
 
 
 
 

Jyrki Nummenmaa, Zheying Zhang, 
Timo Nummenmaa, Eleni Berki,  
Jianmei Guo and Yinglin Wang 

 
 

 
On the Generation of DisCo Specifications 

from Functional Requirements   
  

 

 
 

 
DEPARTMENT OF COMPUTER SCIENCES 

UNIVERSITY OF TAMPERE 
 

D‐2010‐13 
 

TAMPERE 2010 
 



  

UNIVERSITY OF TAMPERE 
DEPARTMENT OF COMPUTER SCIENCES 
SERIES OF PUBLICATIONS D – NET PUBLICATIONS 
D‐2010‐13, OCTOBER 2010 

 
 
 
 
 
 
 
 
 

Jyrki Nummenmaa, Zheying Zhang, 
Timo Nummenmaa, Eleni Berki,  
Jianmei Guo and Yinglin Wang 

 
  
  
   

On the Generation of DisCo Specifications 
from Functional Requirements  

 
  

 
 

 
DEPARTMENT OF COMPUTER SCIENCES 
FIN‐33014  UNIVERSITY OF TAMPERE 
 
 
 
 
 
ISBN 978‐951‐44‐8284‐7 
ISSN 1795‐4274 



On the Generation of DisCo Specifications from 

Functional Requirements 
Jyrki Nummenmaa, Zheying Zhang, Timo 

Nummenmaa, Eleni Berki 
Department of Computer  Sciences,  University  of 
Tampere, Kanslerinrinne 1, FIN-33014,  Finland 

{jyrki, cszhzh, cselbe, 
timo.nummenmaa}@cs.uta.fi

Jianmei Guo, Yinglin Wang 

Department of Computer  Science  and Engineering, 
Shanghai Jiao Tong University, 800 

Dong Chuan Road, Shanghai 200240, China 

{guojianmei, ylwang}@sjtu.edu.cn 

  

ABSTRACT 

Requirements analysis is an important task for software 

development success. It is, however, often hard for various 

stakeholders to reach a common understanding of the behavior of 

the required system. In order to provide a basis for understanding 

the dynamic behavior of a system fulfilling the requirements, we 

study the possibility to automate the process of creating an 

executable system specification from functional requirements. 

In this work, we assume that the functional requirements are 

formatted using a meta-model based on the classical Fillmore’s 

case frame, which describes important semantic aspects of the 

documented system actions. We have constructed a method that 

uses grammatical conversions to produce action-based executable 

specifications from the requirements. This specification can be 

used to observe the dynamic behavior of the system, which helps 

to move iteration with stakeholder feedback earlier in the software 

development process. 

Categories and Subject Descriptors 

D.3.3 [Software Engineering]: Requirements/specifications 

General Terms 

Design, Verification. 

Keywords 

Requirements analysis, functional requirements, metamodel, 

executable specifications. 

1. INTRODUCTION 
Requirements analysis is a critical task for software development 

success. Typically, some kind of a high-level model is manually 

produced from users’ textual requirements. Even though diverse 

techniques for requirements analysis and specification have been 

developed, problems still remain in this process, mainly related 

with the varying quality of the documented requirements and the 

varying expertise level of the people performing this task. 

Apart from requirements analysis’ tasks, it is hard to communicate 

with various stakeholders the outcomes of the requirements 

analysis phase, so that stakeholders reasonably understand the 

behavior of the system to be built. The late understanding of the 

system to be built by some stakeholders groups is a classical 

problem in software and information systems development, 

because it brings late demands and needs that need to be 

considered as requirements-to-be-met by the software designers. 

Executable specifications provide a basis for understanding the 

dynamical behavior of the system to be built. With a suitable tool 

one can simulate and explore the behavior of the system that has 

been modeled. The DisCo system [1] provides tools for 

simulating executable specifications using a graphical user 

interface. The specifications in the DisCo system are based on the 

idea of actions, where one or more participating entities/objects 

participate to change the state of the system. 

