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Automatic assessment of infant 
carrying and holding using at‑home 
wearable recordings
Manu Airaksinen 1,2*, Einari Vaaras 3, Leena Haataja 1,4, Okko Räsänen 3 & 
Sampsa Vanhatalo 1,2

Assessing infant carrying and holding (C/H), or physical infant‑caregiver interaction, is important for a 
wide range of contexts in development research. An automated detection and quantification of infant 
C/H is particularly needed in long term at‑home studies where development of infants’ neurobehavior 
is measured using wearable devices. Here, we first developed a phenomenological categorization for 
physical infant‑caregiver interactions to support five different definitions of C/H behaviors. Then, we 
trained and assessed deep learning‑based classifiers for their automatic detection from multi‑sensor 
wearable recordings that were originally used for mobile assessment of infants’ motor development. 
Our results show that an automated C/H detection is feasible at few‑second temporal accuracy. With 
the best C/H definition, the automated detector shows 96% accuracy and 0.56 kappa, which is slightly 
less than the video‑based inter‑rater agreement between trained human experts (98% accuracy, 0.77 
kappa). The classifier performance varies with C/H definition reflecting the extent to which infants’ 
movements are present in each C/H variant. A systematic benchmarking experiment shows that the 
widely used actigraphy‑based method ignores the normally occurring C/H behaviors. Finally, we 
show proof‑of‑concept for the utility of the novel classifier in studying C/H behavior across infant 
development. Particularly, we show that matching the C/H detections to individuals’ gross motor 
ability discloses novel insights to infant‑parent interaction.
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Assessment of infants’ daily activities and spontaneous behaviors has become an important target in a variety of 
disciplines, including developmental psychology, early education, social work, as well as many fields of health and 
medical  care1–4. These assessments are conventionally based on a large repertoire of questionnaires for parents 
that can be complemented with direct observations by study personnel in the lab or home environment. However, 
the parental questionnaires are unavoidably subjective and only partially reliable, while the direct observations 
by study personnel are subjective, resource-intensive, and they interfere with a child’s natural behavior in one 
way or another. Novel methods are thus needed to obtain objective, quantitative, and reliable measures of a 
child’s typical  activity3,5,6.

A key challenge in infant studies is to collect ecologically relevant data that typically implies out-of-hospital/
lab recordings, i.e., measurements done at home or in home-like environments. Recent technological develop-
ment has introduced new possibilities for recording and analyzing such out-of-hospital recordings based on 
measuring movements, audio, or  video1,7. Parental surveys have indicated privacy concerns with in-home audio 
and video  recordings8,9 favoring the use of movement sensors that collect far less identifiable data. Such move-
ment sensors would typically collect tri-axial measures of both linear acceleration (accelerometer) and angular 
velocity (gyroscope)10,11, and they can be attached to infants  individually12,13 or by using more comprehensive 
multi-sensor  suits5,10,14.  Analysis of the data is traditionally based on straightforward quantification of the 
amount of movements (i.e., an actigraphy-type measure)15, while machine learning-based analysis enables more 
sophisticated and higher level interpretations of the movement  data10,16.
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Performing research out-of-hospital/lab implies data collection in partly or completely unsupervised 
settings, which poses several additional challenges that are not encountered when recordings are performed 
by professionals in a fully controlled environment. In studies on infants’ spontaneous activity, it is particularly 
important to distinguish time periods where the infant has been moving him/herself vs. times where the infant 
was carried or held by  someone17. In addition to being a potential confounder in movement assessment, parental 
holding behavior is an interesting measure per se18 since it can impact infants’ developmental  outcomes19. 
Detection of infants’ carrying/holding is often attempted by applying movement  thresholds15,16 assuming 
that externally generated movements are larger than infant-generated movements. An alternative strategy 
is to measure co-incident activities in sensors attached to both the infant and the  caregiver13, relying on the 
assumption that carrying/holding is reflected in the movements of both the infant and the parent synchronously. 
While the studies may report relatively high classifier performances with the given training datasets, there are as 
of yet insufficient means to measure holding/carrying behavior in unsupervised settings, such as out-of-hospital/
lab without direct guidance by the research personnel.

Here, we set out to design and construct a deep learning-based classifier for the multi-sensor recordings 
with the wearable MAIJU (Motor Assessment of Infants with a  Jumpsuit10). We tested and trained the algorithm 
systematically in different kinds of spontaneous holding and carrying behaviors recorded from spontaneous 
every-day activity. Carrying and holding the infant by the adult caregiver is not a stereotyped movement 
behavior akin to crawling or walking; it is rather a spectrum of behaviors with varying levels of adult-infant 
physical contacts or varying effects on infant’s own movements. Such non-discrete behavioral spectra also 
pose challenges to human visual  classification10,20,21, the basis of supervised algorithmic training; we therefore 
developed an intuitive classification scheme and tested its related human inter-rater agreement levels to provide 
a benchmark for the classifier  performance10,22. We also examined the effect of category combinations on the 
classifier performance. Finally, we provide a proof-of-concept use of the newly trained classifiers in assessing 
unsupervised multi-hour home recordings in infants at different ages, and we show how the carrying/holding 
classifier can be matched with infants’ motor performance during the study sessions.

