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Abstract

Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid
hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes
(T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association
study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046
individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG
concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.86102106), PRMT6 (rs17496332, 1p13.3,
p = 1.4610211), GCKR (rs780093, 2p23.3, p = 2.2610216), ZBTB10 (rs440837, 8q21.13, p = 3.4610209), JMJD1C (rs7910927, 10q21.3,
p = 6.1610235), SLCO1B1 (rs4149056, 12p12.1, p = 1.9610208), NR2F2 (rs8023580, 15q26.2, p = 8.3610212), ZNF652 (rs2411984,
17q21.32, p = 3.5610214), TDGF3 (rs1573036, Xq22.3, p = 4.1610214), LHCGR (rs10454142, 2p16.3, p = 1.3610207), BAIAP2L1
(rs3779195, 7q21.3, p = 2.7610208), and UGT2B15 (rs293428, 4q13.2, p = 5.5610206). These genes encompass multiple biologic
pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor
function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer.
We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was
significant in men only (men p = 2.5610208, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong
sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in
women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of
variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-
differentiated or conditional analyses explained ,15.6% and ,8.4% of the genetic variation of SHBG concentrations in men
and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of
considering these features when estimating complex trait variance.
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Introduction

Sex hormone-binding globulin (SHBG) is a protein secreted

mainly by the liver that binds to the sex steroids, testosterone,

dihydrotestosterone, and estradiol, transports them in the circu-

lation, and influences their action in target tissues by regulating

their bioavailability. SHBG thereby influences the expression of

sex hormone sensitive phenotypes including sexual characteristics

and reproductive function in men and women [1]. In addition to

regulating sex steroid hormone effects, SHBG may exert

independent effects through its own receptor [2]. Variation in

SHBG concentration has also been associated with various chronic

diseases including cancers [3], polycystic ovary syndrome (PCOS)

[4,5] and type 2 diabetes (T2D) [6,7]. Although SHBG is

estimated to have a heritable component (,50%) [8], little is

known about the genetic regulation of SHBG. Polymorphisms at

the SHBG gene locus have been associated with SHBG concen-

trations [9,10], but much remains unknown about specific genetic

variants that may determine circulating SHBG concentrations.

Identifying genetic factors that influence SHBG may provide

insights into the biology of sex steroid hormone regulation,

metabolism and tissue effects that underlie their relationship with

chronic diseases such as T2D as well as hormone-sensitive cancers

such as breast and prostate cancer.

Results

We identified nine loci associated with SHBG concentrations at

the genome-wide significance threshold of p = 561028 (Table 1

and Figure 1) in a genome-wide association study (GWAS) meta-

analysis of circulating SHBG concentrations in 21,791 men and

women from 10 studies (Table S1). All nine lead SNPs at these loci

had effects in the same direction (seven with p,0.05) in the

validation dataset of 7,046 men and women from six additional

studies (Table S2). The strongest association was within the SHBG

locus (rs12150660, p = 26102106). Together, these nine lead SNPs

explained 7.2% of the genetic variance (assuming 50% heritability)

in SHBG concentrations.

We next performed a series of additional analyses to explain

more of the phenotypic variance (Figure 2). First, we hypothesized

that genetic effects may be different in men and women, as SHBG

concentrations are .50% higher in females than males, and may

be differentially regulated between sexes. In a sex stratified

analysis, three of the nine loci showed evidence of sex-differen-

tiated effects at p,0.02 when we would not expect any signals to

have reached this level of significance by chance. The associations

at the 17p13.1-SHBG and Xq22.3 loci were stronger in males

whereas the association at the 8q21.13 locus was stronger in

females. To investigate the apparent differential sex effect for the

X chromosome further we ran a recessive regression model for the

X chromosome SNP rs1573036 in women in the Framingham

Heart Study and found no association with SHBG suggesting the

sex-differentiated effect is not the result of a recessive inheritance

pattern. Sex stratified GWAS identified one novel signal in men,

which showed no association in women (4q13.2: men

p = 2.561028, women p = 0.66, heterogeneity p = 0.003).

A series of conditional analyses were performed to identify

statistically independent signals. At the SHBG locus, three

apparently independent additional signals separate from the main

index SNP were observed, based on low (r2,0.05) pairwise

correlations in HapMap (rs6258 p = 2.7610246, rs1625895

p = 1.2610214 and rs3853894 p = 2.5610211). A series of iterative

conditional analyses (Table 2) involving SNPs at the SHBG locus

generated a final regression model including six statistically

independent SHBG SNPs. Four of these SNPs (#1–4 Table 2)

retained GWS when conditioned against the other five, and two

were nominally associated (SNP#5 p = 0.0001, SNP#6 p = 0.01).

Re-running the GWAS meta-analysis adjusting for these six SNPs

revealed evidence for three additional statistically independent

(pairwise HapMap r2,0.01) signals at the SHBG locus (SNP#7

p = 1.561027, SNP#8 p = 4.661025, SNP#9 p = 9.961026)

(Figure 3). There were also two additional trans signals located at

2p16.3 and 7q21.3 (Table 1). Although the 2p16.3 signal dropped

below GWS when combined with follow-up samples (p = 161027),

the index SNP at 2p16.3 is ,300 kb away from a strong candidate

gene, the luteinizing hormone receptor gene (LHCGR).

