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Abstract. IR systems’ ability to retrieve highly relevant documents has 

become more and more important in the age of extremely large collec-

tions, such as the WWW. Our aim was to find out how corpus-based CLIR 

manages in retrieving highly relevant documents. We created a Finnish-

Swedish comparable corpus and used it as a source of knowledge for 

query translation. Finnish test queries were translated into Swedish and 

run against a Swedish test collection. Graded relevance assessments were 

used in evaluating the results and three relevance criterion levels – lib-

eral, regular, and stringent – were applied. The runs were also evaluated 

with generalized recall and precision, which weight the retrieved docu-

ments according to their relevance level. The performance of our Compa-

rable Corpus Translation system (Cocot) was compared to that of a dic-

tionary-based query translation program; the two translation methods 

were also combined. The results indicate that corpus-based CLIR per-

forms particularly well with highly relevant documents. In average preci-

sion, Cocot even matched the monolingual baseline on the highest rele-
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vance level. The performance of the different query translation methods 

was further analyzed by finding out reasons for poor rankings of highly 

relevant documents.  

 

1. Introduction 

In cross-language information retrieval (CLIR), the aim is to retrieve documents that are 

written in different language than the query formulated by the user. The query language 

is referred to as the source language, and the language of the documents as the target 

language. The language barrier can be crossed either by translating the query to the target 

language or by translating the documents to the source language. Obviously, queries are 

easier to translate, because they are typically short and can usually be translated as “bag-

of-words”, whereas document translations have to obey the complex rules of natural lan-

guage. We concentrate on query translation. For an overview of different query transla-

tion methods, see Oard and Diekema (1998).   

 

In dictionary-based cross-language retrieval, the source language query keys are replaced 

by their target language counterparts in a bilingual dictionary. Using dictionaries alone in 

CLIR is problematic: some of the translation alternatives of a word may differ from the 

meaning desired by the user. Their inclusion in the target language query brings ambigu-

ity which in turn damages query performance. Also, dictionaries are limited in scope. 

Proper nouns and technical terms are often missing from general purpose dictionaries 

(Pirkola, Hedlund, Keskustalo & Järvelin, 2001).  
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Corpus-based CLIR methods are based on multilingual text collections, from which 

translation knowledge is derived using various statistical methods. Such collections can 

be aligned or unaligned. In aligned multilingual collections, each source language docu-

ment is mapped to a target language document. Parallel corpora consist of document 

pairs that are exact translations of each other. Comparable corpora are made of document 

pairs that are not translations of each other, but share similar topics. It can be assumed 

that words that are translations of each other – or at least close in meaning – co-occur in 

these combined or aligned documents. An aligned collection can thus be used as a source 

of knowledge for a cross-language similarity thesaurus, where word co-occurrence data 

is used to calculate similarity scores between a source language word and the words in 

the target language documents. The classic document retrieval approaches can be applied, 

only this time the roles of documents and terms are reversed. The source language word 

can be thought of as the query, and instead of documents, target language words are re-

trieved in response to the query. 

 

It is intuitively clear that the more similar the aligned documents are, and the larger the 

corpus, the more we can rely on the translation knowledge obtained from the corpus. A 

large parallel corpus would thereby be ideal. However, such collections are hard to come 

by. United Nations documents have been used as parallel corpora (Ballesteros & Croft, 

1998; Davis, 1998). Also, official documents from multilingual countries have been used, 

such as proceedings of the Canadian parliament (Gale & Church, 1991). Because of the 

scarcity of parallel corpora, there has been a growing interest in building and exploiting 

comparable corpora. It is obviously easier to find cross-language text collections with 
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similar topics than to find collections that are translations of each other. Comparable cor-

pora have successfully been used as a source of translation knowledge in various studies 

(see Franz, McCarley & Roukos, 1999; Fung & Yee, 1997; Braschler, 2004).  

 

Our aim was to find out how corpus-based CLIR – in particular, CLIR based on docu-

ment-aligned comparable corpora – manages in retrieving highly relevant documents. 