Methods
Overview
The overall rationale in our present development study is presented in Fig. 1. The recordings were performed 
with the MAIJU wearable (Fig. 1a), and the classifier training was performed using annotations that were avail-
able from synchronized video recordings. All videos were annotated independently by two observers using the 
categorization scheme for physical infant-parent interaction (Fig. 1b); these annotations were then combined into 
five different binary definitions of infant carrying and/or holding (#1–5; Fig. 1c), jointly called carrying/holding 
detection (C/H). The suitability of these carrying definitions was tested first with human inter-rater agreement, 
then by assessing performance of automated classifier algorithms. The best-performing binary definition was 
investigated further to examine how the classification performance would be affected by the following changes 
in the recording setup: (1) sensor placement or number of sensors, (2) recording sampling rate, and (3) sensor 
modality (accelerometer vs gyroscope). Finally, we conducted proof-of-concept experiments to showcase the 
potential utility of IMU sensor-based recordings in the study of infant carrying.

MAIJU recordings
We used data from a novel multi-sensor infant wearable MAIJU (Motor ability Assessment of Infants with a 
JUmpsuit; Fig. 1a)10. It is essentially a commonplace full body overall swimsuit equipped with four movement 
sensors, one in each limb with a proximal placement. The sensors stream inertial measurement unit (IMU) data 
(3-axis accelerometer and gyroscope) over a low-energy Bluetooth (BLE, v5.0) connection to a nearby mobile 
phone using a custom-built iOS application, “MAIJU logger” (Kaasa GmbH, Düsseldorf, Germany). The data 
is collected at 52 Hz or 1248 measurement values per second (for further details,  see10). As described in detail 
 in10, the non-videoed in-home recordings were mostly performed by the parents without direct supervision. The 
present study collated hour-long recordings that were performed in the infants’ homes during free play  time10. 
The dataset (DS-1) used for classifier training and performance testing included synchronized video recordings 
to allow human annotations. DS-1 consisted of N = 30 infants between 6.6 and 16.8 months of age with recordings 
lasting from 57 to 62 min (average 60 min), and a total recording time corresponding to 1799 min (Fig. 2a–d). 
Another dataset, DS-2, was used for the proof-of-concept assessment and it included minimally controlled 
at-home recordings of N = 160 infants between 4.1 and 18.4 months of age, consisting of parent-reported “free 
play”. These recordings lasted from 22 to 393 min (average 131 min), with a total recording time corresponding 
to 21,082 min (351 h). Both datasets (DS-1 and 2) aim to utilize data collected during “free play” of the infants. 
During “free play” the parents were instructed to not spontaneously initiate C/H behavior but were encouraged 
to respond naturally to the infants’ initiations/behavior (i.e., infant requiring attention or consolation, or safe-
guarding from harm’s way). In DS-2, the parents were instructed to keep a record of the rough time-windows 
during which the “free play” occurred. Both datasets were obtained as convenience samples from typically 
developing infants whose parents were willing to participate in the study.

The recordings in DS-2 were processed with the MAIJU analysis pipeline introduced  in10 where the recordings 
are automatically classified for parallel posture (7 categories) and movement (9 categories) tracks at a 1-s level 
time resolution. The posture and movement categories were collated into recording-specific distributions that 
were used as feature vectors in computing the “motility age” of the infant based on the recording, denoted as 
BIMS (BABA Infant Motor Score)10,23. In BIMS, Gaussian Process Regression (GPR) is used to regress (using 
cross-validation) the recording-based feature vectors against the chronological ages at recording. The resulting 
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age estimates are normalized into a range of 0–100, where 0 denotes undeveloped gross motor capacity (ca. 
4-month-old level), and 100 denotes the full acquisition of fluent walking (ca. 16-month-old level).

Description of the C/H categorization scheme
The behavioral repertoire of physical caregiver-infant interactions is large, and it can be categorized in any 
number of complementary dimensions. For instance, one could categorize it according to the assumed intention 
of the interaction (e.g., “parent is soothing the baby”), or more objectively by describing the mere physical 
motions that can be observed in the infant during the intervention (e.g., “the baby is being held with a rocking 
motion”). The overall motivation in our phenomenological categories is to define what is the relationship of the 
child (wearing the sensors) to the outside source of physical interaction (the caregiver). Obviously, the IMU-
based movement sensors are good for sensing physical attributes of the infant-caregiver interaction (acceleration, 
angular velocity), but they cannot sense the human intentions present in the interactions. The IMU sensors 
should therefore not be expected to differentiate between infant-caregiver interactions where the caregiver is not 
physically moving. The proposed categorization scheme thus describes the physical movements only; notably, 
this could still allow ad-hoc inferences about intentionality of the actions if needed.

Rationale of the categorization scheme
As described in Fig. 1 and Table 1, the proposed categorization proceeds through a simple and intuitive binary 
decision tree: The first stage question (Is the infant in physical contact with another human?) determines whether 

Figure 1.  (a) Photograph of a 10-month-old infant with the MAIJU wearable. (b) Decision tree diagram used 
for the annotation of physical infant-parent interactions. (c) Block diagram of the full study design. The middle 
box shows the five carrying definitions (#1–5) based on the annotated categories shown in B. Image of the infant 
is reproduced with written parental consent. For further details, see Table 1 and the paragraph on the rationale 
of the categorization scheme.
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Figure 2.  Summary of the recording dataset and annotation statistics. (a) Age-based histograms for the number 
of infants (blue) and the amount of annotated data (orange). (b) Proportions of annotated data in each recording 
(dots) and each annotator (left and right-side violin plots). (c) Cumulative distributions of the segment lengths 
of different annotations, i.e., categories of physical infant-caregiver interactions. Note the predominance of 
brief segments that characterize the infant-caregiver interactions, as compared to the very long segments that 
are typically present during independent movement. (d) Cumulative distributions of the segment lengths for 
different carrying definitions. Note that most of carrying/holding by any definition is brief, exhibiting durations 
less than 10 s.