The majority of pair-wise correlations for the nine SHBG locus

SNPs highlighted by our conditional analyses showed very low

HapMap r2 values. However, the pairwise D9 values are often high

(Table S3) indicating that no or few recombination events have

occurred between some SNPs, and that combinations of SNPs

may be tagging un-typed variants on a common haplotype. To

investigate this possibility, we performed more extensive analyses

in a single study (NFBC1966, n = 4467). We used a denser set of

SNPs imputed from the June 2011 version of the 1000 Genomes

data and performed model selection analyses. Model selection

identifies a set of SNPs that best explain phenotypic variation,

while simultaneously penalizing each SNP included in this set, and

therefore correlated SNPs tend to be excluded from the final

model. These analyses consistently included at least seven SNPs in

the model, although it is hard to estimate the false-negative rate of

using the reduced sample size. While we are underpowered to

accurately pinpoint the exact number of independent signals, these

analyses support the results of the conditional analysis and suggest

that multiple variants at the SHBG locus are independently

associated with SHBG concentrations.

Data from an independent study, the InCHIANTI study, was

used to calculate the proportion of genetic variance in SHBG

concentrations explained when accounting for sex specific effects,

the multiple signals of association at the SHBG locus, and the

additional trans signals identified post conditional analysis. In men

and women we explained ,15.6% and ,8.4% of the heritable

Author Summary

Sex hormone-binding globulin (SHBG) is the key protein
responsible for binding and transporting the sex steroid
hormones, testosterone and estradiol, in the circulatory
system. SHBG regulates their bioavailability and therefore
their effects in the body. SHBG has been linked to chronic
diseases including type 2 diabetes and to hormone-
sensitive cancers such as breast and prostate cancer. SHBG
concentrations are approximately 50% heritable in family
studies, suggesting SHBG concentrations are under signif-
icant genetic control; yet, little is known about the specific
genes that influence SHBG. We conducted a large study of
the association of SHBG concentrations with markers in the
human genome in ,22,000 white men and women to
determine which loci influence SHBG concentrations.
Genes near the identified genomic markers in addition to
the SHBG protein coding gene included PRMT6, GCKR,
ZBTB10, JMJD1C, SLCO1B1, NR2F2, ZNF652, TDGF3, LHCGR,
BAIAP2L1, and UGT2B15. These genes represent a wide
range of biologic pathways that may relate to SHBG
function and sex steroid hormone biology, including liver
function, lipid metabolism, carbohydrate metabolism and
type 2 diabetes, and the development and progression of
sex steroid hormone-responsive cancers.

Genetic Influences of Sex Hormone–Binding Globulin

PLoS Genetics | www.plosgenetics.org 4 July 2012 | Volume 8 | Issue 7 | e1002805



T
a

b
le

1
.

SN
P

s
re

p
re

se
n

ti
n

g
lo

ci
as

so
ci

at
e

d
w

it
h

ci
rc

u
la

ti
n

g
SH

B
G

co
n

ce
n

tr
at

io
n

s.