Our work presents an approach to generate a DisCo specification 

from requirements that have been preprocessed and formatted 

according to a meta-model, which in our case follows the classic 

ideas of Fillmore [7]. Our implementation is based on the user of 

the Meta-environment [31], utilizing high-level syntax definition 

and transformation rules. 

The idea of working from formalized requirements specifications 

towards a formal representation of the desired target system is not 

altogether new. Probably the work closest to our approach is that 

of Cabral and Sampaio [5] where they generate a formal process 

algebra specification of the target system from system 

requirements, represented by using use case specification 

templates.  

The DisCo specifications [1] are free from the complications of 

the concept of a process – no process design is needed in order to 

make the specification and to observe its behavior. This makes 

our method more lightweight and also more natural, as the 

functional requirements specifications are not based on process 

descriptions, either. 

2. REQUIREMENTS AND THE FORMAL 

REPRESENTATION 
Well-defined and correct requirements have traditionally been 

seen as a critical factor behind software project success [8, 12, 

32]. Nevertheless, even if the requirements were  specified 

correctly and precisely, it seems difficult for heterogeneous 

groups of stakeholders to achieve a common and correct 

understanding of the textual requirements, as well as the overall 

behavior of the system to be built. Textual requirements inherit 

the ambiguity of natural language, which may lead to different 

interpretations of the same expression. Contrary to this, a formal 

specification removes the ambiguity through precisely defined 

syntax and semantics, but it is difficult to enhance understanding 

of non-technical people with such a specification. In this section, 

we address the possibility of using formalisms for the 

requirements. In order to support the discussion, we start with the 

different types of requirements representations. 



2.1 Requirements Specification 
Requirements specification forms a basis for the follow-up 

requirements analysis and validation. It allows different kinds of 

representations, being more or less formal [28]. The formal 

representation, e.g. mathematical expression, has precise syntax 

and rich semantics and thus, provides a better basis for reasoning 

and verification, but is hardly understood by non-technical users. 

The semi-formal representations, such as ER diagrams, state 

diagrams, etc. are based on graphical modeling of the system, 

which provides a clear and more understandable view of the 

system. In contrast to semi-formal and formal presentation, an 

informal representation, like the requirements written in natural 

language, can not be used for reasoning, but its expressive power 

is high, and it is easy to understand. Informal presentation forms 

the most common way of specifying requirements, but it often 

inherits ambiguity from natural language, i.e. different 

stakeholders may understand a requirement statement differently 

[18,28]. This is likely to make customers dissatisfied with the 

implementation produced by the developers. In order to lead 

various stakeholders to a common understanding of the behavior 

of the system, instead of a careful requirements analysis and 

validation process, it is possible to create an executable software 

system specification from requirements to stimulate and explore 

the behavior of the required system. 

The behavior of a system is commonly specified with functional 

requirements (FRs). FRs describe systems services or functions, 

and they are often expressed in terms of systems reactions to input 

from the environment [18]. In the textual requirements 

specification, due to the nature of natural language, there is no 

deliberate separation of an action and its associated information 

such as the subjects performing an action, the objects affected by 

an action, the instruments involved in performing an action, etc. It 

is tedious to parse the relevant information to automate the 

derivation of an executable system specification from textual FRs. 

The FRs shall be formulated in a way suitable for computer 

processing, such as a set of verb-noun pairs with the attributes 

connected to the verb and the noun [13]. A formal specification, 

with clarified semantic concerns of a FR, provides a reasonable 

ground to automate the generation of executable specification. 

2.2 Case Grammar and its Application in 

Requirements Analysis 
Case grammar, as proposed by Fillmore [7] is a system of 

linguistic analysis, focusing on the link between a verb and the 

grammatical context it requires. According to the case grammar 

theory, a sentence in its basic structure consists of a verb and one 

or more noun phrases, each associated with the verb in a 

particular case relationship, which explains various co-occurrence 

restrictions [7]. The coherent structure of the set of cases is a case 

frame, and each case represents a potential semantic slot 

associated with the verb. Hence, given a verb, a case frame can be 

defined, which consists of such semantic slots that the verb 

evokes. For example, the verb “submit” is necessarily associated 

with an objective slot (“what is submitted?”), and it may also be 

associated with an agentive slot (“who submits?”). 

