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ABSTRACT 

Streptococcus pneumoniae, or pneumococcus, can cause severe infections such as 

pneumonia, sepsis, and meningitis. Pneumococcal meningitis is a leading cause of 

bacterial meningitis worldwide. About 100 distinct S. pneumoniae serotypes have been 

identified. The most important serotypes are included in the available vaccines.                

In Finland, the 10-valent conjugate vaccine (PCV10) was introduced into the national 

immunization program in September 2010. Poland introduced PCV10 in January 2017.  

For this study, we used national surveillance data to determine the contribution of 

S. pneumoniae to the total burden of bacterial meningitis and evaluate the long-term 

trends in pneumococcal meningitis in Finland. We also assessed the population-based 

impact of PCV10 on the epidemiology of pneumococcal meningitis. In Poland, national 

population-based surveillance data were analyzed to obtain information on the baseline 

epidemiology of pneumococcal meningitis before the introduction of the first 

childhood pneumococcal conjugate vaccine, with a particular focus on incidence, 

serotype distribution, and antimicrobial susceptibility.  

During 1998–2014, pneumococcus was the most common cause of bacterial 

meningitis in Finland. It was also the leading cause of meningitis deaths in adults.        

The incidence rate of pneumococcal meningitis substantially decreased after the 

introduction of the conjugate vaccine. Seven years after PCV10 introduction, the overall 

incidence of pneumococcal meningitis decreased by 27% (95% CI = 12%, 39%), while 

the incidence of PCV10 serotypes decreased by 68% (95% CI = 57%, 77%). In age 

groups 0–4 and 50–64 years, overall incidence decreased by 64% and 34%, respectively. 

In adults 65 years of age, an 157% (95% CI = 56%, 342%) increase in non-PCV10 

serotypes offset a 69% reduction in PCV10 serotypes. Regardless, the overall mortality 

rate decreased by 42% (95% CI = 4%, 65%). The overall case fatality proportion was 

16% in the pre-PCV10 period and 12% in the PCV10 period (p = .41); among persons 

50–64 years of age, the case fatality proportion decreased from 25% to 10% (p = .04). 

In Poland, the annual incidence rate of overall pneumococcal meningitis ranged 

from 0.21 cases per 100,000 person-years in 2005 to 0.47 in 2015. Substantial regional 

differences in reported rates were observed. Overall incidence increased by 7% annually 

(95% CI = 6%, 8%) on average, primarily due to an increase of 3% (95% CI = 2%, 5%) 

among persons 15–49 years of age, 12% (95% CI = 10%, 13%) among those                 
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50–64 years of age, 18% (95% CI = 16%, 19%) among those 65–74 years of age, and 

9% (95% CI = 7%, 10%) among those 75 years of age. Overall case fatality proportion 

ranged from 4% in children <1 year to 31% in adults 65 years. PCV10 serotypes were 

responsible for 46% of all pneumococcal meningitis cases and 75% among children    

<5 years. However, the proportion of PCV10 serotypes decreased from 52% in      

2008–2011 to 41% in 2012–2015. The decline in children <5 years (from 87% to 57%) 

was more pronounced. Over a quarter of all isolates and half of the isolates in children 

<5 years were resistant to penicillin. Isolates with decreased susceptibility to cefotaxime 

constituted 13% of all isolates.  

S. pneumoniae was the main contributor to bacterial meningitis in Finland.                         

A substantial reduction in the morbidity and mortality due to pneumococcal meningitis 

was seen seven years after vaccine introduction. Nevertheless, an important disease 

burden remains in older adults because of an increase in pneumococcal meningitis 

caused by non-PCV10 serotypes. 

Although pneumococcal meningitis incidence rates were increasing in Poland,        

the overall and age-specific rates were considerably lower than those reported from 

other European countries before PCV10 introduction. The proportion of serotypes 

covered by the PCV10 vaccine during the baseline period was comparable with other 

European countries before PCV introduction. The low observed rates, considerable 

regional differences, and high case fatality proportion among the reported cases suggest 

substantial under ascertainment and underreporting of meningitis cases in Poland. 

Addressing these limitations and implementing improvements in the surveillance 

system should be considered when future studies to assess the impact of PCV10 are 

planned and conducted.  
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TIIVISTELMÄ 

Streptococcus pneumoniae eli pneumokokki voi aiheuttaa vakavan infektion, kuten 

keuhkokuumeen, verenmyrkytyksen tai aivokalvontulehduksen. Pneumokokki on 

tärkeimpiä bakteeriperäisen aivokalvontulehduksen (bakteerimeningiitin) aiheuttajia 

maailmassa. Siitä on tunnistettu sata eri serotyyppiä, joista tärkeimmät on huomioitu 

pneumokokkirokotteissa. Suomessa 10-valenttinen pneumokokkikonjugaattirokote 

(PCV10) otettiin kansalliseen rokotusohjelmaan syyskuussa 2010 ja Puolassa 

tammikuussa 2017. 

Tässä tutkimuksessa käytimme kansallisia seurantatietoja arvioidaksemme                    

S. pneumoniae:n merkitystä bakteerimeningiitin tautitaakassa sekä arvioidaksemme 

pneumokokin aiheuttaman aivokalvontulehduksen pitkän aikavälin kehitystä Suomessa. 

Tarkastelimme myös PCV10:n väestötason vaikutuksia pneumokokin aiheuttaman 

aivokalvontulehduksen epidemiologiaan. Puolassa käytimme kansallisia, väestöpohjaisia 

seurantatietoja tutkiaksemme pneumokokin aiheuttaman aivokalvontulehduksen 

epidemiologiaa ennen ensimmäisen lasten pneumokokkikonjugaattirokotteen 

käyttöönottoa. Kiinnitimme erityistä huomiota taudin ilmaantuvuuteen, 

serotyyppijakaumaan ja antibioottiherkkyyteen sekä resistenssin yleisyyteen.  

Vuosina 1998–2014 pneumokokki oli yleisin bakteeri, joka aiheutti 

aivokalvontulehduksia Suomessa. Se oli myös tärkein kuolemaan johtaneen 

aivokalvontulehduksen aiheuttaja aikuisväestössä. Pneumokokin aiheuttaman 

aivokalvontulehduksen ilmaantuvuus väheni huomattavasti 10-valenttisen 

konjugaattirokotteen käyttöönoton jälkeen. Seitsemän vuotta PCV10:n käyttöönoton 

jälkeen pneumokokin aiheuttaman aivokalvontulehduksen kokonaisilmaantuvuus oli 

vähentynyt 27 % (95 % luottamusväli, 12–39 %). PCV10-rokotteeseen kuuluvien 

serotyyppien aiheuttaman aivokalvontulehduksen ilmaantuvuus oli vähentynyt 68 % (95 

% luottamusväli, 57–77 %). Ilmaantuvuus vähentyi 64 % alle 5-vuotialla lapsilla ja 34 % 

50–64-vuotiailla. Vaikka 65-vuotta täyttäneiden ilmaantuvuus väheni 69 %, laskua 

PCV10-serotyypien ilmaantuvuudessa kompensoi 157 %:n lisääntyminen muiden kuin 

PCV10rokoteserotyypien ilmaantuvuudessa. Kuolleisuus kuitenkin väheni 42 % (95 % 

luottamusväli, 4–65 %). Ennen PCV10 käyttöönottoa tapauskuolleisuus oli 16 %, kun 

se PCV10 käyttöönoton jälkeen oli 12 % (p=0,41). 50–64-vuotiailla tapauskuolleisuus 

oli 25 % ennen PCV10 käyttöönottoa ja 10 % se jälkeen (p=0,04). 
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Puolassa pneumokokkimeninigiitin vuotuinen ilmaantuvuus 100 000 henkilövuotta 

kohden vaihteli 0,21 tapauksesta vuonna 2005 0,47 tapaukseen vuonna 2015. 

Ilmaantuvuudessa havaittiin merkittäviä alueellisia eroja. Kokonaisilmaantuvuus 

lisääntyi keskimäärin 7 % vuosittain (95 % luottamusväli, 6–8 %). Lisääntyminen 

havaittiin kaikissa ikäryhmissä: 3 %:n nousu (95 % luottamusväli, 2–5 %) 15–49-

vuotiailla, 12 % nousu (95 % luottamusväli, 10–13 %) 50–64-vuotiailla, 18 % nousu (95 

% luottamusväli, 16–19 %) 65–74-vuotiailla ja 9 % nousu (95 % luottamusväli, 7–10 %) 

75-vuotiaiden keskuudessa. Tapauskuolleisuus vaihteli 4 %:sta alle 1-vuotiailla lapsilla 

31 %:iin 65-vuotiailla aikuisilla. PCV10-rokotteeseen kuuluvat 10 serotyyppiä 

aiheuttivat 46 % kaikista pneumokokkimeningiittitapauksista. Alle 5-vuotialla lapsilla 

osuus oli 75 %. PCV10-serotyyppien osuus kuitenkin väheni 52 prosentista 41 

prosenttiin verrattaessa vuosia 2008–2011 vuosiin 2012–2015. Alle 5-vuotiailla lapsilla 

väheneminen oli suurempi, 87 prosentista 57 prosenttiin. Yli neljäsosa kaikista 

bakteerikannoista ja puolet alle 5-vuotiaiden kannoista oli resistenttejä penisilliinille. 

Bakteerikannoista 13 prosenttia oli herkkyydeltään alentunut kefotaksiimille. 

Pneumokokki oli pääasiallinen bakteerimeningiitin aiheuttaja Suomessa tutkimuksen 

aikana. Pneumokokkimeningiitin sairastuvuuden ja kuolleisuuden huomattava 

vähentyminen havaittiin pian rokotteen käyttöönoton jälkeen sekä seitsemän vuoden 

seurannassa. Tästä huolimatta PCV10-rokotteeseen kuulumattomien serotyyppien 

lisääntyminen aiheuttaa ikäihmisillä edelleen merkittävää sairastuvuutta 

pneumokokkimeningiittiin.  

Vaikka pneumokokkimeningiitin ilmaantuvuus Puolassa lisääntyi tutkimuksen 

aikana, yleiset ja ikäkohtaiset ilmaantuvuusluvut olivat huomattavasti pienempiä kuin 

muissa Euroopan maissa ennen PCV10:n käyttöönottoa. PCV10-rokoteserotyyppien 

aiheuttamien infektioiden osuus kaikista pneumokokkimeningiittitapauksista oli 

kuitenkin samaa luokkaa kuin muissa Euroopan maissa ennen konjugaattirokotusten 

aloittamista. Tästä huolimatta ilmoitettujen tapausten vähäinen määrä, merkittävät 

alueelliset erot ja suuri tapauskuolleisuus viittaavat huomattavaan 

pneumokokkimeningiitin alidiagnosointiin ja aliraportointiin. Nämä 

seurantajärjestelmän haasteet tulee Puolassa arvioida ja mahdollisuuksien mukaan ottaa 

huomioon suunniteltaessa tulevia PCV10 rokotusohjelman vaikuttavuustutkimuksia.   
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1 INTRODUCTION 

Streptococcus pneumoniae is a commensal bacterium that often causes mild upper 

respiratory system infections and otitis media [1]. However, on rare occasions, it can 

cause life-threatening invasive disease manifested as septicemia, pneumonia, or 

meningitis [2]. Pneumococcus is a leading pathogen of bacterial meningitis 

worldwide [3,4]. Pneumococcal meningitis caused an estimated 83,900 cases and 

37,900 deaths among children less than 5 years of age in 2015 [5]. The observed 

pneumococcal meningitis rates differ globally and over time [5,6]. This variability is 

partly related to different diagnostic activities and the sensitivity of surveillance 

systems. The epidemiology of pneumococcal disease is complex due to the 

occurrence of about 100 distinct serotypes [7]. Nevertheless, only about 20–30 are 

responsible for most invasive disease cases [8,9].  

The burden of pneumococcal meningitis changed after the introduction of the  

7-valent conjugate pneumococcal vaccine, which was later replaced by 10- and        

13-valent conjugate vaccines [10]. Most studies have reported a substantial decrease 

in pneumococcal meningitis incidence due to vaccine serotypes in vaccine-eligible 

children and unvaccinated older adults [11–13]. However, a concomitant increase in 

cases caused by non-vaccine serotypes was reported in many countries [14].            

The magnitude of the changes depended on several factors, such as incidence and 

serotype distribution before vaccine introduction, vaccine coverage, and the amount 

of time after vaccine introduction.  

This study aimed to examine the role of S. pneumoniae in the overall burden of 

bacterial meningitis and the long-term trend of pneumococcal meningitis in Finland. 

We also examined the long-term impact of PCV10 on pneumococcal meningitis 

morbidity and mortality. In addition, we aimed to provide comprehensive baseline 

information on the epidemiology of pneumococcal meningitis before the 

introduction of PCV10 into the national immunization program in Poland.  
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2 LITERATURE REVIEW 

2.1 Streptococcus pneumoniae microbiology 

The bacterium Streptococcus pneumoniae was one of the first pathogens identified and 

described in the golden era of microbiology in the 19th century [15]. It contributed 

to significant scientific discoveries, such as the concept of humoral immunity, the 

Gram stain procedure, research on the therapeutic efficacy of penicillin, and the 

discovery of DNA [15–18]. Independently two researchers, Louis Pasteur and 

George M. Sternberg, first isolated S. pneumoniae in 1881 [16]. Since the isolated 

bacterium was the most common cause of lobar pneumonia, the term 

“pneumococcus” was generally used by the late 1880s. In 1920, pneumococcus was 

officially renamed Diplococcus pneumoniae, but because it grows in chains in liquid 

growth media, a characteristic feature of other members of the Streptococcus genus, it 

was finally named Streptococcus pneumoniae in 1974 [19]. Nevertheless, the term 

“pneumococcal disease” is still used today. 

S. pneumoniae is a gram-positive, facultatively anaerobic catalase-negative 

diplococcus [3]. In the bacterium’s surface, three main layers can be identified: the 

plasma membrane, cell wall, and capsule. Non encapsulated pneumococci are also 

identified. Based on the capsule’s unique chemical structure and polysaccharide and 

serologic (immunologic) properties, 100 distinct S. pneumoniae serotypes belonging to 

46 serogroups have been identified [20,21]. Capsular polysaccharides are highly 

immunogenic, and antibodies against them are serotype specific, but cross-

protection against different serotypes can occur due to similarity of capsule 

polysaccharides [22,23].  

2.2 Virulence factors of Streptococcus pneumoniae 

The capsule is a major virulence factor of S. pneumoniae [24], and nearly all clinical 

isolates of S. pneumoniae contain it. The capsule protects against opsonization and 

phagocytosis, allowing the bacterium to escape the host’s immune defense [25].    

The capsule is critical for colonization, prevents mechanical removal by mucus, and 
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reduces exposure to antimicrobials [26,27]. The capsule’s structure and thickness 

determine the bacterium’s ability to survive in the bloodstream and cause invasive 

infection, that is, invasive pneumococcal disease (IPD). Strains with a thick capsule 

are more virulent, while strains with a thinner capsule are more prone to cause 

asymptomatic carriage [28]. Although about 100 serotypes exist, only around 20–30 

are responsible for most invasive disease cases [8]. S. pneumoniae has the ability to 

undergo capsule switching due to transformation of capsular genes [29]. 

Nonencapsulated S. pneumoniae isolates have primarily been responsible for 

noninvasive pneumococcal disease, particularly conjunctivitis and otitis media 

[30,31].  

In addition to the capsule other virulence factors that facilitate colonization and 

survival in the host include surface proteins, toxins and physical structures [32].     

The adhesin phosphorylcholine (ChoP) mediates adherence to the receptor for 

platelet-activating factor (rPAF) that is widely distributed on the epithelial surface of 

the human nasopharynx [33]. In addition, several proteins on the pneumococcus 

surface, which are targeted for new vaccine development, such as protein A and 

protein C (choline-binding protein A, CbpA), are involved in the pathogenicity of  

S. pneumoniae [34,35]. Proteins aid in colonization by adhering to epithelial cell 

membranes and protect against the host’s complement system.  

Pneumolysin is well known virulence factor for pneumonia and upper respiratory 

tract infection [36]. It is produced by all S. pneumoniae serotypes and released only 

when the bacterium undergoes autolysis. Pneumolysin is cytotoxic to ciliated 

respiratory epithelial cells, slows ciliary beating in organ culture, and causes 

inflammation by activating complement and inducing the production of tumor 

necrosis factor alpha (TNFα) and interleukin-1 by human monocytes [37,38]. 

Pneumolysin’s cytotoxic effects can also directly inhibit phagocyte and immune cell 

function [39]. In contrast to data on pneumolysin’s known role in pneumonia and 

the upper respiratory tract, data on its role in the pathogenesis of meningitis are 

inconsistent [40]. However, recent studies have suggested that it might cause 

neuronal cell death and lead to severe neurological sequelae [34,40–43].  

Cell wall lysis and the release of pneumolysin, inflammatory peptidoglycan and 

teichoic acids are initiated by the autolysin LytA [44]. The role of LytB and LytC is 

not as well described as LytA, but both may play a role in adhesion to epithelial cells 

by modifying proteins on cell surfaces and by inhibiting the activation of the 

alternative and classical pathways of the complement system [25,45]. 

Out of 50 lipoproteins, at least four have been shown to be associated with 

virulence: pneumococcal surface adhesin A (PsaA), pneumococcal iron acquisition 



22 
 

A (PiA), pneumococcal iron uptake A (PiuA) and pneumococcal iron transporter 

(PitA). PsA is responsible for the transport of magnesium and zinc into cell and PiA, 

PiuA, PitA mediate iron uptake [46].  

Another example of the pneumococcal virulence factors are immunoglobulin A1 

(igA1) protease and hydrogen peroxide. IgA1 protease breaks down human IgA1 

into fragments and thus reduces the killing activity of these antibodies [47]. 

Hydrogen peroxide damages host DNA [48]. It also helps to limit or eliminate 

competitive bacteria such as Haemophilus influenzae and Neisseria meningitidis from the 

same niche [49].  

Pneumococcus has also special hair-like structures located on the cell wall- pili. 

Pili helps to attach to the host epithelial cells in the nasopharynx and lungs [50]. They 

also provide a protection against phagocytosis by host immune cells [50].  

2.3 From carriage to invasive pneumococcal disease 

The major reservoir of S. pneumoniae is the nasopharynx [1]. Most pneumococci last 

in the nasopharynx for several weeks to four months and are cleared with no 

systemic symptoms in the host [1,19]. Duration and colonization rates are highest 

during the first two years of life and decrease thereafter due to immune system 

maturation. Carriage rates generally vary from 5%–10% in healthy adults to         

20%–40% in healthy children [19,51,52]. However, rates differ in different 

geographical locations and seasons, with higher carriage during winter months [53]. 

Host risk factors associated with higher carriage rates include race, particularly 

Australian Aboriginals and Native Americans [54]; tobacco smoking; alcohol abuse; 

asthma; and chronic obstructive pulmonary disease (COPD) [55,56].  

Transmission of S. pneumoniae occurs through direct contact with respiratory 

secretions or the inhalation of aerosols from asymptomatic carriers or persons with 

pneumococcal disease [1]. It could also be transmitted indirectly through the 

contamination of objects with respiratory secretions [57]. Crowded places, such as 

childcare centers, are a significant risk factor for S. pneumoniae acquisition and 

transmission [58]. In adults, military camps, prisons, nursing homes, and homeless 

shelters have been associated with higher transmission and occurrence of epidemics 

[59–62]. The usage of antimicrobials and vaccines also influences carriage rates.    

The usage of antimicrobials was found to significantly reduce the risk of carriage the 

following month in a setting with a low prevalence of pneumococcal antimicrobial 

resistance [63]. The introduction of pneumococcal conjugate vaccines (PCV) was 
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associated with the decrease in the carriage of vaccine type (VT) pneumococci and 

the corresponding increase in the carriage of non-vaccine serotypes (NVT) [64,65].  

Due to host innate and acquired immune mechanisms, pneumococcal 

colonization mostly does not proceed to clinical disease [66]. Nevertheless, poor 

mucosal immune response can result in persistent or recurrent colonization and 

subsequent infection in some situations [2]. Local spread of S. pneumoniae in the upper 

respiratory system may lead to noninvasive disease such as sinusitis or otitis media, 

but the aspiration of S. pneumoniae from the nasopharynx to the lung alveoli may 

result in IPD (i.e., pneumonia) or even bacteremia if the bacteria invade the 

bloodstream [67]. The bacteria can reach the bloodstream through various pathways, 

including lymphatics, cell damage to the epithelial and endothelial cells, and the direct 

invasion of endothelial cells [51]. Once in the bloodstream, S. pneumoniae spreads into 

many organs, such as the peritoneum or joints [2]. The central nervous system (CNS) 

can also be infected: invasion from the blood into the cerebrospinal fluid is thought 

to occur in the choroid plexus or by crossing the blood-brain barrier in the cerebral 

capillaries that traverse the subarachnoid space [51].  

 

*Adopted from Bogaert et al [2] 

Figure 1. Spread of S. pneumoniae  
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Several host characteristics are associated with increased risk of IPD (Table 1).      

The incidence of IPD has a bimodal age distribution and is highest in young children 

and older adults [68]. Age is independently associated with risk of invasive 

pneumococcal disease, even after controlling for other risk factors [69–71]. Greater 

susceptibility to infection in young children and older adults is related to immune 

system functioning [72]. The immune system in infants is immature with poor T-cell 

independent responses to antigens [25]. In addition, immature submucosal glands 

and surface epithelial secretory cells result in reduced mucociliary clearance and 

increased colonization [73]. Older age is associated with a decline in efficiency of the 

immune system (immunosenescence) on one hand, and persistent low-grade 

inflammation (inflammaging) on the other [74]. Both immunosenescence and 

inflammaging, as well as an increasing prevalence of underlying medical conditions 

result in a greater risk of pneumococcal disease in older adults [75]. 

In immunocompetent persons several medical conditions have been associated 

with an increased risk of pneumococcal disease and more severe disease. These 

include  chronic heart diseases (e.g. congestive heart failure, cardiomyopathy, 

arrythmias, cardiovascular and valve diseases), chronic pulmonary diseases              

(e.g. chronic obstructive pulmonary disease),  chronic liver diseases (e.g. cirrhosis) 

and diabetes mellitus [56,76]. The presence of more than one risk factor is associated 

with higher risk of IPD than individual risk factor [56].   

Immunocompromised persons have highest rates of pneumococcal diseases. 

People with conditions such as congenital immunodeficiency, diseases of white cells 

(e.g. leukemia), generalized malignancy, anatomic or functional asplenia, human 

immunodeficiency virus (HIV) infection, receiving immunosuppressive treatment, 

or chronic renal failure/nephrotic syndrome, are at high risk of IPD [77,78].  

In addition to host factors, socioeconomic, behavioral, and environmental factors 

also play an important role in susceptibility to disease [79,80]. Crowded living in 

conditions, malnutrition, alcoholism, and cigarette smoking have been shown to 

increase the risk of IPD. Air pollution and winter season, low air humidity have also 

been associated with increased risk of IPD [81]. 
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Table 1. Conditions that predispose to S. pneumoniae infection 

 
Host  
risk factors 

Age, <2 or >65 years 

Male sex 

Race (Black, American Indian, Alaskan Native) 

 Chronic 
medical 
conditions 

Congestive heart failure  
Cardiomyopathy 
Arrythmias 

 Chronic obstructive pulmonary disease 
 Liver cirrhosis  
 Diabetes mellitus 
 Renal insufficiency 
 Neurological disease  
 Cerebrovascular disease  
 Dementia 
 Decreased cough reflex 
 Cochlear implants 

 Immune 
deficiencies 

Hypo- or a-gammaglobulinemia or secondary immunoglobulin 
deficiency 

 Complement defects, especially C3 
 Leukemia 
 Lymphoma 

Functional or anatomical asplenia 
Human immunodeficiency virus (HIV) infection 

Socioeconomic  
risk factors 

Low household income 

Crowding 

Institutionalization 

Malnutrition 

Behavioral  
risk factors 

Cigarette smoking 

Alcoholism 

Environmental  
risk factors 

High air pollution level 

Winter season 

Exposure to environmental tobacco smoke 

Source: Based on review of the literature 

2.4 Pneumococcal meningitis 

2.4.1 Pathogenesis 

The CNS protection comprises the bony skull, the meninges (with three layers: the 

outermost dura mater, the arachnoid, and the innermost pia mater), the blood-brain 

barrier (BBB), and the blood-cerebrospinal fluid barrier (BCSFB) [82–84].  

The BBB is a structural and functional barrier formed by cerebromicrovascular 

endothelial cells, astrocytes, pericytes, and the basement membrane [82]. These cells 

are characterized by tight junctions with extremely high electrical resistance, which 
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limits the paracellular flux; sparse pinocytic activity, which limits the transcellular 

flux; and specific carrier and transport systems [85]. The BBB thus maintains the 

homeostasis of the neural microenvironment by regulating the passage of molecules 

and ions and protects the CNS from microorganisms and toxins that might circulate 

in the blood [86].  

The BCSFB is formed by tight junctions between epithelial cells located at the 

choroid plexus and endothelial cells of veins and venules within the subarachnoid 

space [83]. The functions of the BCSFB are similar to those of the BBB, with the 

main differences that cells of the BCSFB secrete CSF from the choroid plexus into 

the brain ventricular system, and tight junctions between the epithelial cells have a 

lower electric resistance than BBB cells. The BSCFB might therefore be more 

vulnerable to microbial penetration than the BBB [85].  

Meningitis is an inflammation of the meninges and subarachnoid space, including 

cerebrospinal fluid in the subarachnoid space and the cerebral ventricles [87] (Figure 

2). In severe cases, bacterial invasion into the CNS may also result in the 

inflammation of cerebral tissue (encephalitis) and spinal cord tissue (myelitis). 

 

 
Source: Graphicriver.net [paid material] 

Figure 2. Bacterial meningitis 
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To invade the meninges, the pathogen must break two physiological barriers 

between the bloodstream and CNS (the BBB and BCSFB) or enter the CNS directly 

by crossing the external barrier (e.g., during head injury or neurosurgical procedures) 

or through direct travel of the bacteria to the brain from the nasopharynx via 

olfactory ensheathing cells or trigeminal nerves [84,88–92].  

The initial step that leads to hematogenous pneumococcal meningitis is the 

colonization of the nasopharynx. Due to the virulence factors described in Section 

2.1, S. pneumoniae penetrates host cellular barriers to initiate a local infection that can 

eventually result in systemic spread. High-level bacteremia is considered necessary, 

although insufficient, for microbial entry into the subarachnoid space [93,94].  

Pathogens may cross the BBB and BCSFB via transcellular penetration, 

paracellular entry, or infected leukocytes from the peripheral circulation (the Trojan 

horse mechanism) [85]. S. pneumoniae crosses the BBB through the transcellular 

penetration of cerebromicrovascular endothelial cells [95]. Once S. pneumoniae has 

entered the subarachnoid space, it should survive since host defense mechanisms are 

severely limited in that location: the levels of neutrophils, plasma cells, complement 

components, and immunoglobulins are low in the normal, uninflamed state [96]. 

Low concentrations of capsule-specific immunoglobulins and complement factors, 

together with a paucity of macrophages in the CSF, allow the survival and replication 

of the bacteria almost as efficiently as in culture broth [85].  

S. pneumoniae replication is associated with the release of bacterial products, such 

as peptidoglycan, and highly immunogenic cell wall fragments. This results in the 

expression of cytokines, chemokines, and cell-adhesion molecules, proteolytic 

enzymes, oxidants, cytotoxicity, and apoptosis, which lead to increased BBB 

permeability and pleocytosis [88]. The host inflammatory reaction and bacterial 

toxins lead to endothelial injury with loss of cerebrovascular autoregulation, carbon 

dioxide reactivity of cerebral vessels, and loss of integrity of the BBB [88].                 

