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A B S T R A C T

The use of the classical finite element method (FEM) to solve problems with magnetic
composites leads to huge linear systems that are impossible to solve. Instead, homogenization
and multiscale methods are often used with the composite material replaced by a homogeneous
material with the homogenized constitutive law obtained by solving cell-problems representing
the mesoscale material structure. For non-linear time-dependent problems, FEM is often used
with a time-transient method (TTM) and the solution is obtained one time-step at a time.
However, in cases where a steady-state solution is of interest, the multiharmonic method can
be faster and more cost effective for the same accuracy of the time discretization. In addition,
when solving magnetoquasistatic multiscale problems with TTM, the dynamic hysteresis in
the homogenized fields can slow down or even impede the convergence of the macro-scale
problem due to the possibly non-continuously differentiable homogenized material laws. This
work presents a novel robust modelling approach for non-linear magnetoquasistatic problems
combining multiharmonic method with the multiscale method.

1. Introduction

Composite materials (CM) play an important role in the field of electrical engineering [1]. However, due to their microscopic
material structure, computational design of CM-based devices can be challenging with the classical finite element method (FEM)
approach in several aspects. This work focuses on three particular challenges, posed by the numerical modelling of CM-based devices,
and proposes a novel approach for improving the feasibility of simulating such devices in magnetoquasistatics with FEM. The three
challenges are related to spatial, temporal and non-linear modelling of composite material.

The first challenge posed by the simulation of CM-based devices results from the multiscale nature of the composites. The classical
FEM approach becomes infeasible due to the extremely dense mesh needed for the CM domains, but such FEM problems can be
made tractable by the use of a multiscale method (MSM). In MSM, the composite material is homogenized, and the homogenized
material properties are obtained by solving cell FEM-problems representing the composite material behaviour [2–5]. In the research
field of computational electromagnetics, the multiscale methods have been used for example in [6–9].
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The second challenge is related to the time-domain resolution of eddy current problems. The usual approach is the time-transient
ethod (TTM) where the time evolution of the electromagnetic fields is obtained by solving the problem one time-step at a time.
owever, especially in the case where the steady-state is of interest, TTM can require simulating several time-periods and a high
umber of time-steps in order to reach the steady-state. In the worst case, this method can be practically infeasible due to the long
imulation time. For such time-periodic problems, the multiharmonic method (MHM) can be a better choice over TTM in terms of
imulation time [10]. In MHM, the electromagnetic fields in the time-domain are represented by a truncated Fourier series where
he field coefficients depend only on the spatial variable.

The third challenge is related to the resolution of FEM problems with non-linear material laws. The common approach uses
he Newton–Raphson (NR) method which involves the linearization of the nonlinear problem and the resolution of the linearized
roblem using an iterative scheme. However, convergence issues have been observed especially for formulations that use concave
aterial laws. To overcome this challenge, the work uses a mixed FEM formulation having convex constitutive relation for both

lectric and magnetic fields [11]. The resulting 𝑩𝑱 conforming formulation uses the vector potentials 𝑨 and 𝑻 for the magnetic
lux density 𝑩 and the electric current density 𝑱 respectively defined by 𝑩 = curl 𝑨 and 𝑱 = curl 𝑻 .

An additional benefit, related to the second and the third challenge, that comes with using MHM in the multiscale modelling
s the avoidance of the possible convergence issues with the Newton–Raphson method (NR) arising from the eddy-current effects.
t high frequencies, the eddy currents can cause so-called dynamic hysteresis visible in the homogenized field relations in the
acro-scale. Due to this effect, the macroscopic magnetic field strength can be non-continuously differentiable with respect to the
acro-scale magnetic flux density as it will be highlighted later in Section 5. Consequently, challenges in solving the macro-scale
roblem with the NR-method can be encountered.

To overcome the three challenges, this work presents a novel FEM modelling approach for CM-based devices using a magneto-
uasistatic formulation with robust non-linear convergence, and combines the multiscale method with the multiharmonic method.
he novelty of this multiharmonic multiscale method (MMM) lies in the use of the already existing MHM method and the 𝑩𝑱 mixed

formulation in order to develop a novel multiscale method. In this work, its performance is demonstrated in the simulation of a
CM-based device.

The article is outlined as follows. In Section 2 the MHM is discussed for the essential background information, andSection 3
covers the background for the multiscale method. Section 4 formulates the magnetoquasistatic FEM problem for the TTM, MHM
and MMM. Their capabilities are compared in Section 5. Finally, conclusions are drawn in Section 6. The appendix details the
derivation of the homogenized quantities for the MMM.

2. Multiharmonic method

In this section, the multiharmonic method is briefly introduced with the spatio-temporal dependency of the fields discretized
using the Fourier basis for the time and the usual FEM basis for the space.

Let us consider a spatio-temporal dependent magnetic flux density field 𝑩 expressed as

𝑩(𝒙, 𝑡) ≈
𝑁
∑

𝑘=0
𝑩s,𝑘(𝒙) sin(𝑘𝜔0𝑡) + 𝑩c,𝑘(𝒙) cos(𝑘𝜔0𝑡). (1)

The coefficients 𝑩s,𝑘 and 𝑩c,𝑘 are spatially dependent vector fields to be approximated by FEM basis functions [12,13]. The subscript
s, 𝑘 associates the field to the coefficient of sin(𝑘𝜔0𝑡) and c, 𝑘 associates the field to the coefficient of cos(𝑘𝜔0𝑡). The index 𝑘 = 0,… , 𝑁
defines the 𝑘th harmonic in the series. The fundamental angular frequency is 𝜔0 = 2𝜋𝑓0, where 𝑓0 is the fundamental frequency.
The time domain of interest is the period defined by 𝐼𝑇 = [0, 𝑇 ], where 𝑇 = 1

𝑓0
. Moreover, the harmonic is odd when 𝑘 is an

dd number and even when 𝑘 is an even number. In the simulations carried out in this work, the source for the problem will be
riven at the fundamental frequency which is an odd frequency. Consequently, the multiharmonic solution consists only of the odd
armonics [12].