Basically, there are seven cases constituting the essential case 

frame [6,7]: Agentive, Instrumental, Dative, Objective, Factitive, 

Locative, and Comitative. 

- Agentive is the concern of the agent(s) whose activities will 

bring about the state of affairs implied by the verb (activity). 

Responses to the concern are typically actors or 

combinations of actors found in the domain, including the 

system(s)-to-be, e.g. {Machine, User alone, User 

Supported}A choose schedule. Alternative responses to the 

agentive concern are essentially alternative delegations of a 

goal to actors (including the system-to-be). 

- Instrumental is the concern that determines the instrument 

that is involved in the performance of the generic activity 

implied by the verb, e.g. Pay {by debit, by credit, by cash}Ins. 

- Dative is the concern of the agent(s) who will be affected by 

the generic activity implied by the verb. As above, responses 

to the concern are typically actors or combinations of actors 

found in the domain, including the system(s)-to-be, e.g. Send 

a message to {the admin, the user}D, Notify {designated 

nurse, nurses at nursing station} D. 

- Objective is the concern of the object(s) that is affected by 

the generic activity implied by the verb, e.g. Send {an e-mail 

message, a fax message}O, Print {a full report, a summary}O. 

- Factitive is the concern of the object(s) or being(s) that is/are 

resulting from the activity or understood as part of the 

meaning of the verb e.g. Format Text {bold, italic}F or Turn 

light {on, off}F. 

- Locative is the concern about the spatial location(s) where 

the generic activity that is implied by the verb is supposed to 

take place, e.g. Send a message {in the Car, on a Bus}L. 

- Comitative is a case that denotes companionship. It carries 

the meaning “with” or “accompanied by”, e.g., discuss the 

plans {with an expert}C. 

Considering the verb that describes the generic activity in a FR, 

the requirement refinement can be driven by the semantic slots 

associated with that verb and the corresponding elements [23]. 

That is to say, verbs expressing an action always express the 

change of an object, initiated by an agent, from one state to 

another, etc. Many researchers followed the way opened by 

Fillmore, proposing different approaches to filling in the gap 

between the informal requirements representation and the formal 

model for software development. The research is mainly 

conducted from two perspectives, (i) requirements specification 

and (ii) transformation from textual requirements to formal design 

models. 

From the perspective of requirements specification, many 

researchers elaborate on the various concerns in product line 

engineering, and adapt the case grammar to construct variability 

frame for goals and FRs in product line engineering ([11, 23, 26]. 

The case frame provides possible types of concerns which provide 

a basis for understanding language semantics in a requirements 

engineering context. 
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From the perspective of model transformation, the research 

mainly focuses on transforming the textual requirements to formal 

use case specifications by using the case frame, which can be 

further transformed to other formal models. For example, Rolland 

and Achour [29] proposed an approach to progressively 

transforming initial and partial natural language descriptions of 

scenarios into well structured, integrated use case specifications. 

Cabral and Sampaio [5] proposed a controlled natural language 

use case specification templates based on the case frame. They 

applied the templates to generate process algebraic formal models 

from use cases automatically. 

Due to the ambiguity of natural language and the different levels 

of the formalism between the natural language and the formal 

specification, there have been very few attempts to automate the 

conversion from requirements to a formal specification language 

[22]. In our study, we propose an action-based executable 

specification generation from the FRs formulated by case 

grammar. Unlike the above cited approaches, our approach 

focuses on simulating the behavior of the software system in 

question. We assume that the textual requirements have been 

parsed and formatted on the basis of the predefined requirements 

meta-model. The transformation occurs between the preprocessed 

requirements and the executable specification. The specification 

system DisCo, used in our work, can be further used to simulate 

the executable specifications[1]. The simulation shows realization 

of the dynamic behavior of the system, and enhances the clarity 

and understandability of FRs 

3. A METAMODEL OF FUNCTIONAL 

REQUIREMENTS 
We use Fillmore’s case frame as a basis for interpreting language 

semantics in FR specification. The most essential aspects can be 

captured in a meta-model, as shown in Figure 1. The rectangles 

represent the objects that compose a FR. The links represent the 

“property of” relationship between objects, i.e. an Action has 

property of Agentive, Ojective, etc. and an Agentive has property 

of State. The metamodel consists of ten objects, and each object 

has a property, Name. These objects can be grouped into three 

categories, i.e. the action, the case frame of the action, and the 

state. 