The breakage of the BBB allows plasma to escape into the brain, resulting in 

vasogenic cerebral edema, followed by an increase in intracranial pressure. Cytotoxic 

edema can also cause raised intracranial pressure due to an increase in intracellular 

water following alterations of the cell membrane and loss of cellular homeostasis 

[97]. Interstitial edema occurs due to the blockade of CSF resorption across the 

inflamed arachnoid villous system and thus an increase in CSF volume [98]. Finally, 

the direct bacterial attack and the effects of the inflammatory responses on the 

cortical blood vessels usually result in the proliferation of the endothelial cells and 

therefore swelling of the vessel walls and narrowing of their lumen. High intercranial 
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pressure can cause cerebral herniation or decreased cerebral perfusion, which can 

ultimately lead to brain injury and death (Figure 3).  

 

 

BBB: blood-brain barrier, CBV: cerebral blood volume  

*From Koedel et al. [88] 

Figure 3. Pathophysiological alterations leading to neuronal injury during bacterial meningitis  

2.4.2 Diagnosis and clinical presentation 

Initial diagnosis of meningitis is based on clinical examination, followed by a lumbar 

puncture (LP). However, LP is contradicted in patients at risk of brain herniation 

and those with septic shock or coagulopathy. In addition, before LP is performed, 

computed tomography (CT) or magnetic resonance imaging (MRI) should be 

undertaken in patients with signs of brain shift and those with a Glasgow coma scale 

score <10 [99]. Cytological examination of CSF is helpful in the presumptive 

diagnosis of acute bacterial meningitis. Classic abnormalities of CSF composition 

include pleocytosis of mainly polymorphic leukocytes, low glucose concentration, 

low CSF to blood glucose ratio, and elevated protein levels [100]. In neonates, 

however, CSF analysis often does not reveal an increased leukocyte count [101]. 
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Preliminary identification of a causative pathogen from CSF includes the detection 

of the bacterium via Gram stain and rapid diagnosis kits, such as latex agglutination 

tests. Since bacterial antigen tests’ sensitivity is limited, the presumptive causative 

organism should be confirmed by culture or the amplification of bacterial DNA by 

polymerase chain reaction (PCR) from clinical specimens collected from sterile sites, 

such as CSF or blood. The CSF culture is the gold standard for diagnosing bacterial 

meningitis and can identify the causative pathogen in 81%–93% and 76%–88% of 

patients with pneumococcal meningitis, respectively [102–104]. An advantage of 

PCR over culture is its usefulness in patients who received intravenous antibiotic 

treatment before LP, as blood and CSF cultures are often negative in those patients. 

Although PCR testing is sensitive and specific and allows faster results than culture, 

it is not routinely performed in settings with low diagnostic capacity. A disadvantage 

of PCR is that it can sometimes produce false positive blood results in children 

colonized by pneumococcus [105]. For public health purposes, the serogrouping or 

serotyping of pneumococcal isolates can be performed. The Quellung reaction or 

the capsular reaction test is typically used for serotyping. Other methods include 

latex or coagglutination and counterimmunoelectrophoresis (CIEP) [106].  

The clinical presentation of pneumococcal meningitis is indistinguishable from 

that of another form of bacterial meningitis. Symptoms generally include headache, 

fever, neck stiffness, and a change in mental status. Almost all patients have at least 

two of these symptoms, while less than half have all four [107,108]. Nausea and 

vomiting can also occur. Cranial nerve palsies may occur due to increased intercranial 

pressure (in approximately 17% of cases). Seizures and focal neurologic deficits can 

be observed due to brain ischemia in 7%–21% and 29%–42% of patients, 

respectively [103]. Arterial stroke occurs in up to 30% of patients, cerebral venous 

thrombosis in 9%, and intracerebral hemorrhage in up to 9% [109]. Systemic 

complications, such as sepsis and cardiorespiratory failure, are reported in 

approximately 38% of cases [104,108]. In neonates, the symptoms are nonspecific 

and include poor feeding, irritability, hyperthermia or hypothermia, hypertonia or 

hypotonia, and respiratory distress. A bulging fontanelle is seen in one third of 

neonatal cases and usually occurs late in illness [110].  

2.4.3 Treatment  

The medical treatment of bacterial meningitis should start as soon as possible, 

preferably within one hour of presentation to a medical facility [100]. Several studies 

have confirmed that a delay in initiating antimicrobial treatment is associated with 
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poor outcome and death [111,112]. A delay in antimicrobial administration of more 

than six hours after symptom onset was found to be associated with an 8.4-fold 

greater risk of death [112]. Empiric antimicrobial treatment should be based on 

patient age and underlying comorbidity. Since antimicrobial-resistant S. pneumoniae 

strains have become increasingly common over the past few decades, local 

susceptibility patterns should also be considered. The prevalence of S. pneumoniae 

strains not susceptible to penicillin ranges from 7% to over 50% between geographic 

regions [113,114]. Countries with high penicillin resistance rates include the USA, 

Canada, China, Croatia, Greece, Italy, Mexico, Pakistan, Poland, Spain, and Turkey 

[115]. As S. pneumoniae, N. meningitidis, and H. influenzae are the most common causes 

of meningitis in otherwise healthy adults up to age 60, the recommended initial 

treatment against bacterial meningitis includes ceftriaxone or cefotaxime together 

with vancomycin in countries with high microbial resistance rates. Once the CSF 

culture and antibiotic susceptibility testing results are available, the antimicrobial 

treatment should be tailored to the specific pathogen. If the S. pneumoniae strain is 

penicillin resistant (minimal inhibitory concentrations (MICs) > 0.06) but 

cephalosporin-sensitive, cefotaxime or ceftriaxone should be continued. If the           

S. pneumoniae strain is penicillin and cephalosporin resistant, ceftriaxone or 

cefotaxime and vancomycin should be continued [115]. 

Despite prompt, adequate antimicrobial treatment, mortality of bacterial 

meningitis remains high. This is related not only to the effect of the bacteria itself 

but also because bactericidal antimicrobials lyse the pathogen, causing the release of 

proinflammatory bacterial components that trigger the host immune response, 

which in turn contributes to neuronal and brain damage [87]. Adjunctive therapy 

with dexamethasone (an anti-inflammatory corticosteroid) is thus recommended, 

along with antimicrobial treatment. Dexamethasone usage during bacterial 

meningitis, particularly pneumococcal meningitis, revealed a significant reduction in 

unfavorable outcomes and death in children and adults [116,117]. In S. pneumoniae 

infections, mortality decreased from 34% with placebo to 14% with dexamethasone 

[116]. In children, corticosteroids reduced severe hearing loss (RR = 0.61, 95% CI 

= 0.44, 0.86). In adults, corticosteroids significantly protected against death (RR = 

0.57, 95% CI = 0.40, 0.81) and short‐term neurological sequelae (RR = 0.42, 95% 

CI = 0.22, 0.87). 
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2.4.4 Prevention 

Since even early treatment of meningitis does not eliminate the risk of unfavorable 

outcomes, prevention is the most crucial method to reduce the disease’s burden and 

impact. The first attempt to control pneumococcal disease using whole killed 

pneumococci occurred in South Africa as early as 1911 [118]. Due to further 

development in immunology, the first pneumococcal vaccines containing purified 

polysaccharide capsules as antigens were used in the 1920s [119].  

The pneumococcal capsular polysaccharide vaccine (PPSV23), approved for use 

in 1983, is now used. This vaccine contains 23 polysaccharide serotypes (Table 2). 

In the USA and many European countries, PPSV23 is recommended for persons 

aged ≥50 years and persons aged 2 years who are at increased risk for 

pneumococcal disease. PPSV23 was found to be effective in preventing invasive 

disease caused by serotypes in the vaccine. Nonetheless, information on their effect 

on pneumococcal meningitis alone is scarce [120–122].  

In Finland and Poland, PPSV23 is recommended for adults, especially those at 

risk for pneumococcal infection. However, vaccine coverage is low in both 

countries. 

Pneumococcal capsular polysaccharides are T-cell-independent antigens 

associated with poor or absent immunogenicity in infants <24 months of age and 

failure to induce immunological memory at any age [123,124]. The polysaccharide 

vaccine also has little to no effect on nasopharyngeal and oropharyngeal carriage. 

The second generation of vaccines in which capsular polysaccharides are conjugated 

to protein was therefore developed (Table 2). Conjugate vaccines provide 

significantly increased serotype-specific T-cell-mediated immunity and reduce 

carriage and invasive disease [125].  

The first conjugated vaccine containing seven purified capsular polysaccharides 

(PCV7) was licensed in 2000 in the USA and 2001 in the EU [125]. In 2009, a 10-

valent pneumococcal non-typeable H. influenzae protein D conjugate vaccine 

(PCV10) was licensed in Europe [126]. This vaccine has never been licensed in the 

USA. In 2010, PCV7 was replaced with the higher-valent 13-valent pneumococcal 

conjugate vaccine (PCV13). The efficacy of additional serotypes was inferred before 

licensure from an immunological correlate of protection established for PCV7 

serotypes and not based on direct evidence of efficacy [127]. In 2020, the WHO 

licensed a new low-cost PCV10 vaccine from the Serum Institute of India for use in 

low- and middle-income countries [128]. In 2021, two new vaccines were licensed: 
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15- and 20-valent pneumococcal conjugate vaccines. The serotypes included in each 

vaccine and indications are presented in Table 2.  

As of 2017, pneumococcal vaccination programs had been introduced in 140 

countries [129]. In Finland, PCV10 vaccination was introduced in the national 

vaccination program in September 2010. The vaccine is administered free of charge 

with a 2+1 schedule at 3, 5, and 12 months of age. The vaccine uptake was about 

94% in 2011–2018 [130].  

In Poland, PCV10 vaccination was introduced into the childhood immunization 

program in January 2017. The vaccine is administered free of charge with a 2+1 

schedule at 2, 4, and 13 months of age. Before 2017, pneumococcal vaccines (PCV10 

registered in 2001, PCV10 registered in 2009, and PCV13 registered in 2010, as well 

as the 23-valent polysaccharide vaccine, PPSV23) were offered free of charge only 

to children <5 years of age with risk factors. The indications included trauma or 

central nervous system defects with cerebrospinal fluid (CSF) leakage, chronic heart 

failure, immunological-hematological diseases, or HIV infection. Local vaccination 

campaigns, where immunization was available free of charge for all children <2 years 

of age, were also arranged [131]. 
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2.5 Epidemiology of pneumococcal meningitis 
 

Streptococcus pneumoniae, H. influenzae, and N. meningitidis are the leading causes of 

bacterial meningitis worldwide [132,133]. Meningitis accounts for approximately 

4%–10% of cases of all invasive pneumococcal disease [134,135]. The burden of 

pneumococcal meningitis is highest among young children <5 years of age and older 

adults >65. Among children <5 years of age, pneumococcal meningitis caused about 

83,900 cases and 37,900 deaths in 2015 [5]. The global incidence rate of 

pneumococcal meningitis in children, irrespective of HIV status, was 13 cases per 

100,000 children (uncertainty range (UR) = 5–26) and varies substantially by 

geographical region. The lowest incidence (four cases per 100,000 [uncertainty range 

= 2–8]) was observed in Europe and the highest (21 cases per 100,000 [uncertainty 

range = 9–45]) in Africa. The mortality rate was also lowest (one death per 100,000 

children [UR = 0–2]) in Europe and the Americas and highest (13 deaths per 100,000 

children [UR = 5–28]) in Africa [5]. 

Pneumococcal meningitis cases and deaths in children <5 years of age estimated 

for 2015 were lower than those estimated for 2000, when pneumococcal meningitis 

caused approximately 103,000 cases and 60,500 deaths [6]. The global incidence rate, 

irrespective of HIV status, was around 17 cases per 100,000 children (UR = 8–21) 

[6]. The greatest change in incidence (from 38 cases per 100,000 children in 2000 to 

21 cases per 100,000 children in 2015) was also observed in Africa.  

Pneumococcal meningitis is the most severe bacterial meningitis. Case fatality 

proportion depends on age, the presence of underlying conditions, and geographic 

region. It ranges from 10%–37% in high-income countries to over 61% in low-

income countries [102].  

Pneumococcal meningitis is also associated with long-term sequelae in survivors, 

such as sensor-motor deficits, hearing loss, and neuro-intellectual impairment.      

The risk of at least one sequelae is estimated to be 25% (95% CI = 16.2%, 35.4%) 

to 32% (95% CI = 27.2%, 36.3%) [136,137]. The most commonly reported sequelae 

after pneumococcal meningitis are hearing loss (9%–21%) and cognitive difficulties 

(4%–7%) [136].  
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2.5.1 Effect of conjugate vaccination on pneumococcal meningitis 

 

The epidemiology of pneumococcal meningitis has changed substantially since the 

introduction of conjugate vaccines (Table 3). Before PCV7 introduction, seven 

serotypes in the vaccine were responsible for approximately 70%–80% of IPD, 

including meningitis [138,139]. Since PCV7 introduction, a significant reduction of 

41%–95% in vaccine type meningitis has been observed in the pediatric population 

and other age groups.  

In the USA, decreases of 92% in vaccine type (VT) pneumococcal meningitis 

incidence (from 0.61 cases per 100,000 population in 1998–1999 to 0.05 cases per 

100,000 population in 2006–2007) and 26% in any serotype incidence (from 1.09 

cases in 1998–1999 to 0.81 cases per 100,000 population in 2006–2007) were 

observed [140]. In England and Wales, a 95% reduction in VT pneumococcal 

incidence (from 2.43 cases in 2000–2006 to 0.12 in 2008–2010) and an overall 

reduction of 44% in pneumococcal meningitis incidence (from 3.18 cases per 

100,000 population in 2000–2006 to 1.44 cases in 2008–2010) in children <5 years 

of age were reported [141]. A similar impact was observed in other European 

countries, such as Denmark [142], the Netherlands [12], France [143,144], Spain 

[145], and Sweden [146]. In most PCV7 settings, the decline in meningitis incidence 

was greatest at three to four years post-introduction and mostly maintained at five 

years or more [147,148]. 

Notably, vaccine use resulted in a decrease in pneumococcal meningitis incidence 

not only in the age groups targeted for vaccination but also in older children and 

adults who were not immunized [148–150]. In the USA, indirect benefits of PCV7 

exceeded direct protective benefits among immunized children, with over twice as 

many cases of VT IPD, including meningitis, prevented indirectly as directly in 2003 

[151]. In other countries, VT pneumococcal meningitis incidence in adults also 

declined, with a median 67% decrease [152]. However, changes in the unvaccinated 

population were not immediate. The decline in incidence among 18–49-year-olds 

becomes statistically significant after seven years of vaccine introduction. Among 

persons 50–64 years of age and >65, significance was reached between five and six 

years post-vaccine introduction [148]. PCV7’s indirect effects are believed to be 

caused by the decreased nasopharyngeal carriage of VT strains among vaccinated 

children, which results in decreased transmission to nonimmunized children and 

adults (herd immunity). 
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Nevertheless, along with the decrease in the incidence of vaccine type meningitis, 

the increase in the prevalence of non-vaccine-type (NVT) carriage and the incidence 

of NVT pneumococcal meningitis was reported in many settings. The reported 

increase in vaccine-eligible populations ranged from 104% in France to 273% in the 

USA [152]. In France, the increase in NVT incidence even abolished the effect on 

overall incidence six years after PCV7 introduction [143]. An increase in NVT was 

also observed in vaccine-non-eligible populations. The incidence rise varied from 

54% in people 5–64 years of age in the UK to 214% in all adults in Spain [141,153]. 

These phenomena are known as serotype replacement and replacement disease, 

respectively. The most commonly increase in serotypes 19A, 1, 3, 7F, 11A, 16F, 22F, 

and 35B were reported [143,148,154–156].  

Higher-valency PCVs have been developed and replaced PCV7 in all 

immunization programs to address the increase in NVT disease incidence. PCV10 

and PCV13 are now widely used.  

A systematic review of five studies on PM in Brazil estimated a PCV10 vaccine 

effectiveness of 13%–87% among children <5 years of age. A 48%–83% decrease 

in vaccine type PM was observed in children <2 years of age [157]. After three years 

of PCV10 introduction, no protective effect was observed in unvaccinated age 

groups. Instead, in adults, a rate increase of 19%–79% was reported [158].                   

In Colombia, the PM incidence in children <5 years of age decreased from 1.19 cases 

per 100,000 children in the pre-PCV period to 0.51 in the first year of mass 

vaccination, remained stable between 0.54 and 0.63 cases per 100,000 children in the 

following four years, and increased to 1.03 cases per 100,000 children after six years 

of vaccine introduction [159].  

In the Netherlands, after replacement of PCV7 by PCV10, the incidence of PCV7 

and PCV10-PCV7 serotypes as causative agents of PM decreased from 0.42 to 0.06 

and 0.12 to 0.03, respectively. However, a concomitant increase from 0.45 to 0.68 

occurred in the incidence of non-PCV serotypes [160]. In Austria, Bulgaria, and 

Iceland, PCV10 was the first PCV implemented. Unfortunately, data on the vaccine 

impact in those countries are scarce. In Iceland, after PC10 implementation, no 

impact on overall meningitis (any cause) hospitalizations was observed [161].             

In Austria and Bulgaria, a significant reduction in vaccine type IPD was observed, 

but no separate estimates for meningitis were reported [162].  

In the USA, early studies on pneumococcal meningitis following the introduction 

of PCV13 reported that the number of PMs had remained stable [163,164]. 

However, a study that assessed PCV13’s impact four years after vaccine introduction 

revealed a 39% decrease in overall PM incidence and a 45% decrease in PM rates 
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among children <2 years of age [165]. In the multicenter European study 

(SPIDNET), in eight sites using PCV13, the incidence of all type PM in children <5 

years of age was lower after PCV13 use than during the PCV7 period.                         

The consecutive decrease in incidence (25%–34%) was observed for up to four 

years. From the fifth year, the overall effect started to decrease due to a significant 

increase (79% after seven years) in the incidence of non-PCV13 serotypes. PCV13 

vaccine effectiveness against PM vaccine serotypes in children <5 years of age was 

96.5% [130]. Decreases of 27.4% in the number of cases of all pneumococcal 

meningitis and 90.3% in vaccine type PM after PCV13 introduction were observed 

in France [166]. Other French studies also reported a decrease in overall incidence 

in the pediatric population [143,167]. Nonsignificant decreases of 27% in all type 

PM incidence and 93% in vaccine type PM incidence in children <5 years of age 

were also reported in Israel [168]. In Germany, conflicting results were reported. In 

one study, no decrease was observed in all type PM or VT incidence in children <2 

years of age post-PCV13 introduction [169]. However, the decrease was reported in 

a long-term trend study, where a significant decrease in meningitis caused by PCV7 

and PCV13 serotypes was observed in children <2 years of age [170]. In Spain, the 

incidence of all type PM in children <15 years of age decreased by 62% within five 

years following the introduction of PCV13, compared to the PCV7 period, and no 

significant increase in non-PCV13 serotypes was observed [171]. In England and 

Wales, the replacement of PCV7 with PCV13 led to a 48% reduction in PM 

incidence, mainly due to a reduction in cases caused by additional serotypes included 

in PCV13. Non-PCV13 serotypes remained stable [13].  

In the multicenter study that included settings using PCV13 for at least five to 

seven years, the percentage of remaining pneumococcal meningitis caused by 

serotypes covered by the vaccine was 14% in children <5 years of age. Serotype 3 

was the most commonly found vaccine type, causing 4% of cases in children             

<5 years of age and 13% in those 5. Serotype 15BC was a leading non-PCV13 

serotype among children (11.5% of cases) [14]. Serotypes covered by PCV20 were 

responsible for 43%–47% of PM cases. In settings where PCV10 was used, the most 

common PCV10-type serotype was 7F, causing 2.1% of cases among children          

<5 years of age. PCV13 serotypes were responsible for 29.3%–40% of remaining 

meningitis cases, with 19A as the most common serotype (24% of cases). The second 

most common serotype was 6C (10% of cases). No difference in the proportion of 

PCV20 serotypes was observed in PCV10 and PCV13 settings [14].  
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2.5.2 Epidemiology of pneumococcal meningitis in Poland and Finland 
 

In Poland, surveillance system of meningitis, including pneumococcal meningitis, 

started in the early 1970s. The surveillance system of invasive pneumococcal disease 

that includes other clinical presentations of the infection, such as bacteremia and 

pneumonia, was implemented in 2005. Before pneumococcal conjugate vaccine 

introduction, S. pneumoniae was one of the leading causes of meningitis, accounting 

for approximately 21%–27% of all bacterial meningitis cases in 2007–2016.              

The overall PM incidence rate ranged from 0.31 to 0.5 cases per 100,000 population 

[181–190].  

Meningitis cases represented 43% of all IPD reported in 2006–2009 and 34% in 

2011–2013 [135,191]. This compares to approximately 4%–8% of cases in other 

European countries, which suggests heavy underreporting of IPD cases in Poland. 

The notified incidence rate in 2011–2013 was highest among children 0–11 months 

of age (2.44 cases per 100,000 persons), followed by adults 60–64 years of age (0.66 

cases per 100,000 population). In 2011–2013, PCV10 and PCV13 serotypes covered 

44% and 78% of all PM cases, respectively. Meningitis was more prevalent in patients 

infected with serotypes 18C, 15B/C, and 19F than those infected with other 

serotypes [191]. 

In Finland, before PCV10’s introduction, meningitis constituted 6% of all IPD 

cases reported in 1995–2002. The overall annualized PM incidence was 0.6 cases per 

100,000 population [192]. The highest incidence was reported in children 0–11 

months of age (3.9 cases per 100,000 population), almost two-fold the rate for 

children 1 year of age (2.2 cases per 100,000 population) [193]. No difference in rates 

by gender was observed. Contrary to that of bacteremia, the incidence of meningitis 

was stable between 1995 and 2002. PCV10 and PCV13 serotypes were responsible 

for 59% and 75% of all IPD cases, respectively [193]. Before PCV10 introduction 

into a national immunization program, the vaccine’s effectiveness was first 

demonstrated in a nationwide cluster-randomized field trial (Finnish Invasive 

Pneumococcal disease, FinIP) conducted in 2009–2010. Altogether, 47,369 children 

were enrolled in the study. For VT IPD and IPD, irrespective of serotype, vaccine 

effectiveness was 100% and 93%, respectively [194]. Vaccine effectiveness was also 

demonstrated on clinically suspected invasive pneumococcal disease (based on 

inpatient and outpatient discharge notifications) [195]. However, no data on 
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meningitis alone was available. A subsequent observational study conducted three 

years after PCV10 introduction revealed an 80% and a 92% reduction in overall IPD 

and VT IPD incidence rates in vaccine-eligible children, respectively [177]. In 

addition, a 48% decrease in overall IPD in unvaccinated children 2–5 years of age 

was reported. The relative rate reduction in PCV10-type meningitis cases was 69% 

(95% CI = 10%, 93%). Although the point estimate for the overall decline in 

pneumococcal meningitis cases was 46%, it was not statistically significant (95% CI 

= −19%, 78%) [177]. In a study conducted six years after vaccine introduction, 

overall IPD incidence in vaccine-eligible children decreased by 79%. VT IPD 

incidence decreased by 94%. PCV10’s indirect impact on unvaccinated older 

children was smaller (33%) due to a less notable reduction in PCV10 serotypes and 

a slight increase in non-PCV10 serotypes [196]. Unfortunately, no separate estimates 

for meningitis were available.  
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3 AIMS OF THE STUDY 

This study aimed to estimate the burden and characterize the epidemiology of 

bacterial meningitis caused by S. pneumoniae (pneumococcal meningitis) before and 

after the introduction of the 10-valent pneumococcal conjugate vaccine (PCV10) in 

Poland and Finland. The findings provide baseline information for evaluating the 

impact of pneumococcal vaccine program introduction and guiding the development 

of future vaccination policies.  
 

The specific objectives were as follows: 

 

I. To evaluate long-term trends in the incidence rates of pneumococcal 

meningitis and determine the contribution of pneumococcal meningitis 

to the overall burden of bacterial meningitis in Finland.  

II. To assess the baseline epidemiology of pneumococcal meningitis, 

including long-term trends in incidence rates, serotype distribution, and 

antimicrobial susceptibility patterns before the introduction of PCV10 in 

Poland. 

III. To assess the long-term effects of infant PCV10 introduction on the 

direct and indirect protection and serotype distribution of pneumococcal 

meningitis in Finland. 
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4 MATERIALS AND METHODS 

4.1 Surveillance of meningitis in Finland and Poland 

In Finland and Poland, reporting cases of bacterial meningitis, including 

pneumococcal meningitis, to the national surveillance systems is mandatory.  

In Finland (population ~5.5 million), all clinical microbiology laboratories are 

legally obliged to report microbial isolations from blood and CSF to the National 

Infectious Diseases Register (NIDR), a population-based electronic laboratory 

surveillance system maintained by the Finnish Institute for Health and Welfare 

(THL). Routinely collected information includes the microbe, specimen type, 

specimen date, date of birth, sex, place of residence, and unique personal identity 

code (PIC). For findings concerning S. pneumoniae, Streptococcus agalactiae (S. agalactiae), 

Neisseria meningitidis (N. meningitidis), Listeria monocytogenes (L. monocytogenes), and 

Haemophilus influenzae (H. influenzae), multiple notifications with the same PIC and 

microbe are merged into one case if they occurred within three months of the first 

notification. Since 2004, information on vital status after the episode has been 

routinely obtained from Finland’s Population Information System (PIS). The PIS is 

an online database containing information on each permanent resident’s name, sex, 

date of birth, place of residence, and vital status. The PIC can link this database with 

other healthcare and surveillance registries. In addition to notifying the NIDR, all 

clinical microbiology laboratories must submit the isolates from reported cases to a 

THL reference laboratory for species verification and characterization, including 

serotyping or serogrouping. Since 2004, serotyping results have been linked to NIDR 

data through the PIC.  

Poland (population ~38 million) has two independent passive surveillance 

systems for monitoring meningitis, including pneumococcal meningitis (Figure 4). 

The first system is based on physicians’ and field laboratories’ mandatory reporting 

of meningitis cases to the local public health authority. Local public health authorities 

further investigate the case and complete a standardized surveillance report, which 

includes information on name, surname, date of birth, place of residence, date of 

disease onset, date of hospital admission, laboratory findings, clinical symptoms, 

antimicrobial treatment, and disease outcome. Completed cases are reported to the 
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population-based surveillance system coordinated by the NIPH-NIH every second 

week. Multiple notifications with the same identification information (name, 

surname, address, and place of hospitalization) are merged into one case if they refer 

to the same illness episode. Case-based data are further reported to the European 

Surveillance System (TESSy) annually. Case-based reports include demographics, 

diagnosis, hospitalization, specimen, and outcome data. 

The second surveillance system is based on field laboratories’ voluntary reporting 

and sending of isolates or clinical specimens to the National Reference Centre for 

Bacterial Meningitis (NRCBM), which performs serotyping and tests isolates’ 

antimicrobial susceptibility. If available, data on demographic characteristics, 

antibiotic therapy, vaccination status, clinical symptoms, and disease outcome are 

collected for all isolates. Since 2010, data from the NIPH-NIH and the NRCBM 

have been linked using identification information. Notifications of isolates that were 

sent to the NRCBM but not reported to the NIPH-NIH are actively collected as 

part of enhanced surveillance.  

 

 

Figure 4. Surveillance system of pneumococcal meningitis in Poland 

 



49 
 

4.2 Data sources 

For Objectives I and III, Finnish data on bacterial meningitis cases caused by              

S. pneumoniae, S. agalactiae, N. meningitidis, L. monocytogenes, or H. influenzae were 

obtained from the NIDR. Serotype data were also obtained from this database.     

