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To investigate whether alterations in mitochondrial metabolism affect longevity in Drosophila melanogaster, we
studied lifespan in various single gene mutants, using inbred and outbred genetic backgrounds. As positive controls
we included the two most intensively studied mutants of Indy, which encodes a Drosophila Krebs cycle intermediate
transporter. It has been reported that flies heterozygous for these Indy mutations, which lie outside the coding region,
show almost a doubling of lifespan. We report that only one of the two mutants lowers mRNA levels, implying that the
lifespan extension observed is not attributable to the Indy mutations themselves. Moreover, neither Indy mutation
extended lifespan in female flies in any genetic background tested. In the original genetic background, only the Indy
mutation associated with altered RNA expression extended lifespan in male flies. However, this effect was abolished by
backcrossing into standard outbred genetic backgrounds, and was associated with an unidentified locus on the X
chromosome. The original Indy line with long-lived males is infected by the cytoplasmic symbiont Wolbachia, and the
longevity of Indy males disappeared after tetracycline clearance of this endosymbiont. These findings underscore the
critical importance of standardisation of genetic background and of cytoplasm in genetic studies of lifespan, and show
that the lifespan extension previously claimed for Indy mutants was entirely attributable to confounding variation
from these two sources. In addition, we saw no effects on lifespan of expression knockdown of the Indy orthologues
nac-2 and nac-3 in the nematode Caenorhabditis elegans.

Citation: Toivonen JM, Walker GA, Martinez-Diaz P, Bjedov I, Driege Y, et al. (2007) No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic
background effects. PLoS Genet 3(6): e95. doi:10.1371/journal.pgen.0030095

Introduction

Mutations in single genes in invertebrate model organisms
have been used with great success to discover developmental
mechanisms that are evolutionarily conserved in mammals.
More recently, it has become apparent that the aging process,
too, can be investigated by analysis of single gene mutations
that extend lifespan. Thanks in particular to their short
lifespans, yeast, nematode worms (C. elegans) and fruit flies (D.
melanogaster) have revealed signalling pathways that modulate
aging in multiple species. These include the insulin/IGF-like
signalling pathway [1–5], the amino-acid-sensing target of
rapamycin (TOR) pathway [6–8], and the stress-responsive
JNK pathway [9–11].

Typically, the mutations used to study developmental
mechanisms cause robust phenotypes that are expressed in
a range of genetic backgrounds. Moreover, they are not
greatly affected by environmental variation, at least not
within the range normally encountered during laboratory
studies. By contrast, lifespan is highly sensitive to genetic
background and environment, necessitating careful precau-
tions when trying to attribute an increase in lifespan to the
effects of a single gene mutation. Natural and laboratory
populations of outbred, diploid organisms, such as Drosophila
and mice, can harbor substantial quantitative genetic
variation for lifespan [12–16], and different wild-type strains
can therefore differ considerably in longevity. In addition, as
is often the case for fitness-related traits, longevity is

shortened by inbreeding depression, and increased by
heterosis when separate inbred strains are crossed with each
other [17]. Use of inbred laboratory strains in aging research
is risky, because fixation of deleterious alleles in such stocks
can result in identification of alleles that extend lifespan
merely by suppressing shortened lifespan in a strain-specific
manner [18,19]. For these reasons, when examining the effects
of single gene mutations on lifespan it is preferable to
backcross into an outbred genetic background with a full,
healthy lifespan, similar to that of wild-caught Drosophila.
Mutations in single genes can also interact epistatically with

the genetic background used and such interactions can be
complex and sometimes sex-specific [19–21]. Furthermore,
laboratory culture, with its abundant and accessible food supply
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andpressure for rapid andcopious reproduction, can lead to the
evolution of accelerated sexual maturation, elevated fecundity,
and shorter lifespan [18,22–24]. As in inbred strains, a mutation
may, potentially, increase lifespan by reversing the lifespan-
shortening effects of adaptation to laboratory conditions. Thus,
it is important to analyse putative aging genes in several genetic
backgrounds with healthy lifespans. An additional confounding
factor, almost routinely ignored in aging studies, is maternally
inherited Wolbachia, an intracellular symbiotic bacterium that
can have unpredictable effects on host fitness–related traits,
including lifespan [25–29]. Widespread infection of Wolbachia
within laboratory stocks has been shown in a recent survey,
indicating its presence inapproximately 30%of stocks currently
housed at the Bloomington Drosophila Stock Center [30].

We tested the effects on lifespan of heterozygous, single
gene mutations affecting the mitochondrial translation
machinery and nucleotide metabolism. We were encouraged
to pursue this direction by our preliminary finding that flies
heterozygous for a mutation in a mitochondrial ribosomal
protein S12 (encoded by technical knockout, tko) were longer-
lived than wild-type flies, without obvious defects in growth
or developmental time. As a positive control for these
experiments, two mutants for Indy (I’m not dead yet) were used.
Both Indy206 and Indy302 alleles have been reported to result in
very long-lived flies in the heterozygous state, and to a lesser
extent in homozygotes [31]. Indy encodes a plasma membrane
Krebs cycle intermediate transporter [32] and Indy mutants
are reported to cause decreased expression of the gene
product [31,33, and references therein]. This strong hetero-
zygous phenotype suggests that mild reduction in expression
of Indy has a large impact on lifespan without reduction in the
rate of development or growth. Thus, the Indy mutants were
potentially similar to heterozygous mutations affecting
mitochondrial translation machinery in terms of their lack
of developmental or physiological phenotypes coupled with
extended adult lifespan.

Instead, we discovered that in an outbred genetic back-
ground tko and other mitochondrial mutations studied had

no effect on lifespan and, surprisingly, neither did either Indy
allele in most backgrounds tested. More specifically, we found
that Indy302 did not extend lifespan in either sex in any
genetic background, while Indy206 was associated with
increased lifespan only in one of three genetic backgrounds
studied, and even then the effect was male-specific. This
genetic-background-specific extension of lifespan in males
was largely abolished by tetracycline (TET) treatment, which
also removed the intracellular symbiont Wolbachia from this
mutant stock. The apparent effect of Indy206 on lifespan was
thus in large part attributable to the presence of a TET-
sensitive modifier. Furthermore, the residual lifespan exten-
sion observed was fully reproduced by introducing Chromo-
some X (but not the Indy206 mutation on Chromosome 3)
from the long-lived line into a new genetic background. The
Indy206 mutation itself thus played no role in the extension of
lifespan. Additionally, three independent RNAi-knockdown
experiments targeting worm orthologues of Indy, nac-2 and
nac-3, also implicated in extended lifespan by previous studies
[34,35], did not extend lifespan in our hands.