Furthermore, for later convenience (1) can be equivalently expressed as

𝑩(𝒙, 𝑡) ≈
2𝑁−1
∑

𝑖=0
𝑩𝑖(𝒙)𝛩𝑖(𝑡), (2)

where 𝑩𝑖(𝒙) is the 𝑖th spatial field and 𝛩𝑖(𝑡) the corresponding temporal basis function in (1). All the multiharmonic fields can be
expressed with the same expansion as 𝑩. Especially, the multiharmonic magnetic field strength 𝑯 is expressed as1

𝑯(𝒙, 𝑡) ≈
𝑁 ′
∑

𝑘=0
𝑯 s,𝑘(𝑩(𝒙, 𝑡)) sin(𝑘𝜔0𝑡) +𝑯c,𝑘(𝑩(𝒙, 𝑡)) cos(𝑘𝜔0𝑡), (3)

or equivalently as

𝑯(𝒙, 𝑡) ≈
2𝑁 ′−1
∑

𝑖=0
𝑯 𝑖(𝑩(𝒙, 𝑡))𝛩𝑖(𝑡). (4)

1 To note, 𝑩 is expressed as in (1).
2
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The variational formulation of the Ampere’s law (curl𝑯(𝑩) = 𝑱 s) with multiharmonic electromagnetic fields is derived as follows.
If 𝑯(𝑩) is a non-linear relation, it is first expressed as a linear approximation for the Newton–Raphson method as

𝑯(𝑩) ≈ 𝑯0(𝑩0) +
d𝑯(𝑩)
d𝑩

|

|

|

|𝑩=𝑩0(𝒙,𝑡)
⋅
(

𝑩 − 𝑩0) , (5)

where 𝑩0(𝒙, 𝑡) is the known magnetic flux density in space and time at the current NR-iteration, and 𝑩 is the yet unknown magnetic
flux density to be solved [6,10]. Hence, curl 𝑯(𝑩) = 𝑱 s becomes

curl
(

𝑯0 +
d𝑯(𝑩)
d𝑩

|

|

|

|𝑩=𝑩0(𝒙,𝑡)
⋅
(

𝑩 − 𝑩0)
)

= 𝑱 s, (6)

and the variational formulation in the space–time domain 𝛺 × 𝐼𝑇 becomes: for 𝑖 = 0, 1,… , 2𝑁 − 1, find 𝑨𝑖 ∈ 𝐻0(curl;𝛺) with an
appropriate gauge such that the weak form

((

𝑯0 +
d𝑯(𝑩)
d𝑩

|

|

|

|𝑩=𝑩0(𝒙,𝑡)
⋅
(

𝑩 − 𝑩0) , 𝑩′
)

𝛺
, 𝛩′

)

𝐼𝑇

−
(

(

𝑱 s, 𝑨′)
𝛺s

, 𝛩′
)

𝐼𝑇
= 0 (7)

holds ∀𝑨′ ∈ 𝐻0(curl;𝛺) and ∀𝛩′ ∈ 𝐿2(𝐼𝑇 ) with 𝑩𝑖 = curl 𝑨𝑖. The inner product in the time domain (𝐼𝑇 = [0, 𝑇 ]) is defined by

(𝑓, 𝑔)𝐼𝑇 = 2
𝑇 ∫

𝑇

0
𝑓 (𝑡) ⋅ 𝑔(𝑡) d𝑡, (8)

where 𝑓, 𝑔 belong to an appropriate function space (e.g., the functions 𝑓 and 𝑔 belong to the space 𝐿2(𝐼𝑇 )). The inner product in
the space domain 𝛺 is defined by

(𝑭 , 𝑮)𝛺 = ∫𝛺
𝑭 (𝒙) ⋅𝑮(𝒙) d𝛺, (9)

where 𝑭 and 𝑮 belong to an appropriate function space (e.g., the functions 𝑭 and 𝑮 belong to 𝑳2(𝛺) and the test functions 𝑨′

form a basis of 𝐻0(curl;𝛺). Note that in this work, the notation curl 𝑨′ = 𝑩′ is used.
The basis 𝛩′ consists of all the sin(𝑘𝜔0𝑡) and cos(𝑘𝜔0𝑡) -functions, for all 𝑘 = 0...𝑁 , and the basis 𝑨′ consists of all the 𝑨′

s,𝑘 and
′
c,𝑘, where 𝑘 = 0...𝑁 that are test fields for their respective unknown fields 𝑨s,𝑘 and 𝑨c,𝑘 with the usual Ritz–Galerkin FEM basis.
he linear system corresponding to (7) can be obtained by testing with respect to all the basis functions in 𝛺×𝐼𝑇 . For the upcoming
ariational formulations, the nested inner-products in space and time are denoted in short as (⋅ , ⋅)𝛺×𝐼𝑇

To complete the explanation of the weak formulation of (7) with MHM, let us further clarify the derivative term
d𝑯(𝑩)
d𝑩

|

|

|

|𝑩=𝑩0(𝒙,𝑡)
. (10)

Assuming that one has the constitutive relation for 𝑯(𝑩), and its derivative with respect to 𝑩 in hand, then (10) and 𝑯(𝑩0(𝒙, 𝑡))
are known everywhere in 𝛺 × 𝐼𝑇 and the inner products in (7) can be computed via spatial and temporal discretizations [12,13].

3. Multiscale method

In this section, the multiscale method (MSM) is explained using the same modelling domain as the one used in the upcoming
simulations of the paper. In this work, the focus is on the device shown in Fig. 1 where the CM is made of magnetic and electrically
conducting balls.

In the multiscale method, the original problem is decomposed into two problems: the macro-scale problem and the meso-scale
problems. In the macro-scale problem, the CM is modelled as homogenized material, as illustrated in the left image of Fig. 2. The
material properties are obtained by solving meso-scale cell-problems (right image of Fig. 2) at the macro-scale integration points.
Hence, the original CM domain is decomposed into a macro-scale and into a meso-scale cell problem solved with the macroscopic
field sources at each macro-integration point of the CM domain.