The fact that an IR system user assesses the relevance of information objects in a multi-

leveled manner, according to their worth for a given work task, has become more and 

more evident in the age of the WWW and other huge document collections. Therefore, it 

is essential that in evaluating IR systems we reward systems that are able to retrieve 

documents of high relevance. Use of binary relevance assessments and liberal relevance 

criteria has been one of the reasons for some researchers to question the validity of the 

so-called laboratory model of IR (Sormunen, 2002; Kekäläinen & Järvelin, 2002a). 

 
Using graded relevance assessments in laboratory IR research thus seeks to accomplish a 

more realistic picture of the use of an IR system. We used a four-point relevance scale, 

presented in Table 1. The scale was introduced by Sormunen (1994) and has subse-

quently been used by, for example, Kekäläinen and Järvelin (2002b). The scale was used 

by applying three relevance thresholds, which corresponded to three different relevance 

criteria: liberal (documents of levels 1-3 were considered relevant), regular (levels 2 and 

3 considered relevant) and stringent (only level 1 considered relevant). The evaluation 

was done separately on each relevance criteria level. Also, we applied the generalized 

recall and precision measures (Kekäläinen & Järvelin, 2002b) which are directly based on 

the graded relevance assessments and thus avoid the binarization of the assessments. 
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We also experimented with the term vector matching strategy of our comparable corpus 

translation system (Cocot). The cosine coefficient is often used to calculate term vector 

similarity in cross-language thesauri (Braschler & Schäuble, 1998; Sheridan & Ballerini, 

1996). However, it has been shown that the cosine coefficient has some serious limita-

tions when applied to document retrieval (Singhal, Buckley & Mitra, 1996). We found 

that these limitations also hold true in similarity thesaurus calculation. Accordingly, we 

applied a term vector matching scheme that is based on the findings of Singhal et al. 

 

We created a comparable corpus by automatically aligning Finnish and Swedish news 

articles. The corpus was used to translate Finnish test topics into Swedish. The translated 

queries were run against a different Swedish test collection with InQuery. The runs were 

evaluated by using graded relevance assessments, and the performance of Cocot was 

compared to that of a dictionary-based query translation program. Cocot fared considera-

bly better, especially when stringent relevance criteria were applied. Also, we found that 

the pivoted vector matching scheme brought slight improvement to the performance of 

Cocot. The results were further analyzed by finding out reasons for poor retrieval rank-

ings of a random sample of highly relevant documents. 

 

2. Creating the comparable corpus 

We built a comparable corpus from two independent document collections. The source 

collection consisted of approximately 50 000 articles by the Finnish newspaper Aamu-

lehti, covering the time period from November 1994 to December 1995. The target col-

lection contained 140 000 newswire articles by the Swedish news agency TT, published 
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between January 1994 and December 1995. Both collections are part of the Cross-

Language Evaluation Forum (CLEF) document collection (Braschler & Peters, 2004). 

The method for the automatic creation of the comparable corpus described below was 

first presented (and more thoroughly covered) by Talvensaari et al. (2004). 

 

In order to extract the best query keys from the source documents, the source collection 

was first morphologically analyzed with the morphological lemmatization program 

TWOL, developed by Koskenniemi (1983). TWOL transforms inflected words to their 

base forms and decomposes compound words into their constituents. Also at this stage, 

the most frequent words were filtered out by using a stoplist of 773 Finnish words. After 

word form normalization and stop word filtering, words appearing only once in the col-

lection were filtered out, as well as words appearing in more than every fourth document. 

The resulting index consisted of about 150 000 words (including unrecognized word 

forms). 

 

The best query keys – meaning words that best describe the topic of the document – were 

extracted from each source document by using a combination of document frequency and 

the Relative Average Term Frequency (RATF, see Pirkola, Leppänen & Järvelin, 2002b), 

which measures the resolution power of a word. The words of a document were ranked 

according to their frequency in the document, highest frequency first. Words with RATF 

values lower than a given threshold were filtered out, after which 22 highest ranking 

words were chosen to represent the document in the source language query. Each query 

was translated to the target language by the dictionary-based query translation program 
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Utaclir (Keskustalo, Hedlund & Airio, 2002). The translated queries were then run 

against the target collection with InQuery (Callan, Croft & Harding, 1992). The 10 high-

est ranking documents of the InQuery result were examined to find an alignment pair for 

the source document. Not all of the source documents were aligned, since most of the 

source collection documents dealt with local events and topics that were not covered in 

the target collection. Date-based and score-based filtering was used to find a topically 

matching counterpart for the source document.  

