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In studies of infectious disease prevention, the level of protective efficacy of
medicinal products such as vaccines and prophylactic drugs tends to vary over
time. Many products require administration of multiple doses at scheduled
times, as opposed to one-off or continual intervention. Accurate information on
the trajectory of the level of protective efficacy over time facilitates informed clin-
ical recommendations and implementation strategies, for example, with respect
to the timing of administration of the doses. Based on concepts from pharma-
cokinetic and pharmacodynamic modeling, we propose a non-linear function
for modeling the trajectory after each dose. The cumulative effect of multiple
doses of the products is captured by an additive series of the function. The model
has the advantages of parsimony and interpretability, while remaining flexi-
ble in capturing features of the trajectories. We incorporate this series into the
Andersen-Gill model for analysis of recurrent event time data and compare it
with alternative parametric and non-parametric functions. We use data on clin-
ical malaria disease episodes from a trial of four doses of an anti-malarial drug
combination for chemoprevention to illustrate, and evaluate the performance of
the methods using simulation. The proposed method out-performed the alter-
natives in the analysis of real data in terms of Akaike and Bayesian Information
Criterion. It also accurately captured the features of the protective efficacy tra-
jectory such as the area under curve in simulations. The proposed method has
strong potential to enhance the evaluation of disease prevention measures and
improve their implementation strategies.
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1 INTRODUCTION

In studies of infectious disease prevention, protective efficacy (PE) of medicinal products such as vaccines and prophy-
lactic drugs is often defined as one minus hazard ratio (HR), where HR< 1 indicates success of the products in reducing
disease incidence. The level of PE typical rises initially to a peak and subsequently decays due to various reasons such as
waning immunological responses, changes in naturally acquired immunity, and elimination of drugs from the body. It
is important to characterise this trajectory, for understanding the potential impact of the intervention and developing an
appropriate strategy to deploy it.

Conventionally, per-protocol analysis of vaccine trials considers 14 or 28 days after completion of the primary series
of vaccine doses as the start point of analysis time, when a sufficient built-up of immune response is expected.1-5 Disease
incidence and person-time between the date of dose one and this start point may be included in intention-to-treat analysis,
but the efficacy during this initial period, which can be weeks or months, is not usually reported separately. The Covid-19
pandemic has led to rethink about this practice. The global shortage of Covid-19 vaccines drew attention to the level and
tempo of the initial rise of PE after dose one. It influenced the decision to delay the second dose of the primary series or
not. If the initial rise of PE after dose one was sufficient, the second dose could be delayed and the limited vaccine supply
could be prioritized for administration as the first dose to protect more people.6,7 This has highlighted the relevance of
the early part of the PE trajectory.

The waning of PE after it reaches a peak level has long been a concern in the evaluation of preventive medicine and
disease prevention strategies. Some vaccines, such as malaria and Covid-19 vaccines, and prophylactic drugs, such as
malaria chemoprevention and antibiotic preventive treatments, have fairly short-lived effects.3,6,8-11 Accurate informa-
tion on the rapidity of PE waning can guide the frequency and timing of booster doses or treatment re-administration.
It can also guide the timing and method to deploy the first dose. For example, if PE is stable over a year, a vac-
cine may be suitable for delivery in immunization clinics according to some age schedule. In contrast, if PE wanes
quickly, it is more suitable for delivery through a community campaign timed before the high disease transmission
season.

Some studies have attempted to estimate “duration of protection” offered by preventive medical interventions.
However, the search for a duration of protection may be inappropriate, as it assumes a sudden drop of PE from a pro-
tective to a non-protective level. It is more realistic and informative to estimate the trajectory of PE level over time.
One approach is to divide person-time into intervals and estimate a step function.8,11-13 It can work well if the num-
ber of events is very large. Otherwise, it may encounter volatility in PE estimates if the intervals are narrow, or loss
of information if the intervals are wide. Some researchers have used exponential decay function or its adaptation to
capture time-varying effects.14,15 Such patterns are not suitable for studies of the initial rise and possibly a plateau of
PE that precede the decay. Some researchers smoothed the densities of time from initiation of intervention to out-
come event among those who have had the event time observed, and compared the smoothed densities between trial
arms.10 This may generate biased results for various reasons, for example, different patterns of censoring between
trial arms.

Infected individuals may acquire natural immunity, which may be short-lived or long-lasting, and may be partial or
near complete. Prevention of infection or disease episodes thus may coincidentally lead to a lower rate of acquisition of
natural immunity, which in the long term increases the disease risk. These effects may influence the trajectory of PE. This
problem is known as rebound effects in infectious disease epidemiology.16,17 The concern for rebound effects delayed the
World Health Organization’s recommendation for and widespread deployment of seasonal malaria chemoprevention,
which has been a major public health success since being recommended in 2012. But it could have been deployed 20 years
earlier.18,19

Lifetime immunity after one episode of an infectious disease is uncommon. Many infectious diseases can recur, and
recurrences can be frequent within the duration of clinical trials. The World Health Organization Malaria Vaccine Advi-
sory Committee highlighted the limitations of analysis of only the first or single event and called for methodological
research on analysis of recurrent event data.20 The Andersen-Gill (AG) model is an extension of the Cox model for analy-
sis of recurrent events. There is emerging consensus on its usefulness in clinical and public health research.12,21-24 In the
analysis of the first or single event, it is known that Cox model is biased towards the null value as time goes by due to
unobserved heterogeneity.25,26 This bias distorts the trajectory. The analysis of recurrent events by the AG model mitigates
against this distortion.21,22
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The elementary form of the AG model and Cox model assumes time-constant intervention effects, or proportional
hazard (PH) assumption. A previous study proposed a 4-parameter function that represents a monotonic, non-linear
pattern of time-varying effect for use with time-to-event analysis model27:

−ln[HR(t)] = Ae−BtC + D, for B,C > 0 and −∞ < A,D < ∞, (1)

This function has the advantage that the four parameters, A, B, C and D, are interpretable, representing the level of
short-term effect, rate of waning, shape of trajectory, and level of long-term effect, respectively. A negative D value suggests
rebound effect. A disadvantage of this function is that it is monotonic. It assumes intervention effects to be at or near
peak level when analysis time begins. This assumption makes the function more suitable for fast-acting products, such
as monoclonal antibodies, or typical vaccine trial analysis that sets 14 or 28 days after completion of the primary series
as the start point of analysis time. In contrast, a non-monotonic function that captures the trajectory from zero to peak
to waning and rebound is more useful for the evaluation of slower-acting products and analysis starting from the time of
dose one.

A study of the time-course of the impact of a dose of antibiotic on continuous outcome variables proposed a
4-parameter, non-monotonic function of intervention effect that was derived from a harmonic oscillator.28 This was
also applied to time-to-event analysis.29 This function has the advantage of capturing the whole trajectory of interven-
tion effects from dose one. A disadvantage is that since it originates from physics/engineering, the parameters have no
biomedical interpretation.

The aim of this study is to propose and evaluate a non-monotonic, non-linear function of time-varying effects that
is motivated by pharmacokinetic/pharmacodynamic (PK/PD) modelling for use with the AG model. To be clear, the
proposed method involves PK/PD concepts, but it does not require PK/PD biological samples. It has the advantage
of parsimony and interpretability yet being flexible in fitting data. In Section 2, we will describe the statistical model.
In Section 3, we will apply the model to data from a malaria prevention trial and compare it with various alterna-
tives. Section 4 will provide an evaluation of the method by simulation. In Section 5, we will provide some concluding
remarks.

2 STATISTICAL MODELS

2.1 Incorporating time-varying effects and repeated dosing into AG model

Let N be the total number of subjects in a 2-arm trial, zi = 1 if the i-th subject is in the intervention group and zi = 0
otherwise, and 0 < ti1 < ti2 < … < tini be the event times and ni be the number of events of the i−th subject that are
observed during the study period. Incorporating time-varying effect into the AG model, the hazard of the outcome event
for subject i at time t is:

𝜆i(t) = 𝜆0(t) exp
[
𝜸

Txi(t) + ziG(t)
]
, (2)

where 𝜆0(t) ≥ 0 is an unspecified baseline hazard function that is common to all events, xi(t) is a vector of possibly
time-varying covariates, 𝜸 is a vector of regression coefficients, and G(t) is a function of the time-varying intervention
effect that is the key interest.

For a subject who have received mi doses of a medicinal product, let 0 ≤ di1 < di2 < … < dimi be the times at dosing.
Deviation from scheduled dosing times is common because of non-compliance and logistic reasons. Such deviation can
dilute the pattern of time-varying effect. To allow variation in time at dosing and prevent the dilution, G(t) is formulated
as:

Gi(t) =
mi∑

j=1
g
(

t − dij
)

I
(

dij < t
)
, (3)

where t is the time since the first dose, g
(

t − dij
)

is the time-varying effect of the j−th dose the i−th subject has received,
and I(⋅) is an indicator function. Since g

(
t − dij

)
and Gi(t) refer to intervention effect on ln(HR), both the individual and
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cumulative dose effects have a lower limit of HR= 0 and therefore the protective efficacy has an upper limit of PE= 1.
The effects of multiple doses are additive on the log scale. Thus, their effects in terms of HR are multiplicative. This is
standard formulation of Cox-type models, including the AG model.

2.2 Modeling time-varying effects after each dose

Pharmacodynamics (PD) is the study of how the body responds to medicinal products, with emphasis on dose–response
relationship. Our proposed method begins with a sigmoid Emax PD model.30 Let PE at time t be:

PE(t) = Emax ⋅ C(t)𝛾

C𝛾

50 + C(t)𝛾
, for Emax,C50, 𝛾 > 0

where Emax is the maximal response, C50 is the concentration of a stimulus required to achieve half of Emax, 𝛾 is a
sigmodicity factor that represents the shape of the curve, and C(t) is the concentration of the stimulus over time. Since
PE= 1 − HR and minimal HR is zero, it follows that Emax= 1 and

HR(t) =
C𝛾

50

C𝛾

50 + C(t)𝛾
.

Define g(t) as the ln[HR(t)],

g(t) = 𝛾𝑙𝑛(C50) − ln
[
C𝛾

50 + C(t)𝛾
]
.

The relation between g(t) and time is via C(t), which is to be described by a pharmacokinetic (PK) model. Phar-
macokinetics is the study of how the body affects the medicinal products administered, with emphasis on changes
over time. As Upton and Mould noted,31 “There is no ‘correct’ method for developing PD models. The nature of
model is dependent on the data and the intended purpose of the model.” Here, the purpose of developing the func-
tion g(t) is not to estimate pharmacokinetic parameters. Instead, the purpose is to develop a flexible and parsimonious
tool for the estimation of the trajectory of time-varying intervention effects. We consider using a first-order absorp-
tion PK model, which is suitable for studies of products used in extra-vascular administration like intra-muscular
injection of vaccines and oral drugs, for substitution into g(t). Some parameters in the PK model may be omit-
ted as they are not of interest to us. In particular, the ratio of dosage to volume of distribution (D/V) is a scalar
that does not affect the shape of C(t). So, it can be fixed at 1 without loss of information in the present context.
Consequently,

C(t) = 𝜅a

𝜅a − 𝜅
(

e−𝜅t − e−𝜅at)
, for 𝜅a, 𝜅 > 0, 𝜅a ≠ 𝜅

where 𝜅a is the absorption rate and 𝜅 is the elimination rate in PK studies. Furthermore, the shape of C(t)mainly depends
on the relative size of 𝜅a and 𝜅. So, we make a simplification by constraining 𝜅 = 1, leaving only one parameter 𝜅a(≠ 1)
in the C(t) component of the model to be estimated.