3.1. Homogenizing mesoscopic quantities

In this work, the field quantities of interest to be homogenized to the macro-scale are the magnetic field strength 𝑯 , the electric
power density 𝑝el and the magnetic power density 𝑝mc of the conducting ball. The homogenized magnetic field strength is needed
for solving the macro-scale problem, and the power densities are computed only over the conducting magnetic domains (𝛺mc) in
the meso-scale domain in order to compare the simulation results between the multiscale and the reference problems.

The homogenized magnetic field strength [14] can be expressed based on the cell-field 𝒉 as

𝑯 = 1
2𝑑2meso

⎡

⎢

⎢

⎢

⎢

∫𝛤+
𝑦
ℎ𝑥 d𝛤 + ∫𝛤+

𝑧
ℎ𝑥 d𝛤

∫𝛤+
𝑥
ℎ𝑦 d𝛤 + ∫𝛤+

𝑧
ℎ𝑦 d𝛤

∫ + ℎ d𝛤 + ∫ + ℎ d𝛤

⎤

⎥

⎥

⎥

⎥

, (11)
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Fig. 1. The original modelling domain consists of a coil, and the composite material made of conducting nonlinear magnetic particles. Due to symmetry, in the
simulations only the one-eighth of the full geometry, shown in the figure, is modelled.

Fig. 2. Left: the homogenized macro-scale CM domain of the original problem. Right: the meso-scale cell representing the CM.
4
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as detailed in Appendix A.1. Furthermore, as detailed in Appendix A.2, the macroscopic magnetic power density, of a conducting
magnetic ball, is obtained as

𝑝mc(𝑡) =
1

|𝛺m| ∫𝛺mc

𝜕𝑡𝒃(𝑡) ⋅ 𝒉(𝑡) d𝛺. (12)

The macroscopic eddy current loss density is obtained as

𝑝el(𝑡) =
1

|𝛺m| ∫𝛺mc

𝒆(𝑡) ⋅ 𝒋(𝑡) d𝛺. (13)

4. Magnetoquasistatic formulation

In this section, the formulation for the reference problem solved using the classical FEM with TTM and MHM, and the formulation
for the multiharmonic multiscale problem are presented. Throughout the paper, the reference problem is referred to as TTM or MHM
depending on whether it has been solved using TTM or MHM, and the multiscale problem is referred to as MMM.

The 𝑩𝑱 conforming formulation based on the Maxwell’s magnetoquasistatic model is used for both the reference problem and
for the multiscale problem. The chosen formulation allows the use of convex constitutive relations in the formulation. Consequently,
better convergence with the NR-method is obtained.

The following formulations are based on the topology depicted in Fig. 3, representing the device in Fig. 1 where the whole
modelling domain 𝛺 = 𝛺nc ∪𝛺c and 𝛺s ⊂ 𝛺nc. Furthermore, the whole boundary of 𝛺 is 𝛤 = 𝛤D ∪𝛤N. The domain 𝛺nc refers to the
nonconducting domain including the source domain 𝛺s which is the coil with source current density. The domain 𝛺c is the domain
of conducting magnetic balls, and its boundary is denoted with 𝛤c. The boundary of 𝛺 (𝛤 = 𝛤D ∪ 𝛤N) consists of the boundary 𝛤D
through which the normal component of the magnetic flux density is zero, and of the boundary 𝛤N where the tangential field is
required to be zero.

4.1. Reference problem formulation

The reference problem for the original modelling domain shown in Fig. 1 is derived based on the Maxwell’s magnetoquasistatic
model2 [15]

curl 𝑯𝜀 = 𝑱 𝜀 + 𝑱 s, (14)

curl 𝑬𝜀 + 𝜕𝑡𝑩𝜀 = 𝟎, (15)

𝒏 × 𝑻 𝜀|
|

|𝛤c
= 𝟎, (16)

𝒏 ×𝑨𝜀|
|

|𝛤D
= 𝟎, (17)

where the magnetic field strength 𝑯𝜀 is coupled with the magnetic flux density by the reluctivity 𝜈 as 𝑯𝜀 = (𝑩𝜀) = 𝜈(𝑩𝜀)𝑩𝜀,
and the electric field strength 𝑬𝜀 is coupled with the electric current density 𝑱 𝜀 by the resistivity 𝜌 as 𝑬𝜀 = (𝑱 𝜀) = 𝜌𝑱 𝜀. In this
work, only linear 𝑬𝜀−𝑱 𝜀 relation is considered. The known source current density 𝑱 s is imposed in the coil domain 𝛺s to excite the
problem. The vector potentials 𝑨𝜀 and 𝑻 𝜀 are used for expressing 𝑩𝜀 and 𝑱 𝜀 as 𝑩𝜀 = curl 𝑨𝜀 and 𝑱 𝜀 = curl 𝑻 𝜀 so that they satisfy
div 𝑩𝜀 = 0 and div 𝑱 𝜀 = 0. With TTM, the variational formulation for the reference problem becomes: for almost every 𝑡 ∈ 𝐼𝑇 , find
𝑨𝜀 and 𝑻 𝜀 from appropriate function spaces such that:

(

(𝑩𝜀), 𝑩𝜀′)
𝛺 −

(

𝑱 𝜀, 𝑨𝜀′)
𝛺c

−
(

𝑱 s, 𝑨𝜀′)
𝛺s

= 0, (18)
(

(𝑱 𝜀), 𝑱 𝜀′)
𝛺c

+
(

𝜕𝑡𝑩𝜀, 𝑻 𝜀′)
𝛺c

= 0 (19)

hold for all 𝑨𝜀′ and 𝑻 𝜀′ with 𝑩𝜀′ = curl 𝑨𝜀′ and 𝑱 𝜀′ = curl 𝑻 𝜀′.
With MHM, the variational formulation for the reference problem becomes: find 𝑨𝜀 and 𝑻 𝜀 from appropriate function spaces

such that:
(

(𝑩𝜀), 𝑩𝜀′)
𝛺×𝐼𝑇

−
(

𝑱 𝜀, 𝑨𝜀′)
𝛺c×𝐼𝑇

−
(

𝑱 s, 𝑨𝜀′)
𝛺s×𝐼𝑇

= 0, (20)
(

(𝑱 𝜀), 𝑱 𝜀′)
𝛺c×𝐼𝑇

+
(

𝜕𝑡𝑩𝜀, 𝑻 𝜀′)
𝛺c×𝐼𝑇

= 0. (21)

The unknown potentials are approximated with Whitney-1 elements and gauged with the spanning tree technique to ensure the
uniqueness of the solution [16]. The whole domain 𝛺 consists of the nonconducting part 𝛺nc and of the conducting part 𝛺c. Since
(𝑩𝜀) can be a non-linear relation, the term needs to be linearized as explained in Eq. (5) and the problem is solved iteratively
with NR.

The electric and magnetic powers in 𝛺c are computed in a post-processing step using respectively:

𝑃 𝜀
el(𝑡) = ∫𝛺c

𝑬𝜀(𝑡) ⋅ 𝑱 𝜀(𝑡) d𝛺 (22)

2 The fields are written with 𝜀-superscripts to differentiate them from the macroscopic fields in the upcoming multiscale formulation.
5
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Fig. 3. Depiction of the modelling domain.

and

𝑃 𝜀
mc(𝑡) = ∫𝛺c

𝜕𝑡𝑩𝜀(𝑡) ⋅𝑯𝜀(𝑡) d𝛺 (23)

4.2. Multiscale problem formulation

In this section, the multiscale FEM problems for macro-scale and meso-scale are formulated.

4.2.1. Macro-scale formulation
This work focuses on the simulation of CM made of insulated conducting particles. Therefore, there is no electric currents in the

macro-scale CM domain and the formulation becomes

curl 𝑯(𝑩) = 𝑱 s, (24)

𝒏 ×𝑨|

|

|𝛤D
= 𝟎, (25)

and its variational formulation becomes: find 𝑨 from an appropriate function space such that
(

𝑯(𝑩), 𝑩′)
𝛺×𝐼𝑇

−
(

𝑱 s, 𝑨′)
𝛺s×𝐼𝑇

= 0, (26)

which holds for all 𝑨′ with 𝑩′ = curl 𝑨′. The field 𝑯 in the homogenized CM domain is nonlinear with respect to 𝑩, obtained
by solving the cell-problem excited by the macroscale magnetic field 𝑩 at the integration points of the CM domain. Elsewhere,
𝑯(𝑩) = 1

𝜇0
𝑩.

The non-linear 𝑯(𝑩) in the CM domain is linearized as follows. Let us denote the 𝑖th spatially unknown field of 𝑩 by 𝑩𝑖 as in
(2). Then, similarly as in (5), the derivative of 𝑯 with respect to 𝑩𝑖 is

𝑯(𝑩) ≈ 𝑯(𝑩0) +
∑

𝑖

𝜕𝑯(𝑩)
𝜕𝑩𝑖

|

|

|

|𝑩=𝑩0
⋅ (𝑩𝑖 − 𝑩0

𝑖 ), (27)

where the 𝑗th column of the tensor 𝜕𝑯∕𝜕𝑩𝑖 is approximated by means of finite difference as

𝜕𝑯
𝜕𝑗𝑩𝑖

|

|

|

|𝑩=𝑩0
≈

𝑯(𝑩0 + 𝛿𝐵 ⋅ 𝒗̂𝑖𝑗 ) −𝑯(𝑩0)

𝛿𝐵
, (28)

where 𝛿𝐵 is the perturbation magnitude, and 𝒗̂𝑖𝑗 = 𝒗̂𝑗𝛩𝑖(𝑡) addresses the perturbation to the 𝑗th spatial direction (𝑥, 𝑦, 𝑧) on the 𝑖th
term of 𝑩0. The spatial unit vector is denoted as 𝒗̂𝑗 .

At the macro-scale, the electric and magnetic powers, as a function of time, are obtained respectively from the homogenized
power densities, (12) and (13), by integration over the CM domain 𝛺CM as

𝑃el(𝑡) = 𝑝el(𝑡) d𝛺. (29)
6
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Table 1
Dimensions of the device geometry and the
modelling domain.
𝑑meso 100 μm

𝑟 0.35𝑑meso
𝑟coil 𝑑meso
𝑑core 4𝑑meso
𝑅coil 3𝑑core
𝑅air 4𝑑core

and

𝑃mc(𝑡) = ∫𝛺CM

𝑝mc(𝑡) d𝛺. (30)

4.2.2. Meso-scale formulation
The cell-problem is based on the cell shown on the right of Fig. 2. The cell 𝛺m, having the boundary 𝛤m, consists of the insulator

domain 𝛺mi and the conducting domain 𝛺mc. Moreover, 𝛤mc is the boundary of the conducting domain. The formulation of the cell
problem is

curl 𝒉 = 𝒋, (31)

curl 𝒆 + 𝜕𝑡𝒃 = 𝟎, (32)

𝒏 × 𝒂c
|

|

|𝛤m
periodic, (33)