 

Three different InQuery score thresholds (θ1 < θ2 < θ3) were applied to find the alignment 

pair. First, a document with exactly the same date as the source document was searched 

for in the top 10 of the InQuery rank. If such a document was found and it had an In-

Query score higher than θ1 it was chosen as the pair. If not, a document published one 

day later or earlier was searched for. If the pair still was not found, the date difference 

was increased to two and the threshold was increased to θ2. On the fourth round (date dif-

ference three) the threshold θ3 was used. After this, if the alignment pair still remained 

unfound, the highest ranking document was chosen as the alignment pair if its InQuery 

score exceeded θ3. Otherwise, no alignment was made.  

 

In the alignment scheme, the score threshold increases as it becomes less probable to find 

a topically similar document. As a last resort, the date-based filtering is abandoned, and 

only score-based filtering is used. This reflects the fact that two documents need not con-

cern the same event to be topically related. 
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The alignment method described above produced a comparable collection of 12 045 

document pairs, 12 045 Finnish source documents (22 % of all the source documents) 

paired with 7 422 different target collection documents. The mapping between the collec-

tions was thus not bijective. Date-based filtering created 7 381 of the pairs, the rest were 

made of highest ranking documents.  

3. Cocot 

Our comparable collection query translation system (Cocot in short) was written in C++ 

and it uses a Berkeley DB index. The index is created by inputting word frequency data 

of the source language documents and their target language alignment pairs. In the proc-

ess, very rare words, appearing in only one document, and very common words ,appear-

ing in more than a fourth of the documents are filtered out. , 

3.1. Term similarity score 

In the classic vector space model of IR, documents and queries are represented by vectors 

whose elements represent term weights in the documents. The similarity between docu-

ments and queries can then be calculated by, for example, applying the cosine coefficient.  

In a similarity thesaurus, the similarity is calculated between term vectors, whose features 

represent document weights for the terms. The cosine coefficient seems to be also popu-

lar in similarity thesaurus calculation, for example both Braschler and Schäuble (1998) 

and Sheridan and Ballerini (1996) use it. The cosine coefficient between term vectors ti 

and tj is calculated as  
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where wik is the weight of document dk for the term ti – usually some variation of the 

well-known tf·idf formula – and n is the number of documents in the collection. However, 

Singhal et al. (1996) found the cosine coefficient to have serious limitations in document 

retrieval. Especially, they proved that the cosine coefficient tends to favor short docu-

ments, i.e. documents with few unique terms and, accordingly, few non-zero elements in 

their document vectors. In the same vein, we found that using cosine coefficient in term 

similarity calculation favors terms that appear in only a small number of documents, and, 

thus, have feature vectors with few non-zero weights. Therefore, we applied a pivoted 

vector length normalization scheme proposed by Singhal et al. (1996), 
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where ti is a term in a source language document, and tj is a term in a target language 

alignment pair. The pivot value is defined as the mean of the term vector lengths. It 

should be noted that pivoted normalization produces similarity scores that are not in  

[0, 1]. This makes the use of similarity score thresholding slightly more difficult, since 

the magnitude of the scores can vary significantly between different collections. Also it 

should be noted that only the target language term vector is normalized with the pivoted 

normalization scheme. The source language term vector is normalized with the standard 

cosine normalization. This affects the magnitude of the similarity scores but not, how-

ever, the rank of the target language terms. 
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In the pivoted weighting scheme, vectors shorter than the pivot value are penalized more 

than in the cosine weighting scheme, whereas vectors longer than pivot are favored. The 

smaller the slope value, the more heavily the long vectors are weighted. In similarity the-

saurus calculation, penalizing short term vectors is justified: terms that have few non-zero 

document weights appear in only a few documents and are usually poor expansion keys. 

In our experiments, the slope value was set to a relatively low value (0.2). 

