

Jyrki Nummenmaa, Zheying Zhang,
Timo Nummenmaa, Eleni Berki,
Jianmei Guo and Yinglin Wang

On the Generation of DisCo Specifications

from Functional Requirements

DEPARTMENT OF COMPUTER SCIENCES

UNIVERSITY OF TAMPERE

D‐2010‐13

TAMPERE 2010

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCES
SERIES OF PUBLICATIONS D – NET PUBLICATIONS
D‐2010‐13, OCTOBER 2010

Jyrki Nummenmaa, Zheying Zhang,
Timo Nummenmaa, Eleni Berki,
Jianmei Guo and Yinglin Wang

On the Generation of DisCo Specifications
from Functional Requirements

DEPARTMENT OF COMPUTER SCIENCES
FIN‐33014 UNIVERSITY OF TAMPERE

ISBN 978‐951‐44‐8284‐7
ISSN 1795‐4274

On the Generation of DisCo Specifications from

Functional Requirements
Jyrki Nummenmaa, Zheying Zhang, Timo

Nummenmaa, Eleni Berki
Department of Computer Sciences, University of
Tampere, Kanslerinrinne 1, FIN-33014, Finland

{jyrki, cszhzh, cselbe,
timo.nummenmaa}@cs.uta.fi

Jianmei Guo, Yinglin Wang

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, 800

Dong Chuan Road, Shanghai 200240, China

{guojianmei, ylwang}@sjtu.edu.cn

ABSTRACT

Requirements analysis is an important task for software

development success. It is, however, often hard for various

stakeholders to reach a common understanding of the behavior of

the required system. In order to provide a basis for understanding

the dynamic behavior of a system fulfilling the requirements, we

study the possibility to automate the process of creating an

executable system specification from functional requirements.

In this work, we assume that the functional requirements are

formatted using a meta-model based on the classical Fillmore’s

case frame, which describes important semantic aspects of the

documented system actions. We have constructed a method that

uses grammatical conversions to produce action-based executable

specifications from the requirements. This specification can be

used to observe the dynamic behavior of the system, which helps

to move iteration with stakeholder feedback earlier in the software

development process.

Categories and Subject Descriptors

D.3.3 [Software Engineering]: Requirements/specifications

General Terms

Design, Verification.

Keywords

Requirements analysis, functional requirements, metamodel,

executable specifications.

1. INTRODUCTION
Requirements analysis is a critical task for software development

success. Typically, some kind of a high-level model is manually

produced from users’ textual requirements. Even though diverse

techniques for requirements analysis and specification have been

developed, problems still remain in this process, mainly related

with the varying quality of the documented requirements and the

varying expertise level of the people performing this task.

Apart from requirements analysis’ tasks, it is hard to communicate

with various stakeholders the outcomes of the requirements

analysis phase, so that stakeholders reasonably understand the

behavior of the system to be built. The late understanding of the

system to be built by some stakeholders groups is a classical

problem in software and information systems development,

because it brings late demands and needs that need to be

considered as requirements-to-be-met by the software designers.

Executable specifications provide a basis for understanding the

dynamical behavior of the system to be built. With a suitable tool

one can simulate and explore the behavior of the system that has

been modeled. The DisCo system [1] provides tools for

simulating executable specifications using a graphical user

interface. The specifications in the DisCo system are based on the

idea of actions, where one or more participating entities/objects

participate to change the state of the system.

Our work presents an approach to generate a DisCo specification

from requirements that have been preprocessed and formatted

according to a meta-model, which in our case follows the classic

ideas of Fillmore [7]. Our implementation is based on the user of

the Meta-environment [31], utilizing high-level syntax definition

and transformation rules.

The idea of working from formalized requirements specifications

towards a formal representation of the desired target system is not

altogether new. Probably the work closest to our approach is that

of Cabral and Sampaio [5] where they generate a formal process

algebra specification of the target system from system

requirements, represented by using use case specification

templates.

The DisCo specifications [1] are free from the complications of

the concept of a process – no process design is needed in order to

make the specification and to observe its behavior. This makes

our method more lightweight and also more natural, as the

functional requirements specifications are not based on process

descriptions, either.

2. REQUIREMENTS AND THE FORMAL

REPRESENTATION
Well-defined and correct requirements have traditionally been

seen as a critical factor behind software project success [8, 12,

32]. Nevertheless, even if the requirements were specified

correctly and precisely, it seems difficult for heterogeneous

groups of stakeholders to achieve a common and correct

understanding of the textual requirements, as well as the overall

behavior of the system to be built. Textual requirements inherit

the ambiguity of natural language, which may lead to different

interpretations of the same expression. Contrary to this, a formal

specification removes the ambiguity through precisely defined

syntax and semantics, but it is difficult to enhance understanding

of non-technical people with such a specification. In this section,

we address the possibility of using formalisms for the

requirements. In order to support the discussion, we start with the

different types of requirements representations.

