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Abstract

We investigate the expressive power of sentences of the family of
independence-friendly (IF) logics in the equality-free setting. Various
natural equality-free fragments of logics in this family translate into
the version of existential second-order logic with prenex quantification
of function symbols only and with the first-order parts of formulae
equality-free. We study this version of existential second-order logic.
Our principal result is that over finite models with a vocabulary con-
sisting of unary relation symbols only, this fragment of second-order
logic is weaker in expressive power than first-order logic. Such results
could turn out useful in the study of independence-friendly modal log-
ics. In addition to proving results of a technical nature, we consider
issues related to a perspective where IF logic is regarded as a speci-
fication framework for games, and also discuss the significance of un-
derstanding fragments of second-order logic in investigations related to
non-classical logics.

1 Introduction

We investigate the family of independence-friendly (IF) logics introduced
by Hintikka and Sandu in [8]. See also [7] for an early exposition of the
main ingredients leading to the idea of IF logic, and of course [5] for an
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even earlier discussion of ideas closely related to IF logic. Variants of IF
logic have received a lot of attention recently; see [1, 4, 9, 10, 11, 13, 16] for
example. Therefore we believe that the time is beginning to be mature for
investigations not directly related to technical aspects concerning semantical
issues. The focus of our work is the expressive power of the equality-free
fragment of IF logic without slashed connectives. To be exact, we study the
fragment of the system IF∗ (see [1]) without equality and without slashed
connectives. We denote this fragment by IFwo=.

Even though motivated by questions related to the expressive power of
IFwo=, our study concerns a wider range of logics. In fact, our study focuses
on the system fESOwo= which is the version of existential second-order logic
where the second-order quantifiers quantify function symbols only and where
equality is not used. Here we allow for the function symbols to be nullary,
i.e., to be interpreted as constants. With a careful inside-out Skolemization
procedure preceeded by some preprocessing, any sentence of IFwo= can be
turned into a sentence of fESOwo= that defines exactly the same class of
models as the original IFwo= sentence. However, results about fESOwo=

automatically apply to a wider range of logics. For example, the delightfully
exotic looking expressions of the form(

∀x1 ∃x2
∀x3 ∃x4

)
ϕ(x1, x2, x3, x4),

where a finite partially ordered quantifier preceeds an equality-free FO for-
mula ϕ(x1, x2, x3, x4) (with the free variables x1, x2, x3, x4), are equivalent
to sentences of fESOwo= by the definition of Henkin [5]. Hence, whatever
is inexpressible in fESOwo=, is automatically inexpressible with expressions
of the above type. Thus by studying fESOwo= we can kill multiple birds
with one stone. This is part of a more general phenomenon. Results about
fragments of second-order logic are very useful in the study of non-classical
logics with devices giving them the capacity to express genuinely second-
order properties. A typical such non-classical logic often immediately trans-
lates into a fragment of second-order logic. Then, armed with theorems
about fragments of second-order logic, one may immediately obtain a range
of metatheoretic results concerning the non-classical logic in question. Such
results could be, for example, related to decidability issues. By directing
attention to fragments of second-order logic rather than the full system of
second-order logic, one can often easily identify, for example, truth preserv-
ing model transformations etc. The very high expressive power of second-
order logic seems to often make it very difficult to obtain results like truth
preserving model transformation theorems applying to all sentences of the
system. These considerations provide part of the motivation for our study
of the system fESOwo=.

In addition to contributing to the general program of studying frag-
ments of second-order logic, we believe that insights about sentences of the

2



equality-free systems IFwo= and fESOwo= can be more or less directly useful
in the study of the independence-friendly modal logics of Tulenheimo [15]
and Tulenheimo and Sevenster [14] and others. This is due to the fact that
formulae of such systems tend to translate to formulae of IFwo=. This real-
ization provides an example that demonstrates the significance of the claim
made about the study of fragments of second-order logic above.

In this paper we study the expressivity of sentences of IFwo= only. A
sentence of IFwo= defines the class of models on which Eloise has a winning
strategy in the related semantic game. We begin the paper by observing that
fESOwo= can define properties not definable in first-order logic FO (with
equality), when the vocabulary under consideration contains at least one
binary relation symbol. We then define a simple model-transformation that
preserves the truth of fESOwo= sentences, but not FO sentences. Therefore
we observe that fESOwo= and FO are incomparable with regard to expressive
power. The same transformation of course also preserves the truth of IFwo=

sentences. We discuss the significance of this observation in relation to the
use of IF logic as a specification language for games.

