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Abstract

This article is a brief, user friendly discourse on extensions of multi-

modal logics with operations on modalities. Such logics are considered

from a general point of view with the emphasis on the theory of deduc-

tion systems. The �rst part of the article concentrates on developing

general tools that lead to partial completeness results for logics where

the algebra of modalities is e�ectively axiomatizable. The second part

is devoted to the completeness issue of multimodal logic with union and

intersection of modalities. A natural, straightforward axiomatization

and a proof of completeness are given.

1 Introduction

An interesting family of logics arise when multimodal logics are generalized
by allowing operations on modalities. Perhaps the most widely studied exam-
ple of such a logic is Propositional Dynamic Logic (PDL), considered in [12].
Also various di�erent kinds of extensions and variations of PDL have been
considered by a large number of researchers. Boolean Modal Logic [11] is
another interesting example of a multimodal logic extended with operations
on modalities.

In the �rst part of this article (sections 2-6) we consider the family of
multimodal logics with an algebraic structure over the set of modalities from
a general point of view, without singling out any particular member of this
family. We shall call members of the family Multimodal Logics with Opera-

tions on Modalities, orMLOMs. Such logics have been given various names,
for example in [8] they are called Modal Action Logics (MALs).

We begin our discourse by considering the theory of deduction systems
related to the whole family of MLOMs. We develop generally applicable
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tools designed for the algebraic manipulation of modalities within formal
deductions. Based on this we then prove two closely related partial com-
pleteness results that apply to MLOMs with an e�ectively axiomatizable
algebra of modalities. We also discuss some general properties of deduction
systems related to MLOMs.

In the second part of the paper (sections 7-9) we apply the tools de-
veloped in the �rst part and give two alternative complete axiomatizations
of multimodal logic with union and intersection of modalities. The related
deduction systems have the advantageous property that all rules of infer-
ence involved can be applied to any MLOM . In other words, we do not
need inference rules speci�cally designed to deal with MLOMs with only
union and intersection operations. Therefore the deduction systems can be
dynamically extended to deal with more complex MLOMs without sacri�c-
ing completeness with respect to the fragment of formulae containing union
and intersection operations only. In addition to this, we believe that both
axiomatizations are simple and arise in a natural way from more elementary
considerations.

A number of articles have been written on completeness issues of di�erent
extensions and fragments of PDL. See [3, 1, 4, 2, 5] for example. Various
interesting di�erent proof techniques have been developed, and in some cases
a particular variation has been given multiple proofs of completeness: Com-
pare [3] and [1] for example.

A major advantage of the completeness proofs presented in this paper
is that they are relatively straightforward and short: Some of the material
presented in the paper deals with elementary background issues related to
MLOMs and deduction systems in modal logic in general and can therefore
be omitted by a reader familiar with the basics of the proof theory of modal
logics. The material has been presented here in order to make the paper
easy to read and accessible to the non-specialist.

Articles [4] and [5] deal with more general axiomatizations than those
given in this paper. Also, in the light of Theorem 10.1 below, it is clear
that a large number of MLOMs can directly be given a complete axiomati-
zation. We believe, however, that the general deduction tools developed in
this article are interesting in their own right and may prove useful for the
construction of yet more general axiomatizations of MLOMs. In addition
to this we believe that the internal simplicity of our axiomatizations of the
case with union and intersection could perhaps turn out to be advantageous
particularly in mathematically oriented further work.

2 Preliminary Considerations

Before introducing the syntax and semantics of MLOMs, we must consider
a few simple notions that occupy a central role in most considerations that
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follow. We begin by giving a formal de�nition of the concept of operation
suitable for the purposes of this discourse.

De�nition 2.1. An operation is de�ned to be an object with some arity
n ∈ N. An n-ary operation acts on n binary relations and one additional
set (the domain of the relations), returning a unique binary relation. For
each operation there is a unique symbol that denotes the operation. Such a
symbol is called an operator. If symbol Ω is an operator denoting some n-
ary operation, then Ω(W ;R1, ..., Rn) denotes the relation that the operation
returns after acting on relations R1, ..., Rn and set W .

An operation satis�es two further constraints: If Ω is an operator de-
noting some n-ary operation, then Ω(W ;R1, ..., Rn) must be de�ned for all
binary relations R1, ..., Rn and any set W such that R1, ..., Rn ⊆ W ×
W . Operations are also invariant under isomorphisms. In other words, if
F : W −→ W ′ is an isomorphism between structures 〈W,R1, ..., Rn〉 and
〈W ′, R′

1, ..., R
′
n〉, then F is also an isomorphism between 〈W,Ω(W ;R1, ...,

Rn)〉 and 〈W ′,Ω(W ′;R′
1, ..., R

′
n)〉.

Operations are clearly too large to be sets. Therefore we chose to de�ne
the concept of an operator. This will simplify a number of notational issues
discussed later on in the article.

We shall attempt to cast light on the intuition behind De�nition 2.1 by
the following example:

Example 2.2. Consider the binary operation of taking the union of two sets.
We let ∪̃ be the corresponding operator. We de�ne ∪̃(W ;R1, R2) = R1∪R2.

We observe that the outcome of the operation does not depend on set
W : We have ∪̃(W ;R1, R2) = ∪̃(W ′;R1, R2) for all sets W and W ′ such that
R1, R2 ⊆ W ×W and R1, R2 ⊆ W ′ ×W ′. We call such operations domain

independent. Another example of a domain independent operation is the
binary intersection. Also composition and relative di�erence of relations are
domain independent operations. Relation inversion is an example of a unary,
domain independent operation.

We also allow for 0-ary constant operations. The operation always return-
ing the empty relation ∅ is an example of such an operation. Note however,
that this particular operation could be assigned any arity.

The unary operation denoted by ∼ and de�ned such that ∼ (W ;R) =
(W ×W ) \ R is an example of a domain dependent operation. It denotes
the complementation operation (complementation with respect to universal
relation).

It is clear that when restricted to a �xed domain, an operation is nothing
but a function on binary relations. This leads to the following de�nition:

De�nition 2.3. Consider an n-ary operation Ω. We let Ω � W denote the
n-ary function f : (Pow(W ×W ))n −→ Pow(W ×W ) de�ned such that
f(R1, ..., Rn) = Ω(W,R1, ..., Rn) for all R1, ..., Rn ⊆W ×W .
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Having discussed the notion of an operator, we are ready to turn our
attention to operator algebras. In the context of this article, we only con-
sider algebras over power sets of Cartesian products of non-empty sets. The
following de�nitions capture most algebraic concepts that we shall refer to
later on in the paper. (Some readers may �nd our notational conventions
somewhat unorthodox.)

De�nition 2.4. An operator algebra (or simply algebra) is a pair 〈Pow(W×
W ),O〉, where Pow(W ×W ) is the power set of the Cartesian product of a
non-empty set W and O is a set of operators in the sense of De�nition 2.1.
For a �xed set O of operators, we let term O-algebra refer to the class of
operator algebras where the set of operators is O.

De�nition 2.5. Consider an operator algebra 〈Pow(W ×W ),O〉. Let V
be a set of variable symbols such that V ∩O = ∅. Let T be the set of terms
such that

• If v ∈ V , then v ∈ T .

• If Ω ∈ O is an n-ary operator and t1, ..., tn ∈ T , then Ω(t1, ..., tn) ∈ T .

Let T1, T2 ∈ T . Let A = {f | f : V −→ Pow(W × W )} be a set of
assignment functions associating the variable symbols v ∈ V with binary
relations R ⊆ W ×W . Interpret each operator Ω ∈ O in terms T1 and T2

as the corresponding function Ω � W . Then, if T1 = T2 for all assignments
f ∈ A, we call equation T1 = T2 an identity of 〈Pow(W ×W ),O〉-algebra.

De�nition 2.6. Consider algebras of type 〈Pow(W × W ),O〉 for a �xed
O. An equation is called a free identity of O-algebra if the equation is an
identity of every algebra of this class of algebras. If O is clear from the
context, we may simply refer to a free identity.

The following example should clarify the essence of the above de�nitions:

Example 2.7. Let W be a set such that |W | = 1. Consider algebra
〈Pow(W ×W ), {◦}〉 with the relation composition operator. Pow(W ×W )
now contains two relations, one of them the empty relation. We observe
that equation x ◦x = x is an identity of this algebra. However, the equation
is clearly not an identity of algebra 〈Pow(W ′ × W ′), {◦}〉, where |W ′| =
2. Therefore the equation is not a free identity of {◦}-algebra. Equation
x ◦ (y ◦ z) = (x ◦ y) ◦ z is an example of a free identity of {◦}-algebra.

3 Syntax and Semantics

We begin the section by giving a number of central de�nitions that �x the
syntactic properties of MLOMs. After this we turn to semantical issues.
We �nish the section by proving a few simple but rather essential results.
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De�nition 3.1. In the context of this discourse, a particular language is
de�ned by �xing the following sets of symbols:

• Set Π of proposition symbols.

• Set A of symbols denoting atomic relations. We shall call members of
A atoms.

• Set F of syntactic operators (alternatively, function symbols). These
symbols are syntactic counterparts of operators.

In order to de�ne what constitutes a set of formulae making up a par-
ticular language L(Π,A,F), we need the following auxiliary de�nition:

De�nition 3.2. A set Λ(A,F) of modal terms is de�ned in the following
way:

• All atoms a ∈ A are modal terms. In other words a ∈ A ⇒ a ∈
Λ(A,F).

• If τ1,...,τn are modal terms and ⊕ ∈ F is an n-ary syntactic opera-
tor, then ⊕(τ1, ..., τn) is a modal term. In other words, if τ1, ..., τn ∈
Λ(A,F) and ⊕ ∈ F , then ⊕(τ1, ..., τn) ∈ Λ(A,F) when ⊕ is n-ary.

When A and F are clear from the context or not �xed, we may simply
refer to Λ instead of Λ(A,F).

For technical purposes, it is useful to de�ne modal terms using pre�x
notation only. However, below we shall take the liberty to use in�x notation
when denoting modal terms with binary syntactic operators.

We are now ready to de�ne what is considered to be a formula in a
particular language.

De�nition 3.3. Let Π be a set of proposition symbols. Let A be a set of
atoms and F a set of syntactic operators. Language L(Π,A,F) is a set of
formulae de�ned in the following way:

• Symbol ⊥ is a formula.

• Proposition symbols p ∈ Π are formulae.

• If A is a formula then (¬A) is a formula.

• If A and B are formulae then (A ∧B) is a formula

• If A is a formula and α ∈ Λ then ([α]A) is a formula.