2.1 Requirements Specification
Requirements specification forms a basis for the follow-up

requirements analysis and validation. It allows different kinds of

representations, being more or less formal [28]. The formal

representation, e.g. mathematical expression, has precise syntax

and rich semantics and thus, provides a better basis for reasoning

and verification, but is hardly understood by non-technical users.

The semi-formal representations, such as ER diagrams, state

diagrams, etc. are based on graphical modeling of the system,

which provides a clear and more understandable view of the

system. In contrast to semi-formal and formal presentation, an

informal representation, like the requirements written in natural

language, can not be used for reasoning, but its expressive power

is high, and it is easy to understand. Informal presentation forms

the most common way of specifying requirements, but it often

inherits ambiguity from natural language, i.e. different

stakeholders may understand a requirement statement differently

[18,28]. This is likely to make customers dissatisfied with the

implementation produced by the developers. In order to lead

various stakeholders to a common understanding of the behavior

of the system, instead of a careful requirements analysis and

validation process, it is possible to create an executable software

system specification from requirements to stimulate and explore

the behavior of the required system.

The behavior of a system is commonly specified with functional

requirements (FRs). FRs describe systems services or functions,

and they are often expressed in terms of systems reactions to input

from the environment [18]. In the textual requirements

specification, due to the nature of natural language, there is no

deliberate separation of an action and its associated information

such as the subjects performing an action, the objects affected by

an action, the instruments involved in performing an action, etc. It

is tedious to parse the relevant information to automate the

derivation of an executable system specification from textual FRs.

The FRs shall be formulated in a way suitable for computer

processing, such as a set of verb-noun pairs with the attributes

connected to the verb and the noun [13]. A formal specification,

with clarified semantic concerns of a FR, provides a reasonable

ground to automate the generation of executable specification.

2.2 Case Grammar and its Application in

Requirements Analysis
Case grammar, as proposed by Fillmore [7] is a system of

linguistic analysis, focusing on the link between a verb and the

grammatical context it requires. According to the case grammar

theory, a sentence in its basic structure consists of a verb and one

or more noun phrases, each associated with the verb in a

particular case relationship, which explains various co-occurrence

restrictions [7]. The coherent structure of the set of cases is a case

frame, and each case represents a potential semantic slot

associated with the verb. Hence, given a verb, a case frame can be

defined, which consists of such semantic slots that the verb

evokes. For example, the verb “submit” is necessarily associated

with an objective slot (“what is submitted?”), and it may also be

associated with an agentive slot (“who submits?”).

Basically, there are seven cases constituting the essential case

frame [6,7]: Agentive, Instrumental, Dative, Objective, Factitive,

Locative, and Comitative.

- Agentive is the concern of the agent(s) whose activities will

bring about the state of affairs implied by the verb (activity).

Responses to the concern are typically actors or

combinations of actors found in the domain, including the

system(s)-to-be, e.g. {Machine, User alone, User

Supported}A choose schedule. Alternative responses to the

agentive concern are essentially alternative delegations of a

goal to actors (including the system-to-be).

- Instrumental is the concern that determines the instrument

that is involved in the performance of the generic activity

implied by the verb, e.g. Pay {by debit, by credit, by cash}Ins.

- Dative is the concern of the agent(s) who will be affected by

the generic activity implied by the verb. As above, responses

to the concern are typically actors or combinations of actors

found in the domain, including the system(s)-to-be, e.g. Send

a message to {the admin, the user}D, Notify {designated

nurse, nurses at nursing station} D.

- Objective is the concern of the object(s) that is affected by

the generic activity implied by the verb, e.g. Send {an e-mail

message, a fax message}O, Print {a full report, a summary}O.

- Factitive is the concern of the object(s) or being(s) that is/are

resulting from the activity or understood as part of the

meaning of the verb e.g. Format Text {bold, italic}F or Turn

light {on, off}F.

- Locative is the concern about the spatial location(s) where

the generic activity that is implied by the verb is supposed to

take place, e.g. Send a message {in the Car, on a Bus}L.

- Comitative is a case that denotes companionship. It carries

the meaning “with” or “accompanied by”, e.g., discuss the

plans {with an expert}C.

Considering the verb that describes the generic activity in a FR,

the requirement refinement can be driven by the semantic slots

associated with that verb and the corresponding elements [23].

That is to say, verbs expressing an action always express the

change of an object, initiated by an agent, from one state to

another, etc. Many researchers followed the way opened by

Fillmore, proposing different approaches to filling in the gap

between the informal requirements representation and the formal

model for software development. The research is mainly

conducted from two perspectives, (i) requirements specification

and (ii) transformation from textual requirements to formal design

models.