Results

Effects of Mitochondrial Mutations on Lifespan
In C. elegans, mutation or knockdown of several genes

encoding proteins in the mitochondrial respiratory chain
leads to reduced lifespan [36,37] but of many others instead
increases lifespan [38–40], by mechanisms that remain
uncertain. We examined heterozygous, single gene mutations
in flies, to test whether mild impairment of mitochondrial
function can lead to extended lifespan. In a pilot experiment,
heterozygosity for tko25t, a hypomorphic allele of mitochon-
drial ribosomal protein S12 [41–43] increased median life-
span by 18% (unpublished data). To verify our finding in a
standard genetic background, the tko25t and sesB1 alleles
(encoding mitochondrial adenine nucleotide translocase),
together with a further candidate mutant, bonsai1, affecting
mitochondrial ribosomal protein S15 [44], were backcrossed
into the white Dahomey (wDah) background and lifespan of
heterozygous virgin females was then measured. Females were
tested, because both tko and sesB are located on the X
chromosome and hence adversely affect hemizygous mutant
males. Virgins were used to avoid potential confounding
effects of the mutations on female reproduction, which could
affect lifespan. As a positive control we used Indy206/þ and
Indy302/þ females, both reported to be long-lived [31]. Both
alleles were backcrossed into our laboratory background
wDah, as for the mitochondrial mutants.
When tested after six generations of backcrossing, the

longevity phenotype of tko25t/þ flies had almost disappeared
and there was also no significant difference between tko25t/þ
and sesB1/þ lifespans (Figure 1A). Thus, the increased lifespan
seen in the pilot experiment was not attributable to the tko25t

mutation itself, but most likely reflected heterosis (hybrid
vigour) between the mutant and the control strain. bonsai/þ
females (Figure 1B) did show a small but significant increase
in median lifespan relative to wDah (þ/þ) and tko25t/þ. However,
the effect was so small that we chose not to study this further.

The Effects of Indy Mutations on Longevity
To our surprise, the backcrossed Indy206/þ and Indy302/þ

females were not long-lived either. Instead, their lifespan was
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Author Summary

Human life expectancy is increasing in many populations. Research
on aging has gained great attention recently by discoveries of
mutations that slow down aging in relatively short-lived models.
Studies carried out in yeast, worms, and flies have revealed
evolutionarily conserved mechanisms of aging, which are therefore
likely to be relevant to mammals, including humans. Therefore, they
can provide an important stepping stone for more time-consuming
and expensive experiments on mammals. Lifespan studies can be
complicated by interactions of genes under study with the
environment and with other genes. These effects can be substan-
tially larger than the effects of some mutations with a bona fide
effect on lifespan. Here, the authors studied aging in fruit flies using
previously described long-lived mutants in the gene Indy, as positive
controls for other experiments. Surprisingly, they discovered that
Indy mutations do not increase lifespan when the genetic back-
ground effects are removed. Similarly, knockdown of genes with a
similar function in worms do not increase lifespan in this study. The
work presented provides an illustration of how genetic background,
and possibly the presence of endosymbionts, can confound studies
of the genetics of aging and lead to the spurious appearance of
single gene effects on aging where none in fact exist.



intermediate between wDah and bonsai/þ (Figure 1B). We were
concerned that long-term maintenance of Indy alleles as
homozygotes might have dissipated the phenotype, for
example, by selection of suppressor mutations. We also
wondered whether the discrepancy between our results and
earlier reports might reflect differences in the food con-
ditions, or our use of virgin females in the experiment.
Recently, strong condition dependency has been reported for
another long-lived mutant, methuselah [45]. We therefore
backcrossed our mutant lines further and investigated the
effects of Indy206 and Indy302 on lifespan in more detail,
comparing inbred and outbred laboratory genetic back-
grounds. In subsequent experiments, we also included the
original lines, which had not been further backcrossed, for
comparison. In the following text prefixes CS-, wDah-, and
w1118- stand for the original Canton S, white Dahomey and
w1118 backgrounds, respectively.

The original CS-Indy206, CS-Indy302, and the control strain
CS-1085 (from the same mutagenesis but with the insert
located outside the Indy region) were backcrossed for a
further 6–10 generations to the outbred wDah stock, ensuring
that cytoplasmic constituents, such as mitochondria, were
derived from the wDah strain (see Materials and Methods).
These mutations were also backcrossed into an inbred w1118

stock for five generations, to determine the effects of a
different, inbred genetic background.

We first performed further tests to try to reproduce the
reported lifespan extension in the original, heterozygous CS-

Indy lines [31]. To be as faithful as possible to the original
methods [31], we used a similar cornmeal-based food medium
and we also housed experimental flies in both mixed-sex and
once-mated, single-sex conditions. However, similar to our
earlier findings with wDah-backcrossed virgin females, we did
not see lifespan-extension in the original CS-Indy206/þand CS-
Indy302/þ females (Figure 2A). Although we did see a moderate,
16% increase in the median lifespan of CS-Indy206/þ females
compared with CS (þ/þ), this was not significantly different to
the control strain CS-1085/þ. Lifespan in CS-Indy302/þ females
was not significantly different from that of CS (þ/þ), and these
flies were shorter lived than both control CS-1085/þ and CS-
Indy206/þ females.
By contrast, we did confirm that CS-Indy206/þ males are

long-lived, and measured a mean lifespan similar to that
observed in [31] (Figure 2B; 14% and 40% increase in the
median lifespan of CS-Indy206/þmales relative to CS (þ/þ) and
CS-1085/þ males, respectively). The original CS-Indy302/þ
males were not long-lived compared with CS (þ/þ), but
showed 21% increase in median lifespan compared with CS-
1085/þmales. It should be noted also that CS (þ/þ) males were
23% longer lived than CS-1085/þmales, suggesting that these
two control lines are not in a comparable genetic back-
ground, or that heterozygosity for the 1085 insertion has an
adverse effect on male longevity. The latter is unlikely
because, after five generations of backcrossing to the inbred
w1118 strain, the w1118-1085/þ control males behaved identi-
cally to the parental w1118 (þ/þ) line (Figure 2C), median
lifespan for both being 55 days. Backcrossed w1118-Indy302/þ
males also behaved as the controls, showing median lifespan
of 56 days. The w1118-Indy206/þ mutant males, however, still
showed a small 7% median lifespan-extension compared with
both controls, the median being 59 days. The results were
similar in both once-mated females kept as single sex and
females kept in mixed sex groups with males, although mixed
sex conditions drastically reduced lifespans of females,
regardless of their genotype (unpublished data). These data
show that, on cornmeal-based food, using either mixed or
separate sex conditions, only one of the mutant alleles under
study resulted in increased lifespan, and only in males.

