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Abstract
Background: Avidins are proteins with extraordinarily high ligand-binding affinity, a property
which is used in a wide array of life science applications. Even though useful for biotechnology and
nanotechnology, the biological function of avidins is not fully understood. Here we structurally and
functionally characterise a novel avidin named xenavidin, which is to our knowledge the first
reported avidin from a frog.

Results: Xenavidin was identified from an EST sequence database for Xenopus tropicalis and
produced in insect cells using a baculovirus expression system. The recombinant xenavidin was
found to be homotetrameric based on gel filtration analysis. Biacore sensor analysis, fluorescently
labelled biotin and radioactive biotin were used to evaluate the biotin-binding properties of
xenavidin - it binds biotin with high affinity though less tightly than do chicken avidin and bacterial
streptavidin. X-ray crystallography revealed structural conservation around the ligand-binding site,
while some of the loop regions have a unique design. The location of structural water molecules at
the entrance and/or within the ligand-binding site may have a role in determining the characteristic
biotin-binding properties of xenavidin.

Conclusion: The novel data reported here provide information about the biochemically and
structurally important determinants of biotin binding. This information may facilitate the discovery
of novel tools for biotechnology.

Background
Avidins are high-affinity biotin-binding proteins found in
the eggs of oviparous vertebrates including bird, reptilian
and amphibian species [1-5]. In addition to its production
in the oviduct and secretion to egg white, avidin is
expressed in several other tissues of the chicken during
injury and inflammation [6]. Avidins analogous to those

found in the earliest diverging tetrapod species have been
isolated from a few bacterial species: Streptomyces avidinii
(streptavidin; [7,8]) Bradyrhizobium japonicum (bradavi-
din; [9]) and Rhizobium etli (rhizavidin; [10]).

Avidins are homotetrameric proteins, the only known
exception being rhizavidin, which is a homodimer [10].
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The avidin subunits consist of eight anti-parallel β-
strands, which form a β-barrel structure that has a biotin-
binding pocket at the open end of the barrel. Avidins
interact extraordinarily tightly with a water-soluble vita-
min, D-biotin (Kd in the range of 10-13 to 10-15 M). This
exceptional strength of interaction has not only been uti-
lized in various biochemical and biophysical applications
[11], but has also led to the production of a number of
genetically modified forms of avidin and streptavidin
[12]. The biotin-binding modes of avidins, and the amino
acids involved in biotin binding are highly conserved
among different species even though the similarity
between the primary sequences of avidins is relatively
low.

In addition to biotin binding, comparisons of avidins,
either extracted directly from natural sources [7,13] or
produced as recombinant proteins [9,10,14,15], have
revealed many differences in their physicochemical prop-
erties, e.g., stability and immunogenicity. Consequently,
the detailed characterization of novel avidins has pro-
vided valuable information that could be exploited in the
development of novel molecular tools and devices. For
example, a chimeric avidin containing structural parts
from both chicken avidin and avidin related protein 4
(AVR4), has been found to be more stable than either one
of the native forms [16].

Although avidins are expressed in several different species,
only a few avidins have been thoroughly characterized.
Experimentally determined three-dimensional (3D) struc-
tures are available e.g. for streptavidin [17], chicken avidin
[18,19], avidin related protein 2 (AVR2) [20], AVR4 [21]
and biotin-binding protein A [15]. These structures have
proved that the overall fold of the avidins is the same, but
that the subtle structural differences explain the observed
differences in the functional characteristics of avidins.

Here we report, to our knowledge, the first biochemical
and structural characterization of an amphibian avidin -
xenavidin - a frog avidin from Xenopus tropicalis. Being the
only diploid species in the Xenopus genus with a small
genome (1.7 × 109 bp) and short generation time, X. trop-
icalis has proven invaluable, e.g., for understanding the
mechanisms of vertebrate embryonic development and
for functional genomics (for reviews, see [22,23]). The
56% amino acid sequence identity shared between avidin
and xenavidin is relatively high and suggests that avidin
and xenavidin have similar biochemical and structural
properties. However, like for other avidins such as strepta-
vidin, bradavidin and rhizavidin, in comparison with
chicken avidin, xenavidin has it own unique features
determined by the subtle changes found in its sequence
and structure. Thus, the characterization of xenavidin
gives insights into the biochemical and structural determi-

nants of a novel member of the avidin protein family, a
family of extraordinary biotin-binders with many pros-
pects for exploitation in biotechnology and nanotechnol-
ogy.

Results
Cloning, expression and purification
Two DNA sequences encoding an avidin-like protein from
a frog were originally identified by searching an EST
sequence database [24]; after discovering the avidin-like
gene from Xenopus tropicalis, the avidin gene for Xenopus
laevis, another frog species, was also identified. Here, we
focus on the protein from Xenopus tropicalis, which we
named xenavidin. The cDNA of xenavidin was cloned into
the pFastBac1 baculovirus expression system entry vector,
and recombinant xenavidin was successfully produced in
Sf9 insect cells using the Bac-to-Bac® baculovirus expres-
sion system (Invitrogen). The protein was purified with 2-
iminobiotin SepharoseTM (Affiland, Liège, Belgium)
affinity chromatography. About 2-3 mg of pure protein
was typically obtained per one litre of culture media.
Attempts to produce xenavidin in a bacterial expression
system in E. coli [25] were unsuccessful.