From the perspective of requirements specification, many

researchers elaborate on the various concerns in product line

engineering, and adapt the case grammar to construct variability

frame for goals and FRs in product line engineering ([11, 23, 26].

The case frame provides possible types of concerns which provide

a basis for understanding language semantics in a requirements

engineering context.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

From the perspective of model transformation, the research

mainly focuses on transforming the textual requirements to formal

use case specifications by using the case frame, which can be

further transformed to other formal models. For example, Rolland

and Achour [29] proposed an approach to progressively

transforming initial and partial natural language descriptions of

scenarios into well structured, integrated use case specifications.

Cabral and Sampaio [5] proposed a controlled natural language

use case specification templates based on the case frame. They

applied the templates to generate process algebraic formal models

from use cases automatically.

Due to the ambiguity of natural language and the different levels

of the formalism between the natural language and the formal

specification, there have been very few attempts to automate the

conversion from requirements to a formal specification language

[22]. In our study, we propose an action-based executable

specification generation from the FRs formulated by case

grammar. Unlike the above cited approaches, our approach

focuses on simulating the behavior of the software system in

question. We assume that the textual requirements have been

parsed and formatted on the basis of the predefined requirements

meta-model. The transformation occurs between the preprocessed

requirements and the executable specification. The specification

system DisCo, used in our work, can be further used to simulate

the executable specifications[1]. The simulation shows realization

of the dynamic behavior of the system, and enhances the clarity

and understandability of FRs

3. A METAMODEL OF FUNCTIONAL

REQUIREMENTS
We use Fillmore’s case frame as a basis for interpreting language

semantics in FR specification. The most essential aspects can be

captured in a meta-model, as shown in Figure 1. The rectangles

represent the objects that compose a FR. The links represent the

“property of” relationship between objects, i.e. an Action has

property of Agentive, Ojective, etc. and an Agentive has property

of State. The metamodel consists of ten objects, and each object

has a property, Name. These objects can be grouped into three

categories, i.e. the action, the case frame of the action, and the

state.

An action, simply specified by a verb-noun pair, presents a

primitive FR. Conducting an action results in the change of a

state. Each action is associated with a number of semantic

concerns, i.e. the case frame of the verb, which includes Agentive,

Objective, Dative, Factitive, Instrumental, Locative, temporal, and

Conditional. Some of the concerns are obligatory, such as

Agentive, while the others are optional. An obligatory concern has

at least one instance, associated with an Action instance.

Compared with Fillmore’s case frame, we removed Comitative,

but add Temporal and Conditional into the concerns. A temporal

concern refers to the duration or frequency of an action implied by

the verb [23]. A Conditional concern refers to alternative triggers

of the action or alternative conditions under which the action can

be fulfilled. It is an important object to explain the operational

dependency between actions.

Figure 1. A metamodel of functional requirements

A state is a snapshot of the world at an incident [13]. It contains

the description of the software system in question and its

environment. Each object of the case frame is associated with

states and their corresponding values. As shown in the

metamodel, the number and value of these states will vary,

depending on the action to be fulfilled. In each action,

Conditional always has a state whose value determines the

fulfillment of the action. A change from one state to another state

is led through an action of a system. The action is triggered by the

state at an incident.

The metamodel specifies every primitive FR into an action and its

associated semantic concerns. This is by no means a complete list

but rather a guideline for basic transformation between

requirements and the action-based formal specification. The

relationship between each object is simple and straightforward.

There are no complex traceability links and requirements

dependencies, which are hidden into the individual objects. The

statement of Conditional, together with the state value of other

objects, implies the dependency relationship between

requirements and controls the flow of actions. An example of the

FR formatted on the basis of the metamodel is illustrated in

Section 5.1.

4. FORMAL SPECIFICATION METHODS

IN SOFTWARE DEVELOPMENT

4.1 Formal Methods
Formal Methods (FM) is a name given to describe a particular and

often neglected family of many different software development

methods; all comprise mathematical specification techniques,

applied though in a limited fashion and utilized in selected

application domains. FM, being rigorous and abstract enough by

their mathematical nature, have been used to model complex

systems as mathematical objects. By building a rigorous model of

a complex system, it is mainly possible to (i) handle complexity

by abstraction and (ii) verify the system's properties with more

systematic principles and logic than empirical testing techniques.

Aims (i) and (ii) have been major software challenges in software

engineering theory and practice, with successful and unsuccessful

examples of FM applications to show the benefits and drawbacks

of rigorous descriptions. Using formality over unnecessarily

descriptive details that many conventional methods support with

time-consuming techniques is a step to improve system design and

delivery times. Abstraction and formality have also been

considered as promises to improve system understandability and

quality [10] but cannot guarantee absolute correctness. Formal

requirements specifications, though, can easily be checked by

various FM support tools such as specification editors, type

checkers, consistency checkers and proof checkers; these should

indeed reduce the likelihood of human error.

