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ABSTRACT ARTICLE HISTORY
The evolution of manufacturing systems toward Industry 4.0 and Received 19 April 2023
5.0 paradigms has pushed the diffusion of Machine Learning (ML) in Accepted 28 February 2024
this field. As the number of articles using ML to support manufac- KEYWORDS

turing functions is expanding tremendously, the main objective of Machine learning;

this review article is to provide a comprehensive and updated manufacturing functions;
overview of these applications. 114 journal articles have been col- state-of-the-art; artificial
lected, analysed, and classified in terms of supervision approaches, intelligence; process
function, ML algorithm, data inputs and outputs, and application selection; quality control
domain. The findings show the fragmentation of the field and that

most of the ML-based systems address limited objectives. Some

inputs and outputs of the analysed support tools are shared across

the reviewed contributions, and their possible combinations have

been outlined. The advantages, limitations, and research opportu-

nities of ML support in manufacturing are discussed. The paper

outlines that the excessive specialization of the reviewed applica-

tions could be overcome by increasing the diffusion of transfer

learning in the manufacturing domain.

1. Introduction and background

The transformation of manufacturing towards being smart, digital, and autonomous has
accelerated. Key issues in this transformation process are flexibility, readjustment, and
resilience of manufacturing systems as expressed by (Kusiak, 2017) with the concept of
smart manufacturing. Computer control, information technologies, production manage-
ment software, and sensor networks are prerequisites for a manufacturing company to
move into that direction. However, these devices and systems are not sufficient for a
manufacturing system to be considered smart unless its overall function is controlled by
intelligent technology (Mittal et al.,, 2016) favouring stability and repeatability of the
manufacturing process.

The rapid growth of fast, accurate, and adaptive Artificial Intelligence (AI) applica-
tions tends to reduce tasks performed and controlled by humans (Chanal et al., 2021).
Within AI, Machine Learning (ML) has made inroads in the manufacturing industry,
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where the maturity of the integration of ML systems is witnessed by their capabilities of
dealing with complex issues, e.g. time-dependent dynamics (Long et al., 2023; Yang et al.,
2022). The key success factor for the introduction of ML in the manufacturing domain is
likely its ability to model and predict complex connections between experimental and
simulation data. ML applications in the manufacturing industry appear to be a valuable
option because of the requirement for increased autonomy of manufacturing systems.
Moreover, the massive integration of sensors is leading to the production of a large
amount of data by the manufacturing industry. This availability of raw data creates an
opportunity to use intelligent systems in this area to solve various categories of problems.

This paper attempts to highlight its capabilities with a focus on the mechanical
engineering aspects of manufacturing.

1.1. Fundamentals of machine learning

ML is traditionally divided into five categories based on the nature of the training
approach used: supervised learning (SL) (Hoefer & Frank, 2018), unsupervised learning
(UL) (Papananias et al., 2020), reinforcement learning (RL) (Yu et al., 2020), semi-SL
(Dogan & Birant, 2021; Paturi & Cheruku, 2021), and self-supervised learning (SSL)
(Kahng & Kim, 2021). In SL, the targeted outputs are defined alongside the inputs,
whereas the output is not specified in UL. Regression and classification are the two
subcategories of SL and are used in interpreting continuous or categorical input data,
respectively (Kang et al., 2020). Clustering and association algorithms are categorized
under UL. The clustering algorithm groups the data according to similarity while the
association algorithm is based on rules to find important relations among variables in a
database (Srinivasan et al., 2020). RL is about the acquisition of the optimal behaviour in
an environment to choose the best solution for pursuing a given goal (Kononenko &
Kukar, 2007). The combination of SL and UL algorithms results in semi-SL. Unlike SL, a
large amount of unlabelled data is used in semi-SL (Reinders et al., 2019). SSL methods
can process datasets consisting entirely of unlabelled data. In a first stage, labels are
generated automatically in SSL approaches. In the residual of the paper, the meaning and
characteristics of ML categories, standard algorithms and statistical functions are taken
for granted. In this regard, the authors used the definitions and descriptions available in
Kononenko and Kukar (2007), which can be considered a guide for understanding ML
algorithms.

1.2. Machine learning in the manufacturing industry

The increased popularity of ML in manufacturing has led to the publication of review
articles aimed at summarizing, classifying, and suggesting future applications.
Bertolini et al. (2021) classified ML support in manufacturing into four areas, namely:
maintenance management, quality management, production planning and control,
and supply chain management. Current trends in ML and manufacturing were given
alongside the number of most cited articles and the most cited authors. In another
review, Dogan and Birant (2021) categorized articles according to learning algorithms
and manufacturing functions: scheduling, monitoring, quality, and failure. An alter-
native ML classification in manufacturing was proposed by Sharp et al. (2018) based
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on decision support, data management, plant and operations health management, and
lifecycle management. Furthermore, the use of support vector machines (SVMs) and
neural networks (NNs) had become more popular as presented in Sharp et al. (2018),
due to their capability to work with large-dimension datasets and their practical
effectiveness. Paturi and Cheruku (2021) presented and compared the performance
of each ML algorithm used in the manufacturing industry. Manufacturing functions
were also considered here. Kang et al. (2020) focused on production line applications
of ML algorithms, rather than manufacturing in general. ML algorithms were classi-
fied based on industry domains. The article also claimed that ML was applied in the
metal manufacturing and semiconductor industry since these processes are complex
and a large amount of data is created by production lines. Moreover, ML algorithms
and manufacturing applications were investigated according to their suitability,
advantages, challenges, and applications (Wuest et al., 2016). Nassehi et al. (2022)
focused on the application of AI in manufacturing within scheduling, monitoring,
quality assessment, and failure detection. The articles were grouped according to Al
applications such as genetic algorithms (GA), SL, UL, and RL. The importance,
challenges, opportunities, and future developments of AI were discussed too.
Mozaffar et al. (2022) presented manufacturing data and databases. Moreover, the
scholars emphasized the importance of AI in manufacturing for design, process
control, and monitoring. This review (Mozaffar et al., 2022) pointed out several
future research directions including data-driven modelling discovery, data-driven
design methods, data-driven control and monitoring, and database security in the
manufacturing field. Fahle et al. (2020) included articles between 2015 and 2020 in
their review with a focus on the factory environment. The main classification cate-
gories were manufacturing process planning and control, predictive maintenance,
quality control, in situ process control and optimization, logistics, robotics, assistance,
and learning systems. Those scholars indicated that NN and decision tree (DT)
algorithms were the most widely used ML algorithms in the mentioned period.
Those approaches are flexible and can adapt to a variety of problems, which makes
them appealing for industrialists. Qi et al. (2019) reviewed articles that include ML
support for additive manufacturing (AM). The main classification was on design for
AM, monitoring, and process-property-performance relations. Moreover, the details
of artificial neural network (ANN) algorithms were given alongside challenges and
potential solutions. Likewise, reviews focused on the use of ML for AM are (Meng et
al., 2020; C. Wang et al., 2020).