Table 1.  Proposed physical infant-caregiver interaction categorization scheme, alongside the human inter-
rater agreement (kappa). Please see further description in the paragraph “Rationale of the categorization 
scheme” and Fig. 1.

Activity Definition Kappa

Independent movement (IM) There is no outside contact with the infant present .85

Passive support (PS) Infant is in physical contact with another person. Infant is primarily self-supported (i.e., maintain postural balance by themself). Contact 
does not cause movement .46

Active support (AS) Same as PS but contact causes movement .32

Passive carry (PC) Infant is in physical contact with another person. The contact primarily maintains the infant’s postural balance. Contact does not cause 
movement .45

Active carry (AC) Same as PC but contact causes movement .75

Overall .67
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the infant is moving independently. The second stage presents two questions (Is the infant self-supported? and 
Is the contact moving the infant?) that jointly determine the category of physical caregiver-infant interaction, 
which produces four alternatives: The interaction is considered as Passive Support (PS) if there is only touch or 
support without physically displacing the infant (e.g., child crawling on or leaning towards an adult), while the 
interaction is called Active Support (AS) if the infant is also being moved (e.g., walking the infant from the hand). 
Alternatively, the interaction is considered Passive Carrying (PC) if the adult is holding the infant without moving 
(e.g., laying still on the lap), while Active Carrying (AC) refers to a situation where infant is being moved while 
carrying (e.g., lifting from the floor or carrying around).

It is obvious that all these behavioral categories could be readily subdivided to many sub-categories. Carrying 
could be divided to, for instance, holding, lifting, and laying; Likewise, support could be divided to at least 
postural support, movement support, and touching. Such detailed behavioral descriptions would, however, 
complicate the taxonomy too much to allow an appropriate training of classifier algorithms with any reasonably 
achievable datasets. They would directly cause at least perceptual ambiguity in the definitions. For instance, 
the concept “self ” in the support class could be challenged by comparing infant’s sitting on the caregiver’s lap 
versus in a chair. From the infant’s perspective, they could be physically comparable situations, while from the 
human interaction perspective the parent could be considered to carry rather than support. In the proposed 
categorization scheme, this example would fall into the “support” category if the baby is sitting on the lap with 
their back straight (contact only from the legs), but into “carrying”, if they are leaning for support from the parent. 
This detail in our definitions differs slightly from that reported  by13: Their differentiation between “holding” vs 
“non-holding” was based on observing whether the “child’s weight is completely supported by caregiver” [sic] 
or not; hence, the example with sitting on the lap would be categorized as holding in both cases.

The eventual use case of the detector may often determine what combinations are needed from the originally 
detected target classes. For example, the use case in MAIJU-based analyses ideally needs filtering out the non-IM 
periods (no independent movement), because the MAIJU wearable is primarily used for the assessment of an 
infant’s own motor  performance10,14. We identified altogether five different binary definitions of interest to be 
used for automatic detection based on combinations of the annotated categories (Table 2; Fig. 1c), which range 
from a strict to loose criterion of what can be seen as “carrying” vs “non-carrying”.

Annotation
Three trained human observers performed independent annotations using the open-source Anvil software 
(http:// www. anvil- softw are. de/) that allows parallel visualization of the video and the sensor data. The annotators 
training consisted of an initial in-person training session, after which the annotators performed an exercise 
annotation of a 1-h recording, which was analyzed and reflected in another in-person session, where the 
potential questions that had arisen during the training annotation were addressed. Each recording received two 
independent annotations. In addition to the proposed categories, the annotators noted an extra category, “out of 
screen”, for time periods where the infant was not visible on the video. These time-periods were excluded from 
the loss function in classifier training.

Neural network classifier
The neural network architecture (Fig. 3a,b) used in the present experiments was identical to that reported 
 earlier10,14 consisting of an multi-head 2D-convolutional “encoder” part inspired  by24 and a 1D-convolutional 
“timeseries modeling” part with residual connections and gated dilated convolutions inspired  by25. In brief, the 
data is first segmented into 2.3 s (120 samples per channel) frames with 50% overlap (1.15 s; 60 samples). These 
frames are then fed as a batch sequence into the neural network classifier (Fig. 3a), where the encoder module 
performs frame-level (intra- and inter-) sensor fusion to obtain a 160-dimensional latent expression based on 
the raw accelerometer and gyroscope signals. The encoder takes in the accelerometer and gyroscope signals 
separately. In the case of accelerometer-only training, we tested two variants: First, a “raw” version, where the 
raw accelerometer data is input into the ‘accelerometer’ head, and the other encoder heads are ignored. Second, 
a “pre-processed” version, where low-pass filtered (f < 0.5 Hz) accelerometer data is fed into the accelerometer 
head and a high-pass filtered (f > 0.5 Hz) version of the accelerometer signal is used instead of the gyroscope 
signal. The high/low-pass filtering was used to split the gravity offset (containing orientational information) that 
is always present in the raw accelerometer signal from the rest (containing movement information). The high-
pass filter was implemented as an 8th order Butterworth filter with a cut-off frequency of 0.5 Hz. The low-pass 
component was obtained by subtracting the high-pass component from the original signal. Finally, the classifier 

Table 2.  Candidate binary definitions for carrying/holding based on the annotated categories, alongside the 
human inter-rater agreement (kappa).