A formal specification of a system is a mathematical abstraction of

the real system. It could have a potential number of

implementations in various programming languages whose

syntax, semantics and grammar allow the formal logic of the real

system to be expressed. However, the mathematical disciplines

used to formally describe real and software systems requirements

do not necessarily provide a computational model [2]. In addition,

the metamodels used by most formal methods are often limited in

order to enhance provability. There is a notable tradeoff between

the need for rigor and the ability to model all behaviors and

changes, which leads to the likelihood of errors. Certainly the use

of particular FM that support dynamic systems modeling can give

increased confidence in the implementability and in the integrity

of the system and more confidence that the system will indeed

perform as expected but errors still exist due to the dynamics of

the human components.

FM vary a lot in formality and abstraction and they employ

similar but also very different techniques, semantics and logic to

formally model requirements. Moreover, not all formal notations

capture change and system dynamics naturally, unless they are

customized [30], or unless they are combined with other

conventional methods [3,4].

Formal logic is also scholastic and detailed and can even be time-

consuming and resource-consuming, unless very suitable tool sets

and proving strategies exist and have been proved to be time-

saving and cost-effective [9]. Even where full formal development

is employed, for instance when the specification is refined to

executable code, there might still be further metalogic and

metasemantics to be employed at another level of abstraction [16],

to question the self-efficacy of the specification and the use of the

particular programming constructs.

4.2 DisCo Specifications
DisCo is primarily intended for the specification of reactive

systems and its semantics have been defined with the Temporal

Logic of Actions [20]. Among previous work, a DisCo

specification has for instance been successfully created for a

mobile robot case study [25]. In the study, a specification was first

created that represents how the mobile robot, a small

microcontroller-based car, operates. The specification was later

implemented in the C language. In another case, it was used to

create a specification of an on-board ozone measuring instrument,

intended to be attached to an earth-orbiting spacecraft [25]. The

time needed to complete the specification was 1.5 man-months,

including the time it took to get to know the instrument. A version

of DisCo with added probabilistic features has also been used

used to research the usage of formal specifications in game design

[27].

The DisCo software package, originally developed at the Tampere

University of Technology, includes a compiler for compiling

specifications created in the DisCo language, a graphical

animation tool for animation and simulation of those

specifications, and a scenario tool for representing execution

traces as Message Sequence Charts [1].

The DisCo language [15] itself is a broad language and therefore

we will only concentrate here on five basic parts. These parts are

layers, classes, actions, relations and types. A thorough

explanation of the language is given by Järvinen [14].

In execution of a DisCo specification, the state of the system is

represented by objects that are instances of classes. The classes

are made up of variables that can be pointers to other objects

called references or other types such as integer, real, time,

boolean, record type, set and sequence. An object can also be in

several states which are in practise defined by enumerations. The

object is always at one of the states of each enumeration.

In addition to the types provided by the DisCo system, extending

types and introducing new types is possible. An example class

declaration in the DisCo languages is given in Figure 2.

class ExampleClass is

 exampleState: (active, passive);

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

 exampleState2: (alive, dead);

 exampleInteger: integer;

 exampleReal: real;

 exampleBoolean: boolean;

 exampleTime: time;

 exampleObject: reference ClassName;

 exampleSet : set integer;

 exampleSequence : sequence integer;

end;

Figure 2. A class that can be instantiated as an object

Relations are logical relations between objects. Only objects can

participate in relations and only binary relations are allowed. The

relation can however be a partial function, total function,

injection, surjection or bijection. Objects can be set to be in a

certain relation or removed from the relation at runtime.

Actions alter the state of the system being executed by altering the

values of the variables in objects and the contents of relations.

The actions can, however, only alter the values of variables in

participant objects which are specified for the action. Actions

contain a guard, basically in the form of an if statement. An action

is said to be enabled if the guard evaluates to True and not

enabled if the guard evaluates to False. The operations to be

performed when the action is run are specified. This part also

supports an if/else mechanism for better control of the operations.

The order of the operations separated with the || notation will not

have an effect on the execution of the action. An example action

is given in Figure 3.

action exampleAction(a: ClassA;

 b: ClassB; c: ClassC) is

when (a.state'active and related(a,b)

 and c.integerValue = 3) do

 if (b.booleanValue = false)

 b.booleanValue := true;

 else

 a.state->passive() ||

 c.integerValue = 3 ||

 b.booleanValue := true ||

 not related(a,b);

 endif;

end;

Figure 3. An example action

Finally, layers contain all things that make up a specification.

Layers may also import other layers making modular development

of the specification possible. One layer may import several layers

and layers that have already imported other layers.