We shall adopt the informal standard practice of leaving out brackets
when writing formulae. We shall also make use of the standard abbreviations
given below:
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• A ∨B =def ¬(¬A ∧ ¬B)

• A→ B =def ¬A ∨B

• A↔ B =def (¬A ∨B) ∧ (¬B ∨A)

• 〈α〉A =def ¬[α]¬A

where A and B are formulae and α is a modal term. Note that when brackets
are informally left unwritten, the order of execution of the connectives is
¬,[α],〈α〉,∧,∨,→,↔.

We shall now move on to semantical issues. We begin by giving the
de�nition of a model. Essentially, our notion of a model is a close variant of
a more or less standard de�nition given for example in [8].

De�nition 3.4. Consider some language L(Π,A,F). A model is a quadru-
ple 〈W, I, R̃, P 〉.

• W 6= ∅ is the domain of the model.

• I is an interpretation mapping that matches the syntactic operators
in F with corresponding operators. If ⊕ ∈ F is an n-ary syntactic
operator, then I(⊕) is an n-ary operator in the sense of De�nition 2.1.

• R̃ : A → Pow(W ×W ) is a relation mapping de�ning a set of atomic
relations.

• P : Π → Pow(W ) is a valuation mapping determining for each propo-
sition symbol p the set of points w ∈W satisfying p.

Note that unlike in [8], the object dealing with the interpretation of
syntactic operators (I in the above de�nition) is a set of pairs of symbols

and therefore independent of the domain of the model associated with it.
This simpli�es a number of notational issues in a way that shall become clear
when we deal questions related to di�erent modes of validity of formulae (see
De�nition 3.9).

Before giving the general truth de�nitions, we need to de�ne an auxiliary
piece of notation that shall improve readability of the elaborations below.

De�nition 3.5. With each model 〈W, I, R̃, P 〉 we associate a relation in-

terpretation R〈W,I,R̃〉 mapping from Λ(A,F) to Pow(W ×W ). To keep the
notation simple, we shall mostly write R instead of R〈W,I,R̃〉. We de�ne

R(α), where α ∈ Λ, in the following way:

• If α = a ∈ A, then R(α) = R(a) = R̃(a).

• If α = ⊕(τ1, ..., τn), where τ1, ..., τn ∈ Λ and ⊕ ∈ F , then R(α) =
R(⊕(τ1, ..., τn)) = I(⊕)(W ;R(τ1), ..., R(τn)).
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Example 3.6. Consider interpretation mapping I = {〈−,∼〉, 〈+, ∪̃〉} and
atoms a, b ∈ A. Now R( a+ b ) = I(+)(W ;R(a), R(b)) = ∪̃(W ;R(a), R(b))
= R(a) ∪ R(b) = R̃(a) ∪ R(b) = R̃(a) ∪ I(−)(R(b)) = R̃(a)∪ ∼ R(b) =
R̃(a) ∪ ((W ×W ) \R(b)) = R̃(a) ∪ ((W ×W ) \ R̃(b)).

Notational issues involving relation interpretation R can become unnec-
essarily complicated. We shall therefore resort to an informal, simpli�ed
version of the notation. The only particular operations we shall consider in
detail are union and intersection, and therefore we do not need to include
the domain set W in the expressions involving R. The reason is that union
and intersection are domain independent operations. We shall also restrict
our discourse to binary unions and intersections. Therefore it is possible to
apply the more comfortable in�x notation instead of the cumbersome pre�x
notation. In addition, instead of using the more exotic symbols ∪̃ and ∩̃
introduced in Example 2.2, we informally let the operators denoting union
and intersection operations be ∪ and ∩ respectively.

Example 3.7. Let I = {〈+,∪〉, 〈·,∩〉}. Let a, b, c ∈ Λ. Now R(a+ (b · c)) =
R(a)I(+)R(b · c) = R(a)∪R(b · c) = R(a)∪ (R(b)I(·)R(c)) = R(a)∪ (R(b)∩
R(c)) = R̃(a) ∪ (R̃(b) ∩ R̃(c)).

We are now ready to give the general truth de�nitions for MLOMs.

De�nition 3.8. Fix a language L(Π,A,F) and a model M = 〈W, I, R̃, P 〉.
Assume w ∈ W and let α be a modal term, p a proposition symbol and A
and B formulae in L(Π,A,F). We de�ne relation |= in the following way:

• M,w 6|= ⊥

• M,w |= p i� w ∈ P (p).

• M,w |= ¬A i� M,w 6|= A

• M,w |= A ∧B i� (M,w |= A and M,w |= B)

• M,w |= [α]A i� ∀u ∈W (wR(α)u⇒M,u |= A)

We write 〈W, I, R̃, P 〉 |= A if 〈W, I, R̃, P 〉, w |= A for all w ∈ W . We write
〈W, I, R̃〉 |= A if 〈W, I, R̃, P 〉, w |= A for all P : Π −→ Pow(W ) and w ∈W .
Continuing this trend, we write I |= A if 〈W, I, R̃, P 〉, w |= A for all W ,
R̃ : A −→ Pow(W × W ), P : Π −→ Pow(W ) and w ∈ W . We call
〈W, I, R̃〉 a frame.

We shall next de�ne a concept that is central to the rest of the discourse.

De�nition 3.9. Let ϕ be a formula and S the set of syntactic operators in
ϕ. Let I be an interpretation interpreting each syntactic operator ⊕ ∈ S.
We say that ϕ is I-valid if it is the case that I |= ϕ.
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We �nish the section by proving three simple but interesting results. Es-
pecially the last two of these are elucidating in the sense that they explicitly
reveal a link between I-validity of certain types of formulae and the nature
of related relations.

Lemma 3.10. Let 〈+,∪〉 ∈ I. Now I |= [α + β]ϕ ↔ [α]ϕ ∧ [β]ϕ for all

formulae ϕ and all modal terms α, β ∈ Λ.

Proof. Choose an arbitrary model M = 〈W, I, R̃, P 〉 such that 〈+,∪〉 ∈ I.
Pick an arbitrary w ∈ W and assume M,w |= [α + β]ϕ. Therefore ∀u ∈
W (wR(α + β)u ⇒ M,u |= ϕ). Since R(α) ⊆ R(α) ∪ R(β) = R(α + β), we
conclude that ∀u ∈ W (wR(α)u ⇒ M,u |= ϕ). Therefore M,w |= [α]ϕ. We
prove M,w |= [β]ϕ similarly. Thus we conclude M,w |= [α]ϕ ∧ [β]ϕ.

For the converse, assume that M,w |= [α]ϕ ∧ [β]ϕ. Hence M,w |= [α]ϕ
and M,w |= [β]ϕ. Therefore ∀u ∈ W (wR(α)u ⇒ M,u |= ϕ) and ∀u ∈
W (wR(β)u⇒M,u |= ϕ). Thus ∀u ∈W (w(R(α)∪R(β))u⇒M,u |= ϕ). In
other words ∀u ∈W (wR(α+β)u⇒M,u |= ϕ), whenceM,w |= [α+β]ϕ.

Lemma 3.11. Let I be an arbitrary interpretation, α and β arbitrary modal

terms and p an arbitrary proposition symbol. Now I |= [α]p → [β]p i� for

all frames 〈W, I, R̃〉 it is the case that R(β) ⊆ R(α).

Proof. Assume I |= [α]p→ [β]p. For contradiction, assume that there exists
some frame 〈W ′, I, R̃′〉 with u, v ∈ W ′ such that 〈u, v〉 ∈ R′(β) and 〈u, v〉 6∈
R′(α). We can now choose P ′ such that P ′(p) = W ′ \ {v}. Therefore
〈W ′, I, R̃′, P ′〉, u |= [α]p and 〈W ′, I, R̃′, P ′〉, u 6|= [β]p, which contradicts the
assumption that I |= [α]p→ [β]p.

Conversely, assume that for all frames 〈W, I, R̃〉 it is the case that R(β) ⊆
R(α). Choose an arbitrary model 〈W, I, R̃, P 〉, let w ∈ W and assume that
〈W, I, R̃, P 〉, w |= [α]p. It is therefore the case that ∀u ∈ W (wR(α)u ⇒
〈W, I, R̃, P 〉, u |= p). Since R(β) ⊆ R(α), we conclude ∀u ∈ W (wR(β)u ⇒
〈W, I, R̃, P 〉, u |= p). Therefore 〈W, I, R̃, P 〉, w |= [β]p. Hence we have shown
that 〈W, I, R̃, P 〉, w |= [α]p → [β]p. Since model 〈W, I, R̃, P 〉 and point
w ∈W were chosen arbitrarily, we conclude that I |= [α]p→ [β]p.

Corollary 3.12. Let I be an arbitrary interpretation, α and β arbitrary

modal terms and p an arbitrary proposition symbol. Now I |= [α]p↔ [β]p i�
for all frames 〈W, I, R̃〉 it is the case that R(α) = R(β).

Proof. The assertion of the corollary follows directly from Lemma 3.11.
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4 Standard Deduction Systems

In this section we discuss some technical issues that shall be needed later
on in the discourse. Some of the presented material is inherited from the
elementary theory of standard deduction systems of (uni)modal logic, cf.
[7, 9, 17]. We begin by making a few crucial de�nitions.

De�nition 4.1. An axiom schema is an object that is constructed in a
similar way as formulae are, but with the di�erence that modal term variables
replace atoms and formula variables replace propositions. A formula is an
instance of an axiom schema if it is obtained from the schema by substituting
modal terms for modal term variables and formulae for formula variables.
Every instance of an axiom schema is an axiom.

Example 4.2. Let A = {a, b} and Π = {p, q}. Let ⊕ ∈ F be a binary
syntactic operator. Assume [α]ϕ ↔ [β]ψ is an axiom schema. Then for
example formula [a⊕ b](p ∧ q) ↔ [a]¬q is an axiom.

We shall next de�ne the notion of deduction system.

De�nition 4.3. A deduction system Σ is a pair 〈A,R〉 where A is a set of
axioms and R a set of rules of inference. We shall informally say that Σ
includes or contains a particular axiom or rule. We shall also say that Σ
includes or contains a particular axiom schema, when each instance of the
schema is in A.

Note that in the literature, symbol Σ is often used for denoting a set
of formulae deducible in some deduction system. Such sets of formulae are
often called systems. In this article, however, we use symbol Σ to denote
deduction systems in the sense of De�nition 4.3.

We shall continue by considering a deduction system Σ0 containing the
following axiom schemata:

• A1: ϕ→ (ψ → ϕ)

• A2: (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))

• A3: (¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ)

• A4: ⊥ ↔ (ϕ ∧ ¬ϕ)

• KG: [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

and the following rules of inference:

• MP : If ` A→ B and ` A then ` B.