𝒏 × 𝒕c
|

|

|𝛤mc
= 𝟎, (34)

where 𝒃 = 𝑩+𝒃c, 𝒋 = 𝒋c, 𝒃c = curl 𝒂c and 𝒋c = curl 𝒕c. The mesocale magnetic field strength 𝒉 is coupled with the mesocale magnetic
flux density 𝒃 by the reluctivity 𝜈 as 𝒉 = (𝒃) = 𝜈(𝒃)𝒃, and the mesoscale electric field strength 𝒆 is coupled with the mesoscale
electric current density 𝒋 by the resistivity 𝜌 as 𝒆 = (𝒋) = 𝜌𝒋. The vector potentials 𝒂c and 𝒕c are the unknown fields to be solved.
They are approximated with Whitney-1 elements and gauged with the spanning tree technique. Furthermore, since 𝒂c is spanned also
on the periodic boundary of the cell, unlike 𝒕c, a periodic spanning tree was generated using Gmsh [17] to gauge 𝒂c. Furthermore,
𝒂c was required to be periodic by translation on the opposite cell-faces. This enforces the homogenized magnetic flux density to be
equal to the source 𝑩. With MHM, the variational cell-formulation becomes: find 𝒂c and 𝒕c from appropriate function spaces such
that3

(

(𝒃), 𝒃′c
)

𝛺m×𝐼𝑇
−
(

𝒋c, 𝒂′c
)

𝛺mc×𝐼𝑇
= 0, (35)

(

(𝒋), 𝒋′c
)

𝛺mc×𝐼𝑇
+
(

𝜕𝑡𝒃, 𝒕′c
)

𝛺mc×𝐼𝑇
= 0, (36)

hold for all test functions 𝒂′c and 𝒕′c with 𝒃′c = curl 𝒂′c and 𝒋′c = curl 𝒕′c Note that, the material relations in the cell are given by
analytical relations. The problem is then solved similarly as the reference problem described in Section 4.1, i.e., in 𝛺mc 𝒉(𝒃) is
non-linear and needs to be linearized for the NR method. In the insulator, the linear relation is 𝒉(𝒃) = 1

𝜇0
𝒃.

5. Results

In this section, the predictive capabilities of the developed simulation approach (MMM) is compared with the reference problem
solved with using the time-transient method TTM and the multiharmonic method MHM. The implementations were programmed
using the C++ FEM library Sparselizard [18], and the simulations were carried out using the supercomputers of Finnish IT Center
for Science. Gmsh [17] was used for creating modelling geometries, spanning trees and generating modelling meshes. Furthermore
Gmsh was used for the visualization of the solved electromagnetic fields.

5.1. Problem set-up

The modelling domain and the mesh are shown in Fig. 1. Using symmetry, the domain presents one-eighth of the actual geometry.
Hence, the upcoming results are calculated only for the modelling domain shown in the figure. The problem is excited by applying
a sinusoidal current density in the coil with an amplitude of 30 GA/m2 at the frequency of 100 kHz. The dimensions of the domain
are detailed in Table 1 and their meanings are depicted in Fig. 1, except for 𝑅air which is the radius of the external boundary of the
modelling domain.

3 Note that, 𝒃′ = curl 𝒂′ and 𝒋′ = curl 𝒕′
7
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F

w

Fig. 4. The constitutive relation for the magnetic field in the CM particles.

Table 2
Maximum value of ||𝒃|| at different harmonics.
𝑘 1 3 5 7 9 11

max||𝒃𝑘|| 1.95 0.36 0.22 0.13 0.09 0.03
% 100 18.6 11.2 6.8 4.5 1.6

The particle material properties are as follows. The permeability in the particles are modelled according to the anhysteretic
röhlich–Kennelly law [19]

𝑩 = 𝜇(𝑯)𝑯 , (37)

here

𝜇(𝑯) = 𝜇0 +
𝛼

𝐵s + 𝛽‖𝑯‖

, (38)

𝐵s = 1.5 T, 𝛽 = 𝜇0(𝜇r − 1), 𝛼 = 𝛽𝐵s and 𝜇r = 1000. For the formulations used in this paper, the law was inverted to obtain
(𝑩) = 𝜈(𝑩)𝑩. This material relation is shown in Fig. 4. Furthermore, for the electrical conductivity of the particles, constant
𝜎 = 10 MS/m is used, and for the non-conducting materials 𝜇 = 𝜇0 and 𝜎 = 0 S/m was used.

5.2. Stand-alone cell

Before solving the actual multiscale problem, the behaviour of the cell, representing the CM (right of image Fig. 2), was
investigated when excited by a homogeneous 𝑩(𝑡) = 𝐵a sin(2𝜋𝑓0𝑡) ⋅ 𝒗̂𝑦 in the 𝑦-direction where 𝐵a = 0.8 T and 𝑓0 = 100 kHz.

Table 2 shows the maximum value of ‖𝒃‖ at different harmonics, calculated as

max ‖𝒃𝑘‖ = max
√

𝒃s,𝑘 ⋅ 𝒃s,𝑘 + 𝒃c,𝑘 ⋅ 𝒃c,𝑘, (39)

where 𝒃 is expressed as (1). The row with the % denotes max ‖𝒃𝑘‖ normalized with max ‖𝒃1‖. Based on this information, harmonics
up to 7 will be used in the upcoming simulations.

Table 3 shows the norm of the homogenized magnetic field strength 𝑯 for different harmonics, calculated as

‖𝑯𝑘‖ =
√

𝑯 s,𝑘 ⋅𝑯 s,𝑘 +𝑯c,𝑘 ⋅𝑯c,𝑘, (40)

where 𝑯 is expressed as (3).
8
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Table 3
The norm of the different harmonics of the homogenized magnetic field strength.
𝑘 1 3 5 7

||𝑯𝑘|| 415 846 14 163 5434 223
% 100 3.4 1.3 0.05

Table 4
Homogenized magnetic and electric power density from the conducting ball domain at different
harmonics.
𝑘 ||𝑝mc,𝑘|| [GW/m3] % ||𝑝el,𝑘|| [GW/m3] %

0 0 0 0.1175 81.8
2 1.3590 100.0 0.1435 100.0
4 1.1490 84.6 0.0622 43.3
6 0.4402 32.4 0.0414 28.9
8 0.0441 3.2 0.0096 6.7
10 0.1878 13.8 0.0034 2.4
12 0.1216 8.9 0.0011 0.8
14 0.0202 1.5 0.0001 0.1

16 0.0232 1.7 0 0
18 0.0188 1.4 0 0
20 0.0037 0.3 0 0

According to the results, it is sufficient to use the same harmonics for 𝑯 as used for the cell fields. Based on this, in the upcoming
simulations the macroscopic 𝑩 will be approximated by default with harmonics 1 and 3. 𝑯 will be approximated with the same
harmonics as the cell-fields, i.e., odd harmonics from 1 to 7.