To capture the long-term effect (rebound effect), similar to the term D in Equation (1), we can add a term 𝛿 to form:

g(t) = 𝛾𝑙𝑛(C50) − ln
{

C𝛾

50 +
[

𝜅a

𝜅a − 1
(

e−t − e−𝜅at)
]
𝛾
}
+ 𝛿.

Shaw et al. proposed to allow a long-term effect to grow asymptotically, with the growth rate fixed to equal another
parameter of their model for simplicity.28 Along the same line, we replace 𝛿 in g(t) by:

𝛿

(
1 − e−𝜅at)

such that the faster the short-term effect rises (larger 𝜅a), the faster the long-term effect grows, or vice versa.
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Finally, we define g1(t) as our proposed 4-parameter PK/PD motivated function for modelling PE over time:

g1(t) = 𝛾𝑙𝑛(C50) − ln
{

C𝛾

50 +
[

𝜅a

𝜅a − 1
(

e−t − e−𝜅at)
]
𝛾
}
+ 𝛿

(
1 − e−𝜅at)

. (4)

In this function, a smaller C50 indicates a higher level of PE, a smaller 𝜅a indicates a slower rise of C(t), and therefore,
g1(t), a smaller γ indicates a less sigmoid shape of the trajectory. A larger 𝛿 with a negative sign indicates a stronger
protective effect in the longer term, while a larger 𝛿 with a positive sign indicates a stronger rebound effect. These features
of the function are illustrated in Figure 1.

The function is then plugged into G(t) in Equation (3), denoted as G1(t), which in turn is plugged into the AG model
in Equation (2).

The first derivative of g1(t) with respect to t is:

𝜕g1(t)
𝜕t

= −
𝛾C𝛾−1(t) 𝜅a

𝜅a−1

(
𝜅ae−𝜅at − e−t)

C𝛾

50 + C𝛾 (t)
+ 𝛿𝜅ae−𝜅at

, for 𝜅a, 𝛾,C50 > 0, 𝜅a ≠ 1.

If 𝛿 is close to zero and is ignored, a closed form expression for the time to peak level of PE
(

tp
)

after a single dose is
available:

tp = −
ln(𝜅a)
1 − 𝜅a

.

Then, peak level of PE is:

PE
(

tp
)
= 1 − exp

(
g1
(

tp
))
=

𝜅

𝛾

1−𝜅a
a

C𝛾

50 + 𝜅
𝛾

1−𝜅a
a

.

Without assuming 𝛿 = 0, there is no closed form expression for tp and PE
(

tp
)
. In the simulation studies and real data

application that will be described in the next two Sections, we obtained the solutions numerically without assuming
𝛿 = 0.

The time to PE dropping to a certain fraction of the peak PE is important for guiding the timing of booster or
re-administration.27 To find the time to a fraction f of peak PE remaining

(
tf
)

after tp, solve for 1 − exp
(

g1
(

tf
))
=

f × PE
(

tp
)
, tf > tp. We refer to t0.5 as tp∕2. The area under the PE(t) curve (AUC) after a single dose up till some defined

F I G U R E 1 Illustration of the features of g1(t) with different parameter values.
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time-point can be found by numerical integration. In the presence of a rebound effect (𝛿 > 0), the AUC is the sum of the
areas above and below zero. As shown in Figure 1, PE (y-axis) is up to one. If the metrics for the time-scale (x-axis) is
months and the maximum follow-up time is 8 months as in Figure 1, the upper bound of AUC is 1× 8= 8, which refers
to complete elimination of the disease incidence over the 8-month duration. As another illustration based on this figure,
the AUC for the trajectory indicated by the solid line was 0.97. This value indicates that the amount of disease incidence
reduction is equivalent to that of removing the exposure time by 0.97 month, or 0.97/8= 12.1% of the disease incidence in
the 8-month duration, assuming absence of seasonality. Alternatively, it is possible to use the study duration as one unit
of time for the metrics of the x-axis, such that a duration of 8 months equals 1.0 in this figure. Then maximum AUC would
be 1.0. The advantage of using months or years for the x-axis is that it facilitates comparisons between estimates from
studies with different durations. A negative AUC (> −∞) is possible, which indicates harm of the product. For brevity, in
this article we mainly discuss AUC after one dose, calculated from g1(t). But it is straight-forward to extend to AUC of a
multi-dose regime, calculated from G1(t).

For comparison purpose, we define the 4-parameter monotonic function in Equation (1) as g2(t) and the 4-parameter
non-monotonic function derived from harmonic oscillator by Shaw et al.28 as g3(t). Furthermore, we consider step func-
tion and cubic B-splines for comparison. We refer to the step and cubic B-spline functions as g4(t) and g5(t), respectively.
Details of the step and spline functions will be discussed in Section 3.

Previous observations revealed that the last dose of the primary series of Haemophilus influenzae type b vaccine
offered little additional protection.32 Accordingly, we consider an option to allow C50 in g1(t) to be dose-specific. That
is, changing C50 to C50,1,C50,2, · · · ,C50,m for the m doses. Another aspect is that 𝛿 may change sign over time as it is a
balance between the intervention group being protected by the medicinal product and the control group acquiring natural
immunity more than the intervention group. This balance may change over time. So, we also consider letting 𝛿 in g1(t) to
be dose-specific.

