

ings of current medical interventions are reflected by the high

prevalence of M. tuberculosis infection; one third of the world’s

population has been estimated to carry the pathogen and to have a

latent, subclinical infection [1], which can be diagnosed using

immunological sensitization to M. tuberculosis antigens [2]. Note-

worthy, this asymptomatic infection is thought to consist of a

variety of disease states that differ in bacterial phenotypes and

burdens. [2,3].

According to the report of the World Health Organization

(WHO), TB caused 1.7 million deaths and 9.4 million new cases in

2009, especially in developing countries. Approximately 5–10% of

carriers develop an active disease during their lifetime [4], which

reflects the spectrum of disease states within the population with

latent TB [2,3]. This number is even higher in countries with a

high prevalence of human immunodeficiency virus (HIV) [4]. The

current preventive treatment against TB, the Bacille Calmette-

Guérin (BCG) vaccine, protects children against the most severe

forms of TB (TB meningitis or disseminated TB), but its efficacy in

adults has been questioned and is thought to have limited or no

protection against the disease [5,6]. A worrisome shortcoming is

that BCG does not protect against the reactivation of latent,

subclinical TB [7]. The prevalence of HIV seems to be one of the

most important attributes to the increase in the number of active

TB cases [5,8]. Tumor necrosis factor (TNF) neutralizing

treatments often used in autoinflammatory diseases have also

been found to increase susceptibility to TB [4,5], as do

malnutrition, tobacco smoke, indoor air pollution, alcoholism,

insulin dependent diabetes, renal failure, and immune suppressive

treatments, such as glucocorticoids [4]. These factors may either
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cause the primary infection to progress, or an existing subclinical

infection to reactivate. In general, the mechanisms for the

reactivation of tuberculosis are not well established and warrant

further investigation.

Various animal models have been used for studying mycobac-

terial infections with the ultimate aim of understanding human

TB [8]. The zebrafish has lately been established as a new,

genetically tractable model for studying host–mycobacterium

interactions [9–11]. Zebrafish are naturally susceptible to

Mycobacterium marinum [12–14], which is a close relative of M.

tuberculosis [15]. M. marinum-induced disease in zebrafish shares

the main pathological and histological features, including necrotic

granulomas, with human TB [16] and is thus a highly attractive

model for the human disease. Zebrafish larvae have been widely

used for studying innate immune responses to M. marinum

infection [9,11,17]. However, adaptive immune responses have

also been reported to be essential for controlling human TB

[18,19] and are also important for controlling M. marinum

infection in adult zebrafish [10].

Studies on the latency, dormancy and reactivation of TB have

been impeded by the lack of applicable animal models, as

spontaneous latency without the help of chemotherapeutics has

only been successful in the rabbit [20], and in macaque [21]

models. Here, we show that a low-dose M. marinum infection

spontaneously develops into a latent, non-progressive disease in

adult zebrafish, with a static number of granulomas and a stable

bacterial burden mainly consisting of dormant bacteria. The

existence of a large dormant population of mycobacteria seems to

be connected to the latent disease. In our model, the stable latent

disease can be experimentally reactivated with c-radiation,

essentially mimicking the immune suppression-induced reactiva-

tion in human TB. This study thus presents a novel vertebrate

platform suitable for large scale genetic screening, as a means of

characterizing host and pathogen mechanisms underlying the

transitions in TB from an acute infection to latency, and to a

reactivated infection.

Results

A low-dose M. marinum infection leads to a latent
disease with stable bacterial loads after 4 weeks

The lack of suitable and well-established animal models

mimicking latent, subclinical TB in humans prompted us to

investigate if such a model could be developed in zebrafish. First,

we compared several methods for infecting adult zebrafish with

their natural pathogen, M. marinum, to create a physiological

infection model leading to a static phase after the primary active

disease. We infected zebrafish either by injecting different bacterial

doses into the abdominal cavity or by bathing, to find a suitable

dose and an infection route inducing a latent infection with low

mortality. The experimental groups were followed up to 32 weeks

for survival. A high-dose intraperitonaeal (i.p.) infection

(2,0296709 cfu) was characterized by high mortality (end-point

mortality 64%), whereas most fish infected with a low dose

(34615 cfu) generally survived (end-point mortality 25%)

(Figure 1A). A group of fish was also infected with 9,075 6

2,681 cfu, but this dose lead to an extremely high mortality (80%

mortality in 5 weeks)(data not shown) and the group was excluded

from further characterizations. Bathing the fish in water contain-

ing 2.46106 cfu/ml lead to an infection only in 50% of the

individuals (determined by bacterial loads), which then developed

a similar level of end-point mortality as the low-dose injected fish

(data not shown). Because of the low incidence rate, bathing was

not considered a suitable method for studying latent mycobacterial

infection in adult zebrafish.

Latent human TB is diagnosed using tuberculin skin test (TST),

interferon-c release assays (IGRA) and characterized by a lack of

clinical signs [2]. In our model, we are able to directly follow the

progression of the disease by quantifying total mycobacterial

burdens within the whole organism. For this purpose we

developed a new, qPCR-based method specific for M. marinum

(Supporting information, Text S1, Figure S1). In the high-dose

group, an average bacterial load of 6.06105 cfu/fish

(SD = 6.56105) was measured as early as 1 week post infection

(wpi). Bacterial growth during the first week after injection was

close to logarithmic, suggesting that the bacteria grew in an

unrestricted manner. During the 32-week follow up, the average

burdens rose to 3.06106 cfu/fish (SD = 3.26106), indicating that

the high dose i.p. injection leads to a chronic progressive disease.

Also in the low-dose group, the bacteria grew almost logarithmi-

cally during the first week of infection. The average bacterial load

increased from the 1 weeks’ 56103 (SD = 3.16103) to 4 weeks’

5.26105 cfu/fish (SD = 1.16106). After the four-week time point,

however, the average bacterial burden ceased to grow, remaining

at an unaltered level until the end of the experiment (at 32 weeks

4.46105 cfu 6 4.46105/fish) (Figure 1B). This result suggests that

experimental infection of adult zebrafish by an i.p. injection of a

small dose of M. marinum leads to an active primary infection,

followed by a controlled state in most individuals.

Granuloma formation and spreading of the infection
ceases at the onset of the stable state infection in the
low-dose infection model

In order to get a more detailed and biologically relevant

measure of the progression of the disease in our infection model,

we carried out histological analyses at 2, 4, 8 and 20 wpi. Ziehl-

Neelsen staining for mycobacteria was used for the quantification

of granulomas and affected target organs. The gonads, pancreas,

liver, muscle, mesentery, spleen, gut and kidney were specifically

assessed for the presence of mycobacterial lesions. Early granu-

lomatous structures characterized by cellular and bacterial

Author Summary

One third of the world’s population has been estimated to
be infected with Mycobacterium tuberculosis, which under
the appropriate set of circumstances causes lethal lung
disease. According to current understanding, mycobacte-
ria can persist in their host without causing symptoms – a
state referred to as latency or subclinical infection.
However, if the immune system of the host becomes
compromised, for example due to immunosuppressive
medical treatments or HIV, the disease can become
reactivated with detrimental consequences. The mecha-
nisms leading to latency are not well understood. Latent
tuberculosis responds poorly to antibiotics, and there is
currently no effective vaccine against latent or reactivated
tuberculosis. Using Mycobacterium marinum, a natural fish
pathogen and a close relative of M. tuberculosis, we were
able to induce a disease in adult zebrafish closely
mimicking the human latent disease. We show that a
dormant mycobacterial population is present in animals
with a latent mycobacterial disease. Dormancy is also
thought to occur in human tuberculosis. In addition, we
present a method, with which the latent disease can be
experimentally reactivated. Despite the evolutionary dis-
tance between man and fish, the zebrafish presents itself
as a unique model for studying the mechanisms related to
latency and reactivation.