• RNG: For all α ∈ Λ, if ` A then ` [α]A.
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The �rst three axiom schemata ensure together with Modus Ponens

(MP ) that any classical tautology is a theorem of the system. We shall
not prove this as it is not essential from the point of view of the issues dis-
cussed in this paper. In fact, schemata A1, A2, A3 and rule MP could be
replaced by any �nite number of axiom schemata and inference rules that
constitute a complete axiomatization of propositional logic. Therefore, in
the deductions that follow, we shall not refer to rule MP ; we let PL denote
the assertion that a formula follows directly from a subset of the preceding
formulae due to the fact that our deduction system is complete with respect
to classical tautologies.

Axiom schema KG is simply a generalization of the well known axiom
schema K of unimodal logic. Note that not only formula-variable ϕ of KG,
but also variable α can be �xed freely (within the constraints of the language
under discourse) and the resulting formula is then an axiom. Similarly,
we also generalize rule RN (Rule of Necessitation) of unimodal logic by
including rule RNG in the deduction system. The rule applies to all modal
terms α ∈ Λ.

We note that the axioms of Σ0 are I-valid for any I. We also note that
the rules of inference of Σ0 preserve I-validity of formulae for any I. This is
an important observation, since in this discourse we are interested namely
in deduction systems that are complete with respect to I-validity.

System Σ0 is a natural starting point for constructing deduction systems
for di�erent kinds of MLOMs. We shall move on to considering a number
of results that apply to deduction systems with at least the deductive power
of Σ0. We call such deduction systems I-elementary :

De�nition 4.4. A deduction system Σ is I-elementary if it satis�es the
following constraints:

• Σ is complete with respect to classical tautologies.

• Rule RNG is included in Σ.

• Axiom schema KG is included in Σ.

• The axioms included in Σ are I-valid.

• All rules of inference in Σ preserve I-validity of formulae.

In the remaining part of the current section, we let ` A denote the
assertion that formula A is deducible in any I-elementary deduction system.

Lemma 4.5. Let A and B be arbitrary formulae. Let α ∈ Λ be an arbitrary

modal term. If ` A→ B, then ` [α]A→ [α]B.
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Proof. We assume ` A→ B and let the deduction below prove the lemma:

1. A→ B Assumption
2. [α](A→ B) 1, RNG

3. [α](A→ B) → ([α]A→ [α]B) KG

4. [α]A→ [α]B 2, 3, PL

Therefore ` [α]A→ [α]B.

Lemma 4.6. We have ` [α](A ∧B) ↔ ([α]A ∧ [α]B) for all formulae A, B
and all modal terms α ∈ Λ.

Proof. We prove the lemma by the following deduction:

1. B → (A→ (A ∧B)) PL
2. [α]B → [α](A→ (A ∧B)) 1, Lemma 4.5
3. [α](A→ (A ∧B)) → ([α]A→ [α](A ∧B)) KG

4. [α]B → ([α]A→ [α](A ∧B)) 2, 3, PL
5. ([α]A ∧ [α]B) → [α](A ∧B) 4, PL
6. (A ∧B) → A PL
7. [α](A ∧B) → [α]A 6, Lemma 4.5
8. (A ∧B) → B PL
9. [α](A ∧B) → [α]B 8, Lemma 4.5
10. [α](A ∧B) ↔ ([α]A ∧ [α]B) 5, 7, 9, PL

Therefore the claim of the lemma holds.

Lemma 4.7. For all n ∈ N+ it is the case that if ` A1∧A2∧A3∧...∧An → B,
then ` [α]A1∧ [α]A2∧ [α]A3∧ ...∧ [α]An → [α]B, where A1, A2, A3, ..., An, B
are arbitrary formulae and α ∈ Λ is an arbitrary modal term.

Proof. We prove the lemma by induction on the number of conjuncts in the
premiss formula. By Lemma 4.5 we know that for all A, B and α it is the
case that ` A→ B ⇒ ` [α]A→ [α]B. Therefore the basis for the induction
is clear.

Now �x an arbitrary α ∈ Λ and let the induction hypothesis be that
` A1∧A2∧A3∧ ...∧Ak → B ⇒ ` [α]A1∧ [α]A2∧ [α]A3∧ ...∧ [α]Ak → [α]B
for all formulae A1, A2, A3, ..., Ak, B. Assume then that ` C1∧C2∧C3∧ ...∧
Ck+1 → D, where C1, C2, C3, ..., Ck+1 and D are arbitrary formulae. Since
our deduction system is complete with respect to propositional logic, we can
arrange the (informally unwritten) bracketing of the antecedent C1∧C2∧C3∧
... ∧Ck+1 such that C1 and C2 are directly bound by the same conjunction,
i.e. we can make formula (C1 ∧ C2) part of the antecedent. Now we simply
call C ′ = C1 ∧C2. We therefore have ` C ′ ∧C3 ∧ ...∧Ck+1 → D, whence by
the induction hypothesis we conclude ` [α]C ′∧ [α]C3∧ ...∧ [α]Ck+1 → [α]D.
Therefore ` [α](C1 ∧ C2) ∧ [α]C3 ∧ ... ∧ [α]Ck+1 → [α]D. By Lemma 4.6 we
have ` [α](C1 ∧ C2) ↔ [α]C1 ∧ [α]C2, whence by propositional logic we get
` [α]C1 ∧ [α]C2 ∧ [α]C3 ∧ ... ∧ [α]Ck+1 → [α]D.
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Lemma 4.8. Let A and B be arbitrary formulae. Let α ∈ Λ be an arbitrary

modal term. If ` A↔ B, then ` [α]A↔ [α]B.

Proof. Assume ` A↔ B and consider the following deduction:

1. A↔ B Assumption
2. A→ B 1, PL
3. [α]A→ [α]B 2, Lemma 4.5
4. B → A 1, PL
5. [α]B → [α]A 4, Lemma 4.5
6. [α]A↔ [α]B 3, 5, PL

Therefore ` [α]A↔ [α]B.

For the next lemma we need the following de�nition:

De�nition 4.9. Let A, B and ϕ be formulae. By A(B/ϕ) we refer to a new
formula that can be obtained from A by replacing each subformula ϕ of A
by B.

Lemma 4.10. Let A, D, E and ϕ be arbitrary formulae. If ` D ↔ E, then
` A(D/ϕ) ↔ A(E/ϕ).

Proof. If A = ϕ, then ` A(D/ϕ) ↔ A(E/ϕ), since ` D ↔ E. Therefore we
may assume A 6= ϕ throughout the proof. We proceed by induction on the
structure of formula A. In order to set the basis for the induction, assume
that A = p for an arbitrary proposition symbol p. Since ` p ↔ p, this case
is clear.

The induction hypothesis is that ` B(D/ϕ) ↔ B(E/ϕ) and ` C(D/ϕ) ↔
C(E/ϕ). Assume then that A = ¬B. This case is clear, as we can conclude
` (¬B)(D/ϕ) ↔ (¬B)(E/ϕ) directly from ` B(D/ϕ) ↔ B(E/ϕ). Assume
then that A = B ∧ C. Since B ∧ C = A 6= ϕ, we see that

(B(D/ϕ) ↔ B(E/ϕ)) ∧ (C(D/ϕ) ↔ C(E/ϕ))
→ ((B ∧ C)(D/ϕ) ↔ (B ∧ C)(E/ϕ))

is a tautology. Therefore we again conclude ` (B ∧ C)(D/ϕ) ↔ (B ∧
C)(E/ϕ).

Lastly, we assume A = [α]B, where α ∈ Λ is an arbitrary modal term.
We �rst obtain ` [α](B(D/ϕ)) ↔ [α](B(E/ϕ)) from ` B(D/ϕ) ↔ B(E/ϕ)
by Lemma 4.8. Since [α]B = A 6= ϕ, formulae [α](B(D/ϕ)) ↔ [α](B(E/ϕ))
and ([α]B)(D/ϕ) ↔ ([α]B)(E/ϕ) are identical. Thus we conclude ` ([α]B)
(D/ϕ) ↔ ([α]B)(E/ϕ).

We add one more rule of inference to our toolbox. Among other things,
this rule enables us to replace �nite sets of axiom schemata by �nite sets of
formulae (see also Remark 7.9 below). We need the following de�nition in
order to formulate the rule:

12



De�nition 4.11. Let A be a formula, b an atom and β a modal term. By
A(β/b) we refer to a new formula that can be obtained from A by replacing
each occurrence of atom b in A by β.

We then de�ne a generalized version of uniform substitution:

De�nition 4.12. Let A and B be arbitrary formulae and p any proposition
symbol. The following de�nes inference rule USP (Uniform Substitution of

Propositions):
A

A(B/p)

In other words, from A infer A(B/p).
Let β be an arbitrary modal term and b an arbitrary atom. The following

de�nes inference rule USA (Uniform Substitution of Atoms):

A

A(β/b)

In other words, from A infer A(β/b).
Together rules USP and USA form an umbrella rule Generalized Uniform

Substitution (rule USG).

Before proving that rule USG preserves I-validity of formulae for any
I, we wish to note that a weaker version of the rule would su�ce for the
purposes of this discourse. Each application of rule USG below can be dealt
with by applying rule US′: From [α]p → [β]p infer [α]ϕ → [β]ϕ. The fact
that this rule preserves I-validity of formulae for any I follows directly from
Lemma 3.11.

Theorem 4.13. Rule USG preserves I-validity of formulae for any I.

Proof. We shall begin by dealing with rule USP . We assume I |= A. There-
fore also I |= A(q/p). This is because I is independent of any valuation
mapping. For the sake of contradiction we assume that there is a model
M = 〈W, I, R̃, P 〉 and a point w ∈W such thatM,w 6|= A(B/p). We let q be
a new proposition symbol not occurring in either A or B. We let V be the set
of points v ∈W for whom it is the case thatM,v |= B. We de�ne a new val-
uation P ′ = P∪{〈q, V 〉}. We haveM,w 6|= A(B/p), and below we shall show
by a straightforward induction that therefore 〈W, I, R̃, P ′〉, w 6|= A(q/p).
This is a contradiction since I |= A(q/p).

Now let us show by induction on the structure of A that for all w ∈W we
haveM,w |= A(B/p) ⇔ 〈W, I, R̃, P ′〉, w |= A(q/p). Now, if A = p, the claim
holds by the de�nition of valuation P ′. If A is some other proposition (or if
A = ⊥), then the claim holds trivially. Therefore the basis of the induction is
clear. Dealing with conjunction and negation is also trivial. Thus we assume
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that A = [α]C for some C and α in the language of model M . We have the
following chain of equivalences:

M,w |= ([α]C)(B/p)
⇔ M,w |= [α](C(B/p))
⇔ ∀u ∈W (wR(α)u⇒M,u |= C(B/p))

⇔ ∀u ∈W (wR(α)u⇒ 〈W, I, R̃, P ′〉, u |= C(q/p))

⇔ 〈W, I, R̃, P ′〉, w |= [α](C(q/p))

⇔ 〈W, I, R̃, P ′〉, w |= ([α]C)(q/p)

where the third equivalence follows from the induction hypothesis.
We then deal with rule USA. We assume that I |= A and also that there

exists a model M = 〈W, I, R̃, P 〉 and a point w ∈ W such that M,w 6|=
A(β/b). We let c be a new atom not occurring in A or β. Since I |= A and
since I is independent of any relation mapping, we have I |= A(c/b). We then
de�ne a new relation mapping (recall notation from De�nition 3.5): R̃′ = R̃∪
{〈c,R〈W,I,R̃〉(β)}. Since M,w 6|= A(β/b), we have 〈W, I, R̃′, P 〉, w 6|= A(β/b).