The Effects of Indy Mutations on Gene Expression
The lack of phenotype in Indy flies was surprising, and we

therefore confirmed that the Indy mutations were still present
in our stocks. The mutations were as published [31] and were
identical in the three genetic backgrounds (see Figure S1). We
were particularly interested in why, even in the original
genetic background, we could confirm the reported lifespan
extension in Indy206 males but not in Indy302 males. The effect
of the different mutant alleles on Indy expression has not
been shown previously, and we therefore examined the
consequences of the two mutations for Indy mRNA levels.
Based on annotation in FlyBase [46], Indy (annotation symbol
CG3979) encodes three putative transcripts (Indy-RA, Indy-
RB, and Indy-RC; Figure 3A) that differ only in their 59-exons.
To determine how the Indy206 and Indy302 alleles affect the
expression of these alternative Indy transcripts, we performed
PCR with splice variant–specific primers and template cDNA
obtained from homozygous Indy206 and Indy302 mutants
(Figure 3B). Catalase (Cat) was amplified as a control for
cDNA quality, and also to confirm that its expression is not
affected in Indy mutants (the Cat gene is located proximal to

Figure 1. Effects on Longevity of tko25t and Indy Are Abolished by

Backcrossing

A) Virgin females backcrossed six times to wDah. Median lifespans are
59, 59, and 58 d for sesB1/þ, tko25t/þ, and wDah (þ/þ) females,
respectively. Log-Rank test v2 and p-values: sesB1/þ versus þ/þ (v2 ¼
5.59, p¼ 0.0181), tko25t/þ versusþ/þ (v2¼ 1.47, p¼ 0.2258), and sesB1/þ
versus tko25t/þ (v2 ¼ 0.84, p ¼ 0.3583).
B) Virgin females backcrossed six times to wDah. Median lifespans are 60,
60, 62, and 58 d for Indy206/þ, Indy302/þ, bonsai1/þ, and wDah (þ/þ) females,
respectively. Log-Rank test v2 and p-values: Indy206/þ versus þ/þ (v2 ¼
5.14, p¼0.0234), Indy302/þversusþ/þ (v2¼9.50, p¼0.0021), and bonsai1/
þ versusþ/þ (v2¼ 31.86, p , 0.0001).
doi:10.1371/journal.pgen.0030095.g001
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Indy in the third chromosome). In tests of wild-type flies,
cDNA for variants RA and RB was seen, but not for variant
RC. Long-range PCR using genomic DNA as a template
confirmed that this was not due to a problem with the
function of the primers (unpublished data). All three variants
were absent from the Indy206 cDNA sample, consistent with

the decreased expression of protein reported in [33].
However, the Indy302 mutants showed a similar expression
pattern to the wild type. Because PCR methods in general are
only semi-quantitative, we performed a northern hybrid-
ization using RNA samples from homozygous Indy206 and
Indy302 males (Figure 3C). The result confirmed our finding
from the PCR assay, namely, that, whereas the Indy206

mutation had a strong effect on gene expression, Indy302

had no detectable effect. A phosphorimager quantification
showed that, whereas expression in the Indy206 lines was less
than 10% of the wild-type levels, the expression in Indy302 was
typically 85% to 110% compared to the corresponding wild-
type strains (Figure 3D).

Backcrossing Abolishes Indy206-Related Longevity
As shown in Figures 2B and 2C, the increase in lifespan of

w1118-Indy206/þ males after five generations of backcrossing
was clearly diminished compared with the same mutation in
the original genetic background. We therefore investigated
whether thorough backcrossing of Indy206 into the outbred
wDah stock would completely abolish the phenotype. The
extent to which lifespan is affected by Indy mutations might
also depend on food type and we therefore repeated the
experiment using sugar-and-yeast-based food (SY).
We first measured lifespan of wDah-Indy206/þ males, back-

crossed for eight generations, using SY food (Figure 4A). The
backcrossed wDah-Indy206/þ males were not long-lived, and
behaved as the wDah control (median 55 and 53 days,
respectively). As a positive control for the effect of the
backcrossing we exposed the original, non-backcrossed
mutant lines to the same SY food medium. Again, a robust
48% extension was seen in median lifespan in the original
CS-Indy206/þ males compared with CS (þ/þ) control (median
lifespan 68 and 46 days, respectively). The mean lifespan of
CS-Indy206/þ males was again very similar to the published
data (mean 66.4 days compared with 71 days in [31]).
We repeated the experiment after ten generations of

backcrossing and tested wDah-Indy206 males and females, in
homozygous and heterozygous condition (Figures 4B and 4C).
No lifespan extension was observed in either genotype, in
males (Figure 4B) or in females (Figure 4C). The same
experiment was conducted using wDah-Indy302 with similar
results, except that the females homozygous for the Indy302

insertion were clearly short lived (Figure S2A and S2B).
Together, these data confirm that, with SY food as well as with
corn meal-based medium (Figure 2B), one may observe the
substantial lifespan-extension in the original, non-back-
crossed males heterozygous for Indy206, but that this increase
in lifespan is not present in thoroughly backcrossed males
carrying the same mutation.

TET Treatment Diminishes Indy206-Related Longevity
Having established that mutations in Indy alleles are not

themselves causal for longevity, we explored alternative
explanations for the male-specific longevity observed in the
original Indy206 line. Wolbachia, an intracellular symbiont
found frequently in Drosophila stocks [30], is a maternally
derived factor that can potentially modulate longevity. We
investigated the Wolbachia status of these lines by PCR
detection of the gene for Wolbachia surface protein (wsp)
[47,48]. All the original mutant lines, including the Canton S
control, were infected by these a-proteobacteria (Figure 5A,

Figure 2. Association of Indy206 Line with Longevity Is Diminished by

Moderate Backcrossing.

A) Once-mated original females in corn meal food. Median lifespans are
78, 63, 73, and 67 d for CS-Indy206/þ, CS-Indy302/þ, CS-1085/þ, and
Canton S (þ/þ) females, respectively. Log-Rank test v2 and p-values: CS-
Indy206/þ versus þ/þ (v2 ¼ 37.64, p , 0.0001), CS-Indy206/þ versus CS-
1085/þ (v2 ¼ 0.69, p ¼ 0.4065), CS-Indy302/þ versus þ/þ (v2 ¼ 0.72, p ¼
0.3951), CS-Indy302/þ versus CS-1085/þ (v2 ¼ 19.97, p , 0.0001), CS-
Indy206/þ versus CS-Indy302/þ (v2¼ 35.59, p , 0.0001), andþ/þ versus CS-
1085/þ (v2 ¼ 23.72, p , 0.0001).
B) Original males in corn meal food. Median lifespans are 67, 48, 58, and
59 d for CS-Indy206/þ, CS-Indy302/þ, CS-1085/þ and Canton S (þ/þ) males,
respectively. Log-Rank test v2 and p-values: CS-Indy206/þ versusþ/þ (v2¼
54.82, p , 0.0001), CS-Indy206/þ versus CS-1085/þ (v2 ¼ 132.11, p ,
0.0001), CS-Indy302/þversusþ/þ (v2¼0.33, p¼0.5655), CS-Indy302/þversus
CS-1085/þ (v2¼ 13.33, p¼ 0.0003), CS-Indy206/þ versus CS-Indy302/þ (v2¼
60.20, p , 0.0001), andþ/þ versus CS-1085/þ (v2¼ 18.33, p , 0.0001).
C) Males backcrossed for five generations into w1118 (in cornmeal food).
Median lifespans are 59, 56, 55, and 55 d for w1118-Indy206/þ, w1118-
Indy302/þ, w1118-1085/þ, and w1118 (þ/þ) males, respectively. Log-Rank
test v2 and p-values: Indy206/þ versus þ/þ (v2 ¼ 24.40, p , 0.0001),
Indy206/þ versus 1085/þ (v2¼ 22.30, p , 0.0001), Indy302/þ versusþ/þ (v2