An action, simply specified by a verb-noun pair, presents a 

primitive FR. Conducting an action results in the change of a 

state. Each action is associated with a number of semantic 

concerns, i.e. the case frame of the verb, which includes Agentive, 

Objective, Dative, Factitive, Instrumental, Locative, temporal, and 

Conditional. Some of the concerns are obligatory, such as 

Agentive, while the others are optional. An obligatory concern has 

at least one instance, associated with an Action instance. 

Compared with Fillmore’s case frame, we removed Comitative, 

but add Temporal and Conditional into the concerns. A temporal 

concern refers to the duration or frequency of an action implied by 

the verb [23]. A Conditional concern refers to alternative triggers 

of the action or alternative conditions under which the action can 

be fulfilled. It is an important object to explain the operational 

dependency between actions.  

 

Figure  1. A metamodel of functional requirements 

A state is a snapshot of the world at an incident [13]. It contains 

the description of the software system in question and its 

environment. Each object of the case frame is associated with 

states and their corresponding values. As shown in the 

metamodel, the number and value of these states will vary, 

depending on the action to be fulfilled. In each action, 

Conditional always has a state whose value determines the 

fulfillment of the action. A change from one state to another state 

is led through an action of a system. The action is triggered by the 

state at an incident. 

The metamodel specifies every primitive FR into an action and its 

associated semantic concerns. This is by no means a complete list 



but rather a guideline for basic transformation between 

requirements and the action-based formal specification. The 

relationship between each object is simple and straightforward. 

There are no complex traceability links and requirements 

dependencies, which are hidden into the individual objects. The 

statement of Conditional, together with the state value of other 

objects, implies the dependency relationship between 

requirements and controls the flow of actions. An example of the 

FR formatted on the basis of the metamodel is illustrated in 

Section 5.1. 

4. FORMAL SPECIFICATION METHODS 

IN SOFTWARE DEVELOPMENT 

4.1 Formal Methods 
Formal Methods (FM) is a name given to describe a particular and 

often neglected family of many different software development 

methods; all comprise mathematical specification techniques, 

applied though in a limited fashion and utilized in selected 

application domains. FM, being rigorous and abstract enough by 

their mathematical nature, have been used to model complex 

systems as mathematical objects. By building a rigorous model of 

a complex system, it is mainly possible to (i) handle complexity 

by abstraction and (ii) verify the system's properties with more 

systematic principles and logic than empirical testing techniques. 

Aims (i) and (ii) have been major software challenges in software 

engineering theory and practice, with successful and unsuccessful 

examples of FM applications to show the benefits and drawbacks 

of rigorous descriptions. Using formality over unnecessarily 

descriptive details that many conventional methods support with 

time-consuming techniques is a step to improve system design and 

delivery times. Abstraction and formality have also been 

considered as promises to improve system understandability and 

quality [10] but cannot guarantee absolute correctness. Formal 

requirements specifications, though, can easily be checked by 

various FM support tools such as specification editors, type 

checkers, consistency checkers and proof checkers; these should 

indeed reduce the likelihood of human error. 

A formal specification of a system is a mathematical abstraction of 

the real system. It could have a potential number of 

implementations in various programming languages whose 

syntax, semantics and grammar allow the formal logic of the real 

system to be expressed. However, the mathematical disciplines 

used to formally describe real and software systems requirements 

do not necessarily provide a computational model [2]. In addition, 

the metamodels used by most formal methods are often limited in 

order to enhance provability. There is a notable tradeoff between 

the need for rigor and the ability to model all behaviors and 

changes, which leads to the likelihood of errors. Certainly the use 

of particular FM that support dynamic systems modeling can give 

increased confidence in the implementability and in the integrity 

of the system and more confidence that the system will indeed 

perform as expected but errors still exist due to the dynamics of 

the human components. 