D
is

co
v

e
ry

S
a

m
p

le
s

D
is

co
v

e
ry

+F
o

ll
o

w
-u

p

In
d

e
x

S
N

P
A

n
a

ly
si

s
R

e
g

io
n

N
r

G
e

n
e

C
h

r
P

o
si

ti
o

n
E

ff
e

ct
A

ll
e

le
O

th
e

r
A

ll
e

le
E

A
F

B
e

ta
S

E
p

B
e

ta
S

E
p

rs
1

7
4

9
6

3
3

2
M

ai
n

1
p

1
3

.3
P

R
M

T
6

1
1

0
7

3
4

7
8

9
8

a
g

0
.6

7
2

0
.0

2
6

0
.0

0
4

6
1

.0
E-

0
8

2
0

.0
2

8
0

.0
0

4
1

1
.4

E-
1

1

rs
7

8
0

0
9

3
M

ai
n

2
p

2
3

.3
G

C
K

R
2

2
7

5
9

6
1

0
7

t
c

0
.4

0
2

0
.0

3
3

0
.0

0
4

3
5

.8
E-

1
4

2
0

.0
3

2
0

.0
0

3
9

2
.2

E-
1

6

rs
4

4
0

8
3

7
M

ai
n

8
q

2
1

.1
3

Z
B

T
B

1
0

8
8

1
6

2
4

5
2

9
a

g
0

.7
8

2
0

.0
3

0
0

.0
0

5
2

6
.7

E-
0

9
2

0
.0

2
8

0
.0

0
4

7
3

.4
E-

0
9

rs
7

9
1

0
9

2
7

M
ai

n
1

0
q

2
1

.3
JM

JD
1

C
1

0
6

4
8

0
8

9
1

6
t

g
0

.5
1

2
0

.0
4

4
0

.0
0

4
3

7
.4

E-
2

5
2

0
.0

4
8

0
.0

0
3

9
6

.1
E-

3
5

rs
4

1
4

9
0

5
6

M
ai

n
1

2
p

1
2

.1
SL

C
O

1
B

1
1

2
2

1
2

2
2

8
1

6
t

c
0

.8
2

0
.0

3
2

0
.0

0
5

7
1

.5
E-

0
8

0
.0

2
9

0
.0

0
5

2
1

.9
E-

0
8

rs
8

0
2

3
5

8
0

M
ai

n
1

5
q

2
6

.2
N

R
2

F2
1

5
9

4
5

0
9

2
9

5
t

c
0

.7
2

2
0

.0
2

9
0

.0
0

4
9

2
.8

E-
0

9
2

0
.0

3
0

.0
0

4
4

8
.3

E-
1

2

rs
1

2
1

5
0

6
6

0
M

ai
n

1
7

p
1

3
.1

SH
B

G
1

7
7

4
6

2
6

4
0

t
g

0
.2

4
0

.1
0

0
0

.0
0

5
3

1
.2

E-
7

9
0

.1
0

3
0

.0
0

4
7

1
.8

E-
1

0
6

rs
2

4
1

1
9

8
4

M
ai

n
1

7
q

2
1

.3
2

Z
N

F6
5

2
1

7
4

4
8

0
0

7
5

0
a

g
0

.2
8

0
.0

3
4

0
.0

0
4

9
1

.5
E-

1
2

0
.0

3
3

0
.0

0
4

4
3

.5
E-

1
4

rs
1

5
7

3
0

3
6

M
ai

n
X

q
2

2
.3

T
D

G
F3

2
3

1
0

9
7

0
6

7
2

4
t

c
0

.3
9

0
.0

3
1

0
.0

0
4

3
5

.1
E-

1
3

0
.0

2
8

0
.0

0
3

7
4

.1
E-

1
4

rs
1

0
4

5
4

1
4

2
C

o
n

d
it

io
n

al
2

p
1

6
.3

LH
C

G
R

2
4

8
4

9
9

9
0

3
t

c
0

.6
9

0
.0

2
6

0
.0

0
4

7
2

.8
E-

0
8

0
.0

2
3

0
.0

0
4

4
1

.3
E-

0
7

rs
3

7
7

9
1

9
5

C
o

n
d

it
io

n
al

7
q

2
1

.3
B

A
IA

P
2

L1
7

9
7

8
3

1
2

9
8

a
t

0
.1

7
2

0
.0

3
3

0
.0

0
5

7
1

.2
E-

0
8

2
0

.0
2

8
0

.0
0

5
1

2
.7

E-
0

8

rs
2

9
3

4
2

8
Se

x-
sp

e
ci

fi
c

4
q

1
3

.2
U

G
T

2
B

1
5

4
6

9
6

2
6

3
7

1
a

g
0

.6
9

2
0

.0
2

3
0

.0
0

4
7

1
.6

E-
0

6
2

0
.0

1
9

0
.0

0
4

2
5

.5
E-

0
6

D
is

co
v

e
ry

M
e

n
D

is
co

v
e

ry
+F

o
ll

o
w

-u
p

M
e

n
D

is
co

v
e

ry
W

o
m

e
n

D
is

co
v

e
ry

+F
o

ll
o

w
-u

p
W

o
m

e
n

H
e

te
ro

g
e

n
e

it
y

In
d

e
x

S
N

P
B

e
ta

S
E

p
B

e
ta

S
E

p
B

e
ta

S
E

p
B

e
ta

S
E

p
p

S
e

x

rs
1

7
4

9
6

3
3

2
2

0
.0

2
7

0
.0

0
5

4
9

.6
E-

0
7

2
0

.0
2

7
0

.0
0

5
1

1
.5

E-
0

7
2

0
.0

2
0

.0
0

8
0

.0
0

3
2

0
.0

2
9

0
.0

0
6

7
1

.8
E-

0
5

0
.7

9
Fe

m
al

e
s

rs
7

8
0

0
9

3
2

0
.0

2
9

0
.0

0
5

2
1

.8
E-

0
8

2
0

.0
2

6
0

.0
0

4
9

7
.0

E-
0

8
2

0
.0

4
0

.0
0

7
6

1
.3

E-
0

7
2

0
.0

4
1

0
.0

0
6

3
8

.6
E-

1
1

0
.0

7
Fe

m
al

e
s

rs
4

4
0

8
3

7
2

0
.0

2
1

0
.0

0
6

2
0

.0
0

0
9

2
0

.0
1

9
0

.0
0

5
8

0
.0

0
1

2
0

.0
4

9
0

.0
0

9
3

1
.2

E-
0