As clearly R〈W,I,R̃′〉(β) = R〈W,I,R̃′〉(c), we have 〈W, I, R̃′, P 〉, w 6|= A(c/b).
This is a contradiction since I |= A(c/b).

We �nish the section by discussing negation complete and consistent sets
of formulae:

De�nition 4.14. A set u of formulae is negation complete (with respect to
language L) if for all formulae A ∈ L it is the case that A 6∈ u⇒ ¬A ∈ u. A
set u of formulae is Σ-consistent if it is not the case that there exists some
non-empty, �nite subset of u′ ⊆ u of formulae such that `Σ ¬

∧
u′.

It is easy to see that for a negation complete and Σ-consistent set u the
following assertions hold:

• A 6∈ u i� ¬A ∈ u

• A,B ∈ u i� A ∧B ∈ u

• (A ∈ u or B ∈ u) i� A ∨B ∈ u

• A→ B ∈ u i� (A ∈ u⇒ B ∈ u)

• A↔ B ∈ u i� (A ∈ u⇔ B ∈ u)

The following two results are needed for the completeness proof presented
later on:

Lemma 4.15. Let Σ be an I-elementary deduction system for some I. Let
α ∈ Λ be an arbitrary modal term and A an arbitrary formula. Let S be a

Σ-consistent set of formulae such that ¬[α]A ∈ S. Then set {B | [α]B ∈
S} ∪ {¬A} is a Σ-consistent set of formulae.
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Proof. We assume for contradiction that there exists a non-empty, �nite
set U ⊆ {B | [α]B ∈ S} ∪ {¬A} such that `Σ ¬

∧
U . Since generally

`Σ ¬(C1∧C2∧ ...∧Cn) ⇒ `Σ ¬(C1∧C2∧ ...∧Cn∧ϕ), we may assume that∧
U = B1 ∧B2 ∧ ... ∧Bk ∧ ¬A, where k ≥ 1 and B1, B2, ..., Bk ∈ {B | [α]B

∈ S}. Since `Σ ¬(B1 ∧B2 ∧ ...∧Bk ∧¬A), then `Σ B1 ∧B2 ∧ ...∧Bk → A.
Hence `Σ [α]B1 ∧ [α]B2 ∧ ... ∧ [α]Bk → [α]A by Lemma 4.7. Therefore
`Σ ¬([α]B1 ∧ [α]B2 ∧ ... ∧ [α]Bk ∧ ¬[α]A). This implies that S is not Σ-
consistent, which is a contradiction.

Lemma 4.16 (Lindenbaum's Lemma). Let Σ be a deduction system. For

any Σ-consistent set u there exists a negation complete and Σ-consistent set
v ⊇ u.

We omit the proof of this result as it is rather general and does not
involve concepts directly linked to this discourse. The proof can be found in
multiple di�erent sources. Note that the lemma is usually proved only for
countable languages. However, by the well-ordering principle, such proofs
can easily be carried out in a more general setting by trans�nite induction.

5 Inference Rules for Modal Term Substitution

In this section we shall develop tools that enable the algebraic manipulation
of modal terms in formal deductions, i.e. deductions in equational logic.
We shall show that by including a simple inference rule in an I-elementary
deduction system, algebraic identity substitution (see De�nition 5.1 below) of
modal terms becomes possible. This leads naturally to partial completeness
results related to such interpretations I where I(F)-algebra is e�ectively
axiomatizable. Those results shall be the topic of the next section. We
begin by de�ning the notion of identity substitution:

De�nition 5.1. Let Tt = S be an identity of some operator algebra 〈Pow(W
×W ),O〉, and let t be a subterm of Tt. Let also equation t = r be an identity
of algebra 〈Pow(W×W ),O〉. Let Tr be a term obtained from Tt by replacing
exactly one instance of subterm t in Tt by r. We may then infer that equation
Tr = S is an identity of 〈Pow(W ×W ),O〉. Identity Tr = S is said to follow
from identities Tt = S and t = r by the principle of identity substitution.

We shall now discuss a rule of inference that enables identity substitution
of modal terms in deductions. We �rst de�ne the rule and then prove that
for any language, the rule preserves I-validity of formulae for all I. We then
move on to showing that indeed the rule does enable the application of the
principle of identity substitution of modal terms.

De�nition 5.2. Let p ∈ Π be any proposition symbol. Let ⊕ ∈ F be an
n-ary syntactic operator, and let α, β, τ1, τ2, ..., τn ∈ Λ. The following de�nes
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inference rule RS (Rule of Substitution):

[α]p↔ [β]p
[⊕(τ1, ..., τi, α, τi+1, ..., τn)]p↔ [⊕(τ1, ..., τi, β, τi+1, ..., τn)]p

In other words, in a deduction system containing rule RS it is the case
that ` [α]p ↔ [β]p ⇒ ` [⊕(τ1, ..., τi, α, τi+1, ..., τn)]p ↔ [⊕(τ1, ..., τi, β, τi+1,
..., τn)]p.

Theorem 5.3. Rule of inference RS preserves I-validity of formulae for any

interpretation I.

Proof. Let I be an arbitrary interpretation interpreting ⊕ ∈ F . Assume
I |= [α]p ↔ [β]p. Choose an arbitrary model M = 〈W, I, R̃, P 〉 and an
arbitrary w ∈ W . Assume M,w |= [⊕(τ1, ..., τi, α, τi+1, ..., τn)]p. Therefore
the following holds for all u ∈W :

〈w, u〉 ∈ I(⊕)(R(τ1), R(τ2), ..., R(τi), R(α), R(τi+1), ..., R(τn)) ⇒M,u |= p

Now, since I |= [α]p ↔ [β]p, we conclude that R(α) = R(β) by Corol-
lary 3.12. Hence

〈w, u〉 ∈ I(⊕)(R(τ1), ..., R(τi), R(β), R(τi+1), ..., R(τn)) ⇒M,u |= p

for all u ∈ W . Thus M,w |= [⊕(τ1, ..., τi, β, τi+1, ..., τn)]p, and therefore
we have shown that M,w |= [⊕(τ1, ..., τi, α, τi+1, ..., τn)]p → [⊕(τ1, ..., τi,
β, τi+1, ..., τn)]p. We show M,w |= [⊕(τ1, ..., τi, β, τi+1, ..., τn)]p → [⊕(τ1, ...,
τi, α, τi+1, ..., τn)]p similarly. Therefore M,w |= [⊕(τ1, ..., τi, α, τi+1, ..., τn)]p
↔ [⊕(τ1, ..., τi, β, τi+1, ..., τn)]p. Since model M and w ∈ W were chosen
arbitrarily, we conclude that I |= [⊕(τ1, ..., τi, α, τi+1, ..., τn)]p↔ [⊕(τ1, ..., τi,
β, τi+1, ..., τn)]p.

Rule RS does not directly enable the identity substitution of modal terms
in the general case. Note for example that the rule operates only on sub-
terms that are directly below the main connective of a modal term: As-
sume ` [α]p ↔ [β]p. We cannot directly infer that ` [⊕(γ,⊕(δ, α))]p ↔
[⊕(γ,⊕(δ, β))]p. We therefore de�ne a new rule of inference IS (Identity
Substitution) that simulates identity substitution everywhere below the main
connective directly. We then prove that this rule is automatically available
in any deduction system with rule RS.

De�nition 5.4. Let p ∈ Π be a proposition symbol and let α, β ∈ Λ. The
following de�nes inference rule IS (Identity Substitution):

[τ(α)]p↔ [γ]p, [α]p↔ [β]p
[τ(β)]p↔ [γ]p

where τ(α) ∈ Λ is a term that includes α ∈ Λ as its subterm, and τ(β) ∈ Λ
is a term that can be obtained from τ(α) by replacing exactly one instance
of term α in τ(α) by β.
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The following example shows how rule IS can be directly used for sim-
ulating an algebraic calculation within the constraints of a related formal
deduction system.

Example 5.5. Consider the free identity x ∩ (x ∪ (y ∪ (y ∩ z))) = x of
{∪,∩}-algebra. A standard calculation proceeds as follows:

1. x ∩ (x ∪ y) = x Absorption law
2. y = y ∪ (y ∩ z) Absorption law
3. x ∩ (x ∪ (y ∪ (y ∩ z))) = x Subst. 2 to 1

Rule IS enables us to simulate this calculation. We let I = {〈+,∪〉, 〈·,∩〉}
and consider a deduction system with axiom schemata [τ1 ·(τ1+τ2)]ϕ↔ [τ1]ϕ
and [τ1]ϕ ↔ [τ1 + (τ1 · τ2)]ϕ. These schemata correspond to the absorption
laws for union and intersection. Let p be any proposition symbol and let
α, β, γ ∈ Λ. We now have the following deduction:

1. [α · (α+ β)]p↔ [α]p Axiom
2. [β]p↔ [β + (β · γ)]p Axiom
3. [α · (α+ (β + (β · γ)))]p↔ [α]p 1, 2, IS

The deduction simulates the standard calculation directly.

We shall now show that rule IS is automatically available for deductions
in deduction systems including rule RS.

Lemma 5.6. Consider deduction systems that are complete with respect to

classical tautologies and contain rule RS. Rule IS is automatically available

for deductions in such systems.

Proof. Assume that we have a deduction system that includes inference rule
RS. We shall �rst show that ` [α]p ↔ [β]p implies ` [τ(α)]p ↔ [τ(β)]p.
Therefore we assume that ` [α]p ↔ [β]p. We proceed by induction on the
number m of syntactic operators above α in the parse tree of term τ(α). We
note that there may be multiple instances of term α in τ(α), but the induc-
tion is naturally on the number of syntactic operators above the particular
single instance of α in τ(α) that β replaces in τ(β). This instance is the only
instance of α we shall refer to in the remaining part of the proof.

In order to set the basis for the induction, assume that m = 0. Therefore
τ(α) = α and thus τ(β) = β. therefore trivially ` [τ(α)]p↔ [τ(β)]p.