Binary definition Non-carry categories Carrying categories Kappa

1 “AC versus rest” IM, PS, AS, PC AC .74

2 “Carry versus rest” IM, PS, AS PC, AC .77

3 “Active versus rest” IM, PS, PC AC, AC .66

4 “IM + PS versus rest” IM, PS PS, AS, PC, AC .76

5 “IM versus rest” IM AS, PC, AC .85

http://www.anvil-software.de/
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module models the frame-to-frame time dynamics of these features and outputs SoftMax probabilities for each 
target category.

All classifier training experiments were performed with tenfold cross validation with a fixed random seed. The 
training was performed with minibatch gradient descent using the ADAM algorithm (batch size 100 consecutive 
frames, learning rate  10−4, β1 = 0.9, β2 = 0.999, ε =  10−8) with a weighted categorical cross-entropy loss. For binary 
classifiers, a two-category output size was used. To mitigate the effects of unbalanced category distributions 
during training, each frame’s error in the loss function was weighted with the inverse probability of the target 
class occurrence. Sample and sensor dropout (both p = 0.3) were applied randomly to the input signals during 
training to ensure the robustness of the trained models. The training was run for 200 epochs and held out 
validation from the training split data (20% of training data) was used to select the best performing model in 
terms of the unweighted average F1 score.

Effects of recording constellation on classifier performance
Next, we studied systematically how changes in the recording settings would affect the C/H classifier performance; 
in particular, we analyzed the effects of data sampling rate, sensor modality (accelerometer vs. gyroscope), or 
combinations of sensor placements. Sampling rate was studied with three different frequencies: 52 Hz (full 
resolution), 26 Hz, and 13 Hz. The low-resolution signals were obtained by decimating the full resolution signals 
by an order of 2 or 4, respectively, and then up-sampling and low-pass filtering the decimated signals back into 
the original resolution. The up sampling was performed to keep the classifier architectures identical. Only the 
signals from the selected sensors and modalities were concatenated into the classifier input. C/H definition #2 
was used as the benchmark, and the null hypothesis (two-tailed paired t-test) was that the difference between 
the otherwise equivalent alternative recording settings is zero.

Figure 3.  Classifier architecture and example recording. (a) The utilized end-to-end neural network classifier. 
The encoder module processes input data in modality-specific heads that are combined into a single latent 
representation vector. The classifier module models the time dynamics of the latent features to obtain the 
classification output. The input data pipelines for the sensor modality variants are color coded with red (“raw 
accelerometer”), orange (“pre-processed accelerometer”) and blue (“accelerometer + gyroscope”) arrows. (b) 
Example 10-min segment of a recording (accelerometer), annotations, and classifier output.
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Table 3.  Inter-rater agreements (Human vs. Human; left side) and classifier performances (Classifier vs. 
Human; right side) for the performed experiments (8 different classification tasks). Metrics include Accuracy, 
kappa, recall, precision, and F1-score. The weighted scores are based on the annotated proportions.

Raw annotations (5 class) Human versus human Accuracy: 91.9% Classifier versus human Accuracy: 80.3%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM 86.8 0.85 99.5 96.6 98 0.24 83.8 96 89.5

PS 5.48 0.46 37.9 67.7 48.5 0.09 27.2 8.4 12.9

AS 2.43 0.32 61.3 23.2 33.7 0.06 19.2 4.8 7.6

PC 2 0.45 31.5 84.8 46 0.11 14.9 9.7 11.7

AC 3.31 0.75 76.9 73.8 75.3 0.44 63 35.5 45.4

W Average 0.67 91.9 92.5 91.4 0.21 80.3 90.2 84.6

UW Average 61.4 69.2 60.3 41.6 30.9 33.4

IM versus passive versus active (3 class) Human versus human Accuracy: 93.4% Classifier versus human Accuracy: 84.2%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM 86.8 0.85 99.5 96.6 98 0.29 87.3 96.2 91.5

Passive 7.5 0.46 45.3 89.7 60.2 0.14 30.8 13.4 18.7

Active 5.7 0.32 84.8 56.3 67.6 0.39 61.8 31.7 41.9

W Average 0.73 93.4 94 92.8 0.27 84.2 90.6 86.9

UW Average 76.5 80.8 75.3 60 47.1 50.7

IM versus support versus carry (3 class) Human versus human Accuracy: 94.4% Classifier versus human Accuracy: 83.7%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM 86.8 0.85 99.5 96.6 98 0.3 86.6 96.4 91.2

Support 7.9 0.63 62.2 69.8 65.8 0.11 30.8 10.7 15.9

Carrying 5.3 0.77 67.5 93.1 78.2 0.47 65.4 39.9 49.6

W Average 0.77 94.4 94.1 94.1 0.28 83.7 91.1 86.8

UW Average 76.4 86.5 80.7 60.9 49 52.2

Def #1 (binary) Human versus human Accuracy: 98.4% Classifier versus human Accuracy: 96.7%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM+PS+AS+P 96.7 0.75 99.1 99.2 99.2 0.5 97.5 99 98.3

AC 3.3 0.75 76.9 73.8 75.3 0.5 65.4 42.5 51.5

W Average 0.75 98.4 98.4 98.4 0.5 96.7 97.5 97

UW Average 88 86.5 87.2 81.5 70.8 74.9

Def #2 (binary) Human versus human Accuracy: 97.7% Classifier versus human Accuracy: 96.3%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM+PS+AS 94.7 0.77 99.7 97.9 98.8 0.56 97.4 98.8 98.1