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) can be used to compare models with
different gh(t) or models with common or dose-specific parameters.

2.3 Estimation

Let 𝜽h (h= 1, 2, … , 5) be the unknown parameters in the AG model to be estimated from the data, where h represents
the choice of the function gh(t). The log-partial likelihood is:

l(𝜽h) =
N∑

i=1
li(𝜽h) =

N∑

i=1

ni∑

j=1

{

𝜸
Txi

(
tij
)
+ Ghi

(
tij
)

zi − ln

( N∑

k=1
Yk
(

tij
)

exp
[
𝜸

Txk
(

tij
)
+ Ghk

(
tij
)

zk
]
)}

,

where Yk(t) = 1 if the k−th subject is at risk at event time t, otherwise Yk(t) = 0, and Ghi
(

tij
)

is as described in Equation (3).
To constrain 𝛾,C50, 𝜅a in Ghi

(
tij
)

to be positive, 𝛾 is replaced by exp(𝛾∗), where 𝛾∗ = ln(𝛾), and so on. The estimators �̂�h can
be obtained by solving the equations U(𝜽h) = 𝜕l(𝜽h)∕𝜕𝜽h = 0. Under regularity conditions similar to VII.2.1 and VII.2.2
in Andersen et al.,33 it can be shown that as sample size increases towards infinity, the estimator �̂�h of 𝜽h is consistent
and normally distributed. We used the quasi-Newton method (BFGS) available in R for the estimation.34

The square root of the diagonal elements in the inverse of the information matrix, I
(
�̂�h

)
, are the standard errors

calculated assuming independent observations. The AG model uses a robust sandwich estimator for clustered data to
allow for multiple observations per person35,36:

Var
(
�̂�h

)
= I−1

(
�̂�h

){ N∑

i=1
Wi

(
�̂�h

)
W T

i

(
�̂�h

)}

I−1
(
�̂�h

)
,

where

Wi

(
�̂�h

)
=

ni∑

j=1
Wi

(
�̂�h|tij

)
=

ni∑

j=1

{
𝜕li
(
𝜽h|tij

)

𝜕𝜽h

|||||𝜽h=�̂�h

−
N∑

k=1

nk∑

j′=1

I
{

tij ≥ tkj′
}

exp
[
𝜸

Txi
(

tkj′
)
+ Ghi

(
tkj′

)
zi
]

∑N
i′=1Yi′

(
tkj′

)
exp

[
𝜸Txi′

(
tkj′

)
+ Ghi′

(
tkj′

)
zi′
]
𝜕li
(
𝜽h|tkj′

)

𝜕𝜽h

|||||𝜽h=�̂�h

}

.
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We used the robust sandwich estimator for clustered data to estimate
(
�̂�h

)
∀h.

R codes for the model estimation and the simulation in Section 3 are available at https://github.com/cheungyb/PE
-trajectory.

3 MALARIA PREVENTION TRIAL

3.1 Materials and methods

We re-analyzed data from a randomized controlled trial of malaria prevention in Ghana for illustration.27 Infants were
recruited from immunization clinics at the age of about 2 months. They were enrolled and randomized to receive four
doses of placebo or sulfadoxine-pyrimethamine (SP) for malaria prevention, at 1, 2, 7 and 10 months after enrolment. The
dose-schedule was designed to align with the immunization schedule such that the trial did not necessitate additional
visits to the clinics. The actual timing of the administration of placebo/SP was variable, with mean (SD) of the first to
fourth doses at 1.0 (0.3), 2.1 (0.5), 7.6 (0.9) and 10.8 (1.0) months after enrolment, respectively. The infants were under
surveillance for malaria disease episodes for up to 24 months. Clinical malaria was the primary endpoint, which was
defined as a visit to a health care facility with (a) microscopy confirmation of malaria parasites in the blood and (b) either
temperature ≥ 37.5◦C or a parental report of fever. To avoid double-counting of disease episodes, observations of clinical
malaria within 7 days of a previous clinical malaria episode of the same person were ignored.27 There were 1442 clinical
malaria episodes among 1044 infants in the SP trial arm and 1593 episodes among 1001 infants in the placebo arm.

In the data analysis, date of receiving the first dose of placebo/SP for each infant is the origin of analysis time (t = 0). In
all models, age at enrolment and rainy season (July to November; dry season otherwise) were included as time-constant
and time-varying covariates, respectively.

We began with fitting the AG model with SP trial arm versus placebo trial arm as a time-constant exposure variable,
assuming proportional hazard (PH). Then we fitted AG models with different Gh(t) to capture the time-varying effects of
the four doses of SP.

To challenge the performance of the parametric functions, we set g4(t) as a step function with eight steps (weeks 1,
2, 3, 4, 5–6, 7–8, 9–12 and ≥13). Furthermore, we fitted a series of models with time-varying effect represented by cubic
B-splines,37 and chose the best fitting one among them for g5(t) according to AIC and BIC. A cubic B-spline with one
(inner) knot has four coefficients to be estimated, which is the same as the parametric functions we consider. We fitted
cubic B-spline models with one to four knots. Previous studies of SP have suggested that its efficacy tended to last no
more than 4–6 weeks.8,38 Placing knots beyond 6 weeks is unnecessary. We fitted five models with one knot, at 7, 14, 21,
28 or 35 days since dosing; four models with two knots, at (5, 20), (7, 21), (7, 28), or (14, 28) days; two models with three
knots, at (5, 15, 30) or (7, 21, 35) days; one model with four knots, at (5, 15, 25, 40). The fitting of multiple spline models
increased the risk of over-fitting. It was used only for the purpose of challenging the performance of the proposed PK/PD
motivated model.