 

The individual document weights were adapted from Sheridan and Ballerini (1996), and 

they were calculated as follows: for a document dj in which a term ti appears, the weight 

wij is 
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where tfij is the frequency of term ti in document dj, Maxtfj is the largest tf in document dj, 

NT is the number of index terms in the collection and dlj is the length of document dj, or 

more precisely, the number of different terms in the document. The weight wij is zero, if 

the term ti does not appear in the document.  

3.2. Example translations 

When the similarity score is calculated between a source language word and the words in 

the target language document pairs, we get a similarity rank. The top ranking words 

should be semantically near the source language word. In Table 2, the results of similarity 

calculations for various Swedish words are shown. The translation knowledge was ex-

tracted from a Swedish-English comparable corpus, built for an earlier study (Talven-

saari, Laurikkala, Järvelin & Juhola, 2004). The score is most successful with nouns, for 



 11

example barn (meaning child), rysk (Russian) and bil (car) are translated correctly. A 

high similarity score indicates a high confidence in the translation, hence the relatively 

low scores and bad translations for common and rather vague terms such as draga (draw) 

and information. It should be noted that the system is not meant to be a general purpose 

translation machine; it is meant to translate queries. Thus, although Moscow is not the 

correct translation of rysk, it is a good expansion key and could easily be put in a trans-

lated query. 

 

When Cocot is used to translate queries, a word cut-off value (WCV) and a score thresh-

old is chosen. WCV determines how many of the top ranking target language words are 

returned per source language word. Score threshold determines the minimum similarity 

score required for a word to be returned. For example, if WCV is set to three, and score 

threshold to 10, the words Russian, Russia and Moscow would be returned for the source 

language word rysk (Table 2). For the word barn, only child would be returned, since the 

other top-three ranking words have similarity scores below the threshold. 

4. Test runs 

4.1. Test collection 

The test collection consisted of 161 336 news articles by two Swedish newspapers (Göte-

borgs Posten and Helsingborgs Dagblad), originally published in 1994. The index was 

normalized with SWETWOL, the Swedish version of TWOL, which transformed the 

document words to their basic forms. Compound words were split but also included in 

their entirety. Words unrecognized by SWETWOL (mainly rare proper nouns and typing 
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errors) were used in the index unchanged. The resulting index consisted of 370 000 

unique normalized words and 217 000 unrecognized word forms. 

 

The test topic set included 52 topics, 24 of which were part of the 2000 CLEF campaign, 

and the remaining 28 topics of the 2001 campaign. An example topic is shown in Figure 

1. The test queries were formed of the description part of the topics, which were mostly 

comprised of only one sentence. The Swedish versions of the topics were used for the 

monolingual baseline runs, while the Finnish versions were used in the bilingual runs.  

4.2. Recall base 

A recall base for the 52 test topics had been created in an earlier study by Ahlgren (2004). 

Five different query construction methods were used for each of the topics. The methods 

varied in respect to the degree of word normalization and the use of expansion keys. A 

total of 260 runs (5 · 52) were executed against the test collection with InQuery. The 

document pools were created using a document cut-off value (DCV) of 100, which re-

sulted in a total of 9 848 unique documents in the 52 pools.  The documents were as-

sessed by four assessors; each of the 52 pools was assessed by one single assessor. The 

four-point relevance scale, introduced in Table 1, was used in the assessments.  

 

Of the 9 848 documents, 1 890 were judged at least marginally relevant (Table 3). The 

number of relevant documents decreases as the relevance level increases. It seems fair to 

assume that for a given topic, there are more marginally relevant topics than there are 

highly relevant ones. On all of the relevance levels, there are topics which have no rele-

vant documents. For example, there are eight topics that have do not have a single highly 
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relevant document in the recall base. However, when the relevance levels are combined, 

all of the 52 topics have a minimum of two at least marginally relevant documents.  

4.3. Conducting the tests 

The 52 test topics were run against the test collection with InQuery. Apart from the 

monolingual baseline, four different query translation methods were tested. In the ‘Cocot-

alone’ runs (abbreviated CC) the Cocot system was used by itself. In the Utaclir-Cocot 

runs (UCCC) Cocot was utilized in tandem with the dictionary-based query translation 

program Utaclir. Utaclir was also used alone (UC). Also, a Cocot version that uses the 

old term vector matching strategy without the pivoted vector length normalization was 

applied (OLDCC) to find out whether the alternative matching strategy brought any im-

provement in the performance of the system.  