7
2

0
.0

4
2

0
.0

0
7

8
7

.2
E-

0
8

0
.0

2
Fe

m
al

e
s

rs
7

9
1

0
9

2
7

2
0

.0
4

9
0

.0
0

5
1

5
.3

E-
2

2
2

0
.0

5
0

0
.0

0
4

8
1

.2
E-

2
5

2
0

.0
3

8
0

.0
0

7
5

6
.4

E-
0

7
2

0
.0

4
6

0
.0

0
6

3
1

.7
E-

1
3

0
.6

3
M

al
e

s

rs
4

1
4

9
0

5
6

0
.0

2
8

0
.0

0
6

7
0

.0
0

0
0

3
0

.0
2

7
0

.0
0

6
3

1
.5

E-
0

5
0

.0
4

9
0

.0
1

0
3

0
.0

0
0

0
0

2
0

.0
3

7
0

.0
0

8
6

1
.7

E-
0

5
0

.3
6

Fe
m

al
e

s

rs
8

0
2

3
5

8
0

2
0

.0
2

4
0

.0
0

5
7

0
.0

0
0

0
2

2
0

.0
2

5
0

.0
0

5
4

5
.1

E-
0

6
2

0
.0

3
8

0
.0

0
8

7
0

.0
0

0
0

1
2

0
.0

3
8

0
.0

0
7

1
7

.8
E-

0
8

0
.1

3
Fe

m
al

e
s

rs
1

2
1

5
0

6
6

0
0

.1
0

6
0

.0
0

6
3

1
.8

E-
6

3
0

.1
1

0
0

.0
0

5
8

3
.7

E-
8

0
0

.0
8

5
0

.0
0

9
4

1
.8

E-
1

9
0

.0
8

7
0

.0
0

7
7

5
.8

E-
3

0
0

.0
2

M
al

e
s

rs
2

4
1

1
9

8
4

0
.0

3
4

0
.0

0
5

8
5

.9
E-

0
9

0
.0

3
4

0
.0

0
5

4
2

.3
E-

1
0

0
.0

3
2

0
.0

0
8

4
0

.0
0

0
1

0
.0

2
9

0
.0

0
7

3
.2

E-
0

5
0

.5
4

M
al

e
s

rs
1

5
7

3
0

3
6

0
.0

4
0

.0
0

4
8

9
.1

E-
1

7
0

.0
3

5
0

.0
0

4
3

2
.8

E-
1

6
0

.0
1

2
0

.0
0

8
3

0
.1

5
0

.0
1

6
0

.0
0

7
0

.0
2

0
.0

2
M

al
e

s

rs
1

0
4

5
4

1
4

2

rs
3

7
7

9
1

9
5

rs
2

9
3

4
2

8
2

0
.0

3
2

0
.0

0
5

6
1

.5
E-

0
8

2
0

.0
2

9
0

.0
0

5
3

2
.5

E-
0

8
2

0
.0

0
5

0
.0

0
8

5
0

.5
7

2
0

.0
0

3
0

.0
0

7
1

0
.6

6
0

.0
0

3
M

al
e

s

A
ll

SN
P

s
ar

e
o

n
th

e
+s

tr
an

d
an

d
p

o
si

ti
o

n
s

ar
e

b
as

e
d

o
n

b
u

ild
3

6
.E

A
F

=
‘e

ff
e

ct
al

le
le

fr
e

q
u

e
n

cy
’.

B
e

ta
u

n
it

s
ar

e
p

e
r-

al
le

le
e

ff
e

ct
e

st
im

at
e

s
in

n
at

u
ra

l
lo

g
tr

an
sf

o
rm

e
d

n
m

o
l/

L.
Se

x
co

lu
m

n
g

iv
e

s
th

e
se

x
w

it
h

th
e

la
rg

e
st

p
e

r-
al

le
le

b
e

ta
e

st
im

at
e

.
M

is
si

n
g

va
lu

e
s

fo
r

co
n

d
it

io
n

al
SN

P
s

as
se

x-
sp

e
ci

fi
c

co
n

d
it

io
n

al
an

al
ys

is
w

as
n

o
t

p
e

rf
o

rm
e

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

2
8

0
5

.t
0

0
1

Genetic Influences of Sex Hormone–Binding Globulin

PLoS Genetics | www.plosgenetics.org 5 July 2012 | Volume 8 | Issue 7 | e1002805



component respectively. The SHBG locus accounted for ,10%

and ,6.6% of the genetic variation in men and women

respectively with the lead SNP in isolation accounting for

,7.8% and ,3.3% of the variation in men and women,

respectively.

We identified genes near the associated SNPs and explored their

biologic relevance to SHBG. The genes associated with identified

SNPs included the SHBG locus (rs12150660, 17p13.1,

p = 1.86102106), PRMT6 (rs17496332, 1p13.3, p = 1.4610211),

GCKR (rs780093, 2p23.3, p = 2.2610216), ZBTB10 (rs440837,

8q21.13, p = 3.4610209), JMJD1C (rs7910927, 10q21.3,

p = 6.1610235), SLCO1B1 (rs4149056, 12p12.1, p = 1.9610208),

NR2F2 (rs8023580, 15q26.2, p = 8.3610212), ZNF652 (rs2411984,

17q21.32, p = 3.5610214), TDGF3 (rs1573036, Xq22.3,

p = 4.1610214), LHCGR (rs10454142, 2p16.3, p = 1.3610207),

BAIAP2L1 (rs3779195, 7q21.3, p = 2.7610208), and UGT2B15

(rs293428, 4q13.2, p = 5.5610206) (Figure 1).