FM vary a lot in formality and abstraction and they employ 

similar but also very different techniques, semantics and logic to 

formally model requirements. Moreover, not all formal notations 

capture change and system dynamics naturally, unless they are 

customized [30], or unless they are combined with other 

conventional methods [3,4]. 

Formal logic is also scholastic and detailed and can even be time-

consuming and resource-consuming, unless very suitable tool sets 

and proving strategies exist and have been proved to be time-

saving and cost-effective [9]. Even where full formal development 

is employed, for instance when the specification is refined to 

executable code, there might still be further metalogic and 

metasemantics to be employed at another level of abstraction [16], 

to question the self-efficacy of the specification and the use of the 

particular programming constructs. 

4.2 DisCo Specifications 
DisCo is primarily intended for the specification of reactive 

systems and its semantics have been defined with the Temporal 

Logic of Actions [20]. Among previous work, a DisCo 

specification has for instance been successfully created for a 

mobile robot case study [25]. In the study, a specification was first 

created that represents how the mobile robot, a small 

microcontroller-based car, operates. The specification was later 

implemented in the C language. In another case, it was used to 

create a specification of an on-board ozone measuring instrument, 

intended to be attached to an earth-orbiting spacecraft [25]. The 

time needed to complete the specification was 1.5 man-months, 

including the time it took to get to know the instrument. A version 

of DisCo with added probabilistic features has also been used 

used to research the usage of formal specifications in game design 

[27]. 

The DisCo software package, originally developed at the Tampere 

University of Technology, includes a compiler for compiling 

specifications created in the DisCo language, a graphical 

animation tool for animation and simulation of those 

specifications, and a scenario tool for representing execution 

traces as Message Sequence Charts [1]. 

The DisCo language [15] itself is a broad language and therefore 

we will only concentrate here on five basic parts. These parts are 

layers, classes, actions, relations and types. A thorough 

explanation of the language is given by Järvinen [14]. 

In execution of a DisCo specification, the state of the system is 

represented by objects that are instances of classes. The classes 

are made up of variables that can be pointers to other objects 

called references or other types such as integer, real, time, 

boolean, record type, set and sequence. An object can also be in 

several states which are in practise defined by enumerations. The 

object is always at one of the states of each enumeration. 

In addition to the types provided by the DisCo system, extending 

types and introducing new types is possible. An example class 

declaration in the DisCo languages is given in Figure 2. 

class ExampleClass is 

 exampleState: (active, passive); 
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 exampleState2: (alive, dead); 

 exampleInteger: integer; 

 exampleReal: real;   

 exampleBoolean: boolean; 

 exampleTime: time; 

 exampleObject: reference ClassName; 

 exampleSet : set integer; 

 exampleSequence : sequence integer; 

end; 
 

Figure  2. A class that can be instantiated as an object 

Relations are logical relations between objects. Only objects can 

participate in relations and only binary relations are allowed. The 

relation can however be a partial function, total function, 

injection, surjection or bijection. Objects can be set to be in a 

certain relation or removed from the relation at runtime. 

Actions alter the state of the system being executed by altering the 

values of the variables in objects and the contents of relations. 

The actions can, however, only alter the values of variables in 

participant objects which are specified for the action. Actions 

contain a guard, basically in the form of an if statement. An action 

is said to be enabled if the guard evaluates to True and not 

enabled if the guard evaluates to False. The operations to be 

performed when the action is run are specified. This part also 

supports an if/else mechanism for better control of the operations. 

The order of the operations separated with the || notation will not 

have an effect on the execution of the action. An example action 

is given in Figure 3.  

action exampleAction(a: ClassA;   

      b: ClassB; c: ClassC) is 

when (a.state'active and related(a,b)  

   and c.integerValue = 3) do  

 if (b.booleanValue = false) 

  b.booleanValue := true; 

 else 

  a.state->passive() || 

  c.integerValue = 3 || 

  b.booleanValue := true || 

  not related(a,b); 

 endif; 

end; 
 

Figure  3. An example action 

Finally, layers contain all things that make up a specification. 