Finally, we ask whether fESOwo= and FO are also incomparable with
regard to expressive power when attention is limited to vocabularies con-
taining only unary relation symbols. Our principal result is that over finite
models with such a vocabulary,

FOwo= < fESOwo= < FO,

where FOwo= denotes first-order logic without equality. So far we have not
succeeded in establishing these results without the use of somewhat involved
combinatorial arguments.

2 Preliminary Considerations

We assume the reader is familiar with first-order logic and independence-
friendly logic. For a tour of properties of IF logic, see [1]. The version
of IF logic studied in this paper is the version where slashed quantifiers
∃x/{y0, ...yi}, ∀x/{y0, ...yi} are allowed, but disjunctions and conjunctions
do not have slash sets associated with them. To be exact, we study the
fragment of the system IF∗ (see [1]) without equality and without slashed
connectives. We call this logic IFwo=. For the semantics of IFwo=, see
Definition 4.2 in [1].

Our main tool in investigating IFwo= is the logic fESOwo=, whose for-
mulae are exactly the formulae of the type ∃fϕ, where f is a finite vector
of function symbols and ϕ is an FO formula without equality. The function
symbols are allowed to be nullary, i.e., to be interpreted as constants. The
formulae of fESOwo= are interpreted according to the natural semantics.
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A sentence ϕ of IF∗ is called equivalent to a sentence ψ of fESOwo=

(or, equivalently, a sentence of FO) if and only if Eloise has a winning
strategy in the semantic game defined by ϕ exactly on those models where
ψ is true. Any equality-free sentence of IF∗ without slashed connectives,
i.e., a sentence of IFwo=, can be transformed to an equivalent sentence of
fESOwo=. We base this claim on Theorem 10.2 of [1] which implies that
any sentence of IFwo= can be put to an equivalent prenex normal form with
exactly the original propositional skeleton, and the transformation can be
done so that connectives and quantifiers without slash sets associated with
them remain unslashed. As the propositional skeleton of the new prenex
sentence is the same as that of the original sentence, the transformation
process does not introduce equality symbols. Furthermore, we obtain a
sentence that is regular, implying that no quantifier for a variable occurs
within the scope of another quantifier for the same varible. See [1] for details.
A sentence in this normal form can then be Skolemized in a careful inside-
out fashion. The procedure eliminates existential quantifiers and introduces
fresh function symbols. The related functions encode the way Eloise can
play the semantic game. The procedure does not introduce equality or
slashed connectives. The slash sets associated with universal quantifiers
get eliminated. Finally, the fresh function symbols are prenex quantified
existentially, resulting in a sentence of fESOwo= equivalent to the original
IFwo= sentence.

The reader uneasy about this translation should note that the results in
the current paper are mainly about for fESOwo=, and the statements about
IFwo= are mostly nothing more than direct corollaries to results concerning
fESOwo=.

3 Expressivity of IFwo= and fESOwo= over Models
with a Relational Vocabulary

We begin the section by making the simple observation that IFwo= and
FO are incomparable with regard to the expressive power of sentences over
vocabularies containing at least one binary relation symbol.1 Here we do
not limit our attention to finite models only.

Proposition 3.1. Let V be a vocabulary containing at least one binary
relation symbol R. Then there is a class of V -models definable by a sentence
of IFwo= and also a sentence of fESOwo= that is not definable by a sentence
of FO.

1A trick similar to the one used in the proof below can be easily used to show that
fESOwo= is not closed under negation. The argument is based on the fact that existential
second-order logic ESO can easily define infinity, but cannot define finiteness due to
compactness.
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Proof. It is well known that there is an IF sentence ϕ (with equality and
without slashed connectives) that is true in exactly those models whose
domain has an even or an infinite cardinality. Let ϕ′ be the sentence obtained
from ϕ by replacing each atom of the type x = y by the atom R(x, y). Let
C be the class of finite V -models A such that

RA = { (a, a) | a ∈ Dom(A) }.

It is clear that with respect to C, the sentence ϕ′ defines the class Ceven

of models whose domain is even. A straightforward Ehrenfeucht-Fräıssé
argument shows that the class Ceven is not definable with respect to C by
any FO sentence. Since there is no FO sentence that is equivalent over C to
ϕ′, there is no FO sentence equivalent to ϕ′.