¼ 2.34, p ¼ 0.1265), Indy302/þ versus 1085/þ (v2 ¼ 1.74, p ¼ 0.1867),
Indy206/þ versus Indy302/þ (v2¼13.39, p¼ 0.0003), andþ/þ versus 1085/þ
(v2¼ 0.00, p¼ 0.9787).
doi:10.1371/journal.pgen.0030095.g002
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upper left panel). We also analysed the mutants (and wild-
type controls) in the two other genetic backgrounds used, and
found no signs of infection in either the wDah (Figure 5A) or
w1118 (unpublished data) backgrounds.

To test the possibility that the longevity phenotype in the
original CS-Indy206 heterozygotes was Wolbachia dependent,
we used TET treatment, which removes Wolbachia infection.
Canton S and CS-Indy206 lines were cured by adding 25 lg/ml
TET to the food medium for three generations. Wolbachia-
negative wDah and wDah-Indy206 lines were also treated with
TET to provide drug treatment controls. After treatment, the
fly stocks were cultured for several generations in TET-free
medium, and the removal of Wolbachia from treated lines was
confirmed by PCR (Figure 5A, upper right panel). When both
parents were TET treated, the resulting CS-Indy206 male
progeny showed only a small increase in lifespan relative to
Canton S control flies, (Figure 5B, median lifespan 50 days
and 46 days, respectively), although this increase was statisti-
cally significant. Treatment of one or the other parent only
resulted in intermediate lifespans compared with the
situation where both parents were nontreated or treated
(Figure 5B, open triangles and open circles). Canton S
controls were not affected by the treatment (Figure 5C, all
median lifespans between 46 and 48 days), implying that there
was no adverse effect of treatment on other aspects of
metabolism in these flies, such as mitochondrial function. It
also showed that Wolbachia removal per se does not affect
lifespan of Canton S flies. We performed similar crosses using
treated and nontreated Indy206 mutants in the wDah back-

ground (Figure 5D) and did not in general see a significant
effect of TET treatment, median lifespan being between 55
and 60 days for all groups. We conclude that at least part of
the lifespan extension observed in original Indy206 males is the
result of a TET-sensitive modifier, possibly Wolbachia. How-
ever, because a small effect was seen also when only fathers
were treated, we cannot exclude a possibility of another
bacterial associate.

X-Chromosomal Modifier of Longevity in CS-Indy206 Line
Although the long lifespan of CS-Indy206 males was largely

dissipated by TET treatment, it did not completely abolish
the phenotype (Figure 5B). We therefore determined the
source of this residual effect. Logical possibilities included
the mitochondria, and the X chromosome, which in males is
maternally derived. We therefore transferred either cytoplas-
mic constituents or the X chromosome from the long-lived
CS-Indy206 strain to the otherwise wDah genetic background
(details in Protocol S1). We took particular care that
chromosomes in which recombination between the Canton
S and the wDah chromosomes had potentially occurred were
eliminated during the procedure. Importantly, these lines
were now wild type with respect to the Indy locus. Transfer of
cytoplasmic constituents from the long-lived CS-Indy206 to the
otherwise wDah background did not affect longevity (Figure 6,
solid line). By contrast, transfer of X chromosome alone from
the long-lived CS-Indy206 was enough to extend lifespan of the
males in an otherwise wDah genetic background to match that
of the long-lived CS-Indy206 males (Figure 6, open and black

Figure 3. Alternative Transcripts and Gene Expression in Indy Mutants

A) Indy encodes three putative transcripts (RA, RB, and RC) that differ in their ultimate 59-exons. The insertion sites and orientations of Indy206 and
Indy302 are shown (triangles and dashed line). The isoform-specific upstream primers (IndyRA-51, IndyRB-51, and IndyRC-51) and a downstream
common region primer (IndyR-31) are indicated as arrows. Common region probe used for northern analysis (C) is indicated as grey box.
B) cDNAs from the homozygous Indy mutants and CS (þ/þ) control analyzed by isoform-specific PCR. Expression of all isoforms was abolished by Indy206

mutation. Indy302 line expressed both isoforms present in the wild-type cDNA. There was no evidence for isoform RC whereas the control (Catalase)
could be amplified from all cDNA samples.
C) Expression analysis of Indy mutants in different genetic backgrounds. Northern hybridization from wild type (þ/þ), Indy206, and Indy302 homozygotes
in CS, wDah, and w1118 genetic background. The two last lanes show CS (þ/þ) compared to intermediate Indy206/þ heterozygous expression. Ribosomal
protein rp49 hybridization is shown for loading.
D) Phosphorimager quantification of the northern data. The graph shows mean (and standard error) of two separate hybridizations normalized by rp49
and is shown as relative 32P-stimulated luminescence compared with CS, wDah, or w1118 flies.
doi:10.1371/journal.pgen.0030095.g003
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diamonds, respectively). This finding demonstrates that the
Indy206 mutation itself did not produce the lifespan extension
associated with the nuclear genotype of the original CS-
Indy206 line. The lifespan extension was due to a combination
of a TET-responsive factor together with an X-chromosomal
modifier of lifespan in the stock.