The case’s vital status within 30 days of the first positive CSF or blood culture was 

acquired from the PIS. Data on discharge diagnosis (Objective III) were obtained 

from the national hospital discharge register (the Care Register for Health Care at 

THL). Data from the PIS were used as denominators for the incidence calculations.  

For Objective II, data on the number of pneumococcal meningitis cases in 

Poland, their demographics (age and sex), and disease outcomes were collected from 

the NIPH-NIH database. Year of notification was obtained from the date of onset 

of symptoms or, if unavailable, the specimen collection date. Through linkage with 

the NRCBM databases (based on identification information), data on serotypes and 

antimicrobial susceptibility of those cases were collected.  

4.3 Case definitions 
 

For Objective I, a case of bacterial meningitis was defined as a patient from which 

S. pneumoniae, S. agalactiae, N. meningitidis, L. monocytogenes, or H. influenzae was isolated 

from CSF, with notification to the NIDR from 1995 through 2014.  

For Objective II, a case of pneumococcal meningitis was defined as a patient 

from which S. pneumoniae was isolated in CSF, with notification to the NIP-NIH 

from 2005 through 2015. 

For Objective III, a case of pneumococcal meningitis was defined as a patient 

from which S. pneumoniae was isolated in CSF or blood and who received an ICD-10 

hospital discharge diagnosis G00.0, G.001, G.002, or G00.9 within 30 days before 

or after the blood culture date, with notification to the national hospital discharge 

register from 2004 through 2017.  

4.4 Serotyping 

In Finland (Objectives I and III), S. pneumoniae isolates were serotyped by latex 

agglutination or counterimmunoelectrophoresis supplemented with the Quellung 
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reaction until 2009. Since 2010, isolates have been serotyped by multiplex PCR 

supplemented with the Quellung reaction if needed [106]. All serotype 6A isolates 

from 2004–2009 were retested to distinguish serotypes 6C and 6D, and since 2010, 

serotype 6C and 6D identifications have been performed routinely. 

In Poland (Objective II), S. pneumoniae isolates from CSF were serotyped using 

the Pneumotest-Latex kit (Statens Serum Institut, Copenhagen, Denmark), PCR, or 

sequencing. Serotypes not successfully identified by the above methods were 

subjected to the Quellung test at the Statens Serum Institut (Denmark) in 2008, 

whereafter in 2009–2015, it was performed at the National Reference Center for 

Streptococci in Aachen (Germany). 

4.5 Antimicrobial susceptibility 

To assess the antimicrobial susceptibility of pneumococcal meningitis isolates 

(objective II), MICs for penicillin and cefotaxime were determined by the ETEST 

(AB Biodisk-bioMérieuxc) or M.I.C. Evaluator (Oxoid-Thermo Fisher) according to 

manufactures instructions.  

For the interpretation of MIC data, the EUCAST 2015 breakpoints for meningitis 

cases were applied (European Committee on Antimicrobial Susceptibility Testing, 

EUCAST, Breakpoint tables for interpretation of MICs and zone diameters. Version 

5.0, 2015). Pneumococcal meningitis isolates were categorized as susceptible (S) 

(MIC 0.06 for penicillin and 0.5 for cefotaxime), intermediate (I), or resistant (R). 

The intermediate and resistant isolates were collectively referred to as non-

susceptible. 

4.6 Serotype distribution and diversity 

The proportions of S. pneumoniae isolates according to the causative serotypes were 

calculated. S. pneumoniae serotypes were grouped (without cross-reaction 

assumptions) as follows: PCV10 serotypes (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 

23F), PCV13 serotypes (PCV10 serotypes and serotypes 3, 6A, and 19A), and 

PPSV23 serotypes (PCV10 serotypes and serotypes 3, 19A, 2, 8, 9N, 10A, 11A, 12F, 

15B, 17F, 20, 22F, and 33F) (Table 4). Three additional serotypes in PCV13 (3, 6A, 

and 19A) were placed in a separate group: PCV13–PCV10. In addition, PCV20-

PCV13 serotypes refer to seven new serotypes (8, 10A, 11A, 12F, 15B, 22F, and 



51 
 

33F) to those present in PCV13. Serotypes different than those present in PCV13 

were categorized as non-PCV13. For the serotype proportion calculation in the 

denominator, cases with missing serotype information were also included.               

Any culture-confirmed PM included cases with missing serotype information. 

Serotypes 15B and 15C were grouped as 15B/C because of the reported reversible 

switching between these serotypes [197]. 
 

Table 4. Grouping of S. pneumoniae serotypes 

 
Serotype PCV10 PCV13 PCV20 PPSV23 

1 X X X X 

4 X X X X 

5 X X X X 

6B X X X X 

7F X X X X 

9V X X X X 

14 X X X X 

18C X X X X 

19F X X X X 

23F X X X X 

3  X X X 

6A  X X X 

19A  X X X 

2    X 

8   X X 

9N    X 

10A   X X 

11A   X X 

12F   X X 

15B   X X 

17F    X 

20    X 

22F   X X 

33F   X X 

4.7 Study design 

Three population-based observational studies were performed (Objectives I, II, III). 

In the first study (Objective I), proportions and age-specific annual incidence rates 

(IRs) were calculated for five main pathogens responsible for bacterial meningitis 

and reported to the NIDR during 2004–2014: S. pneumoniae, S. agalactiae,                        
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N. meningitidis, L. monocytogenes, and H. influenzae. Data from the Finnish PIS were 

used as denominators.  

In the second study (Objective II), to assess the baseline epidemiology of 

pneumococcal meningitis in Poland, annual and age-specific pneumococcal 

meningitis IRs were calculated using data from the Polish Central Statistical Office 

as denominators. The study population comprised all residents registered in Poland 

between January 1, 2005, and December 31, 2015.  

The third study (Objective III) was a before-after study. Serotype- and age-

specific pneumococcal meningitis IRs, related 30-day mortality rates, and CFPs were 

calculated. Pneumococcal meningitis cases with sampling dates from July 1, 2004, to 

June 30, 2017, and notification to the NIDR were included in the analysis. The pre-

PCV10 period (baseline period) was defined as July 1, 2004, to June 30, 2010, while 

the PCV10 period was defined as July 1, 2011, to June 30, 2017. The transition year 

(July 1, 2010, to June 30, 2011) was excluded from the study. Data from the Finnish 

PIS were used as denominators.  

4.8 Statistical analysis 
 

In the first study (Objective I), the Poisson regression was used to test for a log-

linear trend in IRs of bacterial meningitis in Finland from 1995 through 2014. 

Incidence rate ratios (IRRs), their 95% confidence intervals (95% CI), and p values 

for yearly changes were calculated using time (year) as a continuous explanatory 

variable in the Poisson model. When appropriate, negative binomial regression was 

used to correct for data overdispersion. The Wilcoxon rank-sum test was used to 

compare the age distribution of cases across years.  

In the second study, negative binomial regression was used to assess the baseline 

epidemiology of pneumococcal meningitis in Poland (Objective II) and test for a 

trend in IRs during 2005–2015 while correcting for overdispersion. The Newey-

West method was applied to adjust for autocorrelation. Rate ratios (RRs), their 95% 

CIs, and p values for yearly changes were calculated using time (year) as a continuous 

explanatory variable in the model. Case fatality proportion (CFP) by age group was 

calculated as the number of cases resulting in death divided by all reported cases. 

The chi-square test was used to assess changes in CFP between 2005–2010 and 

2011–2015. A p < 0.05 was considered statistically significant.  



53 
 

In the third study (Objective III), the Poisson regression was used to compare 

pneumococcal meningitis incidence and mortality rates between the pre-PCV10 and 

PCV10 periods in Finland. Rate differences and their 95% CIs were calculated from 

parameter estimates using the delta method. Relative rate reduction (RRR) was 

defined as (1 − incidence rate ratio) x 100%, comparing the pre-PCV10 and PCV10 

periods. The proportions and IRs of serotype groups in the pre-PCV10 period were 

compared to those in the last epidemiological year of the study (July 1, 2016–June 

30, 2017) to assess changes in S. pneumoniae serotype distribution over time. The 30-

day CFP (Objectives I and III) was defined as the number of pneumococcal 

meningitis cases resulting in death within 30 days of the first positive culture divided 

by all cases. The chi-square test was applied to assess changes in CFP over time.        

A p < 0.05 was considered statistically significant. All analyses were performed with 

STATA version 13, R version 3.4.2, and MS Excel 2013.  
 

4.9 Ethical considerations 

In Finland, the data used for the study I and III were collected as part of national 

routine surveillance in Finland, which falls under the existing mandate of the THL. 

Only authorized users had access to the data. In study I no formal Institutional 

Review Board review was required. Personal identifiers were removed after linkage 

with vital status data. Data used in study III were de-identified and permission to use 

the register data for research was obtained from the relevant register controllers at 

THL (THL/1090/6.02.00/2013) and THL Institutional Review Board approved the 

study. 

In Poland, the data used for study II were collected as part of national routine 

surveillance, which falls under the existing mandate of the NIPH-NIH and NRCBM. 

No formal institutional review board review was required for study II in Poland. 

Permission to use the register data for research was obtained from the relevant data 

custodians in the NIPH-NIH and NRCBM. Personal identifiers were removed after 

linkage with serotype information and vital status data. 
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5 RESULTS 

5.1 Contribution of pneumococcal meningitis to the burden of 
bacterial meningitis in Finland (I) 

From 1995 to 2014, 1,361 cases of bacterial meningitis caused by S. pneumoniae,         

N. meningitidis, S. agalactiae, L. monocytogenes, or H. influenzae were reported in Finland 

(mean IR = 1.29 cases per 100,000 person-years). The median age of all bacterial 

meningitis cases was 36 years. The IR was higher in men than women (1.52 vs. 1.07 

cases per 100,000 person-years, IRR = 1.4, 95% CI = 1.3, 1.6).  

S. pneumoniae was the most common etiology throughout the study period, except 

for 1995–1998, when N. meningitidis was the primary pathogen (Figure 5). 

Pneumococcal meningitis was identified in 611 cases (45% of all bacterial meningitis 

cases), with a mean IR of 0.58 cases per 100,000 person-years. The median age of 

pneumococcal meningitis cases was 48 years, and 57% of cases were male (male to 

female IRR = 1.4, 95% CI = 1.2, 1.6) (Table 5).  

 

 

Figure 5. Incidence rate (per 100,000 person-years) of bacterial meningitis by year and pathogen in 
Finland, 1995–2014 
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Children <2 years of age accounted for 20% of all bacterial meningitis cases and 

had the highest mean IR. The most common pathogen in this age group was               

S. agalactiae; S. pneumoniae was the second most common etiological agent (3.52 cases 

per 100,000 person-years), causing 31% (83/268) of cases.  

Children 2–4 years of age constituted 5% of all bacterial meningitis cases and had 

the second highest mean IR. S. pneumoniae was also the second most common 

pathogen in this age group, after N. meningitidis (Figure 6).  

Children 5–17 years of age accounted for 9% (130/1361) of all bacterial 

meningitis cases and had the lowest mean IR of all age groups. N. meningitidis and    

S. pneumoniae were the main etiologies. 

Adults 18–49 years of age constituted 30% of all bacterial meningitis cases.          

N. meningitidis and S. pneumoniae caused most of these cases.  

Adults 50–64 years of age accounted for 20% of bacterial meningitis cases, of 

which S. pneumoniae caused 68%.  

  

 

Figure 6. Proportions of bacterial meningitis cases caused by H. influenzae, L. monocytogenes, N. 
meningitidis, S. agalactiae, and S. pneumoniae by age group in Finland, 1995–2014 
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(65/633). No significant change in 30-day CFP was observed between 2004–2009 

(11%, 43/402) and 2010–2014 (10%, 22/231) (p = .22). The overall CFP ranged 

from 2% in children <2 years of age to 19% in adults ≥65. S. pneumoniae was 

associated with 58% (38/65) of all fatal cases and had the second highest CFP (12%; 

38/308) after L. monocytogenes (22%; 11/50). All pneumococcal meningitis deaths but 

one occurred in adults ≥18 years of age. S. pneumoniae was the major cause of death 

in this age group (37/55 deaths).  
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5.2 Long-term trend in the incidence rate of bacterial meningitis, 
including pneumococcal meningitis in Finland (I) 

 

The mean IRs of all bacterial meningitis cases in Finland ranged from 1.97 cases per 

100,000 person-years in 1996 to 0.70 in 2014, with a mean annual decrease of 4% 

(95% CI = −3%, −5%). The overall decline included an annual change of 2% (95% 

CI = −4%, −1%) among children <2 years of age, 8% (95% CI = −12%, −4%) 

among children 5–17 years of age, 7% (95% CI = −8%, −5%) in adults 18–49, and 

4% (95% CI = −6%, −2%) in adults 50–64 years of age. Among older adults 65 

years of age, an annual change of −1% was not statistically significant (95% CI = 

−4%, 1%) (Table 6).  

The mean IR of pneumococcal meningitis decreased from 0.70 cases per 100,000 

person-years in 1995 to 0.26 in 2014, which represented a mean decrease of 2% (95% 

CI = −4%, −1) per year, primarily due to declines of 7% (95% CI = −13%, −1%) 

and 4% (95% CI = −6%, 1%) in the age groups 5–17 years and 18–49 years, 

respectively. In older adults 50–64 and ≥65 years of age, the mean annual decreases 

were 2% (95% CI = −4, 2) and 1% (95% CI = −4, 2), respectively (Table 6). 

However, the confidence intervals of both estimates included 0.  

Of the 308 pneumococcal meningitis cases reported during 2004–2014, serotype 

information was available for 296 (96%). The proportion of overall cases caused by 

PCV10 serotypes decreased from 61% (35/57) in 2004–2005 to 5% (9/36) in 2013–

2014, including a decrease from 75% (9/12) to 20% (1/5) in children <2 years of 

age. In 2014, no meningitis cases were caused by PCV10 serotypes. 

The mean IR of N. meningitidis meningitis decreased from 0.88 cases per 100,000 

person-years in 1995 to 0.07 in 2014; the mean annual decrease was 9% (95% CI = 

−7%, −10%). The decline occurred in all age groups except in persons <2 and ≥65 

years of age. The incidence rate decreased annually by 6% (95% CI = −1%, −10%), 

8% (95% CI = −3%, −14%), 10% (95% CI = −8%, −13%), and 12% (95% CI = 

−8%, −13%) in the age groups 2–4 years, 5–17 years, 18–49 years, and 50–64 years, 

respectively (Table 6). During 2004–2014, information on N. meningitidis serogroups 

was available for 99% of cases (161/163). Serogroup B accounted for 85% (137/161) 

of isolates, C for 11% (17/161), and Y for 4% (7/161). In children <2 years, 

serogroup B caused 96% (26/27) of cases. MCV-4 and MenB vaccine serogroups 

caused 15% (24/161) and 85% (137/161) of all cases, respectively. 
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The mean IR of meningitis caused by H. influenzae ranged from 0 cases per 

100,000 person-years in 2010 to 0.25 in 2007. Mean annual IR changes overall and 

in specific age groups were not statistically significant (Table 6). In 2004–2014, non-

encapsulated H. influenzae accounted for 69% (18/26), serotype f for 23% (6/26), 

and type b for 8% (2/26) of isolates. 

The mean IR of meningitis caused by S. agalactiae ranged from 0.06 cases per 

100,000 person-years in 1995 to 0.17 in 2014. Overall rates and age-specific rates of 

S. agalactiae did not change significantly (Table 6) 

Overall and age-specific mean IRs of L. monocytogenes meningitis did not vary 

significantly during the study period (Table 6), ranging from 0.04 to 0.21 cases per 

100,000 person-years. 

Table 6. Incidence rates (IR) per 100,000 person-years, number of cases (N), and mean annual 
relative change (95% CI) in the incidence of bacterial meningitis according to age 
group (years), 1995–2014, Finland 

 
 Age group 1995–1999 2000–2004 2005–2009 2010–2014 1995–2014 1995–2014 
 

 IR (N) IR (N) IR (N) IR (N) IR (N) 
% change   
(95% CI)* 

Streptococcus pneumoniae 
 <2  4.32 (26) 4.43 (25) 3.05 (18) 2.33 (14) 3.52 (83) −4 (−7; 0) 
 2–4  0.63 (6) 0.35 (3) 0.69 (6) 0.33 (3) 0.50 (18) −1 (−8; 7) 
 5–17  0.31 (13) 0.26 (11) 0.17 (7) 0.05 (2) 0.20 (33) −7 (−13; −1) 
 18–49  0.50 (59) 0.48 (54) 0.32 (35) 0.27 (30) 0.40 (178) −4 (−6; −1) 
 50–64  0.91 (41) 1 (52) 0.99 (56) 0.65 (37) 0.88 (186) −2 (−4; 1) 
 ≥65  0.67 (25) 0.57 (23) 0.89 (39) 0.51 (26) 0.66 (113) −1 (−4; 2) 
 All   0.55 (170) 0.65 (168) 0.61 (161) 0.41 (112) 0.58 (611) −2 (−4; −1) 

Neisseria meningitidis  
 <2  3.83 (23) 4.07 (23) 1.36 (8) 2.33 (14) 2.89 (68) −4 (−8; 0) 
 2–4  1.98 (19) 1.27 (11) 1.38 (12) 0.66 (6) 1.33 (48) −6 (−10; −1) 
 5–17  0.88 (37) 0.38 (16) 0.60 (24) 0.18 (7) 0.52 (84) −8 (−14; −3) 
 18–49  0.79 (93) 0.41 (46) 0.38 (42) 0.13 (14) 0.43 (195) −10 (−13; −8) 
 50–64  0.33 (15) 0.29 (15) 0.12 (7) 0.04 (2) 0.18 (39) −12 (−17; −6) 
 ≥65  0.16 (6) 0.07 (3) 0.09 (4) 0.06 (3) 0.09 (16) −7 (−14; 2) 
 All  0.62 (193) 0.44 (114) 0.37 (97) 0.17 (46) 0.43 (450) −9 (−10; −7) 

Haemophilus influenzae  
 <2  0.67 (4) 0.53 (3) 0.34 (2) 0.17 (1) 0.42 (10) −7 (−17; 4) 
 2–4  0 (0) 0.35 (3) 0 (0) 0 (0) 0.08 (3) NA 
 5–17  0.12 (5) 0.10 (4) 0 (0) 0.05 (2) 0.07 (11) −8 (−17; 3) 
 18–49  0.03 (4) 0.02 (2) 0.02 (2) 0.05 (6) 0.03 (14) 5 (−5; 15) 
 50–64  0.07 (3) 0.06 (3) 0.04 (2) 0.04 (2) 0.05 (10) −3 (−13; 8) 
 ≥65  0.05 (2) 0 (0) 0.16 (7) 0.02 (1) 0.06 (10) 1 (−9; 12) 
 All  0.06 (18) 0.06 (15) 0.05 (13) 0.04 (12) 0.06 (58) −2 (−7; 2) 
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 Age group 1995–1999 2000–2004 2005–2009 2010–2014 1995–2014 1995–2014 
 

 IR (N) IR (N) IR (N) IR (N) IR (N) 
% change   
(95% CI)* 

Streptococcus agalactiae 
 <2  4.16 (25) 4.25 (24) 5.43 (32) 4.16 (25) 4.50 (106) 0 (−3; 5) 
 2–4  0.10 (1) 0 (0) 0 (0) 0 (0) 0.03 (1) NA 
 5–17  0 (0) 0.02 (1) 0 (0) 0 (0) 0.01 (1) NA 
 18–49  0.02 (2) 0.01 (1) 0.01 (1) 0.02 (2) 0.01 (6) 1 (−12; 16) 
 50–64  0.09 (4) 0.04 (2) 0.12 (7) 0.05 (3) 0.08 (16) 1 (−9; 8) 
 ≥65  0 (0) 0.17 (7) 0.02 (1) 0.06 (3) 0.06 (11) −2 (−11; 9) 
 All  0.10 (32) 0.13 (35) 0.15 (41) 0.12 (33) 0.13 (141) 0 (−3; 3) 

Listeria monocytogenes  
 <2  0.17 (1) 0 (0) 0 (0) 0 (0) 0.04 (1) NA 
 2–4  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) NA 
 5–17  0.02 (1) 0 (0) 0 (0) 0 (0) 0.01 (1) NA 
 18–49  0.08 (9) 0.03 (3) 0 (0) 0.03 (3) 0.03 (15) −11 (−19; −3) 
 50–64  0.22 (10) 0.06 (3) 0.11 (6) 0.07 (4) 0.11 (23) −6 (−13; 1) 
 ≥65  0.37 (14) 0.32 (13) 0.30 (13) 0.42 (21) 0.35 (61) 0 (−4; 4) 
 All  0.11 (35) 0.07 (19) 0.07 (19) 0.10 (28) 0.10 (101) −2 (−5; 1) 

Total bacterial meningitis  
 <2  13.14 (79) 13.28 (75) 10.18 (60) 8.99 (54) 11.38 (268) −2 (−4; −1) 
 2–4  2.71 (26) 1.97 (17) 2.07 (18) 0.98 (9) 1.94 (70) −5 (−10; 0) 
 5–17  1.33 (56) 0.77 (32) 0.77 (31) 0.28 (11) 0.80 (130) −8 (−12; −4) 
 18–49  1.43 (167) 0.94 (106) 0.73 (80) 0.50 (55) 0.91 (408) −7 (−8; −5) 
 50–64  1.63 (73) 1.44 (75) 1.37 (78) 0.84 (48) 1.30 (274) −4 (−6; −2) 
 ≥65  1.25 (47) 1.15 (46) 1.46 (64) 1.07 (54) 1.23 (211) −1 (−4; 1) 
 All  1.45 (448) 1.35 (351) 1.25 (331) 0.85 (231) 1.29 (1361) −4 (−3; −5) 

*Mean annual relative change in incidence calculated by Poisson regression or negative binomial regression 

 

5.3 Incidence and long-term trend of pneumococcal meningitis 
before PCV10 introduction in Poland (II)  

During 2005–2015, 1,435 pneumococcal meningitis cases were reported to the 

NIPH-NIH in Poland. The median age of cases was 48 years (IQR 25–60 years). 

The male-to-female incidence rate ratio was 1.85 (IR = 0.45 vs. 0.24 cases per 

100,000 person-years).  

The mean annual IR was 0.34 cases per 100,000 person-years. The highest IR was 

reported in children <1 year of age, followed by the age groups 1–4 years and 65–74 

years (Table 7). The reported IRs among young children <1 year of age exemplified 

substantial variation across the years. Substantial geographical variation also 

occurred in the reported mean IR, ranging from 0.18 cases in Podlaskie to 0.52 in 

Pomorskie.  

The overall pneumococcal meningitis IR increased steadily from 0.21 cases per 

100,000 person-years in 2005 to 0.47 in 2015, which represented an average increase 
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of 7% per year (95% CI = 6%, 8%), primarily due to annual increases of 3% (95% 

CI = 2%, 5%) among persons 15–49 years of age, 12% (95% CI = 10%, 13%) among 

those 50–64 years of age, 18% (95% CI = 16%, 19%) among those 65–74 years of 

age, and 9% (95% CI = 7%, 10%) among those 75 years of age. Trends in other 

age groups were not statistically significant (Table 7). 

The overall CFP was 20% (281/1,435) and varied from 4% (4/90) in children <1 

year of age to 31% (71/226) in persons ≥65 years of age. The mean overall CFP was 

higher in 2005–2010 (22%) than in 2011–2015 (18%) (p = .052). 
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5.4 Serotype distribution of pneumococcal meningitis isolates 
before PCV10 introduction in Poland (II) 

 
Of the 1,149 pneumococcal meningitis cases reported to the NIPH-NIH during 
2008–2015, 676 (59%) CSF isolates were sent to the NRCBM for serotyping. Of the 
676, 672 (99%) belonged to 48 different S. pneumoniae serotypes or serogroups, while 
four isolates were non-typeable. The most common serotypes were 3 (11%; 71/676), 
19F (10%; 65/676), 14 (9%; 58/676), and 23F (6%; 40/676). No significant 
differences in serotype distribution between 2008–2011 and 2012–2015 were 
observed. The exception was an increase in the proportion of serotypes 19A (from 
2% in 2008–2011 to 6% in 2012–2015, p = .0106) and 23B (from 0% in 2008–2011 
to 3% in 2012–2015, p = .003).  

The serotypes in PCV10, PCV13, and PPSV23 accounted for 46% (309/676), 
62% (419/676), and 83% (563/676) of all isolates, respectively. Between 2008–2011 
and 2012–2015, a significant decrease in the proportion of cases caused by PCV10 
serotypes, from 52% to 41% (p = .0044), occurred. No significant changes in 
proportions of PCV13 (p = .0630), PPSV23 (p = .0848), PCV13-PCV10 (p = .16), 
and PPSV23 unique serotypes (p = .54) were observed. 

Of the 112 isolates reported in children <5 years of age, the most common were 
serotypes 14 (21%, 23/112), 19F (20%, 22/112), 6B (13%, 14/112), 23F (8%, 
9/112), 9V (5%, 6/112), and 15B/C (5%, 5/112). PCV10, PCV13, and PPSV23 
serotypes accounted for 75% (84/112), 80% (90/112), and 93% (104/112) of 
isolates, respectively (Table 8). Concerning the distribution of serotypes between 
2008–2011 and 2012–2015, the proportion of PCV10 serotypes declined from 87% 
to 57% (p = .0004), the proportion of PCV13 serotypes from 91% to 64%                    
(p = .0003), and the proportion of PPSV23 serotypes from 96% to 89% (p = .15).  
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Table 8. Serotype distribution (%) of pneumococcal meningitis isolates among persons <5 years of 
age reported to the NIP-NIH, 2008–2015, Poland 

 
  2008 2009 2010 2011 2012 2013 2014 2015 2008–

2015 

Cases reported to 
NIP-NIH 

18 17 27 31 16 18 15 19 161 

No. (%) of isolates 
sent to the NRCBM 
and serotyped 

15 
(83) 

13 
(76) 

19 
(70) 

21 
(68) 

9       
(56) 

13 
(72) 

10 
(67) 

12 
(63) 

112    
(67) 

No. of different 
serotypes 

8 6 7 8 9 9 8 8 25 

PCV10/PCV13 serotypes 

 1 0 0 0 0 0 7.7 0 0 0.9 

 4 0 0 0 4.8 0 0 10 0 1.8 

 5 0 0 0 0 0 0 0 0 0 

 6B 20 7.7 21.1 9.5 11.1 7.7 0 16.7 12.5 

 7F 13.3 7.7 0 0 0 0 0 0 2.7 

 9V 0 0 5.3 19 11.1 0 0 0 5.4 

 14 13.3 23.1 26.3 33.3 0 23.1 20 8.3 20.5 

 18C 6.7 15.4 0 0 11.1 0 0 0 3.6 

 19F 6.7 38.5 21.1 19 11.1 23.1 20 16.7 19.6 

 23F 20 0 10.5 4.8 11.1 7.7 10 0 8 

Additional PCV13 serotypes 

 3 0 0 0 0 0 0 0 8.3 0.9 

 6A 0 7.7 10.5 0 0 0 0 0 2.7 

 19A 0 0 0 0 0 0 0 16.7 1.8 

Other serotypes 

 15B/C 13.3 0 0 0 11.1 0 0 16.7 4.5 

 10A 0 0 5.3 4.8 11.1 7.7 0 0 3.6 

 8 0 0 0 0 0 7.7 0 8.3 1.8 

 22F 6.7 0 0 0 0 0 0 8.3 1.8 

 11A 0 0 0 4.8 0 0 0 0 0.9 

 12F 0 0 0 0 11.1 0 0 0 0.9 

 33F 0 0 0 0 0 0 10 0 0.9 

 9N 0 0 0 0 0 0 10 0 0.9 

 27 0 0 0 0 0 0 10 0 0.9 

 38 0 0 0 0 0 0 10 0 0.9 

 23B 0 0 0 0 0 7.7 0 0 0.9 

 24F 0 0 0 0 0 7.7 0 0 0.9 

 35F 0 0 0 0 11.1 0 0 0 0.9 

PCV10 serotypes 80 92.3 84.2 90.5 55.6 69.2 60 41.7 75.0 

PCV13-PCV10 
serotypes 

0 7.7 10.5 0 0 0 0 25 5.4 

Non-PCV13 
serotypes 

20 0 5.3 9.5 44.4 30.8 40 33.3 19.6 
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Among individuals ≥5 years of age (564 isolates), the most common isolates 
belonged to serotypes 3 (12%; 70/564), 19F (8%; 43/564), 14 (6%; 35/564), 4 (6%; 
33/564), 23F (6%; 31/564), and 19A (5%; 27/564). PCV10, PCV13, and PPSV23 
serotypes accounted for 40% (225/564), 58% (329/564), and 81% (459/564) of 
isolates, respectively (Table 9). No significant changes in the proportion of PCV10, 
PCV13, non-PCV10, non-PCV13, and PCV13-PCV10 serotypes occurred between 
2008–2011 and 2012–2015. 