3.2 Results

The PH model gave AIC 44613.0 and BIC 44631.1 (Table 1). The SP trial arm was estimated to have an HR of 0.87
(PE= 0.13) as compared to the placebo trial arm.

The 4-parameter PK/PD motivated model, G1(t), gave much smaller AIC and BIC than the PH model (Table 1), indi-
cating that the PH model was not tenable. Both AIC and BIC demonstrated the superiority of G1(t) over G2(t) to G5(t). AIC
and BIC identified models with cubic-B spline functions with 3 and 2 knots, respectively, as the best among all the models
using spline functions (details in Online Appendix S1). Both of them had larger AIC and BIC than the model with G1(t).

Allowing dose-specific C50 in G1(t), that is, using three more parameters, led to larger AIC and BIC than the model
with a common C50. Similarly, allowing dose-specific 𝛿 did not improve the AIC and BIC either. We thus focused on the
4-parameter model. Table 2 shows the coefficient estimates and robust standard errors for the AG model with G1(t). Based
on the estimates, we plotted the estimated time-varying PE in Figure 2. The figure was generated assuming the four doses
were received at 0, 1, 6 and 9 months (from dose 1) according to schedule.

https://github.com/cheungyb/PE-trajectory
https://github.com/cheungyb/PE-trajectory
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T A B L E 1 Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of Andersen-Gill models with time-constant
intervention effect (proportional hazard, PH), 4-parameter PK/PD function [G1(t)], 4-parameter monotonic function [G2(t)], 4-parameter
harmonic oscillator function [G3(t)], step function [G4(t)], and cubic B-spline functions [G5(t)].

Models

PH G1(t), PK/PD
G2(t),
Monotonic

G3(t), Harmonic
oscillator

G4(t), Step
functiona

G5(t), Spline;
3 knotsb

G5(t), Spline;
2 knotsb

AIC 44 613.0 44 381.8 44 433.9 44 389.7 44 421.1 44 510.1 44 512.0

BIC 44 631.1 44 420.9 44 473.0 44 428.8 44 481.3 44 558.3 44 554.1

Note: All models adjusted for age and season.
a HR varied between eight time-intervals (weeks 1, 2, 3, 4, 5–6, 7–8, 9–12 and ≥13).
b Cubic B-spline models with 3 knots (at 5, 15 and 30 days) and 2 knots (at 5 and 20 days). These 3-knot and 2-knot models had the smallest AIC and BIC,
respectively, among all the cubic B-spline models fitted.

T A B L E 2 Estimation results using the AG model with 4-paramter PK/PD function for time-varying protective efficacy.

Parameter Estimate SE 95% CI

ln(C50) −0.991 0.057 (−1.103, −0.878)

ln(𝜅a) 2.175 0.816 (0.577, 3.773)

ln(γ) 1.279 0.140 (1.004, 1.554)

𝛿 0.024 0.017 (−0.010, 0.058)

Age 0.108 0.040 (0.029, 0.186)

Season 1.512 0.044 (1.427, 1.597)

F I G U R E 2 Estimated time-varying protective efficacy of four doses of a malaria prevention drug combination, assuming the timing of
dosing were at 0, 1, 6 and 9 months as scheduled. Solid line: G1(t); dotted reference line at PE= 0.

According to the PK/PD function, tp, PE
(

tp
)
, tp∕2 and PE

(
tp∕2

)
were 8.3 days, 0.93, 34.1 days and 0.465, respectively.

While the product was highly protective in the short-term, the protection did not last long. The step function is robust,
though not parsimonious, as it does not involve assumption of the shape of PE trajectory. We compared the trajectory
features of the short-term effect estimated from the proposed method versus this robust alternative (weekly intervals: 1, 2,
3, 4, 5–6, 7–8, 9–12). The step function indicated the second week post-dosing as tp, where PE

(
tp
)
= 0.91. Furthermore, PE

at the 5–6 weeks (29–42 days) interval was 0.472. All these features agreed well with the model-based estimated trajectory.
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There was some sign of a rebound effect, 𝛿 = 0.024, but it was far from statistically significant (SE 0.017). Graphically
it was represented by the PE curve dropping below zero (Figure 2). The AUC of the 4-dose regime over the 24-month trial
duration was 2.25 (or 2.25/24= 9.4% reduction). This was the sum of areas between PE(t) and zero where PE(t) > 0 minus
the sum of areas between PE(t) and zero where PE(t) < 0.

The time interval between dose 2 and 3 was wide, and the short-term effect apparently waned quickly. To evaluate
the PK/PD-based estimate of long-term/rebound effect, we extracted the data in the time intervals from 3 months after
dose 2 till dose 3 (interval 1) and from 3 months after dose 4 to end of study (interval 2), analysed them using a pro-
portional hazard model, controlling for the same covariates, and compared their PE estimates for these intervals against
those from the PK/PD function. The PE’s (95% CI) for intervals 1 and 2 estimated from this subset of data using propor-
tional hazard model were− 0.069 (−0.280, 0.107) and −0.106 (−0.243, 0.016), respectively. Since the decaying component
of the PE(t) driven by C(t) in the PK/PD function had declined to about 0.1% by 3 months post-dosing, the model-based
estimates for these two time intervals using all data were approximately 1− exp(2×𝛿)= 1− exp(2× 0.024)=−0.049 and
1− exp(4× 0.024)=−0.101, respectively. The direction of change in rebound effect over cumulative doses and their
magnitude in the two intervals of time were quite accurately estimated by the model.