In Figure 1, the aforementioned review articles are summarized based on the terms
used to classify ML support in manufacturing. The vertical axis indicates the number of
articles included in each review. The horizontal axis shows the classification methodol-
ogy followed by the review articles, which has overall included five categories, namely:
performance, supervision, functions, input and output, and domain. In detail, perfor-
mance indicates the success rate of the ML algorithm implemented in each reviewed
article. Inputs and outputs are the data that are processed by the ML algorithm and what
is provided as a result, respectively. Domains refer to specific industries and manufactur-
ing processes considered in reviewed articles. Functions are the manufacturing activities
and operations overall ascribable to manufacturing and production. In this paper, the
reviewed articles are classified considering those manufacturing functions typically
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Figure 1. Classification of review articles.

managed by mechanical engineers, namely: material selection and property prediction,
production scheduling and planning, manufacturing process selection, production mon-
itoring, and quality control operations (details below).

It is worth noting that a large variety of classifications and viewpoints are presented in
these reviews. This provides indirect evidence of the wide spectrum of applications of ML
in manufacturing but also of the academic interest in this area. Although almost all
reviews paid attention to manufacturing functions, the considered ones are uneven
across these articles. Few review articles included management, lifecycle assessment
(Sharp et al., 2018), and supply chain management (Bertolini et al., 2021), while others
focused on the physical or mechanical dimensions of industrial manufacturing
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applications only (Dogan & Birant, 2021; Meng et al., 2020; Nassehi et al., 2022; Qi et al.,
2019). Conversely, Kang et al. (2020) focused on an application domains or manufactur-
ing functions only.

1.3. Objectives and need for an updated review

The objective of the present paper is to update the state-of-the-art of ML applica-
tions in the manufacturing industry alongside their categorization according to
established criteria, so that reviewed contributions can be compared across multiple
aspects. As the number of contributions in the field is skyrocketing, three restriction
criteria were deliberately introduced to make the number of analysed papers
manageable.

e Journal articles only were reviewed and analysed, which are typically considered the
most reliable and rigorous.

o The present paper limits its outreach to functions ascribable to the mechanical and
engineering dimensions of the manufacturing process in line with some of the
analysed reviews (Dogan & Birant, 2021; Meng et al., 2020; Nassehi et al., 2022;
Qi et al,, 2019).

o Articles describing and testing specific applications were considered only.

As aresult, beyond updating the state-of-the-art, the current review classifies ML support in
manufacturing based on manufacturing functions, inputs and outputs, supervision, and
application domains with more than 100 contributions analysed, as evident in Figure 1.
Overall, all classification criteria found in previous reviews were considered with the only
exception of performance evaluation. The performance evaluation of the applied ML
algorithms is disregarded here for the following reasons:

e The performance evaluation was not reported in all the contributions included in
this review.

e The performance of ML algorithms can be evaluated with different criteria and
models, as well as the different context of use plays a fundamental role. Thus,
reporting and comparing performance evaluations could be misleading for readers.

e In general, the transfer of performance from one context to another is a major
challenge and makes the comparison of performances difficult.

As mentioned, a more comprehensive review of the ML support in manufacturing
applications is needed also because the number of applications is increasing rapidly. As
visible from Figure 1, although Bertolini et al. (2021) included the largest number of
contributions, the focus was not only on manufacturing but also on other linked
industrial applications, which made this review broader. Conversely, the aim here is to
provide a comprehensive view on the ML support in manufacturing intended with a
narrower meaning, namely those manufacturing functions ascribable to mechanical
engineering. Five classes of functions (listed below) were chosen by considering and
combining the functions broadly used in (Bertolini et al., 2021; Dogan & Birant, 2021).
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e Material selection and property prediction: this function includes articles that use
ML algorithms to predict a mechanical property or to select a material for a
manufacturing process.

¢ Production scheduling and planning: articles pertaining to this function propose an
ML algorithm to support the timing and sequence of manufacturing operations.

e Manufacturing process selection: this function includes ML algorithms to support
decisions when a suitable manufacturing process has to be chosen out of a number
of alternatives.

¢ Production monitoring: this function includes articles that implement ML algo-
rithms during production with the scope of monitoring the fulfilment of manufac-
turing requirements and the continuity of the manufacturing process.

¢ Quality control operations: this function includes articles that apply ML algorithms
for inspection and verification of design requirements after the manufacturing
process is completed.

This review is organized as follows. The following section describes the methodology to
search for and select pertinent articles. In the third section, the reviewed ML applications
in manufacturing and the classification thereof are discussed; the main reasons and
expected benefits behind the use of ML are stressed. Directly extractable information
(trends of publication numbers, keywords, etc.) are also included in this section. In the
fourth section, the outcomes of the current review are commented; possible links and
similarities across the reviewed articles are highlighted. The fifth section reports the
authors’ view on the possible evolution of the field, the open issues to be approached, and
the identified research opportunities. Finally, in the last section, the main findings are
summarized and conclusions are drawn.

