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Abstract 
 

Increasing temperatures and more frequent heatwave events pose threats to population health, 

particularly in urban environments due to the Urban Heat Island (UHI) effect. Greening, in particular 

planting trees, is widely discussed as a means of reducing heat exposure and associated mortality in 

cities. This study aims to use data from Personal Weather Stations (PWS) across the Greater London 

Authority to understand how urban temperatures vary according to tree canopy coverage and 

estimate the heat-health impacts of London’s urban trees. Data from Netatmo PWS from 2015 – 

2022 were cleaned, combined with official Met Office temperatures, and spatially linked to tree 

canopy coverage and built environment data. A Generalized Additive Model was used to predict 

daily average urban temperatures under different tree canopy coverage scenarios for historical and 

projected future summers, and subsequent health impacts estimated. Results show areas of London 

with higher canopy coverage have lower urban temperatures, with average maximum daytime 

temperatures 0.8 °C and minimum temperatures 2.0 °C lower in the top decile versus bottom decile 

canopy coverage during the 2022 heatwaves. We estimate that London’s urban forest helped avoid 

153 heat attributable deaths from 2015-2022 (including 16 excess deaths during the 2022 

heatwaves), representing around 16% of Urban Heat Island-related mortality. Increasing tree 

coverage 10% in-line with the London Strategy would have reduced UHI-related mortality by a 

further 10%, while a maximal tree coverage would have reduced it 55%. By 2061-2080, under 

RCP8.5, we estimate that London’s current tree planting strategy can help avoid an additional 23 

heat-attributable deaths a year, with maximal coverage increasing this to 131. Substantial benefits 

would also be seen for carbon storage and sequestration. Results of this study support increasing 

urban tree coverage as part of a wider public health effort to mitigate high urban temperatures. 

 

Keywords: Urban Heat Island; Personal Weather Stations; Climate Change; Heat Mortality; Tree 

Canopy 
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1. Introduction 
 

Climate change is leading to elevated global average temperatures and increased frequency and 

severity of heatwave events [1]. London is already experiencing extreme heat episodes, for example 

in 2022 when heatwave temperatures exceeded a record 40 °C, an event estimated 160 times more 

likely because of climate change [2]. Heat exposure may be exacerbated by the Urban Heat Island 

(UHI) effect, where urban centers are typically hotter than surrounding rural areas. UHIs are 

primarily caused by human modification of land surfaces, replacing natural vegetation with materials 

like concrete and asphalt that have different thermal and surface radiative properties and which 

absorb and retain heat during the day [3]. In London, the difference between the urban monthly 

mean maximum urban and surrounding rural temperature has been observed around 1.4–2.9 °C 

[4,5], with lower intensities found in more vegetated areas.  

Heat exposure can lead to several negative physical health effects, with older people, the socially 

isolated, very young children, and those with chronic illnesses the most vulnerable [6]. It can lead to 

cardiovascular strain, respiratory distress, dehydration, and heat stroke, and exposure to excess heat 

is associated with all-cause and cardiorespiratory mortality, adverse pregnancy outcomes, and 

mental health problems [1,6,7]. During the 2022 heatwaves,  2,985 all-cause excess deaths were 

observed in England,  387 of which were in London [8]. While rates of heat-attributable deaths are 

greatest during extreme weather, many deaths occur during the more frequent warm and hot days 

[9]. 

Therefore, focus on urban heat mitigation and climate adaptation is growing. Increasing vegetation 

is one way to decrease near-surface air temperatures [3,10] due to changes in surface material 

properties, shading, and evapotranspiration, where plants absorb water and release it as water 

vapour. Trees, in particular, have been widely studied to assess their potential for mitigating heat in 

urban environments [11–15] because their leaves and branches provide shading and they have 

higher transpiration rates than low vegetation. However, the relationship is complex, as increased 

surface roughness from trees can reduce windflow and heat dissipation [14], and recent evidence 

suggests that in many European cities, trees have a small or negligible effect on daytime air 

temperature [15].  Estimating any heat-health benefits provided by trees can be complicated due to 

meteorological data scarcity in urban environments, meaning many studies rely on remotely-sensed 

Land Surface Temperature (LST). A recent study using LST showed that 25% of UHI-attributable 

deaths could have been avoided in 2015 if tree coverage was increased by 30 % in London [16]. 

However, LST can be a poor predictor of urban-canopy air-temperature [15,17,18], and further work 

is required to disentangle how trees are associated with higher or lower heat-related mortality 

locally.  

The recent growth of personal weather stations (PWS) has provided opportunities to use crowd- 

sourced meteorological data in urban climate studies [19–23] that have typically relied on limited 

numbers of official meteorological stations, researcher-measured conditions, or climate models. 

PWS popularity has led to increased density of PWS networks in cities and improved geographical 

coverage of monitored data. While PWS have greater uncertainty than official monitoring stations 

and data may be noisy [24], various methods have been developed to perform quality control on 

data [25]. A recent study used PWS to examine the cooling efficiencies of tree cover in European 

cities, finding that trees have a smaller impact on air than surface temperatures, and may not have a 
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cooling effect in all cities [15]. Studies have used PWS, for example, to examine the impacts of land 

cover on temperatures [5,15,26–28], model air temperatures [29–31], as an input to building physics 

models [32], and to validate and bias-correct urban climate simulations [24,33].  

This paper uses the dense network of PWS across the Greater London Authority (GLA) to evaluate 

differences in air temperature according to tree canopy cover, and uses this association to estimate 

the potential for trees to reduce heat exposure and associated mortality under historical and future 

climate scenarios. To do this, we derive a large dataset of PWS and official station air temperature 

data from October 2015- September 2022, inclusive. We then spatially link PWS temperatures to 

tree canopy cover and building coverage and height data for London and temporally to 

temperatures at Heathrow Airport. From this, a Generalized Additive Model (GAM) is developed and 

used to predict daily average urban temperatures under different tree canopy coverage scenarios 

with health impact calculations used to estimate how changes to tree canopy coverage may change 

heat-related deaths. 

2. Methods 
 

2.1. Temperature data 
 

Near-surface temperate data was obtained from two different sources from 01/10/2015 – 

30/09/2022: official Met Office weather stations and Netatmo PWS stations within a wide bounding 

domain that includes the GLA. This timeframe includes the historically hottest summer of 2018, and 

the three exceptional heatwaves that occurred during the summer of 2022 (15th – 17th June, 17th-19th 

July, and 9th-15th August) when temperatures reached a maximum of 39 °C at London Heathrow. 

Hourly temperatures, station ID, and coordinates for Met Office stations were obtained from 

September 2015- December 2022 from MIDAS Open [34]. This included the station at London 

Heathrow, commonly used for studying the London climate and which offers a comprehensive 

coverage of the period of interest. This was used as a reference station. 