Table 9. Serotype distribution (%) of pneumococcal meningitis isolates among persons ≥5 years of 
age, 2008–2015, Poland 

 
  2008 2009 2010 2011 2012 2013 2014 2015 2008–

2015 

Cases reported to 
NIP-NIH 

88 113 106 126 98 161 134 160 986 

No. (%) of isolates 
sent to the NRCBM 
and serotyped 

37 
(42) 

66 
(58) 

66 
(62) 

59 
(47) 

57 
(58) 

96 
(60) 

90 
(67) 

93 
(58) 

564    
(57) 

No. of different 
serotypes 

20 31 26 28 21 32 28 31 49 

PCV10/PCV13 serotypes 

 1 0 0 1.5 1.7 0 2.1 1.1 2.2 1.2 

 4 5.4 6.1 7.6 3.4 7 6.3 6.7 4.3 5.9 

 5 0 0 0 0 0 0 0 0 0 

 6B 5.4 1.5 3 6.8 3.5 4.2 5.6 2.2 3.9 

 7F 2.7 0 1.5 3.4 0 2.1 5.6 0 2 

 9V 8.1 3 3 1.7 1.8 5.2 1.1 3.2 3.2 

 14 8.1 6.1 9.1 3.4 5.3 5.2 6.7 6.5 6.2 

 18C 2.7 6.1 7.6 3.4 8.8 5.2 1.1 2.2 4.4 

 19F 10.8 3 13.6 6.8 10.5 7.3 5.6 6.5 7.6 

 23F 5.4 3 7.6 5.1 8.8 6.3 3.3 5.4 5.5 

Additional PCV13 serotypes 

 3 10.8 10.6 10.6 20.3 12.3 9.4 17.8 8.6 12.4 

 6A 0 1.5 1.5 0 1.8 2.1 0 2.2 1.2 

 19A 2.7 1.5 1.5 6.8 3.5 8.3 6.7 4.3 4.8 

Other serotypes 

 8 8.1 1.5 3 1.7 5.3 2.1 2.2 5.4 3.4 

 10A 5.4 3 3 0 5.3 1 2.2 7.5 3.4 

 22F 0 1.5 3 3.4 7 1 4.4 5.4 3.4 

 9N 2.7 4.5 1.5 1.7 1.8 4.2 2.2 4.3 3 

 11A 2.7 3 6.1 3.4 0 3.1 3.3 1.1 2.8 

 15B/C 5.4 3 0 5.1 3.5 5.2 0 2.2 2.8 

 12F 2.7 12.1 0 1.7 1.8 1 1.1 2.2 2.7 

 17F 0 1.5 0 1.7 3.5 0 0 0 0.7 

 33F 0 0 0 1.7 1.8 0 1.1 0 0.5 

 20 2.7 3 1.5 0 3.5 0 2.2 0 1.4 

 2 0 1.5 0 0 0 0 0 0 0.2 

 23A 2.7 1.5 0 0 0 3.1 3.3 5.4 2.3 

 23B 0 0 0 0 0 2.1 5.6 5.4 2.1 
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  2008 2009 2010 2011 2012 2013 2014 2015 2008–
2015 

 6C 0 3 0 1.7 0 1 3.3 2.2 1.6 

 15A 0 1.5 1.5 1.7 1.8 1 1.1 1.1 1.2 

 6A 0 1.5 1.5 0 1.8 2.1 0 2.2 1.2 

 31 0 3 0 1.7 0 1 0 1.1 0.9 

 Other** 5.4 12.1 10.6 11.9 0 8.3 6.7 7.5 8 

PCV10 serotypes 48.6 28.8 54.5 35.6 45.6 43.8 36.7 32.3 39.9 

PCV13-PCV10 
serotypes 

13.5 13.6 13.6 27.1 17.5 19.8 24.4 15.1 18.4 

Non-PCV13 
serotypes 

37.8 57.6 31.8 37.3 36.8 36.5 38.9 52.7 41.7 

** Serotypes, other than those presented in the table, that occurred <10 times in 2005–2015 in Poland. 
Non-typeable isolates (n = 4) were included. 

5.5 Antimicrobial susceptibility of pneumococcal meningitis 
isolates before PCV10 introduction in Poland (II) 

Of the 669 pneumococcal meningitis isolates with available data on penicillin 

susceptibility from 2008–2015 in Poland, 28% (189/669) were resistant to this 

antimicrobial (MIC > 0.06 mg/L). Resistance to penicillin was common among 

serotypes 19A (90%; 26/29), 9V (79%; 19/24), 19F (72%; 47/65), 14 (69%; 40/58), 

and 6B (66%; 23/35). No statistically significant change in the overall proportion of 

penicillin-resistant isolates was reported in 2008–2011 (29%) vs. 2012–2015 (27%) 

(p = .57). Among children <5 years of age, 53% (58/110) of isolates were resistant 

to penicillin compared to 23% (131/559) among persons 5 years of age (p < .0001). 

Among children <5 years of age, the serotypes with the highest proportion of 

penicillin resistance were 9V (100%; 6/6), 19A (100%; 2/2), 23B (100%; 1/1), 19F 

(82%; 18/22), 14 (70%; 16/23), 6A (67%; 2/3), and 23F (56%; 5/9).  

Isolates with decreased susceptibility to cefotaxime (MIC > 0.5 mg/L) 

constituted 13% (90/670) of all isolates tested in 2008–2015. Non-susceptibility to 

cefotaxime was highest among serotypes 19A (59%; 17/29), 35B (50%; 1/2), 19F 

(46%; 30/65), 14 (43%, 25/58), 23F (25%, 10/40), and 9V (21%, 5/24). The overall 

proportion of cefotaxime non-susceptibility did not change significantly between 

2008–2011 and 2012–2015, 14% (40/295) and 13% (50/375), respectively                   

(p = .7066). Among children <5 years of age, 22% (24/110) of isolates were non-

susceptible to cefotaxime compared to 13% (70/560) among persons 5 years of 

age (70/560) (p = .0052). The highest proportion of cefotaxime non-susceptible 

isolates in children <5 years of age was identified in serotypes 19A (100%, 2/2), 23F 

(44%, 4/9), 14 (43%, 10/23), and 19F (36%, 8/22). 
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5.6 Changes in the overall pneumococcal meningitis incidence 
rates after PCV10 introduction in Finland (III) 

Altogether, 451 culture-confirmed pneumococcal meningitis cases were reported to 

the NIDR from July 1, 2004, to June 30, 2017 (excluding the transition period of 

July 1, 2011–June 30, 2011). The median age of cases was 57 years (IQR 40–64 years). 

Of the 451 cases, 257 occurred in the pre-PCV10 period, while 194 occurred during 

the PCV10 period. Twenty-eight percent of pneumococcal meningitis cases in the 

pre-PCV10 period and 30% in the PCV10 period were identified based on positive 

blood culture and an ICD10 bacterial meningitis discharge diagnosis. The remaining 

cases were identified based on positive CSF culture only.  

The overall annual pneumococcal meningitis IR varied from 0.44 cases per 

100,000 person-years in 2016–2017 to 1.07 in 2008. Between the pre-PCV10 and 

PCV10 periods, the mean overall annual IR of pneumococcal meningitis decreased 

by 27%, from 0.81 cases per 100,000 person-years to 0.59 (IRR = 0.73, 95% CI = 

0.61, 0.88) (Table 10). Compared to the pre-PCV10 period, in the PCV10 period, 

the pneumococcal meningitis IR decreased by 64% in children 0–4 years of age (IRR 

= 0.36, 95% CI = 0.19, 0.63) and 34% in adults 50–64 years of age (IRR = 0.66, 95% 

CI = 0.47, 0.90). In all adults 18 years of age, the pneumococcal meningitis IR 

decreased by 19%, from 0.82 cases per 100,000 person-years to 0.67 (IRR = 0.81, 

95% CI = 0.66, 0.99). In other age groups, the point estimates decreased, but 

confidence intervals included 1 (Table 10). 

Table 10. Overall number (N) and incidence rates of pneumococcal meningitis and the corresponding 
relative and absolute rate reductions according to age group, based on the 
comparison of the pre-PCV10 period vs. the PCV10 period, Finland 

 
Age 
group 
(years) 

Pre-PCV10 
period 
incidence 
rate 
per 100,000 
person-years 
(N) 

PCV10 
period 
incidence 
rate per 
100,000 
person-
years (N) 

PCV10 period vs. pre-PCV10 period 

Incidence rate 
ratio (95% CI) 

Relative rate reduction 
(%) (95% CI) 

Absolute rate 
reduction per 
100,000 person-
years (95% CI) 

0–4 2.35 (41) 0.84 (15) 0.36 (0.19, 0.63) 64.45 (37.21, 80.94) 1.52 (0.68, 2.35) 

5–17 0.19 (9) 0.09 (4) 0.46 (0.13, 1.42) 53.86 (−41.69, 87.5) 0.1 (−0.05, 0.25) 

18–49 0.40 (53) 0.31 (40) 0.76 (0.50, 1.14) 24.05 (−14.22, 49.89) 0.1 (−0.05, 0.24) 

50–64 1.38 (93) 0.90 (61) 0.66 (0.47, 0.90) 34.46 (9.74, 52.75) 0.47 (0.11, 0.83) 

≥65 1.17 (61) 1.15 (74) 0.99 (0.70, 1.39) 1.37 (−38.79, 29.65) 0.02 (−0.38, 0.41) 

All 0.81 (257) 0.59 (194) 0.73 (0.61, 0.88) 26.81 (11.87, 39.31) 0.22 (0.09, 0.35) 
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5.7 Changes in the serotype-specific pneumococcal meningitis 
incidence rates after infant PCV10 introduction in Finland 
(III) 

Overall, pneumococcal meningitis IR caused by PCV10 serotypes decreased by 68%, 

from 0.50 cases per 100,000 person-years in the pre-PCV10 period to 0.16 in the 

PCV10 period (Table 11). In children 0–4 years of age, the IR decreased by 87%, 

from 2.07 cases per 100,000 person-years in the pre-PCV10 period to 0.28 in the 

PCV10 period. In adults 18–49 and 50–64 years of age, the IR decreased by 63%, 

from 0.27 cases per 100,000 person-years to 0.10, and 63%, from 0.68 cases per 

100,000 person-years to 0.25, respectively. Among older adults 65 years of age, the 

IR of PCV10-serotype pneumococcal meningitis decreased by 69%, from 0.71 cases 

per 100,000 person-years to 0.22.  

The IR of pneumococcal meningitis caused by PCV13 serotypes also decreased 

in all age groups. However, pneumococcal meningitis caused by the three serotypes 

exclusively in PCV13 (3, 6A, and 19A) increased in adults 18–49 years, but the 

absolute rate change was minimal (0.04/100,000) (Table 11).  

The overall IR of non-PCV10 serotype pneumococcal meningitis increased by 

54%, from 0.28 cases per 100,000 person-years in the pre-PCV10 period to 0.43 in 

the PCV10 period. This was mainly due to an increase in IR of 157% in adults         

65 years of age, from 0.36 cases in the pre-PCV10 period to 0.94 in the PCV10 

period.  

The overall IR of non-PCV13 serotypes increased by 57%, from 0.21 cases per 

100,000 person-years to 0.34, primarily due to increases in children 0–4 years of age 

and adults 65 (Table 11).  
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5.8 Changes in pneumococcal meningitis serotype distribution 
after infant PCV10 introduction in Finland (III) 

 

In the final epidemiological year of the study there were 24 serotyped pneumococcal 

isolates. No cases were reported in children 5–17 years of age. In the pre-PCV10 

period, pneumococcal meningitis cases caused by PCV10 serotypes in persons 0–4 

and 18–49 years of age accounted for 90% (36/40) and 67% (35/52) of all typed 

isolates, respectively. By the final epidemiological year of the study, no cases caused 

by those serotypes were reported in these age groups. In adults aged 50–64 and 65 

years of age, PCV10 serotypes caused 51% (46/91) and 66% (37/56) of meningitis 

cases in the pre-PCV10 period and 33% (2/6) and 7% (1/14) in the last study year.  

The proportion of meningitis caused by PCV13-PCV10 serotypes in persons       

0–4 and 50–64 years of age decreased to 0%, from 5% (2/40) and 10% (9/91), 

respectively. However, in adults 18–49 and 65 years of age, this proportion 

increased from 2% (1/52) to 50% (1/2) and from 13% (7/56) to 14% (2/14), 

respectively.  

The proportion of non-PCV13 serotypes increased in children 0–4 years of age 

(from 5% [2/40] to 100% [2/2]) and adults 18–49 years of age (from 31% [16/52] 

to 50% [1/2]), 50–64 (from 40% [36/91] to 67% [4/6]), and 65 years of age (from 

21% [12/56] to 79% [11/14]).  

Unique PCV20 serotypes constituted 50% (3/6) and 50% (7/14) of all isolates in 

adults 50–64 and 65 years of age in the last study year, compared to 12% (11/91) 

and 9% (5/56) pre-PCV10 introduction. In the two youngest age groups, no cases 

were caused by those serotypes before PCV10 introduction or in the last year.  

In all adults 18 years of age, between the pre-PCV10 period and 2016–2017, the 

proportion of PCV10 serotypes decreased from 59% to 14%. The proportion of 

non-PCV13 serotypes thus increased from 32% in the pre-PCV10 period to 73% in 

2016–2017. 

In 2016–2017, the serotypes causing most cases were 22F, 6C, and 23A (Figure 

7). 
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Figure 7. Proportions (%) of individual S. pneumoniae serotypes to overall pneumococcal meningitis 
cases before PCV10 introduction and in 2016–2017 (the final epidemiological year of the 
study), Finland 

 

5.9 Changes in mortality risk after infant PCV10 introduction in 
Finland (III) 

 

During the study period, 64 pneumococcal meningitis-related deaths occurred within 

30 days of the first positive CSF or blood culture. All deaths but one were in adults 

>18 years of age (Table 12). Compared to that in the pre-PCV10 period, the overall 

mortality rate of pneumococcal meningitis decreased by 42% (95% CI = 4%, 65%), 

from 0.13 deaths per 100,000 person-years to 0.07 in the PCV10 period. This was 

primarily due to a 66% (95% CI = 31%, 85%) reduction in the mortality rate of 

PCV10 serotype pneumococcal meningitis (Table 12), particularly in persons 50–64 

years of age (a reduction of 80% [95% CI = 39%, 95%]).  

The overall CFPs during the pre-PCV10 and PCV10 periods were 16% and 12%, 

respectively (p = .41). The CFP in persons 50–64 years of age decreased from 25% 

in the pre-PCV10 period to 10% in the PCV10 period (p = .04).  

In adults 18 years of age, the pneumococcal meningitis-related mortality rate 

decreased by 41% between the pre-PCV10 and PCV10 periods (95% CI = 3%, 

65%), from 0.16 deaths per 100,000 person-years to 0.09, mainly due to a 65% 

decrease (95% CI = 29%, 85%) in the mortality rate of PCV10 serotype 

pneumococcal meningitis. The CFPs in the pre-PCV10 and PCV10 periods were 

19% and 14%, respectively (p = .61). 
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6 DISCUSSION 

6.1 Summary of findings across studies 

Our population-based study documented that for almost 20 years, S. pneumoniae was 

the leading cause of bacterial meningitis in Finland, even four years after PCV10 

introduction (Study I). Nevertheless, pneumococcus’s contribution to the bacterial 

meningitis burden varied by year and age group. It was the second most common 

cause of meningitis in young children <2 years of age and the leading cause in adults 

>50 years of age. The incidence rate of pneumococcal meningitis was 1.4-fold higher 

in men than women. S. pneumoniae was the leading cause of death in bacterial 

meningitis during the study period and had the second highest case fatality 

proportion.   

The study conducted seven years after the infant PCV10 program introduction 

revealed a substantial reduction in the burden of pneumococcal meningitis in Finland 

(Study III). The overall incidence of PCV10 serotype meningitis decreased in 

vaccine-eligible children and unvaccinated adults. However, a significant disease 

burden remains in older adults because of an increase in pneumococcal meningitis 

caused by non-PCV10 serotypes. 

The study conducted in Poland described 10-year baseline epidemiologic 

characteristics of pneumococcal meningitis cases reported to the national 

surveillance system before the introduction of universal PCV10 vaccination (Study 

II). The study demonstrated an increasing trend in reported rates of pneumococcal 

meningitis, primarily among persons >15 years of age. Substantial geographical 

variation also occurred in the mean pneumococcal meningitis incidence rate. During 

the study period, PCV10 serotypes caused almost half of all cases and three quarters 

of cases in children <5 years of age. The average proportion of penicillin-resistant 

isolates, especially in children <5 years of age, was high. 
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6.2 Burden of bacterial meningitis, with a particular focus on 
pneumococcal meningitis, during two decades of 
surveillance in Finland 

 

Our study confirmed that most of the bacterial meningitis burden over 20 years was 

attributable to S. pneumoniae and N. meningitidis. However, the overall incidence of 

both pathogens decreased significantly during the study period. 

The annual pneumococcal meningitis rates fluctuated from 0.55 to 0.61 cases per 

100,000 population before PCV10 introduction and decreased to 0.41 shortly after 

PCV10 introduction in 2011–2014. The timing of the reduction and change in 

causative serotypes suggested PCV10 influence. A study conducted seven years after 

vaccine introduction confirmed a significant vaccine impact.  

Interestingly, the observed decline in the overall incidence was greatest in 

meningococcal meningitis despite no routine meningococcal vaccination program. 

During the study period, serogroup B was dominant in Finland. This serogroup has 

circulated largely in Europe, Australia, and the Americas [198,199]. Similar decreases 

in the incidence of meningitis caused by N. meningitidis serogroup B in the absence 

of the vaccination were observed in other countries, such as the Netherlands and the 

USA [200–202]. The reasons for this decline are unclear. It might be related to 

changes in environmental and behavioral factors, such as smoking prohibition in 

public places. However, the concurrent increase observed in other meningococcal 

serotypes does not support this explanation. Other possible reasons include 

population immunity to circulating strains and a natural cyclical pattern of 

meningococcal serogroup distribution [203,204]. In addition, the impact of 

quadrivalent vaccine use on military recruits in Finland is uncertain, as no relevant 

research exists.  

The burdens of H. influenzae, L. monocytogenes, and S. agalactiae did not change 

significantly over the 20 years. The conjugate vaccination program against                  

H. influenzae type b was introduced in Finland as early as 1986 and practically 

eliminated meningitis caused by vaccine type H. influenzae [205]. The study indicates 

that vaccine impact remained during the study period, with only two cases of 

meningitis caused by vaccine type. Moreover, no strong signals for serotype 

replacement have occurred in meningitis cases. Similar findings were observed in 

other countries with established HiB vaccination programs and high vaccination 

coverage [5,206]. S. agalactiae was the most common cause of meningitis in young 

children <2 years of age (median age of cases = 0 years). Since a vaccine against 

group B Streptococcus is still in the phase two clinical trial, the only available 
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prevention strategy involves screening and intrapartum antimicrobial prophylaxis 

[207]. Nevertheless, this control measure is ineffective for late-onset infections in 

infants.  

The common observation for L. monocytogenes, N. meningitidis, and S. pneumoniae 

was that higher incidence rates were reported in men compared to women. While 

the reasons are unknown, they may be related to the higher prevalence of underlying 

conditions (e.g., liver diseases, including alcoholic cirrhosis) and behavioral factors 

(e.g., smoking and alcoholism) among men [208,209].  

The case fatality proportion for overall bacterial meningitis did not differ 

significantly between 2004–2009 and 2010–2014. This might be related to the shift 

in the mean age of cases to older age groups. Older age is associated with a higher 

prevalence of comorbid conditions and a worse prognostic [210]. S. pneumoniae was 

the most common cause of death in adults and had the second highest CFP (12%) 

after L. monocytogenes (22%). Interestingly, seven years after PCV10 introduction, the 

mortality rate and case fatality proportion were reduced among pneumococcal 

meningitis cases.  

6.3 Impact of infant PCV10 vaccination on pneumococcal 
meningitis in Finland 

 

The national surveillance data analysis seven years after PCV10 introduction revealed 

a substantial impact of the vaccination program on pneumococcal meningitis 

morbidity and mortality. The incidence of PCV10 serotype meningitis in all age 

groups decreased by 68%, which resulted in a 27% reduction in the overall PM 

incidence. In vaccine-eligible children <5 years of age, a 64% and an 87% reduction 

in the overall and PCV10 serotype incidence, respectively, was observed. In 2017, 

no PCV10 serotype meningitis cases were reported. Serotype 6A pneumococcal 

meningitis incidence was low and did not change after PCV10 introduction.            

The findings also suggest substantial indirect effects of vaccination since incidence 

rates of meningitis caused by PCV10 serotypes decreased in vaccinated children and 

non-vaccinated adults. In persons 18–49 and 50–64 years of age, the rates decreased 

by 63%. Despite the decline in PCV10 serotype incidence, no significant decrease in 

overall PM incidence in persons 65 years of age was observed after vaccine 

introduction. This was related to the serotype replacement by non-PCV10 serotypes 

observed in this age group.  
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During the PCV10 period, no pneumococcal meningitis deaths occurred in 

children. In older adults 50–64 years of age, the pneumococcal mortality rate was 

reduced by 74% and the case fatality proportion by 15%. This reduction was mostly 

due to significantly fewer deaths caused by PCV10 serotypes. 

Comparing our findings with other populations is difficult due to differences in 

the baseline serotype distribution of meningitis cases, use of different PCVs, and 

potential secular trends. However, the magnitude of the overall effect was 

comparable to those of other European countries using PCV13 (a decrease of 

approximately 25%–48% in the general population and approximately 60%–70% in 

children <5 years of age) [13,166,211]. 

Decreases in mortality attributable to pneumococcal meningitis were also 

observed in other countries after the introduction of PCV10 or PCV13 vaccination 

[172,212]. The explanation might be the lower invasive potential of the remaining 

pneumococcal serotypes and changes in the clinical practice, such as the use of 

adjunctive dexamethasone therapy [116].  

6.4 Serotype replacement in pneumococcal meningitis after 
PCV10 introduction in Finland 

 

The 54% increase in the overall incidence of non-PCV10 serotypes seven years after 

vaccine introduction suggests serotype replacement. The increase was particularly 

prominent in adults 65 years of age (157%), resulting in no net impact of PCV10 

on the disease burden in this age group. Overall, the main replacement serotypes 

during the vaccination period (2011–2017) were 19A and 6C, although the increases 

varied by age group. In the final study year (2017), non-PCV10 serotypes 22F, 6C, 

and 23A caused most PM cases.  

Our observations are consistent with recent reports from other settings with 

mature PCV10/13 programs, where non-vaccine serotypes have increased and 

become the most common cause of meningitis [213]. In PCV10-using settings, the 

top serotypes causing meningitis were 19A, 6C, and 3 [14]. Although early studies 

indicated potential cross-protection of 19F for 19A in PCV10-using settings, recent 

studies do not support these findings. In contrast, our study and other recent studies 

suggest vaccine-induced serotype replacement in PCV10 settings such as Brazil, 

Austria, Canada, and Belgium [162,214–216]. Serotype 6C has also been found as an 

emerging serotype in PCV10 settings [14]. It is especially concerning, as this serotype 

appeared to be more often non-susceptible to tetracycline and erythromycin than 
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other serotypes [217,218]. In PCV13 settings, no increases in serotype 6C have been 

reported, probably due to the cross-protection from 6A included in PCV13 [214]. 

Interestingly, we did not observe an increase in serotype 3 PM, although it was found 

to be one of the leading replacement serotypes in IPD cases in Finland [219] and 

other PCV10/13-using sites. This might be related to the small number of meningitis 

cases caused by this serotype before PCV10 introduction.   

The mechanism of serotype replacement is not entirely understood. The change 

in the serotype distribution may be related to filling the ecological niche created by 

the disappearance of vaccine serotypes due to host immunity or capsular switching 

[220]. According to a hypothesis called “Red Queen,” streptococcus rapidly adapts 

to changes in human immunity shortly after PCV vaccination and increases its 

serotype diversity. This is followed by a decrease in the diversity within the next three 

to five years and dominance of nonvaccine serotypes that were at low levels before 

vaccine introduction [221].    

6.5 Comparing the effects of PCV10 pediatric vaccination on 
pneumococcal meningitis and invasive pneumococcal 
disease in Finland 

 

Studies conducted three, six, and nine years after the introduction of PCV10 into 

Finland’s national immunization program have documented a substantial impact of 

vaccination on invasive pneumococcal disease (bacteremic pneumonia, bacteremia, 

and meningitis) burden in adults and children. In vaccine-eligible children, the 

vaccination resulted in a reduction of 79% in overall IPD incidence and 94% in IPD 

caused by PCV10 serotypes [196,219,222]. However, vaccine impact on 

pneumococcal meningitis was smaller and amounted to a 64% and an 87% reduction 

of overall and PCV10 serotypes incidence, respectively (Study III).  

In adults 18 years, contrary to meningitis incidence rates, IPD ones were 

increasing before PCV10 introduction [219]. Nine years after vaccine 

implementation, the observed incidence rate of PCV10 serotype IPD, after 

adjustment for the pre-PCV10 trend, was 90% lower than the expected rate without 

the PCV program. The overall IPD incidence was estimated to be 30% lower [219]. 

This compares to a reduction of approximately 65% in PCV10 serotype PM 

incidence and 30% in overall PM incidence in adults.  

The estimated smaller impact of vaccination on PCV10 type PM could be related 

to the different and more diverse serotype distribution before PCV10 introduction 
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and potentially higher invasiveness of some non-vaccine serotypes for meningitis 

compared to other clinical presentations [9,166]. The observed changes in              

non-vaccine serotype rates support this hypothesis. The incidence of IPD caused by 

non-PCV10 serotypes in vaccine-eligible children increased by 85% within three 

years and 53% within six years of PCV10 introduction, although the absolute 

numbers were small [177,196]. This compares to a 143% increase in non-PCV10 

type pneumococcal meningitis seven years after vaccine introduction. The difference 

was even more pronounced in adults 65 years of age, with a 70% increase in NVT 

for IPD and 157% for meningitis [219]. The increases were driven by serotypes 3, 

19A, and 22F for IPD and serotypes 19A, 6C, and 23A for meningitis.  