Layers may also import other layers making modular development 

of the specification possible. One layer may import several layers 

and layers that have already imported other layers. 

The DisCo animator is a graphical tool for preparing the actual 

simulations and then executing them. The part of the animator, 

which determines how the execution progresses, is the execution 

model. With specifications that can be executed, simulated or 

animated, it is important to have an abstract execution model [19]. 

The first step in executing the specification, with this execution 

model, is always choosing the action to execute next. This can be 

automated or the action can be chosen by hand in the UI. When 

the selection of the action is automated, the animator chooses one 

of the enabled actions based on a weighted draw. It is also 

possible to have the animator continuously execute new actions 

automatically. Figure 4 shows a screenshot of the DisCo animator. 

5. GENERATING DISCO 

SPECIFICATIONS FROM METAMODEL 

BASED REQUIREMENTS 

5.1 An overview of the method 
Sections 3 and 4, above, indicate that the metamodel based FRs 

are essentially quite similar to the DisCo specification, and 

thereby, it is a reasonable choice to generate a DisCo executable 

specification to observe the behavior implied by the FRs. A single 

functionality corresponds well with the idea of a DisCo action. 

Both describe participants, a precondition, and the effect of the 

execution of the function or the action. They are not concerned 

with concepts like processes or such explicitly – the preconditions 

and the changes of states guide the flow of the execution in both 

cases. 

The above observation forms the basis for the actual DisCo 

specification generation. Let us discuss the details using an 

example. Let us consider a requirement specification for 

Automated Teller Machines. Due to lack of space, we can not 

discuss the entire specification here, but just some parts of it. 

Let us consider a functional requirement, which says that, if the 

ATM receives a negative authorization response (one of “Bad 

password”, “Bad bank code” or “Bad account”) from the bank 

information system, it will display a message to the user and eject 

the card. 

The example requirement clearly contains a conditional (response 

from the bank information system), participants/agents (the bank 

information system and the atm, objectives (the card being 

ejected) and factitives/changes in the state (change of atm display 

status, change of atm card status).  

 

 

 

 

 



 

Figure  4. A DisCo animator screenshot 

Using the metamodel presented in Section 3, the requirement 

could be structured as follows: 

Agentive atm;   

Agentive bank;  

Objective card;  

Conditional Bank response is “bad password” 

or “bad bank code” or “bad account”;   

Factitive Atm’s card status is changed to 

ejected;   

Factitive Atm’s display status is changed to 

an error message; 

For the DisCo specification generation, though, we assume that 

some further preprocessing would be desired, to produce the 

following:: 

Agentive atm a;   

Agentive bank b;   

Objective card c;    

Conditional b.response = bad_passord or  

         b.response = bad_bank_code or   

         b.response = bad_bank_account;   

Factitive atm.card_status := ejected;   

Factitive atm.display_status :=    

          card_not_authorized; 

The generation of a corresponding DisCo action now becomes 

reasonably straightforward. Each FR is used to generate a DisCo 

action with the following rules: 

1. The Agentives, Objectives, Datives, Locatives and 

Instrumentals are used as objects in the action’s variable 

declarations. 

2. The Conditional forms the when condition of the action.  

3. The Factitives are used to generate assignments of the DisCo 

action.  

In addition to the actions, it is also necessary to generate the 

classes for the DisCo specification. The required information for 

this is spread around in the FRs, and classes are formed as 

follows: 

1. The FRs are scanned to make up a list of classes. 

2. Based on the variable definitions in each FR, for each class, 

look for all attributes used in the variables of that class in the 

factitive and conditional parts of the FRs. These attributes 

make up the set of attributes for the class. 

3. For each state-valued attribute, search for all states used in 

the comparisons and assignments in the FRs, to include the 

states in the declaration of that attribute. 