PC+AC 5.3 0.77 67.5 93.1 78.2 0.56 68.5 50.5 58.2

W Average 0.77 97.7 97.6 97.5 0.56 96.3 97 96.6

UW Average 83.6 95.5 88.5 83 74.7 78.1

Def #3 (binary) Human versus human Accuracy: 96.3% Classifier versus human Accuracy: 93.9%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM+PS+PC 94.3 0.66 96.8 99.3 98 0.4 95.1 98.6 96.8

AS+AC 5.7 0.66 84.8 56.3 67.7 0.4 63.2 32.3 42.8

W Average 0.66 96.3 97.3 96.6 0.4 93.9 96.2 94.8

UW Average 90.8 77.8 92.8 79.1 65.4 69.8

Def #4 (binary) Human versus human Accuracy: 96.6% Classifier versus human Accuracy: 93.7%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM+PS 92.3 0.76 97.9 98.4 98.1 0.47 94.9 98.4 96.6

AS+PC+AC 7.7 0.76 80.3 75.4 77.8 0.47 67.5 39.2 49.6

W Average 0.76 96.6 96.7 96.6 0.47 93.7 95.7 94.5

UW Average 89.1 86.9 88 81.2 68.8 73.1

Def #5 (binary) Human versus human Accuracy: 96.5% Classifier versus human Accuracy: 86.6%

Proportion annotated (%) Kappa Recall (%) Precision (%) F1 (%) Kappa Recall (%) Precision (%) F1 (%)

IM 86.8 0.85 99.5 96.6 98 0.32 89 96.2 92.5

PS+AS+PC+AC 13.2 0.85 79.1 96.4 86.9 0.32 56.7 29.5 38.8

W Average 0.85 96.5 96.5 96.4 0.32 86.6 91.2 88.5

UW Average 89.3 96.5 92.4 72.8 62.9 65.6
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Performance metrics
In the figures we use two main performance metrics for the results computed from the confusion matrix: Cohen’s 
kappa (k) and overall accuracy (acc). Thorough metrics, including precision, recall, and F1 score, are presented 
in Table 3.

where tp = true positives, tn = true negatives, fp = false positives, fn = false negatives.
For classifier performance, the confusion matrix is computed based on the frames where the human annotators 

were in agreement. In all cases, the frames denoted as “out of screen” in the annotations were discarded. Overall 
accuracy answers to the question “what is the probability that a random frame from a recording is classified 
correctly”. Due to the unbalanced nature of the category distributions, however, its information value is limited 
in assessing classifier performance in less represented categories. To balance this, we use the kappa score which 
gives a balanced correlation-like score from [− 1, 1], where a score of 0 denotes chance-level performance (1 being 
perfect and -1 anti-perfect). It could be argued that the similar Matthew’s Correlation Coefficient (MCC) would 
be a superior metric to kappa, especially for imbalanced category  distributions26, but we chose to use kappa due 
to its conventional position in reporting inter-rater agreement.

Comparison to actigraphy‑based detection
Actigraphy refers to the common methodology of using single wrist- or ankle-placed accelerometers to measure 
the overall quantity of movements over time. It is commonly used to quantify physical activity as a cumulative 
count of active and/or inactive epochs in a large variety of contexts, such as developmental  studies15,27 or sleep 
 studies28. The exact algorithms used in actigraphy analyses may be undisclosed or they vary substantially, with 
the most common directions being (1) digital integration of signal energy, (2) zero-crossing rate, and (3) time 
above a  threshold28. For the present study, we studied how well the thresholding of digital integration-based 
features can perform in the classification tasks #1–5. The algorithm was implemented similarly  to29, where the 
magnitude signal from the tri-axial accelerometer signals ax,y,z was obtained as

The resulting actigraphy signal (amag) was band-pass filtered into frequency range of 1–6 Hz with a 4th-order 
Butterworth filter, and a moving integral value was computed for each 2.3-s frame as the sum of absolute 
magnitude values within the frame.

Ethics approval and consent to participate
The study was approved by the relevant Ethics Commission and the Children’s Hospital, Helsinki University 
Hospital, Helsinki, Finland. All methods were performed in accordance with the relevant guidelines and 
regulations in place in Children’s Hospital of Helsinki University Hospital. An informed consent was obtained 
from the legal guardian(s) of all subjects. An informed written consent was also obtained from the legal 
guardian(s) of the infant shown in Fig. 1a to be used in an online open-access publication.

Results
E1: Annotation
Distributions
The recording-level statistics for the annotations are shown in Fig. 2b for both annotators. The overall statistics 
are presented in Table 3. Independent movement was the dominant category, with an overall mean value of 86% 
(range 64–97%) annotated. The next most common category was “support passive” with 5.6% (0–17%), followed 
by “active carrying” 3.5% (0.2–13%), “active support” 2.5% (0–13%), and “passive carrying” 2.1% (0–15%).