The analysis showed that the protection offered by the product reached peak level quickly but was short-lived.
The reduction in malaria incidence was small not because the product was unprotective, but because the frequency
of administration was too low. To achieve a protection level of PE ≥50% at any point in time while children are at
high risk of malaria, the product should be administered every 4 to 5 weeks. Furthermore, the rebound effect, if any,
was mild, and was clearly out-weighed by the benefit. Avoidance of the product due to concern of rebound effect was
not justified.

4 SIMULATION

4.1 Simulation methods

We considered three sets of simulation scenarios:

a PE trajectory following the 4-parameter PK/PD function, with two set of parameters (C50, 𝜅a, γ, 𝛿) = (0.4, 3, 3, 0.1) or
(0.4, 9, 3, 0.1).

b PE trajectory following the 5-parameter PK/PD function that has no constraint on 𝜅 = 1, with two set of parameters
(𝜅,C50, 𝜅a, γ, 𝛿) = (2, 0.4, 3, 3, 0.1) or (0.5, 0.4, 9, 3, 0.1).

c PE trajectory following piecewise linear spline, with tp = 10 or 14 days:

g(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ln(0.2)
tp

t t ≤ tp,

ln(1.05)−ln(0.2)
55−tp

(
t − tp

)
+ ln(0.2) tp < t ≤ 55,

ln(1.05) t > 55.

For each PE pattern, we simulated two sample sizes, 500 or 700 per trial arm (N = 1000 or 1400 in total, respectively),
and 1 or 2 doses of intervention. The gap between doses independently followed a Uniform (1, 2) months distribution in
the two-dose schedule. The study duration was 5 or 7 months for one- or two-dose scenarios. For scenarios in (a), we addi-
tionally simulated a three-dose schedule, with a study duration of 9 months. Number of events in the placebo group was
approximately 500, 700 and 900 events for N = 1000 and 700, 1000 and 1250 events for N = 1400 for the one, two and three
dose scenarios, respectively. Censoring was generated by having 80% of the persons completing the follow-up time and
the remaining 20% were uniformly censored between 0.8 and 1.0 of the planned follow-up time. We used 500 replicates
per simulation scenario. Assuming the actual coverage of the estimated 95% confidence interval is indeed approximately
95%, 500 replicates offered a margin of error approximately no more than ±2% (i.e., 1.96 ×

√
0.05 × 0.95∕500) in the esti-

mation of coverage probability. We used the thinning approach for generation of the recurrent event times (details in
Online Appendix S2).

We fitted the AG model with the 4-parameter PK/PD function for analysis of the data generated in all the scenarios.
In scenarios under (a), we evaluated the relative bias (%) of the estimators, ratio of mean SE to empirical SD of estimates
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(ASE/ESD), coverage probability (CP) of the 95% confidence interval, and root mean square error (RMSE). For all sce-
narios under (a), (b) and (c), we derived the peak PE level, tp, tp∕2 and AUC up to 3 months after a dose, and present
the average estimates of these four features as compared to their respective true values determined by the true model
parameter values.

4.2 Simulation results

Table 3 shows the simulation results for scenarios that the true PE was generated by the 4-parameter function g1(t). In
all scenarios simulated, the estimates of log(C50) were practically unbiased. The other three parameters usually had less
than 10% bias, and the bias reduced as sample size or number of doses increased. For all parameters, RMSE consistently
reduced as sample size or number of doses increased. In all scenarios, coverage probability for log(C50) and 𝛿 were close
to the target 95% level. In scenarios with N = 1000 and only one dose, ln(𝜅a) and ln(γ) clearly had CP< 95%. However, the
ASE/ESD and CP improved as sample size or number of doses increased.

Table 4 shows the mean of the estimates of the derived parameters about the four features of PE trajectory. For scenar-
ios that were generated by the 4-parameter PK/PD functions, the estimates closely represented the four features regardless

T A B L E 3 Simulation results of parameter estimation in scenarios that used the 4-parameter PK/PD function for data generation.

N = 1000 N = 1400

Patterns Doses Parameters Bias (%) ASE/ESD CP (%) RMSE Bias (%) ASE/ESD CP (%) RMSE

(C50, 𝜅a, γ, 𝛿) = 1 dose ln(C50) 3.7 0.71 94.8 0.228 1.2 1.03 96.8 0.114

(0.4, 3, 3, 0.1) ln(𝜅a) 0.4 0.88 91.0 0.432 0.7 1.06 94.0 0.283

ln(γ) 10.4 0.94 90.4 0.554 7.4 1.09 93.8 0.393

𝛿 10.8 0.74 96.2 0.144 −0.5 1.05 95.2 0.075

2 doses ln(C50) 0.2 0.98 95.0 0.083 1.1 1.02 95.8 0.066

ln(𝜅a) 1.6 0.92 94.4 0.272 −0.3 0.94 93.6 0.220

ln(γ) 3.1 1.02 93.4 0.305 1.6 1.02 93.4 0.252

𝛿 0.0 0.98 94.6 0.040 4.5 1.00 95.4 0.034

3 doses ln(C50) 0.4 0.98 95.2 0.065 0.4 0.98 93.6 0.055

ln(𝜅a) 1.1 1.03 94.0 0.179 0.5 1.05 96.4 0.147

ln(γ) 0.6 1.06 95.2 0.220 0.2 1.11 95.2 0.174

𝛿 −0.3 0.96 94.2 0.025 −0.6 1.05 94.4 0.020

(C50, 𝜅a, γ, 𝛿) =
(0.4, 9, 3, 0.1)

