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Abstract

Janus kinase 2 (JAK2) initiates signaling from several cytokine receptors and is required for biological responses such as
erythropoiesis. JAK2 activity is controlled by regulatory proteins such as Suppressor of Cytokine Signaling (SOCS) proteins
and protein tyrosine phosphatases. JAK2 activity is also intrinsically controlled by regulatory domains, where the
pseudokinase (JAK homology 2, JH2) domain has been shown to play an essential role. The physiological role of the JH2
domain in the regulation of JAK2 activity was highlighted by the discovery of the acquired missense point mutation V617F
in myeloproliferative neoplasms (MPN). Hence, determining the precise role of this domain is critical for understanding
disease pathogenesis and design of new treatment modalities. Here, we have evaluated the effect of inter-domain
interactions in kinase activity and substrate specificity. By using for the first time purified recombinant JAK2 proteins and a
novel peptide micro-array platform, we have determined initial phosphorylation rates and peptide substrate preference for
the recombinant kinase domain (JH1) of JAK2, and two constructs comprising both the kinase and pseudokinase domains
(JH1-JH2) of JAK2. The data demonstrate that (i) JH2 drastically decreases the activity of the JAK2 JH1 domain, (ii) JH2
increased the Km for ATP (iii) JH2 modulates the peptide preference of JAK2 (iv) the V617F mutation partially releases this
inhibitory mechanism but does not significantly affect substrate preference or Km for ATP. These results provide the
biochemical basis for understanding the interaction between the kinase and the pseudokinase domain of JAK2 and identify
a novel regulatory role for the JAK2 pseudokinase domain. Additionally, this method can be used to identify new regulatory
mechanisms for protein kinases that provide a better platform for designing specific strategies for therapeutic approaches.
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Introduction

Most cytokine receptors lack intrinsic kinase activity and rely on

Janus kinases (JAKs) for signaling [1,2]. Members of the JAK family

of kinases have a characteristic domain organization consisting of

seven JAK homology domains (JH domains 1–7). The N-terminal

segment (JH7-JH3 domains) contains a FERM (band 4.1 ezrin,

radixin and moesin) domain as well as an atypical SH2 (Src-

homology-2 domain)-like domain which have been shown to

mediate association with the membrane-proximal region of cytokine

receptors [1]. The C-terminus of these proteins comprises the JH1

domain that contains classical motifs required for kinase catalysis

and functions as the catalytic site. The JH2 domain, located

between the SH2-like and the JH1 domains, has been predicted to

be catalytically inactive due to the lack of essential amino-acids in

the catalytic consensus motifs of kinases and has been classified as a

pseudokinase domain [3]. However, the JH2 domain has been

shown to have an important regulatory role in JAK activation [4,5].

Clinical evidence for the relevance of this domain was obtained

in 2005, when an acquired point mutation in the JH2 domain of

JAK2 (Val 617 to Phe substitution, V617F) was identified in

myeloproliferative neoplasm (MPN) patients [6,7,8,9]. This

mutation resulted in increased JAK2-mediated signaling and

conferred the MPN phenotype in a mouse bone marrow

transplantation model [10,11,12]. These findings intensified the

analysis of disease-associated mutations in JAKs and led to

identification of several mutations in JAK1, JAK2, JAK3 and

Tyk2 in different diseases. Interestingly, although these mutations

are found in all JH domains, the majority of them affect the

pseudokinase (JH2) domain [13,14], further supporting the critical

role of this domain in human JAK signaling.

The underlying mechanisms of the JH2 mediated regulation

have remained largely unknown. The difficulties in producing and

purifying JH2 domains have hampered analysis of their effect on

JAK2 enzymology, function and signaling. Nonetheless, although

structural evidence is still lacking, biochemical evidence suggests
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that this regulation is mediated through intramolecular interac-

tions between the JH1 and JH2 domains [15].

Among the essential characteristics of any given enzyme, its

ability to recognize the appropriate substrate is critical, as this

ensures cellular signals to be transmitted correctly. Previously, it

was shown that tyrosine kinases and Src-homology-2 (SH2)

domains recognize amino acid residues in a specific sequence

context that provides specificity to signal transduction [16,17,18].

Moreover, examples that this specificity can be altered by single

point mutations have been described [19]. Changes in specificity

may cause phosphorylation and activation of unpredicted targets

that lead to disease states. Understanding the functional

consequences of these changes may contribute to a more effective

designing of selective and clinically valuable drugs to inhibit the

activity of mutant kinases.

In this study, we have overcome previous difficulties in

producing and purifying sufficient quantities of protein for detailed

evaluation of these domains by using a baculovirus system. In

addition, we have expanded the application of a recently

developed multiplex array technology [20,21,22,23,24,25], to

study the effect of inter-domain interactions in kinase activity and

substrate preference. Our results demonstrate the role of the JH2

domain as a specific intramolecular modulator of JAK2 kinase.