Segment length analysis
The cumulative distributions of annotated segment lengths for the raw annotations (Fig. 2c) and binary 
definitions (Fig. 2d) show that over 40% of annotations have a segment length between 1 and 5 s, corresponding 
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to roughly 10% of the total amount of annotated C/H time. For the binary definitions, the annotated segment 
lengths get longer (i.e., the cumulative distribution becomes flatter) with looser definitions, as expected. These 
distributions suggest suitable lower bounds for the classifier’s temporal resolution between 1 and 5 s, because a 
large proportion (~ 40%) of individual segments are within this range. The optimal window length is a trade-
off between phenomenal resolution (given by the annotations) and the amount of recording data to base the 
classification on (given by the sensors). To harmonize analytic pipelines, we found it reasonable to use window 
length of 2.3 s with 50% overlap for the present C/H detection, because the same was already used in our previous 
classifier development for the MAIJU-based motor  assessment10 (Fig. 2c,d).
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Figure 4.  Human inter-rater agreement and classifier performance. (a) Human inter-rater agreement and 
classifier performance metrics for the definitions of C/H or physical infant-parent interaction. Results are 
reported as accuracy and Cohen’s kappa. For the top row, the horizontal lines denote the overall inter-rater 
agreement (solid) and the classifier vs human performance (dashed). (b) Confusion matrices for the human 
inter-rater agreement (top) and human vs machine classifications (bottom) for the original annotations (left) 
and the best-performing binary definition, C/H Definition 2 (right). (c) Effect of sensor placement (left), 
sampling frequency (middle), and sensor modality (right) on the classification performance (kappa) for C/H 
Definition 2. The boxplots show the median, IQR and range of experiment values for the cases where the 
given attribute is held constant. The gray lines connect systems with otherwise equivalent parameters. Two-
tailed paired t-tests are used to test for the null hypothesis that the differences between otherwise equivalent 
systems’ performances are zero (*p < .05; **p < .005; ***p < .0001). (d) Summary of the findings presented in (c), 
with sensor modalities indicated by different colors, and the range of the sampling frequencies is plotted with 
whiskers. Note the systematic decline in classifier performance when reducing the sensor combination from 
the four-limb recordings to single-sensor recording from the arm. Also note the superiority of classification 
based on a combination of accelerometer and gyroscope (blue), as well as the markedly poorer classification 
performance when using the raw accelerometer signals only (orange and red).
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Human inter-rater agreement
The inter-rater agreement for the full five-category annotation was k = 0.67 (Cohen’s kappa). For single-category/
binary classifications, the inter-rater agreements ranged from 0.32 to 0.85 (Tables 1, 2 and 3, Fig. 4a). IM and 
AC have very high agreement levels, but the other categories (PS, AS, PC) have considerably lower agreement 
between 0.32 and 0.46. The confusion matrices of the original annotations (Fig. 4b, top left) show that AS is the 
most ambiguous category, with a considerable confusion with all the other categories. However, combining the 
original annotations into three-category variants (IM vs. Passive vs. Active or IM vs. Support vs. Carry; Fig. 4a 
top middle and top right; Table 3) leads to a considerable increase in the inter-rater agreement (k = 0.72 and 
0.76, respectively). For the binary definitions, the inter-rater agreement is around k = 0.76 for C/H definitions 
#1, #2, and #4, and the lowest (0.56) for #3. Definition #5, corresponding to IM, scores the highest kappa (0.85).

E2: Classification performance
The feasibility of classifier training was tested for the full categorization scheme (Fig. 1b) by training classifiers 
with the full 4-sensor MAIJU data (both accelerometer and gyroscope at 52 Hz). The C/H definition with 
the best-performing classifier was then selected for further experiments where we studied the effect of sensor 
placement, sampling rate, and sensor modality (accelerometer vs gyroscope) to classifier performance.

Carrying definitions
The performance of the classifier algorithm is detailed in Fig. 4a and Table 3 alongside the corresponding human 
inter-rater agreement metric. We first examined the full multi-class classifier (top row): it was found to perform 
at an overall level of k = 0.2–0.3, and the category-specific kappa values for these classifiers is within the range 
0.1–0.5. Despite being above chance level, the performance is too low to be of practical utility; that is clearly seen 
in the confusion matrix for the original five-category classifier (Fig. 4b, bottom left), where the classifier output is 
heavily biased towards the IM category in every case. For the single categories, the best-performing metrics are 
obtained with AC (for original categories; k = 0.43) and “Carrying” (AC + PC, k = 0.47) in the IM vs Support vs 
Carrying classifier. It is important to note, however, that IMU sensor-based classification performance does not 
necessarily follow the video-based inter-rater agreement of the annotations, as is well seen in the performance 
of IM (kIM,irr = 0.85 to kIM,cls = 0.24).

Next, we examined how much classifier performance could be improved by re-defining the target categories 
into a binary classification task (Fig. 4a, bottom), which resulted in a far higher performance: The best performing 
C/H binary definitions were #2 (AC + PC, acc = 96%, k = 0.56) and #1 (AC, acc = 97%, k = 0.50). Intriguingly, 
the confusion matrix for #2 (Fig. 4b, bottom right) shows that the type I error (false positives) for carrying is 
on a par with the inter-rater agreement confusion matrix, while type II error (false negatives) is inferior to the 
annotations, missing roughly half of the 2.3 s frames of carrying.

Effects of recording constellation on classifier performance
The results are detailed in Fig. 4c and d. Figure 4c presents performance (kappa) of all classifier alternatives 
that were trained with the common property fixed. The greatest effect on classifier performance was found to 
be caused by the sensor placement. The full four-sensor recording yielded the best result (t(8) > 4, p < 0.005 for 
all). The three-sensor recordings (1 arm + 2 legs vs. 2 arms + 1 leg) were somewhat inferior to the four-sensor 
recordings, but they showed no significant differences between each other (t(< 8) = 0.07, p = 0.9) . For two-sensor 
recordings, the best classifier performance was obtained with a recording including one arm and one leg, which 
was significantly better than the recordings including both legs (t(8) = 3.8 , p < 0.05). For single-sensors, one 
leg was significantly better than one arm (t(8) = 3.8, p < 0.005), but both of them showed a very poor overall 
performance (k range 0.02–0.25).

There were no significant differences (t(23) range = 0.02–0.5, p > 0.05) between the sampling rate variants; 
therefore, the Fig. 4c data is presented in an alternative way in Fig. 4d, showing each sensor modality as an own 
track according to sensor placements, and the results with different sampling rates are presented with the range.