X-ray structure
Xenavidin overexpressed in insect cells was crystallized
with and without D-biotin (BTN) added to the crystalliza-
tion solution. The X-ray structures of the xenavidin-BTN
complex [PDB: 2UYW] and the unliganded xenavidin
protein [PDB: 2UZ2] were solved to 1.7 Å resolution. The
structures crystallized in a rhombohedral space group and
had a dimer in their asymmetric unit (for the structure
determination statistics, see Table 1). In general, both of
the xenavidin structures were highly similar to the known
structures of avidin and streptavidin: the 3D structure of
xenavidin is homotetrameric, each subunit consisting of
an eight-stranded β-barrel (Figure 1). The amino acids lin-
ing the biotin-binding pocket are structurally conserved
between xenavidin and chicken avidin. There were, how-
ever, differences in the loop architecture between these
proteins, particularly in the L3,4-loop and the L4,5-loop.
The unique L3,4-loop design in different avidins is a key
feature regulating the binding affinity of avidins [18,26-
28], but the role of the variable L4,5-loop is not clear
though it is known not to be directly involved in ligand
binding. Moreover, there were some differences in the
interface architecture of xenavidin in comparison to
chicken avidin. For example, out of the three residues at
the 1-3 subunit interface, two (M96 and V115; numbering
according to avidin [18]) are conserved between avidin
and xenavidin, whereas I117 in avidin is substituted by
alanine in xenavidin, probably contributing to the
reduced stability of xenavidin (see below). The surface
properties of avidin, xenavidin and streptavidin vary, too
(Figure 2).
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The subunits of the dimer found in the asymmetric units
of the xenavidin crystals are labelled A and D to match the
numbering system generally used to describe the biologi-
cal unit of chicken avidin (tetramer; subunits I-IV; [18]).
In the unliganded structure of xenavidin, there was no
clear electron density for biotin in subunit A. However,
weak electron density was evident for the ligand at the
binding site in subunit D; thus, a biotin molecule was
built into subunit D of the unliganded xenavidin structure
despite the presence of weak electron density around the
ligand (Figure 3). One possible explanation for the vary-
ing electron densities at the biotin-binding sites could be
sequential binding, which is supported by some previous
studies suggesting cooperativity between binding sites of
(strept)avidin [29,30]. However, some other studies do
not support cooperativity between binding sites [31,32].
In the BTN-complex structure, D-biotin was clearly
present in both of the biotin-binding sites of the asym-
metric unit. In the X-ray structures of xenavidin there was
no clear evidence that either of the two potential N-glyco-
sylation sites of each polypeptide, N43 or N108 (S41 and
D109 in avidin; Figure 1), would in fact be glycosylated.
However, the presence or absence of glycosylation at N43
cannot be reliably established since N43 is within the
L3,4-loop and the side-chain atoms of this residue have
high B-factors and hence poor electron density. The struc-

tures of xenavidin clearly showed that N108 did not have
sugar units attached to its side chain.

In xenavidin, three amino acids residues out of 18 lining
the biotin-binding pocket are different from those in the
binding pocket of avidin: the equivalent residues for the
non-conserved S40, L41 and W78 found in xenavidin in
avidin are T38, A39 and F79 (Figure 1). S40/T38 and
W78/F79 interact with biotin through hydrophobic effect
and van der Waals interactions, whereas L41/A39 are
involved in hydrogen bonding via the residue's main-
chain nitrogen atom. In addition, the main chain of T42
in xenavidin is not close enough to form a hydrogen bond
with biotin ([PDB: 2UYW], the closest approach distance
is over 4 Å), whereas in avidin a hydrogen bond between
the main-chain nitrogen atom of the equivalent residue
T40 is evident ([PDB: 1AVD], distance = 3 Å; [19]). These
subtle differences in the architecture of the biotin-binding
sites of xenavidin and avidin may contribute, at least par-
tially, to the different biotin-binding properties that were
observed for these two proteins (see below).

A water molecule was detected in the unliganded structure
of xenavidin at the bottom of the ligand-binding site
bridging the carboxamide group of N117 and biotin
(bridging was evident only in subunit D; Figure 3); the

Table 1: X-ray structure determination statistics for xenavidin

Data collectiona Unliganded protein
[PDB: 2UZ2]

BTN complex
[PDB: 2UYW]

Wavelength (Å) 0.900 0.900
Beamline ID29 (ESRF) ID29 (ESRF)
Detector ADSC ADSC
Resolution (Å) 25 - 1.7 (1.8 - 1.7) 25 - 1.7 (1.8 - 1.7)
Unique observations 37060 (5778) 37484 (5853)
I/sigma 22.4 (4.7) 22.0 (4.2)
Rfactor (%)b 6.7 (43.9) 7.4 (50.5)
Completeness 99.9 (100) 99.9 (100)
Redundancy 8.5 (8.6) 9.1 (9.2)

Refinement
Space group R32 R32
Unit cell:

a, b, c (Å) 110.8, 110.8, 142.3 110.9, 110.9, 143.8
α, β, γ (°) 90, 90, 120 90, 90, 120

Monomers (asymmetric unit) 2 2
Resolution (Å) 25 - 1.7 25 - 1.7
Rwork (%)c 18.1 16.5
Rfree (%)c 21.6 19.0
Protein atoms 1997 1953
Heterogen atoms 20 62
Solvent atoms 208 224
R.m.s.d:

Bond lengths (Å) 0.014 0.017
Bond angles (°) 1.5 1.5

aThe numbers in parenthesis refer to the highest resolution bin.
bObserved R-factor from XDS [55].
cFrom Refmac 5 [60] using TLS [62] & restrained refinement.
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Comparison of avidin, streptavidin and xenavidinFigure 1
Comparison of avidin, streptavidin and xenavidin. A, Structural alignment of avidin [PDB: 1AVD] (red), streptavidin 
[PDB: 1MK5] (cyan) and xenavidin (reported here; [PDB: 2UYW] (blue)). The A subunits of each protein are shown as rib-
bons. The bound biotin of xenavidin is shown as sticks. Loops connecting β-strands (for example, L1,2 connecting strands β1 
and β2) as well as the amino (N) and carboxyl (C) termini are labelled. The α1-helix (H1) is also indicated. B, Selected residues 
around the biotin-binding pocket are shown as sticks and are labelled according to xenavidin. Biotin molecules are shown (1, 
xenavidin; 2 avidin; and 3 streptavidin). C, Structure-based sequence alignment created based on the ensemble of aligned struc-
tures shown in A. The secondary structure elements of avidin (β-strands 1-8, arrows; α-helix, H1) are indicated, and residues 
are numbered according to avidin (top) and xenavidin (bottom). Identical (red background) and physicochemically similar 
amino acid residues (red letters) are boxed. Potential N-glycosylation sites are indicated with an asterisk. Residues hydrogen 
bonded to biotin are indicated by triangles (side-chain interaction) or squares (main-chain interaction). Spheres denote resi-
dues involved in hydrophobic effect or van der Waals interactions with biotin. Interacting residues from a neighbouring subunit 
are indicated with an open circle. Colouring scheme for the symbols: black, conserved in all three proteins; green, conserved in 
xenavidin and avidin only; blue, unique to xenavidin; red, unique to avidin; and cyan, unique to streptavidin. For additional infor-
mation, see Methods.
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conformation of N117 in the unliganded structure differs
from that in the structure of the xenavidin-biotin com-
plex. To our knowledge, the only other known avidin
structures harbouring a water molecule at the correspond-
ing location, referred to as 'site 1' by Hyre et al. [33], are
two mutant structures of streptavidin: the D128A mutant

structure ([PDB: 1SWT]; [34]) and the S45A/D128A dou-
ble mutant structure ([PDB: 1MEP]; [35]). A structural
water at site 1 has so far not been observed in native avi-
din structures. A conserved water molecule, the water
molecule at site 2 ([33]; Figure 3), located at the entrance
of the water channel, is present in both of the xenavidin
structures. According to Hyre et al. [33], biotin dissocia-
tion from streptavidin is initiated by penetration of water
molecules into these sites. The presence of structural water
molecules at site 1 and/or 2 in the xenavidin structures
suggests a role for these water molecules in the biotin
association/dissociation events of xenavidin; the biotin-
binding site of xenavidin may be more vulnerable to
potential 'attack' by water molecules than it is in chicken
avidin. This hypothesis is supported by our experimental
results, which showed an increased dissociation rate of
biotin from xenavidin compared to avidin (see below).

Biochemical and physicochemical characterization
The quality and molecular size of the isolated xenavidin
protein was analyzed using 15% SDS-PAGE and size
exclusion chromatography. In the latter analysis, xenavi-
din appeared mainly as a single peak and had a size of
approximately 74 kDa suggesting a tetrameric quaternary
structure (Table 2; [Additional file 1, Additional file 2]).
Recall that xenavidin has two asparagine residues, N43
and N108 (Figure 1), identified as potential glycosylation
sites according to the program NetNGlyc 1.0 (http://
www.cbs.dtu.dk/services/NetNGlyc/; Gupta et al. in prep-
aration). The theoretical molecular weight of xenavidin,
calculated on the basis of the primary amino acid

Molecular surfaces of chicken avidin (A and D; [PDB: 1AVD]), xenavidin (B and E; [PDB: 2UYW]) and streptavidin (C and F; [PDB: 1MK5])Figure 2
Molecular surfaces of chicken avidin (A and D; [PDB: 
1AVD]), xenavidin (B and E; [PDB: 2UYW]) and 
streptavidin (C and F; [PDB: 1MK5]). The surfaces were 
colored by electro potentials. The views in A, B and C are 
rotated 90 degrees around the x-axis in D, E and F, respec-
tively. The subunits (I-IV) are numbered according to Livnah 
et al. [18]. The yellow arrows pinpoint the entry sites for 
biotin-binding pockets (A-C) and water channels (D-F). The 
valeric acid moiety end of bound biotin molecules (green 
spheres) is seen in C.

Ligand binding to xenavidinFigure 3
Ligand binding to xenavidin. Simplified presentation of the ligand-binding sites: A, subunit A of unliganded xenavidin; B, sub-
unit D of unliganded xenavidin; C, subunit A of the xenavidin-BTN complex; and D, subunit D of the xenavidin-BTN complex. 
Amino acid residues are numbered according to xenavidin and avidin (in brackets). Colouring scheme for the stick models: red, 
oxygen atoms; blue, nitrogen atoms; green, carbon atoms. Water molecules are shown as red spheres. ACT, acetate ion; BTN, 
D-biotin. Difference Fo-Fc electron density map (blue) contoured at 3σ around the bound ligands is depicted; the maps were 
calculated in the absence of ligands. An asterisk indicates the conserved water molecule found at the entrance of the water 
channel, at site 2 [33], and an arrow pinpoints the water molecule at site 1 [33] that was present only in the unliganded xena-
vidin structure (see text for details).
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sequence, is only 60 kDa, which suggests that N43 might
indeed be glycosylated in the insect cells. SDS-PAGE anal-
ysis resulted in multiple bands where, in addition to the
band corresponding to the nonglycosylated form, two
higher molecular weight forms of the monomeric protein
were detectable. These higher molecular weight forms
most probably correspond to glycosylated species with a
varying number and type of sugar units (marked with
black triangles in Figure 4). It is well known that proteins
overexpressed using the baculovirus expression system
may have heterogeneous glycosylation patterns, as
reviewed by Davies [36]. Furthermore, we have also
observed this phenomenon in the AVR-proteins, which
may have multiple glycosylation sites per polypeptide
chain [37]. Further evidence for the presence of heteroge-
neously glycosylated xenavidin was obtained by treating
the purified protein with the deglycosylation enzymes
Endo Hf and PNGase, which caused the disappearance of
the higher molecular weight forms of xenavidin in SDS-
PAGE analysis (not shown). Moreover, based on the X-ray
analysis of xenavidin (see above), the crystallized proteins