The DisCo action generated from our example FR is given below 

in Figure 5. 

action ATM_return_invalid_card ( a : atm;

 c : card ) is   

  when ( a.state_card'new_card )                                                                   

     and ((c.bool_expired = false) or  

          (c.bool_readable = false))  

  do a.state_display->not_a_valid_card() ||                                                    

      a.state_card->no_card();     

  end;                                                                                               

 Figure  5. A generated DisCo action 



The DisCo specification generation is fairly straightforward, and, 

if the preparation of the FRs for the conversion has been 

successful, an executable specification can be automatically 

generated from there, and the specification can be read with the 

DisCo animator tool to explore the dynamic behavior of the 

system. The screenshot in Figure 4, above, is related to our ATM 

example. 

5.2 On the use of the Meta-environment in the 

specification generation 
The implementation used in this work is based on the use of the 

Meta-Environment [30], which is a “grammar-ware” environment, 

offering high-level tools for working with formal languages. The 

environment offers advanced grammar-ware technologies, which 

have benefits far beyond the needs of the present work. 

This work employs the Syntax Definition Formalism (SDF) of the 

meta-environment. The SDF combines the lexical and the syntax 

definition into a single definition and it includes disambiguation 

mechanisms such as rejects and priorities. The translation from 

one language to another can be implemented using fairly 

straightforward rewrite rules. When rewrite rules are added to the 

SDF, the resulting technology is called ASF+SDF. The ASF+SDF 

can be used in several ways, but probably the easiest is to use the 

Meta-Environment, which offers integrated support for the 

development and testing of ASF+SDF. The latest development of 

the Meta-Environment is called the Rascal Meta-Environment, 

but that part has not been utilized in the present work. 

Even though the SDF formalism is succinct, the resulting design 

is too long to be included here. The following code snippets, 

separated by “…”, are examples of SDF definition of the 

requirements specification and the DisCo specification language 

definitions.  

[A-Za-z][A-Z0-9a-z\_]* -> ReqNameStr  

… 

ReqNameStr -> ReqClassName  

ReqNameStr -> ReqName  

ReqNameStr -> ReqVarName  

…   

"requirement" ReqName REQOPTIONS    

   "endrequirement" -> REQUIREMENT  

…  

{REQOPTION";" }* -> REQOPTIONS  

"agentive" ReqClassName ReqVarName   

   -> REQOPTION  

"factitive "ReqVarName"."ReqStateAttrName 

   ":=" STATEEXP -> REQOPTION  

"factitive" ReqVarName"."ReqBoolAttrName  

   ":=" BOOLEXP -> REQOPTION 

"factitive" ReqVarName"."ReqNumAttrName  

   ":=" NUMEXP -> REQOPTION 

"dative" ReqClassName ReqVarName ->REQOPTION 

"location" ReqClassName ReqVarName 

   ->REQOPTION 

"conditional" BOOLEXP -> REQOPTION 

 

Even though the above does not give a complete syntax definition, 

it gives some taste of the definition style and the resulting 

grammar. For the translation, also the DisCo language needs to be 

described, re-using the definitions for names, conditionals, and 

such as much  as possible. The re-use can be facilitated by 

including information from other SDF modules: 

"action" ReqName  

   "(" {DISCODECLARATION";" }* ")" "is"  

   "when" BOOLEXP "do" 

      {DISCOASSIGNMENT"||" }* 

   "end " ReqName -> DISCOACTION 

 

The above re-uses the requirement name syntax for DisCo action 

names. Also the Boolean expressions follow the same formalisms, 

and BOOLEXP is in fact defined along with the requirements 

syntax. The Meta-environment generates automatically a parser, 

which is helpful in grammar development.  

The transformation from one language to another is implemented 

with a set of rewrite rules. Even though the rules work on a high 

level, space limitations prohibit extensive discussion of the 

transformation from FRs to DisCo actions. The following rules 

give exemplify the rules that are being used.. 

trp(requirement_specification    

        DiscoLayerName Requirement*) = 

    layer DiscoLayerName is  

       tra(Requirement*) 

 

tra(requirement DiscoActionName ReqOption*  

        endrequirement; Requirement*) =  

  action DiscoActionName ( trd(ReqOption*) )    

      is when trc(ReqOption*) 

        do trs(ReqOption*)  

     end DiscoActionName; 

        tra(Requirement*) 

 

Above, the function trp is the top-level transformation function 

and tra takes care of transformation of a single action, passing 

the remaining list of actions recursively to itself. The functions 

trd, trc, and trs take care of extracting the required 

declarations, conditional, and assignment statements, respectively. 