1 dose ln(C50) 1.0 1.00 94.0 0.162 0.4 1.06 94.4 0.124

ln(𝜅a) 7.2 0.57 87.4 0.898 3.9 0.99 90.4 0.505

ln(γ) 6.4 1.03 93.8 0.386 5.1 1.06 94.4 0.303

𝛿 0.6 1.03 95.2 0.086 −2.1 1.01 95.0 0.072

2 doses ln(C50) −0.1 1.03 96.0 0.090 0.9 1.00 96.2 0.077

ln(𝜅a) 2.7 0.84 94.2 0.392 1.9 0.86 93.8 0.317

ln(γ) 2.0 1.05 94.0 0.222 0.6 1.00 95.2 0.191

𝛿 −1.0 1.03 95.0 0.036 3.5 1.00 95.4 0.032

3 doses ln(C50) 0.2 1.04 93.8 0.072 0.3 1.00 95.0 0.062

ln(𝜅a) 2.0 1.17 93.8 0.255 1.2 0.98 96.8 0.206

ln(γ) 1.7 1.09 95.8 0.166 0.5 1.03 95.6 0.143

𝛿 −0.8 1.00 94.6 0.023 −1.1 1.05 94.6 0.020
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T A B L E 4 Simulation results of features of PE trajectory.

Patterns Sample size Doses tp Peak PE tp∕2 AUC

8.1 0.86 32 0.76

(C50, 𝜅a, γ, 𝛿) = (0.4, 9, 3, 0.1) N = 1000 One dose 8.0 0.86 32 0.77

Two doses 8.0 0.86 32 0.76

Three doses 8.0 0.86 32 0.77

N = 1400 One dose 8.0 0.87 32 0.77

Two doses 8.0 0.86 32 0.76

Three doses 8.1 0.86 32 0.77

16.2 0.73 41 0.80

(C50, 𝜅a, γ, 𝛿) = (0.4, 3, 3, 0.1) N = 1000 One dose 16.3 0.74 41 0.80

Two doses 16.2 0.73 41 0.79

Three doses 16.2 0.73 41 0.80

N = 1400 One dose 16.3 0.74 41 0.80

Two doses 16.3 0.73 41 0.80

Three doses 16.2 0.73 41 0.80

10.1 0.89 58 1.66

(𝜅,C50, 𝜅a, γ, 𝛿) = (0.5, 0.4, 9, 3, 0.1) N = 1000 One dose 12.2 0.88 59 1.66

Two doses 11.8 0.88 59 1.65

N = 1400 One dose 12.0 0.89 58 1.65

Two doses 11.9 0.88 59 1.65

11.9 0.55 25 0.21

(𝜅,C50, 𝜅a, γ, 𝛿) = (2, 0.4, 3, 3, 0.1) N = 1000 One dose 8.6 0.54 26 0.26

Two doses 8.4 0.52 24 0.24

N = 1400 One dose 10.3 0.58 25 0.24

Two doses 7.7 0.52 24 0.23

10.0 0.80 40 0.84

Piecewise linear, Pt = 10 N = 1000 One dose 13.1 0.79 38 0.87

Two doses 11.9 0.76 38 0.88

N = 1400 One dose 13.0 0.78 38 0.87

Two doses 12.9 0.76 39 0.88

14.0 0.80 41 0.84

Piecewise linear, Pt = 14 N = 1000 One dose 15.9 0.78 40 0.86

Two doses 15.4 0.76 41 0.87

N = 1400 One dose 15.9 0.78 40 0.86

Two doses 16.0 0.76 41 0.87
Note: Boldfaced are true values of the trajectory features.

of sample size and number of doses. For scenarios not generated by the 4-parameter PK/PD functions, the estimates
closely followed the true peak PE level, tp∕2 and AUC. There was more discrepancy between the tp estimates and the true
tp, with absolute bias not more than 3 days in most scenarios. The largest discrepancy was −3.5 days (8.4 vs 11.9) in one
of the scenarios under (𝜅,C50, 𝜅a, γ, 𝛿) = (2, 0.4, 3, 3, 0.1).

5 DISCUSSION

Information on the trajectory of protective efficacy over time is important in the evaluation and deployment of pre-
ventive interventions against infectious diseases. Experiences from Covid-19 and malaria have highlighted the needs to
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understand the pattern from the initial rise of PE to rebound effects in the long term. As compared to analysis of single
event, the use of the AG model for recurrent events mitigates against the time-varying bias towards the null value due
to unobserved heterogeneity. It also offers more accuracy and precision to the modeling of waning efficacy and rebound
effects as it has a larger number of events in the later part of the study period.

Protective efficacy of medicinal products for prevention of infectious diseases usually wanes over time. Estimation
and presentation of PE as a single value as if PE is constant over time is often insufficient and sometimes misleading.39

The shorter the trial duration, the larger the single PE value may appear to be. Yet, PE summarized as a single percentage
is often compared between medicinal products and between trials, without taking into account differences in duration of
follow-up or in the timing of exposure to infection, for example, malaria vaccines administered uniformly over calendar
year or shortly before the malaria transmission season.40 Estimation of the PE trajectory is more informative. Graphical
presentation of the results can help communicate clearly. In addition, based on the trajectory information, investigators
can derive the AUC as a summary measure. This summary measure is more portable across trials and can facilitate
comparison even if the trials have different follow-up durations, provided that each trial has a follow-up duration sufficient
for the estimation.