Latent Mycobacterial Infection in Zebrafish
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aggregation were formed by 2 wpi in both dose groups (Figure 2A–

D). The general appearance of the structures developed in the

course of the infection such that at 20 weeks, most granulomas

were insulated from the surrounding tissue by a fibrotic and/or

cellular cuff (Figure 2E–H).

Granulomas were counted in representative sample sets for each

individual (Figure 1D). Unsurprisingly, the fish infected with a low

dose had significantly less granulomas at 2, 8 and 20 weeks

following infection than the high-dose infected fish. The number of

granulomas thus seems to be determined by the initial dose. In the

high-dose infection, the number of granulomas significantly

increased between 4 and 20 weeks, whereas in the low-dose

infection, the number did not increase after the first 4 weeks,

further supporting the relevance of our model for latent TB.

The number of affected organs was found to be determined by

the initial infection dose. At 2 wpi, the low-dose infected fish had

lesions in ,2 organs (most often in the pancreas and gonads),

whereas fish infected with the high-dose had bacteria in ,6 organs

(pancreas, kidney, gonads, liver, muscle, spleen). The number

remained relatively unaltered for the duration of the experiment

(Figure 1C), with the exception of a slight increasing trend in the

high-dose group between 2 and 20 weeks. In the low-dose group,

an increase between 2 and 4 weeks was seen (not significant), but

the number of affected organs then ceased to grow, suggesting that

the infection was well-controlled.

In conclusion, the histological analysis supports the idea that the

high-dose infection is progressive with an increasing number of

granulomas in various target organs, whereas the low-dose

infection resembles a latent infection with unaltered numbers of

granulomas in few target tissues.

Cytokine responses to M. marinum differ between low-
dose and high-dose infection

To build a more detailed understanding on the different

outcomes between the high and low dose infection, the early

immune responses were studied by measuring cytokine expression

levels in the internal organs of infected fish by reverse transcription

Figure 1. Zebrafish mortality, the development of bacterial load and the number of lesions have dose-dependent patterns. Adult
zebrafish were i.p. infected with either a low (34615 cfu) (n = 180) or a high dose (20296709 cfu) (n = 104) of M. marinum. (A) Survival was followed
for 32 weeks. * P,0.05 (B) The figure shows the average loads for 5 fish (except 32 wk high dose, n = 2). Low-dose statistics: * sig. diff. from 1 wk,
** sig. diff. from 1 and 2 wk. High-dose statistics: *** sig. diff. from 1, 2, 8, 11 and 20 wk. Low-dose vs. high-dose statistics: loads at time-points marked
with { are sig. diff. (C) By default, 4 individuals per dose were analyzed by Ziehl-Neelsen staining (except 20 wk high dose, n = 3) per time-point The
gonads, pancreas, liver, muscle, mesentery, spleen, gut and kidney were assessed and the number of organs with visible bacteria was determined.
*P,0.05. (D) The total number of granulomas in a sample set for each individual was counted. * P,0.05.
doi:10.1371/journal.ppat.1002944.g001

Latent Mycobacterial Infection in Zebrafish
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quantitative PCR (q-RT-PCR). One day after infection, the high-

dose infection caused an induction of tumor necrosis factor alpha

(TNFa, ZDB-GENE-050317-1) by 6.5-fold (SD = 6.6), interleukin 6

(IL-6, ZDB-GENE-120509-1) by 9.6-fold (SD = 10.4) and interleukin

12 (IL-12, ZDB-GENE-060724-1) by 2.7-fold (SD = 1.8)

(Figure 3C), but no induction was seen in interleukin 1 beta (IL-1b,

ZDB-GENE-040702-2). Among the low-dose infected fish, only IL-

6 was induced but at a lower level, 3.9-fold induction, SD = 4.8,

compared to high-dose infection at 1 dpi.

As the early innate responses are known to regulate the

activation of adaptive responses, it was not surprising that

differences in interferon gamma 1–2 (IFNc1–2, ZDB-GENE-

040629-1) and inducible nitric oxide synthase 2b (Nos2b, ZDB-GENE-

080916-1) levels were seen between the high and low dose groups

at later time points (2–7 wpi). Nos2b was consistently more highly

induced with the high dose than with the low dose at 2, 4 and 7

weeks (Figure 3D). The expression was at the highest level already

at 2 wpi (high-dose group 1,508-fold, SD = 2,136, low-dose group

123-fold, SD = 167), after which the level declined in both dose

groups, still remaining strongly induced.

In IFNc1–2 expression, the high dose caused a 13.7-fold

induction (SD = 16) at 2 weeks. The low dose caused a more

moderate 3.0-fold induction (SD = 2.8 (Figure 3F)), which was not

different from the induction in the buffer-injected group. At 4 wpi,

no difference was detected in IFNc1–2 levels. Noteworthy, at

7 wpi, the IFNc1–2 expression in the high-dose group had

decreased to 1.8-fold induction (SD = 1.6), whereas in the low-

dose group the level had increased to 8.8-fold (SD = 11.0),

compared to uninfected controls. Thus, the kinetics of IFNc1–2

show a decreasing trend in the high-dose group and an increasing

trend in the low-dose group, but the differences at late time-points

are not significant. In conclusion, these results suggest that the

strong early cytokine responses with the high infection dose are

associated with Nos2b induction at an early phase of infection

Figure 2. M. marinum induces the formation of granulomas that mature into well-defined structures during an infection. In fish
infected with a low dose (34615 cfu) of M. marinum, Ziehl-Neelsen staining at 2 wpi commonly reveals areas with free bacteria (C). Some slightly
better formed and restricted areas containing bacteria, here referred to as early granulomas, are also seen (A), but as shown in (B) trichrome staining
of the adjacent slide, encapsulation around the mycobacterial lesions is absent at the early stage of infection. At 20 weeks, fish that have survived
have mature granulomas (D–F) many of which are multicentric surrounded by a fibrous capsule (D&E). (E) Trichrome staining shows the fibrous
capsule in blue (F). The amount of bacteria inside granulomas has increased from the earliest time-points.
doi:10.1371/journal.ppat.1002944.g002

Latent Mycobacterial Infection in Zebrafish
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Figure 3. Bacterial dose and the presence of functional adaptive immunity define the outcome of mycobacterial infection. (A) The
early cytokine response at 1 d post infection was measured from wt fish infected with a high (20296709 cfu) or a low (34615 cfu) dose or injected
with sterile PBS buffer (n in each group 10–20). *P,0.05 (B) Wt fish were infected with a high or a low dose or sterile PBS buffer (for early time-points),
and rag1 (2/2) fish were infected with a low dose Nos2b expression was measured with q-RT-PCR (n in each group was 9–20/time point). *P,0.05
(C) Fish were infected as in (B) and IFNc1–2 was measured with q-RT-PCR. *P,0.05. (D) Adult wt and rag1 (2/2) zebrafish were infected with a low
dose (n = 30) and followed for survival. *P,0.05 (E) Adult wt and rag1 (2/2) fish were infected with a low dose. Average mycobacterial load was
measured by qPCR at 2, 4, and 7 wpi (n = 10 per time point). *P,0.05.
doi:10.1371/journal.ppat.1002944.g003

Latent Mycobacterial Infection in Zebrafish
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(2 wpi) and to the different kinetics of IFNc1–2 response between

the two dose groups.