PWS station ID, and coordinates was obtained using the Patatmo Python module that utilizes the 

Netatmo API (https://dev.netatmo.com/). This resulted in 619 stations, of which 502 were within 

GLA administrative boundaries. Hourly air temperatures were then downloaded for PWS stations for 

the study period. Cleaning and analysis of PWS temperatures was carried out using R. First, the 

altitude of each station was spatially joined using a 10m resolution Digital Elevation Model of 

London [35]. Height correction and outliers removal was performed using CrowdQC+ [25], a tool 

developed for quality control of PWS weather data. Hourly measurements were removed if they 

were taken by duplicate stations located at the same coordinates (Step M1); were outliers, as 

determined by their z-score (Step M2); if more than 20% of the measurements in the month were 

removed in the previous steps, indicating the PWS may be unreliable (Step M3); and finally if the 

measurements were not correlated to the median temperature of other measurements (Pearson r < 

0.9) and are assumed to be indoors (Step M4). We then excluded days with more than three hours 

of data absent. This reduced the number of stations within the GLA boundaries to 490, with 520,623 

sensor-days of valid PWS measurements.  

The Met Office and PWS temperatures were combined into a common dataset (Figure 1), except for 

Heathrow which was used as a reference temperature for each date. Stations located in rural areas 

outside the GLA were used as a baseline to estimate UHI intensity. These rural areas were identified 
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via a spatial join to 2011 Office for National Statistics (ONS) rural/urban classifications [36] for 

different census Output Areas (OA). 

 

 

Figure 1. Netatmo stations, by days of measured data, and Met Office stations within the GLA administrative boundaries 
and wider domain. 

2.1.1. Environmental and Population Data 
 

Tree canopy coverage data for the GLA is from the London Data Store [37] (Figure 2a). The dataset 

contains 15,041 hexagons, each 350 m across, derived from high resolution (10 cm per pixel) colour 

infrared imagery collected in September 2016, with pixels as being either a tree canopy or not using 

a machine learning algorithm. Further details on how the tree canopy data was derived can be found 

in [38].  

Urban temperatures also vary according to Local Climate Zones (LCZs), or local surface structure and 

cover. As tree canopy is assumed to be correlated with the natural component of LCZs, we derived 

two continuous variables to describe the height and cover of the built component. For each 

hexagon, a spatial join to the OS MasterMap Building Height Attribute [39] dataset was used to 

calculate the median height of buildings (removing buildings with low measurement confidence) 

(Figure 2b) and the percent area covered by all buildings (Figure 2c). OpenPopGrid [40], a 10m 

gridded population dataset, was used to calculate the population within each hexagon (Figure 2d). 

To account for broader spatial impacts, buffers around the hexagons at 200, 500, and 1000m were 

drawn and the area-weighted average building coverage (BC) and building height (BH) re-calculated 

within these buffers. 

Hexagon canopy coverage was then adjusted for different scenarios: 

a) Current Scenario: A base case with existing tree canopy coverage. 

b) Grey Scenario: Tree canopy cover is reduced to near zero, representing a scenario where 

trees are reduced to the lowest possible amounts seen per BC. In this scenario, the tree 

coverage was set to 0.05th percentile for each hexagon. 

c) London Strategy: Tree canopy coverage each hexagon is increased 10%, as per the London 

Environment Strategy goals for 2050 [41]. 
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d) Average Strategy: Hexagons below the population-weighted average canopy coverage are 

increased to the average. 

e) Green Scenario: Tree canopy cover is increased to an amount that represents a maximum 

amount, constrained by existing BC. Quantile regression was used to identify the maximum 

(99.5th percentile) tree coverage according to the BC within each hexagon. In cases where 

tree coverage exceeded the 99.5th percentile, the current coverage was maintained. 

Finally, to estimate the carbon benefits of these scenarios, the estimated 2.4 million tonnes of 

carbon stored and 77,200 tonnes of carbon sequestered annually by London’s trees [42] were 

recalculated given the proportional changes in tree coverage. 

 

Figure 2. For each hexagon, a) percent tree canopy coverage b) median building height, and c) percent coverage of 
buildings, and d) population density 

 

2.2. Analysis and Modelling 
 

Analyses were performed to produce descriptive statistics on UHI intensity and examine how air 

temperatures vary by the amount of tree canopy coverage. 
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Hourly temperature data was used to calculate UHI intensity for each day, defined as the maximum 

hourly difference between stations within the GLA boundaries (90th percentile) and the average of 

stations in the larger domain that are classified as rural. For the three heatwaves during the 2022 

summer, the UHI intensity, hourly timeseries, and differences in 24-hour, daytime, and nighttime 

mean, maximum, and minimum temperatures in areas with differing amounts of tree coverage were 

calculated. Daily (d) 24-hour mean (𝑇𝑚𝑒𝑎𝑛,𝑑) was calculated for all stations and joined by date to the 

corresponding value at the Heathrow reference station (𝑇𝑚𝑒𝑎𝑛,𝑑,ℎ𝑒𝑎𝑡ℎ𝑟𝑜𝑤). 

GAMs were then fit to the aggregated daily data using the mgcv package in R. GAMs were used 

because they allow the response variable to depend on smooth functions of the predictor variables; 

this can present an advantage over linear regression models which contain the assumption that 

response is linear in the predictor variables. Another advantage is the assumption that effects of 

each variable are separate, enabling extrapolation to the counterfactual scenarios. The effects of the 

predictor variables were assumed to be independent to enable counterfactual reasoning about the 

effect of changing tree cover while keeping other aspects of the built environment the same. 

Smoothing parameters were estimated using restricted maximum likelihood (REML), with degrees of 

freedom limited to 9 a priori to improve transferability for the counterfactual scenario and 

interpolation between data points. The response variable was 𝑇𝑚𝑒𝑎𝑛,𝑑 and the predictor variables 

were 𝑇𝑚𝑒𝑎𝑛,𝑑,ℎ𝑒𝑎𝑡ℎ𝑟𝑜𝑤 ; tree canopy cover, BC, and BH in the hexagon which the station is located; 

and the BC and BH within 200m, 500m, or 1000m buffers.  

Models were fit for the different buffer sizes, using 5-fold cross-validation (stratified by station) to 

identify the buffer best able to predict temperatures at an unseen station. Model residuals were 

inspected, testing for spatial autocorrelation using a variogram and calculation of Morans I (for the 

whole dataset, summers, and each day), and examined for temporal autocorrelation using the 

Durban-Watson test. 