2. Research methodology

The current study was conducted in line with the objectives and approach of a ‘mapping
review/systematic review’ based on the typology of reviews described by Grant and Booth
(2009). Accordingly, the authors first collected contributions through a literature search
using the Scopus database. The search was conducted in June 2022 by using search terms
in the field ‘Title, Abstract, and Keywords’. The search terms linked through an AND
operator belonged to two distinct groups, as presented below.

(1) Words addressing the presence of ML in the article, thus alternative * learning’
terms connected through an OR operator. Here, * assumes adjectives associated
with ML as in the definitions given above, e.g. machine, supervised.

(2) Words designating the field of manufacturing through the ‘manufactur*’ string.

By using Scopus functions, the results were subsequently filtered in terms of
e language: English

e source type: Journal
¢ subject area: engineering OR material science.
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The Scopus search and subsequent filtering resulted in 3887 articles. The abstracts
of these articles were first analysed to check if the concepts of learning and
manufacturing were linked in the articles. This led to the initial selection of 155
articles. Then, the full texts of these articles (where available) were examined; the
ones indicating in the introduction that they targeted the use of ML for support-
ing manufacturing were selected for inclusion in the current review. This work led
to the identification of 95 articles. To increase the comprehensive nature of the
review, 19 journal articles were added to the current review by applying the
snowballing methodology and considering citations included in the reviews illu-
strated in Figure 1. Hence, 114 journal articles were eventually selected for the
scope of the current review. The article selection methodology is summarized in
Figure 2.

Before processing the retrieved documents, the sample of articles included in the
current review was compared with some of the reviews presented in Figure 1; the most
similar in terms of classification (Dogan & Birant, 2021), the review that contained the
largest sample (Bertolini et al., 2021), and the most recent review (Nassehi et al., 2022).
Based on these comparisons, the collected sample includes one hundred articles not
considered in the reviews mentioned earlier, which fully justifies the need for an updated
and original review.

Abstract Assessment
(n1=3887)

Inclusion Criteria
ML and manufacturing are
conceptually linked

Full-Text Assessment
(n2=155)

Inclusion Criteria
/ ] The introduction of ML
actually aims to support
manufacturing processes

Pertinent Scopus Articles
Snowballing and other (n3=95)

sources from previous
Review Articles

) TR

Articles Included in the
present Review
(n3+m = 114)

Figure 2. PRISMA diagram for showing the article selection process of relevant documents describing
the support of ML in manufacturing.
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12 B. ORDEK ET AL.

3. Machine learning applications in manufacturing

The following subsections are articulated according to manufacturing functions indi-
cated in the first section; the classification and analysis of the reviewed articles are given
under each section (Tables 1,2,3,4 and 5), where they are further categorized based on:

ML algorithm

ML inputs

ML outputs

e ML supervision

Manufacturing application domain.

In Figure 3, the number of journal articles classified in the current research is presented
based on the corresponding manufacturing functions and publication years. It is worth
noting that article numbers increased after 2017 in a nearly monotonic way. The year 2017
can be thus interpreted as a turning point in terms of the diffusion of ML systems for the
manufacturing industry. The trajectory of growth lets us believe that a further increase of
published articles is to expected also in coming years.

In order to further analyse the selected article set, the VOSviewer tool was used to
construct and visualize bibliometric networks. Figure 4 shows the co-occurrence of
keywords and reflects the main themes mentioned in the selected article set. In
Figure 4, the node size represents the number of articles that include the related keyword
while the lines between the nodes correspond to the link among the keyword terms. The
fact that largest nodes are related to algorithms, statistical functions, typologies of
learning, rather than manufacturing operations suggests that computer science plays a
key role. The authors interpret this as a technology-push situation. In other terms, this
evidence suggests that, in most cases, ML scholars might have attempted the implemen-
tation of algorithms in manufacturing. Correspondingly, manufacturing scholars could

II
22 /
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18 |/
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14 -
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10 ”’
8 —
: 1§ | is
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L R
0 =

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Yearly Distribution

Number of Articles
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Material selection & Property Prediction mmmm Production Scheduling & Planning
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Figure 3. Number of articles included in the current review based on manufacturing functions and
publication years.
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16 (&) B.ORDEKETAL.

have studied the implementation of ML as a possible means to solve well-identified
problems in a fewer cases.

The subsections that follow are structured according to the analysed manufacturing
functions. They concisely report the needs for introducing ML algorithms and the
resulting advantages.

3.1. Material selection and property prediction

ML algorithms offer the opportunity to replace and improve traditional systems by
predicting process parameters based on the state of the product and manufacturing
conditions (Strasser et al., 2018). For example, the SLM technology requires human
observation while selecting the most suitable properties and using magnetic materials
during production. ML algorithms offer a great opportunity to optimise process para-
meters for SLM to reduce dimensionality (H. S. Park et al., 2021). For some operations
(SLM process (Chang et al., 2021; Maitra et al., 2022) and textile manufacturing (He et al.,
2022)), it is difficult to formulate a relationship between the inputs and outputs without
availing of an autonomous system. ML algorithms were used to predict and optimise
process parameters for SLM to improve mechanical properties of products (Barrionuevo
etal.,, 2021). Hence, ML algorithms are suitable for these operations since they can handle
a large amount of data, formulate a relationship among the inputs and outputs, eliminate
human observation (Chang et al., 2021; He et al., 2022), reduce the high dimensionality of
parameters used in a manufacturing operation (B. Wang et al., 2022), reduce the
processing time (P. Wu et al., 2022), improve the accuracy of prediction (Moges et al.,
2021), and reduce the cost of a manufacturing operation (B. Wang et al., 2022).