This domain modulates peptide preference and profoundly

regulates the activity of JAK2 enzyme. In addition, we found that

mutation V617F partially relieves the inhibition of the JH2

domain on catalytic activity but has limited effect on substrate

preference.

Results

Protein purification and substrate identification
HIS-tagged JH1-JH2WT, JH1-JH2V617F and JH1 domains

from JAK2 (Figure 1A) were produced in Sf9 cells using a Bac-to-

Bac expression system and were purified using a two-step

purification protocol. JAK2 proteins were first purified from

infected Sf9 cell pellets using Ni-NTA affinity beads, followed by

size-exclusion chromatography. Fractions containing JAK2 pro-

teins were eluted as monomers and concentrated for further

analysis. As shown by Coomassie staining in Figure 1B, all proteins

showed high purity. Phosphorylation of the activation loop of

JAK2, as with other protein tyrosine kinases, is essential for its

activation [26]. In consequence, the phosphorylation state of

Tyr1007-Tyr1008 in the activation loop was monitored by

Western blot using a specific anti-JAK2 p-Tyr antibody

(Figure 1B). For all JAK proteins, the activation loop tyrosines

were phosphorylated and minor differences were found in the level

of phosphorylation between the wild type and the mutant form.

Peptide microarrays provide a high content platform to identify

substrates and determine kinetic parameters for protein kinases in

a highly multiplex fashion [24,25]. As an initial screening for

substrate identification the different JAK2 proteins were incubated

on PamChipH 96 microarray plates. Each array contains 144

peptide sequences derived from putative tyrosine-phosphorylation

sites in human proteins. Assay conditions have been optimized

with respect to amount of antibody, to assure that the initial

reaction rate reflects the rate of enzymatic conversion and not

antibody binding. The detection antibody has been reported to

have a broad specificity for phosphopetides [27]. An example of

the time-dependent progression of the reaction at different

concentrations of peptide is given in Figure 1C. Initial velocities

(v) were obtained by fitting the data points of the time series to the

equation for exponential association and calculating the tangent at

2 minutes, as indicated in Materials and Methods. Arrays were

incubated with a fixed concentration of ATP (100 mM) and

increasing concentrations of protein (ranging from 0 to 8 pmoles

per reaction) to assure that phosphorylation rates increase linearly

with protein concentration. Similarly, a fixed concentration of

protein was incubated with increasing concentrations of ATP

(ranging from 0 to 400 mM). Peptide phosphorylation was

monitored in real time by taking images with an integrated

CCD-based optical system and data were analyzed as described in

Experimental procedures. Representative images of the arrays

after 30 minutes are shown in Figure 1D, along with images of

negative controls. Nonspecific signals were identified by perform-

ing incubations without protein or ATP (Figure 1D) and by

inhibiting the reaction with 10 mM Staurosporine or 100 mM

AMP-PNP. Incubation with the catalytically inactive K882D

JAK2 kinase was also used as negative control (Figure 1D).

Furthermore, occurrence of potential artifacts due to binding of

autophosphorylated proteins to non-phosphorylated peptides was

monitored by pre-incubating proteins with ATP (400 mM) for

30 minutes and stopping the reaction with 10 mM Staurosporine

before incubation on a PamChipH (data not shown). Nonspecific

signals were not considered for further analysis. Substrates were

then defined as those peptides having signal intensities higher than

two times the standard deviation of the background after

20 minutes incubation and their signals must increase with

enzyme and ATP concentration.

This initial screening showed that JH1 phosphorylated 63 out of

144 peptides above background level on the array, while JH1-

JH2WT and JH1-JH2V617F phosphorylated significantly fewer

peptides, 27 and 42 peptides, respectively. All peptides that were

phosphorylated by JH1-JH2WT and JH1-JH2V617F were also

phosphorylated by JH1, indicating that JH2 domain limits but

does not drastically change the phosphorylation specificity pattern

of the JAK2 tyrosine kinase domain. The list of phosphorylated

peptides is given in Table 1. These results were then used to

produce custom PamChipH microarrays, as indicated in the

Materials and Methods section.

Activity of the proteins
Previous studies have shown that JH1 is more active than JH1-JH2

leading to the conclusion that JH2 regulates the activity of JH1 [4,5].

Therefore, we compared the activity of HIS-tagged JH1 and JH1-

JH2 proteins on custom PamChipH microarrays. In an initial

experiment, the amount of protein was optimized as indicated above.

Subsequently, phosphorylation rates on 1000 mM STAT5A_687_

699 were determined. Relative activity for each protein was obtained

in relation to the initial rates obtained at 100 mM ATP and corrected

for the amount of protein used. Figure 2A shows the activity for the

three JAK2 proteins per pmol of enzyme. JAK2 JH1-JH2WT was

clearly the least active protein. When compared to JH1-JH2WT

(Vmax, app = 15069 relative activity per pmol protein), mutation on

V617F (Vmax, app = 493619 relative activity per pmol protein)

produced a three fold increase, whereas the absence of the JH2

domain resulted in a 20 fold increase in activity for the JH1 form

(Vmax, app = 34676180.7 relative activity per pmol protein).