may have carbohydrates attached to one of the two poten-
tial glycosylation sites. Taken together, our data support a
structure in which xenavidin is glycosylated at N43; inter-
estingly, the glycosylation site in xenavidin is located at a
position equivalent to that glycosylated in AVR4 (N43)
[14]. Avidin also has one glycosylation site (N17) but
there is no equivalent glycosylation site in xenavidin.

Like almost all of the other avidin-like proteins studied so
far, xenavidin also tends to form oligomers of tetramers,
which could be seen as a minor peak, with an apparent
molecular weight of 210 kDa, before the main peak in the
gel filtration chromatogram [Additional file 1, Additional
file 2]. These oligomers could not be detected in an SDS-
PAGE-based thermostability assay (Figure 5.), where
xenavidin appeared only as a tetrameric form in the pres-
ence of biotin to up to 65°C, and even at 90°C (not
shown), but dissociated into monomers in the absence of
biotin already at room temperature (22°C).

Xenavidin has a very similar theoretical isoelectric point
(pI 9.23) to avidin (pI 9.69); values for both proteins were
calculated using the Compute pI/Mw tool http://
ca.expasy.org/tools/pi_tool.html[38]. Hence, xenavidin
and avidin are positively charged at neutral pH, whereas
streptavidin (pI 6.10) has a negative net charge at the
same pH.

Sera from human cancer patients [13] who were exposed
to avidin and streptavidin were used to probe the cross
reactivity among xenavidin, chicken avidin and streptavi-
din. In this analysis xenavidin did not react significantly
with the avidin/streptavidin immunized sera. Moreover,
polyclonal antibodies against avidin and streptavidin did
not recognize xenavidin. Taken together, xenavidin
appears not to be immunologically cross reactive with
(strept)avidin [see Additional file 3]. The complete dataset
is reported in Helppolainen et al. [39].

Protein stability
The thermal stability of xenavidin was determined with a
SDS-PAGE thermostability assay (Figure 5), and the anal-
ysis was performed as described by Bayer et al. [40]. With-
out biotin, the tetrameric form of xenavidin was unstable
and the protein was monomeric already at room temper-

Table 2: Gel filtration analysis of xenavidin and avidin. The samples were in the presence (+BTN) or absence (-BTN) of biotin.

Protein Observed molecular weight (kDa) Theoretical molecular weightb (kDa)

Xenavidin (-BTN) 74.5a 59.5
Xenavidin (+BTN) 73.3a 59.7
Avidin (-BTN) 62.5a 57.4

aThe analyzed proteins were most probably glycosylated; sugar moieties comprise at least 10% of the mass of avidin [69].
bTheoretical values were calculated from the primary structures.

Limited proteolysis of xenavidin and avidin by proteinase KFigure 4
Limited proteolysis of xenavidin and avidin by protei-
nase K. Samples from left to right: LWM, a molecular weight 
standard (weights in kDa, Fermentas Life Sciences); Avidin 
control sample; Avidin treated with proteinase K in the 
absence of biotin; Avidin treated with proteinase K in the 
presence of biotin; Proteinase K control sample (four times 
higher concentration of proteinase as compared to the other 
samples); Xenavidin control sample; Xenavidin treated with 
Proteinase K in the absence of biotin; Xenavidin treated with 
proteinase K in the presence of biotin. Black arrowheads 
indicate the putative single- (lower arrow) and double-glyco-
sylated (upper arrow) xenavidin forms.
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ature (22°C). When biotin was added, the stability of the
tetrameric form of the xenavidin was significantly
increased - the transition temperature of dissociation of
the tetramer was raised to 75°C. Therefore, in the absence
of biotin, the tetrameric quaternary structure of xenavidin
is clearly more vulnerable to the denaturing effect of SDS
than is the structure of avidin [40], whereas in the pres-
ence of biotin, xenavidin and avidin have relatively simi-
lar stabilities, thus suggesting high affinity to biotin.

The stability of xenavidin against proteinase K was tested
in the presence and absence of biotin. As previously
shown, avidin was cleaved in the absence of biotin after
extended incubation with proteinase K to fragments of 10
kDa and below, but the presence of biotin protected avi-
din from proteolytic cleavage [41]. Similar behaviour was
observed in the case of xenavidin. In the absence of biotin,
xenavidin was cleaved by proteinase K into small frag-
ments, which could not be seen using gel analysis,
whereas adding biotin to the reaction mixture prevented
cleavage (Figure 4).