Adaptive immunity is required for the restriction of
bacterial growth and the induction of latency

According to the current understanding on human TB,

adaptive immunity is required for efficient control of the

disease [18,19]. Survival results from a previous publication

suggest a role for adaptive immunity in mycobacterial infection

in the zebrafish [10]. We wanted to study whether adaptive

immunity is required for the establishment of latency in the

zebrafish. To this end, we used a recombination activating

protein 1 (rag1) deficient zebrafish line, which lacks functional

T and B cells [22].

First, we looked at the morbidity caused by a low dose of the

type strain of M. marinum in rag1-mutant (2/2) zebrafish. Rag1

(2/2) fish, along with wild type (wt) controls, were infected with

the low dose (34615 cfu). The fish were euthanized at the end-

stage of infection and survival curves were drawn (Figure 3D).

None of the wt fish showed signs of disease during the 8-week

follow up, whereas 43% of the rag1 (2/2) fish reached the end-

stage of disease. DNA was extracted from the end-stage rag1

(2/2) fish and the mycobacterial load was measured by qPCR.

The average load was 3.896107 cfu/fish (SD = 3.686107), which

is similar to the levels measured from terminal stage M. marinum

infected wt fish (data not shown), indicating that the rag1 (2/2)

zebrafish had suffered from an end-stage M. marinum infection.

Dynamic disease progression among rag1 (2/2) fish was

associated with elevated mycobacterial loads compared to wt

controls during the first weeks of infection. Rag1 (2/2) and wt

fish were infected with the low dose for determination of bacterial

burdens by qPCR. Already at 2 wpi, the loads in the rag1 (2/2)

fish were significantly higher (1.616105 cfu/fish, SD = 1.256105)

than in the wt fish (2.226104 cfu/fish SD = 4.996104), indicating

that the adaptive immune responses are used already by 2 wpi as a

means of restricting the mycobacterial infection. During the

following weeks, the bacterial burdens remained significantly

higher in the rag1 (2/2) mutants (3.806106 cfu, SD = 3.156106)

compared to wt fish (2.836105 cfu, SD = 3.266106 at 7 wpi).

Alongside with gene-expression measurements from wt fish,

Nos2b (Figure 3B) and IFNc1–2 (Figure 3C) levels were

measured from low-dose infected rag1 (2/2) fish. At 2 wpi,

Nos2b expression was significantly lower in rag1 (2/2) fish

(19.6-fold, SD = 30.3) compared to the wt fish (123-fold,

SD = 16), suggesting that adaptive responses affect Nos2b

induction during the early phase of infection preceding the

latency. It is generally thought that in human TB, Nos2 is

induced as a result of IFNc production by lymphocytes,

leading to macrophage activation and control of mycobacterial

growth. However, in the adult zebrafish model the Nos2b

induction at 2 wpi is not likely to be mediated by an adaptive

IFNc1–2 induction, as the measured IFNc1–2 levels were

significantly higher in the rag1 (2/2) mutants (6.0-fold

induction, SD = 4.5) than in the wt fish (3.0-fold induction,

SD = 2.8). At 4 and 7 weeks, the situation was altered so that

the rag1 (2/2) mutants had significantly higher Nos2b

expression levels (induced 136-fold, SD = 193 and 149-fold,

SD = 110, respectively) than those observed in the wt (induced

31.6-fold, SD = 42.0 and 56.6-fold induction, SD = 108,

respectively). These results suggest that in the adult zebrafish

model, the initial macrophage activation preceding the onset of

latency is mediated by adaptive responses driving Nos2b

induction, but unexpectedly, not via IFNc.

Most mycobacteria enter a dormant state during a latent
infection in adult zebrafish

In human TB, the majority of bacteria are thought to enter a

dormant state in response to the stress caused by the immune

response and hypoxia. Dormant bacteria are viable but not

culturable (VBNC) [23]. This state has been shown to be reversible

by the addition of a resuscitation promoting factor (Rpf) in vitro

[24]. The role of dormancy and resuscitation in a latent

mycobacterial infection is difficult to study in humans, as the

putative dormant bacteria are not accessible for visualization and

cannot be cultured [23]. To investigate, whether there is a

dormant bacterial population in M. marinum infected adult

zebrafish, we tested the effect of Rpf on the number of colonies

cultured from fish with a latent infection.

First, we tested if hypoxic M. marinum cultures can be

resuscitated by an addition of Micrococcus luteus Rpf on antibiotic

plates. Of note, the standard method of assessing the effect of Rpf

on mycobacterial growth in broth culture and most probable

number assay could not be used due to the fast-growing

contaminating normal flora from the gut. Dilutions of active

logarithmic and old hypoxic M. marinum broth cultures were plated

with and without Rpf. As expected, Rpf significantly increased the

number of colonies plated from old, hypoxic, inactive cultures (2.4-

fold increase) but did not increase the number of colonies of active

bacteria (Figure 4A). Altogether, these results indicate that Rpf

from M. luteus media is active on 7H10 plates and is able to cause

resuscitation of a significant proportion of dormant M. marinum

that do not otherwise grow on culture plates. This also confirms

the role of Rpf as a resuscitating enzyme for M. marinum,

resembling its well established function for M. tuberculosis.

Next, adult zebrafish were infected with the low dose, and the

disease was allowed to develop for twenty weeks before the fish were

collected for analysis. Parallel samples were analyzed in the presence

and absence of Rpf on the plate. When the diluted samples from fish

with a latent infection were plated in the presence of Rpf, the

number of culturable M. marinum increased 4-fold (32 6 50 cfu

without Rpf compared to 129 6 134 cfu with Rpf) (Figure 4A). For

early infection stage samples (1 wpi), the addition of Rpf did not

have a growth promoting effect (31 6 29 cfu without Rpf, 21 6

22 cfu with Rpf) (Figure 4). With the high infection dose, leading to

a more progressive disease, the population of resuscitable dormant

bacteria were not detected at 9 wpi using Rpf (Figure 4A). Similarly,

in the low-dose infected rag1 (2/2) fish, Rpf did not increase the

average number of culturable mycobacteria, suggesting that

adaptive immunity has a role in the efficient induction of

mycobacterial dormancy. These results indicate that a distinguish-

able dormant mycobacterial population exists in the zebrafish with a

latent infection, whereas in the active infection bacteria are

predominantly in a replicative form.

To further confirm the existence of dormant mycobacterial

population in the zebrafish with a latent infection, we measured

the expression levels of known dormancy-associated mycobacterial

genes. Based on M. tuberculosis in vitro dormancy microarray data

[25], HspX (MMAR_3484), devr (MMAR_1516), tgs1

(MMAR_1519) and GltA1 (MMAR_1381) were chosen for q-

RT-PCR measurements. Of these, only GltA1, which encodes a

metabolic enzyme called citrate synthase, had generally high

enough expression levels for reliable quantification from fish with a

latent infection. GltA1 expression was measured at 4 wpi from

high-dose infected wt fish and low-dose infected wt and rag1

(2/2) fish. The GltA1 expression level normalized to the number

of bacteria in the low-dose infected wt fish (75.2, SD = 86.8) was

significantly higher than in the high-dose wt fish (4.46, SD = 3.55),

supporting the idea that in latent infection the proportion of
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dormant mycobacteria is greater than in a more progressive

infection. The lowest GltA1 expression/bacterium was seen in the

low-dose infected rag1 (2/2) fish (0.86, SD = 0.44). The low

GltA1 expression in rag1 (2/2) fish, together with the plating

result showing no resuscitating effect by Rpf in rag12/2 fish

(Figure 4B), suggests that adaptive immunity plays a role in the

induction of mycobacterial dormancy in vivo.