Although the differences in the PCV used in the vaccination program limit 

comparability, a more substantial reduction in the disease incidence of non-

meningitis compared to meningitis was also observed in other studies. In Israel, 

PCV7/PCV13’s impact was smaller in overall meningitis than non-meningitis, 

especially in children 2 years of age [168]. In Germany, after PCV10/PCV13 

introduction, a more pronounced incidence reduction in children was also observed 

for non-meningitis compared to meningitis, particularly in children <2 years of age 

[169]. For these two studies, researchers suggested that meningitis cases were 

younger than non-meningitis cases and that the proportion of non-vaccine serotypes 

was higher for meningitis before PCV introduction [168,169]. The lower age of 

meningitis cases could be related to the higher prevalence of underlying conditions 

and lower vaccine effectiveness in these patients. Our study could not assess these 

questions because clinical and risk factor data were unavailable.  

6.6 Summary of the baseline epidemiology of pneumococcal 
meningitis before PCV10 introduction in Poland 

 

In Poland, as in other countries, the highest pneumococcal meningitis incidence rates 

were reported in young children and older adults. Although the incidence rates were 

lower in the working-age population, they contributed to the highest number of 

cases. The overall incidence rate ranged from 0.21 cases per 100,000 population in 

2005 to 0.47 in 2015, with substantial geographical differences between reported 

rates within the country (up to three-fold). Although incidence rates were increasing, 

the observed overall and age-specific incidence rates of pneumococcal meningitis 

were considerably lower than those reported in other high-income countries, such 
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as Finland [192] and the Netherlands [223], before PCV10 introduction.                    

The difference was largest among older adults.  

Low overall pneumococcal meningitis rates suggest considerable underreporting 

and underascertainment of cases, particularly in adults. Substantially lower 

incidences, compared with other EU countries, were also observed for invasive 

pneumococcal disease (in 2014, the overall IPD incidence in Poland was 1.9 cases 

per 100,000 population vs. an average of 4.8 in the EU) [224]. Underreporting is 

likely related to low surveillance sensitivity, especially in some regions of the country. 

Underascertainment of cases might be related to frequent administration of 

antimicrobials immediately after diagnosis and thus negative culture results [191]. 

Nonetheless, underascertainment of meningitis cases was less pronounced than in 

bacteremia/sepsis cases. The ratio of meningitis cases to all IPD is much higher in 

Poland than in other countries with better surveillance (approximately 30% vs.      

6%–10%), which indicates insufficient blood culturing practices [191]. The observed 

increasing trend in meningitis incidence likely reflects changes in the surveillance 

system during the study period. Since 2010, data from two surveillance systems have 

been matched, resulting in more identified cases. However, the effect of secular 

trends cannot be excluded.  

The overall case fatality proportion of pneumococcal meningitis was 20%, 

ranging from 4% in children <1 year of age to 31% in adults 65. The observed 

CFPs were almost two-fold higher than in Finland before PCV10 introduction. 

Again, this finding might be associated with insufficient surveillance and bias due to 

more frequent reporting of severe cases, with a higher mortality risk.  

The most common serotypes were 3, 19F, 14, and 23F. In vaccine-eligible 

children <5 years of age, the most common were serotypes 14, 19F, 6B, and 23F. 

The highest case fatality proportions for serotypes identified at least 20 times during 

the study period were for 14, 19F, 6B, and 23F. PCV10 serotypes were responsible 

for 46% of all pneumococcal meningitis cases and 75% among children <5 years of 

age. Notably, the overall proportion of PCV10 serotypes decreased from 52% in 

2008–2011 to 41% in 2012–2015 without a routine vaccination program. The decline 

was more profound in children <5 years of age, from 87% to 57%, respectively.  

The potential PCV10 vaccine coverage during the baseline period was 

comparable to those of other countries before they introduced PCV, accounting for 

62%–72% of meningitis cases in children <5 years of age [14]. The 2012–2015 

decline in the proportion of PCV10 serotypes cannot be explained by vaccine use in 

the private sector or risk groups, as the estimated vaccine coverage was <1% [225]. 

This change was probably associated with secular trends, and indeed, the proportion 
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of non-PCV10 serotypes increased from 13% to 43%, mostly due to serotypes 19A 

and 23B.  

Our study also demonstrated the vital role of PCV13 unique serotypes in the 

overall burden of pneumococcal meningitis. Serotype 3 was most prevalent in adults, 

and serotype 19A has become more common in recent years, which suggests                

a potential benefit of introducing a higher-valent vaccine. However, this should be 

interpreted cautiously. Recent studies indicate lower vaccine effectiveness against 

serotype 3 in mature PCV13 programs with high vaccination coverage than for other 

vaccine serotypes [127,130,226]. A possible explanation is the distinct features of 

serotype 3, such as the bountiful production of capsules and surface electronegativity 

[227,228]. In addition, immunotolerance after repeated vaccination is considered 

[229]. The herd effect in adults is also unclear, with some studies observing no impact 

of the PCV13 on this serotype in the non-vaccinated population [14], most likely 

due to no effect of the vaccine on the nasopharyngeal carriage [230]. In PCV13-

using settings, serotype 19A was rarely identified as the cause of meningitis [14]. 

However, concerning serotype 3, in some studies, PCV13 vaccine effectiveness 

against this serotype was lower than for other vaccine serotypes [231]. It was the 

most commonly reported vaccine failure [231]. 

Reported levels of resistance to penicillin were concerning. Over a quarter of all 

isolates and half of isolates in children <5 years of age were resistant to penicillin. 

Most penicillin-resistant isolates were caused by serotypes 19A, 9V, 19F, and 14, 

targeted by the PCV13 vaccine. The observed prevalence of resistance was 

comparable to the average for IPD isolates in European countries [232]. Serotypes 

19A, 14, and 19F were also associated with resistance in other countries [233]. 

Several studies have revealed that PCV introduction reduced the nasopharyngeal 

carriage of penicillin-resistant strains and the disease burden caused by those 

serotypes [234,235].  

6.7 Considerations for evaluating the PCV10 vaccination 
program in Poland 

 

One should consider several factors when assessing the impact of PCV10 

vaccination program introduction in Poland. First, the previously described 

limitations of the surveillance system should be formally evaluated, especially as the 

new electronic-based reporting replaced paper-based reports. Second, because of 

underreporting, the relatively low observed rates will result in a smaller reduction in 
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the absolute number of cases compared to other European countries, which may 

affect the health and economic benefits estimated in the cost-effectiveness analysis 

of the vaccination program. In addition, due to the increasing trend before PCV 

introduction, the choice of the analytical method might affect the estimated vaccine 

impact and indirect effects. Before-after analysis will be characterized by smaller 

differences in observed and expected incidence rates and smaller or no indirect 

effects since pre-vaccine trends may be averaged out. In the Polish context, the 

method of choice might be interrupted time series (ITS) analysis, where the increased 

trend in the baseline period can be adjusted for [196,219].  

Finally, secular trends in the circulating serotypes should also be considered when 

evaluating the vaccination’s impact on serotype distribution and potential serotype 

replacement. This should be especially highlighted for serotype 19A.   

6.8 Strengths and limitations of the studies 

A major strength of all studies in this dissertation was the use of nationwide 

population-based surveillance data from Finland and Poland. Finland’s laboratory-

based electronic surveillance system allows near-complete case ascertainment and 

serotyping of pneumococcal meningitis isolates at the THL reference laboratory. 

Moreover, including pneumococcal meningitis cases based on hospital discharge 

data and positive blood culture increased the sensitivity of case identification.  

However, findings from those studies should be interpreted considering potential 

limitations. First, a passive surveillance system in Poland likely led to the 

underreporting of pneumococcal meningitis cases. Second, including only CSF 

culture-confirmed cases in the analysis, potentially underestimating the number of 

cases. Furthermore, the changes in the surveillance system from matching cases from 

passive and laboratory surveillance could affect the trends in reported cases.               

In Finland, the design of the observational before-after study to assess the impact of 

the vaccination is susceptible to potential bias due to secular trend, potential changes 

in clinical practices, and the prevalence of risk factors. In addition, we had no 

individual vaccination records. However, no significant changes in meningitis case 

ascertainment occurred, and contrary to the incidence of bloodstream infection, no 

increasing trend in the incidence of pneumococcal meningitis was observed before 

PCV implementation [193]. We thus did not adjust for trend in our analysis. Due to 

a lack of clinical data in our studies, we could not account for the effects of potential 

changes in treatment practices or the prevalence of underlying diseases. Finally, the 
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analysis of case fatality proportions and mortality rates may have been influenced by 

the cause of death data being unavailable. However, other studies have revealed that 

most deaths due to meningitis occur within 14 days; we therefore assumed that they 

are attributable to pneumococcal meningitis [236].  

6.9 Conclusions  

For over two decades, Streptococcus pneumoniae was the leading bacterial cause of 

meningitis in Finland. It is also one of the most severe forms of bacterial meningitis. 

The use of infant PCV10 immunization had a significant role in reducing the burden 

of pneumococcal meningitis. Vaccination provided significant direct and indirect 

protection for vaccine type meningitis and associated mortality. However, because 

of the serotype replacement by non-PCV10 serotypes, a substantial disease burden 

remains in older adults.  

In Poland, the baseline epidemiology of pneumococcal meningitis suggests 

reasonable PCV10 serotype coverage and potential benefits of reducing 

antimicrobial non-susceptibility. Nonetheless, the identified limitations of the 

surveillance system may hinder future vaccine evaluation studies.  

Our studies suggest that the 13-valent conjugate vaccine might have a higher 

serotype coverage than PCV10, especially in older adults. However, as discussed 

earlier, this should be interpreted cautiously due to reports of limited vaccine 

effectiveness and duration of protection against serotype 3 [231]. In addition, 

vaccination of older adults with PCV13 has not been found cost-effective [237].  

The dynamic serotype replacement of S. pneumoniae poses challenges for effective 

vaccination strategies, especially in the long term. Continuous surveillance is essential 

during pre-vaccination and after vaccine introduction to monitor trends and assess 

candidate serotypes in future PCVs in development. 

6.10 Future directions 

Due to the observed shift into non-vaccine serotypes, new vaccination strategies 

with expanded serotype coverage have been developed. The recently licensed PCV15 

and PCV20 formulation protects children and adults against up to seven additional 

serotypes that were found to be associated with high prevalence, antibiotic 

resistance, heightened disease severity, and invasive potential [238]. In mature 
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PCV10/13 settings, PCV20 serotypes constituted over half of the remaining 

pneumococcal meningitis [14]. In Finland, 50% of all isolates in adults 50–64 and 

65 years of age in the last study year were serotypes in PCV20. In the two youngest 

age groups, no cases were caused by these serotypes before PCV10 introduction or 

in the last year. Additional studies are thus needed to assess the potential benefits 

and cost-effectiveness of higher-valency vaccines.  

Based on relevant data and experience with the PCV7/10/13 programs,                  

S. pneumoniae, in response to the introduction of higher-valency conjugate vaccines, 

might continue its evolution and develop selective advantages over new replacing 

serotypes. Alternative prevention approaches are therefore needed. These include 

protein-based vaccines targeting different potential surface proteins, such as protein 

A or C or pneumolysin, or even whole-cell vaccines containing killed or live 

attenuated pneumococci [239,240]. Although promising, both methods are at the 

early stages of clinical development.  

In summary, despite efforts to combat pneumococcus, it will continue 

challenging the next generation of epidemiologists and public health microbiologists. 

However, this should not prevent the current generation from establishing an 

ambitious goal: defeating meningitis. New vaccines should be effective and 

affordable, as the highest burden of meningitis is in low-income countries. This is 

reflected in the WHO’s “Defeating Meningitis by 2030” global road map, which 

defines the plan to tackle the leading causes of bacterial meningitis, including 

pneumococcal meningitis [241]. I can only hope that this dream comes true.  
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ABSTRACT
Objectives Bacterial meningitis remains an important 
cause of morbidity and mortality worldwide. Its 
epidemiological characteristics, however, are changing due 
to new vaccines and secular trends. Conjugate vaccines 
against Haemophilus influenzae type b and Streptococcus 
pneumoniae (10-valent) were introduced in 1986 and 
2010 in Finland. We assessed the disease burden and 
long-term trends of five common causes of bacterial 
meningitis in a population-based observational study.
Methods A case was defined as isolation of S. 
pneumoniae, Neisseria meningitidis, Streptococcus 
agalactiae, Listeria monocytogenes or H. influenzae from 
cerebrospinal fluid and reported to national, population-
based laboratory surveillance system during 1995–2014. 
We evaluated changes in incidence rates (Poisson or 
negative binomial regression), case fatality proportions ( 2) 
and age distribution of cases (Wilcoxon rank-sum).
Results During 1995–2014, S. pneumoniae and N. 
meningitidis accounted for 78% of the total 1361 reported 
bacterial meningitis cases. H. influenzae accounted for 
4% of cases (92% of isolates were non-type b). During 
the study period, the overall rate of bacterial meningitis 
per 1 00 000 person-years decreased from 1.88 cases 
in 1995 to 0.70 cases in 2014 (4% annual decline (95% 
CI 3% to 5%). This was primarily due to a 9% annual 
reduction in rates of N. meningitidis (95% CI 7% to 10%) 
and 2% decrease in S. pneumoniae (95% CI 1% to 4%). 
The median age of cases increased from 31 years in 
1995–2004 to 43 years in 2005–2014 (p=0.0004). Overall 
case fatality proportion (10%) did not change from 2004 to 
2009 to 2010–2014.
Conclusions Substantial decreases in bacterial meningitis 
were associated with infant conjugate vaccination 
against pneumococcal meningitis and secular trend in 
meningococcal meningitis in the absence of vaccination 
programme. Ongoing epidemiological surveillance is 
needed to identify trends, evaluate serotype distribution, 
assess vaccine impact and develop future vaccination 
strategies.

INTRODUCTION
Despite the availability of vaccines, anti-
biotics and advances in intensive care, 
bacterial meningitis remains an important 
cause of morbidity and mortality worldwide. 
Persistent neurological sequelae including 

hearing loss, neuropsychological impair-
ment or seizures are reported in 10%–30% 
of survivors.1 The case fatality proportion 
(CFP) ranges from 5% to 30% for different 
bacteria.2 3

Globally, Streptococcus pneumoniae, Neis-
seria meningitidis and Haemophilus influenzae 
are the most important causes of bacterial 
meningitis, particularly in young children.4 5 
Among neonates, the most common cause 
of bacterial meningitis is S. agalactiae,2 6 
while Listeria monocytogenes is important in 
newborns and elderly persons with comor-
bidities.7 However, the leading organisms 
causing bacterial meningitis vary by age of 
the patient, time and geographical location.5 
As the choice of empirical antimicrobial 
treatment for bacterial meningitis should 
be based on local epidemiology, patient’s 
age, presence of risk factors and regional 
resistance patterns,8–10 population-based 
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 This study describes the epidemiological 
characteristics of  >1300 cases of bacterial 
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Haemophilus influenzae type b; and introduction 
of 10-valent pneumococcal conjugate vaccination 
on reducing the burden of bacterial meningitis, as 
well as decline in meningococcal meningitis due 
to secular trend. As the data were from laboratory-
based surveillance system, clinical information such 
as severity or treatment was not available.
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underestimated since cases diagnosed by PCR or 
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cases diagnosed based on clinical symptoms and 
findings were not included in the  dataset.
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surveillance data are important to help in formulating 
clinical guidelines.

The introduction of effective protein conjugate vaccines 
against H. influenzae type b (Hib), S. pneumoniae and N. 
meningitidis has changed the epidemiology of bacterial 
meningitis in many countries.11 12 In Finland, universal 
vaccination against Hib since 1986 resulted in rapid elim-
ination of the disease13 and introduction of the 10-valent 
pneumococcal conjugate vaccine (PCV10) in September 
2010 has resulted in substantial reduction in vaccine-type 
invasive disease.14 15 Meningococcal conjugate vaccines 
(MCVs) have not been introduced into Finnish National 
Vaccination Programme (NVP). However, meningo-
coccal polysaccharide vaccine has been offered to military 
conscripts since 1982.

To provide information for developing future preven-
tion strategies and to help in formulating clinical 
guidelines, we conducted a population-based observa-
tional study to determine the contribution of specific 
pathogens to the total bacterial meningitis disease 
burden and to assess long-term trends in the incidence of 
common aetiologies in Finland during 1995–2014.

MATERIALS AND METHODS
Data sources
Since 1995, all clinical microbiology laboratories in 
Finland have had legal obligation to report microbial 
isolations from blood and/or cerebrospinal fluid (CSF) 
to the National Infectious Diseases Register (NIDR)—a 
population-based, electronic laboratory surveillance 
system maintained by the National Institute for Health 
and Welfare (THL). Routinely collected information 
include the microbe, specimen date, date of birth, sex, 
place of residence and unique Personal Identity Code 
(PIC). For blood or CSF findings concerning S. pneumo-
niae, S. agalactiae, N. meningitidis, L. monocytogenes or H. 
influenzae, multiple notifications with the same PIC and 
microbe are merged into one case if they occurred within 
3 months of the first notification. Since 2004, information 
on vital status after episode is routinely obtained from the 
Population Information System. All clinical microbiology 
laboratories also submit isolates from reported cases to 
THL reference laboratories for species verification and 
characterisation of the isolates including serotyping or 
serogrouping. Since 2004, serotyping results are linked 
to NIDR notifications by using the PIC. Antimicrobial 
susceptibility data were not available.

Case definitions
We defined a case of bacterial meningitis as isolation of S. 
pneumoniae, S. agalactiae, N. meningitidis, L. monocytogenes 
or H. influenzae from CSF and notified to NIDR from 1995 
through 2014.

For cases reported during 2004–2014, we calculated the 
pathogen-specific 30-day CFP as number of cases resulting 
in death within 30 days from the first positive CSF culture, 
divided by all cases.

We calculated the proportions of S. pneumoniae, N. 
meningitidis and H. influenzae cases due to vaccine-prevent-
able serotypes/serogroups during 2004–2014. Serotypes 
covered in PCV10 are the following: 1, 4, 5, 6B, 7F, 9V, 
14, 18C, 19F and 23F; the 13-valent PCV13 adds serotypes 
3, 6A and 19A. Vaccine-preventable meningococcal sero-
groups include those in the quadrivalent MCV (MCV-4, 
A, C, W and Y) and serogroup B isolates targeted by novel 
protein-based vaccines (MenB). For H. influenzae, type b 
was considered vaccine preventable.

Statistical analysis
By using data from the Population Information System 
as denominators, we calculated pathogen-specific and 
age-specific annual incidence rates. Poisson regression 
was used to test for log-linear trend in rates of bacte-
rial meningitis during 1995–2014. Incidence rate ratios 
(IRRs), their 95% CI and p values for yearly changes were 
calculated using time (year) as a continuous explanatory 
variable in the Poisson model. When appropriate, we used 
negative binomial regression to correct for overdisper-
sion of data. To compare age distribution of cases across 
years, we used Wilcoxon rank-sum test. To assess changes 
in CFP, we used 2 analyses; p value <0.05 was considered 
statistically significant. All analyses were done with STATA 
version 13 and Microsoft Excel 2013.

Ethical considerations
Data used in the analysis were collected as a part of 
national routine surveillance which falls under the 
existing mandate of THL. No formal Institutional Review 
Board review was required for this study. Personal identi-
fiers were removed after linkage with vital status data.

RESULTS
Overall incidence rates of bacterial meningitis
From 1995 to 2014, 1361 cases of bacterial meningitis 
caused by S. pneumoniae, N. meningitidis, S. agalactiae, L. 
monocytogenes or H. influenzae were reported (mean inci-
dence rate, 1.29 cases/100 000 person-years, table 1). S. 
pneumoniae and N. meningitidis were the most common 
aetiologies accounting for 78% (1061/1361) of cases. The 
median age of cases increased from 31 years in 1995–2004 
to 43 years in 2005–2014 (p=0.0004). Rates were higher 
in men than women (1.52 vs 1.07 cases/100 000 person-
years; IRR 1.4, 95% CI 1.3 to 1.6)).

The mean annual rates of all bacterial meningitis 
ranged from 1.97 in 1996 to 0.70 cases/100 000 person-
years in 2014, with an annual decrease of 4% (95% CI 
−3% to −5%, table 1). During 2004–2014, 65 patients died 
within 30 days from culture (CFP, 10% (65/633)). There 
was no change in 30-day CFP from 2004–2009 (11% 
(43/402) to 2010–2014 (10% (22/231), p=0.22.

Characteristic of bacterial meningitis by age group
Children <2 years of age accounted for 20% of cases 
(268/1361) and had the highest incidence rate (11.38 
cases/100 000 person-years, table 1). The most common 
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pathogens in this age group were S. agalactiae (4.50 
cases/100 000 person-years) and S. pneumoniae (3.52 
cases/100 000 person-years, figure 1). From 1995 to 2014, 
the rate of bacterial meningitis in this age group decreased 
by 2% annually (95% CI −4% to −1%, table 1). The average 
30-day CFP in 2004–2014 was 2% (3/140). In children 2–4 
years of age, 70 cases (5%) of bacterial meningitis were 
reported during 1995 to 2014 (1.94 cases/100 000 person-
years). The most common pathogens in this age group 
were N. meningitidis (1.33 cases/100 000 person-years) 
and S. pneumoniae (0.50 cases/100 000 person-years, table 
1). During the study period, the rate of all meningitis 
did not change significantly (table 1). The 30-day CFP in 
2004–2014 was 14% (4/128); all four deaths were due to 
N. meningitidis.

Children 5–17 years of age accounted for 130 cases 
(9%) of bacterial meningitis and had the lowest rate 
(0.80 cases/100 000 person-years, table 1). N. meningitidis 
and S. pneumoniae were the main causes (0.52 and 0.20 
cases/100 000 person-years, respectively, figure 1). From 
1995 to 2014, the rate of bacterial meningitis decreased 
by 8% annually (95% CI −12% to −4%, table 1). The 
30-day CFP was 7% (3/45); all three fatal cases were due 
to N. meningitidis.

Adults 18–49 years of age accounted for 408 cases 
(30%) of bacterial meningitis (0.91 cases/100 000 person-
years, table 1). N. meningitidis and S. pneumoniae caused 
most of the cases (figure 1), with incidence rates 0.43 
and 0.40 cases/100 000 person-years, respectively. During 
1995–2014, the overall rate decreased by 7% annually 
(95% CI −8% to −5%, table 1). The 30-day CFP was 8% 
(13/152), with nine deaths due to S. pneumoniae infection.

Among persons 50–64 years of age, there were 274 cases 
(20%) of bacterial meningitis (1.30 cases/100 000 person-
years, table 1), of which 186 cases (68%) were caused by 
S. pneumoniae (0.88 cases/100 000 person-years, figure 1). 
During the study period, the overall rate decreased by 4% 
annually (95% CI −6% to −2%, table 1). The 30-day CFP 
was 13% (18/143), with most fatal cases attributable to S. 
pneumoniae (16 deaths).

In adults 65 years of age, there were 211 cases (15%) 
of bacterial meningitis (1.23 cases/100 000 person-
years, table 1). S. pneumoniae caused 53% (113/211) of 

the cases (0.66 cases/100 000 person-years), followed by 
L. monocytogenes. There was no significant change in the 
overall rate during 1995–2014 (table 1). This age group 
had the highest 30-day CFP (19%, 24/125). Half of the 
fatal cases were due to S. pneumoniae (12 deaths); L. mono-
cytogenes caused 10 deaths.

Causes of bacterial meningitis
Streptococcus pneumoniae
From 1995 to 2014, 611 cases of pneumococcal menin-
gitis were reported. Median age was 48 years; 57% of 
cases were male (male to female IRR, 1.4 95% CI 1.2 
to 1.6, table 2). The overall annual rate per 1 00 000 
person-years decreased from 0.70 in 1995 to 0.26 in 
2014 (figure 2), a 2% annual decrease (95% CI −4% to 
−1%, table 1).

 The incidence of pneumococcal meningitis decreased 
annually by 4% (95% CI −7% to 0%), 7% (95% CI −13% 
to −1%) and 4% (95% CI −6% to −1%) in age groups 
<2 years, 5–17 years and 18–49 years, respectively. 
During 2004–2014, S. pneumoniae accounted for 58% 
(38/65) of fatal cases (30-day CFP 12%, 38/308).

Of the 308 pneumococcal meningitis cases reported 
during 2004–2014, information on serotype was available 
for 296 (96%). The proportion of cases caused by PCV10 
serotypes decreased from 61% (35/57) in 2004–2005 to 
15% (9/36) in 2013–2014. PCV13 serotypes accounted 
for 70% (40/57) cases in 2004–2005 and 44% (16/36) 
in 2013–2014. In children less than 2 years, proportion 
of meningitis cases caused by PCV10 serotypes decreased 
from 75% (9/12) in 2004–2005 to 20% (1/5) in 2013–
2014. In 2014, no meningitis cases were caused by PCV10 
serotypes.

Neisseria meningitidis
During the study period, meningococcal meningitis 
accounted for 450 cases (0.43 cases/100 000 person-years) 
(table 1). Median age was 18 years and 60% of cases were 
male (male to female IRR 1.5, 95% CI 1.3 to 1.9, table 
2). The overall annual incidence per 1 00 000 person-
years decreased from 0.88 in 1995 to 0.07 in 2014; the 
annual decrease was −9% (95% CI −7% to −10%, table 1). 
The decline occurred in all age-groups except in <2 years 

Figure 1 Proportions of bacterial meningitis cases caused by five pathogens according to age group, Finland, 1995–2014.
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and 65 years of age. The incidence decreased annually by 
6% (95% CI −1% to −10%), 8% (95% CI −3% to −14%), 
10% (95% CI −8% to −13%) and 12% (95% CI −8% 
to −13%) in age groups 2–4 years, 5–17 years, 18–49 years 
and 50–64 years, respectively. The overall 30-day CFP was 
9% (14/163) and ranged from 3% (1/29) among chil-
dren aged 0–1 years to 21% (4/19) among children aged 
2–4 years.

During 2004–2014, information on N. meningitidis 
serogroups was available for 99% of cases (161/163). 
Serogroup B accounted for 85% (137/161) of isolates, 
C 11% (17/161) and Y 4% (7/161). In children <2 years, 
serogroup B caused 96% (26/27) of cases. MCV-4 and 
MenB vaccine serogroups caused 15% (24/161) and 85% 
(137/161) of all cases, respectively.

Haemophilus influenzae
From 1995 to 2014, 58 cases of H. influenzae were reported 
(0.06 cases/100 000 person-years, table 1). Median age 
was 29 years and male to female IRR was 1.0 (95% CI 0.6 
to 1.7, table 2). The incidence rate ranged from 0.0 cases 
per 1 00 000 person-years in 2010 to 0.25 cases in 2007 
(figure 2). Rates in all age groups were stable. From 2004 
to 2014, there were no deaths due to H. influenzae.

In 2004–2014, non-encapsulated H. influenzae 
accounted for 69% (18/26) , serotype f 23% (6/26) and 
type b 8% (2/26) of isolates.

Streptococcus agalactiae
Infection with S. agalactiae accounted for 141 cases of 
meningitis (0.13 cases/100 000 person-years), including 
24 early-onset cases and 78 late-onset cases (table 1). 
The median age of cases was 30 days; male to female IRR 
was 1.03 (95% CI 0.7 to 1.4) (table 2). During the study 

Table 2 Characteristics of bacterial meningitis cases, Finland, 1995–2014

Characteristics S. pneumoniae N. meningitidis S. agalactiae
L.  
monocytogenes H.  influenzae Total

Gender,

no of cases (% 

of total)

  Male 347 (57) 268 (60) 70 (50) 71 (70) 28 (48) 784 (58)

  Female 264 (43) 182 (40) 71 (50) 30 (30) 30 (52) 577 (42)

Age (years)

  Median 48 18 0 68 29 36

  IQR 28–62 4–35 0 56–74 6–54 5–58

Case fatality*

  No of deaths 

(no of cases) 38 (308) 14 (163) 2 (86) 11 (50) 0 (26) 65 (633)

  Case fatality 

proportion (%) 12.3 8.6 2.3 22 0 10.3

*Data are for cases reported during 2004–2014. 