We used the online tool STRING (www.string-db.org) to

perform pathway analyses to explore possible interactions between

the SHBG gene and the proteins encoded by the 11 most plausible

genes nearest the 11 SNPs listed above. There was an interaction

noted between GCKR and JMJD1C which were associated with the

lipoprotein fractions VLDL and HDL, respectively [11]. In an

expanded analysis, we assessed protein interactions among SHBG

and 67 genes within 500 kb of our 11 identified SNPs and

uncovered additional protein interaction pathways. An interaction

between two proteins encoded by GTF2A1L and STON1 was

found; these proteins are co-expressed in testicular germ cells in

the mouse [12]. An interaction between LHCGR and BRI3

encoded proteins that are associated with the G-protein coupled

receptor complex in the human luteinizing hormone receptor was

also identified [13]. Finally, an interaction between LHCGR and

IAPP (amylin) proteins which are components of a ligand/G-

protein receptor/G-protein alpha subunit complex was found

(database: www.reactome.com).

Targeted analysis of two strong candidate genes, hepatocyte

nuclear factor-4a (HNF4a) and peroxisome-proliferating receptor

c (PPARc) did not identify any SNPs at HNF4a but did identify one

SNP, rs2920502, at PPARc that reached statistical significance

(p = 9.961025) and a second SNP at PPARc, rs13081389, that

reached nominal significance (p = 0.01).

Discussion

In total, we identified 12 genomic regions associated with

circulating SHBG concentrations, including extensive allelic

heterogeneity at the SHBG locus itself. Conditional meta-analyses

carried out at the SHBG locus, identified nine genome-wide

significant SNPs with low correlation (r2,0.01) between them.

Two of these signals (rs6258 [10] and rs6259) are missense variants

and two are low frequency variants (MAF ,2%). Furthermore,

rs12150660 is highly correlated (r2.0.95) [10] with a pentanu-

Figure 1. Manhattan plot of the autosomal SNPs identified in the GWA meta-analysis. The Manhattan plot depicts the SNPs identified in
the GWAS analysis labeled with the nearest gene on the plot. The SNP identified on the X chromosome, rs1573036, at Xq22.3, is not included in this
figure.
doi:10.1371/journal.pgen.1002805.g001
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cleotide repeat, which affects SHBG expression in-vitro [14]. To our

knowledge, the magnitude of secondary signals observed at this

locus are the largest seen for any complex trait.

The proportion of genetic variance in SHBG serum concen-

trations explained when accounting for sex specific effects, the

multiple signals of association at the SHBG locus, and the

Figure 2. Summary of the analytic plan.
doi:10.1371/journal.pgen.1002805.g002

Table 2. Statistically independent signals at the SHBG gene locus.

SNP # Model
Conditioned
On SNP # SNP Position

Effect
Allele

Other
Allele EAF Beta SE p-value

Discovery
p-value

Discovery
Beta

1 Full model 2–6 rs12150660 7462640 t g 0.24 0.082 0.005 1.89E-55 1.19E-79 0.10

2 Full model 1,3–6 rs6258 7475403 t c 0.02 20.272 0.017 1.03E-60 2.69E-46 20.2613

3 Full model 1–2,4–6 rs1641537 7486446 t c 0.14 20.064 0.006 1.20E-24 8.19E-39 20.0814

4 Full model 1–3,5–6 rs1625895 7518840 t c 0.12 20.06 0.006 1.75E-21 1.17E-14 20.052

5 Full model 1–4,6 rs6259 7477252 a g 0.11 0.026 0.007 0.0001 1.46E-07 0.0372

6 Full model 1–5 rs10432029 7331393 a g 0.79 0.0136 0.006 0.01 7.52E-16 0.0446

7 Conditional 1–6 rs9901675 7425536 a g 0.05 20.057 0.01 1.46E-07 5.2E-12 20.07

8 Conditional 1–6 rs8077824 7588951 a g 0.02 0.075 0.018 4.58E-05 0.01 0.0451

9 Conditional 1–6 rs9303218 7339386 t c 0.77 0.026 0.006 9,89E-06 1.21E-11 0.0344

All SNPs are on the+strand and positions are based on build 36. EAF = ‘effect allele frequency’. Beta units are per-allele effect estimates in natural log transformed nmol/
L. ‘Full model’ SNPs were all included in a single regression model, where the effect estimates for each SNP are adjusted for the effect of the others in the model.
‘Conditional’ SNPs are SNPs with low pair-wise LD (HapMap r2,0.01) that were identified after conditioning on the full model SNPs.
doi:10.1371/journal.pgen.1002805.t002
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additional trans signals identified post conditional analysis was

,15.6% in men and ,8.4% in women. The SHBG locus

accounted for ,10% and ,6.6% of the genetic variance in men

and women, respectively, with the lead SNP explaining most of the

genetic variation at ,7.8% for men and ,3.3% for women. Thus

additional signals at the SHBG locus identified through conditional

analyses approximately doubled the variance of the trait

explained. While we provide evidence for multiple variants

associated with SHBG concentrations, further studies are needed

to pinpoint the causal loci and functional variants. For the 11

regions outside the SHBG locus, most have biologically plausible

related genes within 300 kb.