The DisCo animator is a graphical tool for preparing the actual

simulations and then executing them. The part of the animator,

which determines how the execution progresses, is the execution

model. With specifications that can be executed, simulated or

animated, it is important to have an abstract execution model [19].

The first step in executing the specification, with this execution

model, is always choosing the action to execute next. This can be

automated or the action can be chosen by hand in the UI. When

the selection of the action is automated, the animator chooses one

of the enabled actions based on a weighted draw. It is also

possible to have the animator continuously execute new actions

automatically. Figure 4 shows a screenshot of the DisCo animator.

5. GENERATING DISCO

SPECIFICATIONS FROM METAMODEL

BASED REQUIREMENTS

5.1 An overview of the method
Sections 3 and 4, above, indicate that the metamodel based FRs

are essentially quite similar to the DisCo specification, and

thereby, it is a reasonable choice to generate a DisCo executable

specification to observe the behavior implied by the FRs. A single

functionality corresponds well with the idea of a DisCo action.

Both describe participants, a precondition, and the effect of the

execution of the function or the action. They are not concerned

with concepts like processes or such explicitly – the preconditions

and the changes of states guide the flow of the execution in both

cases.

The above observation forms the basis for the actual DisCo

specification generation. Let us discuss the details using an

example. Let us consider a requirement specification for

Automated Teller Machines. Due to lack of space, we can not

discuss the entire specification here, but just some parts of it.

Let us consider a functional requirement, which says that, if the

ATM receives a negative authorization response (one of “Bad

password”, “Bad bank code” or “Bad account”) from the bank

information system, it will display a message to the user and eject

the card.

The example requirement clearly contains a conditional (response

from the bank information system), participants/agents (the bank

information system and the atm, objectives (the card being

ejected) and factitives/changes in the state (change of atm display

status, change of atm card status).

Figure 4. A DisCo animator screenshot

Using the metamodel presented in Section 3, the requirement

could be structured as follows:

Agentive atm;

Agentive bank;

Objective card;

Conditional Bank response is “bad password”

or “bad bank code” or “bad account”;

Factitive Atm’s card status is changed to

ejected;

Factitive Atm’s display status is changed to

an error message;

For the DisCo specification generation, though, we assume that

some further preprocessing would be desired, to produce the

following::

Agentive atm a;

Agentive bank b;

Objective card c;

Conditional b.response = bad_passord or

 b.response = bad_bank_code or

 b.response = bad_bank_account;

Factitive atm.card_status := ejected;

Factitive atm.display_status :=

 card_not_authorized;

The generation of a corresponding DisCo action now becomes

reasonably straightforward. Each FR is used to generate a DisCo

action with the following rules:

1. The Agentives, Objectives, Datives, Locatives and

Instrumentals are used as objects in the action’s variable

declarations.

2. The Conditional forms the when condition of the action.

3. The Factitives are used to generate assignments of the DisCo

action.

In addition to the actions, it is also necessary to generate the

classes for the DisCo specification. The required information for

this is spread around in the FRs, and classes are formed as

follows:

1. The FRs are scanned to make up a list of classes.

2. Based on the variable definitions in each FR, for each class,

look for all attributes used in the variables of that class in the

factitive and conditional parts of the FRs. These attributes

make up the set of attributes for the class.

3. For each state-valued attribute, search for all states used in

the comparisons and assignments in the FRs, to include the

states in the declaration of that attribute.

The DisCo action generated from our example FR is given below

in Figure 5.

action ATM_return_invalid_card (a : atm;

 c : card) is

 when (a.state_card'new_card)

 and ((c.bool_expired = false) or

 (c.bool_readable = false))

 do a.state_display->not_a_valid_card() ||

 a.state_card->no_card();

 end;

 Figure 5. A generated DisCo action

The DisCo specification generation is fairly straightforward, and,

if the preparation of the FRs for the conversion has been

successful, an executable specification can be automatically

generated from there, and the specification can be read with the

DisCo animator tool to explore the dynamic behavior of the

system. The screenshot in Figure 4, above, is related to our ATM

example.

5.2 On the use of the Meta-environment in the

specification generation
The implementation used in this work is based on the use of the

Meta-Environment [30], which is a “grammar-ware” environment,

offering high-level tools for working with formal languages. The

environment offers advanced grammar-ware technologies, which

have benefits far beyond the needs of the present work.

This work employs the Syntax Definition Formalism (SDF) of the

meta-environment. The SDF combines the lexical and the syntax

definition into a single definition and it includes disambiguation

mechanisms such as rejects and priorities. The translation from

one language to another can be implemented using fairly

straightforward rewrite rules. When rewrite rules are added to the

SDF, the resulting technology is called ASF+SDF. The ASF+SDF

can be used in several ways, but probably the easiest is to use the

Meta-Environment, which offers integrated support for the

development and testing of ASF+SDF. The latest development of

the Meta-Environment is called the Rascal Meta-Environment,

but that part has not been utilized in the present work.