The reactivation of a latent mycobacterial infection in
zebrafish can be induced by c-irradiation

Various immunosuppressive medical treatments, such as

glucocorticoids [4] and radiation treatment [26], are seen as

factors that increase the risk of the reactivation of latent human

TB. Having established a model for latent mycobacterial infection

in adult zebrafish, we next moved on to test the effect of c-

irradiation as immunosuppressive treatment to reactivate latent

mycobacterial infection. Fish were infected with the low dose (34

6 15 cfu), and five months post infection, a group of fish was

irradiated with 25 Gy. Survival was followed for 1 month post

irradiation, and the bacterial load was determined at 2 weeks. As a

single 25 Gy dose of c-radiation did not seem to cause sufficient

reactivation of the latent mycobacterial infection in our zebrafish

model system (Figure S2), two 25 Gy doses were administered to a

group of fish with a latent M. marinum infection with one month

Figure 4. A major part of the mycobacteria are in a dormant state in latent infection. (A) Parallel dilutions of fresh logarithmic or old
plateau phase M. marinum cultures were plated +/2 Rpf to show the resuscitating effect of Micrococcus luteus Rpf on dormant M. marinum. (B)
Parallel homogenate sample dilutions from low-dose (34615 cfu) infected fish (wt or rag1 (2/2)) were plated at different time points +/2 Rpf to
detect dormant mycobacteria. (C) GltA1 expression was measured from low-dose infected rag1 (2/2) and wt fish and high-dose infected wt fish and
normalized to the total M. marinum load in each fish measured by qPCR. *P,0.05.
doi:10.1371/journal.ppat.1002944.g004
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between the doses. Survival was followed for one month after the

second irradiation. To assess the changes in the mycobacterial

numbers and lesions, moribund or recently dead fish were

collected and analyzed either histologically or with M. marinum-

quantification PCR. Two 25 Gy doses of c-radiation caused some

degree of early time-point mortality in both irradiated groups.

However, in the non-infected group, no deaths occurred after 16

days from the second irradiation (total mortality 40%), whereas the

infected, irradiated population continued to die, reaching an end-

point mortality of 88% (Figure 5A). No deaths occurred in the

non-irradiated latent infection group. The immunosuppressive

treatment with two 25 Gy doses of c-irradiation lead to a

significant increase in mortality among zebrafish with a latent

mycobacterial infection, suggesting reactivation of the disease.

To confirm that the increased mortality after the c-irradiation

was related to the progression of the mycobacterial infection, the

bacterial burdens were determined. Fish collected for qPCR 15–

22 days after the second c-radiation dose had an average bacterial

load of 8.76107 cfu (SD = 1.26108), which was 106-fold higher

compared to non-irradiated controls (average load 8.26105 cfu,

SD = 8.16105) (Figure 5B). A histological analysis of moribund

individuals revealed vast areas of free bacteria not restricted to

granulomas (Figure 5C,D). Based on these results, c-irradiation-

induced reactivation of latent mycobacterial infection in adult

zebrafish is a highly promising model for investigating the cellular

and molecular mechanisms involved in reactivated mycobacterial

infections.

Gamma irradiation-induced depletion of lymphocyte
populations is associated with the reactivation of latent
mycobacterial infection

To characterize the effect of c-irradiation on blood cells, the

changes in different blood cell populations were analyzed using

flow cytometry (FCM). The numbers of granulo/monocytes and

lymphocytes were measured from kidney homogenates. First, the

immediate effects of a 25 Gy dose of c-irradiation were studied by

analyzing changes one week after the treatment (Figure 5E). The

average proportion of granulocytes and monocytes was reduced by

47%, however there was a striking 80% reduction in the

lymphocyte population, compared to normal levels. The efficient

depletion of lymphocytes was further verified using the fish lines

Tg(lck:lck-EGFP) and Tg(rag2-GFP), which express GFP in T

cells, or in T and B cells, respectively. With these fish, a 67%

reduction in the T cell population (lck) and a 99% reduction in the

B and T cell population (rag2) were seen one week after irradiation

(Figure 5E). Despite the marked leukocyte depletion, one 25 Gy

dose of c-irradiation had not been sufficient for the reactivation of

a latent mycobacterial infection in zebrafish, as no significant

changes were seen in mortality rates (Figure S2A) or in bacterial

burdens (Figure S2B). Therefore, we next studied the recovery of

leukocytes after the first irradiation, as well as the short- term effect

of the second 25 Gy dose (Figure 5F). Both lymphocyte and

granulocyte/monocyte populations had recovered to normal levels

by five weeks after the first 25 Gy dose. The second 25 Gy dose of

c-irradiation reduced the number of lymphocytes by 53%

compared to the recovery levels (Figure 5F), whereas granulocytes

were not significantly affected by the second treatment. These

results suggest that the effective reactivation of a latent mycobac-

terial infection required two 25 Gy doses of c-irradiation because

of the rapid recovery of the lymphocyte and granulocyte/

monocyte populations after the first treatment. In addition, the

mechanism of reactivation in this model is most likely due to the

specific depletion of lymphocytes rather than a decrease in

granulocytes.

Immunosuppression by c-irradiation leads to reactivation
of the dormant mycobacterial population

To assess the changes in the dormant bacterial population after

the reactivation, we plated samples in the presence and absence of

Rpf at 2.5 weeks after the second 25 Gy irradiation dose. In the

non-irradiated fish with a latent infection, the number of colonies

were 4-fold higher in the presence of Rpf than in its absence

(Figure 5H), whereas after double irradiation the resuscitating

effect of Rpf could no longer be seen (Figure 5G). This result

supports the idea of latency-associated mycobacterial dormancy,

which is reversed in reactivated disease.

Discussion

During the last couple of decades, the prevalence of active TB has

substantially increased. Many of these cases are likely to be due to

the reactivation of latent TB as a consequence of various immune

compromising factors, such as HIV [27], diabetes [28] and

glucocorticoid treatment [29]. Currently, the reactivation of latent

TB is one of the greatest challenges in the field of infectious diseases,

as present vaccination strategies do not protect against this phase of

infection [7]. The fact that multiresistant strains of M. tuberculosis are

arising in many parts of the world [5,30] further complicates the

control of this disease. Thus, more detailed information on the

mechanisms of the host–pathogen interactions in a latent myco-

bacterial disease and its reactivation is indispensable.

In general, the M. marinum infection model in zebrafish is well

established. As M. marinum is a common pathogen of zebrafish, it

can be considered a more natural model for studying host–

mycobacterium interaction, than is, for example the M. tuberculosis

mouse model. The histopathology of mycobacterial lesions in

zebrafish has been shown to be more similar to human TB than is

the histopathology in the mouse model (reviewed in [14]). The

genetic similarities between M. marinum and M. tuberculosis are well

documented [15], including the currently known genes involved in

virulence and in dormancy (Dos-regulon) [31]. Thus, it is likely

that the characterization of phenomena involved in latent

infections and dormancy in a M. marinum infection, is useful for

understanding human latent TB.