Figure 2 Incidence rate (per 100 000 person-years) of bacterial meningitis by year and pathogen, Finland, 1995–2014.
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period, annual rates ranged from 0.06 cases/100 000 
person-years in 1995 to 0.17 cases in 2014 (figure 2), but 
overall rates of S. agalactiae did not change significantly 
(p=0.97, table 1). During 2004–2014, the 30-day CFP was 
2% (2/86).

Listeria monocytogenes
During the study period, L. monocytogenes caused 101 cases 
of meningitis (0.13 cases/100 000 person-years), mostly 
among elderly persons (median age, 68 years). Of cases, 
70% were men (male to female IRR 2.5, 95% CI 1.6 to 
3.9, table 2). Overall incidence rates of Listeria meningitis 
did not vary significantly during the study period, ranging 
from 0.04 to 0.21/100 000 person-years (table 1). The 
overall 30-day CFP was 22% (11/50) and 28% (10/36) in 
persons 65 years of age.

DISCUSSION
During 1995–2014, the most common causes of bacterial 
meningitis in Finland were S. pneumoniae and N. meningit-
idis. However, contribution of specific pathogens to the 
disease burden varied substantially by age. As in other 
developed countries, S. agalactiae was the most common 
cause of bacterial meningitis in children <1 years of age.6 
The mean age of cases increased significantly during 
the study period mainly because of the decrease in inci-
dence in children associated with PCV10 programme and 
declining secular trend in meningococcal meningitis.

During the study period, significant declines were seen 
in overall incidence of bacterial meningitis—primarily 
due to decreases in rates of N. meningitis and S. pneu-
moniae. Of interest, the decrease in incidence of N. 
meningitidis was greater than for pneumococcal menin-
gitis, although there is no routine vaccination programme 
for meningococcal disease in Finland. Changes in rates of 
meningococcal disease have also been observed in other 
countries in Europe and worldwide.16 17 The reasons 
for these declines in incidence are not clear but may be 
related to population immunity to circulating strains, 
changes in colonising organisms in the nasopharynx 
or increasing use of influenza vaccine. Also, changes 
in behavioural risk factors such as lower prevalence 
of smoking or crowding might contribute.18 19 In some 
countries, decreases were related to meningococcal vacci-
nation. After the introduction of conjugate serogroup C 
meningococcal vaccine, vaccine serogroup disease nearly 
disappeared in England20 and the Netherlands.21 Direct 
and indirect (herd protection) vaccine effects were also 
reported from other European countries including 
Spain, Ireland and Belgium.22 23 Immunisation of high 
risk groups with recently licensed protein-based vaccines 
targeted against meningococcal serogroup B might also 
be considered in Finland. However, updated cost-effective 
analysis is needed for decision-making about introduc-
tion of meningococcal vaccination programs.

Before the introduction of PCV10, considerable vari-
ation in pneumococcal meningitis incidence rates was 

seen. As there were no major changes in surveillance 
or diagnostic practices in Finland, these changes may 
be related to emergence of new serotypes, selective 
pressure from antibiotic use or natural fluctuation in 
serotypes.24–26 The decline in pneumococcal meningitis 
incidence in children <2 years of age was associated with 
introduction of PCV10 in the NVP in 201015; PCV10 sero-
types in this age group were significantly reduced and by 
2014 no vaccine serotype meningitis cases were reported. 
In vaccine-eligible children, the overall rate of pneumo-
coccal meningitis was reduced by 46% as a result of a 
69% reduction in PCV10-type meningitis.15 Many studies 
in USA and Europe have also documented significant 
declines in the incidence of pneumococcal meningitis in 
both vaccinated and unvaccinated groups after introduc-
tion of PCV programmes.11 12 27–29 In Finland, it might be 
possible to achieve further reductions with higher valency 
conjugate vaccine formulations.

The incidence rate of L. monocytogenes, N. meningitidis 
and S. pneumoniae was higher in men than women. L. 
monocytogenes meningitis cases were 2.5 times more likely 
to be men. Higher rates of listeriosis in males have also 
been observed in other studies.7 However, the reasons 
are unknown, but may be related to higher prevalence of 
underlying conditions, alcoholism among men and liver 
diseases (including alcoholic cirrhosis).30 In pneumo-
coccal and meningococcal meningitis, possible reasons 
may be higher prevalence of underlying medical condi-
tions,smoking and alcoholism.31 As listeriosis is primarily 
transmitted through contaminated food, important 
prevention efforts include health education about dietary 
guidelines for high risk groups, such as pregnant women 
and the elderly.32

The overall 30-day CFP for meningitis did not change 
significantly during 1995–2014. However, the unchanged 
CFP may be related to the altered age distribution of 
cases. Older age is associated with higher risk of poor 
outcome.33 In addition, pathogen distribution has 
changed and the case fatality for meningococcal menin-
gitis is lower compared with pneumococcal meningitis. 
The small number of fatal cases in our study did not allow 
assessing changes in CFP by age group and pathogen. The 
30-day CFP was highest for L. monocytogenes (22%), which 
is comparable with results from the Netherlands and 
Spain.7 34 Most of the fatal cases of bacterial meningitis in 
persons 50 years were attributable to S. pneumoniae. Cases 
who had pneumococcal meningitis were older than those 
who were infected with other encapsulated bacteria and 
likely had higher prevalence of comorbidities increasing 
the risk of pneumococcal infection and poor outcome.35 
Because of lack of clinical data, we could not assess the 
potential impact of treatment changes, such as dexa-
methasone use, on case fatality. The relatively high CFP 
emphasises the importance of immediate initiation of 
treatment and supportive care after diagnosis to improve 
outcome of bacterial meningitis.

As expected, H. influenzae was the least common cause of 
bacterial meningitis. However, the stable number of cases 
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over 20 years suggest existence of small group of individ-
uals with risk factors for H. influenzae (such as chronic 
respiratory disease and impaired immunity).36 Conju-
gate vaccination has nearly eliminated Hib meningitis in 
many high-income countries.37 38 However, changes in the 
epidemiology of invasive H. influenzae have been observed 
and currently most cases occur in adults39 and non-encap-
sulated, non-typable H. influenzae have dominated since 
2004.

Because the data on laboratory confirmed cases are 
transmitted electronically directly from the clinical micro-
biology laboratories’ database to the national surveillance 
database, a strength of our study is comprehensive case 
ascertainment. In addition, almost all isolates of N. 
meningitidis, H. influenzae and S. pneumoniae (98%) were 
available for serotyping/grouping at THL reference 
laboratory. However, our study has several limitations. As 
the data were from laboratory-based surveillance system, 
information on clinical presentation or treatment was not 
available. Therefore, culture-negative meningitis cases 
diagnosed on the basis of clinical symptoms and findings 
were not included in the analysis dataset. In addition, 
cases diagnosed by PCR or antigen detection were not 
included. As CSF cultures are negative in 11%–30% of 
patients with bacterial meningitis,40 the total number of 
meningitis cases is underestimated. Another limitation is 
that NIDR database does not include information on the 
cause of death. However, most of deaths associated with 
bacterial meningitis occur early (within 14 days of admis-
sion), suggesting that they were related to the infection.41

In conclusion, this study describes the epidemiolog-
ical characteristics of >1300 cases of bacterial meningitis 
reported to national surveillance over 20 years. It docu-
ments the sustained population impact of infant conjugate 
vaccination against Hib and introduction of PCV  on 
reducing burden of bacterial meningitis as well as decline 
in meningococcal meningitis due to secular trend. 
However, disease burden had shifted to older people and 
no changes in the overall proportion of fatal cases were 
seen. Data on changes in causative organisms and age 
distribution for meningitis cases are important for eval-
uating clinical guidelines for empirical antibiotic therapy 
in bacterial meningitis. Continued epidemiological 
surveillance is necessary to monitor changing trends and 
serotype distribution, assessing the impact of vaccination 
programs and developing future vaccination strategies.
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: Poland introduced the 10-valent conjugate pneumococcal vaccine (PCV10) into the child-
unization program in January 2017. During previous decades, considerable changes had
the surveillance system for invasive pneumococcal disease. Therefore, to provide baseline

eumococcal diseases before PCV10 introduction, we evaluated the epidemiology of pneumo-
ingitis (PM), the only syndrome monitored consistently since 1970.
ased on laboratory-confirmed cases reported during 2005-2015, we calculated the reported
ypes distribution and antimicrobial resistance of pneumococcal meningitis isolates. Data from
tory national surveillance system was linked with data on cerebrospinal fluid isolates submit-
ational Reference Centre for Bacterial Meningitis. We used negative binomial regression with
st method to test for trend in rates of pneumococcal meningitis notified during 2005-2015 and
d test to assess changes in the serotype distribution from 2008-2011 to 2012-2015.
m 2005 to 2015, the overall reported incidence of PM increased from 0.21 to 0.47 cases per
pulation, average yearly increase of 7% (rate ratio 1.07; 95% CI 1.06–1.08). The increase was pri-
to annual increase of 3% (1.02–1.05) among 15–49 years of age, 12% (95% CI: 1.10–1.13) among
s of age, 18% (95% CI: 1.16–1.19) among persons 65–74 years of age and 9% (95% CI 1.07–1.10)
sons �75 years of age. In children <5 years of age, serotypes included in PCV10 and PCV13
or 75% and 80% of reported isolates, respectively. From 2008-2011 to 2012-2015, the proportion
caused by PCV10 serotypes decreased from 52% to 41% (p < 0.01). Overall, 28% of isolates were
penicillin and 13% were non-susceptible to cefotaxime.
: The introduction of PCV10 into national immunization programmay have considerable impact
burden, especially on number of cases caused by isolates non-susceptible to antimicrobials.

� 2019 Elsevier Ltd. All rights reserved.
Background ical deficits occur in up to 50% survivors [1,5–7]. The disease affects
Streptococcus pneumoniae, along with Neisseria meningitidis and
aemophilus influenzae type b (Hib) [1–4], are most common
uses of bacterial meningitis worldwide. In developed countries,
se fatality for pneumococcal meningitis (PM) varies from 5% to
% and sequelae such as hearing loss, seizures or focal neurolog-
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illnesses [1
surveillance
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meningitis
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later was r
vaccines (PCorresponding author at: Epidemiology/Health Sciences Unit, Faculty of Social
hildren, the elderly and individuals with chronic
ue to severity of the condition and established
stems, PM is considered a reliable indicator of
isease burden and long-term trends, allowing for

omparisons [8,9]. Epidemiology of pneumococcal
changed in many countries after implementation
conjugate pneumococcal vaccine (PCV7), which

ced by 10- or 13-valent conjugate pneumococcal
0, PCV13) [10–13]. The treatment of pneumococcal
mplicated by increasing prevalence of clinical iso-
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1 5–13
tes of S. pneumoniae that are non-susceptible to rst line antibi-
tics, primarily b-lactams [1,14]. The occurrence of non-
usceptibility varies among countries, and may be as high as
0%-80% in certain geographic locations [15–18].
In January 2017, Poland introduced PCV10 into the childhood
munization program. The vaccine is currently administered free

f charge in a 2 + 1 schedule at 2, 4 and 13 months of age for chil-
ren born after 1st January 2017. Before 2017, pneumococcal vac-
ines (PCV10, PCV13 and the 23-valent polysaccharide vaccine,
PSV23) were given free of charge only to children �5 years of
ge with risk factors. The indications included trauma or defects
f central nervous system with cerebrospinal uid (CSF) leakage,
hronic heart failure, immunological-hematological diseases or
IV infection. In addition, some municipalities had organized vac-
ination at own cost for children registered as residents. In 2015,
e vaccine uptake (including children with risk factors receiving
ny type of pneumococcal vaccine or vaccinated at the cost of their
arents) was approximately 10% [19].
Poland introduced mandatory surveillance of PM and other bac-

rial meningitis in 1970. The system is supervised by two institu-
ons: the National Institute of Public Health- National Institute of
ygiene (NIPH-NIH) and the reference laboratory - the National
eference Centre for Bacterial Meningitis (NRCBM). In this system,
hysicians and laboratories report isolations of S. pneumoniae from
ormally sterile sites. In our study, we analyzed baseline data on
e epidemiology of pneumococcal meningitis before introduction
f PCV10 into the childhood vaccination program in Poland. To
rovide data for evaluating the impact of PCV10 vaccination pro-
ram in the future, the speci c aims included assessing the
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. Materials and methods

.1. Surveillance of pneumococcal meningitis

In Poland, there are two independent passive surveillance sys-
ms for monitoring PM. The rst system, based on mandatory
eporting by physicians, is operated by NIPH-NIH. The second, con-
isting of voluntary reporting by laboratories is led by NRCBM. In
005, Poland implemented EU case de nition for invasive pneumo-
occal disease (IPD) and extended the scope of reporting to other
anifestations of IPD, than meningitis [20]. Physicians are obliged
y law to notify to the local public health authority each suspect
D case within 24 h. Microbiological laboratories who isolate S.
neumoniae or detect S. pneumoniae nucleic acid from normally ster-
e site from patients also report to the local public health authority.
ocal public health authorities complete paper-based, standardized
urveillance reports for each clinical case of PM and notify it bi-
eekly to a population-based surveillance system coordinated by
e NIPH-NIH. Multiple noti cations with the same identi cation
formation (name, surname, address, place of hospitalization) are
erged into one case, if they refer to the same illness episode.
Laboratory-based surveillance of PM since 1997 is operated by

he NRCBM which receives clinical materials for PCR, the pneumo-
occal isolates, performs serotyping, and tests antimicrobial sus-
eptibility of isolates. Data on demographic characteristics,
ntibiotic therapy, vaccination status, clinical symptoms, and the
isease outcome, if already available, are collected for all isolates.
Since 2010, data from the NIPH-NIH and the NRCBM have been

nked by using identi cation information and submitted to the
uropean Surveillance System (TESSy) maintained by the European
entre for Disease Prevention and Control (ECDC). Noti cations of
aterials and isolates, which were sent to the NRCBM but not

eported to the NIPH, are actively collected as part of an enhanced
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reversible s
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son’s index
e schematic presentation of surveillance systems of
meningitis is depicted in the Graph 1.

s

mber of cases, their demographics (age, sex), out-
ease and districts where cases were reported, were
the population-based surveillance database coordi-
IPH-NIH. Year of noti cation was acquired from the
f symptoms or, if unavailable, specimen collection
age with the NRCBM databases (based on identi ca-
n), data on serotypes and antimicrobial susceptibil-
es was collected.

n

ed an observational, population-based study. The
ion consisted of all residents living in Poland
ary 2005 and December 2015.

ion

a case of pneumococcal meningitis as isolation of S.
m CSF during 2005-2015 and noti ed to the NIP-

tes and trend

trati ed into seven age groups (<1 year, 1–4 years,
–49 years, 50–64 years, 65–74 years, �75 years).
peci c and district-speci c reported rates per
calculated using data from the Central Statistical
inators.
in rates during 2005-2015 and correct for overdis-

, we used negative binomial regression. To adjust for
, we used Newey West method. Rate ratios (RR),
dence intervals (CI) and p-values for yearly changes
using time (year) as a continuous explanatory vari-

del.

y proportion

ed case fatality proportion (CFP) by age group as a
s resulting in death, divided by all reported cases.
ges in CFP between 2005 and 2010 and 2011-
chi-square test; p-value < 0.05 was considered sta-
cant.

stribution and diversity

ed proportions of S. pneumoniae isolates by vaccine-
10-valent pneumococcal conjugate vaccine contains
5, 6B, 7F, 9 V, 14, 18C, 19F and 23F; the 13-valent
conjugate vaccine adds serotypes 3, 6A, and 19A.
ditional serotypes were de ned as PCV13 - PCV10.
pneumococcal polysaccharide vaccine contains 12
mmon with PCV13 and 11 unique serotypes (2, 8,
12F, 15B, 17F, 20, 22F, 33F). The non-vaccine types
ed as non-PCV10 and non-PCV13. Serotypes 15B
grouped together as 15B/C because of the reported
ching between these serotypes, which makes differ-
ult [21]. We used chi-squared test to assess changes
distribution between 2008-2011 and 2012-2015.
e diversity of reported serotypes, we used the Simp-
iversity (D) [22]. D refers to the probability that two

73



ra
as

D

w
(s
nu

2.

us
D
ab
th
Ce
vi

2.

ce
bi
to

po

isola
res
tive

naly

ses
and

l con

d in
veill
NIPH
view
Iden
ing

tive

uar
occ
age
s wa
10/1

Graph 1. Surveillance system of pneumococcal meningitis in Poland. NRCBM- National Reference Centre for Bacterial Meningitis; NIPH-NIH- National Institute of Public
Health- National Institute of Hygiene; TESSy- The European Surveillance System. Blue line- standard surveillance; Green line- Enhanced surveillance. (For interpretation of
th
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ndomly selected isolates have different serotypes. We de ned D
:

¼ N
N � 1ð Þ � 1�

Xm
i¼1

ni

N

� �2
" #

here, N is the total number of pneumococcal meningitis cases
ample size), n is the number of cases with serotype i, m is the total
mber of serotypes [23].

8. Serotyping

S. pneumoniae CSF isolates sent to the NRCBM were serotyped
ing Pneumotest-Latex kit (Statens Serum Institut, Copenhagen,
enmark), PCR or sequencing. Serotypes not identi ed by the
ove methods were subjected to the Neufeld Quellung test in
e Statens Serum Institut in 2008, and in the National Reference
nter for Streptococci in Aachen, Germany in 2009-2015, as pre-
ously described [24].

9. Antimicrobial susceptibility

Minimal inhibitory concentrations (MICs) for penicillin and
fotaxime were determined by the Etest (AB Biodisk-
oMérieux) or MICEvaluators (Oxoid-Thermo Fisher) according
manufactures instructions.
For the interpretation of MICs data, the EUCAST 2015 break-
ints for meningitis cases were applied [25]. Pneumococcal

meningitis
ate (I), and
were collec

2.10. Data a

All analy
Texas, USA)

2.11. Ethica

Data use
routine sur
date of the
tutional Re
study [26].
after match

3. Results

3.1. Descrip

From Jan
of pneumoc
mation on
age of case
and 63% (9

e references to colour in this gure legend, the reader is referred to the web version of this article.)
tes were categorized as susceptible (S), intermedi-
istant (R). The intermediate and resistant isolates
ly referred to as non-susceptible.

sis

were done with STATA version 13 (STATA Corp.,
Microsoft Excel 2013.

siderations

the analysis were collected as a part of national
ance activities which fall under the existing man-
-NIH and the NRCBM. No formal approval of Insti-
Board was required for this non-interventional
ti cation data (names, addresses) were removed
with vital status or serotype.
analysis

y 2005 until December 2015, a total of 1435 cases
al meningitis were noti ed to the NIPH-NIH. Infor-
was available for 1432 (99.8%) cases. The median
s 48 years (interquartile range (IQR), 25-60 years),
435) were male. Fourteen percent (200/1432) of



c
w
2
1
th
2
2

3

lo
T
b
y
T
p
2
1
(1
a

T
R

F
M
Z

1 5–13
368 A. Polkowska et al. / Vaccine 37 (2019) 136
ases were in children under 5 years of age and 16% (226/1432) 65–74 years of
in
ale

rs v
al differences in the reported rates notified in 2005-
ng f
cas
d ra
pe

y).

e di

149
CSF
sent
e 6
ere adults �65 years. The overall case fatality proportion was
0% (281 deaths) and varied from 4% (4/90) in children under
year of age to 31% (71/226) in people �65 years of age. Most of
e deaths occurred within 30 days of symptom onset (81%,
28/281). The CFP was higher in 2005-2010 (22%) than in 2011-
015 (18%) (p = 0.052).

.2. Reported rates of pneumococcal meningitis and trends

The highest rate was among children under 1 year of age, fol-
wed by 1–4 years of age and people 50–64 years of age (Table 1).
he reported rates in the youngest age group were characterized
y substantial variation, from 0.52 cases per 100,000 person-
ears in 2007 to 3.59 cases per 100,000 person-years in 2010.
he overall rate increased steadily from 0.21 cases per 100,000
erson-years in 2005 to 0.47 cases per 100,000 person-years in

age. Trends
(Table 1). M
person-yea
geographic
2015, rangi
10, to 0.52
The reporte
per 100,000
respectivel

3.3. Serotyp

Of the 1
676 (59%)
of isolates
2015. Of th
015. This represented an average increase by 7% per year (RR
.07, 95% CI: 1.06–1.08), primarily due to annual increase by 3%
.02–1.05) among 15–49 years of age, 12% (95% CI: 1.10–1.13)
mong 50–64 years of age, 18% (95% CI: 1.16–1.19) among persons

to 48 differen
typeable. The
of all isolates),
were no signifi

able 1
ates and number of cases of pneumococcal meningitis according to age group (years) and mean annual rela

2005 2006 2007 2008 2009 2010 2011 2012 20

<1 1.94 (7) 1.64 (6) 0.52 (2) 1.94 (8) 2.12 (9) 3.59 (15) 2.77 (11) 1.56 (6) 3.
1–4 0.35 (5) 0.56 (8) 0.77 (11) 0.68 (10) 0.53 (8) 0.77 (12) 1.20 (20) 0.60 (10) 0.
5–14 0.24 (11) 0.14 (6) 0.29 (12) 0.25 (10) 0.31 (12) 0.21 (8) 0.29 (11) 0.13 (5) 0.
15–49 0.14 (27) 0.18 (35) 0.26 (51) 0.20 (38) 0.24 (47) 0.23 (44) 0.22 (42) 0.16 (30) 0.
50–64 0.32 (22) 0.34 (24) 0.29 (22) 0.40 (31) 0.40 (31) 0.46 (37) 0.69 (57) 0.47 (39) 0.
65–74 0.20 (6) 0.17 (5) 0.32 (9) 0.22 (6) 0.54 (15) 0.44 (12) 0.33 (9) 0.53 (15) 0.
�75 0.14 (3) 0.27 (6) 0.30 (7) 0.13 (3) 0.34 (8) 0.20 (5) 0.28 (7) 0.35 (9) 0.
Total 0.21 (81) 0.24 (90) 0.30 (114) 0.28 (106) 0.34 (130) 0.35 (133) 0.41 (157) 0.30 (114) 0.

* Mean annual relative change in incidence calculated by negative binomial regression with Newey Wes

ig. 1. Reported rate of pneumococcal meningitis by district, Poland, 2005-2015. *1- Dolnośląskie, 2- K
ałopolskie, 7- Mazowieckie, 8- Opolskie, 9- Podkarpackie, 10- Podlaskie, 11- Pomorskie, 12- Śląskie, 13- Św
achodniopomorskie.
age and 9% (95% CI 1.07–1.10) among �75 years of
other age groups were not statistically significant
to female rate ratio was 1.85 (0.45 cases/100,000
s. 0.24 cases/100,000 person-years). There were

73
rom 0.18 cases per 100,000 person-years in district
es per 100,000 person-years in district 11 (Fig. 1).
te was higher in urban areas, than rural (0.38 cases
rson-years and 0.28 cases per 100,000 person-years,

stribution of pneumococcal meningitis isolates

PM cases reported to the NIPH-NIH in 2008-2015,
isolates were sent to the NRCBM. The proportion
to the NRCBM varied from 49% in 2008 to 67% in
76 isolates available for serotyping, 672 belonged

t serotypes or serogroups; 4 isolates were non-
most common serotypes were 3 (71 isolates, 11%
19F (65, 10%), 14 (58, 9%) and 23F (40, 6%). There
cant differences in serotype distribution between

tive change in incidence, 2005-2015, Finland.

13 2014 2015 2005–2015 % Change*

(95%CI)

26 (12) 2.18 (8) 1.66 (6) 2.12 (90) 4 (�2 to 10)
36 (6) 0.45 (7) 0.85 (13) 0.65 (110) 3 (�1 to 8)
27 (10) 0.26 (10) 0.21 (8) 0.24 (103) �1 (�3 to 0)
32 (60) 0.20 (38) 0.29 (54) 0.22 (466) 3 (2 to 5)
67 (55) 0.77 (62) 0.72 (57) 0.51 (437) 12 (10 to 13)
94 (28) 0.47 (15) 0.92 (31) 0.47 (151) 18 (16 to 19)
31 (8) 0.34 (9) 0.37 (10) 0.28 (75) 9 (7 to 10)
46 (179) 0.39 (149) 0.47 (179) 0.34 (1432) 7 (6 to 8)

t method.

ujawsko-pomorskie, 3- Lubelskie, 4- Lubuskie, 5- Łódzkie, 6-
iętokrzyskie, 14- Warmińsko-mazurskie, 15- Wielkopolskie, 16-
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08 and 2011 and 2012-2015, except an increase in serotype 19A
ncrease from 2% in 2008-2011 to 6% in 2012-2015, p = 0.0106)
d 23B (from 0% to 3%, p = 0.0027). The serotypes present in
V10, PCV13 and PPSV23 accounted for 46% (309/676), 62%
19/676) and 83% (563/676) of all isolates, respectively. Between
08-2011 and 2012-2015, there was signi cant decrease in the
oportion of cases caused by PCV10 serotypes, from 52% to 41%
= 0.0044), respectively. There were no signi cant changes in
oportions of PCV13 (p = 0.0630) and PPSV23 (p = 0.0848),
V13-PCV10 (p = 0.1622) and PPSV23 unique serotypes
= 0.5409).
Among serotypes identi ed at least 20 times during the study
riod, the highest CFP was found for serotype 4 (34%, 12
aths/35 isolates), 8 (29%, 6/21), 22F (29%, 6/21) and 10A (22%,
23). However, the observed differences in CFPs were not statisti-
lly signi cant.
Of the 112 isolates noti ed in children under 5 years of age,

ost common were serotypes 14 (n = 23, 21%), 19F (n = 22, 20%),
(n = 14, 13%), 23F (n = 9, 8%), 9 V (n = 6, 5%) and 15B/C (n = 5,
) (Table 2). There were no signi cant changes in frequency of
rticular serotypes between 2008-2011 and 2012-2015. PCV10,

PCV13 sero
serotypes d
tion of n
(p = 0.0004
PCV10 sero

Among
common w
(n = 35, 6%)
(Table 3). P
(225/564),
tively. Ther
PCV13 or
between 20

Simpson
<5 years of

3.4. Antimic

Data for
pneumococ
Overall, 28
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V13 and PPSV23 serotypes accounted for 75% (84/112), 80%
0/112) and 93% (104/112) of isolates, respectively. Comparing
e distribution of serotypes in 2008-2011 to 2012-2015, the pro-
rtion of PCV10 serotypes declined from 87% to 57% (p = 0.0004);

(MIC > 0.06 mg/
quency of peni
2012-2015 (29
penicillin was

ble 2
rotypes distribution (%) of pneumococcal meningitis isolates among persons <5 years of age reported to the

2008 2009 2010 2011 2012

No. of cases reported to the NIP-NIH 18 17 27 31 16
No. and proportion (%) of isolates sent

to the NRCBM and serotyped
15 (83) 13 (76) 19 (70) 21 (68) 9 (56

no. of different serotypes 8 6 7 8 9
simpson D’ index 0.914 0.821 0.860 0.838 1.000
PCV10/PCV13 serotypes
1 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 4.8 0.0
5 0.0 0.0 0.0 0.0 0.0
6B 20.0 7.7 21.1 9.5 11.1
7F 13.3 7.7 0.0 0.0 0.0
9V 0.0 0.0 5.3 19.0 11.1
14 13.3 23.1 26.3 33.3 0.0
18C 6.7 15.4 0.0 0.0 11.1
19F 6.7 38.5 21.1 19.0 11.1
23F 20.0 0.0 10.5 4.8 11.1
Additional PCV13 serotypes
3 0.0 0.0 0.0 0.0 0.0
6A 0.0 7.7 10.5 0.0 0.0
19A 0.0 0.0 0.0 0.0 0.0
Other serotypes
15B/C 13.3 0.0 0.0 0.0 11.1
10A 0.0 0.0 5.3 4.8 11.1
8 0.0 0.0 0.0 0.0 0.0
22F 6.7 0.0 0.0 0.0 0.0
11A 0.0 0.0 0.0 4.8 0.0
12F 0.0 0.0 0.0 0.0 11.1
33F 0.0 0.0 0.0 0.0 0.0
9N 0.0 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0
38 0.0 0.0 0.0 0.0 0.0
23B 0.0 0.0 0.0 0.0 0.0
24F 0.0 0.0 0.0 0.0 0.0
35F 0.0 0.0 0.0 0.0 11.1
Percentage of all isolates
PCV10 serotypes 80.0 92.3 84.2 90.5 55.6
Non-PCV10 serotypes 20.0 7.7 15.8 9.5 44.4
PCV13 serotypes 80.0 100.0 94.7 90.5 55.6
PCV13-PCV10 serotypes 0.0 7.7 10.5 0.0 0.0
Non-PCV13 serotypes 20.0 0.0 5.3 9.5 44.4
PPSV23 serotypes 100.0 92.3 89.5 100.0 88.9
PPSV23 unique serotypes 20.0 0.0 5.3 9.5 33.3
Non-PPSV23 serotypes 0.0 0.0 0.0 0.0 11.1
s decreased from 91% to 64% (p = 0.0003), PPSV23
ased from 96% to 89% (p = 0.1511) and the propor-
CV10 serotypes increased from 13% to 43%
n-PCV13 from 9% to 36% (p = 0.0003) and PCV13-
s from 4% to 7% (p = 0.4860).
viduals �5 years of age (564 isolates), the most
serotypes 3 (n = 70, 12%), 19F (n = 43, 8%), 14

(n = 33, 6%), 23F (n = 31, 6%) and 19A (n = 27, 5%)
0, PCV13 and PPSV23 serotypes accounted for 40%
(329/564) and 81% (459/564) of isolates, respec-
ere no signi cant changes in proportion of PCV10,
PCV10, non-PCV13 and PCV13-PCV10 serotypes
2011 and 2012-2015.
dex of diversity was 0.894 and 0.954 in children
and individuals �5 years, respectively.

al susceptibility

timicrobial susceptibility were available for 670
eningitis isolates (99.1%) reported in 2008-2015.
89/669) of isolates were resistant to penicillin

3 1369
L). There was no signi cant change in the fre-
cillin resistant isolates reported in 2008-2011 and
% and 27% respectively, p = 0.5671). Resistance to
common among serotypes 19A (26/29, 90%), 9 V

NIP-NIH, 2008-2015, Poland.