2.3. Heat and Health Impact Modelling 
 

The GAM model was then used to estimate temperature exposures from 2015-2022 under different 

tree coverage scenarios and the corresponding health impacts calculated. Rural temperatures from 

2015-2022 were used as a baseline. For the same time period, the GAMS model was used to predict 

the daily mean temperature (𝑇𝑚𝑒𝑎𝑛,𝑑,𝑘) for each hexagon (k) under different canopy coverage 

scenarios. For each day, the population-weighted mean daily temperature for the GLA was 

calculated (Equation 1): 

𝑇𝑚𝑒𝑎𝑛,𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑ (𝑇𝑚𝑒𝑎𝑛,𝑑,𝑘) × 𝑃𝑘
𝑛
𝑖=1

∑ 𝑃𝑘
𝑛
𝑖=1

 
[1] 

 

where 𝑃𝑘 is the population within a hexagon. 

Health impact calculations were then carried out to estimate daily heat-related mortality. We use 

the heat-mortality relationship for London from Arbuthnott et al [43] (Table 1), which derived a 

Relative Risk (RR) of mortality for different age groups (i) using lag 0, 1 𝑇𝑚𝑒𝑎𝑛,𝑑  (herein referred to 

as 𝑇𝑚𝑒𝑎𝑛,𝑑,𝑙𝑎𝑔) for London. When 𝑇𝑚𝑒𝑎𝑛,𝑑,𝑙𝑎𝑔  exceeds a temperature threshold (𝑇ℎ , or 18.9 °C in 

London) the Relative Risk (RR) of heat related mortality increases per degree C: 

𝑅𝑅𝑖,𝑑 = 𝑒𝑐𝑎(𝑇𝑚𝑒𝑎𝑛,𝑑,𝑙𝑎𝑔−𝑇ℎ) when  𝑇𝑚𝑒𝑎𝑛,𝑑,𝑙𝑎𝑔 > 𝑇ℎ [2] 
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𝑅𝑅𝑖,𝑑 = 0 when 𝑇𝑚𝑒𝑎𝑛,𝑑,𝑙𝑎𝑔 ≤ 𝑇ℎ  

 

Where c(a) is the natural log of the RR at 1 °C above the threshold. The Attributable Fraction (AF) of 
heat-related mortality is calculated as: 

𝐴𝐹𝑖,𝑑 =
𝑅𝑅𝑖,𝑑 − 1

𝑅𝑅𝑖,𝑑
 

[3] 

 

This was used alongside the number of deaths per each day of the year for different age groups 
(𝑞𝑖,𝑑) in London (2015 – 2022) [44,45] to calculate heat-related mortality and summed across all days 

and ages to estimate Attributable Mortality (AM):  

𝐴𝑀 =∑∑𝑞𝑖,𝑑 × 𝐴𝐹𝑖,𝑑
𝑖𝑑

 [4] 

Heat attributable mortality under different scenarios was also examined using projected (1980-2010, 

2041-2060, 2061-2080) climates for London for RCP8.5 from UKCP18 [46]. This data includes 12 

ensemble members of average temperatures for each day of the year for these time periods. The 

GAM model was used to estimate 𝑇𝑚𝑒𝑎𝑛,𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for projected climates, and AM estimated using the 

number of deaths per day of year and age group averaged over 2015-2022. 

Table 1. Heat-mortality relationship for London, from Arbuthnott et al [43]. 

Age Group Threshold, 

𝑇ℎ 

RR of Mortality 
 (95% CI), total 

0-64 

19.6 °C 

1.022 

65-74 1.024 

75- 1.049 

 

3. Results 
 

3.1. Tree Coverage 
 

The tree canopy coverage varied significantly, with a population-weighted average of 17.5% (range 

of 0 - 99.9%), and a total of 336km2 of tree canopy with the GLA. The results of the quantile 

regression showed a correlation between the 99.5th percentile tree canopy and BC (Figure 3) (1.5% 

reduction in tree canopy per 1% increase in building area, p=0.00). PWS stations were relatively 

representative of the distribution of populated hexagons, although the maximum tree coverage was 

64%. Population-weighted tree canopy coverage increased to 58% under the greening scenario 

(1,242 km2) and 21% (395km2) under the average scenario. Met stations were in areas with lower 

canopy coverage. 
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Figure 3. The variation of tree canopy coverage and building density for hexagons (green), PWS stations (blue), and Met 
Office stations (orange) with quantile regression for the hexagons.  

3.2. Temperatures 
 

Over the 2015-2022 period, the average UHI intensity was 3.3 °C, greatest during spring (mean of 3.8 

°C, max of 7.6 °C) and lowest during winter (mean of 2.9 °C, max of 7.1 °C). An hourly timeseries of 

temperatures during the 2022 heatwaves (Figure 4) shows the average of all PWS within the GLA, 

the average of those within the top decile (40.2-99.9% tree canopy coverage), those in the bottom 

decile (0-5.4% canopy coverage), and in the rural areas surrounding the GLA administrative 

boundaries. During these heatwaves, areas in the top decile tree canopy coverage were, on average, 

1.2 °C cooler that those in the lowest decile tree canopy coverage. Differences were most apparent 

at night, when nighttime minimum temperatures were around 2.0 °C lower in the areas with the 

most tree canopy, while maximum daytime temperatures were on average 0.8 °C lower. The 

maximum UHI intensities tended to be in the very early morning hours and averaged 4.3 °C across all 

heatwave days.  
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Figure 4. London PWS temperatures during the summer 2022 heatwaves (1st decile tree coverage, 10th decile tree coverage, 
PWS station average within the GLA, and PWS station average for surrounding rural areas). a) 15th – 17th June, b) 17th-19th 
July, and c) 9th-15th August. Vertical lines show the time and extent of the maximum UHI intensity on each 24 hours period 
(12pm-12pm).  

Differences in daily mean, minimum, and maximum temperatures for stations with different levels of 

tree canopy coverage can be seen over the long-term data (Figure 5 and Figure 6). These figures 

show mean, minimum, and maximum anomalies (or differences between the stations and the 

average of all stations) as temperatures increase. Temperatures are, on average, 0.8 °C higher in 

deciles with the least tree coverage compared to the most, or around -0.019 °C (-0.0192- - 0.0187) 

per % increase in tree canopy. The temperature differences between the areas with the greatest and 

least amount of tree canopy coverage was greatest at lower temperatures (average minimum 

difference 1.1 °C), and the least at higher temperatures (average maximum differences 0.6 °C).  
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Figure 5. Daily average PWS temperature anomaly (or difference between the average PWS temperature of stations in tree 
coverage decile, and the average of all PWS stations) by daily average PWS temperature. The bottom (1), median (5) and 
top (10) decile of tree canopy coverage are shown. 