Ligand binding properties
The dissociation rate of d-[8,9-3H]biotin from xenavidin
samples was measured at several different temperatures
(Figure 6). Xenavidin showed a faster dissociation rate
compared to avidin, but a slower rate when compared to
either streptavidin or bradavidin ([9]; Figure 6). If a simi-
lar biotin-association rate constant were assumed for all
the proteins, xenavidin would have a streptavidin-like
affinity for biotin (Kd = 1 × 10-13 M). The dissociation of
biotin from xenavidin was also measured by fluorescence
spectroscopy using fluorescently labelled Bf560-biotin
[25]. Xenavidin released this biotin conjugate much faster
than did avidin - again suggesting a weaker affinity for
biotin (Figure 7; Table 3). It is important to keep in mind
that avidins may differ in the way in which they bind dif-
ferent biotin forms, including free biotin (d-[8,9,3]
biotin) and conjugated biotin (Bf560-biotin) [42]. For
example, it has been shown that streptavidin binds Bf560-
biotin more tightly than avidin, whereas avidin binds free
biotin better than streptavidin [9]. In our opinion, the flu-
orescent biotin assay reflects more the conditions found
in life science applications, where biotin is typically con-
jugated to other molecules, whereas the free biotin assay
mimics more closely the conditions in vivo. The determi-
nation of the kinetics of association of free biotin would
give an even deeper picture of the ligand-binding proper-
ties of avidins and would be interesting to do in future
experiments.

The ligand-binding characteristics of xenavidin were also
studied using a surface plasmon resonance approach
using an optical biosensor instrument (Biacore X, GE
Healthcare). In this analysis, xenavidin showed ~10-fold
lower affinity (Kd = 1 × 10-6 M) to the 2-iminobiotin
functionalized optical biosensor chip compared to
chicken avidin (Kd = 1 × 10-7 M). Both a slower associa-
tion rate and a faster dissociation rate were observed for
xenavidin compared to chicken avidin (Table 4).

Discussion
Although thoroughly studied in terms of structural, bio-
chemical and biophysical characteristics, the biological
functions of avidins are not fully understood. Here, we
expand the research on avidins by reporting xenavidin,
the first avidin-like protein from a frog, which was identi-

Thermal stability of the tetrameric forms of xenavidinFigure 5
Thermal stability of the tetrameric forms of xenavi-
din. SDS-PAGE -based analysis of xenavidin either in the 
absence of added biotin (-BTN) or saturated with biotin 
(+BTN) prior to analysis. The measurement temperatures, 
22 (RT, room temperature), 30, 65, 70 and 75°C, are shown, 
and the molecular weights of the standard proteins (LWM; 
BioLabs) are indicated (kDa). This figure was created from 
the images of two different gels; the uninformative parts of 
the gel images are not shown.

Table 3: Dissociation analysis of fluorescent Bf560-biotin

Protein Dissociation rate constant at 25°C
s-1 (× 10-5)

Dissociation rate constant at 50°C
s-1 (× 10-5)

Release after 1 h at 50°C
%

Xenavidin 17.0 442.1 95.5
Avidin 2.3 32.6 76.5
Streptavidin --a 0.7 5.1

aThe dissociation rate was too slow to be measured accurately at 25°C.
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fied as an expressed sequence tag (EST) from the Xenopus
tropicalis genome project. Avidins appear to be conserved
among egg-laying vertebrates [3,4,6] and are thought to
have a role as defence proteins against microbial infec-
tions [43,44]. Bird eggs contain egg yolk, the compart-
ment for embryonic development, and the egg white that
surrounds the egg yolk provides both nutrients and pro-
tection for the embryo. In frogs, the equivalent to egg
white is called egg jelly [45]. The avidin content of egg
jelly may have an important role in the embryonic devel-
opment of frogs, a hypothesis that is also supported by
recent studies within natural bird populations, in which
the concentration of avidin in egg white appears to be
linked to hatching success (Siitari et al. manuscript in

preparation). In this light, it seems likely that avidins are
found in all frog and bird proteomes. It would be interest-
ing to see whether some of the many fish species also carry
avidin in their proteome; a search of sequence databases
revealed that the zebrafish (Danio rerio), for example, may
carry a gene encoding an avidin-like protein (data not
shown). The first avidin from fungi, tamavidin, has
recently been reported, too [46].

Avidin and streptavidin have been used for pre-targeting
immunotherapy and imaging [47,48]. Although the folds
of these proteins are similar, and both bind biotin tightly,
they differ in their pharmacokinetic characteristics
[49,50]. The glycosylation of avidin, for example, was pre-
viously observed to affect its uptake by tumours and accu-
mulation in the liver. On the other hand, the basic pI of
avidin is responsible for its accumulation in the kidneys
[51,52]. Therefore, avidin cannot be efficiently used in
drug delivery and imaging owing to non-specific binding
to extraneous material [53]. In comparison to avidin,
streptavidin is known to have a longer half-life in plasma,
but it accumulates mainly in the kidneys [49]. Since xena-
vidin has unique pharmacokinetic properties, for example
its glycosylation pattern and electropotential surface
properties (data not shown), it could be a valuable substi-
tute for avidin or streptavidin in biomedical applications.