The concept of latent TB is problematic, and a debate over the

definition as well as the nature of latent TB is on-going [32].

‘‘Latent TB’’ is a broad clinical definition diagnosed with indirect

immunological reactions in the tuberculin skin test (TST) or the

interferon-c release assay (IGRA) in the absence of clinical

symptoms [2]. These assays do not reveal whether there are viable

bacilli present in the host, but rather, whether the host has been

infected with the bacterium and developed an adaptive response

against it. Thus, cases diagnosed with latent TB compose a

heterogeneous group with different bacterial phenotypes and loads

[2,3]. In studies on latent TB patients, DNA of M. tuberculosis has

been shown to be generally present in the lung necropsy samples of

individuals with a latent infection [33,34]. These findings are in

harmony with the common latency paradigm stating that in most

infected individuals mycobacteria become dormant and non-

replicating in the hypoxic environment of the granuloma but can

be resuscitated in non-restrictive circumstances [2]. Still, the

presence of mycobacterial DNA, as such, does not reveal the

metabolic status (dormancy) of the bacteria. The subject warrants

further investigation in applicable animal models as well as in

human cohorts.

In this study we set up a novel model for latent TB using

experimental M. marinum infection of adult zebrafish. We showed

that mycobacterial dormancy is a central feature of latent TB in

the zebrafish. The importance of adaptive immunity in the
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Figure 5. Gamma irradiation induces reactivation resulting in increased mortality due to uncontrolled growth of mycobacteria. (A–
C) Zebrafish (n = 17) with a latent M. marinum infection were irradiated twice with 25 Gy with one month between the irradiations. Twice irradiated,
non-infected zebrafish (n = 23) as well as zebrafish with a latent infection (n = 14) were included as controls. (A) Survival was followed for 30 days after
the second dose. *P,0.05. (B) During this period, moribund or recently dead fish were collected 15–22 days after the second radiation dose. Bacterial
loads were compared with those of similarly infected, non-irradiated control fish that were collected at the end-point of the experiment. *P,0.05
(C&D) A representative Ziehl-Neelsen stained sample from a reactivated fish showing large numbers of free mycobacteria (purple areas) in the
zebrafish body cavity (C). The sides of the body cavity are marked with arrowheads O = ovary, P = pancreas, L = liver, G = gut, K = kidney. (D) A picture
taken with a higher magnification showing individual rods (few examples pointed out with arrows). (E) Four groups of 4 adult zebrafish (1 rag2-gfp, 1
lck-gfp and 2 wild-type groups) were c-irradiated with 25 Gy. Similar control groups were left untreated. Kidneys were collected 8 d post irradiation,
pooled and analyzed by FCM. FSC-SSC -plots were gated based on cell size and granularity as described in [56] (gates shown in Figure S3) to assess
the effect of irradiation on leukocyte populations. *P,0.05. For further verification of the effect of radiation on lymphocytes, a GFP gate was used for
the rag2 and lck groups expressing GFP in B and T cells, or T cells, respectively. (F) Adult non-infected wt zebrafish were irradiated with 25 Gy once
(grey bars) (n = 3) or twice (n = 7) (black bars) with one month between the doses. Leukocyte recovery and re-depletion were assessed by FCM. Non-
irradiated fish (n = 4) were used as controls. *P,0.05 (G) Fish with a latent infection (n = 7) were irradiated twice with 25 Gy with one month between
the doses and plated +/2 Rpf for 18 d after the second radiation dose. (H) Fish (n = 6) with a latent infection were plated +/2 Rpf.
doi:10.1371/journal.ppat.1002944.g005
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establishment of a latent disease in zebrafish was shown in a

number of experiments carried out with rag1 (2/2) zebrafish that

lack T and B cells. In addition, we developed a pioneering adult

zebrafish model, in which an immunosuppressive radiation

treatment was used for reactivation of the latent disease. With

this model, various aspects of the currently poorly characterized

process of latency, dormancy and reactivation can be studied in a

simple vertebrate system.

As a first step, we had to be able to induce a non-progressive,

but persistent, infection in adult zebrafish. Based on previous work

in adult zebrafish, the severity of the disease is dependent on both

the dose and the strain [10,35,36]. The type strain of M. marinum

(ATCC 927) has previously been reported to produce a moderate

infection in zebrafish, but previously only high doses have been

used [35]. In our hands, a low dose of this strain delivered as an

injection (i.p.) was found to be the most reliable means of inducing

a latent infection. In addition to injecting, bathing in water infested

with different concentrations of mycobacteria was also tested.

Although bathing could provide a more natural route of infection

through the gills or the gut, the low incidence rate achieved by this

method made it unsuitable for this study. As our scope is to study

latency and reactivation and not the natural course of initial

colonization, i.p. injection was considered applicable for our

purposes.

The non-progressive status of the experimental infection could

be verified by quantifying bacterial loads in the fish using an in-

house-developed qPCR assay, and by quantifying granulomas in

full-length longitudinal sections. Most fish did not show any signs

of disease, and the average bacterial burdens as well as the number

of granulomas and affected organs cease to grow after 4 weeks of

infection remaining at a static level in the majority of individuals.

This essentially demonstrates the central features of the latent

disease. The disease is present in the host and has the potential to

reactivate under appropriate circumstances. A centrally important

feature of our model is that the non-progressive state developed

naturally between the host and the mycobacteria without further

intervention, and lasted for the entire duration of the 8-month

study in 75% of the individuals.

The results gained with the quantitative PCR method in our

model showed that the total number of mycobacteria ceased to

increase after the first weeks of infection and remained stable for

the entire duration of the study. Bacteria entering a non-

replicating, dormant state would be a reasonable explanation for

the non-progressive bacterial burdens; which is also thought to

happen in human TB. To examine whether the bacteria entered a

dormant state in our model system, we carried out ex vivo plating

experiments. Comparing the efficacy of ex vivo growth in liquid

broth and solid plate has been previously used for showing

dormant M. tuberculosis populations in chronically infected mice

[37]. We used an alternative, specific method using resuscitation

promoting factor (Rpf) from Micrococcus luteus. Rpf has been shown

to resuscitate dormant M. luteus but also various mycobacterial

species [24]. Homologous proteins with the same function have

thereafter also been found to be present in actively dividing

mycobacterial cultures [38], and the functions of these muralytic

enzymes has been extensively studied in mycobacterial species

[39]. Mutant M. tuberculosis strains without functional Rpfs have

been shown to be less virulent and unable to reactivate in vivo

[40,41].

Using M. luteus Rpf on solid plates, we found that the majority of

the bacteria in most fish with a latent infection were actually in a

dormant, viable but not culturable state, and could be resuscitated

by the addition of Rpf. The resuscitable population of dormant

mycobacteria seen in latent wt fish was absent in rag1 (2/2) fish

lacking functional adaptive immunity. Also, the expression level of

the known dormancy-associated enzyme, citrate synthase (GltA1),

in wt fish was 87-fold higher than in the rag1 (2/2) fish,

indicating that effective induction of mycobacterial dormancy is

mediated by adaptive immune responses. The presence of Rpf on

plates did not increase the number of culturable mycobacteria in

samples representing the active phases of infection; namely the

primary active disease with a low dose, a progressive disease with a

high dose and the reactivated infection. These results suggest that

dormancy of a high proportion of the total mycobacterial

population is associated with the latent disease. In this study,

there was variation in all the measured parameters within the

experimental grou25ps with latent infection. This variation is most

likely explained by differences in disease progression between

individuals within the latent groups. Similar wide disease spectrum

is thought to be present also in the human latent TB [2,3]. To

characterize the underlying factors leading to this typical variation

in disease outcomes, it would be beneficial to follow the disease

progression in individuals instead of heterogeneous groups in

studies using in vivo models of TB.