Biology of Plausible Genes near Identified SNPs
Several genes near the identified SNPs regulate sex steroid

production and function. The NR2F2 locus (15q26.2) encodes a

nuclear receptor important in testicular Leydig cell function, the

primary source of gonadal testosterone production [15], and has

been linked to male infertility [16]. NR2F2 has also been associated

with estrogen receptor alpha (ERa) signaling and may influence

hormone responsivity in breast cancer [17]. PRMT6 (1p13.3) also

encodes a nuclear receptor regulatory protein that mediates

estrogen signaling as a co-activator of the estrogen receptor [18].

LHCGR (2p16.3) encodes the luteinizing hormone receptor which

was associated with polycystic ovary syndrome (PCOS) in a recent

GWAS [19,20]. PCOS is both a reproductive and metabolic

disorder characterized by higher testosterone serum concentrations

as well as an increased prevalence of obesity, insulin resistance, and

T2D in women. Inappropriate secretion of luteinizing hormone

leads to increased ovarian production of testosterone. Coincident

lower SHBG concentrations contribute to increased bioavailable

testosterone concentrations and the expression of both reproductive

and metabolic phenotypes in PCOS [21,22,23].

The SLCO1B1 locus encodes a liver-specific transporter of

thyroid hormone as well as estrogens which impact liver

production of SHBG [24]. JMJD1C (10q21.3), also known as

TRIP 8 (thyroid hormone receptor interactor protein 8 [25]), may

impact SHBG concentrations via thyroid hormone effects on liver

protein production. Thyroid hormone may alter SHBG produc-

tion through effects on HNF4a which is known to regulate SHBG

transcription [26,27].

Many of the genes identified are involved in carbohydrate and

lipid metabolism and liver function. The GCKR locus (2p23.3)

encodes a protein that regulates glucokinase activity and has been

associated with T2D in several ethnic populations [28,29,30,31].

GCKR has been associated with metabolic and inflammatory traits

including triglyceride concentrations and other lipid fractions

[30,32], fasting plasma glucose [33,34], insulin concentrations,

uric acid, c-reactive protein (CRP), and non-alcoholic fatty liver

disease which are all characteristic of the metabolic syndrome and

T2D [28,35,36,37,38,39,40,41,42]. The SLCO1B1 locus (12p12.1)

codes for a protein, hepatocyte protein anion-transporting

polypeptide 1B1, involved in liver metabolism of both endogenous

and exogenous compounds [43]. Consistent with SLCO1B1’s role

in liver metabolism, the same SNP (rs4149056) has been associated

with circulating bilirubin concentrations in previous GWAS [44].

BAIAP2L1 (7q21.3) encodes a protein important in cytoskeleton

organization [45] that has been associated with the inflammatory

marker CRP in patients with arthritis [46]. BAIAP2L1 is also

known as IRTKS (insulin receptor tyrosine kinase substrate) which

Figure 3. Allelic heterogeneity at the SHBG gene locus. There was significant allelic heterogeneity at the SHBG gene locus. The nine
independent signals identified in the SHBG gene are shown in relation to their position within the gene. All positions based on build 36. Not all genes
are shown.
doi:10.1371/journal.pgen.1002805.g003

Genetic Influences of Sex Hormone–Binding Globulin

PLoS Genetics | www.plosgenetics.org 8 July 2012 | Volume 8 | Issue 7 | e1002805



is involved in insulin receptor signaling [47] and may relate to

insulin resistant states including obesity and T2D [48,49,

50,51,52,53,54]. We conducted a targeted analysis of PPARc, a

gene that influences SHBG gene expression in the liver [1,55] and

is associated with T2D [56,57]. Our analysis identified one

significant SNP (rs2920502, p = 9.961025) and a second nomi-

nally significant SNP (rs13081389, p = 0.01) at PPARc. Some of

the identified genes involved in hepatic metabolism of lipids and

carbohydrates may be affect SHBG concentrations indirectly

through effects on the SHBG transcription regulator HNF4a
although HNF4a itself was not identified in this meta-analyses

[27,58,59,60].

The UGT2B15 locus (4q13.2) was significantly associated with

SHBG concentrations in men but not women in this meta-

analysis. UGT2B15 belongs to a family of genes (the UGT2B gene

family) that code for enzymes involved in the metabolism of sex

hormones through glucuronidation which allows for excretion of

sex steroids through the kidney and the gut via bile excretion

[61,62], primary clearance mechanisms for sex steroids [63].

UGT2B15 is involved in the conjugation and inactivation of

testosterone [64]. An association between rs293428 in the

UGT2B15 locus and circulating SHBG concentrations in men is

supported by a previous study demonstrating that a non-

synonymous SNP in UGT2B15 (rs1902023; D85Y) is associated

with serum SHBG concentrations in younger adult men [65].

UGT2B15 is thought to play a significant role in local tissue

inactivation of androgens in androgen dependent prostate cancer

[66,67]. The mechanism behind the influence of genetic variants

in UGT2B15 on SHBG concentrations is unknown, but one may

speculate that UGT2B15 affects the local androgenic environment

in selected tissues, which in turn results in regulation of SHBG

concentrations.

In addition to UGT2B15, three other genes near the identified

SNPs are associated with carcinogenesis, particularly in the

prostate and breast. ZBTB10 (8q21.13), has been linked to breast

cancer [68]. In breast cancer cell lines ZBTB10 is suppressed by

ROS-microRNA27a thereby enhancing ERa alpha expression

and mediating estrogen effects [17]. The ZNF652 (17q21.32) locus

codes for a DNA binding protein thought to act as a tumor

suppressor gene in breast cancer [69,70,71] that is also co-

expressed with the androgen receptor in prostate cancer [72].