The effect of sensor modality was statistically very significant (t(23) range = 5.6–18, p < 0.0001). However, the 
difference between recordings with and without gyroscope was only modest when the accelerometer data was 
pre-processed by splitting the low-pass gravitational component from the high-pass part. The classifier based 
on the “raw accelerometer” data yielded a clearly lower performance (k = 0.3).

These experiments together indicate that C/H classification is significantly improved by adding more sensors, 
and the performance could perhaps improve even further with more than four sensors. Sensor locations did 
also contribute to the classifier performance, especially when both upper and lower extremities were included. 
Sampling rate, however, was not found to affect the results in a meaningful manner. These findings have practical 
implications since higher data rates will pose challenges to a continuous data streaming over the BLE connection, 
and in many cases a high number of sensors may be otherwise impractical. The practical compromise between 
classifier performance and minimal recording configuration was found to be a combination of two sensors (1 
arm + 1 leg), using both accelerometer and gyroscope, and 13 Hz sampling rate, yielding k = 0.45.

Comparison to actigraphy‑based detection
The results obtained with varying thresholds for the actigraphy-based detection for C/H definitions #1 (best-
performing for actigraphy) and #2 (best performing for proposed method) are presented in Fig. 5a. The clas-
sification performance was very poor (k < 0.1 for all C/H binary definitions), indicating a nearly chance-level 
classification. Moreover, the finding was essentially unaffected by increasing the window lengths from 1.15 to 
10 s. These results approach the lower-end in the variation seen with the properly trained classifier using data 
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from a single arm-attached accelerometer sensor; but the actigraphy results were considerably worse than the 
properly trained classifier based on single-sensor data from one leg (Fig. 4d; kacg = 0.06 vs. kproposed = 0.25).

Proof‑of‑concept application in developmental research
Infant postures during carrying
In our final set of experiments, we showcase the potential utility of the trained carrying classifier alongside the 
MAIJU wearable in studying physical infant-caregiver interactions. For these examples we utilize another dataset 
(DS-2) of minimally supervised at-home recordings (without video) consisting of N = 160 recordings from 58 
infants (age range 4–18 months)23. The recordings were processed and automatically classified for carrying with 
the proposed method (C/H definition #2), as well as concurrently classified for posture and movement based on 
the MAIJU analysis  pipeline10,23. Only those time windows were retained from the multi-hour recordings that 
were indicated by the parents as “free play time”.

The C/H classification may be informative per se, but adding the concurrent posture and movement 
information from the MAIJU pipeline facilitates a more detailed analysis of the C/H behavior. Figure 5B depicts 
the MAIJU-based distributions of postures and movement/non-movement during detected carrying time periods 
(blue) and during non-carrying time periods (orange). The findings suggest that standing is the most common 
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(b) Infant postures and movements during detected carrying (blue) and non-carrying (orange) within free 
play time. Box plots show the median, IQR and range of the data (N = 162). (c) Proportion of detected carrying 
from periods of free play time as a function of infant age (top) and motor ability score (bottom). Group average 
trajectories are shown with blue lines alongside their 95% confidence intervals (blue areas). Spearman’s ρ 
reported for the individual recordings (N = 162) and for the group-average trajectory (ρμ). The average amount 
of detected prone crawling (red), crawling (purple), and walking (yellow) are shown as a function of the BIMS 
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posture for carrying infants during our recordings, followed by sitting and crawl postures. The distributions 
for movement, still vs non-still, show a wider variability during carrying, which is clearly dominated by the 
non-still epochs. There are clear differences in movement distributions during non-carrying and carrying, 
suggesting removal of carrying epochs would improve the estimates of independent infant motility. Conversely, 
the information about carrying postures and activity could be used to design research questions regarding the 
quality of physical infant-caregiver interactions.

Amount of carrying as a function of motor development
Figure 5c (top) depicts the average amount of carrying during the play times as a function of infant age between 
4 and 18 months, alongside the average occurrence of the three major movement modalities (prone crawl, 
crawling, walking) split into qualitative “elementary” and “fluent”  descriptors10. The amount of carrying increases 
with age (Spearman’s ρ = 0.44, p =  10−10; average trend ρ = 0.97, p = 0). This may be already interesting in itself; 
however the present results allow even more fine-grained analysis: the child’s ages can be converted to estimates 
of motor ability at the time of the recording (i.e., BABA Infant Motor Score, BIMS, the age prediction based on 
the posture and movement distributions, described  in10). As shown in Fig. 5c (bottom), the population-level 
correlation increases to ρ = 0.54 (p =  10−12) and two humps in the incidence of carrying emerge at around 30 and 
75 points of the BIMS score, respectively. Comparison to the movement distributions show that these humps 
coincide with the newly emerged fluent movement patterns, crawling and walking, respectively. An intuitively 
appealing post-hoc explanation for this observation could be that the novel movement abilities trigger increased 
attention and carrying behavior from the caregivers to ensure infants’ safety as their sphere of activity increases 
(e.g., keeping out of harm’s way, picking, and consoling after falling).

Discussion
Our study shows that automatic C/H detection is feasible from the recordings collected at home during normal 
daily activities. Expectedly, the accuracy of such detection depends very much on the phenomenological 
classification of carrying/holding, and the accuracy follows the manner how the given C/H definition manifests 
in the movements of the infant trunk and extremities. The presently described algorithm allows analyses from 
data recorded in a fully unsupervised manner in various out-of-hospital/lab environments. Our work shows 
further that an actigraphy-type single sensor recording cannot provide C/H detections at fine-grained timescales, 
which constitute over 40% of the annotated carrying epochs in our annotated dataset. Finally, we show a proof-
of-concept example in the context of tracking early motor development, where parental C/H behavior can be 
matched with individual level motor performance of the given infant.