Indy Homologs and Aging in C. elegans
In the nematode C. elegans, there are three proteins with

homology to Drosophila INDY. These are NAC-1 (F31F6.6,
previously known as ceNAC-1 and ceNaDC1), NAC-2 (R107.1,

Figure 4. Successive Backcrossing Abolishes Indy206-Associated Longevity

A) Survival of the original versus wDah-backcrossed (38) males on SY
food. The data are male progeny derived from crosses between Indy206

(or þ/þ) homozygote mothers and þ/þ males. Median lifespan is 68
and 46 d for CS-Indy206/þ and CS (þ/þ) males, respectively (Log rank
test v2 ¼ 131.17, p , 0.0001), and 55 and 53 d for wDah-Indy206/þ and
wDah (þ/þ) males, respectively (Log rank test v2 ¼ 0.06, p ¼ 0.8009).
B) Survival of the wDah-backcrossed (310) males on SY food. The flies are
all progeny from crosses between wDah-Indy206/þ females and wDah-
Indy206/þmales. Median lifespans are 48, 48, and 50 d for homozygous,
heterozygous andþ/þmales, respectively. Log-Rank test v2 and p-values:
wDah-Indy206/þ versus wDah-Indy206/ Indy206 (v2¼ 1.34, p¼ 0.2467), wDah-
Indy206/þ versus þ/þ (v2 ¼ 2.08, p ¼ 0.1493), and wDah-Indy206/ Indy206

versusþ/þ (v2 ¼ 7.37, p¼ 0.0066).
C) Survival of wDah-backcrossed (310) females on SY food. The flies are all
progeny from the same crosses as males in Figure 3B. Median lifespans
are 54, 54 and 54 d for homozygous, heterozygous and þ/þ females,
respectively. Log-Rank test v2 and p-values: wDah-Indy206/þ versus wDah-
Indy206/ Indy206 (v2 ¼ 1.37, p ¼ 0.2423), wDah-Indy206/þ versus þ/þ (v2 ¼
0.63, p ¼ 0.4272), and wDah-Indy206/ Indy206 versus þ/þ (v2 ¼ 0.00, p ¼
0.9980).
doi:10.1371/journal.pgen.0030095.g004

Figure 5. Tetracycline Treatment Greatly Modulates Indy206-Related

Longevity

Crosses conducted to obtain male progeny for lifespan experiments are
shown next to the symbol keys (mothers left, fathers right). All lifespan
experiments were carried out on SY food.
A) Detection of Wolbachia infection by PCR using primers specific to
Wolbachia surface protein (wsp, upper panels). dFOXO was amplified as a
control for DNA quality (lower panels). The original Canton S background
is infected with Wolbachia and this infection is absent in wDah

background (upper left panel). TET treatment removed Wolbachia from
infected lines (upper right panel).
B) TET treatment of parents drastically shortens lifespan of long-lived CS-
Indy206/þ males. All experimental flies are heterozygous for Indy206,
except the CS control. Treatment father or mother alone had an equal
effect on lifespan of the progeny (Log-Rank test v2 ¼ 0.31, p ¼ 0.5794).
When both parents were treated, the CS-Indy206/þ progeny was slightly
but significantly different from the Canton S control (Log-Rank test v2¼
6.86, p ¼ 0.0088). All other conditions were significantly different from
each other (Log-Rank test, p , 0.0001).
C) TET treatment of parents has no effect on lifespan of Canton S control
males. All experimental males are wild type (CS). There are no statistical
differences among any conditions (Log-Rank test, p . 0.065).
D) Crosses similar to those in (B) were conducted using wDah-Indy206 flies.
No significant differences were found (Log-Rank test, p . 0.145), except
when progeny of nontreated parents were compared with progeny of
parents where fathers were TET treated (Log-Rank test v2 ¼ 4.13, p ¼
0.0422).
fem, females.
doi:10.1371/journal.pgen.0030095.g005
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previously known as ceNAC-2 and ceNaDC3), and NAC-3
(K08E5.2, previously known as ceNAC-3 and ceNaDC2)
[34,35]. Previously, the reported influence of Indy on lifespan
in Drosophila [31] motivated tests for similar effects on
lifespan of nac-1, �2, and -3 on lifespan in C. elegans. RNA-
mediated interference (RNAi) knockdown of nac-2 [35] and
nac-3 [34] were reported to extend mean lifespan by 19% and
15%, respectively.

Our negative results regarding the influence of Indy on

Drosophila lifespan motivated us to verify the effects of RNAi
knockdown of nac-2 and nac-3 on C. elegans lifespan, employ-
ing the previously used nac-2 and nac-3 RNAi feeding
plasmids, kindly provided by Dr You-Yun Fei. Using
experimental conditions similar, but not identical, to those
in the previous studies (see Materials and Methods) we saw no
effect of nac-2 or nac-3 RNAi on lifespan in two separate
experiments (Figure 7A and 7B). These results could imply
that any effects on lifespan of RNAi knockdown of nac-2 and
nac-3 are sensitive to small differences in experimental
conditions. Therefore, we repeated the experiment a third
time using conditions more closely replicating the original
studies by Fei et al. [34,35], in that RNAi feeding bacteria were
preinduced using IPTG before being added to IPTG-
containing agar plates. Again, no increases in lifespan were
seen (Figure 7C). We verified the efficiency of the RNAi
procedure in three ways. First, we used semi-quantitative RT-
PCR to check that nac-2 and nac-3 mRNA levels were reduced,
and they were (Figure 7D). Second, we performed positive
control tests in each trial using daf-2 RNAi. This resulted in a
large increase in lifespan in all repeats of the experiment,
demonstrating that our RNAi methodology was working
normally (Figure 7A–C). Third, we verified by DNA sequenc-
ing the identity of the inserts in the nac-2 and nac-3 feeding
vectors (unpublished data). The results of the three lifespan
experiments are summarized in Table 1.

Discussion

The original aim of this study was to establish whether mild
mitochondrial defects could extend lifespan in flies, as they
do in worms. Here, our findings were inconclusive. As in
worms, increases in lifespan resulting from mitochondrial

Figure 6. Modifier(s) in the Chromosome X of the CS- Indy206 Mutant

Underlies Its Longevity.

Lifespan of Canton S (þ/þ) and long-lived CS- Indy206 males was analyzed
on SY food in parallel with lines that no longer contain Indy206 mutation,
but still retain Chromosome X or cytoplasmic constituents, including
mitochondria and Wolbachia, from the CS- Indy206 strain. The strain that
only retains cytoplasm from CS- Indy206 (and all nuclear chromosomes
from wDah) shows similar lifespan compared with Canton S control (for
both, median lifespan 53 d, Log-Rank test v2 ¼ 2.80, p ¼ 0.0943). The
strain that retains the Chromosome X from CS- Indy206 (and all other
chromosomes plus cytoplasm from wDah) shows similar lifespan
compared with long-lived CS- Indy206 (for both, median lifespan 64 d,
Log-Rank test v2¼ 3.76, p¼ 0.0525). All other comparisons between the
strains are significant (p , 0.0001).
doi:10.1371/journal.pgen.0030095.g006

Figure 7. Effects on Lifespan in C. elegans of RNAi of nac-2, nac-3, and daf-2 (22 8C) Lifespan analysis of the mutants subjected to bacteria-mediated