The induction hypothesis is that ` [α]p ↔ [β]p ⇒ ` [τ(α)]p ↔ [τ(β)]p
for all τ(α) such that m = k. Now consider term τ(α) ∈ Λ such that
m = k + 1. Let τ(α) have an n-ary operation symbol ⊕ ∈ F as its
main connective. We therefore have τ(α) = ⊕(τ1, τ2, ..., δ(α), ..., τn), where
τ1, τ2, ..., τn ∈ Λ, and δ(α) ∈ Λ includes α as its subterm. We have τ(β) =
⊕(τ1, τ2, ..., δ(β), ..., τn). From ` [α]p ↔ [β]p we obtain ` [δ(α)]p ↔ [δ(β)]p
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by the induction hypothesis. From ` [δ(α)]p ↔ [δ(β)]p, in turn, we obtain
` [⊕(τ1, τ2, ..., δ(α), ..., τn)]p ↔ [⊕(τ1, τ2, ..., δ(β), ..., τn)]p by an application
of rule RS. This completes the induction.

We have so far established that ` [α]p ↔ [β]p implies ` [τ(α)]p ↔
[τ(β)]p. Now assume ` [τ(α)]p ↔ [γ]p and ` [α]p ↔ [β]p. By the above we
obtain ` [τ(α)]p ↔ [τ(β)]p. Therefore, since ` [τ(α)]p ↔ [γ]p, we conclude
` [τ(β)]p↔ [γ]p.

We immediately obtain the following lemma:

Lemma 5.7. Rule IS preserves I-validity of formulae for any interpretation

I.

Proof. This follows directly from Theorem 5.3 and Lemma 5.6.

One of the advantages of rule RS is that it preserves I-validity of formulae
for any I. When dealing with deduction systems related to particular opera-
tors, it is possible to introduce a wide variety of context dependent inference
rules: Assume I0 = {〈+,∪〉, 〈·,∩〉}. It is then quite straightforward to prove
(though we shall not bother ourselves with doing so here; see [13] for a proof)
that then I0 |= [α]ϕ ⇒ I0 |= ϕ for any formula ϕ and modal term α ∈ Λ.
Therefore we could introduce a corresponding rule of inference. However, let
0 ∈ F be the syntactic operator corresponding to the 0-ary operator Z de-
�ned such that Z(W ) = ∅ for allW . Now if I1 = {〈+,∪〉, 〈·,∩〉, 〈0, Z〉}, then
I1 |= [0]⊥ but I1 6|= ⊥. Therefore, whether this new rule preserves I-validity
of formulae depends on the particular I in question. No such constraint
applies to rule RS.

The advantage of deduction systems not containing such context depen-
dent inference rules lies in the generality of such systems. If a deduction sys-
tem contains a context dependent inference rule, it is not possible to expand
the set of operators under discourse without endangering the preservation
of I-validity of deducible formulae. Rule RS is not context dependent and
therefore when generalizing a deduction system by adding inference rules or
axioms or expanding the set of operators considered, it is possible to keep
RS in the system. Moreover, the possibility of simulating identity substitu-
tion in deductions will automatically apply to the new syntactic operators
as well as the old ones since RS is de�ned for all syntactic operators.

The following example should elucidate the advantage of deduction sys-
tems not containing context dependent inference rules:

Example 5.8. Consider the class of languages with F = {+, ·}. Assume we
have an I-elementary deduction system ΣE that is complete with respect to
interpretation I = {〈+,∪〉, 〈·,∩〉}. Assume we aim to construct a deduction
system for the class of languages with F = {+, ·,− , 0, 1}, and we want this
system to be sound with respect to interpretation I = {〈+,∪〉, 〈·,∩〉, 〈−,∼
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〉, 〈0, Z〉, 〈1, U〉}, where U(W ) = W ×W . This interpretation gives rise to a
Boolean algebra of modalities.

It is now directly possible to strengthen system ΣE with axioms and
inference rules without sacri�cing completeness with respect to the fragment
of formulae containing no other syntactic operators than those corresponding
to the union and intersection operations.

We formulated rule RS with proposition symbols instead of formula vari-
ables. Therefore care must be taken when considering anomalous languages
with an empty set of proposition symbols. Replacing the proposition sym-
bols in De�nition 5.2 by formula variables results in a rule that does not
preserve I-validity of formulae for all I. It is straightforward to construct
counterexamples that show this; consult [13] for details. One of the many
natural ways to deal with such pathological propositionless languages is to
allow propositions for deductions.

We shall shortly prove the main result of the section. Before that, we
make the following de�nition (cf. Corollary 3.12):

De�nition 5.9. Let F be a set of syntactic operators. Assume I is an inter-
pretation interpreting each syntactic operator in F . Let S and T be terms
of I(F)-algebra. Let σ and τ be terms obtained from S and T respectively
by replacing all operators by the corresponding syntactic operators. Assume
S = T is an identity (equation) of I(F)-algebra. We say that axiom schema
[σ]ϕ ↔ [τ ]ϕ corresponds to identity (equation) S = T , or that [σ]ϕ ↔ [τ ]ϕ
is the corresponding axiom schema of identity (equation) S = T .

The following theorem is the main result of this section:

Theorem 5.10. Let F be a set of syntactic operators and I an interpre-

tation interpreting the syntactic operators in F . Assume that I(F)-algebra
is e�ectively axiomatizable by set Φ of identities. Let Σ be an I-elementary

deduction system including rules USG and RS, and also including a corre-

sponding axiom schema for each identity in Φ. Let S and T be terms of

I(F)-algebra. Let σ and τ be the syntactic counterparts of terms S and T
respectively. Now S = T is a free identity of I(F)-algebra i� for all formulae

A it is the case that `Σ [σ]A↔ [τ ]A.

Proof. Assume �rst that equation S = T is a free identity of I(F)-algebra.
Then the equation must be obtainable by identity substitution from the ax-
ioms that axiomatize I(F)-algebra. In other words, there is a �nite algebraic
calculation starting from the axioms and ending up with the desired result
S = T . On the other hand, for each of the axioms of I(F)-algebra of type
S1 = S2, we have in the deduction system the corresponding axiom schema
of type [σ1]ϕ ↔ [σ2]ϕ, and inference rule IS allows us to simulate identity
substitution of modal terms. We can therefore simulate the calculation end-
ing up with a deduction of formula [σ]p↔ [τ ]p, where p ∈ Π. Applying rule
USG we therefore obtain a deduction of formula [σ]A↔ [τ ]A.
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Conversely, assume that `Σ [σ]A ↔ [τ ]A for all formulae A. Thus `Σ

[σ]p↔ [τ ]p. Therefore I |= [σ]p↔ [τ ]p. Now assume equation S = T is not
a free identity of I(F)-algebra. Therefore we can construct a frame 〈W, I, R̃〉
such that R(σ) 6= R(τ). Thus I 6|= [σ]p ↔ [τ ]p by Lemma 3.12. This is a
contradiction.

Corollary 5.11. Assume the situation that holds for Theorem 5.10. Let A
and ϕ be arbitrary formulae. Let A′ be any formula that can be obtained from

A by replacing exactly one instance of subformula [σ]ϕ of A by [τ ]ϕ. Now if

equation S = T is a free identity of I(F)-algebra, then `Σ A⇔ `Σ A′.

Proof. If S = T is a free identity, we obtain `Σ [σ]ϕ↔ [τ ]ϕ by Theorem 5.10.
By Lemma 4.10 we obtain `Σ A([σ]ϕ/[σ]ϕ) ↔ A([τ ]ϕ/[σ]ϕ). In other words,
`Σ A ↔ A([τ ]ϕ/[σ]ϕ). We infer `Σ A′ ↔ A′([τ ]ϕ/[σ]ϕ) analogously. Since
formulae A([τ ]ϕ/[σ]ϕ) and A′([τ ]ϕ/[σ]ϕ) are identical, we conclude `Σ A↔
A′. Therefore `Σ A⇔ `Σ A′.

6 Partial Completeness Results

In this section we discuss partial completeness results related to e�ectively
axiomatizable algebras. For example {∪,∩}-algebra is �nitely axiomatizable
(as we shall see in the next section) and so is {∪,∩,∼, 0, 1}-algebra, where
0 and 1 denote the empty and universal relations respectively. We shall �rst
present and prove the results and then discuss their signi�cance.

Lemma 6.1. Let p be an arbitrary proposition symbol. Assume I(F)-algebra
is e�ectively axiomatizable by set Φ of identities and consider an I-elementary

deduction system Σ that includes a corresponding axiom schema for each

identity in Φ and also rules USG and RS. Now I |= [α]p ↔ [β]p i�

`Σ [α]p↔ [β]p.

Proof. First assume I |= [α]p ↔ [β]p. Let Tα and Tβ be terms of I(F)-
algebra that correspond exactly to the modal terms α and β respectively.
We shall show that Tα = Tβ is a free identity of I(F)-algebra. This allows
us to conclude that `Σ [α]p↔ [β]p by Theorem 5.10.

Let M be the set of atoms present in modal terms α and β, and let V
be the set of variables in terms Tα and Tβ . We let f : M → V be the
bijection that maps each atom of α and β to the corresponding variable of
equation Tα = Tβ . Assume for contradiction that there is a set W such
that Tα = Tβ is not an identity of algebra 〈Pow(W ×W ), I(F)〉. Therefore
we can assign members of Pow(W ×W ) to the variables in equation Tα =
Tβ such that the resulting equation is false for 〈Pow(W ×W ), I(F)〉. Let
g : V → Pow(W × W ) be the function describing the assignment. We
can now de�ne a frame 〈W, I, R̃〉 such that for each atom a ∈ M we let
R(a) = g(f(a)). Therefore it is now the case that R(α) 6= R(β). However,
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since I |= [α]p ↔ [β]p, we conclude that R(α) = R(β) by Corollary 3.12.
Thus we have a contradiction, whence we infer that equation Tα = Tβ is a
free identity of I(F)-algebra.

We then assume that `Σ [α]p ↔ [β]p. Since all axioms of deduction
system Σ are I-valid and each inference rule conserves I−validity of formulae,
we conclude I |= [α]p↔ [β]p.

Corollary 6.2. Assume the situation that holds for Lemma 6.1. Now `Σ

[α]p↔ [β]p i� for all frames 〈W, I, R̃〉 we have R(α) = R(β).

Proof. This follows directly from Corollary 3.12 and Lemma 6.1.

Lemma 6.3. Let p be an arbitrary proposition symbol and let + ∈ F and

〈+,∪〉 ∈ I. Assume I(F)-algebra is e�ectively axiomatizable by set Φ of

identities and consider an I-elementary deduction system Σ that includes a

corresponding axiom schema for each identity in Φ and rules USG and RS.
Also let axiom schema [σ+τ ]ϕ↔ [σ]ϕ∧ [τ ]ϕ be included in the system. Now

I |= [α]p→ [β]p i� `Σ [α]p→ [β]p.