The X-ray structures of xenavidin show that xenavidin has
a β-barrel fold like the other known structures of avidins.
The residues around the biotin-binding pocket are also
well conserved, but some differences were still found -
four residues of xenavidin (S40, L41, T42 and W78) had
altered interactions with biotin when compared to the
equivalent residues of avidin (T38, A39, T40 and F79), the
alterations affecting hydrogen bonding via the main
chain, hydrophobic effect or van der Waals interactions
(Figure 1). S40, L41 and T42 are located within the L3,4-
loop, which is known to be important for determining the
ligand-binding specificity of avidins [18,27,28]. Although
T42 in avidin is comparable to T40 in xenavidin, the inter-
action with biotin is formed in a different way. Together
with the unique subunit interface design, these, even sub-
tle structural changes may be responsible for the observed,
unique ligand-binding properties of xenavidin. Moreover,
in the unliganded xenavidin structure, a water molecule
was found at a site referred to as site 1 [33], located at the
deep end of the biotin-binding pocket (indicated with an
arrow in Figure 3). In the biotin-complex structure of
xenavidin, this water molecule was missing, even though
a conserved water molecule at the entrance of the water
channel was observed in both the unliganded protein
structure and the biotin-complex structure (this site is
referred to as site 2 by Hyre et al. [33]; indicated with an
asterix in Figure 3). Thus, the unliganded structure of
xenavidin may represent the first example of an interme-

[3H]biotin dissociation analysisFigure 6
[3H]biotin dissociation analysis. The dissociation rate 
constant of d-[8,9-3H]biotin was measured at different tem-
peratures. The values for bradavidin, streptavidin and avidin 
are from references [9,63] and [14], respectively.

Dissociation analysis of fluorescent biotinFigure 7
Dissociation analysis of fluorescent biotin. The dissoci-
ation of Bf560-labelled biotin was measured at 50°C.
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diate structure of the avidin family, with a structural water
molecule located deep within the biotin-binding pocket
and lending support to the water-bridged model of biotin
association/dissociation [35]. Moreover, Freitag et al. [34]
and Hyre et al. [35] have shown that D128 in streptavidin
has an important role in controlling the movement of
water molecules in this area. Interestingly, N117, the resi-
due analogous to D128 of streptavidin and N118 of avi-
din, has an altered conformation in unliganded xenavidin
compared to N117 of the biotin-complex structure of
xenavidin, suggesting a potentially important role for this
residue in the water-mediated association/dissociation
mechanism of avidins in general.

Conclusion
We have carried out a structural and functional analysis of
xenavidin, a novel avidin from Xenopus tropicalis. Our
results show that xenavidin is a well-conserved member of
the avidin protein family having a tetrameric structure, N-
glycosylation and extremely tight biotin-binding capabil-
ity that is mediated via numerous non-covalent interac-
tions including hydrogen bonds, hydrophobic
interactions and van der Waals contacts. However, bio-
chemical and structural features unique for xenavidin
were also discovered. Our results may facilitate the devel-
opment of novel and advanced avidins for biotechnolog-
ical and nanotechnological applications. Overall, this
study deepens our understanding of the structure-func-
tion relationship of avidins.

Methods
Cloning
The cDNA of xenavidin was amplified by PCR using an
EST clone of Xenopus tropicalis ([clone ID: AM14731C6],
Geneservice Ltd, http://www.geneservice.co.uk), [Gen-
Bank: CF523241] as a template, Xen_5' as a forward
primer (5'-GAGACAGATCTATGAACGCTCT-
CACTCTCCT-3') and Xen_3' as a reverse primer (5'-
CACAGAAGCTTTTATTCCTTGCGGATTTTTT-3'). The
primers had restriction enzyme sites for BglII (forward
primer) and HindIII (reverse primer), which are under-
lined. After isolation from a preparative agarose gel, the
PCR product was digested with BglII and HindIII (Fermen-
tas Life Sciences) and cloned into the pFastBac1 baculovi-
rus expression system entry vector, which had been
treated with the BamHI and HindIII restriction enzymes
(Fermentas Life Sciences). The resulting expression con-

struct (pFastBac1-xenavidin) was confirmed by DNA
sequencing.

Expression and purification
Xenavidin was produced as a soluble recombinant protein
using the Bac-To-Bac® baculovirus expression system (Inv-
itrogen/Finnzymes, Espoo, Finland). Recombinant bacu-
lovirus genomes were generated by transforming E. coli
DH10Bac cells (Invitrogen/Finnzymes, Espoo, Finland)
with the pFastBac1-xenavidin vector. The isolated recom-
binant baculoviruses were then used to transfect Spodop-
tera frugiperda Sf9 insect cells by lipofection using the
Cellfectin® reagent according to the instructions of the
manufacturer (Invitrogen Corporation, Carlsbad, CA).
The virus stock was amplified by infecting a suspension
culture of insect cells and then used to produce xenavidin
in insect cells transferred to biotin-free medium. Xenavi-
din was purified from insect cells using 2-iminobiotin
affinity chromatography as reported earlier in detail by K.
Airenne et al. [54].

Crystallization and X-ray structure determination
Suitable conditions for crystallization of xenavidin were
initially investigated at 22°C using the Classics™ (Nextal
Biotechnology) and Wizard II (Emerald Biostructures)
screens, the vapour diffusion method and sitting drops
(1.3-2 μl) on 96 well plates (Corning Inc.). The protein
solution (~1.5 mg/ml) contained 50 mM sodium acetate
(pH 4) and 20 mM sodium chloride. In order to prepare
xenavidin - biotin complexes, the protein solution was
mixed with a biotin (Sigma) solution (1 mg/ml) contain-
ing 5 mM Tris (pH 8.8) and 8 mM CHES (pH 9.5) using a
10:1 (v/v) ratio of the protein and ligand solutions,
respectively. Three crystals, which were used to solve the
X-ray structures of xenavidin, formed in the following
drop conditions: crystal-1 (xenavidin-biotin complex), 1
μl of protein solution with biotin and 0.7 μl of well solu-
tion (10% (w/v) PEG 1000, 10% (w/v) PEG 8000); crys-
tal-2 (xenavidin-biotin complex), 0.5 μl of protein
solution with biotin and 0.7 μl of well solution (5% (v/v)
isopropanol, 2.0 M ammonium sulfate); and crystal-3
(unliganded xenavidin), 0.6 μl of protein solution with-
out biotin and 0.7 μl of well solution (1.0 M sodium cit-
rate, 0.1 M Tris (pH 7), 0.2 M sodium chloride). These
rhombohedral crystals formed in a few days or weeks and
had dimensions typically smaller than 0.1 × 0.1 × 0.1 mm.