Comparison of Michaelis constants (Km) for ATP in JAK
kinase domains

All kinases catalyze a two-substrate reaction between ATP and a

phosphate acceptor. Therefore, the rate of the reaction is

determined by the concentration of both substrates. Accurate

determination of peptide substrate preference requires a concen-

tration of ATP at or near saturation in order to avoid ATP to be a

limiting factor for the reaction. Comparison of the normalized

activities for phosphorylation of 1000 mM STAT5A_687_699 at

Analysis of Jak2 by Peptide Microarrays
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different concentrations of ATP is presented in Figure 2B. The

JAK3 JH1 protein (containing only the JH1 domain of JAK3) was

included for substrate comparison, and the Km values for ATP

were also determined for this protein. The analysis showed that

proteins containing both JH1 and JH2 presented higher Km values

for ATP (WT = 8869 mM and V617F = 106611 mM) than

proteins containing the kinase domain alone (JAK2 JH1 =

4466 mM and JAK3 JH1 = 3565 mM). Similar differences in

Figure 1. Protein characterization. A. Schematic representation of the proteins encoded by the different constructs. Amino acid boundaries for
each construct are indicated, numbers refer to the human JAK2 sequence. A HIS tag is located in the C or N terminus according to the figure and
indicated by the suffix HIS in the text. B. JAK2 JH1-JH2WT and V617F mutant along with JH1 domain were produced in Sf9 cells and purified by Ni-
NTA affinity and gel-size chromatography. Purified proteins were concentrated to 1 mg/ml (as shown by Coomassie staining, left), immunoblotted
with anti-HIS (middle) and anti-pTyr1007/1008 JAK2 (right) antibodies. C. Example of a time-dependent reaction progress curve for JAK2 JH1 at
different concentrations of STAT5A_687_699 peptide: 100 mM, Green; 300 mM, Red; 400 mM, Orange; 600 mM, Yellow; 750 mM, Grey and 1000 mM,
Brown. Initial rates (v) for each peptide on the array were obtained by fitting the data points to the equation for exponential association, as described
in Materials and Methods. D. Images of PamChipH peptide microarrays comprising 144 Tyr containing peptides. Images were taken after 30 min of
incubation with complete JAK assay mix.
doi:10.1371/journal.pone.0018522.g001
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Table 1. Substrate identification by PamChipH 144 peptide microarray.

Protein Description Peptide ID Peptide Sequence WT V617F JH1

Protein 4.1 41_654_666 LDGENIYIRHSNL X

Acetylcholine receptor subunit delta precursor ACHD_383_395 YISKAEEYFLLKS X X X

Band 3 anion transport protein B3AT_39_51 TEATATDYHTTSH X X

Complement C1r subcomponent precursor C1R_199_211 TEASGYISSLEYP X X

Calmodulin CALM_93_105 FDKDGNGYISAAE X X

CALM_95_107 KDGNGYISAAELR X X

E3 ubiquitin-protein ligase CBL CBL_693_705 EGEEDTEYMTPSS X

Proto-oncogene C-crk CRK_214_226 GPPEPGPYAQPSV X X

Catenin beta-1 CTNB1_79_91 VADIDGQYAMTRA X

Dual specificity tyrosine-phosphorylation-regulated kinase 1A DYR1A_212_224 KHDTEMKYYIVHL X

Embryonal Fyn-associated substrate EFS_246_258 GGTDEGIYDVPLL X

Epidermal growth factor receptor precursor EGFR_1103_1115 GSVQNPVYHNQPL X

EGFR_1165_1177 ISLDNPDYQQDFF X X

EGFR_1190_1202 STAENAEYLRVAP X X X

Ephrin type-A receptor 2 precursor EPHA2_765_777 EDDPEATYTTSGG X

Ephrin type-A receptor 4 precursor EPHA4_589_601 LNQGVRTYVDPFT X X

Ephrin type-B receptor 1 precursor EPHB1_771_783 DDTSDPTYTSSLG X

Erythropoietin receptor precursor EPOR_361_373 SEHAQDTYLVLDK X X X

EPOR_419_431 ASAASFEYTILDP X X X

Receptor Tyrosine-protein kinase erbB-2 precursor ERBB2_1241_1253 PTAENPEYLGLDV X X X

Receptor tyrosine-protein kinase erbB-4 precursor ERBB4_1181_1193 QALDNPEYHNASN X X X