 

Figure 6. a) Daily minimum PWS temperature anomaly (or difference between the average minimum PWS temperature of 
stations in tree coverage decile, and the average minimum of all PWS stations) and average daily minimum PWS 
temperature, and b) Daily maximum PWS temperature anomaly (or difference between the average maximum PWS 
temperature of stations in tree coverage decile, and the average maximum of all PWS stations) and average daily maximum 
PWS temperature. The bottom (1), median (5) and top (10) decile of tree canopy coverage are shown. 

 

3.3. Heat Exposure and Health Impact Models 
 

As expected, data was noisy and with unexplained variance in the model. The GAM with the 1000m 

buffer showed the best performance as judged by chi-squared tests between models (Table S1 in the 

Appendix). Negligible amounts of spatial autocorrelation were present in the residuals of this model 
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(an average Morans I of 0.00041 during summers) compared to the total variation. A cyclical 

temporal correlation was apparent with peaks during summer; closer examination alongside 

additional Met Office data indicates that these may be due to exposure to solar radiation. As a 

result, both spatial and temporal autocorrelation were decided to be unimportant, but we 

acknowledge that errors may be underestimated because daily samples may not be independent. 

The final model was able to predict daily temperatures with an R2 of 98.3% and a Root Mean Square 

Error (RMSE) of 0.808 for stations and 0.761 for observations on held-out data. Partial dependence 

plots can be seen in the appendix. 

Health impact calculation results can be seen in Figure 7 and 8. Between 2015-2022, we estimate 

that the current tree coverage avoided 153 heat attributable deaths.  This represents a 16% 

reduction of the UHI-related mortality that would have occurred under the ‘grey scenario’. Relative 

to the current tree canopy coverage, increasing tree coverage to average levels from 2017-2022 

would have further reduced UHI mortality by 8%, the London strategy by 10%, and the green 

scenario by 55%. During the heatwave events of 2022, we estimate that the current tree coverage 

helped avoid around 16 heat attributable deaths (14% of UHI-associated deaths). This would 

increase to 23 (21%), 25 (22%), and 67 (61%) under the average, London strategy, and green 

scenarios, respectively.  

Heat mortality is projected to increase around 8-fold by 2061-2080 relative to 1981-2000 as a result 

of the rising temperatures and the more frequent exceedance of 𝑇ℎ  under RCP8.5 (Figure 8). By 

2061-2080, we estimate that the current tree coverage would help avoid around 42 heat-

attributable deaths a year. Increased coverage from the London strategy would help avoid an 

additional 23 deaths a year relative to current levels, and the green scenario 131 deaths a year. The 

changes also lead to substantial benefits for carbon storage and sequestration, with an additional 

1.1 million tonnes of carbon stored and 36,500 tonnes sequestered annually under the London 

strategy, rising to 5.6 million tonnes stored and 181,000 tonnes sequestered annually under the 

green scenario.  
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Figure 7. Estimated average yearly heat-associated mortality under the different tree canopy coverage scenarios. The 
number of days above 𝑇ℎ is shown for each year and scenario. Estimates at rural temperatures are excluded for 2015 and 
2016 due to low numbers of rural weather stations. Error bars show 95% confidence interval. The estimated storage and 
sequestration (per annum) for the scenarios is shown in the legend. NB. Estimates after 2020 use daily mortality data that 
includes covid-related mortality. 
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Figure 8. Estimated yearly heat-associated mortality for the different scenarios under projected climates. Distributions 
represent the range in annual mortality estimates across years and ensemble members. Points indicate the median 
estimated annual mortality for each ensemble member. The median number of days above 𝑇ℎ is shown for each epoch and 
scenario. 

4. Discussion 
 

This paper has used the growing number and density of PWS stations around the GLA to evaluate 

temperature differences by tree canopy coverage and between urban and surrounding rural areas 

over a period of seven years. Differences in urban temperatures were observed by tree canopy 

coverage. During the three heatwaves in 2022, areas with the top 10% of tree canopy coverage were 

1.2 °C cooler, on average, then those in the bottom 10% tree canopy coverage. Differences were 

greatest at night, with temperatures around 2.0 °C lower in the areas with the most tree canopy, 

versus 0.8 °C lower during the day. This is likely due to the UHI effect, which is more prominent at 

night, and support prior studies showing the nocturnal cooling effects on greenspace in London [10]. 

When analysed over the entire timeseries, temperature differences are greatest during cooler 

weather. 

From this data, a GAM model was developed to estimate the influence of tree canopy on 

temperatures. The model was able to achieve an RMSE of 0.761 and an R2 of 98.3% for observations. 

The highly variable nature of the temperature data meant that there is a high degree of model 

uncertainty. We have focused here on model simplicity, but further work can help to develop the 

predictive power further. By including BC and BH as a covariate, we aim to account for the urban 
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heat island effect. Both are unchanged for the scenario predictions, meaning we are comparing 

hypothetical areas with the same buildings but different tree coverage.  

Applying the model to timeseries weather data from different climate scenarios enables changes in 

heat exposure and subsequent mortality to be predicted. This novel approach enables estimation of 

near-surface air temperature exposure under different scenarios, building upon past work that has 

used LST or greenery as an effect modifier. The scale of future mortality under current levels of tree 

canopy coverage are similar to estimates from other studies [47,48]. Our estimated impact of trees 

on reducing mortality lies in between other studies. Iungman et al. [16], estimated a decrease in 

UHI-attributable mortality of 24.3% in London if tree coverage was increased from 15.5%, to 30%, 

whereas we estimate that increasing canopy coverage from 21 to 31% (London Strategy) would 

reduce UHI-attributable mortality by 10%, comparatively smaller. Our results are higher than those 

of Choi et al. [49], whose analysis of heat-mortality and greenspace levels in 425 cities located in 24 

countries, estimating that a 20% increase in greenspace could result in a 9% decrease in heat-

mortality annually in these cities. Results support epidemiological evidence that trees in London can 

significantly reduce heat mortality [50]. 

The effectiveness of the tree canopy at reducing heat exposure and mortality is estimated to slightly 

decrease as temperatures increase. This is due to the threshold effect of the model, where warm 

days can be reduced below the heat mortality threshold through adaptations. As temperatures 

increase, the numbers of days that can be reduced below this threshold decreases, and heat-related 

mortality rises. This effect could be partially compensated for if populations adapt to heat effects in 

future and therefore mortality thresholds rise. However, evidence on population adaptation to heat 

effects is sparse, and time frames for adaptation are uncertain [51]. 