Table 4: Optical biosensor analysis (Biacore X) of 2-iminobiotin binding

Protein kass(s-1) (× 104) kdiss (M-1s-1) (× 10-3) Kd (M) (× 10-8)

Xenavidin 2.2 21.6 99.8
Streptavidin 20.0 17.0 8.5
Avidin 9.4 9.6 10.2
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The first X-ray diffraction data set of the xenavidin-biotin
complex was collected from crystal-1 at the MAX-lab
beam line I911_2 (Lund, Sweden) using a MarCCD detec-
tor and a second data set from crystal-2 at the ESRF beam
line ID-29 (Grenoble, France) using an ADSC detector,
both at 100 K. The beam line ID-29 was also used to col-
lect data from the unliganded structure of xenavidin (crys-
tal-3). The crystals were cryoprotected by adding either 0.7
μl (crystal-1) or 1.0 μl (crystal-2 and -3) of 4 M sodium
formate to the crystallization drop just prior to flash-freez-
ing in a 100 K liquid nitrogen stream (Oxford Cryosys-
tem). The diffraction data were processed to 1.9 Å (crystal-
1; data not shown) and 1.7 Å resolution (crystal-2 and -3;
Table 1) using the XDS program package [55]. The 1.9 Å
data were used for the initial structure determination of
the xenavidin-biotin complex, which was carried out
using the molecular replacement program Phaser [56] of
the CCP4i program suite [57,58] and a dimeric polypep-
tide model of AVR2 (1WBI; [20]) as a search model. The
initial 1.9 Å model was rebuilt using ARP/wARP (starting
from an existing model; v. 6.1.1) [59], refined with
Refmac5 [60] and modified with Coot [61]. Solvent
atoms and other non-protein atoms were added to the
model either with the automatic procedure of ARP/wARP
or Coot, or manually in Coot. The 1.7 Å data (crystal-2)
were used to extend the resolution of the pre-existing 1.9
Å model and to build the final model of the xenavidin-
biotin complex - the 1.9 Å model was used as a starting
model in ARP/wARP and the rebuilding steps described
above were followed with the exception that TLS option
[62] was used in the restrained refinement (Refmac5). The
structure determination for the unliganded structure of
xenavidin was carried out as described for the 1.7 Å xena-
vidin-biotin complex structure.

The final 1.7 Å unliganded xenavidin and xenavidin-
biotin complex structures were analyzed using the inbuilt
tools of Coot before deposition to the Protein Data Bank
with entry codes 2UZ2 and 2UYW, respectively. The data
collection and structure determination statistics are sum-
marized in Table 1.

Optical biosensor analysis
The Biacore X optical biosensor instrument was used in
the analysis, where the CM5 sensor chip was functional-
ized with 2-iminobiotin. The functionalization of the chip
was done in three phases: First, the carboxymethyl dex-
trane was activated using a mixture containing 0.2 M EDC
(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride) and 0.05 M NHS (N-hydroxysuccinimide)
in water. Second, in order to introduce amino groups to
the surface, 1 M ethylenediamine (Fluka 03550) in water
was applied. Third, a mixture of EDC (0.2 M) and 2-imi-
nobiotin (10 mM) was applied on the surface in 25 mM

Na-phosphate pH 6.5. The amount of 2-iminobiotin
attached on the surface was 81 response units.

Xenavidin was injected onto the sensor chip in a 50 mM
sodium carbonate buffer (pH 11.0) containing 1 M NaCl
at 25°C and using a flow rate of 50 μl/min. Chicken avi-
din expressed in E. coli [25] or streptavidin from Streptomy-
ces avidinii (Biomol GmbH, Hamburg, Germany) were
analyzed as control samples; the control samples incu-
bated with an excess of biotin showed no binding to the
surface. The surface was regenerated between measure-
ment cycles by injecting 20 μl of 0.5 M acetic acid fol-
lowed by washing with the measurement buffer.

BIAevaluation software v. 4.1 was used for data analysis,
and a global fitting method was used to analyze the data
set. A period of 20 seconds from the beginning of each
injection was included in the association phase fit and the
dissociation rate analysis was performed for a 60-second
period starting immediately after the end of the injection.

Radioactive biotin dissociation assay
The dissociation rate constant of d-[8,9-3H]biotin (Amer-
sham, Buckinghamshire, England) from avidin and xena-
vidin was determined at different temperatures by
competition with free biotin as described in Klumb et al.
[63]. Measurements were carried out in neutral pH in a 50
mM sodium phosphate buffer containing 100 mM NaCl
and 10 μg/ml of BSA to prevent non-specific binding.
After the measurement of free radioactive biotin, xenavi-
din was added to a concentration of 50 nM. The level of
unbound radioactive biotin was measured and an excess
of normal biotin was added to the samples to replace
bound radioactive biotin. Free biotin was separated from
the bounded one by centrifugation through Microcon® 30
kDa molecular weight cut off centrifugal filter devices
(Millipore). The fractions of biotin bound at each time
point were used to create a plot of ln(fraction biotin
bound) versus time. The dissociation rate constant (kdiss)
is determined from the slope of the best-fit line:

where xt is the total amount of ligand before the addition
of protein, x is the free biotin concentration at each time
point and x0 is the amount of free ligand in the presence
of protein just prior to the addition of nonradioactive
biotin.