We have embedded the PK/PD and other trajectories in the AG model. The AG model assumes that events are indistin-
guishable and ordered, such that a person cannot have two events at the same time. Same as other standard time-to-event
analysis methods, it also assumes non-informative censoring. It is sometimes said that the AG model assumes event
dependence, meaning the number of events a person had in earlier time intervals does not alter the number of events this
person may have in later intervals. However, recent research has shown that this assumption is not required in the esti-
mation of the overall effect of an intervention.12,21 As previously discussed, the AG model is suitable for estimation of the
overall intervention effect, and the overall effect is important from a public health perspective.12,21,22 Hence the choice we
made here. One alternative approach for modeling recurrent events is the frailty model. The choice of models depends on
the specific research aim. If the aim is to evaluate intervention effects by strata defined by event order or to characterize
the correlation between recurrent events, the frailty model is useful.12,41,42 Future research may investigate embedding
the PK/PD trajectory in the frailty model for achieving other specific research aims, for example, see the discussion in the
malaria vaccine context.12

As opposed to splines or harmonic oscillator, PK/PD models are well-known in biomedical research and the
parameters have biomedical interpretation. In the case study of malaria prevention, this model out-performed the
alternative 4-parameter, step and spline functions. It is possible that the cumulative dose history affects the tra-
jectory after dosing. Therefore, we fitted more flexible models that allow dose-specific parameter values. In this
trial, the timing of doses was planned to coincide with immunization visits. The time interval between doses were
therefore quite wide. The effect of the previous dose might have largely dissipated before another dose was given.
This may explain the lack of better fit in the more complex models with dose-specific parameter values in the
present study.

In this study we use the same function g1(t) for different doses of intervention, with or without constraining the
parameter values to be the same across doses. If the context is appropriate, it is possible to modify the approach to
allow different functions for capturing the impact of different components of an intervention package. One such pos-
sible context is that the intervention package includes different products at different time points, such as malaria
chemoprevention and malaria vaccine. The features of different products in the intervention package may require this
approach.

In simulation evaluation, the maximum partial likelihood estimators for ln(C50) and 𝛿 was practically unbiased and
their robust sandwich variance estimators were accurate in most scenarios. The estimators for the other two param-
eters had some bias and the confidence interval tended to have smaller coverage probability than the nominal level,
especially when sample size was 1000 and number of doses was one. Their performance improved as sample size or
number of events increased within realistic range. For examples, the malaria prevention trial we re-analyzed had a
larger number of participants (≅2000), doses (4) and events (≅3000) than our simulation settings. However, for stud-
ies with smaller sample size, for example, phase II trials, the parameter estimates and their confidence intervals may be
inaccurate.

Regardless of sample size, the method provided accurate estimates of three of the four features of PE trajectories, that
is, peak PE, tp∕2 and AUC, even in simulation scenarios (b) and (c) where the PE trajectories in the data generating process
was different from that in the analysis model. Despite the larger discrepancy in the estimation of tp in scenarios (b) and
(c), the absolute difference was not more than 3 days in most scenarios. In the simulation, tp was about 8 to 16 days.
Vaccine trials often define 14 days after completion of primary series as the analysis start time. This implies a biomedical
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expectation that tp is not very far from 14 days. A deviation from true tp by a few days is unlikely a concern in most
infectious disease prevention efforts. In contrast, we expect that accurate estimation of peak PE (guiding the decision to
delay the second dose in the Covid-19 pandemic), tp∕2 (guiding the timing of booster vaccine dose or re-administration
of prophylactic drugs), and AUC (summary measure that is comparable across trials and products) are important. The
proposed method works well in this regard.

A limitation of the proposed method is that the estimation of the model needs enough amount of observation time
that the PE level is close to the long-term/rebound effect 𝛿, either between doses or after the final dose. Otherwise
the parameter estimation can be unstable. In the malaria prevention trial and in the simulation, over 50% and at least
about 30% of the follow-up time, respectively, was close to this level. This issue should be considered during study
planning.

Statistical analysis plans for vaccine trials, especially for per protocol analysis, often define the starting point for eval-
uation of efficacy as 14 or 28 days after completion of the primary vaccination, to give enough time for the body to develop
immunity. For that setting, the monotonic function in Equation (1) is likely more appropriate than the PK/PD function.
For long-term follow-up studies, the rebound-effect parameter, 𝛿, may eventually taper off. Further development of the
function will be needed to capture long-term pattern beyond typical clinical trial duration. On the other hand, studies of
acute adverse reactions to drug or vaccine may not expect long-term rise in adverse reaction incidence. In that case, the
𝛿 term may be omitted, simplifying the function to have three parameters only.

Another limitation is that the computation is time consuming. Estimation of the PH model for the malaria prevention
data in Table 1 took about 1 min on a processor with base frequency 2.2 GHz. In contrast, the proposed model with shared
parameter values for all four doses took about 7 h. Breslow et al. proposed a short-cut to reduce computation time for
maximum partial likelihood estimation.43 This is equivalent to treating a cohort data set as a nested case-control study
data set, keeping all the events and for each event randomly select a small number of time-matched controls. Investigators
may consider this approach if they have very large data sets.

While our research was motivated by and applied to the estimation of PE trajectory for infectious disease prevention
trials using recurrent event data, the PK/PD function is generic and has broad applicability. Some examples include (a)
using the 4-parameter function to model changes in gut microbiota diversity index (a continuous variable) after a course
of antibiotic by non-linear least square method and (b) using the 3-parameter version of the function aforementioned
to conduct surveillance of transient rise in the incidence of acute adverse events after receiving a drug or vaccine by
self-controlled case series method.

In conclusion, the proposed method has potential to improve understanding of the trajectory of protective efficacy of
preventive medical interventions and hence facilitate informed clinical and policy decision making. Further research to
evaluate its performance in the studies of other products or endpoints will be useful.
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