 

In the baseline run, the Swedish versions of the topic descriptions were used. The topic 

words were normalized with TWOL, which also split compound words. A Swedish stop-

list was also applied. The resulting words were tied together with InQuery’s #sum opera-

tor. For example, the topic 22 (see Figure 1) was transformed into  

Q22(MONO) = #sum( landnings @flygplans inträffa plans flyg pågå-
ende flygplansolycka landningsbana flygning olycka landningsbanan 
bana banan start ). 

The ‘@’ symbol indicates that TWOL has not recognized the word and has left it un-

changed. The unrecognized words are usually rare proper nouns or typing errors. In the 

example the ‘unknown word’ flygplans is included in the query, because it is part of the 

compound word flygplansolycka (airplane accident).  
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The queries for the cross-language runs were formed from the Finnish versions of the test 

topics. Before translation, the query words were normalized with TWOL. The source 

language query words that were extracted from topic 22 were 

kiitorata kiito rata lentotoiminta lento toiminta sattunut sattua 
onnettomuustapaus onnettomuus tapaus 

The Utaclir version used in the UC runs used GlobalDix Finnish-Swedish dictionary and 

s-gram matching (Pirkola, Keskustalo, Leppänen, Känsälä & Järvelin, 2002) for words 

not found in the dictionary. S-gram matching is an approximate string matching tech-

nique based on a variation of n-grams. The UC query for the example topic was 

Q22(UC) = #sum(#syn( asfaltsbeläggning start bana) #syn(@kito 
@ito) #syn( bana linje) #syn( flykt flygning handling aktivitet 
funktionsduglig) #syn( flykt flygning) #syn( handling aktivitet 
funktionsduglig) #syn( komma sig råka inträffa) #syn( komma sig 
råka inträffa) #syn( olycka fall händelse) #syn( olycka) #syn( 
fall händelse) )  

Utaclir uses the same syntax as InQuery, binding the translation alternatives of a word 

together with a #syn-operator, which treats its constituent words as synonyms. This kind 

of query structuring reduces the ambiguity caused by multiple translation alternatives, as 

shown by Pirkola et al. (2001). For example, the Finnish word lento (flight) is found in 

Utaclir’s dictionary, and it is replaced by the translation alternatives (flykt and flygning), 

bound together with the #syn-operator. The source language word kiito (a part of the 

compound word kiitorata, meaning runway) is not found in the dictionary and it is trans-

muted by s-gram matching. This time the matching is not successful, since it returns two 

non-words, preceded by the ‘@’ symbol. The failure is understandable, since approxi-

mate string matching techniques work best for proper nouns.  
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In the CC runs, Cocot’s WCV value was set to three. The score threshold was set to 3.0, a 

relatively low level, implicating a high confidence in Cocot’s translation abilities. As 

with Utaclir, the translation alternatives of a word were bound together with InQuery’s 

#syn-operator.  

Q22(CC) = #sum(#syn( pilot @pilot draken @draken drakenplan 
@drakenplan ) #syn( draken @draken pilot @pilot drakenplan 
@drakenplan ) #syn( bana @bana lopp @lopp världs @världs ) 
lentotoiminta #syn( flyg @flyg plan @plan flygplats @flygplats ) 
#syn( krona @krona kon @kon mil @mil ) #syn( skada @skada olyck 
@olycka inträffa @inträffa ) #syn( olycka @olycka skada @skada 
inträffa @inträffa ) onnettomuustapaus #syn( olycka @olycka 
olycks @olycks omkomma @omkomma ) #syn( vi @vi falla @falla fall 
@fall ) ) 

Each word returned by Cocot is also added to the query with the preceding ‘@’ symbol. 

This is because the target collection has a normalized index, and the word forms not rec-

ognized by the normalizing program (TWOL) are in the index preceded by the aforemen-

tioned symbol. For example, the word escobar is not in the index, but @escobar is. We 

do not know in advance, which words are in the index for unrecognized words and which 

are not. Words that are not in Cocot’s index or whose translation confidence is below the 

score threshold are left unchanged (such as onnettomuustapaus, a quite rare compound 

version of a word meaning accident).  