Table 4 shows the harmonic content of 𝑝mc of (12) and 𝑝el of (13), expressed using the Fourier series, for 𝑘 = 0,… , 20, as

𝑝mc(𝑡) =
20
∑

𝑘=0
𝑝mc,s,𝑘 sin(𝑘𝜔0𝑡) + 𝑝mc,c,𝑘 cos(𝑘𝜔0𝑡) (41)

𝑝el(𝑡) =
20
∑

𝑘=0
𝑝el,s,𝑘 sin(𝑘𝜔0𝑡) + 𝑝el,c,𝑘 cos(𝑘𝜔0𝑡). (42)

The coefficients can be computed with the inner product (8) as

𝑝mc,s,𝑘 =
(

𝑝mc(𝑡), sin(𝑘𝜔0𝑡)
)

𝐼𝑇
(43)

𝑝mc,c,𝑘 =
(

𝑝mc(𝑡), cos(𝑘𝜔0𝑡)
)

𝐼𝑇
(44)

𝑝el,s,𝑘 =
(

𝑝el(𝑡), sin(𝑘𝜔0𝑡)
)

𝐼𝑇
(45)

𝑝el,c,𝑘 =
(

𝑝el(𝑡), cos(𝑘𝜔0𝑡)
)

𝐼𝑇
. (46)

Moreover, the norms of the fields at different harmonics are measured as

‖𝑝mc,k‖ =
√

𝑝2mc,s,𝑘 + 𝑝2mc,c,𝑘 (47)

‖𝑝el,k‖ =
√

𝑝2el,s,𝑘 + 𝑝2el,c,𝑘. (48)

This investigation shows how many harmonics should be considered when homogenizing the power densities from the cell to the
macro-scale. Based on the results, for the rest of the paper, a modelling decision is made to take into account even harmonics from
0 to 14 in the homogenized power densities.

The left image of Fig. 5 shows the homogenized magnetic field strength with respect to the source as a function of time over one
period of excitation. It can be observed that the homogenized relation is only slightly non-linear even though the particle is highly
saturated. On the right of the figure, the effect of the induced eddy currents in the cell particle on the 𝑯(𝑩) relation is shown.
This manifests itself in the dynamic hysteresis. If the multiscale problem was solved using a time-transient method, convergence
challenges could be encountered with the NR-method due to the non-continuous derivative of 𝑯 with respect to 𝑩. To illustrate
the behaviour of the electromagnetic fields in the cell, 𝒃 and 𝒋 are shown in Fig. 6 and Fig. 7, respectively.

5.3. Modelling magnetic composite material core

Finally, the performance of MMM is tested in the simulation of a magnetic composite material core device. The simulation
problem is defined in Section 5.1. The strategy is to first obtain the reference solution and then compare with that the results given
by MMM.
9



Computer Methods in Applied Mechanics and Engineering 425 (2024) 116945J. Ruuskanen et al.
Fig. 5. The homogenized 𝑩 − 𝑯 relation (left) has dynamic hysteresis due to the induced eddy currents in the particle of the cell as shown in the close-up
figure on the right.

Table 5
The homogenized eddy current losses and magnetic power as a function of the number of
macro-scale (odd) harmonics.
#harmonics 1 2 3 4

Simulation time [min] 34 57 85 119

avg(𝑃el) [mW] 5.29 5.31 5.32 5.31
𝛥el [%] 1.96 1.73 0.93 0.59

avg(|𝑃mc|) [mW] 17.98 17.22 16.89 16.80
𝛥mc [%] 10.1 5.02 2.17 1.66

5.3.1. Reference solutions
In order to compare the predictive capabilities and the performance of the MMM, the reference problem is first solved (see

Section 4.1) with TTM and MHM. The TTM simulation of the reference problem was solved using the implicit Euler with a constant
time-step. Only the first period of excitation was simulated with 250 time-steps, and the simulation time was 50 h. The MHM
simulation of the reference problem was solved with MHM using harmonics {1,3,5,7} for 𝑨𝜀 and 𝑻 𝜀. The simulation time was 10 h.
The trapezoidal rule with 50 evenly spaced samples for the time-period were used for solving the inner-products (8) in 𝐼𝑇 .4

Fig. 8 shows the electric power (22) and the magnetic power (23) during the first period of excitation, predicted by TTM and
MHM. The results show good agreement between the two methods already after the first quarter of the first period. Note that
MHM predicts the steady-state solution while TTM models the device behaviour including the initial transient phase. Due to the
long simulation time with TTM, only the first period was simulated. Therefore, the steady-state may not have been reached yet.
However, a modelling assumption is made that the TTM solution is in the steady-state after the first half of the time-period.

The simulation results for TTM and MHM are as follows. The relative difference, between TTM and MHM, in the average
steady-state 𝑃 𝜀

el was 0.02%, where TTM predicted 5.284 mW, and MHM predicted 5.285 mW. The relative difference in the average
steady-state 𝑃 𝜀

mc was 0.67%, where TTM predicted 16.64 mW and MHM predicted 16.52 mW. To note, from hereon the solution
of MHM is used as the reference solution, and the upcoming simulation results obtained with MMM are compared with the results
given by MHM.