Since ϕ′ can be transformed to an equivalent fESOwo= sentence, it follows
that fESOwo= 6≤ FO with regard to expressive power of sentences over the
class of V -models.

3.1 Bloating Models

We now define a model-transformation under which the truth of fESOwo=

sentences is preserved.

Definition 3.2. Let V be a relational vocabulary containing only unary
and binary relation symbols. (We restrict our attention to at most binary
relation symbols for the sake of simplicity.) Let A be a V -model with the
domain A, and let a ∈ A. Let S be some set such that S ∩ A = ∅. Define
the V -model B as follows.

1. The domain of B is the set A ∪ S.

2. Let P ∈ V be a unary relation symbol. We define PB as follows.

(a) For all v ∈ A, v ∈ PB iff v ∈ PA.

(b) For all s ∈ S, s ∈ PB iff a ∈ PA.

3. Let R ∈ V be a binary relation symbol. We define RB as follows.

(a) For all v ∈ A×A, v ∈ RB iff v ∈ RA.

(b) For all s ∈ S and all v ∈ A, (v, s) ∈ RB iff (v, a) ∈ RA.

(c) For all s ∈ S and all v ∈ A, (s, v) ∈ RB iff (a, v) ∈ RA.

(d) For all s, s′ ∈ S, (s, s′) ∈ RB iff (a, a) ∈ RA.

We call the model B a bloating of A. Figure 1 illustrates how this model
transformation affects models.
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Figure 1: The figure shows three structures of a vocabulary consisting of
one binary and one unary relation symbol. The shaded areas correspond to
the extensions of the unary relation symbol. The structure in the middle
is a bloating of the structure on the left. The structure in the middle is
obtained from the one on the left by adding two new copies of the middle
right element. The structure on the right is a bloating of the structure in
the middle obtained by adding two copies of the middle left element.

Theorem 3.3. Let V be a vocabulary containing unary and binary relation
symbols only. The truth of fESOwo= sentences is preserved from V -models
to their bloatings.

Proof. Let A be a V -model and ϕ a sentence of fESOwo=. We assume that
ϕ is of the form ∃fψ, where the symbols f are function symbols (some
of them perhaps nullary) and ψ is a first-order sentence without existential
quantifiers and with negations pushed to the atomic level. This normal form
is obtained by first transferring the first-order part of ϕ into negation normal
form and then Skolemizing the resulting sentence.2 The freshly introduced
Skolem functions are prenex quantified existentially, so the vocabulary of
∃fψ is the same as that of ϕ. The process of transferring ϕ into the described
normal form does not introduce equality.

Let A and B be as in Definition 3.2. The models there had the domains
A and A∪S, respectively, and the element a ∈ A was used in order to define
B. We assume that A |= ∃fψ and expand A to a model A′ = (A, fA′) such

that A′ |= ψ. We then expand B to a model B′ = (B, fB′) as follows.

1. For each k-ary symbol f , we let fB
′
� Ak = fA

′
� Ak. Note that when

k = 0, i.e., when f is a constant symbol, then fB
′

= fA
′
.

2Again, before Skolemizing, we preprocess the sentence by putting it into prenex normal
form without nested quantification of the same variable.
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2. For each k-tuple w ∈ (A ∪ S)k containing points from the set S, we
define the k-tuple w′, where each co-ordinate value s ∈ S of w is
replaced by the element a. We then set fB

′
(w) = fA

′
(w′).

We then establish that B′ |= ψ. The proof is a simple induction on the
structure of ψ. For each variable assignment h with codomain A, let g(h)
denote the set of all variable assignments with codomain A ∪ S that can
be obtained from h by allowing some subset of the variables mapping to
the element a to map to elements in S. We prove that for every variable
assignment h with codomain A and every subformula χ of ψ,

A′, h |= χ ⇒ ∀h′ ∈ g(h)(B′, h′ |= χ).

The cases for atomic and negated atomic formulae form the basis of the
induction. The claim for these formulae follows immediately with the help
of the observation that h(t) = h′(t) for all h and h′ ∈ g(h) and terms t
that contain function symbols, i.e., terms that are not variable symbols. We
will next establish this claim by induction on the nesting depth of function
symbols.

The basis of the induction deals with the terms of nesting depth one,
i.e., terms of the type f(x1, ..., xk) and c, where the symbols x1, ..., xk are
variable symbols and the symbol c is a constant symbol. It is immediate
that h(t) = h′(t) for all h and h′ ∈ g(h) and all such terms t of nesting depth
one.