 

In the UCCC runs, Utaclir was first used in query translation. This time s-gram matching 

was not utilized. Instead, the words that were not in Utaclir’s dictionary were translated 

by Cocot. It was hypothesized that Cocot could compensate for the limitations of Uta-

clir’s vocabulary. The GlobalDix dictionary that Utaclir used has 26 000 Finnish entries 

and is indeed quite limited; missing, for example, proper nouns. Cocot’s WCV was again 
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set to three, but the score threshold was increased to 10.0, since it was thought that Uta-

clir could translate the words whose Cocot translation confidence would be low.  

 

In the example topic, the only word not translated by Utaclir was kiito (see above). The 

translation confidence of this word fell below the increased threshold, so the word was 

left unchanged in Q22(UCCC). This seems to be a good decision, since in Q22(CC) the 

words that replace kiito (pilot, draken, drakenplan – Draken is a Swedish fighter jet) are 

generally speaking not good translations or expansion keys. 

4.4. Results 

The evaluation of the test runs was first done separately at three relevance threshold lev-

els. The levels corresponded to liberal, regular and stringent relevance criteria. Table 4 

shows the average precision values for the monolingual baseline and the different transla-

tion methods. The 11-point P-R curves corresponding to the relevance threshold levels 

are shown in Figures 2, 3 and 4.  

 

Evaluation was also done using generalized recall and precision (Kekäläinen & Järvelin, 

2002b), which implies giving weights to documents of different relevance levels. We 

used weights 3, 2 and 1 for the corresponding relevance levels. This means that a highly 

relevant document is considered three times as valuable as a marginally relevant docu-

ment. The traditional recall and precision can be thought of as a special case of the gener-

alized scheme where all documents of at least marginal relevance are given the weight 1. 

Using the generalized scheme is advantageous in a graded relevance research setting, 

since the number of relevant documents on an individual relevance level can be low, as is 
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the case with highly relevant documents in the recall base that we used. Collapsing the 

graded relevance assessments into binary ones can lead to distorted results, as the evalua-

tion is based on the rankings of but a few documents. When generalized recall and preci-

sion is used, the evidence behind the results is gained from the whole recall base, while 

the ability to retrieve highly relevant documents is also rewarded. Table 5 shows the non-

interpolated generalized average precisions for the different methods, while Figure 5 pre-

sents the corresponding 11-point P-R curve. 

 

The average precision values shown in Tables 4 and 5 were analyzed with the within-

subjects repeated-measures ANOVA and the two-tailed paired t test, which are paramet-

ric tests assessing differences in means, were applied so that the statistical analysis would 

be more consistent with the results shown in the average precision versus recall figures. 

Since the distributions were found positively skewed, a power transformation (Pett, 1997) 

was performed before the parametric analysis by taking the square root of the precision 

values. The Kolmogorov-Smirnov one-sample test (Pett, 1997) showed the transformed 

variables approximately normally distributed. The homogeneity of variances was verified 

with the Levene test. The Friedman test and the two-tailed Wilcoxon signed ranks test 

were performed to assure that the results obtained with the parametric tests were sound. 

These tests are more robust then their parametric counterparts, but they compare medians 

instead of the means, which are traditionally used to construct the precision versus recall 

figures. 

 



 18

The multivariate significance testing results (Wilks’ Λ) of the within-subjects repeated-

measures ANOVA indicated that there was a significant difference (p < 0.004) in the 

means of the transformed average precision values obtained with the five methods using 

the different relevance thresholds and generalized precision. Similarly, the Friedman test 

results obtained with the original variables showed the precisions significantly (p < 

0.005) different. The significant results of both the tests facilitated the pair-wise testing of 

the transformed and the original variables with the paired t test and the Wilcoxon signed 

ranks test, respectively.  