Proof. We begin by showing that R(β) ⊆ R(α) for all frames 〈W, I, R̃〉 i�
`Σ [α + β]p ↔ [α]p. Therefore we assume that R(β) ⊆ R(α) for all frames
〈W, I, R̃〉. Hence it is also the case that R(α) ∪ R(β) = R(α) for all frames
〈W, I, R̃〉. Hence R(α + β) = R(α) for all frames 〈W, I, R̃〉, whence `Σ

[α+ β]p↔ [α]p by Corollary 6.2.
Conversely, assume `Σ [α + β]p↔ [α]p and consider an arbitrary frame

〈W, I, R̃〉. Now R(α + β) = R(α) by Corollary 6.2. Hence R(α) ∪ R(β) =
R(α), whence R(β) ⊆ R(α).

We have established that R(β) ⊆ R(α) for all frames 〈W, I, R̃〉 i� `Σ

[α + β]p ↔ [α]p. By Lemma 3.11 we conclude that I |= [α]p → [β]p i�
`Σ [α+ β]p↔ [α]p.

We then show that `Σ ([α + β]p ↔ [α]p) ↔ ([α]p → [β]p). This can be
established via a simple deduction:

1. (([α]p ∧ [β]p) ↔ [α]p) ↔ ([α]p→ [β]p) PL
2. [α+ β]p↔ [α]p ∧ [β]p Axiom
3. ([α+ β]p↔ [α]p) ↔ ([α]p→ [β]p) 1, 2, PL

Therefore we conclude that I |= [α]p→ [β]p i� `Σ [α]p→ [β]p.

Corollary 6.4. Assume the same situation that holds for Lemma 6.3. Now

`Σ [α]p→ [β]p i� for all frames 〈W, I, R̃〉 we have R(β) ⊆ R(α).

Proof. This follows directly from Lemmas 3.11 and 6.3.

Much of the signi�cance of the results presented in this section is en-
coded in Corollary 6.2: If I(F)-algebra is e�ectively axiomatizable, then we
automatically know how to construct a deduction system that captures free
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identities of I(F)-algebra by corresponding deducible formulae. Moreover,
Corollary 6.4 establishes that if + ∈ F and 〈+,∪〉 ∈ I, then we can also
capture all free inequalities (subset-inequalities that hold for each member
of the class of I(F)-algebras). Deduction systems capturing all free identi-
ties and inequalities can in a sense be considered complete from the point of
view of the related algebra of modal terms.

The partial completeness results can be directly applied to MLOMs
with union and intersection operations. As we shall see in the next section,
{∪,∩}-algebra is �nitely axiomatizable by the distributive lattice axioms.
One of the two complete axiomatizations presented below relies on the (�-
nite) axiomatizability of {∪,∩}-algebra and the above partial completeness
results.

The partial completeness results can be useful in the construction of
(complete) axiomatizations of various di�erent MLOMs. The results also
apply for example to languages with a Boolean algebra of modalities. We
shall discuss this point further at the end of the next section.

7 An Axiomatization Based on the Distributive Lat-

tice Axioms

In this section we �rst show that the free identities of {∪,∩}-algebra can be
generated from the distributive lattice axioms. This follows directly from
Stone's Representation Theorem for Distributive Lattices. We then present
the �rst one of our two complete axiomatizations of multimodal logic with
union and intersection. The alternative axiomatization will be the topic
of the next section. We begin this section by giving a number of essential
de�nitions.

De�nition 7.1. A distributive lattice is a structure 〈D,∨,∧〉 with a non-
empty domain D, where the supremum operation ∨ and the in�mum opera-

tion ∧ satisfy the following laws:

Assoc. x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z
Commut. x ∨ y = y ∨ x x ∧ y = y ∧ x
Absorpt. x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x
Distrib. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

De�nition 7.2. Let 〈s,∨,∧〉 be a structure, where s is a set closed under
�nite unions and intersections. Let ∨ and ∧ be functions such that ∀x, y, z ∈
s(x ∨ y = z ⇔ x ∪ y = z) and ∀x, y, z ∈ s(x ∧ y = z ⇔ x ∩ y = z).
Structure 〈s,∨,∧〉 is a lattice of sets. If s is a set closed under �nite unions
and intersections, we write L(s) = 〈s,∨,∧〉. Note that a lattice of sets is a
distributive a lattice, as union and intersection satisfy the axioms listed in
De�nition 7.1.
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De�nition 7.3. Let S be an algebraic structure. We let I(S) denote the
class of algebraic identities (cf. De�nition 2.5) of the structure.

De�nition 7.4. We say that a particular identity S = T is generable from
set Φ of identities if there exists a �nite algebraic calculation (i.e. a deduction
in equational logic) that ends with identity S = T and uses only identities
of Φ.

We shall now establish that {∪,∩}-algebra is �nitely axiomatizable. The
following theorems lead to this realization:

Theorem 7.5 (Stone's Representation Theorem for Distributive Lattices).
A lattice is a distributive lattice i� it is isomorphic to some lattice of sets.

Theorem 7.6. Let E be a lattice equation. There exists a lattice (a free

distributive lattice for a set of generators) where E holds i� E is generable

from the distributive lattice axioms.

We omit the proofs of these theorems as they involve concepts not es-
sential to the exposition of the results of this paper. For a proofs, see for
example [6].

We are now ready to prove the following corollary:

Corollary 7.7. The free identities of {∪,∩}-algebra are exactly the identities
generable from the distributive lattice axioms.

Proof. In order to improve readability of the proof, we let C(s) denote the
assertion that s is closed under �nite unions and intersections.

Consider class K of identities of operator algebra 〈s, {∪,∩}〉 and class
I(L(s)) of identities of L(s). Class I(L(s)) uses symbols ∨ and ∧ instead
of symbols ∪ and ∩ used in K, but this distinction is irrelevant from the
point of view of the proof, and shall be ignored. Therefore we can write
K = I(L(s)). Thus, if we let S denote the class of all free identities of
{∪,∩}-algebra, we have S =

⋂
{ I(L(s)) | s is a set and C(s)}. Similarly,

we let H be the class of all free identities of distributive lattices. We have
H =

⋂
{ I(h) | h is a distributive lattice }. Stone's Representation Theorem

directly implies that

{ I(h) | h is a distributive lattice } = { I(L(s)) | s is a set and C(s)}

Therefore we obtain⋂
{ I(h) | h is a distributive lattice } =

⋂
{ I(L(s)) | s is a set and C(s)}

Thus S = H. In other words, the class of free identities of {∪,∩}-algebra is
equal to the class of free identities of distributive lattices. By Theorem 7.6 the
class of free identities of distributive lattices is exactly the class of identities
generable from the distributive lattice axioms. Therefore the class of free
identities of {∪,∩}-algebra is exactly the class of identities generable from
the distributive lattice axioms.
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We now know that the free identities of {∪,∩}-algebra can be generated
from the distributive lattice axioms. In other words, {∪,∩}-algebra is �nitely
axiomatizable. Therefore, keeping in mind the considerations of section 6,
the following de�nition arises naturally:

De�nition 7.8. Let F = {+, ·} and I = {〈+,∪〉, 〈·,∩〉}. We let Σ1 denote
an I-elementary deduction system containing rules USG and RS and the
following axiom schemata:

• Cu : [α+ β]ϕ↔ [β + α]ϕ

• Ci : [α · β]ϕ↔ [β · α]ϕ

• Asu : [α+ (β + γ)]ϕ↔ [(α+ β) + γ]ϕ

• Asi : [α · (β · γ)]ϕ↔ [(α · β) · γ]ϕ

• Abu : [α+ (α · β)]ϕ↔ [α]ϕ

• Abi : [α · (α+ β)]ϕ↔ [α]ϕ

• Du : [α+ (β · γ)]ϕ↔ [(α+ β) · (α+ γ)]ϕ

• Di : [α · (β + γ)]ϕ↔ [(α · β) + (α · γ)]ϕ

• Au : [α+ β]ϕ↔ [α]ϕ ∧ [β]ϕ.

With the exception of the last schema, the schemata listed above cor-
respond to the distributive lattice axioms. The list of schemata is actually
redundant since it can be shown that all members of the list above can be
generated from Ci, Asi, Abu, Abi, Di and Au by a number of formal metad-
eductions (i.e. deductions involving schemata rather than formulae). Hence
schemata Cu and Asu and Du are super�uous and can be done away with.
The interested minimalist is invited to consult [13].

Remark 7.9. The number of axiom schemata included in system Σ1 is �nite.
Since universal substitution (rule USG) belongs to Σ1, we could replace the
set of axiom schemata by a �nite set of axioms. We would have to ensure,
however, that our language under discourse had a su�cient number of atoms
and proposition symbols for the proper formulation of the axioms.

Stone's Representation Theorem for Boolean Algebras (see [6] or [10] for
example) leads to the �nite axiomatizability of {∪,∩,∼, 0, 1}-algebra by an
argument analogous to the proof of Corollary 7.7. We can therefore extend
Σ1 with the axiom schemata corresponding to the axioms of Boolean algebra
not already included in Σ1 (cf. Example 5.8). The partial completeness
results given in section 6 automatically hold for this extension of Σ1.

It is worth observing how one of the general conceptual symmetries be-
tween algebra and logic is here nicely exposed: If equations are conceived
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as formulae and identity substitution as the principal algebraic rule of infer-
ence, then a representation theorem related to a set of identities is in a very
strong sense analogous to a completeness theorem.

8 An alternative Axiomatization

In this section we de�ne a deduction system that can be seen as an alternative
to the system de�ned in section 7.

De�nition 8.1. Let F = {+, ·} and I = {〈+,∪〉, 〈·,∩〉}. We let Σ2 denote
an I-elementary deduction system containing rules USG and RS and the
following axiom schemata:

• Di : [α · (β + γ)]ϕ↔ [(α · β) + (α · γ)]ϕ

• Ii : [α · α]ϕ↔ [α]ϕ

• Asi : [α · (β · γ)]ϕ↔ [(α · β) · γ]ϕ

• Ci : [α · β]ϕ↔ [β · α]ϕ

• Ai : [α]ϕ→ [α · β]ϕ

• Au : [α+ β]ϕ↔ [α]ϕ ∧ [β]ϕ.

We shall prove two simple properties of this system. For this purpose,
we need the following auxiliary result:

Lemma 8.2. Every term T of {∪,∩}-algebra has an equivalent term in

disjunctive normal form. Such a term can be obtained from the original term

by the a �nite number of applications of the distributive law x ∩ (y ∪ z) =
(x ∩ y) ∪ (x ∩ z).