Now let f(t1, ..., tk) be a term of nesting depth n + 1. By the induc-
tion hypothesis, for each one of the terms ti that is not a variable symbol,
we have h(ti) = h′(ti). For the terms ti that are variable symbols and
for which h(ti) 6= a, we have h(ti) = h′(ti). For the terms ti that are
variable symbols and for which h(ti) = a, we have either h′(ti) = a or
h′(ti) ∈ S. We therefore notice that we obtain the tuple (h(t1), ..., h(tk))
from the tuple (h′(t1), ..., h

′(tk)) by replacing the elements u ∈ S of the
tuple ((h′(t1), ..., h

′(tk)) by the element a. Therefore we conclude, by the
definition of the function fB

′
, that

fB
′
(h′(t1), ..., h

′(tk)) = fA
′
(h(t1), ..., h(tk)).

This concludes the induction on terms and therefore the basis of the original
induction on the structure of ψ has now been established. We return to the
original induction.

The connective cases are trivial and the quantifier case relatively straight-
forward. We discuss the details of the quantifier case here.

Assume A′, h |= ∀xα(x). We need to show that for all h′ ∈ g(h),
B′, h′ |= ∀xα(x). Assume, for contradiction, that for some h′′ ∈ g(h) we have
B′, h′′ 6|= ∀xα(x). Therefore, for some u ∈ A ∪ S, we have B′, h′′ ux 6|= α(x).
It suffices to show that h′′ ux ∈ g(h v

x) for some v ∈ A. This suffices, as the
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assumption A′, h |= ∀xα(x) first implies that A′, h v
x |= α(x), which in turn

then implies, by the induction hypothesis, that B′, h′′ ux |= α(x).
If u ∈ A, let v = u. Then, as h′′ ∈ g(h), we have h′′ ux = h′′ vx ∈ g(h v

x). If
u ∈ S, we let v = a. Then, as h′′ ∈ g(h), we have h′′ ux ∈ g(ha

x) = g(h v
x).

An immediate consequence of Theorem 3.3 is that FO 6≤ fESOwo= be-
cause there exist first-order sentences whose truth is not preserved under
bloating.

Theorem 3.3 is interesting when regarding IF logic as a kind of a spec-
ification language for games. Let V be a vocabulary of the type defined in
Theorem 3.3. Let the equality-free and slash connective-free IF sentence ϕ
of the vocabulary V specify some class of games and assume we know some
board (i.e., a V -model) on which Eloise wins the game (i.e., ϕ is true on
that model). The theorem then gives us a whole range of new, larger boards
where she wins the game specified by ϕ. On the other hand, non-winning
and in fact even indeterminacy are clearly preserved in reverse bloatings.
This follows directly by a dualization argument.

4 Expressivity of fESOwo= and IFwo= over Finite
Models with a Unary Relational Vocabulary

We now turn our attention to finite models whose vocabulary contains only
unary relation symbols. Over such finite models, the picture is quite different
from the case where there is a binary relation symbol in the vocabulary. We
will show that over the class of finite models whose vocabulary contains only
unary relation symbols,

FOwo= < fESOwo= < FO.

We first discuss the latter inequality and then the former one.

4.1 fESOwo= < FO over the Class of Finite Models with a
Unary Vocabulary

In this subsection, we establish that fESOwo= < FO over the class of finite
models with a unary relational vocabulary. Therefore also IFwo= < FO over
that class. We begin by making a number of auxiliary definitions.

Let U be a finite vocabulary containing unary relation symbols only. A
unary U -type (with the free variable x) is a conjunction τ with |U | conjuncts
such that for each P ∈ U , exactly one of the formulae P (x) and ¬P (x) is
a conjunct of τ . Let T = {τ1, ..., τ|T |} be the set of unary U -types.3 The

3We assume some standard ordering of conjuncts and bracketing, so that there are
exactly 2|U| different unary U -types, and different unary U -types are non-equivalent. Here
and everywhere below, we consider explicitly only the cases where U 6= ∅.
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domain of each (finite) U -model A is partitioned into some number n ≤ |T |
of sets Si such that the elements of Si realize, i.e., satisfy, the type τi ∈ T .
(Here an element a ∈ Dom(A) realizes (satisfies) the type τi if and only if
A |= τi(a) in the usual sense of first-order logic.)