2013 2014 2015 2008–2015

18 15 19 161
) 13 (72) 10 (67) 12 (63) 112 (67)

9 8 8 25
0.923 0.956 0.939 0.894

7.7 0.0 0.0 0.9
0.0 10.0 0.0 1.8
0.0 0.0 0.0 0.0
7.7 0.0 16.7 12.5
0.0 0.0 0.0 2.7
0.0 0.0 0.0 5.4
23.1 20.0 8.3 20.5
0.0 0.0 0.0 3.6
23.1 20.0 16.7 19.6
7.7 10.0 0.0 8.0

0.0 0.0 8.3 0.9
0.0 0.0 0.0 2.7
0.0 0.0 16.7 1.8

0.0 0.0 16.7 4.5
7.7 0.0 0.0 3.6
7.7 0.0 8.3 1.8
0.0 0.0 8.3 1.8
0.0 0.0 0.0 0.9
0.0 0.0 0.0 0.9
0.0 10.0 0.0 0.9
0.0 10.0 0.0 0.9
0.0 10.0 0.0 0.9
0.0 10.0 0.0 0.9
7.7 0.0 0.0 0.9
7.7 0.0 0.0 0.9
0.0 0.0 0.0 0.9

69.2 60.0 41.7 75.0
30.8 40.0 58.3 25.0
69.2 60.0 66.7 80.4
0.0 0.0 25.0 5.4
30.8 40.0 33.3 19.6
84.6 80.0 100.0 92.9
15.4 20.0 33.3 15.2
15.4 20.0 0.0 4.5



(1
A
r
o
r
1
(5

(M
2
n
2
h
5
(5
la
a
ti
s
1

on

y d
acte
m
CV1
con
ates
cal
urin
PCV
s sig
high
dist
d i
age
tes.
per
stu

Table 3
Serotypes distribution (%) of pneumococcal meningitis isolates among persons � 5 years of age reported to the NIPH-NIH, 2008-2015, Poland.

2008 2009 2010 2011 2012 2013 2014 2015 2008–2015

No. of cases reported to the NIP-NIH 88 113 106 126 98 161 134 160 986
No. of isolates (%) sent to NRCBM and serotyped 37 (42) 66 (58) 66 (62) 59 (47) 57 (58) 96 (60) 90 (67) 93 (58) 564 (57)
No. of different serotypes 20 31 26 28 21 32 28 31 49
Simpson D’ index 0.961 0.962 0.947 0.943 0.949 0.960 0.943 0.963 0.954
PCV10/PCV13 serotypes
1 0.0 0.0 1.5 1.7 0.0 2.1 1.1 2.2 1.2
4 5.4 6.1 7.6 3.4 7.0 6.3 6.7 4.3 5.9
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6B 5.4 1.5 3.0 6.8 3.5 4.2 5.6 2.2 3.9
7F 2.7 0.0 1.5 3.4 0.0 2.1 5.6 0.0 2.0
9V 8.1 3.0 3.0 1.7 1.8 5.2 1.1 3.2 3.2
14 8.1 6.1 9.1 3.4 5.3 5.2 6.7 6.5 6.2
18C 2.7 6.1 7.6 3.4 8.8 5.2 1.1 2.2 4.4
19F 10.8 3.0 13.6 6.8 10.5 7.3 5.6 6.5 7.6
23F 5.4 3.0 7.6 5.1 8.8 6.3 3.3 5.4 5.5
Additional PCV13 serotypes
3 10.8 10.6 10.6 20.3 12.3 9.4 17.8 8.6 12.4
6A 0.0 1.5 1.5 0.0 1.8 2.1 0.0 2.2 1.2
19A 2.7 1.5 1.5 6.8 3.5 8.3 6.7 4.3 4.8
Other serotypes
8 8.1 1.5 3.0 1.7 5.3 2.1 2.2 5.4 3.4
10A 5.4 3.0 3.0 0.0 5.3 1.0 2.2 7.5 3.4
22F 0.0 1.5 3.0 3.4 7.0 1.0 4.4 5.4 3.4
9N 2.7 4.5 1.5 1.7 1.8 4.2 2.2 4.3 3.0
11A 2.7 3.0 6.1 3.4 0.0 3.1 3.3 1.1 2.8
15B/C 5.4 3.0 0.0 5.1 3.5 5.2 0.0 2.2 2.8
12F 2.7 12.1 0.0 1.7 1.8 1.0 1.1 2.2 2.7
17F 0.0 1.5 0.0 1.7 3.5 0.0 0.0 0.0 0.7
33F 0.0 0.0 0.0 1.7 1.8 0.0 1.1 0.0 0.5
20 2.7 3.0 1.5 0.0 3.5 0.0 2.2 0.0 1.4
2 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2
23A 2.7 1.5 0.0 0.0 0.0 3.1 3.3 5.4 2.3
23B 0.0 0.0 0.0 0.0 0.0 2.1 5.6 5.4 2.1
6C 0.0 3.0 0.0 1.7 0.0 1.0 3.3 2.2 1.6
15A 0.0 1.5 1.5 1.7 1.8 1.0 1.1 1.1 1.2
6A 0.0 1.5 1.5 0.0 1.8 2.1 0.0 2.2 1.2
31 0.0 3.0 0.0 1.7 0.0 1.0 0.0 1.1 0.9
Other** 5.4 12.1 10.6 11.9 0.0 8.3 6.7 7.5 8.0
Percentage of all isolates
PCV10 serotypes 48.6 28.8 54.5 35.6 45.6 43.8 36.7 32.3 39.9
Non-PCV10 serotypes 51.4 71.2 45.5 64.4 54.4 56.3 63.3 67.7 60.1
PCV13 serotypes 62.2 42.4 68.2 62.7 63.2 63.5 61.1 47.3 58.3
PCV13-10 serotypes 13.5 13.6 13.6 27.1 17.5 19.8 24.4 15.1 18.4
Non-PCV13 serotypes 37.8 57.6 31.8 37.3 36.8 36.5 38.9 52.7 41.7
PPSV23 serotypes 91.9 75.8 84.8 83.1 94.7 79.2 80.0 73.1 81.4
PPSV23 unique serotypes 29.7 34.8 18.2 20.3 33.3 17.7 18.9 28.0 24.3
Non-PPSV23 serotypes 8.1 24.2 15.2 16.9 5.3 20.8 20.0 26.9 18.6

** Serotypes other than presented in the table, that occurred less than 10 times in 2005-2015 in Poland. Non-typeable isolates (n = 4) were included.
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9/24, 79%), 19F (47/65, 72%), 14 (40/58, 69%) and 6B (23/35, 66%).
mong children <5 years of age, 53% (58/110) of the isolates were
esistant to penicillin compared with 23% among persons �5 years
f age (p < 0.0001). Serotypes with high proportion of penicillin
esistance were: 19A (2/2, 100%), 9 V (6/6, 100%), 23B (1/1,
00%), 19F (18/22, 82%), 14 (16/23, 70%), 6A (2/3, 67%) and 23F
/9, 56%).
Isolates with decreased susceptibility to cefotaxime
IC > 0.5 mg/L) constituted 13% (90/670) of isolates tested in

008-2015. The frequency of cefotaxime non-susceptibility did
ot change signi cantly between 2008-2011 (14%) and 2012-
015 (13%) (p = 0.7066). Non-susceptibility to cefotaxime was
ighest among isolates of serotypes 19A (17/29, 59%), 35B (1/2,
0%), 19F (30/65, 46%), 14 (25/58, 43%), 23F (10/40, 25%) and 9 V
/24, 21%). Among children <5 years of age, 22% (24/110) of iso-
tes were non-susceptible to cefotaxime compared with 12%
mong persons �5 years of age (p = 0.0052). The highest propor-
on of cefotaxime non-susceptible isolates was identi ed in
erotypes 19A (2/2, 100%), 23F (4/9, 44%), 14 (10/23, 43%) and
9F (8/22, 36%).

4. Discussi

Our stud
ologic char
lance syste
universal P
of PM was
mitted isol
pneumococ
15 years. D
caused by
isolates wa
of age and

The age
that noti e
5 years of
reported ra
0.34 cases
vious Polish
escribed comprehensive 10-year baseline epidemi-
ristics of PM cases reported to the national surveil-
(NIPH-NIH) in Poland before the introduction of
0 vaccination. To date, the analysis of epidemiology
ducted only by the NRCBM and was limited to sub-
. There was an increasing trend in reported rates of
meningitis, primarily among persons older than
g the study period almost half of the cases were
10 serotypes. The average penicillin resistance of
ni cantly higher among children less than 5 years
er than in most European countries.
ribution of reported cases in Poland was similar to
n other European countries, with children below
and persons �65 years of age having highest

Although the rates observed in our study (average
100,000 person-years) were higher than in the pre-
dies [27,28], the overall and age-speci c rates were
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5–137
nsiderably lower than those reported from other countries
fore introduction of pneumococcal conjugate vaccines, such as
nland [29], the Netherlands [30], England andWales [31], Austria
2] or USA [10]. The low rates for pneumococcal meningitis in
land may be due to low surveillance sensitivity or frequent
ministration of antibiotics immediately after clinical diagnosis
suspicion of meningitis, resulting in negative culture results

8]. The largest differences in reported rates between Poland
d other European countries were among the elderly, suggesting
nsiderable underreporting in this age group. This hypothesis is
pported by the ndings from the prospective study conducted
124 pediatric hospitals or wards in ve randomly selected dis-
icts in Poland during 2003-2004 [33]. The rates of pneumococcal
eningitis were estimated to be 3.8 cases/ 100,000 person-years in
ildren <5 years of age and 4.1 in children <2 years of age, respec-
vely. The study showed that 108 out of 134 cases of laboratory-
n rmed invasive pneumococcal disease were culture-negative
d therefore serotyping data was available for 26 isolates only.
dditionally, 28% children were treated with antibiotics before
ood or CSF sampling. Relatively low reported rates should be
ken into account when designing future vaccine effectiveness
impact studies or conducting evaluations of the economic and
alth bene ts of the PCV10 vaccination program. Underestimated
rden of meningitis will affect the absolute number of cases pre-
nted/reduced after conjugate vaccine introduction.
The increasing rates of pneumococcal meningitis from 0.21
ses per 100,000 person-years in 2005 to 0.47 cases per 100,000
rson-years in 2015 may re ect changes and systematic improve-
ents in the surveillance system for IPD. Historically, epidemiolog-
al surveillance of IPD in Poland was limited to meningitis cases,
hich have been routinely reported by physicians since 1970.
e implementation of EU case de nition for IPD in 2005 [20],
lowed collection of data on whole spectrum of clinical manifesta-
ons of IPD and thus improved surveillance sensitivity. In addition,
tive searching of cases reported to the NRCBM but not reported
the NIPH, increased the number of reported cases included in
e national surveillance data. The signi cant increase in rate
as reported primarily among persons �15 years of age. This
ay be related to better case ascertainment and reporting in this
e group. However, in uence of secular trends cannot be
cluded. The reason for the substantial variation in reported rates
children <1 years of age, between 2007 (0.5 cases per 100,000
rson-years) and 2010 (3.59 cases per 100,000 person-years) is
known, since there were no outbreaks reported. During the
udy period, changes in reported rates among children <15 years
age were not statistically signi cant. This might be related to
all number of cases, uctuations in reported rates which affect
e possibility to observe linear trend, or to other factors.
Changes in clinical practice also might have in uenced the

creased number of observed cases. However, in Poland, as in
ost European countries, cerebrospinal uid (CSF) collection is a
andard procedure in suspected pneumococcal meningitis [34].
us, epidemiology of PM is likely to be less affected by changes
clinical practice than IPD incidence where blood culturing prac-

ces for diagnosis of pneumonia can in uence observed rates
,35]. Taking into account changes in surveillance system, the data
observed trends should be interpreted with caution.
The observed lower CFP in 2011-2015 comparing to 2005-2010,

ight be related to better surveillance, since more cases with less
vere disease could have been reported. In addition in 2011, the
tional guidelines for diagnostic and treatment of bacterial
eningitis were edited under umbrella of the National Programme
r Antibiotic Protection by the National Medicines Institute [34].
The serotype distribution of pneumococcal meningitis isolates

as characterized by considerable heterogeneity, especially among
rsons �5 years of age. Higher heterogeneity in older age groups
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bserved in other countries [36]. As in other coun-
lementation of vaccination, the most common ser-
en were 14, 19F, 23F [37,38]. In adults, serotype 3
on. Findings from other studies indicated that ser-
monly isolated in meningitis and associated with
comes [39]. The highest CFPs were reported for ser-
and 10A. In a Danish nationwide population-based
s 4, 8, 22F were also found to be associated with
ortality in meningitis patients [40]. There was sig-
e in the proportion of serotype 19A and 23B
12-2015, compared with 2008-2011. In children
the most common were serotypes 14 and 19F. Both
rgeted by available vaccines. In children <5 years of
argeted by PCV10 and PCV13 accounted for higher
ll reported isolates, than in individuals � 5 years of
n children < 5 years of age, proportion of PCV10 and
s decreased signi cantly from 2012-2015 to 2008-
cult to assess the impact of local vaccination pro-
se in non-PCV serotypes, because detailed data on
e in speci c time and regions were unavailable.
dicate high potential for prevention of meningitis
, PCV13 and PPSV23 vaccines.
f studies have documented a signi cant decline in
tes of PM in the PCV vaccinated children. Some
own the decrease in incidence also in older children
targeted by vaccine, through herd effect. However,
idence due to the vaccine serotypes resulted in an
caused by non-vaccine serotypes [23]. In countries
PCV10 has been used in the infant vaccination pro-
of serotype 19A cases has increased both in chil-
s, becoming one of the most common cause of
ontrast, after implementation of infant PCV13, the
type 19A cases decreased signi cantly among both
unvaccinated population groups [41]. However,
portion of a wide variety of non-PCV13 serotypes
after PCV13 introduction. In Germany, a signi cant
entage of serotypes 12F, 15C, 22F, 23B and 35B was
ldren, after PCV introduction. In adults, increases in
erotypes 6C, 12F, 15B, 22F, 23A, 23B and 35B were
n France, after PCV13 introduction increase in fre-
ypes 12F, 24F, 23B, 10A, 15A and 6C was observed
results of herd effect and serotype replacement
istent in all countries. To allow assessment of
type distribution and potential serotype replace-
d, ongoing surveillance on circulating strains is

penicillin resistance of isolates amounted 28% and
ly higher among children less than 5 years of age.
substantial changes in penicillin resistance during
d. Poland along with Romania, Malta and Iceland,
ighest proportion of IPD isolates resistant to peni-
there is wide variation in antimicrobial suscepti-
ococcal isolates [44]. Differences are likely related
irculating strains, antibiotic use, vaccination policy,
city and access to healthcare. In our study, most of
ant isolates were targeted by PCV13. Several stud-
strated that vaccination with pneumococcal conju-

(PCV7, PCV10 and PCV13) reduced the
carriage of penicillin-resistant S. pneumoniae and
ccal resistance in vaccinated and unvaccinated
–47]. Prevention is especially important since
esistance has been associated with worse clinical
tients with pneumococcal meningitis [48].
o low sensitivity, the surveillance system for pneu-
ngitis in Poland has several other limitations. Our
bstantial regional variation in reported rates. This
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uggests considerable underreporting in some districts (district 10,
, 6, 13) and important areas for improvement. In addition, during
008-2015 less than 60% of isolates reported to the NIPH-NIH were
ent to the NRCBM and serotyped. Formal evaluation of the surveil-
nce system should be performed before conducting vaccine effec-
veness or impact studies. This is especially important because of
e planned change from paper-based to electronic based reporting

urveillance system. Changes in surveillance can affect sensitivity
f surveillance and quality of surveillance data. Media attention
r pneumococcal disease after introduction of PCV10 could possi-
ly improve awareness of IPD and result in further increase in the
umber of reported cases.
The strength of the study is a population-based design and all

esidents are entitled to free acute healthcare. Pneumococcal
eningitis is a severe and life-threatening condition, thus each
ase is hospitalized. However, several limitations of this study
hould be noted. In the analysis only CSF culture-confirmed cases
ere included. Cases diagnosed on the basis of other laboratory
ethods such as PCR or antigen detection from CSF or blood cul-
re with clinical symptoms of meningitis, were excluded from
e study. This may have led to underestimation of the number
f cases. The trend in reported rates was probably affected by the
atching of cases captured by the two surveillance systems, initi-
ted in 2010. However, the separate analysis of cases passively
eported only was not possible due to lack of register of actively
ollected cases in 2010-2014, and thus different form of reporting.
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r a c t

d: No previous studies have reported long-term follow-up of ten-valent pneumococcal conju-
ine (PCV10) program impact on pneumococcal meningitis (PM). We assessed the effects of
10 program on PM incidence, mortality and serotype distribution in children and adults during
ter introduction.
We conducted a population-based observational study. A case of PM was defined as isolation of
cus pneumoniae from cerebrospinal fluid or, a patient with S. pneumoniae isolated from blood
D-10 hospital discharge diagnosis of bacterial meningitis within 30 days before or after positive
te. We compared age- and serotype-specific incidence and associated 30-day mortality rates in
7 (PCV10 period) with those in 2004–2010 (pre-PCV10 baseline) by using Poisson regression
bsolute rate differences and 95% confidence intervals (CIs) were calculated from the parameter
by using delta method.
uring the PCV10 period, the overall incidence of PCV10 serotype meningitis decreased by 68%
%-77%), and the overall PM incidence by 27% (95%CI: 12%-39%). In age groups 0–4, 50–64,
8 years, the overall PM incidence was reduced by 64%, 34% and 19%, respectively. In
65 years of age, a 69% reduction in PCV10 serotypes was offset by 157% (56%-342%) increase
V10 serotypes. The overall PM-related mortality rate decreased by 42% (95%CI 4%-65%).
ase fatality proportion (CFP) was 16% in pre-PCV10 period and 12% in PCV10 period
; among persons 50–64 years the CFP decreased from 25% to 10% (p = 0.04).
s: We observed substantial impact and herd protection for vaccine-serotype PM and associ-

tality after infant PCV10 introduction. However, in older adults � 65 years of age, PM burden
nchanged due to serotype replacement.
e Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction highest in young children and the elderly, but the disease affects
Streptococcus pneumoniae remains a leading cause of bacterial
meningitis worldwide [1]; an estimated 83 900 cases (36,100–
169,000) of pneumococcal meningitis (PM) occurred in 2015 in
children under 5 years of age [2]. It is the most severe form of inva-
sive pneumococcal disease (IPD), characterized by 8% to 50% case-
fatality and frequent long-term complications in survivors [3].
Approximately half of the cases suffer sequalae such as hearing
loss, seizures and cognitive impairments [4,5]. Incidence rates are
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n PM incidence in children have been reported after
f 7-, 10- and 13-valent pneumococcal conjugate vac-
CV10, PCV13) into infant immunization programs
studies have also reported herd protection against
inated population groups, especially older adults.
ctions in vaccine serotypes were often offset by
on-vaccine serotypes (serotype replacement) [16–

er 2010, Finland introduced PCV10 in the National
ogramme (NVP) with a 2 + 1 schedule (3, 5 and
age). PCV10 effectiveness against invasive pneumo-
(IPD) due to vaccine serotypes (VT IPD) in children
nstrated in a large cluster-randomized trial (FinIP)
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nducted in 2009–2012. For VT IPD and IPD irrespective of sero-
pe, vaccine effectiveness was 100% and 93%, respectively [20].
subsequent surveillance study conducted 3 years after PCV10
troduction, showed a reduction by 80% of overall IPD rate in
accine-eligible children and 48% reduction in unvaccinated chil-
ren 2 to 5 years of age [21]. The early estimate for relative rate
duction in PCV10-type meningitis cases was 69% (95%CI 10% to
3%). However, the point estimate for overall reduction in pneu-
ococcal meningitis cases (46%) was not statistically significant
5%CI � 19% to 78%)[21]. In a long term follow-up study six years
fter vaccine introduction, the overall IPD incidence had decreased
y 79% in vaccine-eligible children and 33% in unvaccinated, older
ildren [22].
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. Methods

.1. Surveillance on pneumococcal meningitis

The Population Information System of Finland is an online data-
ase containing information on name, sex, date of birth, place of
sidence and vital status of about 5.5 million permanent resi-
ents. This database can be linked with other health care and
rveillance registries by using personal identity code (PIC). Since
995, all clinical microbiology laboratories are obliged by law to
port isolation of Streptococcus pneumoniae or detection of S. pneu-
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Until 2009, pneumococcal isolates were serotyped by latex
gglutination and/or counterimmunoelectrophoresis supple-
ented with Quellung reaction. During 2010–2017, isolates were
rotyped by sequential multiplex PCRs supplemented with Quel-
ng reaction, if needed [24]. All serotype 6A isolates from 2004 to
009 were re-tested to distinguish serotype 6C and 6D. Since 2010,
rotype 6C and 6D identification have been done routinely.
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3. Results
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We conducted a population-based observational before-after
udy. Culture confirmed cases reported to NIDR with date of sam-
ling from July 1, 2004 to June 30, 2017 were included in the anal-
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. The case fatality proportion (CFP) was defined
es resulting in death within 30 days from the first
divided by all cases. To assess changes in CFP, we
test. Statistical significance was deemed at the 5%
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culture-confirmed PM cases were reported during
(median age 57 years, IQR 40–66 years). Of the

rred during the pre-PCV10 baseline period and
0 period. The overall annual incidence rate varied
per 100,000 person-years in 2008–2009 to 0.44 in
. 1). During the pre-PCV10 period and PCV10-
30% of cases were identified based on positive
nd ICD10-coded bacterial meningitis discharge
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diagnosis, respectively; the rest of the PM cases were identified
based on positive CSF culture. The overall PM incidence rate
decreased by 27% from 0.81 cases during pre-PCV10 period to
0.59 cases per 100,000 person-years in the PCV10 period (IRR
0.73; 95%CI: 0.61–0.88). Compared with the baseline period, inci-
dence decreased by 64% in children 0–4 years of age (IRR 0.36,
95%CI 0.19–0.63) and by 34% in adults 50–64 years of age (IRR
0.66, 95%CI 0.47–0.90). In all adults � 18 years of age, the PM inci-
dence rate decreased by 19% from 0.82 cases to 0.67 cases per
100,000 person-years (IRR 0.81; 95%CI 0.66–0.99). In other age
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Fig. 1. Annual pneumococcal meningitis incidence rate per 100,000 person-years, ac
groups, the point estimates decreased, but confidence intervals of age, the incidence rate of PPSV23 unique serotypes increased
to 0.33 cases per 100,000 person-years.
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3.1.2. Serotype-specific incidence rates
Compared with the pre-PCV10 baseline period the incidence of

meningitis caused by PCV10 serotypes decreased by 68%, from 0.50
to 0.16 cases per 100,000 person-years (Table 1). In children 0–
4 years of age, the incidence rate of PCV10-serotype PM decreased
by 87% from 2.07 to 0.28 cases per 100,000 person-years. In adults
18–49 and 50–64 years of age the rates decreased by 63%, from
0.27 to 0.10 cases per 100,000 person-years and by 63% from
0.68 to 0.25 cases per 100,000 person-years, respectively. Among
adults � 65 years of age the incidence rate of PCV10-serotype
PM decreased by 69%, from 0.71 to 0.22 cases per 100,000
person-years. In all these four age groups, the incidence of PM
caused by PCV13-serotypes also decreased (Table 1). Overall inci-
dence of non-PCV10 serotype PM increased by 54% from 0.28 to
0.43 cases per 100,000 person-years. This was mainly due to
increase by 157% in adults � 65 years of age, from 0.36 cases in
pre-PCV10 period to 0.94 cases per 100,000 person-years in
PCV10-period. Overall incidence of non-PCV13 serotypes increased
by 57% from 0.21 to 0.34 cases per 100,000, primarily due to
increases in children 0–4 years of age and adults � 65 years of
age (Table 1). Supplement Fig. 1 shows annual incidence rates by
age group. In the whole population, the incidence of serotypes
19A and 6C PM increased, but the absolute rate differences were
small (0.03 and 0.04 cases per 100,000 person-years, respectively).
PM caused by serotypes 3 and 6A did not change in any age group.
PM caused by the three serotypes in PCV13 but not in PCV10 (3, 6A,
19A) increased in adults 18–49 years, but the absolute rate change
was minimal (0.04/100,000). Table 1 shows the detailed data on
changes in serotype-specific incidence rates.
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18 years of age, incidence of PCV10 and PCV13 ser-
eased by 64% from 0.47 to 0.17 cases per 100,000
nd by 47% from 0.54 to 0.28 cases per 100,000
respectively. Incidence of non-PCV10 PM increased
absolute rate change was small. This was primarily
in serotype 6C from 0.01 to 0.05 cases per 100,000
and 19A from 0.004 to 0.05 cases per 100,000
Rates of meningitis caused by PPSV23 unique sero-
3 and 0.18 cases per 100,000 person-years during
PCV10 periods, respectively. In adults � 65 years

ng to the causing serotype, 2004–2017, Finland.
in serotype distribution
epidemiological year of the study (2016–2017), the
CV10 serotypes had reduced from 88%, 56% and 66%
n pre-PCV10 period to 0%, in persons 0–4 years, 5–
8–49 years of age, respectively (Fig. 2). The propor-
itis caused by PCV13-PCV10 serotypes decreased in
ars (from 5% to 0%), 5–17 years (from 22% to 0%) and
f age (from 10% to 0%). In adults 18–49 years of age
s of age the proportion of PCV13-PCV10 serotypes
2% to 50% and from 12% to 14%, respectively.

tion of PPSV23 unique serotypes dropped in adoles-
ars of age and adults 18–49 years of age from 11%
l isolates to 0% in the last epidemiological year,
he proportion of PPSV23 unique serotypes increased
0–64 years of age (from 19% to 50%) and in
ars of age (from 12% to 43%). In persons 50–64 years
ortion of NVT serotype PM had decreased from 22%
lts � 65 years of age, the proportion of NVT PM
16% to 36% (Fig. 2).
18 years of age, comparing 2016–2017 to the pre-
the proportion of PCV10 serotypes decreased from
n the contrary, there was an increase from 16% to
ion of PPSV23 unique serotypes. The proportion of
increased from 19% in pre-PCV10 to 41% in 2016–

17, the serotypes causing most cases were 22F, 6C
). Compared with the pre-PCV10 period, these ser-
d the largest increases (Fig. 3).