Even though the SDF formalism is succinct, the resulting design

is too long to be included here. The following code snippets,

separated by “…”, are examples of SDF definition of the

requirements specification and the DisCo specification language

definitions.

[A-Za-z][A-Z0-9a-z_]* -> ReqNameStr

…

ReqNameStr -> ReqClassName

ReqNameStr -> ReqName

ReqNameStr -> ReqVarName

…

"requirement" ReqName REQOPTIONS

 "endrequirement" -> REQUIREMENT

…

{REQOPTION";" }* -> REQOPTIONS

"agentive" ReqClassName ReqVarName

 -> REQOPTION

"factitive "ReqVarName"."ReqStateAttrName

 ":=" STATEEXP -> REQOPTION

"factitive" ReqVarName"."ReqBoolAttrName

 ":=" BOOLEXP -> REQOPTION

"factitive" ReqVarName"."ReqNumAttrName

 ":=" NUMEXP -> REQOPTION

"dative" ReqClassName ReqVarName ->REQOPTION

"location" ReqClassName ReqVarName

 ->REQOPTION

"conditional" BOOLEXP -> REQOPTION

Even though the above does not give a complete syntax definition,

it gives some taste of the definition style and the resulting

grammar. For the translation, also the DisCo language needs to be

described, re-using the definitions for names, conditionals, and

such as much as possible. The re-use can be facilitated by

including information from other SDF modules:

"action" ReqName

 "(" {DISCODECLARATION";" }* ")" "is"

 "when" BOOLEXP "do"

 {DISCOASSIGNMENT"||" }*

 "end " ReqName -> DISCOACTION

The above re-uses the requirement name syntax for DisCo action

names. Also the Boolean expressions follow the same formalisms,

and BOOLEXP is in fact defined along with the requirements

syntax. The Meta-environment generates automatically a parser,

which is helpful in grammar development.

The transformation from one language to another is implemented

with a set of rewrite rules. Even though the rules work on a high

level, space limitations prohibit extensive discussion of the

transformation from FRs to DisCo actions. The following rules

give exemplify the rules that are being used..

trp(requirement_specification

 DiscoLayerName Requirement*) =

 layer DiscoLayerName is

 tra(Requirement*)

tra(requirement DiscoActionName ReqOption*

 endrequirement; Requirement*) =

 action DiscoActionName (trd(ReqOption*))

 is when trc(ReqOption*)

 do trs(ReqOption*)

 end DiscoActionName;

 tra(Requirement*)

Above, the function trp is the top-level transformation function

and tra takes care of transformation of a single action, passing

the remaining list of actions recursively to itself. The functions

trd, trc, and trs take care of extracting the required

declarations, conditional, and assignment statements, respectively.

5.3 Implementation-related discussion
Even though the language used to describe the FRs is somewhat

limited, it serves as a good input for an executable specifications.

As we are working on a system-level description, there is no need

to know or identify internal subsystems of the systems that are

being specified.

In the present implementation the temporal aspects are not utilized

in the specification, nor is the FR aspect Temporal. The temporal

assignments and conditions in the the DisCo system are otherwise

treated similarly as normal attributes are treated, but there is a

global variable now that can be used to access the current time of

the simulation. However, the simulation time in the current

version of DisCo works basically on the logical level (counting

ticks) and the main emphasis is on the logical order of the events,

so to describe and use wall clock or calendar times, some

specification of simulation level conversion would be needed.

The lack of data types in the FRs could be overcome by either

completely implicit type system, where the Boolean expressions

and the assignments are used to calculate the types of the

attributes in classes. Even though this would be user-friendly if

successful, it is also more error prone, as missing type information

may prohibit the generation of a working specification. In the case

of missing type information, so we chose to use explicit type

information. Instead of using separate attribute declarations in the

FRs, the variable names are prefixed to indicate type (e.g.,

variable bool_working is taken to be of type Boolean).

Finally, the high-level tools of the Meta-Environment used here

allow for easy modification of the grammars and the

transformation, and the proposed model implementation can quite

flexibly be changed to adopt to a somewhat different input or to

utilize some new feature of the DisCo language.

6. IMPLICATIONS TO THE SOFTWARE

DEVELOPENT PROCESS
The software development processes tend to include iteration,

caused by testing and stakeholders’ feedback. The attempt is to

move this iteration as early in the process as possible.

If requirements are formalized and specifications are generated

from them, then it is possible to move stakeholder feedback and

some of the resulting iteration earlier in the software development

process – in fact it is possible to iterate the requirements

specification, executable specification generation, animation, and

stakeholder feedback cycle to take place before any attempt to

design or prototype the system is even started, as follows.