ERBB4_1277_1289 IVAENPEYLSEFS X X X

Fatty acid-binding protein, heart FABPH_13_25 DSKNFDDYMKSLG X

Focal adhesion kinase 1 FAK1_569_581 RYMEDSTYYKASK X X

Protein tyrosine kinase 2 beta FAK2_572_584 RYIEDEDYYKASV X X

Proto-oncogene tyrosine-protein kinase FER FER_707_719 RQEDGGVYSSSGL X

Fibroblast growth factor receptor 1 precursor FGFR1_761_773 TSNQEYLDLSMPL X X X

Fibroblast growth factor receptor 2 precursor FGFR2_762_774 TLTTNEEYLDLSQ X X X

Fibroblast growth factor receptor 3 precursor FGFR3_641_653 DVHNLDYYKKTTN X X

FGFR3_753_765 TVTSTDEYLDLSA X X X

Insulin receptor precursor INSR_992_1004 YASSNPEYLSASD X X X

Tyrosine-protein kinase JAK1 JAK1_1015_1027 AIETDKEYYTVKD X X X

Tyrosine-protein kinase JAK2 JAK2_563_577 VRREVGDYGQLHETE X X

Tyrosine-protein kinase SYK KSYK_518_530 ALRADENYYKAQT X X X

Linker for activation of T-cells family member 1 LAT_194_206 MESIDDYVNVPES X X X

Mitogen-activated protein kinase 7 MK07_211_223 AEHQYFMTEYVAT X X X

Mitogen-activated protein kinase 12 MK12_178_190 ADSEMTGYVVTRW X X X

Mitogen-activated protein kinase 14 MK14_173_185 RHTDDEMTGYVAT X X X

BDNF/NT-3 growth factors receptor precursor NTRK2_509_521 PVIENPQYFGITN X

NTRK2_696_708 GMSRDVYSTDYYR X X X

Paxillin PAXI_111_123 VGEEEHVYSFPNK X

PAXI_24_36 FLSEETPYSYPTG X

Beta-type platelet-derived growth factor receptor PGFRB_1002_1014 LDTSSVLYTAVQP X

precursor PGFRB_1014_1028 PNEGDNDYIIPLPDP X X X

PGFRB_572_584 VSSDGHEYIYVDP X X

PGFRB_709_721 RPPSAELYSNALP X

PGFRB_768_780 SSNYMAPYDNYVP X

PGFRB_771_783 YMAPYDNYVPSAP X

Serine/threonine-protein phosphatase 2A catalytic beta PP2AB_297_309 EPHVTRRTPDYFL X X X

Paired mesoderm homeobox protein 2 PRRX2_202_214 WTASSPYSTVPPY X

Analysis of Jak2 by Peptide Microarrays
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Km values were found when other peptides were used as substrates

(data not shown). The Km values for the kinase domains of JAK2

and JAK3 with the STAT5A peptide are slightly higher than those

obtained in a recent study [28]. Taken together, our data shows

that the JH2 domain reduces the affinity for ATP and that the

V617F mutation has little or no effect on this parameter.

Catalytic efficiency of JAK2 kinase domain
The effect of the peptide sequence on the kinase reaction can be

studied by determining enzymological parameters such as the

Michaelis-Menten constant (Km) and the maximal velocity (Vmax)

per peptide. However, in most cases, enzymes show the largest

differences in the Vmax rather than in Km for different substrates.

This is because substrate specificity often results from differences

in transition state, rather than ground state binding interaction

[29]. In addition, reliable Vmax and Km values can only be

calculated when the substrate concentrations [S] are several times

higher than Km, a condition that is difficult to meet for peptides

that are poor substrates (Figure S2). Consequently, the most

general way to compare different substrates is the catalytic

efficiency (Vmax/Km), which also reflects the ratio of conversion

when a mixture of substrates is offered to an enzyme. When

[S],,Km the relation of a plot v (initial velocity) versus [S] is

linear and the Vmax/Km can be obtained from the slope of this

plot [29]. Therefore, Vmax/Km values were calculated from the

linear part of v vs. [peptide] plots. The percentage of activity in

relation to 1000 mM STA5A_687_699, expressed per pmol of

protein was used to obtain Vmax/Km values. In order to prevent

limiting concentrations of ATP, Vmax/Km values for the different

proteins were obtained at 400 mM ATP and are shown in Table 2.

To facilitate comparison of these values, two transformations of

these results were performed. First, JH1-JH2WT was set to 1 for

all substrates and the fold change with respect to the other proteins

was calculated. This transformation levels off the catalytic

efficiency specific for each peptide, while maintaining differences

in both activity and specificity of the different proteins. Secondly,

Vmax/Km values for each JAK2 form were expressed as

the percentage of the sum of all Vmax/Km. This transformation

averages the differences in activities, while maintaining differences

in peptide specificity.

Most kinases show highly similar structures, yet phosphorylate

different substrates. Kinase and substrate interact on basis of

charge, hydrogen bonding or hydrophobic interactions that make

the substrate fit perfectly in the active site [30]. Therefore, the

largest differences in substrate preferences should appear between

distinct catalytic cores, as distinct interactions may take place. A

comparative experiment was performed with JAK3 JH1 to

determine the ability of this method to detect these differences.