Overall, ML can thus be used in the material selection procedure for better, more
accurate, and quick prediction models by using inputs based on mechanical properties,
machine working conditions, and environmental conditions. Hence, it can make intel-
ligent decisions from unclassified data while creating prediction models. The classifica-
tion of the reviewed articles that include material selection and property prediction are
presented in Table 1.

The articles listed in Table 1 are ordered according to the year they were published in.
The list starts from the oldest and ends with the most recent article. The same ordering
criteria are used for the other manufacturing functions (Tables 2,3,4 and 5).

3.2. Production scheduling and planning

ML applications have been widely adopted to operate complex scheduling systems in the
manufacturing industry (W. Wu et al,, 2021) and overcome typical limitations of tradi-
tional scheduling systems. One of these limitations is low efficiency and scheduling
capacity (Serrano-Ruiz et al., 2022). Simulation-based scheduling systems are promising;
however, they mostly use empirical rules and historical data, which reduces the accuracy
of these systems (T. Zhou et al.,, 2021). Another limitation is the significant requirement
of human knowledge to design a production schedule for assembly lines (J. Li et al.,
2022). Moreover, a job shop scheduling system can be challenging and expensive while
operating without the supervision of an advanced system for controlling and manage-
ment, which may result in inefficiencies and delay production (X. Shao & Kim, 2021). ML
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Figure 4. Keyword co-occurrence analysis using VOSviewer.

algorithms offer to handle job shop scheduling with strict time constraints using RL
(Altenmiiller et al., 2020). One of the most crucial performance indicators of production
scheduling is the make span. It is directly linked to the schedule or the timetable and the
cost of the production process (De Jong et al., 2019). Consequently, ML algorithms utilize
the high dimensional data for production scheduling and planning while considering
multiple objectives such as reducing production costs, minimizing the make span,
balancing the workload, increasing flexibility, reducing human effort (J. Li et al., 2022),
enhancing rescheduling capacity, and improving dynamic scheduling (Abidi et al., 2020).

The classification of reviewed articles that include production scheduling and plan-
ning is presented in Table 2. In short, a well-developed ML-based system can match the
requirements and characteristics of modern manufacturing systems, in that it increases
the efficiency of production scheduling. This is often done by trying to increase the
concurrency between tasks for complex scheduling.

3.3. Manufacturing process selection

Selecting the most suitable manufacturing technology for developing new products plays
a critical role in the production industry since it affects the product’s quality, cost, and
production time (Ordek et al., 2022; Ordek & Borgianni, 2023b). Traditionally, manu-
facturing process selection has relied on human supervision, which requires proper
training (Hoefer & Frank, 2018). However, heavy reliance on human knowledge and
the use of engineering drawings prevented automated optimization and led to low
efficiencies in this manufacturing function. The available software technologies are
limited in their support to manufacturing process selection due to rule-based implemen-
tations (Hamouche & Loukaides, 2018). According to Dohale et al. (2021), selecting the
most suitable manufacturing process is essential for a manufacturing firm to compete
with other companies and achieve business success. Furthermore, sustainability plays an
increasing role in selecting the most suitable manufacturing technology for a product,
which represents another dimension to consider. A manufacturing system’s sustainabil-
ity evaluation is based on various metrics based on the environment, society, and
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economy (Jayawardane et al.,, 2023). ML algorithms can support process selection by
evaluating manufacturing processes to minimize raw material and machine usage.
Hence, they can improve production time and reduce energy and waste material usage
(Marini & Corney, 2019). ML algorithms can be used in decision-making for AM
processes to analyse the manufacturability of a product and to select a specific AM
process (Y. Zhang & Fiona, 2022). Because of the number and variety of objectives,
requirements, and constraints, using ML algorithms to select the most appropriate
manufacturing technology can lead the following advantages:

ML algorithms have the possibility to minimize the need for human supervision,
ML algorithms have advantages in flexibility compared to rule-based software,
ML algorithms can manage a large number of different parameters,

ML algorithms can be fast, accurate, and time-efficient.

In short, ML algorithms can improve and shorten the manufacturing technology selec-
tion process significantly, even without human supervision (Dohale et al., 2021). In this
function, geometrical properties (Marini & Corney, 2019), material type and properties
(Zhao et al., 2022), cost of production (Ghahramani et al., 2020), environmental impacts
(Hodonou et al., 2020), manufacturing conditions, and images (Ordek & Borgianni,
2023a) are typically used as inputs to train ML algorithms. The detailed classification of
ML support in manufacturing process selection is provided in Table 3.

3.4. Production monitoring

Production monitoring has a crucial role in manufacturing since it ensures efficiency and
effective functioning of a manufacturing process or a production line. It operates to
identify and rectify issues in real-time. This positively affects productivity and reduces
costs (Song et al., 2020; Xie et al., 2021). Automatic production monitoring is required for
complex manufacturing processes where people’s response time is too long or beyond
human capabilities. In addition:

e Manual condition monitoring is expensive,

e Manual inspection may result in errors, and it usually depends on the experts’
opinions,

e It is slower than an automated system.

Moreover, the following reasons were a trigger for the introduction of ML in production
monitoring. Condition monitoring research includes investigating tool condition, work-
piece condition, and safety (Sun et al., 2022). Tool condition monitoring constitutes a
large part of the research conducted in this manufacturing function since machine tool
costs represent the highest expenses in production lines (Sun et al., 2022). In modern
manufacturing systems, tool failures correspond to 20% of the downtime, which causes a
tremendous loss of profits for a production company (Martinez-Arellano et al., 2019).
The main source of tool wear is the inevitable friction between the tool and the workpiece
(Xie et al., 2021). The type of tool wear is also considered an essential information to
gather in production monitoring since the wear type affects the quality of the produced
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parts (Mahmood et al., 2022). The essential parameters used in this manufacturing
function are spindle speed, depth of cut, feed rate, vibration signals, rotating speed,
and cutting force (J. B. Wang et al., 2022). Real-time condition monitoring and accurate
assessment of the tool wear status can reduce production costs and improve the useful life
of machining tools.