Table 1
Incidence rates of pneumococcal meningitis (PM) and the corresponding relative and absolute rate reduction according to age group, based on the comparison of the pre-PCV10
period vs PCV10 period, Finland.

Age group
(years)

Pre-PCV10
period
Incidence rate
per 100,000
person-years (N)

PCV10 period
Incidence rate
per 100,000
person-years
(N)

PCV10 period vs. Pre-PCV10 period

Incidence
rate ratio

Relative rate
reduction (%)

Absolute rate
reduction/100,000
person-years

Any culture confirmed
PM

0–4 2.35 (41) 0.84 (15) 0.36 (0.19, 0.63) 64.45 (37.21, 80.94) 1.52 (0.68, 2.35)
5–17 0.19 (9) 0.09 (4) 0.46 (0.13, 1.42) 53.86 (�41.69, 87.5) 0.1 (�0.05, 0.25)
18–49 0.40 (53) 0.31 (40) 0.76 (0.50, 1.14) 24.05 (�14.22, 49.89) 0.1 (�0.05, 0.24)
50–64 1.38 (93) 0.90 (61) 0.66 (0.47, 0.90) 34.46 (9.74, 52.75) 0.47 (0.11, 0.83)
>=65 1.17 (61) 1.15 (74) 0.99 (0.70, 1.39) 1.37 (�38.79, 29.65) 0.02 (�0.38, 0.41)
All* 0.81 (257) 0.59 (194) 0.73 (0.61, 0.88) 26.81 (11.87, 39.31) 0.22 (0.09, 0.35)

PCV10-serotypes
0–4 2.07 (36) 0.28 (5) 0.14 (0.05, 0.31) 86.5 (68.64, 95.36) 1.79 (1.07, 2.51)
5–17 0.10 (5) 0.06 (3) 0.62 (0.13, 2.54) 37.71 (�153.87, 87.22) 0.04 (�0.08, 0.16)
18–49 0.27 (35) 0.10 (13) 0.37 (0.19, 0.69) 62.62 (31.13, 80.94) 0.17 (0.06, 0.27)
50–64 0.68 (46) 0.25 (17) 0.37 (0.21, 0.63) 63.07 (36.87, 79.41) 0.43 (0.2, 0.66)
>=65 0.71 (37) 0.22 (14) 0.31 (0.16, 0.56) 69.24 (44.42, 83.92) 0.49 (0.24, 0.75)
All 0.50 (159) 0.16 (52) 0.32 (0.23, 0.43) 68.29 (56.96, 77.02) 0.34 (0.25, 0.43)

Non-PCV10 serotypes
0–4 0.23 (4) 0.56 (10) 2.43 (0.81, 8.86) �142.94 (�785.68, 18.74) �0.33 (�0.74, 0.08)
5–17 0.08 (4) 0.02 (1) 0.26 (0.01, 1.75) 74.05 (�75.45, 98.67) 0.06 (�0.03, 0.15)
18–49 0.13 (17) 0.21 (27) 1.60 (0.88, 2.99) �59.83 (�198.81, 12.06) �0.08 (�0.18, 0.02)
50–64 0.67 (45) 0.64 (43) 0.96 (0.63, 1.45) 4.51 (�45.16, 37.27) 0.03 (�0.24, 0.3)
>=65 0.36 (19) 0.94 (60) 2.57 (1.56, 4.42) �156.74 (�341.56, �56.36) �0.57 (�0.86,

�0.28)
All 0.28 (89) 0.43 (141) 1.54 (1.18, 2.01) �53.62 (�100.91, �18.08) �0.15 (�0.24,

�0.06)
PCV13-serotypes

0–4 2.18 (38) 0.34 (6) 0.15 (0.06, 0.34) 84.66 (66.35, 94.17) 1.85 (1.1, 2.59)
5–17 0.15 (7) 0.06 (3) 0.45 (0.10, 1.6) 55.51 (�60.04, 90.41) 0.08 (�0.05, 0.21)
18–49 0.27 (36) 0.15 (19) 0.53 (0.30, 0.91) 46.89 (8.54, 70.13) 0.13 (0.02, 0.24)
50–64 0.81 (55) 0.46 (31) 0.56 (0.36, 0.87) 43.68 (13.16, 64.13) 0.36 (0.09, 0.62)
>=65 0.84 (44) 0.37 (24) 0.44 (0.27, 0.72) 55.65 (27.77, 73.43) 0.47 (0.18, 0.76)
All 0.57 (180) 0.25 (83) 0.45 (0.34, 0.58) 55.29 (42.23, 65.68) 0.31 (0.21, 0.41)

Non-PCV13 serotypes
0–4 0.12 (2) 0.50 (9) 4.37 (1.13, 28.68) �337.29 (�2768.43, �12.7) �0.39 (�0.75,

�0.02)
5–17 0.04 (2) 0.02 (1) 0.52 (0.02, 5.42) 48.09 (�441.95, 97.59) 0.02 (�0.05, 0.09)
18–49 0.12 (16) 0.16 (21) 1.32 (0.69, 2.57) –32.08 (�157.05, 30.81) �0.04 (�0.13, 0.05)
50–64 0.53 (36) 0.43 (29) 0.81 (0.49, 1.31) 19.5 (�31.03, 50.97) 0.1 (�0.13, 0.34)
>=65 0.23 (12) 0.78 (50) 3.39 (1.87, 6.67) �238.75 (�566.6, �86.85) �0.55 (�0.8, �0.3)
All 0.21 (68) 0.34 (110) 1.57 (1.16, 2.13) �56.85 (�113.12, �16.28) �0.12 (�0.2, �0.04)

PCV13-PCV10 serotypes
(3, 6A, 19A)

0–4 0.12 (2) 0.06 (1) 0.49 (0.02, 5.07) 51.41 (�407.28, 97.74) 0.06 (�0.13, 0.25)
5–17 0.04 (2) 0 (0) 0 (0, 1.62) 100 (�61.61, 100) 0.04 (�0.02, 0.1)
18–49 0.01 (1) 0.05 (6) 6.04 (1.03, 114.04) �503.82 (�11303.54, �3.15) �0.04 (�0.08, 0)
50–64 0.13 (9) 0.21 (14) 1.55 (0.68, 3.73) �55.45 (�273.16, 31.81) �0.07 (�0.21, 0.07)
>=65 0.13 (7) 0.16 (10) 1.16 (0.45, 3.20) �16.14 (�219.85, 55.39) �0.02 (�0.16, 0.12)
All 0.07 (21) 0.10 (31) 1.43 (0.83, 2.53) �43.14 (�152.46, 17.22) �0.03 (�0.07, 0.02)

PPSV23 unique serotypes
0–4 0 (0) 0.22 (4) – – �0.22 (�0.44, 0)
5–17 0.02 (1) 0.021 (1) 1.04 (0.04, 26.25) �3.82 (�2525.4, 95.89) 0 (�0.06, 0.06)
18–49 0.06 (8) 0.08 (11) 1.38 (0.56, 3.57) �38.37 (�257.43, 43.99) �0.02 (�0.09, 0.04)
50–64 0.27 (18) 0.21 (14) 0.78 (0.38, 1.56) 22.28 (�55.78, 62.01) 0.06 (�0.1, 0.22)
>=65 0.13 (7) 0.33 (21) 2.44 (1.09, 6.19) �143.9 (�519.26, �8.77) �0.19 (�0.36,

�0.02)
All 0.11 (34) 0.16 (51) 1.45 (0.95, 2.26) �45.45 (�126.28, 5.33) �0.05 (�0.1, 0.01)

3
0–4 0.06 (1) 0.06 (1) 0.97 (0.04, 24.57) 2.82 (�2357.41, 96.16) 0 (�0.16, 0.16)
5–17 0.04 (2) 0 (0) 0 (0, 1.62) 100 (�61.61, 100) 0.04 (�0.02, 0.1)
18–49 0 (0) 0.02 (2) – – �0.02 (�0.04, 0.01)
50–64 0.04 (3) 0.04 (3) 1.0 (0.19, 5.40) 0.07 (�439.95, 81.51) 0 (�0.07, 0.07)
>=65 0.08 (4) 0.06 (4) 0.81 (0.19, 3.44) 18.7 (�243.84, 80.78) 0.01 (�0.08, 0.11)
All 0.03 (10) 0.03 (10) 0.97 (0.40, 2.36) 3.04 (�136.28, 60.21) 0 (�0.03, 0.03)

6A
0–4 0.06 (1) 0 (0) 0 (0, 5.87) 100 (�487.09, 100) 0.06 (�0.06, 0.17)
5–17 0 (0) 0 (0) – – –
18–49 0.01 (1) 0.01 (1) 1.01 (0.04, 25.45) �0.64 (�2444.9, 96.02) 0 (�0.02, 0.02)
50–64 0.07 (5) 0.09 (6) 1.20 (0.36, 4.16) �19.91 (�316.09, 63.88) �0.01 (�0.11, 0.08)
>=65 0.08 (4) 0.06 (4) 0.81 (0.19, 3.44) 18.7 (�243.84, 80.78) 0.01 (�0.08, 0.11)
All 0.03 (10) 0.03 (9) 0.87 (0.35, 2.17) 12.73 (�116.51, 65.33) 0 (�0.02, 0.03)

(continued on next page)
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Table 1 (continued)

Age group
(years)

Pre-PCV10
period
Incidence rate
per 100,000
person-years (N)

PCV10 period
Incidence rate
per 100,000
person-years
(N)

PCV10 period vs. Pre-PCV10 period

Incidence
rate ratio

Relative rate
reduction (%)

Absolute rate
reduction/100,000
person-years

6C
0–4 0 (0) 0.11 (2) – – �0.11 (�0.27, 0.04)
5–17 0 (0) 0 (0) – –
18–49 0 (0) 0.03 (4) – – �0.03 (�0.06, 0)
50–64 0.02 (1) 0.04 (3) 3.0 (0.38, 60.61) �199.79 (�5960.57, 61.62) �0.03 (�0.09, 0.03)
>=65 0.04 (2) 0.09 (6) 2.44 (0.56, 16.65) �143.9 (�1564.69, 43.8) �0.06 (�0.15, 0.04)
All 0.01 (3) 0.05 (15) 4.85 (1.6, 20.93) �384.82 (�1993.23, �60) �0.04 (�0.06,

�0.01)
19A

0–4 0 (0) 0 (0) – – –
5–17 0 (0) 0 (0) – – –
18–49 0 (0) 0.02 (3) – – �0.02 (�0.05, 0)
50–64 0.02 (1) 0.07 (5) 5.00 (0.81, 95.73) �399.65 (�9472.74, 19.42) �0.06 (�0.13, 0.01)
>=65 0 (0) 0.06 (4) – – �0.06 (�0.12, 0)
All 0.00 (1) 0.04 (12) 11.64 (2.29,

211.99)
�1063.56 (�21099.18,
�129.33)

�0.03 (�0.06,
�0.01)

22F
0–4 0 (0) 0.06 (1) – – �0.06 (�0.17, 0.05)
5–17 0 (0) 0 (0) – –
18–49 0.03 (4) 0.02 (3) 0.76 (0.15, 3.42) 24.52 (�242.4, 85.13) 0.01 (�0.03, 0.05)
50–64 0.04 (3) 0.10 (7) 2.33 (0.65, 10.82) �133.17 (�981.94, 35.18) �0.06 (�0.15, 0.03)
>=65 0.06 (3) 0.16 (10) 2.71 (0.83, 12.09) �171 (�1108.77, 17.1) �0.1 (�0.21, 0.02)
All 0.03 (10) 0.06(21) 2.04 (0.98, 4.52) �103.62 (�351.53, 1.71) �0.03 (�0.07, 0)
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3.1.4. Case fatality proportions and mortality rates
We identified 64 PM-related deaths which occurred within

30 days of the first positive culture (40 deaths in pre-PCV10 period
and 24 deaths in PCV10-period). All identified deaths, except one,
were in adults � 18 years of age (Table 2). Compared with the
pre-PCV10 baseline period, the overall mortality rate related to
all PM decreased by 42% (95%CI 4%-65%) from 0.13 to 0.07 deaths
per 100,000 person-years. This was primarily due to 66% (95%CI
31%-85%) reduction in mortality rate for PCV10 serotype PM
(Table 2), particularly in persons 50–64 years of age (reduction
by 80% (95%CI 39%-95%)). The overall CFPs during the pre-PCV10
period and PCV10 period were 16% and 12%, respectively
(p = 0.41). The CFP in persons 50–64 years of age decreased from
25% in pre-PCV10 period to 10% in PCV10-period (p = 0.04).

In adults � 18 years of age, the PM-related mortality rate
decreased by 41% (95%CI 3%-65%) from 0.16 to 0.09 deaths per
100,000 person-years, mainly due to decrease by 65% (95%CI
29%-85%) in mortality rate for PCV10 serotype PM. The CFPs in
pre-PCV10 period and PCV10 period were 19% and 14%, respec-
tively (p = 0.61).
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Seven years of infant PCV10 program has resulted in substantial
reduction in the burden of pneumococcal meningitis in Finland.
The overall incidence of PCV10 serotype meningitis was reduced
by 68% and, consequently, the overall PM incidence by 27%. In
vaccine-eligible children, there was an 87% reduction in the inci-
dence of PCV10 serotype cases and in 2017, no PCV10 serotype
meningitis cases were seen. The overall PM-related mortality rate
was reduced by 42%. The case fatality proportion decreased from
25% to 10% in persons 50–64 years. However, an important burden
of disease remains in older adults because of an increase in PM
caused by non-PCV10 serotypes.

Our study suggests substantial herd effect of vaccination, since
incidence rates of PCV10 serotypes cases decreased not only in vac-
cinated children, but also in non-vaccinated population groups
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r adults � 65 years of age. However, because of ser-
ent, no net impact of PCV10 on disease burden was
er adult age group. In the final study year, the signif-
in PCV10 serotype PM was offset mostly by disease
type 22F (included in PPSV23) and non-vaccine ser-
6C and 23A. This suggests relatively small potential
V13 vaccination for older adults and a potential
PSV23 in terms of covered serotypes.
placement has been widely reported after introduc-
coccal vaccines. After PCV7 introduction, meningitis
y non-PCV7 serotypes emerged, particularly sero-
19A and 22F [25–28]. After introduction of higher
es, significant reductions in PM have been reported
n < 5 years in France, England and Wales and Israel
ses in the additional serotypes included in PCV13
ong U.S. children and Israeli adults, the number of
ained almost unchanged despite a decrease in the
PCV13 serotypes after PCV13 introduction [16,31].
uent emerging non-PCV13 serotypes during PCV13
riod have been 8 and 12F in England and Wales
, 23B and 10A in France [14]; 12F, 16F, 6C, 23A,
n Israel [16]; and 22F and 35B among U.S. children
, serotype 19A continued to be the most common
ter three years of infant PCV13 vaccination program
where PCV10 was implemented, PM in children
ificantly after introduction. Non-PCV10 serotypes
and 18B were reportedly most prevalent during

[32].
y, the incidence of serotype 6A PM was low and did
er PCV10 introduction. In PCV10-period, however,
rease in serotype 6C in adults � 18 years of age.
this IPD serotype has been noted also in other set-
g those using PCV13 [16,33].
of age, PM incidence of serotype 3 has not changed
od. In Brazil, increase in serotype 3 was found in
ver 18 years with a diagnosis other than meningitis
serotype 3 PM increased after PCV13 introduction
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Fig. 3. Contribution (percentage) of individual Streptococcus pneumoniae serotypes to pneumococcal meningitis cases for all age groups before PCV10 introduction and in the
final epidemiological year of the study (2016–2017), Finland.
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Fig. 2. Proportions of pneumococcal meningitis (PM) according to serotype in age groups in the pre-PCV10 period and in the final epidemiological year (2016–2017) of the
study, Finland.

A. Polkowska, H. Rinta-Kokko, M. Toropainen et al. Vaccine 39 (2021) 3216–3224

3221



[16]. Serotype 3 has been a common replacing serotype in adult tinuous surveillance will be essential in determining whether ser-
lace
in F

vacc
-as
was
rela
of
mo
e re
n PC
wit
he U
nd

Table 2
Mortality rates of pneumococcal meningitis (PM) and the corresponding relative and absolute rate reduction, based on the comparison of the pre-PCV10 period vs PCV10 period,
Finland.

Pre-PCV10 period PCV10 period Pre-PCV10 period vs PCV10 period

Age group
(years)

Mortality/
100,000
person-
years (N)

CFP (%) Mortality/
100000
person-
years (N)

CFP (%) Mortality
rate ratio

Relative rate
reduction, %

Absolute rate
reduction/
100,000
person-years

Any culture confirmed
0–4 0.06 (1) 2.4 0 (0) 0.0 0 (0, 5.87) 100 (�487.09, 100) 0.06 (�0.06, 0.17)
5–17 0 (0) 0.0 0 (0) 0.0 – – –
18–49 0.05 (6) 11.3 0.04 (5) 12.5 0.84 (0.24, 2.78) 16.14 (�178.45, 75.83) 0.01 (�0.04, 0.06)
50–64 0.34 (23) 24.7 0.09 (6) 9.8 0.26 (0.10, 0.60) 73.93 (39.92, 90.37) 0.25 (0.1, 0.41)
>=65 0.19 (10) 16.4 0.20 (13) 17.6 1.06 (0.47, 2.48) �5.69 (�147.59, 53.51) �0.01 (�0.17, 0.15)
All 0.13 (40) 15.6 0.07 (24) 12.4 0.58 (0.35, 0.96) 41.82 (4.26, 65.4) 0.05 (0, 0.1)

PCV10-serotypes
0–4 0.06 (1) 2.8 0 (0) 0.0 0 (0, 5.87) 100 (�487.09, 100) 0.06 (�0.06, 0.17)
5–17 0 (0) 0.0 0 (0) 0.0 – – –
18–49 0.03 (4) 11.4 0.02 (3) 23.1 0.76 (0.15, 3.42) 24.52 (�242.4, 85.13) 0.01 (�0.03, 0.05)
50–64 0.22 (15) 32.6 0.04 (3) 17.6 0.2 (0.05, 0.61) 80.01 (39.44, 95.37) 0.18 (0.05, 0.3)
>=65 0.12 (6) 16.2 0.05 (3) 21.4 0.41 (0.09, 1.54) 59.35 (�54.08, 91.42) 0.07 (�0.04, 0.17)
All 0.08 (26) 16.4 0.03 (9) 17.3 0.34 (0.15, 0.69) 66.44 (31, 85.14) 0.05 (0.02, 0.09)

Non-PCV10 serotypes
0–4 0 (0) 0.0 0 (0) 0.0 – – –
5–17 0 (0) 0.0 0 (0) 0.0 – – –
18–49 0.02 (2) 11.8 0.02 (2) 7.4 1.01 (0.12, 8.39) �0.64 (�738.79, 87.93) 0 (�0.03, 0.03)
50–64 0.12 (8) 17.8 0.04 (3) 7.0 0.38 (0.08, 1.30) 62.53 (�29.56, 91.79) 0.07 (�0.02, 0.17)
>=65 0.08 (4) 21.1 0.16 (10) 16.7 2.03 (0.68, 7.41) �103.25 (�640.99, 32.01) �0.08 (�0.2, 0.04)
All 0.04 (14) 15.7 0.05 (15) 10.6 1.04 (0.50, 2.18) �3.89 (�117.65, 50.1) 0 (�0.03, 0.03)

PCV13-serotypes
0–4 0.06 (1) 2.6 0 (0) 0.0 0 (0, 5.87) 100 (�487.09, 100) 0.06 (�0.06, 0.17)
5–17 0 (0) 0.0 0 (0) 0.0 – – –
18–49 0.03 (4) 11.1 0.02 (3) 15.8 0.76 (0.150, 3.42) 24.52 (�242.4, 85.13) 0.01 (�0.03, 0.05)
50–64 0.25 (17) 30.9 0.07 (5) 16.1 0.29 (0.10, 0.74) 70.61 (25.7, 90.34) 0.18 (0.04, 0.31)
>=65 0.12 (6) 13.6 0.05 (3) 12.5 0.41 (0.09, 1.54) 59.35 (�54.08, 91.42) 0.07 (�0.04, 0.17)
All 0.09 (28) 15.6 0.03 (11) 13.3 0.38 (0.18, 0.74) 61.91 (25.62, 81.84) 0.05 (0.02, 0.09)

Non-PCV13 serotypes
0–4 0 (0) 0.0 0 (0) 0.0 – – –
5–17 0 (0) 0.0 0 (0) 0.0 – – –
18–49 0.02 (2) 12,5 0.02 (2) 9,5 1.01 (0.12, 8.39) �0.64 (�738.79, 87.93) 0 (�0.03, 0.03)
50–64 0.09 (6) 16,7 0.02 (1) 3,4 0.17 (0.01, 0.98) 83.35 (2.51, 99.12) 0.07 (0, 0.15)
>=65 0.08 (4) 33,3 0.16 (10) 20,0 2.03 (0.68, 7.41) �103.25 (�640.99, 32.01) �0.08 (�0.2, 0.04)
All 0.04 (12) 17,6 0.04 (13) 11,8 1.05 (0.48, 2.34) �5.04 (�133.53, 52.35) 0 (�0.03, 0.03)

PCV13-PCV10 serotypes
(3, 6A, 19A)

0–4 0 (0) 0,0 0 (0) 0,0 – – –
5–17 0 (0) 0,0 0 (0) – – – –
18–49 0 (0) 0,0 0 (0) 0,0 – – –
50–64 0.03 (2) 22,2 0.03 (2) 14,3 1.00 (0.12, 8.33) 0.07 (�732.9, 88.01) 0 (�0.06, 0.06)
>=65 0 (0) 0,0 0 (0) 0,0
All 0.01 (2) 9,5 0.01(2) 6,5 0.97 (0.12, 8.08) 3.04 (�708.18, 88.37) 0 (�0.01, 0.01)

PPSV23 unique serotypes
0–4 0 (0) – 0 (0) 0,0 – – –
5–17 0 (0) 0,0 0 (0) 0,0 – – –
18–49 0.02 (2) 25,0 0.02 (2) 18,2 1.01 (0.12, 8.39) �0.64 (�738.79, 87.93) 0 (�0.03, 0.03)
50–64 0.04 (3) 16,7 0.02 (1) 7,1 0.33 (0.02, 2.60) 66.69 (�160.17, 98.35) 0.03 (�0.03, 0.09)
>=65 0.08 (4) 57,1 0.08 (5) 23,8 1.02 (0.27, 4.11) �1.63 (�310.59, 73.11) 0 (�0.1, 0.1)
All 0.03 (9) 26,5 0.02 (8) 15,7 0.86 (0.32, 2.25) 13.81 (�125.43, 67.64) 0 (�0.02, 0.03)
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IPD. Study results regarding direct PCV13 effectiveness against
IPD serotype 3 have been inconsistent, and some suggest poor
immunogenicity and effectiveness [34–38]. Several reports on
IPD suggest no indirect protection from PCV13 against serotype 3
[39,40].

In our study, no cases of serotype 19A PMwere seen in children,
but its incidence increased significantly in adults � 18 years of age.
These findings are consistent with other studies [41]. In many
European countries and the US after PCV7 introduction, serotype
19A emerged as the most common replacing serotype causing
meningitis [42]. Emergence of this serotype might be related to
high prevalence of 19A carriage during pre-vaccination period,
antimicrobial non-susceptibility and capsular switching [43]. Con-
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ment will lead to increases in serotype 19A
inland.
ination has had an impact not only on morbidity, but
sociated mortality. The overall PM-associated mor-
reduced by 42%. In the PCV10 period, there were
ted to PM in children < 18 years. In adults 50–
age, where the burden of disease is high, PM-
rtality rate was reduced by 74% and case fatality
duction in PM related mortality was mostly due to
V10 serotype-related fatal cases. These results are
h other studies conducted with either PCV13 or
S and Brazil [44,45]. The reduction in PM associated
overall CFP might be due to lower invasive potential
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A.
f the replacing pneumococcal strains and/or changes in clinical
ractice, such as use of adjunctive dexamethasone therapy [46,47].
Some limitations should be considered with our data. First, the

bservational before-after comparison study design is susceptible
bias due to secular trends, potential changes in reporting sys-
m, clinical practices and prevalence of risk factors. The estimated
agnitude and precision of herd effects of pediatric PCV programs
epends on the choice of analytical methodology. For datasets
here, upward trends in overall IPD were reported before vaccine
troduction, substantially larger estimated herd effects might be
bserved in interrupted time series (ITS) analysis, than in before-
fter analysis. In such a situation, before-after analysis is character-
ed by smaller differences in observed and expected IRRs and
aller or no herd effects, since pre-vaccine trends are averaged

ut [48]. In Finland there have been no major changes in meningi-
s case ascertainment since 1995 and no trend in PM incidence
as observed before PCV10 introduction [49]. Therefore, we
oose not to adjust for trend in our analysis. Information of
morbidities and treatment were not available in surveillance
ata. Secondly, we did not have information on cause of deaths.
owever, most of the deaths associated with bacterial meningitis
ccurred early (within 14 days of admission), suggesting that they
ere related to the infection. Due to very small number of fatal
ses, it was not possible to assess the association between partic-
lar serotype and risk of death. According to the National vaccina-
on register, the uptake of adult PCV13 vaccinations was about 8%
nd that of PPSV23 about 2% during the study period. It is therefore
nlikely that adult vaccinations influenced the results.
The study has several strengths. First, we used data from

ational, laboratory-based surveillance system that allows near
mplete case ascertainment and serotyping. The linking of the
ational Infectious Diseases Register database with the Population
formation System of Finland allows conducting whole popula-
on analyses and provides accurate population denominators. In
ddition, Inclusion of PM cases based on ICD-10 discharge data
nd positive blood culture results increased the sensitivity of case
efinition and reduced misclassification
In conclusion, our study contributes to the evidence-base of

CV10 impact on PM in vaccinated children and herd effects on
accine type PM in unvaccinated age groups. Importantly, substan-
al reductions in both PM incidence and associated mortality rates
ere seen in working-age adults 50–64 years of age among whom
e PM burden was high. In older adults � 65 years of age, how-
ver, the burden remains unchanged because of serotype replace-
ent. Cost-effectiveness studies of higher-valency infant and
dult vaccination strategies should be considered to achieve opti-
al vaccination program for prevention of pneumococcal
eningitis.
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