As shown in Table 2, the catalytic efficiency for both JAK2 JH1

and JAK3 JH1 significantly varies for some substrates while

remaining similar for others. These results validate our method-

ology and support that, although JAK2 and JAK3 show 70%

identity between their crystal structures, these differences are

sufficient to robustly alter peptide preference [31,32]. Presumably,

the presence of additional regulatory domains may also affect

substrate preference, as interactions may also change. The values

obtained for JAK2 JH1 (Table 2) reflect this effect, as the fold

change varies over wide ranges when compare to WT (8 to almost

40-fold) and significant differences are also found in the percentage

of the total catalytic efficiency for certain peptides. On the

contrary, the catalytic efficiency for JAK2 V617F increases 2–5

folds as compared to the WT and catalytic efficiencies, expressed

as percentage of the total, appeared similar for both JH2

containing constructs. This suggests that the V617F mutation

only increases the activity, but has little or no effect on substrate

preference.

JAK2 substrate motif
To better understand the determinants of substrate recognition,

we investigated whether comparison of the primary sequence of

the substrate peptides could reveal a differential consensus motif

for the different proteins. For this purpose, the peptide sequences

from Table 2 were aligned relative to the central Tyr residue and

only residues from position 25 to +5 were considered. For each

protein, only the percentage of the total Vmax/Km for each peptide

Protein Description Peptide ID Peptide Sequence WT V617F JH1

Macrophage-stimulating protein receptor precursor RON_1346_1358 SALLGDHYVQLPA X X X

RON_1353_1365 YVQLPATYMNLGP X X X

Signal transducer and activator of transcription 5A STA5A_687_699 LAKAVDGYVKPQI X X X

Signal transducer and activator of transcription 1-alpha/beta STAT1_694_706 DGPKGTGYIKTEL X

Signal transducer and activator of transcription 3 STAT3_698_710 DPGSAAPYLKTKF X X

Signal transducer and activator of transcription 4 STAT4_686_698 TERGDKGYVPSVF X

Vascular endothelial growth factor receptor 1 VGFR1_1162_1174 VQQDGKDYIPINA X X

precursor VGFR1_1320_1332 SSSPPPDYNSVVL X X X

VGFR1_1326_1338 DYNSVVLYSTPPI X X X

VGFR2_1052_1064 DIYKDPDYVRKGD X

VGFR2_1168_1180 AQQDGKDYIVLPI X X X

Vinculin VINC_815_827 KSFLDSGYRILGA X X X

Tyrosine-protein kinase ZAP-70 ZAP70_485_497 ALGADDSYYTARS X X X

Peptide ID is based on the UniProt Knowledgebase, and the numbers indicate the position of the first and last amino acids of the peptide in the complete human
protein (UniProt annotation and numbering). Substrates were defined as those peptides showing protein- and ATP-concentration dependent signals after incubation.
Nonspecific signals were not considered. In the three columns on the right hand side of the table, an X indicates phosphorylation of that peptide by the JAK2 construct
indicated in the heading.
doi:10.1371/journal.pone.0018522.t001

Table 1. Cont.
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was entered as weighted sequences into the enoLOGOS program

[33] and the result for each form is presented in Figure 3.

In general, all constructs preferred peptide sequences with

negatively charged amino acid at the N-terminus and hydrophobic

residues at the C-terminus of the Tyr residue. In particular, the

presence of Gly, Glu or Asn at position 23, Glu or Asp at position

21, Leu and/or Val at positions +1 and +3 and Pro at +5 seems to

favor substrate phosphorylation. Interestingly, peptides with two

adjacent tyrosine residues, like Tyr1007 and Tyr1008 in the

activation loop of JAK2 [26], were also found to be preferred. This

is in agreement with current knowledge suggesting that most

protein tyrosine kinases (PTKs) prefer Asp and Glu at the N-

terminus of the tyrosine residue and that strong preferences are

found at positions +1 and +3 [34]. In addition, previous studies on

the autophosphorylation sites of JAK2 also identified sequences

with high similarities with this motif [26,35,36,37]. An additional

online search on PhosphoSitePlus [38] rendered several cytoplas-

mic proteins (like Akt, Crk, Pten, PKC, Ron, SHP, and STAT5)

and membrane receptors (like CSF2RB, EPOR and PrlR)

involved in JAK2 signaling with phosphorylated tyrosines in sites

strongly similar to this motif. More importantly, the preferred

sequence of the amino acids differs among the different proteins,

as a consequence of the differences in peptide preference. This is

particularly evident at positions 23, 21, +1 and +3 of the central

Tyr. The largest differences are found for JAK3 JH1, which may

reflect sequential and structural differences as mentioned above.

The JAK2 forms, on the contrary, show more similarities among

them. In this line, only small differences in substrate motifs were

found between JH1-JH2WT and JH1-JH2V617F while the shift in

the amino acid preference at positions 23 and +1 in the absence of

the JH2 also supports the modulatory role of this domain in

peptide recognition. These results provide evidence for the

relevance of the amino acid sequence in the kinase-substrate

interaction. In addition, subtle changes in these interactions can be

detected by this method, hence providing a powerful platform for

kinase analysis and drug screening.