Modern condition monitoring operations include various sensors used to collect data
on the operating machines. The scale of this data is significant, and connections between
these sensors may show redundancies (Mei et al., 2022). To be able to find the connec-
tions and interpret sensor data, ML algorithms are suitable and required since they can
operate with a large amount of data and point out unexplored connections. As a result of
the classification conducted, ML algorithms are promising tools for enhancing produc-
tion monitoring. The central performance criteria in condition monitoring is the ability
of ML algorithms to provide close to real-time evaluations and corrective actions using
reduced computing power. The detailed classification of the articles that include the
monitoring function of manufacturing is presented in Table 4.

3.5. Quality control operations

Based on the current review results, ML support in quality control is the most
researched and investigated manufacturing function among the ones considered
here. This manufacturing function ensures compliance with standards and production
parameters.

Traditionally, certified experts have conducted quality control on a randomly selected
production batch. The quality control inspection process cannot usually reveal all the
production faults because human experts cannot keep the high-intensity work for
extended times (T. Wang et al., 2020). With the development of sensors, this problem
is partially solved since the sensor data can be high-dimensional, large, and noisy,
requiring a ML system to manage and extract meaningful data (Yan et al., 2021). ML
algorithms can be used to reduce the dimensionality of input parameters in this function
to improve processing time, reduce the computational cost, and, in some cases, improve
computational performance (Reséndiz-Flores et al., 2022). Moreover, product dimension
variability, the random nature of uncertainties, and disturbances during manufacturing
are some of the most challenging aspects of quality control (Peres et al., 2019). By using
ML algorithms, it is possible to overcome these problems and achieve an effective quality
control operation.

ML algorithms are beneficial for quality control function because they can:

¢ Replace human experts with better performance (T. Wang et al., 2020),

e Predict quality problems early and work with high-dimensional data (Yan et al.,
2021),

¢ Boost quality and have high performance in predicting product failures (Z. Y. Liu et
al., 2022),

¢ Detect and analyse defects for various manufacturing technologies (Scime & Beuth,
2018),

e Distinguish naturally occurring surface imperfections from significant defects
(Hanhirova et al., 2019).
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This function is essential in product development and manufacturing since it checks the
accuracy of the manufactured parts based on various parameters and elements. ML
algorithms are used to support this function in order to organize operations, predict
and avoid faulty products. The overall classification of ML support in the quality control
function of manufacturing is available in Table 5.

4. Discussion

The present review on the use of ML support in manufacturing technologies presents a
very active and extensive field of research, with a large number of niche applications.
Those applications share limited similarities and confirm the flexibility of ML methods.
Research groups appear to work in isolation and on specific problems. Synergetic
research in the field did not clearly emerge, which makes the research in the field appear
fragmented. New ML-based proposals are continuously developed and building on past
research is not frequent. Some reasons can explain this situation.

(1) Few contributions made the developed algorithms publicly available.

(2) Some applications might have been developed for peculiar issues of a specific
manufacturing company. In this case, generalizability of the issues can be limited,
as well as full divulgation of the results might be complicated by disclosure
problems.

(3) Some applications might have resulted as an attempt to apply ML with limited
concern of real needs in manufacturing, see the aforementioned hypothesis of
technology-push predominance. Therefore, the intrinsic scope of these applica-
tions is to demonstrate the possibility of implementing ML, which poorly helps
build a systematic introduction of ML in manufacturing to facilitate companies’
work. In this circumstance, the aim to link these applications with other proposals
is clearly secondary.

The discussions that follow aim to outline similarities across the studies, misalignments,
and chances for the synergic use of the developed ML-based algorithms. This is intended
to make the support of the engineering dimensions of the manufacturing process broader
and more impactful.

4.1. Scope and outreach of the machine learning support in the reviewed
contributions

One of the most noteworthy outcomes of the current review is that most articles included
in this review are mono-functional, i.e. they focus on a specific and limited manufactur-
ing function. Few can be attributed to two manufacturing functions (property prediction
and quality control); these are classified based on the core manufacturing function
supported, hence they are found in one table only. For example, Radetzky et al. (2019)
used a hierarchical DT-based algorithm to predict parameter properties for the grinding
process. The predicted parameters were the surface roughness of grinded products. H. S.
Park et al. (2021) also proposed an ML -based DNN algorithm to predict the density ratio
and surface roughness of Ti-6Al-V4 SLM-fabricated parts. This research can be classified
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in both property prediction and quality control functions of manufacturing since the
methodology offers the prediction of not only material properties but also quality
properties. J. Wang et al. (2022) proposed an UL algorithm to improve cutting tool
condition monitoring by applying feature selection. The outcome of the algorithm was
the condition of the cutting tool; however, the methodology also dealt with property
prediction. Therefore, this research (J. Wang et al., 2022) can also be listed under the
property prediction function of manufacturing. Sandru et al. (2022) proposed a regres-
sion-based ML methodology to model the dependency of device performances under the
influence of technology parameters. This article is categorized under the production
monitoring function; nevertheless, it also involves the property prediction function since
the methodology presented in the research predicts the electrical properties of analogue
circuits. Charalampous et al. (2021) proposed a regression-based ML algorithm to select
the optimal process parameters for improving the dimensional accuracy of produced
specimens. Although the research included property prediction, the main application
was quality control, and, as such, it is found in Table 5.

4.2. Similarities of inputs/outputs and possible links among independently
developed algorithms

Some articles showed similarities in terms of ML outputs. This can be interpreted as the
relevance of such outputs for manufacturing processes and the concurrent development
of multiple ML algorithms, which, in the authors’ view, can be motivated by

o different conditions or domains for the determination of these outputs;
¢ need to improve the algorithms’ performance;
e refinements of previously proposed algorithms, typically by the same research

group.