 

Tables 4 and 5 show the significant differences on the original significance levels as well 

as on the significance levels adjusted to guard against the elevated potential of Type I er-

ror (null hypothesis is rejected when it is true) in the pair-wise testing. We applied 

Kounias inequality (Hochberg & Tamane, 1987) to adjust for the multiplicity effect, be-

cause the traditional Bonferroni correction (Hochberg and Tamane, 1987; Pett 1997) is 

due to its independence assumption very conservative when the number of comparisons 

(k) is large. The mean of the Pearson’s correlation coefficients were used to estimate the 

degree of pair-wise dependency between the variables. Since the mean correlations r  

were close to each other (0.50 - 0.56), Kounias inequality (k = 10) 

rkk )1(
'

−−
≥

αα  

adjusted the respective original significance levels α = 0.05 and α = 0.01 to α’ = 0.01 and 

α’ = 0.002 with the generalized as well as all the binarized measures. 
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When the results for the binarized evaluations are examined, it seems that the higher the 

relevance threshold, the lower the average precision. Only the CC method seems to be an 

exception to this rule, as its average precision values are quite consistent on all relevance 

levels. The CC method appears to perform particularly well at the highest relevance 

threshold level, having a clearly higher average precision than the other translation meth-

ods. 

 

Unsurprisingly, the monolingual baseline runs fared better than the bilingual runs, the 

exception being the CC method at the highest relevance level. However, significant dif-

ferences were rare between the different translation methods. The findings of the Wil-

coxon signed were similar to the t test results. Only the significances altered slightly be-

tween some of the methods. At the stringent and regular relevance criteria levels, the CC 

and UCCC methods were significantly better than UC. At the liberal criteria level, UCCC 

was better than UC. There was a major difference in average precision between CC and 

UCCC at the highest relevance level, but the test findings did not confirm this.  

 

Apparently, the CC fared very well on some individual queries, which lifted the average 

precision to a deceivingly high level. This, in turn, can be attributed to the fact that the 

number of relevant documents on the highest relevance level was relatively low (see Ta-

ble 2). When there are just one or two relevant documents for a query, the failure to rank 

them high has a dramatic effect on the average precision of that query.  
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The OLDCC method (Cocot without the pivoted vector length normalization) fared sur-

prisingly well against the improved Cocot (CC). Only at the highest relevance level there 

seems to be a difference between the two methods, but the difference was statistically 

insignificant. 

 

The generalized measures seem to echo the results of the binarized evaluation. Behind the 

monolingual runs, the CC method appears to be slightly ahead of the rest, at least on low 

recall levels. Again, though, the significance tests detected few significant differences 

between the translation methods. 

5. Discussion 

The retrieval of the highly relevant documents was analyzed more closely for the CC, 

UCCC and UC translation methods. For each of these methods, 50 highly relevant docu-

ments that had a retrieval rank lower than 50 were picked. Then, by modifying the que-

ries, an attempt was made to ‘rescue’ the documents back to the top 50 of the rank. Each 

of the picked documents had to have been successfully retrieved by some other transla-

tion method or by MONO. In this way, the number of documents whose low ranking was 

based on abnormal vocabulary (or some other reason that made the document hard to 

find) could be reduced. At least one document was picked for each query, provided that 

the query had at least one low ranking document. Otherwise, the documents were picked 

randomly. 

 

The modification of the queries was done iteratively. On each round one or more words 

were added to or removed from the query. The overall performance of the query (meas-
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ured by average precision) was not allowed to drop because of the modifications. Per-

formance-impairing modifications were cancelled. There was no upper limit for the itera-

tions, but the rescuing of a document was aborted when it became clear that it could not 

be done without hurting the overall query performance.  

 

Table 6 shows the percentages of different query modification actions for the three trans-

lation methods. A single occurrence of word addition or removal means one or more 

words added or removed on a single round. Dictionary expansion is a special case of 

word addition, where an exact translation of a source language query word is added to the 

target language query. This modification type also applies to CC, although it does not use 

a dictionary strictly speaking. Bad s-grams refer to the removal of unsuccessful s-gram 

matching products in the UC translation method.  

 

The CC method demanded mostly word removals, which could be partly attributed to the 

low score threshold that was used. Using a low score threshold produces a lot of expan-

sion keys and thus longer queries. Some of the low confidence translations are poor, and 

their removal helps the highly relevant documents to raise their rank. The other transla-

tion methods required more word additions. This seems to suggest that dictionary-based 

translation needs co-occurrence-based query expansion to be more successful. Also, a 

larger dictionary is clearly needed for Utaclir. A fourth of the query modifications for the 

UC method were dictionary expansions. Especially the lack of proper nouns in the dic-

tionary is a serious flaw. The s-gram matching is not an entirely successful technique, 

but, on the other hand, it does not seem to hurt the performance of the queries either.  
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5.1. Corpus-based CLIR finds highly relevant documents? 