Discussion

After the discovery of the JAK2 V617F mutation in MPN

patients, several other mutations in the JH2 domain of JAKs have

been identified in MPN, but also in lymphoid and myeloid

leukemia and multiple myeloma patients [14,39]. Consequently,

increasing efforts are being made to generate novel protein-

tyrosine kinase inhibitors specifically targeting these mutant forms.

A detailed understanding of the mechanisms of enzyme regulation

is essential for the design of highly specific and highly potent

modulators for the treatment of these patients with minimal side

effects. Array-based platforms, as used in this study, provide useful

tools for identifying such molecules. To date, the mechanisms of

regulation for JAK proteins are still incompletely understood. We

used peptide microarrays to study the effect of the JH1-JH2

interaction on initial reaction rates and compare catalytic

efficiencies for 24 peptides. We showed that the presence of the

JH2 domain not only affects kinase activity but also modulates

substrate specificity of JAK2. However, mutation V617F, while

inducing hyperactivity of JAK2, did not give rise to detectable

changes in substrate specificity. Finally, a peptide recognition

motif for JAK2 was identified that could be used for the

identification of new substrates and interaction partners of JAK2.

Phosphorylation of the activation loop is essential for both

mutant and wild type JAK2 [26,40]. The conformational change

induced by phosphorylation affects the catalytic activity by .50

fold [28]. Yet again, at similar phosphorylation levels, we show

that the mutant form partially releases the inhibition by the JH2

domain. This is in line with previous evidence suggesting that

mutation V617F leads to a hyperactive kinase [40] and explains

the further enhancement in activity upon cytokine stimulation

[7,9].

The molecular models of JAK2 suggests that the JH1 and JH2

domains form an interface in an anti-symmetrical way

[41,42,43,44]. This interface is formed between the activation

loop of JH1 and a loop between b2 and b3 strands in the N-

terminal lobe of JH2, where Val 617 is localized. The interaction

Figure 2. Contribution of the different domains to the catalytic
activity of JAK2 JH1. A. Comparison of the activity per pmol protein
for JAK2 JH1, JAK2 JH1-JH2WT and JH1-JH2V617F acting on 1000 mM
STAT5A_687_699 as a function of ATP concentration. The activity for
each protein was calculated in relation to the initial rates obtained at
100 mM ATP and expressed per pmol of protein used. Values are the
average of 3 v-values. B. Comparison of relative activity for JAK2 JH1,
JAK3 JH1, JAK2 JH1-JH2WT and JH1-JH2V617F. Relative activity was
calculated in relation to the Vmax for each protein. Values are the
average of 3 v-values.
doi:10.1371/journal.pone.0018522.g002
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between JH1 and JH2 is predicted to stabilize the activation loop

of JH1. In kinases, the activation loop also forms part of the

peptide substrate binding pocket [45,46] and it may, therefore,

regulate substrate binding. Given that kinase and substrate have

complementary sequences in a 3D space, stabilization of the

activation loop in a certain position may modulate substrate

preference by shifting the interactions of the complementary

sequences. The analysis of multiple substrates presented in this

study supports this modulatory role of the JH2 domain in peptide

preference. However, very little differences in substrate preference

were found when comparing both JH2 containing forms,

suggesting that the effect of the amino acid change merely elevates

kinase activity. Surprisingly, peptides derived from STAT proteins

did not emerge as the best substrates for JAKs. One possibility is

that, although peptide sequences determine the first level of

substrate specificity [30], structural determinants essential for

optimal substrate recognition are missing in the sequences used

here. In addition, it is possible that distal sites in both the kinase

and the target protein, and scaffolding proteins, elevate reaction

rates by drastically increasing local concentration of the substrate

[30].

The 2-fold increase in the Km for ATP found in both JH2-

containing proteins is of interest, because it may suggest that the

JH2 domain interferes with ATP binding to the catalytically active

JH1 domain. This effect could either be due to steric hindrance, or

a conformational change affecting the affinity for ATP. Steric

hindrance could fit the current model as the proposed JH1-JH2

interactions may physically hinder the access of ATP to the kinase

domain and increase the amount of ATP required for the reaction

to occur. However, this mechanism appears less likely, because

steric hindrance would be overcome at high concentrations of

ATP. Thus, the results support a model in which the increase in

the Km in JH2-containing proteins is due to a conformational

change. It should, however, be noted that recently some proteins

with a pseudokinase-like sequence have been demonstrated to

bind ATP and display an active conformation [47], or even possess

catalytic activity [48,49,50]. This possibility may provide addi-

tional reaction steps in the mechanism of action of JH2-containing

proteins. Given that most small-molecule PTK inhibitors identi-

fied through screening of compound libraries are invariably

competitive against ATP and not substrate protein/peptide, these

results also suggest that development of JAK2 inhibitors based on

the structure of the JH1 domain will rarely be as effective in vivo

and that strategies incorporating the JH2 domain may appear

more promising.