 

4.1. Limitations and uncertainties 
 

A strength of this study is the large amounts of temperature data with dense coverage. A tradeoff, 

however, is in the accuracy of the stations compared to official meteorological stations. To minimize 

errors, we use data cleaning methods to remove outliers, stations with unreliable data, and indoor 

stations, while all PWS stations are from the same manufacturer and are assumed to have similar 

instrumental errors. Five official stations are used to supplement coverage, meaning a relatively 

small number of different instruments are included in the modelling dataset, but the data from 

these will be more with accurate than those from PWS. Our reference for UHI intensity are stations 

outside the GLA located in rural areas, and acknowledge that the trends and amplitude of the UHI 

we report are sensitive to these reference temperatures [52]. 

By using quantile regression to identify the maximum amount of local tree coverage according to 

building density, we aimed to estimate a maximal amount of tree canopy that can be added, while 

the London Strategy and average scenarios present more achievable targets; these scenarios are an 

advance over prior studies that offered a percent increase in tree coverage unsupported by evidence 

or policy. Temperatures will also depend on LCZs, but due to the correlation of the natural 

component with tree coverage we opted to derive from a buildings dataset to reflect the built 

component. However, tree canopy coverage and buildings are just one factor which contributes to 

urban temperature differences and may be confounded by other parameters which we have not 

included here. The GAM model does not include prevailing wind conditions, nor any advective 

cooling from the river Thames or the sea. The use of hexagons with a relatively small area helps to 

Page 14 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



separate large areas of tree canopy (such as parks) from areas with residential populations. The 

modelled temperature changes are associative and cross-sectional and do not demonstrate 

causality, although this is equally a problem with all other studies of this type, e.g. [16].  

The tree canopy data offers high resolution coverage derived using machine learning processed 

aerial imagery. The report on the generation of the dataset acknowledges various limitations. These 

include the data coming from single time point (September 2016) and a time of the year when leaf 

structure may be breaking down. The model occasionally misclassifies trees as bushes and can miss 

sections of canopy altogether. However, the model has an accuracy rate of 94% and produces 

estimates that are at minimum comparable to estimates from traditional survey methods when 

aggregated across larger areas. Estimates of the stored carbon within London’s trees is based on 

figures from a 2015 report [42], and may in fact underestimate the amount of carbon stored [53]. 

The heat-mortality estimates use a relationship between outdoor air temperature and mortality 

derived for 1996 – 2013. This model does not include relative humidity or air pollution as 

confounders, although previous research has not found these to be significant factors for heat 

mortality in the UK [9,43]. This heat-mortality relationship uses daily mean temperature, however, 

there is evidence that nighttime temperatures are particularly important for health outcomes [54]. 

Given that the greatest effect of tree coverage was seen at night, this could mean that the health 

benefits of the tree canopy are underestimated. We have not looked at cold. For the future 

projections, we do not model population social or technological adaptation to heat, such as 

heatwave plans or use of air conditioning, nor do we model population demographic changes such 

as population aging. The baseline mortality rate for 2020-2022 will include the effects of Covid-19. 

The heat-mortality-relationship used is based on epidemiological analysis of mortality data which 

partially pre-dates the development of many of the UK heatwave public health measures. Our 

predicted mortality for the heat periods of the summer of 2022 is both higher than other real-time 

models and the observed excess mortality [8], likely due to different sources of temperature data, as 

well as different underlying methods in calculating heat-attributable mortality. During these 

heatwaves, the UK Met Office issued Heat-Health Alert (HHA) and Red Extreme Heat (EH) weather 

warnings to the public for the first time. It is possible that the warnings and advice from the Met 

Office and Public Health agencies had a role in reducing the actual mortality below what was 

expected. The estimated mortality in this study should therefore be interpreted as a theoretical 

quantification of the role of trees rather than an absolute estimate of heat-related mortality during 

this period.  

 

4.2. Implications 
 

The methods used here can be applied to other locations and with different land covers wherever 

PWS data are available. While the results of this study can provide an indicative value for similar 

cities, caution should be applied when generalizing as city-specific characteristics like climate, the 

amount of potential greening, and the built environment will influence estimates and a recent PWS 

study shows that increased tree cover in many European cities does not lead to reduced air 

temperatures [15]. The types of trees, such as their leaf area index, and the albedo of the built 

environment are also important considerations [55]. 

In addition to benefits for reducing heat exposure, trees offer a number of benefits, including 

biodiversity, stormwater management, air pollution removal, and carbon storage and sequestration 
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[42]. Green spaces have been shown to have a positive influence on physical activity, stress, social 

contacts, and restoration [56], and increased urban street tree density is associated with reduced 

mental health issues [57]. In the UK, all-cause mortality was found to be 6% lower in the quintile 

with the most greenspace compared to the quintile with the lowest [58].  

Trees also have some disadvantages. Under certain circumstances, trees can risk negatively 

impacting air quality by preventing dispersion of polluted air in narrow streets for certain wind 

directions [59,60], while the pollen produced by certain tree species can exacerbate allergies [61]. 

Our results show areas with more trees are colder at lower temperatures,  with possible increased in 

space heating energy demand [62] if the necessary energy efficient retrofits are not carried out. 

Types of trees are likely to be important, with deciduous trees offering beneficial shading during the 

summer. Future research could compare the estimated costs associated with additional tree 

coverage with the potential savings provided by reduced health care cost and examine the impacts 

on indoor temperatures and heating or cooling demand.  

5. Conclusions 
 

This study examined the differences in air temperatures in London according to tree canopy 

coverage, focusing in particular on heat. PWS data from 2015-2022 shows that areas with higher 

tree canopy coverage were associated with reduced levels of heat compared to those with low tree 

canopy coverage. During the heatwaves of 2022, this corresponded to a lower average difference in 

maximum daytime temperatures (0.8 °C) and minimum temperatures (2.0 °C). Modelled impacts of 

different climate and tree canopy coverage scenarios estimates that the existing urban tree canopy 

coverage in London may have reduced excess heat-related mortality by around 16% during 2015-

2022. Increasing the tree canopy to the maximum level, given building density, is estimated to lead 

to a reduction of 55%. The cooling benefits from trees become even greater under hotter future 

climates. The results of this study support increasing tree canopy coverage to help mitigate high 

urban temperatures in the future, with urban greening part of a set of broader public health actions 

that can help reduce heat-related mortality in the future. 

6. Acknowledgments 
 

This research was funded, in part, by the Wellcome Trust through the HEROIC project 

(216035/Z/19/Z) that finances O.B and C.S. C.H was supported by a NERC fellowship 

(NE/R01440X/1). J.T has received funding from the European Union – NextGenerationEU instrument 

and is funded by the Academy of Finland under grant number 353327. For the purpose of open 

access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript 

version arising from this submission.  

 

7. References 
 

[1] N. Nazarian, E.S. Krayenhoff, B. Bechtel, D.M. Hondula, R. Paolini, J. Vanos, T. Cheung, W.T.L. 
Chow, R. de Dear, O. Jay, J.K.W. Lee, A. Martilli, A. Middel, L.K. Norford, M. Sadeghi, S. 