5.3.2. Multiscale solutions
Next, MMM is deployed to simulate the behaviour of the CM device. As the starting point, 43 elements are used in the

homogenized CM domain. Hence, the size of the macro-scale element corresponds with the size of the cell. A total of 64 CPUs were
used to parallelize the computation of the homogenized field quantities associated with each macro-element. Harmonics {1,3,5,7}
were used for the unknown vector potentials in the cell-problem. Table 5 shows the effect of the number of harmonics, used for the
macro-scale unknown vector potentials, on the solution accuracy with respect to the reference solution obtained with MHM. In the

4 The same number of samples are used for the time-domain inner-products throughout this work.
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Fig. 6. Magnetic flux density in the cell when sourced with 𝑦-directional 𝐵(𝑡) = 0.8 ⋅ sin(𝜔𝑡) [T] at the frequency of 100 kHz.

table, the relative differences in the electric and magnetic powers are computed, respectively, as

𝛥el =
∫𝐼𝑇 |𝑃 𝜀

el(𝑡) − 𝑃el(𝑡)| d𝑡

∫𝐼𝑇 |𝑃 𝜀
el(𝑡)| d𝑡

, (49)

and

𝛥mc =
∫𝐼𝑇 |𝑃 𝜀

mc(𝑡) − 𝑃mc(𝑡)| d𝑡

∫𝐼𝑇 |𝑃 𝜀
mc(𝑡)| d𝑡

. (50)

Based on these results, MMM is able to capture well the non-linear and dynamic effects occurring in the composite material core
even with only two harmonics for the macro-scale unknown fields. To visualize the results, Fig. 9 shows the electric and magnetic
powers as a functions of time for both MHM and MMM. In the figure, macro-scale 𝑨 and 𝑻 have harmonics 1 and 3.

Table 6 compares MHM and MMM in the power quantities as a function of the number of elements in the homogenized composite
material domain. For this comparison, harmonics 1 and 3 were used for 𝑨 and 𝑻 . According to these results, the effect of the mesh
density on the solution is small. Only with 23 elements in the homogenized domain, the values for the average powers are slightly
higher. This result highlights the benefit of the homogenization method in MMM: it is possible to obtain accurate results even with
larger macro-scale elements than the size of the cell.
11
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Fig. 7. Electric current density in the cell when sourced with 𝑦-directional 𝐵(𝑡) = 0.8 ⋅ sin(𝜔𝑡) [T] at the frequency of 100 kHz.

Fig. 8. Comparison between TTM and MHM in the electric (left) -and magnetic (right) power over the first period of excitation.

Table 6
The influence of the number of macro elements (#elems) in the CM-domain on the accuracy.
#elems in 𝛺CM 23 33 43 53

Simulation time [min] 30 44 57 61
Number of CPUs 8 27 64 125

avg(𝑃el) [mW] 5.41 5.32 5.31 5.30
𝛥el [%] 2.51 1.67 1.72 1.69

avg(|𝑃mc|) [mW] 17.69 17.12 17.22 17.15
𝛥mc [%] 7.02 4.83 5.01 4.85
12
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Fig. 9. Comparison between MHM and MMM in the electric (left) -and magnetic (right) power.

Fig. 10. In-time varying macroscale current density in the coil (left) induces eddy currents in the mesoscale particles (right). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10 shows the macro-scale current density in the coil merged with the meso-scale induced currents in all the cells for 43

element discretization of the homogeneous CM domain. To visualize the magnetic flux density in the device, Fig. 11 shows 𝑩 in the
coil and the composite material domain (colour scale shown only in the composite domain). In addition, 𝒃 is shown in the corner
cell.

6. Conclusion

In this work, a modelling approach combining the multiharmonic method with the multiscale method was presented, where a
𝑩𝑱 -conforming magnetoquasistatic formulation was used. The developed approach was compared with the classical Galerkin finite-
element method using TTM and MHM. The comparison was carried out by simulating a device made of a coil and a composite
material core. The core was made of insulated, conducting and non-linearly magnetizing particles.
13
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Fig. 11. Macroscale magnetic flux density in the coil and the composite material. In addition, mesoscale 𝒃 is merged into the corner element of the homogenized
core domain.

The developed multiharmonic multiscale method proved to be accurate and efficient at simulating the electromagnetic behaviour
of magnetic composite materials in comparison to the classical approach. Using 43 elements in the homogenized composite material
domain and two harmonics for the macro-scale unknown fields, the relative differences in the electric and magnetic powers were
1.73 % and 5.02 %, respectively. Using MMM, the simulation time was 1/53 of that of TTM, and 1/11 of that of MHM.
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Appendix. Homogenizing mesoscale fields

Here the derivations of the homogenized meso-scale quantities, the magnetic fields strength and the power density, are detailed.
14
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c

A.1. Magnetic field strength

According to the Poynting’s theorem, the total magnetoquasistatic electromagnetic power in the mesoscopic cell 𝛺m is measured
using the bilinear and reflexive Poynting’s operator as

(⋅, ⋅) = ∫𝛺m

div(⋅ × ⋅) d𝛺. (A.1)

To derive the homogeneous macroscale quantities, let us require that the Poynting-measure equals over 𝛺m for the macroscale
𝑬 and 𝑯 and for the mesoscale 𝒆 and 𝒉 as

(𝑬,𝑯) = (𝒆,𝒉) (A.2)

Furthermore, the cell fields are decomposed into periodic and antiperiodic fields as

𝒆 = 𝑬1 + 𝒆p (A.3)

𝒉 = 𝑯1 + 𝒉p, (A.4)

where 𝒆p, 𝒉p are cell periodic [7,20,21]. The macroscopic fields at a macrocale domain integration point are also decomposed as

𝑬 = 𝑬1 + 𝑬0 (A.5)

𝑯 = 𝑯1 +𝑯0, (A.6)

where the fields 𝑬0, 𝑯0 are homogeneous, and the fields

𝑬1 = −𝜕𝑡𝑩 × 𝒙
2
, (A.7)

𝑯1 = 𝑱 × 𝒙
2
, (A.8)

produce the curl of 𝑬 and 𝑯 into the neighbourhood of the point of integration, where 𝒙 = [𝑥 𝑦 𝑧]T. Measuring the curl of 𝑬 and
𝑯 in the cell gives the cell-homogenous fields 𝜕𝑡𝑩 and 𝑱 as

curl 𝑬 = −𝜕𝑡𝑩 (A.9)

curl 𝑯 = 𝑱 . (A.10)