1. FRs are specified.

2. Executable specifications are generated from the FRs.

3. The executable specification is animated to observe the

behavior of the required system.

4. If there is a need to modify the FRs, move to Step 1.

Thus, starting to employ this kind of a methodology also implies

changes to the software development process.

It has been observed that formalizing the requirements tends to

increase their quality [5, 21, 22, 33]. We have only used our

approach in a laboratory setting this far, but the findings are

exactly the same. It is very easy to overlook details in the textual

representation of the FRs. Once FRs need to be converted into a

working executable specifications, details have to be filled in.

The use cases or user stories are often used to specify some

example behavior of the desired system. However, typically such

a system can produce many other behaviors also. The DisCo

executable specifications can be used to explore, not only a

specified use case or user story behavior, but also basically any

type of behavior that the system produced. The resulting

executable specification also works as an important description of

the behavior of the system to be implemented.

7. CONCLUSIONS
In this work, we present a natural method to generate executable

DisCo specifications from functional requirements. The DisCo

system [1] contains an interactive animation tool, in which the

user can guide the execution of the generated specification,

choosing amongst the actions that are enabled for execution,

given the system state. This provides an easy and straightforward

way to observe the dynamic behavior of the system that has been

specified. The executable specification generation does not need

or use any design information on processes etc., it works on the

level of the functional requirements.

The obvious complication of this method is that the requirements

need to be represented and formalized according to a meta-model.

For the method to be truly automated, it should work directly

from textual representation, rather than a meta-model based

representation.

However, if the transformation is utilized, notable benefits can be

achieved: The behavior of the system can be observed from the

specification and at the same time the quality of the functional

requirements is improved, when they are tested with the

specification.

8. REFERENCES
[1] Aaltonen, T., Katara, M. and Pitkänen, R. DisCo toolset –

the new generation. Journal of Universal Computer Science,

7(1):3–18, 2001.

[2] Berki, E. Formal Metamodelling and Agile Method

Engineering in MetaCASE and CAME Tool Environments.

Tigka, K. & Kefalas, P. (Eds) The 1st South-East European

Workshop on Formal Methods. Agile Formal Methods:

Practical, Rigorous Methods for a changing world (Satellite

of the 1st Balkan Conference in Informatics, 21-23 Nov

2003, Thessaloniki). Pp. 170-188. South-Eastern European

Research Center (SEERC): Thessaloniki, 2004.

[3] Berki, E. & Georgiadou, E. Towards resolving Data Flow

Diagramming Deficiencies by using Finite State Machines. I

M Marshall, W B Samson, D G Edgar-Nevill (Eds)

Proceedings of the 5th International Software Quality

Conference. Universities of Abertay Dundee & Humberside,

Dundee, Scotland, Jul 1996, ISBN: 1 899796 02 9.

[4] Berki, E. & Novakovic, D.. Towards an Integrated

Specification Environment (ISE). Katsikas, S. (Ed.)

Proceedings of the 5th International Hellenic Conference of

Informatics. Athens, Greece, 7-9 Dec 1995. pp. 259-269,

Greek Computer Society, EPY: Athens.

[5] Cabral, G. and Sampaio, A. Formal Specification Generation

from Requirement Documents. Electronic Notes in

Theoretical Computer Science, 195(18): 171-188, 2006.

[6] Cook, W. A., SJ, Case Grammar Theory. Washington, DC:

Georgetown University Press, 1989.

[7] Fillmore, C. J. The Case for Case. In Bach and Harms (Ed.):

Universals in Linguistic Theory. New York: Holt, Rinehart,

and Winston, 1-88, 1968.

[8] Hofmann, H. F. and Lehner, F. Requirements engineering as

a success factor in software projects, IEEE Software, pp. 58-

66, July/August, 2001.

[9] Georgiadou, E., Siakas, K. & Berki, E. Quality Improvement

through the Identification of Controllable and Uncontrollable

Factors in Software Development. Messnarz, R. & Jaritz, K.

(Eds) EuroSPI 2003: European Software Process

Improvement, EuroSPI 2003 Proceedings, 10-12 Dec 2003,

Graz, Austria. Pp. IX 31-45. Verlag der Technischen

Universität: Graz.

[10] Georgiadou, E. & Berki, E. Improving Systems Specification

Understandability by Using a Hybrid Approach. M Bray; H-J

Kugler; M Ross; G Staples (Eds) INSPIRE I Process

Improvement in Teaching and Training. First International

Conference on Software Process Improvement, Research,

Education and Training. (INSPIRE '96), Sep 1996, Bilbao,

Spain. Pp. 137-147, SGEC Publications

[11] Guo J. Wang Y. and Zhang Z. A Model-Driven Approach to

Developing Domain Functional Requirements in a Product

Line, submitted to Information and Software Technology

(under review)

[12] IEEE Recommended practice for software requirements

specification. IEEE Standard 830-1998, 1998.