RNAi in nonpreinduced and preinduced conditions (see text for details). N2 (wild-type) worms fed with L440 plasmid was used as a vector control. Three

independent replicates of the experiments are shown. Log-Rank test v2 and p-values:

A) L4440 versus nac-2 (v2¼ 1.82, p¼ 0.1772), L4440 versus nac-3 (v2 ¼ 4.01, p ¼ 0.0452), and L4440 versus daf-2 (v2¼ 137.99, p , 0.0001).
B) L4440 versus nac-2 (v2 ¼ 1.02, p¼ 0.8923), L4440 versus nac-3 (v2¼ 0.52, p¼ 0.4727), and L4440 versus daf-2 (v2¼ 39.11, p ,0.0001).
C) L4440 versus nac-2 (v2 ¼ 3.82, p¼ 0.0507), L4440 versus nac-3 (v2¼ 5.09, p¼ 0.024), and L4440 versus daf-2 (v2¼ 65.76, p ,0.0001).
D) The efficiency of the RNAi of nac-2 and nac-3 by the two methods of induction used for lifespan experiments (RT-PCR). On average, nac-2 was
decreased by 85% with nonpreinduced method (npi) or by 62% with preinduced method. Nac-3 was decreased by 71% nonpreinduced or 30%
preinduced. Each bar represents average (and standard error) from two measurements from independent RNA extractions.
npi, nonpreinduced; pi, preinduced.
doi:10.1371/journal.pgen.0030095.g007
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defects might depend largely on the level of electron
transport chain inhibition. Alternative approaches to analyse
mitochondrial mutations, such as RNAi inhibition of the
mitochondrial translation machinery, would be a good way to
explore this possibility. For practical reasons we worked with
virgin females, and cannot exclude the possibility that
virginity could have affected the outcome of our studies.
Work with these mutants provides an illustration of how
genetic background can be a major determinant of longevity
associated with single gene mutations. However, our major
and unexpected finding was that the Indymutations, which we
had intended to use as positive controls, do not increase
lifespan. Instead, treatment with TET abolished much of the
original lifespan extension associated with the CS-Indy206 line
and substantial lifespan extension was brought about by
transfer of X chromosome from the original CS-Indy206 line to
a novel genetic background.

Reduced Indy Expression Does Not Confer Longevity
We have shown that two Indy mutations, Indy206 and Indy302,

previously reported to extend lifespan to a similar extent, do
not decrease expression of Indy mRNA to the same extent,
and that Indy302 does not decrease it at all (Figure 3). In all
three genetic backgrounds tested, the expression of all Indy
transcripts was severely affected in the Indy206, but not in the
Indy302 mutant. A decrease in transcript levels was reported in
both Indy206 and Indy302 mutants ([33] referred therein as
unpublished data). Our stocks were verified to be authentic
by two independent methods (see Figure S1) and, therefore,
we are unable to explain the discrepancy in the results. The
data also suggest that only two of the three transcript variants
annotated in FlyBase [46] are expressed in adult flies.
However, we cannot exclude the possibility of tissue-specific
or conditional regulation for the third alternative transcript.
When the expression data and lifespan experiments are taken
together, inhibition of Indy transcription lacks correlation
with lifespan extension.

Indy Mutants Are Not Consistently Long Lived
Small, absent, or inconsistent effects of Indy alleles on

lifespan were reported earlier. When freshly isogenised
mutants were tested, only a small lifespan extension was
observed in heterozygous Indy females in short-lived lines with
a genetic background expressing a lethal toxin coupled to an
age-dependent molecular biomarker [49]. Indy206 and Indy302

insertions that contain a lacZ reporter gene were used as
markers to study temporal patterns of gene expression, and
their lifespan was reported to be similar to the controls [50,51].

A recent study by Khazaeli et al. [52] could not confirm
longevity in males homozygous for Indy206 and Indy302

mutations, although even the homozygous Indy mutants were
reported to outlive the controls by 10%–20% [31]. Aging-
related decline in performance, measured as negative geotaxis,
progressedmuchmore rapidly in Indymutants when compared
with chico1, a long-lived mutant of the insulin/IGF-like signal-
ling pathway [53]. When measured as absolute rate of func-
tional decline, Indy206 mutants were not statistically different
from wild-type controls [54]. Unlike many other single gene
mutations found to extend lifespan, longevity of Indy mutants
has not been studied in multiple genetic backgrounds before
and, even in the original backgrounds, the published results
proved difficult to repeat in another laboratory [52].
The lack of longevity that we observed in flies carrying Indy

mutations was unexpected, because lifespan extensions of
40%–80% were reported in three genetic backgrounds in
addition to Canton S [31]. It is not clear, however, whether
these findings are derived from thoroughly backcrossed flies
or whether F1 hybrids were studied. Based on our results, it
seems likely that heterosis between the experimental strains
and modifier loci elsewhere in the genome (such as the one
described here) account for the lifespan extension seen. The
fact that excision of the P-elements from the Indy locus
apparently rescued longevity [31] might in fact reflect
segregation of undefined lifespan-extending modifier(s) in
the mutant genetic background, or perhaps loss of Wolbachia.
Unfortunately the original P-element excision lines are not
available for further analysis. Genetic bottlenecks that
accompany P-element excisions, or isogenization procedures
that result in the introduction of extraneous genetic material,
could result in alterations in lifespan. As reported here, the
original data on Indy-related longevity can be explained by
lifespan-modifying elements that are unconnected to the Indy
mutations themselves. Our results imply that a large part of
the lifespan-extending effect is due to an X-chromosomal
modifier(s). The fact that longevity determinant(s) transferred
with the X chromosome can increase lifespan in an otherwise
wDah genetic background also implies that lack of longevity is
not due to ‘‘insensitivity’’ of this background to the levels of
Indy, which could potentially result from strain-specific
polymorphisms. We have clearly established that wDah can
exhibit similar longevity compared with the original mutant
line (see Figure 6), provided that right modifiers are present.

Genetic Background and Nucleo–Cytoplasmic Interactions
Variation in the nuclear background can strongly influence

the extent of longevity resulting from single gene interven-

Table 1. Summary of the C. elegans Lifespan Experiments

Line 7A 7B 7C

Mean 6 sem n Mean 6 sem n Mean 6 sem n

þ (L4440) 25.0 6 0.4 110 23.9 6 0.3 69 22.4 6 0.4 52

nac-3 RNAi 25.9 6 0.5 123 23.5 6 0.3 63 21.2 6 0.3 56

nac-2 RNAi 23.8 6 0.5 100 23.9 6 0.2 99 21.4 6 0.3 64

daf-2 RNAi 41.9 6 1.3 92 37.1 6 1.2 71 34.7 6 1.3 43

Mean survival day and number of animals used in experiments for Figures 7A, 7B and 7C are shown. Abbreviations: n, number of worms used; sem, standard error of mean.
doi:10.1371/journal.pgen.0030095.t001
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tions, the best studied examples being manipulations of Cu/
Zn-superoxide dismutase expression in adult flies [19,20].
These studies provided evidence that the impact of Cu/Zn-
superoxide dismutase overexpression on longevity is gener-
ally stronger in short-lived laboratory lines, and that alleles at
other loci interact epistatically with the Cu/Zn-superoxide
dismutase transgene to modify its ability to extend longevity.