TDGF3, teratocarcinoma derived growth factor 3, is the only

significant region identified on the X chromosome ((Xq22.3).

TDGF3 is a pseudogene of TDGF1 located on chromosome 3p23-p21

that has been associated with testicular germ cell tumors [73].

Strengths and Limitations
This GWAS meta-analysis incorporated data from approxi-

mately 22,000 men and women from 16 epidemiologic cohorts.

The overall size of the study yields power but the meta-analysis of

data from different epidemiologic studies requires the inclusion of

different laboratory methods. The different studies used a variety

of assay methodologies to measure serum SHBG concentrations

although the vast majority were immunoassays (Tables S1 and S2,

Text S1) with similar methodologies. Variation introduced by the

use of different SHBG assays would result in loss of statistical

power and likely bias toward the null. Additionally, the majority of

women were post-menopausal as ascertained by self-report in all

studies (Table S1). SHBG concentrations, like testosterone, decline

only slightly across the menopause [74] so adjustment for

menopause status is not necessary. SHBG may also increase with

ovulation and be slightly higher in the luteal versus the follicular

phase of the menstrual cycle in premenopausal women, but most

studies did not collect data on menstrual phase at the time of

SHBG measurement so adjustment for menstrual phase was not

possible [75]. Finally, individuals were not excluded based on

health status, therefore some individuals with chronic conditions

that may affect hepatic production of or clearance of proteins

including SHBG such as liver disease, renal disease, or severe

malnutrition, may have been included in this analysis.

Conclusion
SHBG synthesis in the liver is known to be affected directly or

indirectly by estrogens, androgens and thyroid hormones and has

been observed to be inversely associated with the higher insulin

concentrations characteristic of insulin resistant states such as T2D

[1,6]. In summary, the results of this GWAS reflect these

influences. Three regions map to proteins related to hepatic

function (12p12.1-SLCO1B1 [76], 2p23.3-GCKR [77] and 10q21.3-

JMJD1C [77]). In addition, 2p23.3-GCKR and 7q21.3-BAIAP2L1

[alias insulin receptor tyrosine kinase substrate (IRTKS)] are

involved in susceptibility to T2D [48] and insulin signaling [47],

respectively. Two signals also mapped to loci involved in thyroid

hormone regulation (10q21.3-JMJD1C and 12p12.1-SLCO1B1).

One signal mapped to the receptor for luteinizing hormone

2p16.3-LHCGR [20], the hormone that stimulates testosterone

production. Five regions mapped to genes previously implicated in

androgen and estrogen signaling (1p13.3-PRMT6 [18], 8q21.13-

ZBTB10 [17], 12p12.1-SLCO1B1 [76], 15q26.2-NR2F2 [78],

4q13.2-UGT2B15 [63]).

We have combined a conventional GWAS approach with

detailed additional analyses, including sex stratification, condi-

tional analysis and imputation from 1000 Genomes. Our results

demonstrate that these approaches can lead to an appreciable gain

in heritable variance explained. It does however highlight the

complexity of elucidating individual variant causality through

statistical approaches. In addition to the extensive allelic hetero-

geneity at the SHBG locus, our data identify loci with a role in sex

steroid hormone metabolism, which may help elucidate the role of

sex steroid hormones in disease, particularly T2D and hormone-

sensitive cancers.

Methods

We performed a genome wide association study (GWAS) meta-

analysis of 21,791 individuals (Table S1: 9,390 women, 12,401

men) from ten observational studies. Data from an additional six

studies totaling 7,046 individuals (Table S2: 4,509 women; 2,537

men) were used for validation. The proportion of variance

explained was estimated in an independent study (InCHIANTI,

n = 1,129). The individual study protocols were approved by their

respective institution’s ethics committee/institutional review board

and all participants provided informed consent prior to participa-

tion. Individuals known to be taking hormonal contraceptives or

hormone replacement therapy at time of SHBG measurement

were excluded from analysis. Age, sex and body mass index (BMI)

were included as covariates. After applying standard quality

control measures, imputed genotypes were available for approx-

imately 2.5 M SNPs. See Figure 2 for an overview of the analytic

plan and the Text S1 for further information for individual studies

included in this meta-analysis.

GWAS Conditional Meta-Analysis Steps
Conditional analysis #1. The initial starting point for the

conditional analysis was the four SHBG locus SNPs that all showed

low Hapmap LD (r2,0.05) with each other: rs12150660 (lead

SNP Table 1), rs6258 p = 2.7610246, rs1625895 p = 1.2610214

and rs3853894 p = 2.5610211. Each cohort fitted a single

Genetic Influences of Sex Hormone–Binding Globulin

PLoS Genetics | www.plosgenetics.org 9 July 2012 | Volume 8 | Issue 7 | e1002805



regression model, fitting SHBG concentrations against these four

genome-wide significant SHBG locus SNPs (rs12150660, rs6258,

rs1625895 and rs3853894), in addition to age, sex and BMI. After

meta-analyzing the results from all cohorts, three of the SNPs

retained genome wide significance when regressed against each

other, with the fourth SNP narrowly missing that threshold

(rs3853894, p = 4.161026).