We omit the proof as the it is straightforward and widely known. A proof
can be found in numerous texts on lattice theory.

With the help of Lemma 8.2, we can now prove the following result:

Lemma 8.3. Let τ ∈ Λ be an arbitrary modal term. Now `Σ2 [τ ]p ↔ [δ]p,
where term δ ∈ Λ is equivalent to τ and in disjunctive normal form.

Proof. Let T be the term of {∪,∩}-algebra corresponding to syntactic term
τ . By Lemma 8.2 we know that there is a �nite calculation that uses the
distributive law x∩ (y∪z) = (x∩y)∪ (x∩z) and leads to an identity T = D,
where D is equivalent to T and in disjunctive normal form. Since schema
[α · (β + γ)]ϕ↔ [(α · β) + (α · γ)]ϕ is included in Σ2, we can use rule IS in
order to simulate this calculation. Therefore `Σ2 [τ ]p↔ [δ]p, where δ ∈ Λ is
the syntactic term corresponding to term D.
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Another important property of deduction system Σ2 is given by the fol-
lowing lemma:

Lemma 8.4. Let α and β be modal terms not containing instances of symbol

+. If β contains at least one instance of each atom symbol in α, then `Σ2

[α]p→ [β]p.

Proof. As in the proof of Lemma 8.3, we shall again rely on the fact that
rule RS allows us to simulate algebraic calculations.

Term β has at least one instance of each atom in α. However, there
might be atoms that have more repetitions in α than in β. We obtain a new
modal term β′ by replacing the leftmost occurrence of each such atom b in
β by a term of type b · b · ... · b, so that the number of atoms b in β′ is equal
to the number of occurrences of b in α. Using schema Ii and rule IS, we
infer `Σ2 [β]p↔ [β′]p. Now, by associativity and commutativity provided by
schemata Asi and Ci, we obtain `Σ2 [β′]p↔ [α·γ]p, where term γ consists of
the atoms occurring in β′ but not in α. We then conclude `Σ2 [β]p↔ [α ·γ]p
by propositional logic. By schema Ai we have `Σ2 [α]p→ [α ·γ]p. Therefore
we conclude `Σ2 [α]p→ [β]p by propositional logic.

It is possible to show deductively that Σ1 and Σ2 are equivalent (con-
sult [13]). However, in the next section we shall prove completeness of Σ1 and
Σ2 independently. We shall do this because on one hand we want to demon-
strate the applicability of the partial completeness results of section 6 to the
process of proving full completeness results, and on the other hand we also
want to establish completeness without appealing to Stone's Representation
Theorem (or any other result of sections 6 and 7).

9 Completeness

In this section we prove that deduction systems Σ1 and Σ2 (de�ned in
sections 7 and 8 respectively) are complete with respect to interpretation
I = {〈+,∪〉, 〈·,∩〉}. In other words, assuming this interpretation I we show
that I |= ϕ⇔ `Σi ϕ for each case i = 1 and i = 2. Throughout the section
we let Σ refer to both Σ1 and Σ2: Any statement made of Σ means that the
statement holds for both Σ1 and Σ2.

Completeness proofs in modal logic are mostly based on the construction
of a canonical model. For example, a trivial generalization of the canonical
model of system K of unimodal logic enables the proof of completeness for
the case with I = {〈+,∪〉} (see [13] for details). However, it can be shown
that for I = {〈+,∪〉, 〈·,∩〉} this trivial generalization does not work (a proof
due to Ari Virtanen can be found in [13]). Below we shall de�ne a canonical
model MΣ that enables the proof of completeness for I = {〈+,∪〉, 〈·,∩〉}.

We begin by making a number of de�nitions whose purpose is to improve
readability of the elaborations that follow.
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De�nition 9.1. Let N be an ordered tuple. By N [n] we refer to the n:th
member of the tuple. Therefore for example 〈x, y〉[2] = y.

De�nition 9.2. Let γ ∈ Λ be a term that does not include instances of
symbol +. We call γ an atom cluster, or simply a cluster.

De�nition 9.3. We let MΣ denote the set of all negation complete and
Σ-consistent sets of formulae of the language under discourse.

De�nition 9.4. Let α, β ∈ Λ be modal terms. We write α ≤ β, when
equation α + β = β is a syntactic counterpart of a free identity of {∪,∩}-
algebra. In other words, we write α ≤ β if this inequality is a syntactic
counterpart of a free inequality of {∪,∩}-algebra.

The essence of the above de�nition should be clari�ed by the example
below:

Example 9.5. Consider a model with two relations R(a) = R(b) = {〈w1,
w2〉}. In this �xed model it happens to be the case that R(a) ⊆ R(a) ∩
R(b). However, equation a ⊆ a∩ b is not a free inequality of {∪,∩}-algebra.
Therefore a 6≤ a · b. On the other hand, for example a · b ≤ a, as a ∩ b ⊆ a
holds for any sets a, b.

We are ready to give the de�nition of canonical model MΣ:

De�nition 9.6. Canonical model MΣ is a quadruple 〈WΣ, IΣ, R̃Σ, PΣ〉. We
de�ne domain WΣ of the model in the following way:

WΣ = {〈Γ, γ〉 | Γ ∈MΣ and γ ∈ Λ is an atom cluster}

It is instructive to think of the members of domainWΣ as negation complete
and Σ-consistent sets named or tagged by atom clusters.

We de�ne interpretation mapping IΣ in the natural way:

IΣ = {〈+,∪〉, 〈·,∩〉}

Let ai ∈ A be an arbitrary atom and w, u ∈ WΣ arbitrary points of the
domain. We de�ne relation RΣ(ai) in the following way:

w RΣ(ai) u
⇔
{C | [δ]C ∈ w[1]} ⊆ u[1] and δ ≤ ai, where u[2] = δ

It is worth noticing that here δ ≤ ai means exactly that atom ai is one of
the atoms of atom cluster δ.

We de�ne map PΣ in the following way:

w ∈ PΣ(pi) ⇔ pi ∈ w[1]

This completes the de�nition of the canonical model MΣ.
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In order to prove completeness of the system under discourse, we �rst
need to establish two auxiliary results.

Lemma 9.7 (DNF-Truth Lemma). Let MΣ be the canonical model de�ned

above. Let w be an arbitrary member of the domain WΣ of MΣ. Let A be

an arbitrary formula whose subformulae of type [α]ϕ are such that α is in

disjunctive normal form. Then it is the case that A ∈ w[1] i� MΣ, w |= A.

Proof. The proof is by induction on the structure of formula A. In order to
establish the basis of the induction, we assume that A = p, where p is an
arbitrary proposition symbol. The claim

p ∈ w[1] i� MΣ, w |= p

follows trivially from the de�nition of valuation mapping PΣ given in De�-
nition 9.6. The induction hypothesis is that claims

ψ ∈ w[1] i� MΣ, w |= ψ

and

ψ′ ∈ w[1] i� MΣ, w |= ψ′

hold. Assume then that A = ¬ψ. We get

MΣ, w |= ¬ψ
⇔ MΣ, w 6|= ψ

⇔ ψ 6∈ w[1]
⇔ ¬ψ ∈ w[1]

where the second equivalence follows from the induction hypothesis, and
the third equivalence from the fact that w[1] is a negation complete and
Σ-consistent set of formulae.

Next assume A = ψ ∧ ψ′. We get

MΣ, w |= ψ ∧ ψ′

⇔ MΣ, w |= ψ and MΣ, w |= ψ′

⇔ ψ ∈ w[1] and ψ′ ∈ w[1]
⇔ ψ ∧ ψ′ ∈ w[1]

where again the second equivalence follows from the induction hypothesis
and the third equivalence from the fact that w[1] is a negation complete and
Σ-consistent set of formulae.

We then move on to the non-trivial case where A = [α]ψ. This case re-
quires a sub-induction on the structure of α. We know that α is in disjunctive
normal form. As the basis of the sub-induction, we consider the case where
A = [τ ]ψ such that τ is an arbitrary atom cluster. Naturally this case also
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covers the situation where τ is an individual atom. The principal require-
ment is that τ does not contain any instances of symbol +. We also note
that τ must be bracketed according to the binary nature of the (syntactic
counterpart) of the intersection operator. However, it shall become clear that
the details related to the bracketing bear absolutely no signi�cance to the
argument below. Therefore we may simply write that τ = ai1 ·ai2 ·ai3 ·...·ain .

Let us �rst assume that [τ ]ψ ∈ w[1]. We consider an arbitrary point
u ∈WΣ such that w RΣ(τ) u. We let u[2] = δ. Since τ = ai1 ·ai2 ·ai3 · ... ·ain

and w RΣ(τ) u, we conclude ∧
1≤k≤n

w RΣ(aik) u

Therefore by the de�nition of RΣ(aik) (see De�nition 9.6) we conclude∧
1≤k≤n

δ ≤ aik

Hence we infer that δ ≤ τ . We conclude `Σ2 [τ ]p → [δ]p directly by
Lemma 8.4. On the other hand, since δ ≤ τ then IΣ |= [τ ]p→ [δ]p, whence
we infer `Σ1 [τ ]p → [δ]p by Lemma 6.3. Therefore `Σ [τ ]p → [δ]p, whence
by rule USG we obtain `Σ [τ ]ψ → [δ]ψ. Thus [τ ]ψ → [δ]ψ ∈ w[1]. Since
[τ ]ψ ∈ w[1], we infer [δ]ψ ∈ w[1]. As w RΣ(ai1) u, we conclude from the def-
inition of relation RΣ(ai1) (see De�nition 9.6) that {C | [δ]C ∈ w[1]} ⊆ u[1].
Therefore, as [δ]ψ ∈ w[1], we conclude that ψ ∈ u[1]. By the induction
hypothesis of the main induction, we now obtain MΣ, u |= ψ. We have
therefore shown for an arbitrary u ∈ WΣ that w RΣ(τ) u ⇒ MΣ, u |= ψ.
Thus MΣ, w |= [τ ]ψ. This concludes the �rst half of the case A = [τ ]ψ.

Let us then assume that [τ ]ψ 6∈ w[1]. Since w[1] is a negation complete set
of formulae, we conclude ¬[τ ]ψ ∈ w[1]. By Lemma 4.15 and Lindenbaum's
lemma we know that there exists a negation complete and Σ-consistent set of
formulae ∆ such that {C | [τ ]C ∈ w[1]} ∪ {¬ψ} ⊆ ∆. Therefore there exists
a point v = 〈∆, τ〉 inWΣ. Now let ai be an arbitrary atom in term τ . Clearly
τ ≤ ai. Now, since we also know that {C | [τ ]C ∈ w[1]} ⊆ v[1], we conclude
w RΣ(ai) v from the de�nition of relation RΣ(ai) in De�nition 9.6. Since ai

was assumed to be an arbitrary atom in τ , we conclude w RΣ(τ) v. Since
¬ψ ∈ v[1], then ψ 6∈ v[1], whence by the induction hypothesis MΣ, v 6|= ψ.
Therefore, as w RΣ(τ) v and MΣ, v 6|= ψ, we obtain MΣ, w 6|= [τ ]ψ. This
concludes the latter half of case A = [τ ]ψ. Therefore the basis of the sub-
induction has now been established.