Lehtokangas et al. (2005) pointed out that dictionary-based CLIR is not particularly ef-

fective in retrieval of highly relevant documents. In their studies, the performance of a 

dictionary-based translation system dropped considerably when stringent relevance crite-

ria were applied. Corpus based translation, on the other hand, seems to manage quite well 

on all relevance criteria levels. One of the reasons for this seems to be that statistical 

translation brings semantically linked expansion keys to the queries; thus we can speak of 

a cross-language similarity thesaurus.  

 

Corpus-based translation has its own problems, though. Its performance is closely related 

to the domain of the underlying corpus. News articles have a fairly general and broad vo-

cabulary, but using this kind of corpus to translate queries concerning, for example, com-

puter programming would not be successful. However, it should be relatively easy to add 

new document alignments from different domains to a comparable corpus. Expanding 

dictionaries is arguably a more complex task.  

 

Also, using only topically related document alignments (in contrast to using parallel 

documents that are translations of each other) is sometimes rather noisy. Very rare and, 

on the other hand, very common source language words are usually not translated cor-

rectly, and in such cases the target language query ends up having lots of bad expansion 

keys. This can to a degree be controlled by applying higher score thresholds, and diction-

aries can be used to translate the more common words. The ideal solution would be to 

have a larger corpus, with more closely related document alignments. This, in turn, could 

be achieved by mining the WWW for comparable documents.  
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The relatively poor performance of the dictionary-based query translation could be partly 

attributed to the small dictionary that was used in the experiments. In future studies, our 

purpose is to use a broader dictionary that also includes proper nouns. However, a bigger 

dictionary can mean either more source language entries or more translation alternatives 

per entry – usually it means both. In CLIR, the former is arguably preferable, since extra-

neous translation alternatives bring noise to the queries.  

6. Conclusions 

We created a document aligned comparable corpus of Finnish and Swedish news articles. 

The corpus was utilized in query translation, using methods of the classic vector space 

model of IR to calculate similarity scores between source and target language words. The 

performance of the Comparable Corpus Translation System (Cocot) was evaluated with 

graded relevance assessments to find out how the system managed in retrieving highly 

relevant documents. The performance of the system was compared to that of a dictionary-

based query translation system. Also, we experimented with combinations of the two sys-

tems. The results indicate that, contrary to dictionary-based translation, the performance 

of Cocot does not drop when stringent relevance criteria are applied. This seems to be 

caused by the query expansion effect brought by statistical translation.  
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Tables 

Table 1.  The four point relevance scale. 

Table 2. Term similarity calculations for five Swedish words, calculated from a Swedish-English compara-
ble corpus. The correct translation are in bold. 

Table 3. Recall base statistics. 

Table 4.  Average non-interpolated precisions (%) for different query translation methods at three rele-
vance thresholds. Significance of differences (1 < 5%,  2 5-10%,  3 > 10%) in average both on the original 
(> = p < 0.05; >> = p < 0.01) and adjusted (> = p < 0.01; >> = p < 0.002) significance levels. 

Table 5. Generalized average non-interpolated precisions (%) for different query translation methods at 
three relevance thresholds. Significance of differences (1 < 5%,  2 5-10%,  3 > 10%) in average both on the 
original (> = p < 0.05; >> = p < 0.01) and adjusted (> = p < 0.01; >> = p < 0.002) significance levels. 

Table 6.  The number of different query modification measures for three query translation methods. 

Figures 

Figure 1.  CLEF topic 22. 

Figure 2. P-R curves for the monolingual baseline and four translation methods for liberal relevance crite-
ria. 

Figure 3. P-R curves for the monolingual baseline and four translation methods for regular relevance crite-
ria. 

Figure 4. P-R curves for the monolingual baseline and four translation methods for stringent relevance 
criteria. 

Figure 5. Generalized P-R curves for the monolingual baseline and four translation methods. 

 

 
 

 

 

 

 
 