Page 16 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Schiavon, M. Santamouris, Integrated Assessment of Urban Overheating Impacts on Human 
Life, Earth’s Future 10 (2022) e2022EF002682. https://doi.org/10.1029/2022EF002682. 

[2] N. Christidis, P.A. Stott, M. McCarthy, An attribution study of the UK mean temperature in year 
2022, UK Met Office, London, 2023. 
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/climat
e-science/attribution/uk-2022-attribution.pdf. 

[3] T.R. Oke, G. Mills, A. Christen, J.A. Voogt, Urban Climates, Cambridge University Press, 
Cambridge, UK., 2017. 

[4] R. Bassett, V. Janes-Bassett, J. Phillipson, P.J. Young, G.S. Blair, Climate driven trends in 
London’s urban heat island intensity reconstructed over 70 years using a generalized 
additive model, Urban Climate 40 (2021) 100990. 
https://doi.org/10.1016/j.uclim.2021.100990. 

[5] O. Brousse, C. Simpson, N. Walker, D. Fenner, F. Meier, J. Taylor, C. Heaviside, Evidence of 
horizontal urban heat advection in London using six years of data from a citizen weather 
station network, Environ. Res. Lett. 17 (2022) 044041. https://doi.org/10.1088/1748-
9326/ac5c0f. 

[6] K.L. Ebi, A. Capon, P. Berry, C. Broderick, R. de Dear, G. Havenith, Y. Honda, R.S. Kovats, W. Ma, 
A. Malik, N.B. Morris, L. Nybo, S.I. Seneviratne, J. Vanos, O. Jay, Hot weather and heat 
extremes: health risks, The Lancet 398 (2021) 698–708. https://doi.org/10.1016/S0140-
6736(21)01208-3. 

[7] R. Thompson, R. Hornigold, L. Page, T. Waite, Associations between high ambient 
temperatures and heat waves with mental health outcomes: a systematic review, Public 
Health 161 (2018) 171–191. https://doi.org/10.1016/J.PUHE.2018.06.008. 

[8] UK Health Security Agency, Heat mortality monitoring report: 2022, UK Health Security Agency, 
London, 2023. https://www.gov.uk/government/publications/heat-mortality-monitoring-
reports/heat-mortality-monitoring-report-2022 (accessed July 27, 2023). 

[9] S. Hajat, B. Armstrong, M. Baccini, A. Biggeri, L. Bisanti, A. Russo, A. Paldy, B. Menne, T. 
Kosatsky, Impact of High Temperatures on Mortality: Is There an Added Heat Wave Effect?, 
Source: Epidemiology 17 (2006) 632–638. 
https://doi.org/10.1097/01.ede.0000239688.70829.63. 

[10] M. Vaz Monteiro, K.J. Doick, P. Handley, A. Peace, The impact of greenspace size on the extent 
of local nocturnal air temperature cooling in London, Urban Forestry & Urban Greening 16 
(2016) 160–169. https://doi.org/10.1016/j.ufug.2016.02.008. 

[11] J. Schwaab, R. Meier, G. Mussetti, S. Seneviratne, C. Bürgi, E.L. Davin, The role of urban trees in 
reducing land surface temperatures in European cities, Nat Commun 12 (2021) 6763. 
https://doi.org/10.1038/s41467-021-26768-w. 

[12] D.E. Bowler, L. Buyung-Ali, T.M. Knight, A.S. Pullin, Urban greening to cool towns and cities: A 
systematic review of the empirical evidence, Landscape and Urban Planning 97 (2010) 147–
155. https://doi.org/10.1016/j.landurbplan.2010.05.006. 

[13] O. Jay, A. Capon, P. Berry, C. Broderick, R. de Dear, G. Havenith, Y. Honda, R.S. Kovats, W. Ma, 
A. Malik, N.B. Morris, L. Nybo, S.I. Seneviratne, J. Vanos, K.L. Ebi, Reducing the health effects 

Page 17 of 22 AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



of hot weather and heat extremes: from personal cooling strategies to green cities, The 
Lancet 398 (2021) 709–724. https://doi.org/10.1016/S0140-6736(21)01209-5. 

[14] N. Meili, G. Manoli, P. Burlando, J. Carmeliet, W.T.L. Chow, A.M. Coutts, M. Roth, E. Velasco, 
E.R. Vivoni, S. Fatichi, Tree effects on urban microclimate: Diurnal, seasonal, and climatic 
temperature differences explained by separating radiation, evapotranspiration, and 
roughness effects, Urban Forestry & Urban Greening 58 (2021) 126970. 
https://doi.org/10.1016/j.ufug.2020.126970. 

[15] M. Du, N. Li, T. Hu, Q. Yang, T. Chakraborty, Z. Venter, R. Yao, Daytime cooling efficiencies of 
urban trees derived from surface temperature are much higher than those for air 
temperature, Environ. Res. Lett. (2024). https://doi.org/10.1088/1748-9326/ad30a3. 

[16] T. Iungman, M. Cirach, F. Marando, E.P. Barboza, S. Khomenko, P. Masselot, M. Quijal-
Zamorano, N. Mueller, A. Gasparrini, J. Urquiza, M. Heris, M. Thondoo, M. Nieuwenhuijsen, 
Cooling cities through urban green infrastructure: a health impact assessment of European 
cities, The Lancet 401 (2023) 577–589. https://doi.org/10.1016/S0140-6736(22)02585-5. 

[17] Z.S. Venter, T. Chakraborty, X. Lee, Crowdsourced air temperatures contrast satellite measures 
of the urban heat island and its mechanisms, Science Advances 7 (2021) eabb9569. 
https://doi.org/10.1126/sciadv.abb9569. 

[18] T. Chakraborty, Z.S. Venter, Y. Qian, X. Lee, Lower Urban Humidity Moderates Outdoor Heat 
Stress, AGU Advances 3 (2022) e2022AV000729. https://doi.org/10.1029/2022AV000729. 

[19] G.J. Steeneveld, S. Koopmans, B. Heusinkveld, L. vanHove, A. Holtslag, Quantifying urban heat 
island effects and human comfort for cities of variable size and urban morphology in the 
Netherlands, Journal of Geophysical Research: Atmospheres 116 (2011). 
https://doi.org/10.1029/2011JD015988. 

[20] D. Wolters, T. Brandsma, Estimating the Urban Heat Island in Residential Areas in the 
Netherlands Using Observations by Weather Amateurs, Journal of Applied Meteorology and 
Climatology 51 (2012) 711–721. https://doi.org/10.1175/JAMC-D-11-0135.1. 