Mechanical properties of the produced products were predicted in several articles. For
instance, both R. Liu et al. (2015) and Herriott and Spear (2020) used ML to determine
the yield strength of microstructures. SL algorithms were applied in both articles to
achieve mechanical property prediction. Although the inputs of both articles were
different, the predicted outcome of both methodologies was similar. In some articles,
similar ML methodologies were used to predict stress, strain, and elastic modulus for
products manufactured with different technologies (Kopper et al., 2020; Wanigasekara et
al., 2020). Several articles analysed and predicted the make span during a manufacturing
operation (De Jong et al., 2019; X. Shao & Kim, 2021; Tan et al., 2019). Tool condition
monitoring was also commonly investigated among the articles that are included in the
current review. These articles usually studied the wear status of machine tools in several
machining operations: high-speed machining (Godreau et al., 2019), milling (Martinez-
Arellano et al., 2019; Song et al., 2020; J.; B. Wang et al., 2022), metal turning (Pratama et
al., 2020), and blanking (Kubik et al., 2021). Furthermore, C. Shao et al. (2013) and Das et
al. (2017) worked on production monitoring to identify the weld status of the welding
manufacturing operation. In the quality control function of manufacturing, the most
commonly investigated quality feature was the prediction of surface roughness (Denkena
et al., 2021; W. Guo et al,, 2021; Tian et al., 2022; D. Wu et al., 2018). Different
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manufacturing technologies were investigated based on the production requirements of
surface roughness. Four technologies were investigated with SL to predict the surface
roughness: polishing (Denkena et al., 2021), FDM (D. Wu et al., 2018), grinding (W. Guo
et al., 2021), and slot milling (Tian et al., 2022). Three of these articles shared similar
algorithm inputs, namely machining parameters such as depth of cut, cutting speed, and
feed rate (Denkena et al., 2021; Tian et al., 2022). SSL applications in quality control used
defected surface images of manufactured parts as input to highlight the defect area as the
output (Z. Y. Liu et al., 2022; Xu et al., 2022). Semi-supervised based NNs were used to
detect the defect patterns in wafer bin manufacturing operations by using images as
inputs (Chu et al., 2022; Manivannan, 2022). Chu et al. (2022) and Manivannan (2022)
used a similar methodology to generate NN-based algorithms to identify the defect
patterns with 3D and 2D map images of a wafer bin as inputs, respectively.

The similarity of inputs can be ascribed to the typically large availability of same kinds
of data. At the same time, similarities between outputs of a preceding manufacturing
function and inputs of a subsequent function highlight chances for integrating algo-
rithms or making them work sequentially.

In this respect, monitoring and quality control functions show similarities among the
inputs and the outputs of ML algorithms as evident by comparing Tables 4 and 5. While
the monitoring function deals with the tool life in a machining process, the quality
control function is used to ensure that machined parts fit the acceptable quality range.
Thus, these two functions could be potentially supported contextually and it is possible to
develop an ML algorithm for their combination. Moreover, in some cases, parameter
selection was used to determine quality measures (Strasser et al., 2018) and fatigue life
(M. Zhang et al., 2019), which are investigated under the quality control function too.
This shows an additional example where a potential combination could enable the
fulfilment of multiple functions simultaneously.

4.3. Supervision

Figure 5 Shows the classification of articles included in this review based on the ML
algorithms and manufacturing functions. Here, it is worth pointing out that most ML
algorithms used to support manufacturing are based on SL. Hence, articles that use SL
require labelled data, which arises as a limitation for the industrial use of these systems.
This issue is discussed in the section named as ‘Limitations of using Machine Learning in
Manufacturing’ in detail. Several articles (Barrionuevo et al., 2021; Cho et al., 2020;
Herriott & Spear, 2020; Sandru et al., 2022; B. Wang et al., 2022) have applied various
ML algorithms to the same problem to determine the optimal ML approach among a set
of alternatives. These were applied to assess and compare the performance of different
ML algorithms, thus contributing to the identification of superior methods within the
respective studies.

Moreover, in Figure 5, in line with the previous reviews on the topic (Mypati et al.,
2023; Nti et al.,, 2021; Paturi & Cheruku, 2021) and other examples in engineering and
neighbouring fields (Bertolini et al., 2021), ANN-based algorithms are the most common
ML applications in the article set. This is supposedly due to the fact that ANNs are
computational models that imitate the human brain and are practical for various
applications. With the exemption of RL algorithms, it appears that all other algorithms



PRODUCTION & MANUFACTURING RESEARCH e 33

are distributed equally across the various manufacturing functions (See Figure 5). As seen
in Figure 5, RL algorithms are almost exclusively found in articles categorized under the
domain of production scheduling and planning. This is likely due to the working
principle of RL that can learn from historical data to optimize schedules in real-time
(J. Li et al,, 2022).

4.4. Advantages of using machine learning in manufacturing

The analysis of the collected articles revealed some significant advantages concerning ML
support in manufacturing. The focus, here, is on functions whose fulfilment would be
strongly impractical or nearly impossible without ML or other Al systems. These key
advantages include:

e Predictive maintenance: ML algorithms can analyse sensor and historical data to
predict tool failures before they occur (Godreau et al., 2019; Mahmood et al., 2022;
Pratama et al.,, 2020; Song et al., 2020; Sun et al., 2022; J. B. Wang et al., 2022; Xie et
al,, 2021).
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¢ Quality control: ML algorithms can detect faults on production lines using real-time
data collected with cameras or sensors. They can identify anomalies or defects in
products, ensuring high-quality production, hence reducing manual inspections
(Chu et al, 2022; Z. Y. Liu et al., 2022; Manivannan, 2022; Xu et al., 2022; X.
Zhang et al., 2021).

e Process optimization: ML algorithms can analyse complex manufacturing processes
and identify areas for optimization. Manufacturing operations can be enhanced by
adjusting parameters (temperature, speed, pressure, or cutting speed in real-time) in
real-time. Hence, efficiency can be enhanced and resources can be utilized
(Radetzky et al., 2019; Torquato et al., 2021; B. Wang et al., 2022).