Let n ∈ N≥1, and let k = 2n. Any relation

R ⊆ Nk \ {0}k

is called a spectrum. We associate sentences of FO and fESOwo= with spectra
in a way specified in the following definition.

Definition 4.1. Let V be a vocabulary containing unary relation symbols
only. Let ϕ be a sentence of FO or fESOwo= of the vocabulary V . Let U ⊆ V
be the finite set of relation symbols occurring in ϕ. Let T = {τ1, ..., τ|T |} be

the finite set of unary U -types, and let ≤T denote a linear ordering of the
types in T defined such that τi ≤T τj iff i ≤ j. Define the relation Rϕ ⊆ N|T |
such that (n1, ..., n|T |) ∈ Rϕ iff there exists a finite U -model A of ϕ such that
for all i ∈ {1, ..., |T |}, the number of points in the domain of A that satisfy
τi is ni. We call such a relation Rϕ the spectrum of ϕ (with respect to the
ordering ≤T ).

Notice that the class of finite V -models defined by ϕ is completely char-
acterized by the spectrum Rϕ ⊆ N|T |. We next define a special family of
spectra and then establish that this family exactly characterizes the ex-
pressive power of FO over the class of (finite) models with a vocabulary
containing unary relation symbols only. See Figure 2 for an illustration of a
spectrum of a sentence of FO with a unary relational vocabulary.

Definition 4.2. Let l = 2l
′
for some l′ ∈ N≥1. Let R ⊆ Nl be a spectrum for

which there exists a number n ∈ N≥1 such that for all co-ordinate positions
i ∈ {1, ..., l}, all integers k, k′ > n and all m1, ...,mi−1,mi+1, ...,ml ∈ N, we
have

(m1, ...,mi−1, k,mi+1, ...,ml) ∈ R
⇔

(m1, ...,mi−1, k
′,mi+1, ...,ml) ∈ R.

We call such a number n a stabilizer of the spectrum R. A spectrum with
a stabilizer is called a stabilizing spectrum.

Proposition 4.3. A spectrum R is a stabilizing spectrum if and only if R
is a spectrum of some FO sentence.

Proof. Given a stabilizing spectrum, it is easy to write a corresponding FO
sentence by applying the quantifiers ∃=j and ∃≥j expressible with the use
of the equality symbol. (Here ∃=jx ϕ(x) states that there exists exactly j
elements a such that ϕ(a) holds, and ∃≥j is defined analogously.)

The fact that each spectrum of an FO sentence is stabilizing follows by
a straightforward Ehrenfeucht-Fräıssé argument.
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Figure 2: The figure illustrates a stabilizing spectrum that corresponds to
some FO sentence ϕ of the vocabulary {P}, where P is a unary relation
symbol. A plus symbol occurs at the position (i, j) iff there exists a {P}-
model A satisfying ϕ such that |PA| = i and |A \ PA| = j, where A =
Dom(A). In other words, the number of points in the domain of A satisfying
the type P (x) is i and the number of points satisfying the type ¬P (x) is j.
The spectra for FO sentences divide the xy-plane into four distinct regions.
The upper right region always contains either only plus symbols or only
minus symbols. In the bottom left region, any distribution is possible. (The
point (0, 0) always contains a minus symbol though since we do not allow
for models to have an empty domain.)

Next we define some order theoretic concepts and then prove a number of
related results that are needed for the proof of the main theorem (Theorem
4.7) of the current section.

A structure A = (A,≤A) is a partial order if ≤A ⊆ A× A is a reflexive,
transitive and antisymmetric binary relation. Given a partial order A =
(A,≤A), we let <A denote the irreflexive version of the order ≤A. A partial
order is well-founded if no strictly decreasing infinite sequence occurs in it.
That is, a partial order A = (A,≤A) is well-founded if for each each sequence
s : N −→ A there exist numbers i, j ∈ N such that i < j and s(j) 6<A s(i).
An antichain S ⊆ A of a partial order A = (A,≤A) is a set such that for all
distinct elements s, s′ ∈ S, we have s 6≤A s′ and s′ 6≤A s. In other words, the
distinct elements s and s′ are incomparable. A well-founded partial order
that does not contain an infinite antichain is called a partial well order, or
a pwo.

Let A = (A,≤A) and B = (B,≤B) be partial orders. The Cartesian
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product A×B of the structures is the partial order defined in the following
way.