Any particular genetic background is not only defined by
its nuclear genome, but also contains a maternally inherited
cytoplasmic genome, the mitochondrial DNA. Experiments
that combined mitochondrial and nuclear genomes of
separate origin have shown that substantial variation in
longevity can be attributable to nuclear–mitochondrial
interactions [55]. The cytoplasmic endosymbiont Wolbachia,
like other bacteria, is sensitive to the TET class of antibiotics,
and the presence or absence of Wolbachia can contribute
substantially to variation in longevity [28]. However, as
mentioned above, not allWolbachia-positive lines show altered
longevity in response to TET treatment ([26,28], see also
Figure 5C). We have shown here a decrease in lifespan by TET
treatment. This effect was specific for the original long-lived
CS-Indy206 line and hence, in this line, the presence of
Wolbachia was positively associated with longevity. Transfer of
cytoplasmic constituents (including mitochondria and Wolba-
chia) to another genetic background, however, did not result
in extended lifespan (Figure 6). Similarly, TET treatment of
fathers also had a significant effect on lifespan of the male
progeny. This implies that the effect of Wolbachia is depend-
ent on, and interacts with, other factors in the host genome.
We cannot exclude the possibility that the phenotype is
dependent on some other bacterial associate in the CS-Indy206

line, which would be similarly eliminated by the drug
treatment. However, the fact that Wolbachia frequently infects
tissues implicated in determination of longevity, such as
nerves, fat body, and the ovary [30], is a confounding factor in
the genetic analysis of longevity, and deserves more attention
in the experimental design.

Indy and Diet
Variation in environmental conditions in which lifespan

experiments are conducted can result in problems with
reproducibility of published data from different laboratories.
For example, differences in mating status due to different
housing conditions (mixed sex or single sex) can strongly
affect lifespan. One major source of variation that could be
especially important with respect to Indy is diet, given the role
of this gene in nutrient transport. We reproduced, in two very
different food types, a robust lifespan extension for the
original Indy206 line that had not been further backcrossed.
This implies that the effects on lifespan in this line are not
highly condition dependent with respect to food type. The
best-studied environmental intervention that leads to ex-
tended lifespan is dietary restriction (reviewed in [56,57]).
Mutations reducing the levels of Indy have been suggested to
alter the metabolism of the fly in a way that favours lifespan
extension, possibly by inducing a state similar to dietary
restriction [31,33,34]. To date, however, no reports have
addressed the question of how Indy mutations affect survival
when dietary conditions are altered. It is also not clear
whether long-lived Indy mutants impinge upon any down-
stream effects on other molecules possibly involved in the
dietary restriction pathway, such as Sir2 or Rpd3 [58,59]. In

our hands, the lifespan of backcrossed Indy mutants proved to
be the same as wild type over a wide range of food dilutions
(PM, unpublished data), implying that Indy plays no role in the
response to dietary restriction in Drosophila.

Indy Homologs and Lifespan in C. elegans
In C. elegans, three gene products showing significant

amino-acid sequence homology with Drosophila INDY can be
found. RNAi knockdown of two of these genes, nac-2 [35] and
nac-3 [34], has been reported to result in moderate increases
in lifespan. By contrast, we saw no effects of RNAi of nac-2 or
nac-3 RNAi on lifespan, using similar conditions. This could
reflect small differences in the RNAi conditions used: for
some genes, the effects of RNAi on lifespan are sensitive to
small differences in conditions. In this context, it is worth
noting that we did not see a marked decrease in body size in
animals subjected to nac-2 RNAi, in contrast to an earlier
study [35]. This suggests that RNAi conditions might have
been milder in our study, although it is worth emphasizing
that daf-2 RNAi increased lifespan to a degree that is
comparable to other studies. We also showed that the
conditions that we used were sufficient to substantially
reduce nac-2 and nac-3 mRNA levels. The basis of the
apparent condition dependency of effects of nac-2 and nac-3
RNAi C. elegans lifespan will require further elucidation.

Conclusions
Studies of the genetics of aging in Drosophila are highly

vulnerable to confounding effects, especially due to hetero-
geneity between mutant and control populations. Here, we
have shown a case in point, based on the analysis of our own
initially promising results together with a prominent case
from the literature. The data presented here show that
mutations in the Indy gene do not extend lifespan, and
highlight the importance of carefully controlling genetic
background in studies of longevity. Standardisation of
genetic background can be achieved by successive back-
crossing of a putative aging gene, preferably into several
healthy, outbred genetic backgrounds with relatively long-
lived wild types. The backcrossing must be conducted in a way
that ensures passage of cytoplasmic factors to the progeny,
and checks should be made for the presence of intracellular
endosymbionts such as Wolbachia.

Materials and Methods

Fly stocks and husbandry. tko25t and sesB1 mutant flies were
supplied by K. M. C. O’Dell and C.-F. Wu. bonsai1 stock was a kind gift
from Mireille Galloni. The wild-type stock Dahomey was collected in
1970 in Dahomey (now Benin) and has since been maintained in large
population cages with overlapping generations on a 12L:12D cycle at
25 8C. This method of husbandry maintains lifespan and fecundity at
levels similar to freshly caught stocks [24]. The white Dahomey (wDah)
stock was derived by incorporation of w1118 deletion into the outbred
Dahomey background by successive backcrossing. The inbred w1118

background, obtained from the Drosophila Stock Center (http://
flystocks.bio.indiana.edu), was used in some experiments in parallel
with wDah. Indy mutant alleles are originally derived from the same
mutagenesis, where an effort was made to standardise the genetic
background to that of Canton S containing the w1118 deletion [31,60].
The original materials (Indy206 and Indy302 and the control line 1085)
were provided by Stephen Helfand to the Institute of Medical
Technology in Finland in May 2002, where they were backcrossed for
further studies. To backcross these mutants into other genetic
backgrounds, females from wDah or w1118 stocks were first mated with
Indy206, Indy302, or 1085 males, to ensure the transfer of cytoplasmic
constituents from wDah or w1118 to the progeny. Heterozygous mutant
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females were then backcrossed to males with these genetic back-
grounds five (w1118) or ten (wDah) times. The original and backcrossed
stocks were maintained in large numbers in culture bottles at 18 8C
on a 12L:12D cycle. Ingredients of different food media are described
in Protocol S1.