The early cytokine responses (TNFa, IL-6, IL-1b, IL-12) were

measured on the first day of low-dose or high-dose infection. The

high dose generally evoked a stronger pro-inflammatory re-

sponse, which may have contributed to the high mortality in the

beginning of the infection. Conversely, the low-dose infection

seemed to avoid evoking strong responses. Of the measured

cytokines, only IL-6 was induced. IL-6 has been reported to be

important in restricting mycobacterial growth [42] and in

efficient protection by vaccination against TB in mice [43], and

as such, may have had a role in the initiation of a latent disease in

the zebrafish.

The differences in the disease progression were further studied

at later time-points, where Nos2b and IFNc1-2 expression levels

were measured. According to current hypothesis, IFNc induces

Nos2 in macrophages activating them to more efficiently destroy

intracellular mycobacteria [44–46]. In our zebrafish model,

Nos2(b) was clearly induced with both the low and the high dose

at 2–7 wpi. In the high-dose infection group, the induction at 2

weeks was as high as ,1500-fold compared to baseline levels.

Despite this strong induction, most of the fish succumbed to

infection, perhaps due to insufficient phagocytic capacity. At the

same time, Nos2b was not induced in rag12/2 fish at 2 wpi, and

the bacterial burdens were already significantly higher than in the

wt low dose animals. Based on this, adaptive responses mediate the

Nos2b induction and are required for the restriction of mycobac-

terial growth already at this stage. However, the adaptive

mechanism behind this induction in the mycobacterial disease in

the zebrafish remains obscure, as IFNc1-2 was not induced at 2

weeks in the low-dose infected wt fish. Later on, at 4 and 7 wpi, an

induction of Nos2b was also seen in rag1 (2/2) fish, indicating

that the innate arm of immunity alone, to some extent, can induce

the production of nitric oxide as a response to the high bacterial

numbers.

According to the latest hypotheses on latent TB, the grand

scheme is complex with various co-existing populations of

mycobacteria in different niches and metabolic states. Some of

these populations have been suggested to constantly probe the

environment in search of prospects for reactivation (e.g. immuno-

deficiency), whereas others are in a less active state, waiting for

resuscitation signals from the probing population. The proportion

of bacteria in each population determines the disease status.

Likely, a fully functional immune system is able to keep this small

active population in line. In case of immunosuppression, the active

population replicates and excretes resuscitation factors, leading to
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reactivation of the dormant population [23]. Our findings in the

zebrafish model support this elegant hypothesis.

Latent mycobacterial infection models have previously been set

up in the rabbit [20], in the mouse [47,48], in the guinea pig [49]

and in the macaque [21]. Some evidence on bacterial dormancy

exists in the chronic disease of vaccinated mice [37]. The rabbit

and macaque models were induced with a low bacterial inoculate

similarly to our zebrafish model, whereas the mouse and guinea

pig models utilize chemotherapeutics. The historical Cornell’s

model of latency in the mouse is artificially induced by antibiotic

treatment. After the antibiotics are removed, a spontaneous

reactivation occurs [47]. Without antibiotic treatment, the

bacterial loads continue to increase, eventually leading to the

death of the mouse. Others have utilized streptomycin auxotrophic

strains of M. tuberculosis whose growth can be arrested in the

absence of streptomycin, resulting in a paucibacillary state [48,49].

However, in our zebrafish model, the infection is induced with a

naturally replicating strain and generally results in a latent disease

without any antibiotic treatment. Thus, it is likely that the

mycobacterial infection in the zebrafish more accurately models

the natural course of infection that is determined by the interplay

between the pathogen and the immune response of the host. In

our model, as many as 75% of the fish survived the 8-month

period and managed to restrict further bacterial growth, suggesting

that a latent-type disease developed. The percentage of latent-type

cases was much higher in zebrafish than in the macaque model

(40%) [21]. In humans, 90–95% of TB cases are subclinical [4].

Having established a potential model for latent TB, we next set

up a method for reactivation in vivo. So far, reactivation has only

been established in non-human primate models in the context of

simian immunodeficiency virus (SIV) [50], in a rabbit model with

dexamethasone [20] and in a murine model with aminoguanidine

[51]. Even though these models are likely to replicate the human

TB-HIV co-infection and glucocorticoid-induced reactivation,

respectively, the zebrafish could provide a useful and ethical

model for large-scale experiments on reactivation. To our

knowledge, irradiation has not been previously used for inducing

reactivation of latent mycobacterial infections.

First, we tested whether irradiation could be used for the

reactivation of the latent disease. Surprisingly, despite irradiation

killing almost all lymphocytes and half of the granulo/monocytes,

a single dose (25 Gy) was found to be insufficient for a general

reactivation of the mycobacterial disease during the one-month

follow-up period. This could be due to the combined effect of the

rapid recovery of the leukocyte population after irradiation [52]

and the low growth rate of mycobacteria. In adult zebrafish,

leukocyte numbers have been reported to recover to pre-

irradiation levels in 2 weeks after a 20 Gy dose [52]. However,

when the 25 Gy was administered to latently infected fish twice,

with one month between the doses, the desired effect on the

mycobacterial disease was achieved. Mortality increased signifi-

cantly compared to latently infected controls and similarly

irradiated healthy fish. A descriptive histological analysis of

moribund individuals also revealed vast areas of free bacteria

outside granulomas. The mycobacterial loads in twice irradiated

fish with end-stage infection had increased by ,100-fold

compared to stable state levels. The kinetics of the bacterial

outgrowth in these fish is in harmony with theoretical calculations

of unrestricted bacterial growth. Leukocyte numbers have been

reported to reach the lowest level 6–7 days after 20 Gy of radiation

[52]. At this point, the bacteria should be able to grow without

limitation. In liquid culture at 29uC, the M. marinum used in our

laboratory doubles its numbers in 24 hours and thus a 100-fold

increase would require ,7 days. Indeed, in the reactivation group,

a steep drop in survival after 16 days concomitant with high

bacterial loads was seen. Based on these results, the zebrafish

model for the reactivation of a mycobacterial disease appears

highly promising.

Radiation treatments, as is well known, have various biological

effects. When considering irradiation as a method for reactivating

a mycobacterial infection, some of these effects need to be

discussed. Firstly, the dose used in this study (25 Gy) is high and

would be lethal for mammals. Zebrafish seem to be relatively

resistant to the acute adverse effects caused by irradiation, as the

treatment per se did not cause mortality. The lethal dose for adult

zebrafish has been reported to be as high as 40 Gy, possibly due to

the smaller genome and the lower body temperature compared to

mammals [52]. For reactivation purposes, the 25 Gy dose was

administered twice, which led to efficient reactivation of the

mycobacterial disease, but also caused a 40% mortality per se,

which is slightly less than the mortality caused by a single dose of

30 Gy [52]. Secondly, c-radiation is likely to have direct effects on

M. marinum. An aspect to be considered in the context of the

reactivation model is the possibility of causing mutations in the

bacterial genome, in addition to affecting the immune cell

numbers of the host. In vitro studies have previously shown that

M. tuberculosis is twice as radioresistant as E. coli [26]. Still, with

doses above 1 Gy the viability of M. tuberculosis is adversely affected

in a dose-dependent manner [26]. This has probably been the

basis for the historical X-ray treatment against TB. Of note, also

mutations advantageous to the bacteria can occur, and can be

enriched in the population if a selection pressure, such as

antibiotics, is applied. In our experiments, however, there was

no selection pressure, but rather the pressure from the host’s side

was transiently relieved. Based on our FCM data, the dampened

immune suppression of the host, rather than an advantageous

mutation in mycobacteria, is likely to be the trigger for

reactivation. Still, as a precaution, special measures should be

taken to prevent the release of irradiated mycobacteria into the

environment.