1. The domain of A×B is the Cartesian product A×B.

2. The binary relation ≤A×B ⊆ (A×B)×(A×B) is defined in a pointwise
fashion as follows.

(a, b) ≤A×B (a′, b′)⇔
(
a ≤A a′ and b ≤B b′

)
For each k ∈ N≥1 and each partial order A = (A,≤A), we let Ak = (Ak,≤Ak

)

denote the partial order where the relation ≤Ak⊆ Ak × Ak is again defined
in the pointwise fashion as follows.

(a1, ..., ak) ≤Ak
(a′1, ..., a

′
k) ⇔ ∀i ∈ {1, ..., k} : ai ≤A a′i

We call the structure Ak the kth Cartesian power of A. We let (Nk,≤)
denote the kth Cartesian power of the linear order (N,≤). When S ⊆ Nk,
we let (S,≤) denote the partial order with the domain S and with the
ordering relation inherited from the structure (Nk,≤). In other words, for

all s, s′ ∈ S, we have s ≤(S,≤) s′ if and only if s ≤(Nk,≤) s′. We simply
write u ≤ v in order to assert that u ≤(Nk,≤) v, when u, v ∈ Nk.

The following lemma is a paraphrase of Lemma 5 of [12], where the
lemma is credited to Higman [6].

Lemma 4.4. The Cartesian product of any two partial well orders is a
partial well order.

Variations of the following lemma are often attributed to Dickson [3].
The lemma follows immediately from Lemma 4.4.

Lemma 4.5. Let k ∈ N≥1. The structure (Nk,≤) does not contain an
infinite antichain.

Proof. The structure (N,≤) is a pwo, and the property of being a pwo is
preserved under taking finite Cartesian products by Lemma 4.4. Therefore
the structure (Nk,≤) is a pwo. By definition, a pwo does not contain an
infinite antichain.

Let l ∈ N≥1 and let R ⊆ Nl be a relation such that for all u, v ∈ Nl, if
u ∈ R and u ≤ v, then v ∈ R. We call the relation R upwards closed with
respect to (Nl,≤). When the exponent l is irrelevant or known from the
context, we simply say that the relation R is upwards closed.

Theorem 4.6. Let l′ ∈ N≥1 and l = 2l
′
. Let R ⊆ Nl be a relation4 that is

upwards closed with respect to (Nl,≤). Then R is a stabilizing spectrum.

4There is a typo inherited from the original workshop version of the article here. Instead
of “relation” it should read “spectrum”.
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Proof. We begin5 the proof by defining a function f that maps each non-
empty subset of the set {1, ..., l} to a natural number. Let C ⊆ {1, ..., l}
be a non-empty set. Let R(C) denote the set consisting of exactly those
tuples w ∈ R that have a non-zero co-ordinate value at each co-ordinate
position i ∈ C and a zero co-ordinate value at each co-ordinate position
j ∈ {1, ..., l} \ C. Define the value f(C) ∈ N as follows.

1. If R(C) = ∅, let f(C) = 0.

2. If R(C) 6= ∅, choose some w ∈ R(C). Let W ⊆ R(C) be a maximal
antichain of (R(C) ≤) with w ∈ W , i.e., let W be an antichain of
(R(C),≤) such that for all u ∈ R(C) \W , there exists some v ∈ W
such that u < v or6 v > u. By Lemma 4.5, we see that the set W
is finite. Thus there exists a maximum co-ordinate value occurring in
the tuples in W . Let f(C) to be equal to this value.

(Notice that we have some freedom of choice when defining the function f ,
so there need not be a unique way of defining the function.)

With the function f defined, call

n = max({ f(C) | C ⊆ {1, ..., l}, C 6= ∅ }).

We establish that n is a stabilizer for the relation R. We assume, for
the sake of contradiction, that there there exist integers k, k′ > n and
m1, ...,mi−1,mi+1, ...,ml ∈ N such that the equivalence

(m1, ...,mi−1, k,mi+1, ...,ml) ∈ R
⇔

(m1, ...,mi−1, k
′,mi+1, ...,ml) ∈ R.

does not hold. Let k < k′. As by assumption the relation R is upwards
closed, it must be the case that

(m1, ...,mi−1, k,mi+1, ...,ml) 6∈ R
and

(m1, ...,mi−1, k
′,mi+1, ...,ml) ∈ R.