We then consider the induction step of the sub-induction. The hypothesis
of the sub-induction is that

[η]ψ ∈ w[1] i� MΣ, w |= [η]ψ
and

[ε]ψ ∈ w[1] i� MΣ, w |= [ε]ψ
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where η, ε ∈ Λ are in disjunctive normal form. The base clause covers all
the cases where A = [α]ψ such that α does not include symbol +. Therefore
we only need to discuss cases where A = [α]ψ and α includes at least one
instance of symbol +. Since α is in disjunctive normal form and contains
at least one instance of symbol +, it is clear that the main connective of α
must be +. Therefore we assume that A = [η + ε]ψ.

As [η+ε]ψ ↔ [η]ψ∧[ε]ψ is an axiom, we know that [η+ε]ψ ↔ [η]ψ∧[ε]ψ ∈
w[1]. Since IΣ(+) = ∪, by Lemma 3.10 we also know that MΣ |= [η+ ε]ψ ↔
[η]ψ ∧ [ε]ψ. Therefore we now have the following chain of equivalences:

[η + ε]ψ ∈ w[1]
⇔ [η]ψ ∧ [ε]ψ ∈ w[1]
⇔ [η]ψ ∈ w[1] and [ε]ψ ∈ w[1]
⇔ MΣ, w |= [η]ψ and MΣ, w |= [ε]ψ
⇔ MΣ, w |= [η]ψ ∧ [ε]ψ
⇔ MΣ, w |= [η + ε]ψ

The �rst equivalence is due to the fact that [η+ ε]ψ ↔ [η]ψ ∧ [ε]ψ ∈ w[1], as
already mentioned above. The second equivalence follows from w[1] being a
negation complete and Σ-consistent set of formulae. The third equivalence is
due to the induction hypothesis of the sub-induction. The fourth equivalence
is trivial. The �fth equivalence follows from the fact that MΣ |= [η + ε]ψ ↔
[η]ψ ∧ [ε]ψ, also mentioned above. We have now proved the lemma.

For the next result, we need the following de�nitions:

De�nition 9.8. Consider a modal term α ∈ Λ. With DNF (α) we refer
to a term that is a disjunctive normal form version of α. For the proof of
completeness of Σ2 it is also assumed that DNF (α) has been obtained from
α by applying the distributive law x · (y + z) = (x · y) + (x · z) (cf. proof of
Lemma 8.3).

De�nition 9.9. Consider a formula A of the language under discourse.
With DNF (A) we refer to a formula obtained from A by replacing each
subformula of type [α]ϕ by [DNF (α)]ϕ.

With the help of Lemma 9.7 it is now easy to prove a general truth
lemma:

Lemma 9.10 (Truth Lemma). Let MΣ be the canonical model de�ned above

and w an arbitrary member of the domain WΣ of MΣ. Now A ∈ w[1] i�
MΣ, w |= A for all formulae A.

Proof. We shall �rst show that `Σ A ↔ DNF (A). Consider arbitrary
formulae B and [γ]ϕ. By Theorem 5.10 we conclude that `Σ1 [γ]p ↔
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[DNF (γ)]p, where p is a proposition symbol. On the other hand, we in-
fer `Σ2 [γ]p ↔ [DNF (γ)]p by Lemma 8.3. Thus `Σ [γ]p ↔ [DNF (γ)]p,
whence `Σ [γ]ϕ ↔ [DNF (γ)]ϕ by rule USG. By Lemma 4.10 we obtain
`Σ B([γ]ϕ/[γ]ϕ) ↔ B([DNF (γ)]ϕ/[γ]ϕ). We have thus shown that for
all formulae B and [γ]ϕ it is the case that `Σ B ↔ B([DNF (γ)]ϕ/[γ]ϕ).
Therefore, for some n we obtain

`Σ A1 ↔ A2

`Σ A2 ↔ A3
...
`Σ An−1 ↔ An

where for all i ∈ {1, 2, ..., n − 1} there exists some formula ψ and some
τ ∈ Λ such that Ai+1 = Ai([DNF (τ)]ψ/[τ ]ψ), and where A1 = A and
An = DNF (A). Therefore we conclude `Σ A↔ DNF (A) by propositional
logic.

Let us then assume that A ∈ w[1]. Since A ↔ DNF (A) ∈ w[1], then
DNF (A) ∈ w[1]. Therefore by Lemma 9.7 we obtain MΣ, w |= DNF (A).
Since MΣ, w |= DNF (A), then also MΣ, w |= A. For the converse, assume
that MΣ, w |= A. Thus MΣ, w |= DNF (A) and hence DNF (A) ∈ w[1] by
Lemma 9.7. Now since A ↔ DNF (A) ∈ w[1], we conclude A ∈ w[1]. We
have therefore shown that A ∈ w[1] i� MΣ, w |= A.

We are now ready for the proof of completeness:

Theorem 9.11 (Completeness). Consider a language with F = {+, ·}. Let
I = {〈+,∪〉 , 〈·,∩〉}. Then for all formulae A it the case that I |= A i�

`Σ A.

Proof. Assume I |= A. Thus MΣ |= A, whence by Lemma 9.10 we con-
clude that A ∈ Γ for all Γ ∈ MΣ. Therefore, by Lindenbaum's Lemma
(Lemma 4.16), we conclude that {¬A} is not a Σ-consistent set of formulae.
Thus `Σ ¬¬A by De�nition 4.14. Therefore `Σ A by propositional logic.

The converse follows from the fact that the axioms included in deduction
system Σ are I-valid and all rules of inference of Σ preserve I-validity of
formulae.

We �nish the section by noting that interestingly it is not possible to
apply a trivially generalized version of the presented method of proof of
completeness to the case with I = {〈+,∪〉, 〈·,∩〉, 〈−,∼〉, 〈0, Z〉, 〈1, U〉} (cf.
Example 5.8). Indeed it is natural to presume that if all literals (atoms and
negated atoms) were treated alike, the proof should generalize to this case.
However, de�ning RΣ(ā) for negated atoms ā in the same way as for atoms
(see De�nition 9.6) leads to a contradictory situation: If v[2] = b ∈ A, then
the fact that either 〈u, v〉 ∈ RΣ(a) or 〈u, v〉 ∈ RΣ(ā) implies that either b ≤ a
or b ≤ ā, which is clearly not the case.
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10 Concluding Remarks

In this paper we have discussed multimodal logics with operations on modal-
ities from a general point of view. The emphasis has been on the theory of
formal deductions.

The purpose of the �rst part of the article (sections 2-6) was to develop
generally applicable methods that assist in the process of constructing (com-
plete) axiomatizations of MLOMs. We de�ned a rule of inference RS that
enables the algebraic manipulation of modal terms. The rule is applicable
to any particular MLOM (see section 5). We continued by proving partial
completeness results that apply to MLOMs with an e�ectively axiomatiz-
able algebra of modal terms (see section 6). In addition to this we considered
how deduction systems can be extended in order to deal with more general
algebras of modal terms (see section 5). The overall aim was to provide
a generally applicable framework for the process of axiomatizing di�erent
MLOMs. We note however that questions related to axiomatizability of
di�erent algebras of binary relations are not at all trivial (see [14] for a thor-
ough discussion of a number of algebras of binary relations), whence the
axiomatizations of di�erent MLOMs remain an interesting area of inquiry
(see for example [4] and [5] for more general complete axiomatizations than
those discussed in this article).

In the second part of the paper (from section 7 onwards) we applied the
results of the �rst part and gave two alternative axiomatizations of multi-
modal logic with union and intersection of modalities and also provided a
relatively straightforward proof of completeness for the axiomatizations.

We consider both of the two axiomatizations relatively simple. It is clear
that a su�ciently simple axiomatization as opposed to a more complicated
one may prove advantageous especially in mathematically oriented work.
Indeed, when questions of appearance do not matter, a large number of
MLOMs can be directly associated with a complete proof calculus; we obtain
the following theorem with ease:

Theorem 10.1. Consider an interpretation I such that all the related oper-

ations are �rst-order de�nable. Assume also that we have an e�ective pro-

cess that associates each syntactic operator in Dom(I) with a corresponding

�rst-order de�nition. Then we can directly construct a proof system that is

complete with respect to I-validity.

Proof. Let A be some formula containing no other syntactic operators than
those in Dom(I). Let {p1, ..., pm} and {a1, ..., an} be the sets of proposition
symbols and atoms occurring in A. Let StIx denote the standard translation

(see [7] for example) of formula A with the additional e�ect of interpreting
the syntactic operators of A in �rst-order logic: For example if I(·) = ∩,
then we have StIx([a · b]p) = ∀y(Ra(x, y) ∧ Rb(x, y) → P (y)). Here term
xR(a · b)y has been turned into its �rst-order form Ra(x, y) ∧ Rb(x, y). We
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have the following chain of equivalences:

I |= A

⇔ |=SO ∀Ra1 ...∀Ran∀P1...∀Pm∀x StIx(A)

⇔ |=FO ∀x StIx(A)

⇔ `FO ∀x StIx(A)

where |=SO and |=FO denote the second-order and �rst-order satisfaction
relations respectively, and `FO is the �rst-order syntactic turnstile. Note
that we are considering a �rst-order language with symbols Ra1 , ..., Ran and
P1, ..., Pm.

If A is I-valid, we can con�rm it by a simple procedure: We �rst obtain
∀x StIx(A). This can be done e�ectively, as by assumption the �rst-order
de�nitions of the syntactic operators in A are e�ectively obtainable. With
the help of a suitable complete �rst-order proof calculus, we can construct
an enumeration procedure for the set of theorems of FO(Ra1 , ..., Ran , P1,
..., Pm). We begin listing the theorems, comparing them to ∀x StIx(A). If
A is I-valid, then `FO ∀x StIx(A), and we will ultimately �nd our match.
Therefore any I-valid formula has a proof by this proof system.

While certainly various di�erent kinds of MLOMs can be applied to
real-life problems, the construction of axiomatizations of these logics is also
interesting in its own right. One natural question at this stage is whether the
trivial generalization (following Stones Representation Theorem for Boolean
Algebras) of system Σ1 is su�ciently strong to completely axiomatize the
case with a Boolean algebra of modalities. Finally, it would be interesting to
�nd a simple characterization of the class of all MLOMs that can be given
a complete axiomatization with respect to I-validity.
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