[21] F. Meier, D. Fenner, T. Grassmann, M. Otto, D. Scherer, Crowdsourcing air temperature from 
citizen weather stations for urban climate research, Urban Climate 19 (2017) 170–191. 
https://doi.org/10.1016/j.uclim.2017.01.006. 

[22] C. l. Muller, L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, R.R. Leigh, 
Crowdsourcing for climate and atmospheric sciences: current status and future potential, 
International Journal of Climatology 35 (2015) 3185–3203. https://doi.org/10.1002/joc.4210. 

[23] L.W. de Vos, A.M. Droste, M.J. Zander, A. Overeem, H. Leijnse, B.G. Heusinkveld, G.J. 
Steeneveld, R. Uijlenhoet, Opportunistic Sensing Networks: A Study in Amsterdam, Bulletin 
of the American Meteorological Society 101 (2020) 313–318. 
https://doi.org/10.1175/BAMS-D-19-0091.A. 

[24] O. Brousse, C. Simpson, O. Kenway, A. Martilli, E.S. Krayenhoff, A. Zonato, C. Heaviside, 
Spatially Explicit Correction of Simulated Urban Air Temperatures Using Crowdsourced Data, 
Journal of Applied Meteorology and Climatology 62 (2023) 1539–1572. 
https://doi.org/10.1175/JAMC-D-22-0142.1. 

Page 18 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



[25] D. Fenner, B. Bechtel, M. Demuzere, J. Kittner, F. Meier, CrowdQC+—A Quality-Control for 
Crowdsourced Air-Temperature Observations Enabling World-Wide Urban Climate 
Applications, Frontiers in Environmental Science 9 (2021). 
https://doi.org/10.3389/fenvs.2021.720747. 

[26] D. Fenner, F. Meier, B. Bechtel, M. Otto, D. Scherer, Intra and inter ‘local climate zone’ 
variability of air temperature as observed by crowdsourced citizen weather stations in 
Berlin, Germany, Meteorologische Zeitschrift (2017) 525–547. 
https://doi.org/10.1127/metz/2017/0861. 

[27] J. Potgieter, N. Nazarian, M.J. Lipson, M.A. Hart, G. Ulpiani, W. Morrison, K. Benjamin, 
Combining High-Resolution Land Use Data With Crowdsourced Air Temperature to 
Investigate Intra-Urban Microclimate, Frontiers in Environmental Science 9 (2021). 
https://doi.org/10.3389/fenvs.2021.720323. 

[28] M. Varentsov, D. Fenner, F. Meier, T. Samsonov, M. Demuzere, Quantifying Local and 
Mesoscale Drivers of the Urban Heat Island of Moscow with Reference and Crowdsourced 
Observations, Frontiers in Environmental Science 9 (2021). 
https://doi.org/10.3389/fenvs.2021.716968. 

[29] Z.S. Venter, O. Brousse, I. Esau, F. Meier, Hyperlocal mapping of urban air temperature using 
remote sensing and crowdsourced weather data, Remote Sensing of Environment 242 
(2020) 111791. https://doi.org/10.1016/j.rse.2020.111791. 

[30] S. Vulova, F. Meier, D. Fenner, H. Nouri, B. Kleinschmit, Summer Nights in Berlin, Germany: 
Modeling Air Temperature Spatially With Remote Sensing, Crowdsourced Weather Data, and 
Machine Learning, IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing 13 (2020) 5074–5087. https://doi.org/10.1109/JSTARS.2020.3019696. 

[31] M. Zumwald, B. Knüsel, D.N. Bresch, R. Knutti, Mapping urban temperature using crowd-
sensing data and machine learning, Urban Climate 35 (2021) 100739. 
https://doi.org/10.1016/j.uclim.2020.100739. 

[32] K. Benjamin, Z. Luo, X. Wang, Crowdsourcing Urban Air Temperature Data for Estimating Urban 
Heat Island and Building Heating/Cooling Load in London, Energies 14 (2021) 5208. 
https://doi.org/10.3390/en14165208. 

[33] K. Hammerberg, O. Brousse, A. Martilli, A. Mahdavi, Implications of employing detailed urban 
canopy parameters for mesoscale climate modelling: a comparison between WUDAPT and 
GIS databases over Vienna, Austria, International Journal of Climatology 38 (2018) e1241–
e1257. https://doi.org/10.1002/joc.5447. 

[34] Met Office, Met Office MIDAS Open: UK Land Surface Stations Data (1853-current), Centre for 
Environmental Data Analysis (2019). 
http://catalogue.ceda.ac.uk/uuid/dbd451271eb04662beade68da43546e1. 

[35] Environment Agency, LIDAR Composite DTM 2019 - 10m, (2020). 
https://www.data.gov.uk/dataset/8311f42d-bddd-4cd4-98a3-e543de5be4cb/lidar-
composite-dtm-2019-10m (accessed April 25, 2023). 

[36] Office for National Statistics, 2011 rural/urban classification for small-area geographies, 
London (2011). http://www.ons.gov.uk/ons/guide-method/geography/products/area-
classifications/2011-rural-urban/index.html. 

Page 19 of 22 AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



[37] GLA, Curio Canopy - London Tree Canopy Cover, London Datastore (2020). 
https://data.london.gov.uk/dataset/curio-canopy (accessed April 25, 2023). 

[38] Breadboard Labs, Measurement & spatial analysis of London’s tree canopy cover: 2018 
methodology report, Breadboard Labs, London, UK, 2018. 
https://data.london.gov.uk/dataset/curio-canopy (accessed April 25, 2023). 

[39] Ordnance Survey, OS MasterMap Topography Layer, (2021). 
https://digimap.edina.ac.uk/help/files/resource-hub/downloads/osmanuals/os-mastermap-
topography-layer-user-guide_v1_9.pdf. 

[40] A.P. Murdock, A.J.P. Harfoot, D. Martin, S. Cockings, C. Hill, OpenPopGrid: an open gridded 
population dataset for England and Wales, GeoData, University of Southampton (2015). 
http://openpopgrid.geodata.soton.ac.uk/. 

[41] GLA, London Environment Strategy, Greater London Authority, London, UK., 2018. 
https://www.london.gov.uk/programmes-and-strategies/environment-and-climate-
change/london-environment-strategy (accessed June 23, 2020). 

[42] K. Rogers, K. Sacre, J. Goodenough, K. Doick, Valuing London’s urban forest: results of the 
London i-Tree Eco Project: Treeconomics London, Greater London Authority, London, UK., 
2015. https://www.london.gov.uk/sites/default/files/valuing_londons_urban_forest_i-
tree_report_final.pdf (accessed September 21, 2023). 