In conclusion, we have set up a system in which a latent

mycobacterial disease can be established and assessed in adult

zebrafish. The majority of the bacteria present in zebrafish enter a

dormant state, with a smaller bacterial population remaining

active. We were also able to induce a transition from this stable

state to a progressive mode using repeated c-irradiation mimicking

immune suppressive states that cause human TB to reactivate. The

reactivated infection is characterized by the absence of dormant

mycobacterial population, similarly to the active primary disease

preceding latency. Currently, there is no vaccine that would give

proper protection against the reactivation of the latent disease.

Gamma radiation induced reactivation should be an applicable

model for testing new vaccine candidates, as the T cells required

for protective immunity against TB are resistant to c-radiation

[53]. Thus, this proof-of-concept model for the reactivation of

latent TB in a non-mammalian vertebrate shows high promise as a

tool for large-scale studies on the related mechanisms.

Materials and Methods

Zebrafish lines and maintenance
For most experiments, adult (5–8 month-old) wild-type AB

zebrafish were used. In addition, adult, rag1 (2/2) hu1999

mutant fish (from ZIRC) were used. For the FACS analysis,

transgenic lines Tg(lck:lck-EGFP)‘cz2 and Tg (rag2:GFP)‘zdf8

(from ZIRC) were also used. Fish were kept in a flow-through

system with a light/dark cycle of 14 h/10 h and were fed with

SDS 400 food twice daily.
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Ethics statement
All experiments have been accepted by the Animal Experiment

Board in Finland (under the Regional State Administrative Agency

for Southern Finland) and were carried out in accordance with the

EU-directive 2010/63/EU on the protection of animals used for

scientific purposes and with the Finnish Act on Animal Experi-

mentation (62/2006).

Licence for the zebrafish facility: LSLH-2007-7254/Ym-23,

Licence for experiments: ESLH-2008-07610/Ym-23 and

20.10.2010 ESAVI-2010-08379/Ym-23.

Experimental infection
M. marinum (ATCC 927) was cultured similarly as described in

[10] with the following modifications: culture at 29uC, concentra-

tion of Tween 80 0.2%. Bacteria were first cultured on plates for

1 wk, transferred into liquid medium for 4 d, diluted once ,1:10,

cultured to an OD600 of 0.495–0.680, collected by centrifugation

and diluted appropriately with sterile 0.2 M KCl +0.3 mg/ml

phenol red (Sigma-Aldrich). For qPCR experiments PBS without

phenol red was used. The fish were briefly anesthetized in 0.02%

3-aminobenzoic acid ethyl ester (pH 7.0) (Sigma-Aldrich) and

intraperitoneally (i.p.) injected with 5 ml using an Omnican 100

30 G insulin needle (Braun, Melsungen, Germany). To verify the

bacterial dose, samples of bacterial dilutions were taken while

infecting, diluted when needed and plated onto 7H10 plates. The

low dose was 34615 cfu and the high dose 20296709 cfu. In

survival experiments, humane end point criteria approved by a

national ethical board were followed. If any of the following

criteria were fulfilled, the animals were euthanized: lack of

response to touch, abnormal swimming, gasping, observable

swelling, observable waisting or loss of scales.

Histology
Fish were euthanized by incubation in 0.04% 3-aminobenzoic

acid ethyl ester (Sigma-Aldrich) pH 7.0. Heads and tails were

removed and the fish were fixed in 10% phosphate buffered

formalin pH 7.0 for 5–11 days at RT. After 1 week of de-

calcification with 20% EDTA-citrate pH 7.2 samples were rinsed

with tap water, transferred through an ethanol series with

increasing concentrations, put into xylene and longitudinally

embedded in paraffin. 5 mm sections were cut; every 40th section

was placed on a slide. The fish were sectioned thoroughly so that

the entire kidney tissue lining the spine was included. The slides

were stained with Ziehl-Neelsen staining and analyzed using the

2006 magnification of an Olympus BX51 microscope. For

Mallory’s trichrome staining standard methods were used.

qPCR
DNA extraction from mycobacteria: For determination of the

bacterial load, the peritoneal cavity of the euthanized fish was

emptied. The organs were put into weighed metal bead containing

homogenization tubes (Mobio, California, USA) and frozen at

280uC. The mass of the organ sample was determined. The self-

prepared modified enzymatic lysis buffer MELB (20 mM Tris-

HCl pH 8.0, 20 mM sodium EDTA pH 8.0, 1.2% Triton X 100)

was added to the samples, which were homogenized in a volume of

575 ml using the PowerLyzer24 (Mobio) at speed 3,200 for

3620 second cycles with 30 second pauses. An appropriate

proportion (sample mass ,25 mg) of the homogenate was taken

for DNA extraction. The samples were sonicated in an m08 water

bath sonicator (Finnsonic, Lahti, Finland) for 9 min. Lysozyme

(Sigma-Aldrich) was added to a final concentration of 20 mg/ml

and incubated at 37uC for 2 h. After incubation, MELB was

added to the samples to equalize the volume of all samples to

180 ml. From this point on the QIAGEN DNeasy Blood & Tissue

Kit manufactures protocol for DNA extraction from gram-positive

bacteria was used. The DNA was eluted twice with a volume of

200 ml.

RNA-DNA co-extraction from infected zebrafish: Organs were

collected as above, and homogenized in tubes with ceramic beads,

3200 rpmi, 3640 s in 1.5 ml of TRI reagent (MRC, OH, USA).

RNA extraction was carried out according to the manufacturer’s

protocol. DNA was extracted from the same sample for

determination of the mycobacterial load by adding back extraction

buffer (1:1) (4 M guanidine thiocyanate (Sigma-Aldrich), 50 mM

sodium citrate, 1 M Tris) on top of the lower phase after phenol-

chloroform phase separation. DNA was thereafter precipitated

with isopropanol, washed with ethanol twice and dissolved in

sterile ddH2O.

Primers were designed for the M. marinum 16S–23S ITS

sequence: F: 59-caccacgagaaacactccaa-39 R: 59-acatcccgaaaccaa-

cagag-39. For quantification of mycobacterial load SENSIFAST

NO-ROX SYBR was used. The final reaction solution had the

following composition: 16 SENSIFAST NO-ROX SYBR

GreenPCR Master Mix (stock 26), 0.4 mM MMITS1 forward

primer, 0.4 mM MMITS1 reverse primer 3 ml of template.

Duplicate or triplicate dilutions were made for each sample. A

standard curve was made by extracting the total DNA from a

known amount of bacteria (logarithmic culture) and 10-fold using

serial dilutions. DNA extracted from three healthy fish were

included in order to determine the background signal. The qPCR

was carried out using the BIO-RAD CFX96 cycler with the

following settings: 1. 3 min 95uC, 2. 5 s 95uC, 3. 10 s 65uC, 4. 5 s

72uC, 5. 39 cycles from 2. to 4. 6. Melting curve 55–95uC at 0.5

intervals.