5.3 Implementation-related discussion 
Even though the language used to describe the FRs is somewhat 

limited, it serves as a good input for an executable specifications. 

As we are working on a system-level description, there is no need 

to know or identify internal subsystems of the systems that are 

being specified.  

In the present implementation the temporal aspects are not utilized 

in the specification, nor is the FR aspect Temporal. The temporal 

assignments and conditions in the the DisCo system are otherwise 

treated similarly as normal attributes are treated, but there is a 

global variable now that can be used to access the current time of 

the simulation. However, the simulation time in the current 

version of DisCo works basically on the logical level (counting 

ticks) and the main emphasis is on the logical order of the events, 

so to describe and use wall clock or calendar times, some 

specification of simulation level conversion would be needed. 

The lack of data types in the FRs could be overcome by either 

completely implicit type system, where the Boolean expressions 

and the assignments are used to calculate the types of the 

attributes in classes. Even though this would be user-friendly if 

successful, it is also more error prone, as missing type information 

may prohibit the generation of a working specification. In the case 

of missing type information, so we chose to use explicit type 



information. Instead of using separate attribute declarations in the 

FRs, the variable names are prefixed to indicate type (e.g., 

variable bool_working is taken to be of type Boolean).  

Finally, the high-level tools of the Meta-Environment used here 

allow for easy modification of the grammars and the 

transformation, and the proposed model implementation can quite 

flexibly be changed to adopt to a somewhat different input or to 

utilize some new feature of the DisCo language. 

6. IMPLICATIONS TO THE SOFTWARE 

DEVELOPENT PROCESS 
The software development processes tend to include iteration, 

caused by testing and stakeholders’ feedback. The attempt is to 

move this iteration as early in the process as possible.  

If requirements are formalized and specifications are generated 

from them, then it is possible to move stakeholder feedback and 

some of the resulting iteration earlier in the software development 

process – in fact it is possible to iterate the requirements 

specification, executable specification generation, animation, and 

stakeholder feedback cycle to take place before any attempt to 

design or prototype the system is even started, as follows. 

1. FRs are specified. 

2. Executable specifications are generated from the FRs. 

3. The executable specification is animated to observe the 

behavior of the required system. 

4. If there is a need to modify the FRs, move to Step 1.  

Thus, starting to employ this kind of a methodology also implies 

changes to the software development process. 

It has been observed that formalizing the requirements tends to 

increase their quality [5, 21, 22, 33]. We have only used our 

approach in a laboratory setting this far, but the findings are 

exactly the same. It is very easy to overlook details in the textual 

representation of the FRs. Once FRs need to be converted into a 

working executable specifications, details have to be filled in. 

The use cases or user stories are often used to specify some 

example behavior of the desired system. However, typically such 

a system can produce many other behaviors also. The DisCo 

executable specifications can be used to explore, not only a 

specified use case or user story behavior, but also basically any 

type of behavior that the system produced.  The resulting 

executable specification also works as an important description of 

the behavior of the system to be implemented. 

7. CONCLUSIONS 
In this work, we present a natural method to generate executable 

DisCo specifications from functional requirements. The DisCo 

system [1] contains an interactive animation tool, in which the 

user can guide the execution of the generated specification, 

choosing amongst the actions that are enabled for execution, 

given the system state. This provides an easy and straightforward 

way to observe the dynamic behavior of the system that has been 

specified. The executable specification generation does not need 

or use any design information on processes etc., it works on the 

level of the functional requirements. 

The obvious complication of this method is that the requirements 

need to be represented and formalized according to a meta-model. 

For the method to be truly automated, it should work directly 

from textual representation, rather than a meta-model based 

representation.   

However, if the transformation is utilized, notable benefits can be 

achieved: The behavior of the system can be observed from the 

specification and at the same time the quality of the functional 

requirements is improved, when they are tested with the 

specification.  
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