A potential limitation of the current study might be that the

recombinant JAK proteins studied lacked the FERM and SH2

domains, as there is evidence that these domains, involved in

Figure 3. Sequence recognition motifs. The motif was obtained by expressing Vmax/Km for each peptide as a fraction of the total Vmax/Km

obtained on the chip and entering the weighted contribution into the enoLOGOS program. The height of the stack of single amino acid letters
indicates the relative entropy of the site. The size of each letter indicates its preference at the position relative to the phosphorylation site between
25 and +5.
doi:10.1371/journal.pone.0018522.g003
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receptor interaction, might also exert auto-inhibitory activities

[1,36,51,52,53,54,55]. However, Funakoshi-Tago [56] have

shown that in the absence of receptor protein, the unbound JAKs

adopt a conformation that prevents the catalytic domain from

being fully active. Because it is only by interaction with receptors

that displacement of the FERM domain gives rise to the fully

active conformation, proteins lacking the restrictive FERM

domain appear more suitable for studying JAK activities in the

absence of receptor proteins.

In conclusion, our studies have identified a role of the JAK2-

JH2 domain in substrate preference in addition to its negative

regulatory action on kinase activity mediated by the JH1 domain.

The V617F mutation in the JH2 domain commonly detected in

MPN increased kinase activity but did not change substrate

preference. Mutations in JAKs and chimeric JAK proteins

resulting from chromosomal translocations are found in different

forms of acute leukemia, in particular acute lymphoblastic

leukemia in Down syndrome patients and acute megakaryoblastic

leukemia [14]. The methodology described in this paper will

provide the opportunity to study to what extent these abnormal-

ities give rise to changes in substrate preference or even specificity

and how this might contribute to the pathogenesis of these distinct

leukemia subtypes.

Materials and Methods

Plasmid constructs, cell lines and reagents
JAK2 (EC-2.7.10.2) proteins JH1-JH2WT, JH1-JH2V617F and

JH1 were cloned into pFASTBAC1 vector (Invitrogen) with a C-

terminal thrombin cleavable 6XHIS tag. The amino acids encoded

by the Jak2 constructs are shown in Figure 1A and the numbering

refers to human Jak2 (GenBankTM accession number

NM_004972.3). Mutations were made by QuikChange site-directed

mutagenesis kit (Stratagene) and verified by sequencing. Ni-NTA

affinity beads for protein purification were from Qiagen and

Superdex 75 gel filtration column was obtained from GE

Healthcare. HIS tagged JAK3 JH1 kinase was obtained from

Carna Biosciences (GenBankTM accession number NP_000206.2).

Antibodies were from the following sources: anti-pTyr1007/1008

JAK2 antibodies, Cell Signaling Technology; anti-His antibody,

Sigma-Aldrich; fluorescein-labeled PY20 antibody, Exalpha; and

secondary biotinylated anti-Mouse or anti-Rabbit antibodies, Dako-

Denmark. Streptavidin-biotinylated horseradish peroxidase com-

plex antibody was from GE Healthcare. PamChipH Tyrosine kinase

microarrays and BioNavigator software for analysis of peptide

microarrays were obtained from PamGene International BV. 106
PK kinase buffer and 1006 BSA for kinase assays were obtained

from New England Biolabs while ATP was obtained from Sigma.

Staurosporine and AMP-PNP were obtained from BioMol and

Roche respectively. Prism 4 software was obtained from GraphPad

Software.

Protein Expression, Purification and Western Blots
Sf9 cells were infected with recombinant bacmid DNA

containing JAK2 domains at cell density of 16106 cells/mL for

virus amplification and at 26106 cells/mL for protein production.

Cells were lysed in buffer containing 20 mM TRIS-HCl (pH 8.0),

500 mM NaCl, 15% glycerol and 20 mM imidazole, supplement-

ed with protease inhibitors cocktail (Roche Diagnostics), sonicated

and centrifuged 1 h at 140006g. The supernatant was incubated

with Ni-NTA beads for 2 hours with gentle rotation at 4uC.

Fractions containing His-tag fusion proteins eluted with 250 mM

imidazole were pooled and dialyzed overnight in buffer containing

20 mM TRIS-HCl (pH 8.0), 500 mM NaCl, 15% glycerol and

5 mM DTT. Samples were concentrated and loaded onto a

Superdex 75 gel filtration column equilibrated in 20 mM TRIS-

HCl (pH 8.0), 150 mM NaCl, 10% glycerol and 5 mM DTT

buffer. Finally, fractions containing JAK2 proteins were concen-

trated and analyzed by Western Blot using anti-pTyr1007/1008

JAK2 antibodies and anti-His antibody diluted 1:1000 in TBS

buffer, followed by secondary biotinylated anti-Mouse or anti-

Rabbit antibodies diluted 1:3000 in TBS buffer and streptavidin-

biotinylated horseradish peroxidase complex antibody diluted

1:5000 in TBS buffer.