For q-RT-PCR, primer sequences can be found in the

Supporting Information (Text S2). For gene-expression measure-

ments, Bio-Rad iScript One-Step RT-PCR Kit with SYBR Green

was used according to the manufacturer’s instructions. The

optimal annealing temperature of each primer pair were

determined using melting curve analysis and agarose gel electro-

phoresis. The expression of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH, ZDB-GENE-030115-1) was used for normalization of

the host genes. The results from mycobacterial dormancy genes

were normalized to the bacterial load measured from the

corresponding DNA sample.

Bio-Rad CFX Manager software and GraphPad Prism 5.02

were used in the analysis. Using the standard curve, a

concentration in units of bacterial genome copies was obtained

for every sample. The bacterial load per fish (the visceral organs)

could be calculated: (qPCR result (bact./ml of template) x qPCR

sample dilution factor Y x total DNA eluate volume (ml) x

homogenate dilution factor X). The limit of detection with the

qPCR method was estimated to be ,103 cfu/fish.

Plating on antibiotic plates +/2 Rpf
For production of secreted Rpf for resuscitation of dormant

mycobacteria, Micrococcus luteus was cultured. An inoculate from a

glycerol stock of M. luteus was revived in 10 ml of LB liquid

medium at 37uC o/n in rotation (to an OD605 = 0.100). A 100 ml

volume of lactate minimal medium, LMM (composition described

in [54] with the exception of a lower concentration of lactate

(0.5% w/v) [24] was inoculated with 4 ml of the o/n culture and

was cultured aerobically in rotation (150 rpm) at 30uC for 4 days

to an OD605 = 0.705. After centrifugation (10,000 g, 3 min) the

supernatant was sterile filtered and aliquots were stored at 280uC.

For Rpf plating an aliquot was thawed and 500 ml was absorbed
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on each 7H9 antibiotic plates. On –Rpf plates, 500 ml of fresh,

sterile LMM was absorbed. The concentrations of antibiotics on

plates were as described in [55] and 20 mg/ml azithromycin

(Sigma-Aldrich). Fish were homogenized with the same settings as

for DNA extractions from mycobacteria in sterile PBS supple-

mented with 0.5% Tween 80 (v/v). Dilutions were plated +/2

Rpf and incubated in the dark at 25uC for 15–17 days. M. marinum

colonies were counted and the average load of culturable bacteria

was determined. As controls, active logarithmic M. marinum broth

cultures and old stationary M. marinum broth cultures that had

been kept in closed bottles at +29uC for 5–8 months were plated

+/2 Rpf and cultured as described above.

Immunosuppression
Irradiation with 25 Gy was carried out with Gammacell 1000

irradiator in glass flasks with 5 fish/80 ml of water. In the

reactivation experiments, low-dose infected fish were irradiated

twice with one month between the doses. Non-infected controls

were similarly irradiated.

Flow cytometry (FCM)
Nine days after irradiation, fish were euthanized and the

kidneys were collected and placed into PBS supplemented with

1% fetal calf serum (FCS) on ice. In the first experiment (1 wk post

irradiation) kidneys from each group of fish (4/group) were

pooled. Fish were analyzed individually in the second one (5 weeks

post 1.irradiation). Also kidneys from untreated groups of the same

fish lines were similarly collected in order to determine a baseline.

Kidneys were homogenized by pipetting the entire volume (1 ml)

up and down 15 times. The samples were also filtered before

analysis. Immune cell populations were determined using a

FACSCantoII (Beckton Dickinson) and the FACSDiva software.

The results were analyzed using FlowJo (Treestar Inc, Ashland,

OR). Lymphocytes, blood cell precursors, erythrocytes and

granulo/monocytes were identified based on the cellular granu-

larity (SSC-A) and size (FSC), (see Figure S2) according to [56]. In

addition, reporter fish lines Lck-GFP (T lymphocytes) and RAG-

GFP (B and T lymphocytes) we used in some experiments to

further confirm the identity of the immune cell populations. Total

30,000 events per sample were collected for analysis.

Statistical analysis
Statistical analysis was carried out using the GraphPad Prism

software (5.02). For determination of statistical significance of

differences in bacterial loads, number of granulomas, affected

organs and leukocyte counts and gene-expression data, a non-

parametric one-tailed Mann-Whitney test was used. In survival

experiments, the log-rank Mantel-Cox test was used. In Rpf

experiments, the plates with the same sample +/2 Rpf were

compared pair-wise, and a one-tailed paired t-test was used. P-

values,0.05 were considered significant.

List of genes mentioned in the article
Zebrafish (Danio rerio):
Nos2b: ZDB-GENE-080916-1

IFNc1-2: ZDB-GENE-040629-1

TNFa: ZDB-GENE-050317-1

IL-1b: ZDB-GENE-040702-2

IL-6: ZDB-GENE-120509-1

IL-12: ZDB-GENE-060724-1

GAPDH: ZDB-GENE-030115-1

M. marinum:
GltA1: MMAR_1381

HspX: MMAR_3484

DevR: MMAR_1516

GltA1: MMAR_1381

Tgs1: MMAR_1519

Supporting Information

Figure S1 qPCR and plating give similar results.
Dilutions (1, 1:10, 1:1000) of mycobacterial culture (logarithmic

growth phase) were added onto healthy fish organ samples. The

amount of bacteria added was determined by plating dilutions of

the culture (result shown as white bars). The samples were

homogenized and the DNA was extracted. The bacterial

concentration was determined by qPCR (result shown as black

bars).

(TIF)

Figure S2 A single 25 Gy dose of gamma radiation is not
sufficient for reactivation of latent tuberculosis. Latently

infected adult zebrafish (n = 39) were c-irradiated (25 Gy). Latently

infected, non-irradiated zebrafish (n = 25) were used as controls.

The effects of the irradiation were controlled by irradiating non-

infected fish (n = 30). (A) Survival was followed for 28 days.

* P,0.05 (B) To determine the bacterial load, 5 fish were collected

2 weeks after irradiation. Similarly infected non-irradiated controls

were also collected.

(TIF)

Figure S3 Gamma irradiation depletes the lymphocyte
population in adult zebrafish. 4 groups (1 Tg(rag2-GFP). 1

Tg(lck:lck-egfp) and 2 wt groups) of 4 adult zebrafish were c-

irradiated with 25 Gy or left untreated. Kidneys were collected 9 d

post irradiation, pooled and analyzed by FCM. FSC-SSC –plots

were gated based on [56] as follows: E = erythrocytes, G/

M = granulocytes & monocytes, L = lymphocytes, P = blood cell

precursors. The numbers by the gates show the percentage of cells

within the gate of the total live population. For GFP-expressing

lines (rag2 and lck) a GFP gate was also used. The GFP positive

populations were reanalyzed on a FSC-SSC -plot. The lympho-

cyte population was most severely affected by irradiation, whereas

the number of granulo/monocytes decreased less. An increase in

the proportion of blood cell precursors was detected. A reanalysis

of the GFP results verified that the GFP-expressing cells were

mostly present within the lymphocyte gate.

(TIF)

Text S1 A qPCR-assay for quantifying of M. marinum
load in adult zebrafish tissues.
(DOC)

Text S2 Sequences of the Q-RT-PCR primers used in
the study.
(DOC)
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