[13] Jacobsen, K., Sigurjónsson, J., and Jakobsen, Ø. Formalized

specification of functional requirements, Design Studies, 12

(4), October 1991, Pages 221-224

[14] Järvinen, H-M. The DisCo2000 Specification Language

Annotated version. 2002.

[15] Järvinen, H.-M. and Kurki-Suonio, R. The DisCo language

and temporal logic of actions. Technical report, Tampere

University of Technology, Software Systems Laboratory,

1990.

[16] Karakitsos, G., Berki, E. & Georgiadou, E. LEARN: The

Logical Entities Analytic Rule Notation, An Alternative

Formal Semantics Definition. Al-Ani, B., Arabnia, H. R. &

Mun, Y. (Eds) Software Engineering Research and Practice,

SERP ’03, Vol. II, Las Vegas, Nevada. pp. 871-876, CSREA

Press, USA.

[17] Katara, M. Composing DisCo specifications using generic

Real-Time events - a mobile robot case study. In J. Penjam,

editor, Software Technology, Proceedings of the Fenno-

Ugric Symposium FUSST’99, Technical Report CS 104/99,

pages 75–86, Sagadi, Estonia, 1999. Tallinn Technical

University.

[18] Kotonya, G. and Sommerville, I., Requirements Engineering

- Processes and Techniques, John Wiley & Sons, 1998

[19] Kurki-Suonio, R. A Practical Theory of Reactive Systems:

Incremental Modeling of Dynamic Behaviors. Springer,

2005.

[20] L. Lamport. The temporal logic of actions. ACM Trans.

Program. Lang. Syst., 16(3):872–923, 1994.

[21] v. Lamsweerde, A. "Formal specification: a roadmap", in

Proceedings of the Conference on The Future of Software

Engineering, Limerick, Ireland, 2000, pp.147-159.

[22] Lee, B.-S. and B. Bryant, Automated conversion from

requirements documentation to an object-oriented formal

specification language, in: SAC'02: Proceedings of the 2002

ACM symposium on Applied computing (2002), pp. 932–

936.

[23] Liaskos S., Lapouchnian, A., Yu, Y., Yu, E,. Mylopoulos, J.,

On Goal- based Variability Acquisition and Analysis, in:

14th IEEE International Requirements Engineering

Conference, Minneapolis, USA, 2006

[24] Liaskos S. (2008) Acquiring and Reasoning about Variability

in Goal Models, dissertation, University of Toronto.

[25] Mikkonen, T. A layer-based formalization of an on-board

instrument. Technical Report 18, Tampere University of

Technology, Software Systems Laboratory, 1998.

[26] Niu, N. and Easterbrook, S. Extracting and Modeling

Product Line Functional Requirements, in: RE'08,

Barcelona, Spain, 2008, pp. 155-164.

[27] Nummenmaa, T., Kuittinen, J., and Holopainen, J.

Simulation as a game design tool. In ACE ’09: Proceedings

of the International Conference on Advances in Computer

Entertainment Technology, pages 232–239, New York, NY,

USA, 2009. ACM.

[28] Pohl, K., The three dimensions of requirements engineering:

a framework and its applications, Information Systems 19 (3)

(1994) 243-258

[29] Rolland, C. and Achour, C. B.. Guiding the construction of

textual use case specifications. Data & Knowledge

Engineering, 25(1-2):125-160, 1998.

[30] van den Brand, M.G.J., van Deursen, A., Heering, J., de

Jong, H.A., de Jonge, M., Kuipers, T., Klint, P., Moonen, L.

Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E. and Visser,

J. The ASF+SDF Meta-environment: A component-based

language development environment, Proceedings of the 10th

International Conference on Compiler Construction, p.365-

370, April 02-06, 2001.

[31] Veijalainen, J., Berki, E., Lehmonen, J. & Moisanen, P.

Realising a New International Paper Mill Efficiency

Standard - Using Computational Correctness Criteria to

Model and Verify Timed Events". Eleftherakis, G. (Ed) The

2nd South-East European Workshop on Formal Methods.

Practical dimensions: Challenges in the business world. 18-

19 Nov 2005, Ohrid. Satellite of the 2nd Balkan Conference

in Informatics, Ohrid, FYROM, 17-20 Nov 2005.

[32] B. Whittaker, What went wrong? Unsuccessful information

technology projects, Information Management & Computer

Security, 7(1), pp. 23-29, 1999P.

[33] Zave and M. Jackson, Where Do Operations Come From? A

Multiparadigm Specification Technique, IEEE Transactions

on Software Engineering, Vol. 22 No. 7, July 1996, 508-528.