In this work, the cells do not carry any net-current since they are insulated — therefore 𝑯1 = 𝟎. Furthermore, since 𝑬0 and 𝑯0 are
ell-homogeneous, (𝑬0,𝑯0) = 0 and consequently

(𝑬,𝑯) = (𝑬1,𝑯0). (A.11)

Furthermore,

(𝒆,𝒉) = (𝑬1,𝒉p) (A.12)

since for the periodic 𝒆p and 𝒉p, (𝒆p,𝒉p) = 0.
Now, due to the bilinearity of  and using the Gauss’ theorem, the macroscopic 𝑯0 is derived based on (A.2), as

(𝑬,𝑯) = (𝒆,𝒉)

⇔(𝑬1,𝑯0) = (𝑬1,𝒉p)

⇔(𝑬1,𝑯0 − 𝒉p) = 0

⇔∫𝛺m

div
(

𝑬1 ×
(

𝑯0 − 𝒉p
))

d𝛺 = 0

⇔∫𝛤m
𝒏 ⋅

(

𝑬1 ×
(

𝑯0 − 𝒉p
))

d𝛤 = 0

⇔∫𝛤m
𝑬1 ⋅

((

𝑯0 − 𝒉p
)

× 𝒏
)

d𝛤 = 0, (A.13)

where the boundary of 𝛺m is

𝛤m(𝑥, 𝑦, 𝑧) = 𝛤+
𝑥 ∪ 𝛤−

𝑥 ∪ 𝛤+
𝑦 ∪ 𝛤−

𝑦 ∪ 𝛤+
𝑧 ∪ 𝛤−

𝑧 , (A.14)

where

𝛤+
𝑥 ∶= 𝛤m(

1
2
𝑑meso, 𝑦, 𝑧) (A.15)

𝛤−
𝑥 ∶= 𝛤m(−

1
2
𝑑meso, 𝑦, 𝑧) (A.16)

𝛤+ ∶= 𝛤 (𝑥, 1𝑑 , 𝑧) (A.17)
15
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𝛤−
𝑦 ∶= 𝛤m(𝑥,−

1
2
𝑑meso, 𝑧) (A.18)

𝛤+
𝑧 ∶= 𝛤m(𝑥, 𝑦,

1
2
𝑑meso) (A.19)

𝛤−
𝑧 ∶= 𝛤m(𝑥, 𝑦,−

1
2
𝑑meso). (A.20)

Since 𝒉p is periodic, i.e., 𝒉p(𝛤+
⋅ ) = 𝒉p(𝛤−

⋅ ) for subscripts 𝑥, 𝑦 and 𝑧, (A.13) yields for the homogeneous macroscale magnetic field
strength the expression

𝑯0 =
1

2𝑑2meso

⎡

⎢

⎢

⎢

⎢

⎣

∫𝛤+
𝑦
ℎ𝑥 d𝛤 + ∫𝛤+

𝑧
ℎ𝑥 d𝛤

∫𝛤+
𝑥
ℎ𝑦 d𝛤 + ∫𝛤+

𝑧
ℎ𝑦 d𝛤

∫𝛤+
𝑥
ℎ𝑧 d𝛤 + ∫𝛤+

𝑦
ℎ𝑧 d𝛤

⎤

⎥

⎥

⎥

⎥

⎦

, (A.21)

where ℎ𝑗 = 𝒉p ⋅ 𝒗̂𝑗 , and since 𝑯1 = 𝟎, ℎ𝑗 also equals to 𝒉 ⋅ 𝒗̂𝑗 .

A.2. Power density

The homogenization of the cell power densities can be derived based on (A.2) as

(𝑬,𝑯) = (𝒆,𝒉)

⇔∫𝛺𝑚

div(𝑬 ×𝑯) d𝛺 = ∫𝛺𝑚

div(𝒆 × 𝒉) d𝛺

⇔∫𝛺m

curl(𝑬) ⋅𝑯 − 𝑬 ⋅ curl(𝑯) d𝛺

= ∫𝛺m

curl(𝒆) ⋅ 𝒉 − 𝒆 ⋅ curl(𝒉) d𝛺

⇔∫𝛺m

𝜕𝑡𝑩 ⋅𝑯 d𝛺 = ∫𝛺𝑚

𝜕𝑡𝒃 ⋅ 𝒉 + 𝒆 ⋅ 𝒋 d𝛺

⇔|𝛺m|𝜕𝑡𝑩 ⋅𝑯 = ∫𝛺m

𝜕𝑡𝒃 ⋅ 𝒉 + 𝒆 ⋅ 𝒋 d𝛺

⇔𝜕𝑡𝑩 ⋅𝑯 = 1
|𝛺m| ∫𝛺m

𝜕𝑡𝒃 ⋅ 𝒉 d𝛺 + 1
|𝛺m| ∫𝛺mc

𝒆 ⋅ 𝒋 d𝛺 (A.22)

where

𝑝m = 1
|𝛺m| ∫𝛺m

𝜕𝑡𝒃 ⋅ 𝒉 d𝛺 (A.23)

s the macroscopic magnetic power density 𝑝m that is the sum of the insulator domain (𝛺mi) power density

𝑝mi =
1

|𝛺m| ∫𝛺mi

𝜕𝑡𝒃 ⋅ 𝒉 d𝛺 (A.24)

and of the conducting domain (𝛺mc) power density

𝑝mc =
1

|𝛺m| ∫𝛺mc

𝜕𝑡𝒃 ⋅ 𝒉 d𝛺. (A.25)

The term

𝑝el =
1

|𝛺m| ∫𝛺mc

𝒆 ⋅ 𝒋 d𝛺 (A.26)

is the macroscopic electric power density that consists of the eddy current losses only.
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