Conditional GWAS #1 (Table 1, conditional analysis). We

next performed a conditional GWAS meta-analysis, where each

study included, as additional covariates to the original analysis plan,

the ten genome-wide significant autosomal SNPs (the eight ‘Main’

signals from Table 1 and the two unique SHBG locus signals

described above in addition to the lead SNP rs12150660: rs6258 and

rs1625895). Three additional signals (independence based on

HapMap r2,0.05) at the SHBG locus reached genome-wide

significance (rs1641537 p = 7.8610232, rs6259 p = 1.5610212 and

rs10432029 p = 361028), giving a total of six independent signals in

this gene region. In addition, two novel signals reached genome-wide

significance in the conditional analysis, at 7q21.3 (rs3779195

p = 161028) and 2p16.3 (rs10454142 p = 361028). After replication,

only rs3779195 at the BAIAP2L1 locus retained genome-wide

significance.

Conditional analysis #2 (Table 2, full model). Given the

six signals observed at the SHBG locus (three through conditional

analysis #1 rs12150660, rs6258, rs1625895, three through LD

estimates from conditional GWAS #1: rs1641537, rs6259,

rs10432029), we sought to confirm which of these six were truly

independent by a second round of conditional analysis. All

discovery and replication cohorts fitted a single regression model

of the six SNPs (SNPs # 1–6, Table 2) against SHBG

concentrations, using the same parameters and covariates as

conditional analysis #1. Four of the six SNPs (#1–4: rs12150660,

rs6258, rs1641537, and rs1625895) retained genome-wide signif-

icance when conditioned against each other, with two showing

nominal evidence of association (SNP #5 rs6259, p = 0.0001; SNP

#6 rs10432029, p = 0.01).

Conditional GWAS #2 (Table 2, conditional model). Finally,

we performed a second conditional GWAS analysis, adjusting for the

six SHBG locus SNPs which had evidence of association from

conditional analysis #2. All the discovery cohorts were used in this

analysis, in addition to three replication cohorts (total sample size

24,354). This analysis revealed evidence for a further three

independent signals at the SHBG locus (based on HapMap

r2,0.01), SNP #7 rs9901675 p = 1.561027, SNP #8 rs8077824

p = 4.661025, and SNP #9 rs9393218 p = 9.961026.

Sensitivity Analysis—Allelic Heterogeneity at the SHBG
Locus

We performed a sensitivity analysis using samples from the 1966

Northern Finland Birth Cohort (NFBC1966) study to further

investigate allelic heterogeneity at the SHBG locus (Text S1). The

conditional meta-analysis showed evidence for up to nine signals at

the SHBG locus, but it is possible that these signals could be

explaining a much smaller number of causal variants in the region.

Since 1000 Genomes imputation allows us to assess the genetic

variation associated with a phenotype across a much denser set of

markers, it increases our power to detect allelic heterogeneity

within a region. Therefore, 1000 Genomes imputation was carried

out on all the samples in the NFBC1966 study and forward

selection was used to identify the set of SNPs that best explain the

variation in the SHBG phenotype. 1000 Genomes imputation was

carried out using IMPUTE2. The mean genotype probabilities for

each SNP were calculated and used in the model selection step.

Only SNPs 250 kb upstream and 250 kb downstream from the

SHBG locus (7283453–7786700 bp) were used in the analysis. All

SNPs with MAF ,0.1% or an imputation quality score less than

0.4 were excluded from the analysis. In total, 1978 SHBG region

SNPs measured or imputed in 4467 samples from the NFBC1966

study were used in the sensitivity analysis. Forward selection was

implemented in R (version 2.13.0) using the stepAIC package to

estimate the Akaikie Information Criterion (AIC), an inclusion

parameter. Given the high degree of correlation between the SNPs

in this region, we increased the penalty (k) on the number of terms

included in the model to 12 (where it is usually two), to minimize

possible over fitting. The final model included seven SNPs,

adjusted for sex and BMI.

Pathway Analysis
We examined potential interactions among the proteins

encoded by the SHBG locus and the proteins encoded by the 11

genes (ZBT10, TDGF1, ZNF652, PRMT6, JMJD1C, GCKR,

BAIAP2L1, LHCGR, SLCO1B1, UGT2B15, NR2F2) closest to the

11 identified SNPs using pathway analysis with Search Tool for

the Retrieval of Interacting Genes/Proteins (STRING) Pathways

Analysis (www.string-db.org). The interactions explored by

STRING include direct (physical) and indirect (functional)

associations. We then expanded the analysis to examine protein

interactions among the SHBG gene and the proteins encoded by

67 genes within 500 kb of the 11 identified SNPs.

Targeted Candidate Gene Analysis
We conducted targeted analysis of two strong candidate genes,

hepatocyte nuclear factor-4a (HNF4a) and peroxisome-proliferat-

ing receptor c (PPARc). Statistical significance thresholds were set

correcting for the number of SNPs tested in each gene region

(6100 kb).
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