PamChipH peptide microarrays for substrate
identification and determination of catalytic efficiency

PamChipH Tyrosine kinase microarrays containing 144 pep-

tides (13–15 amino-acids long) derived from putative tyrosine-

phosphorylation sites in human proteins were used for substrate

identification and spotted at a 1000 mM concentration as

described elsewhere [24]. Peptides were named based on protein

identities and amino acid position numbers, as described in

UniProt Knowledgebase. A pre-tyrosine-phosphorylated peptide

and a peptide lacking tyrosine residues were used as a control for

antibody recognition.

For substrate preference 24 peptides were selected and printed

on a custom PamChipH microarray containing peptide concen-

tration series at 100, 300, 400, 600, 750 and 1000 mM, as

confirmed by fluorescence intensity measurements after staining of

arrays with Sypro Ruby Protein Blot Stain (Molecular Probes,

Invitrogen). Selection of peptides was based on two main criteria:

firstly, peptides should give signals with at least one of the proteins

tested; and, secondly, peptides should belong to proteins reported

to interact with JAK2 (according to the human protein reference

database). Incubations were performed in triplicates with 2 pmoles

per reaction JH1-JH2WT, 0.4 pmoles per reaction JH1-

JH2V617F, 0.04 pmoles JAK2 JH1 and 1.2 pmoles JAK3 JH1

in a final reaction volume of 25 ml. Reactions were incubated with

400 mM final ATP concentration.

Incubations and dynamic readings of the peptide microarrays

were performed at 30uC on a PamStation 96 instrument

(PamGene International BV) that allows simultaneous incubation

of 96 arrays. Prior to incubation with the kinase buffer, arrays were

blocked with 2% BSA (w/v, Fraction V, Calbiochem) in water for

30 cycles and washed three times with PK assay buffer (50 mM

Tris–HCl [pH 7.5], 10 mM MgCl2, 1 mM EGTA, 2 mM DTT,

and 0.01% Brij-35). The kinase reactions (16 PK kinase buffer,

JAK proteins at indicated concentration, 16 BSA, 12.5 mg/ml

fluorescein-labeled PY20 antibody and 400 mM ATP) were

incubated for 60 cycles of pumping up and down through the

pores of the microarrays at a rate of 2 cycles per minute. Arrays

were imaged every second cycle by an integrated CCD-based

optical system. A representation of the typical workflow is shown

in Figure S1.

Signal quantification and data analysis
Time series of images were analyzed and signal intensities were

quantified by BioNavigator software. To determine the initial

reaction rate (v), the signal minus background from the time series

of each spot (Figure 1C) was fitted to an equation for exponential

association y = y0+ymax(1 – e2kc), where y value stands for the

signal intensity at cycle of measurement, k is the reaction rate

constant; and c is the cycle number when the image was recorded.

The initial velocity of peptide phosphorylation (v) was determined

at the second data point via v = ymax * k * e2kc. Signal intensities

after 20 min of incubation were also determined and used for

quality control of the initial velocities. Only v values were used for
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subsequent data interpretation. Initial velocities (v) for each

peptide, determined from the time course of the reactions as

described above, were expressed as percentage of activity of the

JAK2 protein on 1000 mM STA5A_687_699. Rates were

expressed per pmol of protein. These values were analyzed using

Graphpad Prism 4.0 software. Data presented are the average of 3

technical replicates.

Supporting Information

Figure S1 Typical workflow diagram of a PamChipH
peptide microarray experiment. PamChipH arrays are

spotted on a porous 3-D layer of metal oxide. The presence of

pores increases the surface area and allows immobilization of a

high concentration of peptide in each of the 144 spots. By using a

PamStation, 96 samples on a 96 array plate can be effectively

pumped up and down through the pores. Upon kinase and ATP

addition phosphorylated peptides are detected by a fluorescein-

labeled PY20 antibody. The physical properties of the material

(translucent when wetted) allow real-time detection of fluorescent

signals by a charge-coupled device (CCD) camera. Signal

intensities in each spot and its background are obtained from

each image by Bionavigator. This software calculates the signal

minus background of each spot at each time point and fits initial

reaction rates through the time series. Finally, initial reaction rates

(average of triplicate incubations) are used in the calculation of

kinetic parameters using specific Graphpad Prism 4.0 software.

(TIF)

Figure S2 Relative activity on different peptides. A.

Comparison of Km values for JAK2 JH1, JAK2 JH1-JH2WT and

JH1-JH2V617F for EGFR_1190_1202 peptide. Relative activity

was calculated in relation to the initial rates obtained for 1000 mM

EGFR_1190_1202 for each protein. Values are the average of 3 v-

values. B. Comparison of Km values for JAK2 JH1, JAK2 JH1-

JH2WT and JH1-JH2V617F for STA5A_687_699 peptide.

Relative activity was calculated in relation to the initial rates

obtained for 1000 mM STA5A_687_699 for each protein. Values

are the average of 3 v-values.

(EPS)
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and MO25á Regulate the Conformational State of the STRADá Pseudokinase
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