[43] K. Arbuthnott, S. Hajat, C. Heaviside, S. Vardoulakis, Years of life lost and mortality due to heat 
and cold in the three largest English cities, Environment International 144 (2020) 105966. 
https://doi.org/10.1016/j.envint.2020.105966. 

[44] Office for National Statistics (ONS), Daily death occurrences, England and Wales: 2021 and 
2022 - Office for National Statistics, (2023). 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/death
s/adhocs/1724dailydeathoccurrencesenglandandwales2021and2022 (accessed March 5, 
2024). 

[45] Office for National Statistics (ONS), Daily deaths occurrences, England and Wales, 1981 and 
2020, (2022). 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/death
s/adhocs/14173dailydeathsoccurrencesenglandandwales1981and2020 (accessed March 5, 
2024). 

[46] J.A. Lowe, D. Bernie, P.E. Bett, L.M. Bricheno, S.C. Brown, D. Calvert, R. Clark, Karen, Eagle, T.L. 
Edwards, G. Fosser, P. Maisey, R.N. McInnes, C. Mcsweeney, K. Yamazaki, S. Belcher, UKCP 
18 Science Overview Report, Met Office, Reading, UK, 2019. 

[47] S. Vardoulakis, K. Dear, S. Hajat, C. Heaviside, B. Eggen, A.J. McMichael, Comparative 
assessment of the effects of climate change on heat- and cold-related mortality in the 
United Kingdom and Australia, Environmental Health Perspectives 122 (2015) 1285–1292. 
https://doi.org/10.1289/ehp.1307524. 

[48] S. Hajat, S. Vardoulakis, C. Heaviside, B. Eggen, Climate change effects on human health: 
projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s, 
Journal of Epidemiology and Community Health 68 (2014) 641–8. 
https://doi.org/10.1136/jech-2013-202449. 

Page 20 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



[49] H.M. Choi, W. Lee, D. Roye, S. Heo, A. Urban, A. Entezari, A.M. Vicedo-Cabrera, A. Zanobetti, A. 
Gasparrini, A. Analitis, A. Tobias, B. Armstrong, B. Forsberg, C. Íñiguez, C. Åström, E. 
Indermitte, E. Lavigne, F. Mayvaneh, F. Acquaotta, F. Sera, H. Orru, H. Kim, J. Kyselý, J. 
Madueira, J. Schwartz, J.J.K. Jaakkola, K. Katsouyanni, M.H. Diaz, M.S. Ragettli, M. Pascal, N. 
Ryti, N. Scovronick, S. Osorio, S. Tong, X. Seposo, Y.L. Guo, Y. Guo, M.L. Bell, Effect 
modification of greenness on the association between heat and mortality: A multi-city multi-
country study, eBioMedicine 84 (2022). https://doi.org/10.1016/j.ebiom.2022.104251. 

[50] P. Murage, S. Kovats, C. Sarran, J. Taylor, R. McInnes, S. Hajat, What individual and 
neighbourhood-level factors increase the risk of heat-related mortality? A case-crossover 
study of over 185,000 deaths in London using high-resolution climate datasets, Environment 
International 134 (2020) 105292. https://doi.org/10.1016/J.ENVINT.2019.105292. 

[51] K. Arbuthnott, S. Hajat, C. Heaviside, S. Vardoulakis, Changes in population susceptibility to 
heat and cold over time: assessing adaptation to climate change, Environmental Health 15 
(2016) S33. https://doi.org/10.1186/s12940-016-0102-7. 

[52] H. Liu, B. He, S. Gao, Q. Zhan, C. Yang, Influence of non-urban reference delineation on trend 
estimate of surface urban heat island intensity: A comparison of seven methods, Remote 
Sensing of Environment 296 (2023) 113735. https://doi.org/10.1016/j.rse.2023.113735. 

[53] K. Calders, H. Verbeeck, A. Burt, N. Origo, J. Nightingale, Y. Malhi, P. Wilkes, P. Raumonen, 
R.G.H. Bunce, M. Disney, Laser scanning reveals potential underestimation of biomass 
carbon in temperate forest, Ecological Solutions and Evidence 3 (2022) e12197. 
https://doi.org/10.1002/2688-8319.12197. 

[54] P. Murage, S. Hajat, R.S. Kovats, Effect of night-time temperatures on cause and age-specific 
mortality in London, Environmental Epidemiology (2017) 1. 
https://doi.org/10.1097/EE9.0000000000000005. 

[55] J. Zhao, X. Zhao, D. Wu, N. Meili, S. Fatichi, Satellite-based evidence highlights a considerable 
increase of urban tree cooling benefits from 2000 to 2015, Global Change Biology 29 (2023) 
3085–3097. https://doi.org/10.1111/gcb.16667. 

[56] M.J. Nieuwenhuijsen, H. Khreis, M. Triguero-Mas, M. Gascon, P. Dadvand, Fifty Shades of 
Green: Pathway to Healthy Urban Living, Epidemiology 28 (2017) 63. 
https://doi.org/10.1097/EDE.0000000000000549. 

[57] M.S. Taylor, B.W. Wheeler, M.P. White, T. Economou, N.J. Osborne, Research note: Urban 
street tree density and antidepressant prescription rates—A cross-sectional study in London, 
UK, Landscape and Urban Planning 136 (2015) 174–179. 
https://doi.org/10.1016/j.landurbplan.2014.12.005. 

[58] R. Mitchell, F. Popham, Effect of exposure to natural environment on health inequalities: an 
observational population study, The Lancet 372 (2008) 1655–1660. 
https://doi.org/10.1016/S0140-6736(08)61689-X. 

[59] A.P.R. Jeanjean, R. Buccolieri, J. Eddy, P.S. Monks, R.J. Leigh, Air quality affected by trees in real 
street canyons: The case of Marylebone neighbourhood in central London, Urban Forestry & 
Urban Greening 22 (2017) 41–53. https://doi.org/10.1016/j.ufug.2017.01.009. 

Page 21 of 22 AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



[60] R. Buccolieri, A.P.R. Jeanjean, E. Gatto, R.J. Leigh, The impact of trees on street ventilation, NOx 
and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London, 
Sustainable Cities and Society 41 (2018) 227–241. https://doi.org/10.1016/j.scs.2018.05.030. 

[61] P. Cariñanos, M. Casares-Porcel, Urban green zones and related pollen allergy: A review. Some 
guidelines for designing spaces with low allergy impact, Landscape and Urban Planning 101 
(2011) 205–214. https://doi.org/10.1016/j.landurbplan.2011.03.006. 

[62] R. Pandit, D.N. Laband, Energy savings from tree shade, Ecological Economics 69 (2010) 1324–
1329. https://doi.org/10.1016/j.ecolecon.2010.01.009. 

 

 

 

 

Page 22 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-117636.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