Drosophila lifespan experiments. Unless otherwise stated, to
obtain heterozygous experimental flies, homozygous mutant fe-
males were crossed to corresponding wild-type (Canton S, wDah, or
w1118) males. In one experiment (data in Figure 4B and 4C),
heterozygous mutants thoroughly backcrossed to wDah were mated
to each other, and wild-type, heterozygous mutant, and homozygous
mutant progeny were collected from the same bottles based on
intensity of the transgenic eye colour marker. For details of rearing
conditions and pre-experimental treatment, see Protocol S1. All
lifespan studies were conducted in vials at 25 8C on a 12L:12D cycle at
constant humidity. The flies were transferred to new vials three times
per week and deaths were scored every day or every other day. Log-
rank tests of survivorship curves were performed by using JMP IN
statistical software (SAS Institute, http://www.sas.com).

Molecular analysis of Indy mutants. Authenticity of the
PflacWgIndy206, PflacWgIndy302, and PflacWg1085 insertions was
confirmed in all genetic backgrounds by inverse PCR from genomic
DNA followed by sequencing (unpublished data). Additionally, PCR
reactions with P element–specific primer and primers specific to each
insertion site in the genomic DNA were used (Figure S1). PCR for
detection of Wolbachia was performed using primers wsp81F and
wsp691R (kind gift from G. D. D. Hurst) as described before [47], and
control reactions for DNA quality (dFoxo) were performed using
primers FoxoEcoRIF (59-GGGGAATTCGTTCAGTGCCGCCTCGG-
GACTTCC-39) and FoxoNotI R

(59-GATCGCGGCCGCGTCCTATCAAAGTAGAGGCGCAGT-39).
For expression analysis, RNA was extracted from 20 males per
genotype and cDNA was prepared using standard Trizol methods
(Invitrogen, http://www.invitrogen.com). Splice variant–specific PCR
was performed from various cDNAs using the following 59 primers
in combination with common region primer IndyR-31 (59-
GTTTAGCAGCATAACAGGCAGACATA-39): IndyRA-51 (59-ATCG-
GACGAACCGGGCGTG-39), IndyRB-51 (59-GCAACATATTCA-
TAAAAAGTGGTCTAGCC - 3 9) , a n d I n d y RC - 5 1 ( 5 9-
CACTCGTTTTCATTCCAATTTTTGCGC-39). The control primers
for Catalase (Cat) were Cat-51 (59-CGGCTTCCAATCAGTTGATT-
GACTAC-39) and Cat-31 (59-TCACATCCTGCAGCAGGATAGG-39).
Catalase was used as a control because it is the gene proximal to Indy,
and we wanted to exclude the effect of Indy mutations of Cat
expression. Northern hybridization was repeated twice using a
probe specific to the common region of Indy (Figure 3A, grey box).
The primers used to create the probe were IndyR-51 (59-
CGCCACTGGACATCAAAATGGAAAT-39) and IndyR-31 (above).
Loading was controlled by ribosomal protein rp49 probe that was
amplified as above using primers rp49F (59-AGCATACAGGCCCAA-
GATCG-39) and rp49R (59-CACCAGGAACTTCTTGAATCCGG-39).
Signals from northern blots were quantified by measuring the 32P-
stimulated luminescence (PSL) using the FLA-2000 radioisotopic
imaging system with Multi Gauge image analysis software (Fujifilm,
http://www.fujifilm.com).

C. elegans methodologies. Lifespan studies: Bacteria-mediated RNA
interference (RNAi) was used to inhibit gene function [61]. For the
nonpreinduced method (Figure 7A and 7B), bacteria (E. coli) were
grown for 14 h in liquid culture without IPTG, then seeded onto
nematode growth medium plates containing 1mM IPTG and 50 lg/ml
ampicillin. Seeded plates were allowed to dry for 48 h at room
temperature. In the preinduced experiment (Figure 7C), preinduc-
tion with 0.4 mM IPTG was performed in the liquid culture 4 h before
plating. The empty vector L4440 (pPD129) was used as a negative
control. As a positive control for the efficacy of the RNAi treatment,
we used a daf-2 RNAi feeding strain previously shown to extend
lifespan by ;80% [62]. The RNAi clones for nac-2, nac-3, and the
control vector pPD129 were kindly provided by Y.-Y. Fei [34,35]. The
daf-2 RNAi clone was kindly provided by A. Dillin [62]. The presence
of the correct inserts in each feeding vector was confirmed by DNA
sequencing. A wild-type C. elegans strain N2 (Bristol) was provided by
the Caenorhabditis Genetics Center (http://www.cbs.umn.edu/CGC).

Lifespan measurements were performed at 22 8C on age-synchronous
populations of nematodes as described previously [34].

RT-PCR methods: Eggs prepared from hypochlorite treatment
were plated out onto the respective RNAi feeding bacteria, grown to
the L4 stage, and harvested for RNA extraction. Four washes with M9
were used to remove residual bacteria. Total RNA was isolated using
the Trizol reagent (Invitrogen). First-strand cDNA was generated
from 2 lg of total RNA for each condition using reverse transcriptase
priming with Oligo(dT)12–18 primer. cDNA was amplified using two
pairs of PCR primers, one pair specific to either ce-nac-2 or ce-nac-3
and a second set specific to ama-1, the internal control. Oligonucleo-
tides were designed to cover exon/intron boundaries such that only
cDNA would be amplified. Cycle numbers were optimised for each
primer set to ensure the reaction was within the linear range and
each reaction was terminated before reagents became limiting. The
intensity of the RT-PCR bands were determined from the agarose gel
using the Syngene imaging system with Genesnap and Genetools
software (http://www.syngene.com). Levels of ce-nac-2 and ce-nac-3 were
calculated as a relative intensity to the intensity of the ama-1 RT-PCR
product. The oligonucleotides used were: ama-1 (59-ATCTCGCAGGT-
TATCGCGTG-39 and 59-CGGTGAGGTCCATTCTGAAATC-39), ce-
nac-2 (59-TATTCACAAGAGATACCCCGAG-39 and 59-TCCCGATT-
TATCAACTCCTTCTG-39) , and ce-nac-3 (59-CAAATGGA-
GAACGTGGCCGTC-39 and 59-CGGAGCATCTCTCAAGAAGAAG-
39).

Supporting Information

Figure S1. Authenticity of the Indy Mutant Lines Confirmed by PCR
Analysis

Found at doi:10.1371/journal.pgen.0030095.sg001 (102 KB PPT).

Figure S2. Lack of Longevity in Indy302 Flies

Found at doi:10.1371/journal.pgen.0030095.sg002 (72 KB PPT).

Protocol S1. Supporting Materials and Methods

Found at doi:10.1371/journal.pgen.0030095.sd001 (28 KB DOC).
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