Otherwise we would immediately reach a contradiction. Call

wk = (m1, ...,mi−1, k,mi+1, ...,ml)
and

wk′ = (m1, ...,mi−1, k
′,mi+1, ...,ml).

Let C∗ ⊆ {1, ..., l} be the set of co-ordinate positions where the tuple wk′

(and therefore also the tuple wk) has a non-zero co-ordinate value. Let

5As ∅ is a stabilizing spectrum, we assume without loss of generality that R 6= ∅.
6There is a typo inherited from the original workshop version of the article here. Instead

of “u < v or v > u” it should read “u < v or v < u”.
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W (C∗) denote the domain of the maximal antichain of (R(C∗),≤) chosen
when defining the value of the function f on the input C∗. The tuple wk′

cannot belong to the set W (C∗), since the co-ordinate value k′ is greater
than n, and therefore greater than any of the co-ordinate values of the
tuples in W (C∗). Hence, as W (C∗) is a maximal antichain of (R(C∗),≤)
and wk′ ∈ R(C∗), we conclude that there exists a tuple u ∈W (C∗) such that
wk′ < u or u < wk′ . Since k′ > f(C∗), we must have u < wk′ . Therefore,
as also k > f(C∗), we conclude that u < wk. Since R is upwards closed and
u ∈ R, we have wk ∈ R. This is a contradiction, as desired.

The following theorem is the main result of the current section.

Theorem 4.7. Over the class of finite models of a vocabulary V containing
only unary relation symbols, fESOwo= < FO.

Proof. It is immediate by Theorem 3.3 that fESOwo= 6= FO (over finite V -
models). It thus suffices to show that fESOwo= ≤ FO over finite V -models.

To show that fESOwo= ≤ FO, by Proposition 4.3 it suffices to establish
that the spectrum Rϕ of an arbitrarily chosen fESOwo= sentence ϕ is stabi-
lizing. By Theorem 3.3, the spectrum Rϕ is upwards closed. Therefore, by
Theorem 4.6, Rϕ is a stabilizing spectrum.

Corollary 4.8. Over finite models of a vocabulary containing only unary
relation symbols, IFwo= < FO.

Note that Theorem 4.7 applies not only to fESOwo= but to any system
such that the definable classes of models with a unary vocabulary are closed
under bloating.7 Note also that the method of proof seems nonconstructive
in the sense that it seems to leave open the question whether there is an
effective translation from the system considered into FO.

4.2 FOwo= < IFwo= over the Class of Finite Models with a
Unary Vocabulary

In this subsection we establish that over the class of finite {P}-models, where
P is a unary relation symbol, we have FOwo= < IFwo=. The IFwo= sentence

∀x∃y∃z/{x}
(
P (y) ∧ (P (x)↔ P (z))

)
is true on a model M with three points, two of which satisfy P . The sen-
tence is not true on a model N with two points, one satisfying P and one
not. However, FOwo= cannot separate the models M and N. This is seen by
a straightforward Ehrenfeucht-Fräıssé argument involving a version of the
Ehrenfeucht-Fräıssé game that characterizes FOwo=. Instead of the usual

7Here we assume the standard convention that studies definability w.r.t. a class of
finite V -models, V being finite.
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partial isomorphism condition, this game involves the following end condi-
tion between the pebbles a1, ..., ak ∈ A = Dom(A) and b1, ..., bk ∈ B =
Dom(B) picked during a play of the k-round game involving models A and
B with a relational vocabulary. A play of the game defines a binary relation
Z = {(a1, b1), ..., (ak, bk)}. The relation Z is called a partial relativeness
correspondence between the models A and B if for all relation symbols R in
the vocabulary of the models, the condition Z(a′1, b

′
1), ..., Z(a′n, b

′
n) implies

RA(a′1, ..., a
′
n) ⇔ RB(b′1, ..., b

′
n). Here n is the arity of the symbol R. The

duplicator wins the play of the game if the relation Z defined by the play is
a partial relativeness correspondence. A discussion concerning the related
Ehrenfeucht-Fräıssé characterization theorem can be found in [2].

Theorem 4.9. Over finite models of a vocabulary V containing only unary
relation symbols, FOwo= < IFwo=.

Proof. It suffices to establish that the duplicator has a winning strategy in
the Ehrenfeucht-Fräıssé game for FOwo= for any number k of rounds played
on the models M and N defined above. The duplicator employs a strategy
where the reply to each one of the spoiler’s moves is simply a pick of any
element in the correct model that satisfies exactly the same unary {P}-type
as the element chosen by the spoiler.