Fluorescence spectroscopy
The Quanta Master™ spectrofluorometer (Photon Tech-
nology International Inc., Lawrenceville, NJ) with a PTI
Fluorescence Master System and the software Felix 32 was

ln[( ) /( )] ln ( )x x x x  fraction biotin bound k tt t diss− − = = −0

(1)
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used to measure the biotin-binding properties of avidin,
xenavidin and streptavidin. The analyses were done in a
50 mM sodium phosphate buffer (pH 7.0) containing
650 mM NaCl at two different temperatures (25 ± 1°C
and 50 ± 1°C) by measuring the reversing of quenching of
the biotin-coupled fluorescent probe ArcDia™ Bf560 (Arc-
Dia Ltd., Turku, Finland) due to competition with free
biotin (100-fold molar excess) as previously described
[25]. The spectrum of Bf560-biotin in the presence and
absence of avidin is shown in [Additional file 4].

Gel filtration
Gel filtration analysis was performed for xenavidin, avidin
and streptavidin using an ÄKTA™ purifier HPLC instru-
ment (Amersham Biosciences AB, Uppsala, Sweden)
equipped with a Superdex 200 10/300 GL column (Tri-
corn, Amersham Biosciences AB, Uppsala, Sweden) as
previously described [15]. The analyses were performed in
a 50 mM sodium phosphate buffer (pH 7.0) containing
650 mM NaCl. Protein-biotin complexes were prepared
by incubating each sample in an excess of biotin for 10-20
minutes at room temperature (22°C) prior to analysis.

SDS-PAGE thermostability assay
SDS-PAGE-based stability analysis was performed for
xenavidin and avidin as described by Bayer et al. [40].
Prior to the analysis, the protein samples were acetylated
in vitro using sulfo-N-hydroxysuccinimide acetate (Pierce,
Rockford, IL). The samples were then subjected to thermal
treatment for 20 min in the presence of SDS and 2-mer-
captoethanol. After the treatment, the oligomeric states of
the proteins were assessed using SDS-PAGE and Coomas-
sie Brilliant Blue (Serva, Heidelberg, Germany) staining.

Limited proteolysis with proteinase K
The stability of xenavidin against the proteinase K
enzyme, which is known to cleave the L3,4-loop of avidin
[41], was tested. The assay was performed in the presence
or absence of biotin as previously described by Laitinen et
al. [64]. Protein samples were taken before the enzyme
treatment and after adding enzyme at time points 30 min,
1 h, 2 h, 3 h, 18 h and 22 h (data not shown), and the
samples were analyzed using SDS-PAGE analysis and
Coomassie Brilliant Blue (Serva, Heidelberg, Germany)
staining.

Immunological cross reactivity
The cross-reactivity of anti-streptavidin or anti-avidin pol-
yclonal antibodies was tested with xenavidin using sera
samples that where gathered from cancer patients who
were either exposed to streptavidin or avidin (positive
samples) or neither of the proteins (negative samples).
The serum samples were kindly provided by Professor
Giovanni Paganelli from the Division of Nuclear Medi-
cine, European Institute of Oncology, Milan, Italy. The

cross-reactivity of polyclonal rabbit antibodies produced
against avidin (University of Oulu, Finland) and strepta-
vidin (a generous gift from Edward A. Bayer, Weizmann
Institute of Science, Jerusalem, Israel) was also analyzed
with xenavidin. All of these experiments were conducted
using ELISA, as previously described in detail [13].

Structure-based sequence alignment
The Cα atoms (A subunits only) of the crystal structures of
avidin [PDB: 1AVD], streptavidin [PDB: 1MK5] and xena-
vidin (reported here; [PDB: 2UYW]) were structurally
aligned using the inbuilt tools of Pymol [65]. The result-
ing ensemble of aligned structures was downloaded into
Bodil [66] to create the structure-based sequence align-
ment per se; residues that had Cα atoms close to each other
(visual checking) were edited to be matched. A graphical
presentation of the structure-based sequence alignment
was drawn with ESPript 2.2 [67] using the default similar-
ity scores (global score 0.7 and diff. score 0.5). Some
amino acid residues in the structures of avidin, streptavi-
din and xenavidin had more than one atom in close prox-
imity (< 4.5 Å) with biotin and, hence, more than one
type of interaction (e.g. hydrogen bonding and hydropho-
bic effect) with biotin was theoretically possible. How-
ever, only one type of interaction for each residue is
shown in the alignment (Figure 1); hydrogen bonds are
preferentially indicated.

Miscellaneous methods
The electropotential calculations (Figure 2) were done
using the ABPS plugin of Pymol [68] and if more than one
rotamer were found to be built for amino acid residues,
only the A conformers were used. Figure 1A, Figure 2 and
Figure 3 were created with the PyMol Molecular Graphics
System [65]http://www.pymol.org and CorelDRAW 11
was used to edit these figures. Figure 4 and Figure 5 were
scanned with a scanner and edited with Adobe Photoshop
CS.
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