¢ Process automation: ML can support the labour-intensive tasks by automating
repetitive tasks to release human resources for more creative and complex tasks
(Dohale et al., 2021).

e Human-machine collaboration: Human and ML collaboration can improve deci-
sion-making and the efficiency of a task in a manufacturing process (Gonzalez
Rodriguez et al., 2020; Simeone et al., 2021; W. Wu et al., 2021).

4.5. Limitations of using machine learning in manufacturing

Although ML algorithms provide accurate, quick, and adaptive applications, they also
have several limitations. Data collection is the major limitation of ML algorithms that
support manufacturing. Despite the rapid increase in available data, problems may occur
such as format inconsistencies, poor data quality, and different standards (Al-Abassi et
al., 2020). The available manufacturing data can contain high dimensional data with
irrelevant and redundant information, which may have a strong influence on the
performance of the algorithms (Wuest et al., 2016). Another major limitation is the
need for pre-processing or manual labelling, which plays a vital role in the generation of
ML algorithms since it strongly affects the performance of the algorithms, especially with
SL. Depending on the amount of data used to train the ML algorithms, the process of
cleaning, normalizing, and transforming data can be extremely time-consuming (Wuest
et al., 2016). However, suitable tools are available that support the most common pre-
processing applications, such as normalizing, filtering, and resizing (Pham & Afify,
2005).

Moreover, overfitting is a significant limitation while training an SL algorithm. It can
cause poor performance and difficulty in interpreting the model (Bu & Zhang, 2020). A
growing concern in ML applications is to obtain the required labelled data for training an
SL algorithm. This creates difficulties while training a new algorithm since data labelling
is expensive and time-consuming (Asano et al., 2019). Two solutions have been inves-
tigated so far in the literature to solve the data labelling problems. One considers
unsupervised learning methods to avoid data labelling and utilize the available unlabelled
datasets. Another alternative is to develop ML algorithms specifically for data labelling
(Fredriksson et al., 2020, 2022; Silva et al., 2022).
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5. Research opportunities for machine learning-supported manufacturing

Readers can visualize in Figure 3 the trend of the growing number of publications on ML-
supported manufacturing, which looks exponential. As mentioned, it can be expected
that many applications and proposals will be published in the coming years. The
flourishing of the field does not guarantee standardization of practices, emergence of
dominant systems, and the connection between different algorithms, which was posited
in the previous section as a desirable output. Actually, at present, it is hard to assess the
real impact the introduction of ML in manufacturing had on companies’ capabilities and
efficiency. Few articles witness large-scale diffusion and implementation of some algo-
rithms. In the authors’ view, data labelling arises as a major hurdle to accelerate the
diffusion of ML in the manufacturing industry.

In this fast-evolving situation, research should be directed to maximize the practical
achievements derived from ML-supported manufacturing. Since algorithms and learning
mechanisms were attributed a major focus on the reviewed articles (see Figure 6), it can
be hypothesized that the future development of the field could be driven by manufactur-
ing exigencies rather than ML developments. The identification of these needs goes
beyond the scope of this paper. Nevertheless, the authors believe that some opportunities
offered by ML have not been adequately considered in the manufacturing field, even in
relation to currently supported manufacturing functions. In this context, Figure 6 (details
follow) summarizes the authors’ reading of the reviewed literature, which direction ML
supports in manufacturing could take, the remaining challenges, and which opportu-
nities can be seized. Based on the literature, the manufacturing industry managed the
functions discussed in this review using traditional methods provided in Figure 6. As
mentioned throughout this review, the support of ML algorithms in manufacturing is

Data acquisition and processing Algorithmic Model Application & Development
Challenges = * Missing or corrupted datasets * Speed and accuracy + Real-life application
Future + Unlabelled datasets + Unique applications + Standardization and
Research  Data sharing + Multi-source data blending normalization

irecti Z1 &
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Figure 6. General overview of ML support in manufacturing.
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increasing tremendously due to the advantages introduced by ML algorithms (See Figure
6) to automate and improve manufacturing operations. Nevertheless, although ML
algorithms improve the performance of the manufacturing industry, some challenges
are still to be addressed. These challenges arise as a result of the distinctive characteristics
of both manufacturing processes and ML algorithms. The authors identified four fields
that were deemed suitable for facing current challenges. These are explored in the
following subsections to suggest future research directions, especially in consideration
of the learning approaches that have been poorly capitalized on so far.

5.1. Transfer learning

One of the main assumptions in the majority of ML applications is that training and
potential data must have the same distribution and feature space (Pan & Yang, 2010; Qin
et al., 2022). However, with the development of industrial applications, it is unfeasible
and expensive to retrain a model for each process or machine. Hence, the possibility of
knowledge transfer becomes advantageous in this case. Transfer learning (TL) is used to
improve ML models by transferring prior information or knowledge from a domain into
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another one (Pan & Yang, 2010; Weiss et al., 2016). A potential application of TL in the
manufacturing domain follows.

J. B. Wang et al. (2022) and Song et al. (2020) worked on tool condition monitoring for
vertical machining by using similar input data with SL and UL, respectively, as presented
in Table 4. Song et al. (2020) used a deep CNN algorithm that can also be altered to
transfer this algorithm in J. B. Wang et al. (2022) with the help of TL, as shown in Figure
7. Thus, this reduces the necessity to train an algorithm for the same purpose with similar
input data.

Nevertheless, using TL in manufacturing is challenging because of the massive
amount of unlabelled data. Overall, TL applications on manufacturing functions show
great research potential since these enable the reduction of algorithm processing time
and the transfer of models to various manufacturing processes. This, in turn, requires the
definition of primitive model blocks that can be combined easily to form more complex
ML models.