Corollary 4.10. Over finite models of a vocabulary V containing only unary
relation symbols, FOwo= < fESOwo=.

5 Concluding Remarks

We have investigated the expressive power of the equality-free version of IF
logic without slashed connectives. The results obtained have been estab-
lished through a study of the logic fESOwo=. Our principal result is that
over finite models with a vocabulary containing only unary relation symbols,
the logics IFwo= and fESOwo= are weaker than FO. We have also identified
a model-transformation that preserves the truth of IFwo= sentences.

In the future we expect to tie up some loose ends that were left undis-
cussed here. This includes considering infinite models. Furthermore, we
wish to identify differences (rather than similarities) in the roles that differ-
ent logical constructors – such as negation and identity – play in versions
of IF logic and other logics of the same family such as dependence logic
[16]. The full systems of dependence logic and IF∗ coincide in expressive
power on the level of sentences, both being able to exactly capture exis-
tential second-order logic. However, the systems might perhaps differ in
expressive power when a suitable subset of the available logical constructors
is uniformly removed from both systems. Another possibility is to restrict
the number of available variable symbols to some finite number. The pos-
sibilities are endless indeed. Investigations along such lines should lead to
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a deeper understanding of the strengths and weaknesses different systems
have in relation to different applications.8

Acknowledgements. The author wishes to thank Lauri Hella, Kerkko
Luosto, Allen Mann and Jonni Virtema for valuable feedback.

References

[1] Caicedo X., Dechesne F. and Janssen T. M. V. Equivalence and Quan-
tifier Rules for Logic with Imperfect Information. Logic Journal of the
IGPL, 17(1):91-129, 2009.

[2] Casanovas E., Dellunde P. and Jansana R. On Elementary Equivalence
for Equality-free Logic. Notre Dame Journal of Formal Logic, 37(1):506-
522, 1996.

[3] Dickson L. E. Finiteness of the Odd perfect and Primitive Abundant
Numbers with n Distinct Prime Factors. American Journal of Mathe-
matics, 35(4):413-422, 1913.

[4] Galliani P. Probabilistic Dependence Logic. M.Sc. thesis, ILLC, 2008.

[5] Henkin, L. Some remarks on infinitely long formulas. In Infinitistic Meth-
ods: Proceedings of the Symposium on Foundations of Mathematics,
Warsaw, 29 September 1959, 167-183, Pergamon Press, 1961.

[6] Higman G. Ordering by Divisibility in Abstract Algebras. In Proceedings
of the London Mathematical Society 1952, s3-2(1):326-336, 1952.

[7] Hintikka J. Quantifiers vs. Quantification Theory. Dialectica, 27:329-358,
1973.

[8] Hintikka J. and Sandu G. Informational Independence as a Semanti-
cal Phenomenon. In Fenstad J. E. et al., editors, Logic, Methodology
and Philosophy of Science VIII, volume 126 of Studies in Logic and the
Foundations of Mathematics, 571-589, North-Holland, 1989.

[9] Kontinen Jarmo. Coherence and Complexity in Fragments of Dependence
Logic. Ph.D. thesis, ILLC, 2010.

8A different kind of an intriguing possibility is to consider systems that extend FO in a
similar but not the same way as IF∗ logic and dependence logic. One could, for example,
consider generalized atoms that could be defined atop team semantics. Such atoms would
make assertions about teams in the spirit of the dependence atoms of [16]; one could assert
for example that the variable x obtains only finitely many values in a team – to list one
possibility.

15



[10] Kontinen Juha and Nurmi V. Team logic and second-order logic. In Pro-
ceedings of WoLLIC 2009, Springer Lecture Notes in Computer Science
5514, 2009.

[11] Kontinen Juha and Väänänen J. On Definability in Dependence Logic.
Journal of Logic, Language and Information, 18(3):317-332, 2009.

[12] Malicki M. and Rutkowski A. On Operations and Linear Extensions of
Well Partially Ordered Sets. Order 21(1):7-17, 2004.

[13] Mann A. L. Independence-friendly Cylindric Set Algebras. Logic Jour-
nal of the IGPL, 17(6):719-754, 2009.

[14] Sevenster M. and Tulenheimo T. Approaches to Independence Friendly
Modal Logic. In van Benthem J., Gabbay D. and Löwe B., editors, In-
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