5.2. Self-supervised learning

SSL uses a semi-automatic process to obtain data labels by predicting unknown sections
of the data based on the unlabelled input data. Specifically, the unlabelled data could be
transformed, incomplete, corrupted, or distorted (X. Liu et al., 2021). Despite the high
accuracy and success of SL and DL applications, the major reliance on labelled data
brings several problems while training an algorithm. Data labelling creates a major
problem in ML since it is expensive and time-consuming, especially in research areas
that require a high amount of labelled data (e.g. manufacturing process selection and
production monitoring) (X. Liu et al., 2021; Y. Liu et al., 2022). Another problem with a
pure SL algorithm is over-fitting, which behaves well while training and badly with the
test data (X. Li et al., 2019). The main advantage of SSL over UL is that the objective of the
SSL algorithm is to recover unknown sections of the data that is still uncertain in
supervised settings (X. Liu et al., 2021). For instance, based on the analysis conducted
in the current review, C. Shao et al. (2013) and Das et al. (2017) worked on predicting
weld status and quality, as presented in Table 4. These two studies used inputs based on

_________________________________
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Figure 8. Working principle of a self-supervised learning algorithm.
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machining and material properties. However, weld conditions can also be predicted by
using images of welded parts (Ai et al., 2023). With the application of SSL, both weld
images and machining properties, as well as material properties can be used to predict the
weld status. The typical working principle of an SSL algorithm is shown in Figure 8. In
the SSL pretraining stage, unlabelled images, such as those available in (Ai et al., 2023),
can be used to train the encoder. In the downstream stage, the pre-trained knowledge is
transferred to the encoder, which is trained to predict weld conditions. Hence, SSL
applications in manufacturing process selection, production monitoring, and quality
control can be explored to avoid the aforementioned problems.

5.3. Synthetic datasets

Successful ML algorithms require a huge amount of application of specific data that is
difficult to obtain. In the manufacturing industry, the data can be collected from a real-
life application or discrete-event-simulation (DES). The DES is used to generate synthetic
datasets for specific operations (Denkena et al., 2014). The generated synthetic data can
be utilized independently or in conjunction with the real data for ML training (Chan et
al., 2022). This particular application can be beneficial for tool path optimization in AM
processes. For example, a synthetic tool path dataset can be generated and used to train an
ML algorithm to optimize the most suitable tool path for a specific AM technology. Using
a synthetic dataset can improve the research proposed by Kim and Zohdi (2022) since
having extensive input data significantly improves the performance of SL algorithms.

5.4. Practical applications of algorithms and other opportunities

Other relevant research opportunities can be explored. These are formulated based on
the authors’ examination of the reviewed articles and the identification of areas that,
unexpectedly, were not dealt with.

The ML support for combining two or more manufacturing functions is worth
investigating. For example, scheduling and monitoring functions can be combined to
create a more advanced production schedule for scheduling maintenance operations for
tools and machines. As aforementioned, most ML applications include SL, which uses
labelled data for training. Hence, using a UL or SSL algorithm to study manufacturing
functions with unlabelled data represents a research opportunity since unlabelled data
increases daily.

Furthermore, most of the reviewed articles focused on a specific technology or
subset of technologies that can also be applied to manufacturing process selection.
While the use of ML in manufacturing is maturing, the ML is worth exploring
support in manufacturing process selection with the consideration of both additive
and traditional manufacturing technologies. In addition, the application of different
ML algorithms for the same manufacturing function could be beneficial to select the
algorithm that best suits the selected manufacturing function (Garouani et al,
2022).
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6. Conclusions

The primary objective of this review is to provide a comprehensive view of ML support in
manufacturing; a broad classification of 114 journal articles was made to this aim. Out of
these articles, more than one hundred were not included in the earlier reviews with
similar scopes, as documented in the methodological section.

In the literature, ML is classified based on the supervision of the data used during the
algorithm generation. The most commonly used algorithms to support manufacturing
applications are based on SL, and SL is followed by reinforcement, unsupervised, self-
supervised, and semi-SL. This review classifies ML support in manufacturing in terms of
inputs, outputs, and supervision of ML algorithms.

The analysis of the reviewed articles included the classification of ML applications in
terms of material selection and property prediction, production scheduling and planning,
manufacturing process selection, production monitoring, and quality control operations.
For all these functions, the introduction of ML has given rise to tangible improvements
despite residual issues in data processing and labelling.

The majority of articles included in the current review are mono-functional; namely,
the ML application was restricted to a single combination of manufacturing process or
control process and material. This aspect was seen as the main limitation of ML supports
in manufacturing. A fundamental advancement is then the creation of algorithms that
can cover a broader spectrum of applications with limited specialization. For this reason,
the authors have identified TL as a major opportunity for a step change in the support of
manufacturing enabled by ML.

The additional outcomes of the current review can be summarized as follows:

e The application of supervised and UL algorithms was sometimes juxtaposed. In this
case, UL was used to pre-process the dataset, and SL was then applied to solve the
actual problem.

e ML algorithms were generated with large amounts of data or a big dataset.

e Hybrid ML algorithms were also used to support manufacturing applications.

e Similarities were found among inputs and outputs of ML algorithms for different
articles, which pave the way for potential future combined applications.

Opverall, the authors see the following research opportunities as the most prominent; as
such, these can be considered research recommendations for the scientific community:

o Generating algorithms covering multiple functions presented in this research.

¢ Exploring the potential benefits of TL in manufacturing applications.

¢ Considering the use of hybrid systems that implement SL and UL algorithms.

¢ Exploring the advantages of generating a synthetic dataset to improve the accuracy
of ML algorithms.

e Investigating the use of SSL to overcome the necessary data labelling.

¢ Exploring ML applications to identify suitable hybrid manufacturing processes that
combine additive and subtractive manufacturing.
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Al Al

AM AM

ANN Artificial neural network

Avg Avg
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DNN Deep neural network
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DRL Deep reinforcement learning
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MC Manufacturing condition
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MTS Multivariate time series
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QL Q-learning
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PCA Principal component analysis
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RR Ridge regression
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