Detection and classification of behavioral repertoires, such as carrying and holding, is challenged by the 
inherent ambiguities in the phenomenological categories. Here, we developed a systematic approach to categorize 
C/H in ways that can be measured using movement sensors (see Methods). Our results report a systematic 
characterization of the algorithm’s performance for those newly categorized C/H behaviors, which is believed 
to support further use of this algorithm, or development of other algorithms. The eventual use case of the C/H 
detector may determine what category combinations are needed from the originally detected target classes. For 
example, the use case in MAIJU-based analyses ideally needs filtering out the non-IM periods (no independent 
movement), because MAIJU wearable is primarily used for assessing an infant’s own motor  performance10. 
However, our results show that IMU-based recordings are not effective in discriminating based on this category.

Our experiments together indicate that C/H classification is significantly improved by adding more sensors, 
and the performance could perhaps improve even further with more than four sensors. Sensor locations did 
also contribute to the classifier performance, especially when both upper and lower extremities were included. 
Sampling rate, however, was not found to affect the results in a meaningful manner. These findings have practical 
implications since higher data rates will pose challenges to a continuous data streaming over the BLE connection, 
and in many cases a high number of sensors may be otherwise impractical. The practical compromise between 
classifier performance and minimal recording configuration was found to be a combination with two sensors (1 
arm + 1 leg), using gyroscope and 13 Hz sampling rate, yielding k = 0.45. It is important to note, however, that 
C/H detection from IMU sensors requires sensed movements (from the caregiver and/or infant) during the 
target behavior. Other types of C/H  behaviors30 could be recorded with other instrumentation, such as proximity 
 sensors6,31 or video recordings, both of which have their own practical and technical limitations. A particular 
advantage of the IMU sensors is that the same data can be used for measuring other features of infants’ activity, 
such as quantification of play time, posture, movement, as well as a comprehensive assessment of motor  abilities10.

A key advantage of the novel algorithm is the ability to provide C/H detections for long term recordings 
from fully unsupervised settings, which allows monitoring of normal daily  activities1. Technically, the algorithm 
was shown to be robust for a range of sampling frequencies and sensor combinations, implying flexibility in 
instrumentations. These recordings can be conveniently performed using the MAIJU wearable that is openly 
available, scalable, and well accepted by the researchers and  caregivers10,14. Unlike many other solutions, 
recordings with the MAIJU wearable do not require additional sensors attached to the environment or the 
caregivers (cf.13,32) making it easier to generalize in different study scenarios.

A direct comparison of our present results to prior studies is difficult for several reasons: First, the present 
work is, to our knowledge, the first one to develop C/H detection at a high temporal resolution for data collected 
at home in an unsupervised manner. Prior studies have used lower temporal resolution and instructed  behaviors13 
which would automatically lead to higher detection performance; however, such approaches violate the ecological 
validity by dismissing the very frequently occurring brief episodes of holding and carrying, as was shown in our 
analysis of video-based annotations. Second, prior studies have not presented a systematic phenomenological 
scheme akin to our C/H categories, hence their classification tasks per se may not be fully comparable to ours. 
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Nevertheless, it is worth noting that our best-performing C/H binary definition #2 is likely close to infant 
holding as defined  by13. Our present results are compatible with their findings in that IMU sensors can be 
used for detecting such C/H behavior. The numerical performance measures from the present study are not 
directly comparable  to13 due to marked differences in the dataset collection (supervised actions in their study 
vs. spontaneous daily activity in our study). Using a supervised (i.e., acted) recording setting  in13 compromises 
ecological validity of the findings, and it directly biases the category distributions, both of which would lead to 
a higher formal detector performance. Third, prior studies with at least a decent classifier performance were 
based on a multi-person instrumentation where sensors are attached to both the parents and  infants13,32,33; in 
contrast, our study was based on infant-worn sensors only. Sensing from multiple persons will undoubtedly 
bring technical accuracy to detecting proximity and co-incident movements with the caregiver, however such 
instrumentation also brings in significant complexity in the study logistics.

There are some limitations that need to be considered when applying our C/H detector in prospective studies. 
First, the algorithm is trained and tested only with data obtained from “play sessions”, which likely represents 
ecologically relevant and diverse behaviors; however, the play sessions do not include all the C/H behavior 
variants that may occur within a day-long cycle (e.g., diaper change, feeding). Second, the scaling/post-processing 
of the proposed method to lower temporal resolutions (e.g., > 15 s) to obtain more robust estimates for aggregated 
C/H time was not within the scope of the current study. We are however confident that the fine-grained classifier 
output could be readily used as the basis features for this task. Third, the algorithm is trained for the sensor 
locations that are used in the MAIJU wearable, thus alternative sensor configurations do need a new training. 
Fourth, the C/H detector performance is physically limited by the abilities of movement sensors to discriminate 
between different types in the spectra of C/H behaviors. For instance, movement-based C/H detection is not able 
to recognize a moment when the caregiver is holding a still infant. Such a situation could be indirectly estimated 
from the body posture, as provided by the postural detection in our MAIJU analysis  pipeline10, or directly 
measured using proximity  sensors6,31, which require additional sensors attached on the respective  caregiver6,13. 
Fifth, it is also important to recognize the phenomenological ambiguities in C/H behavior; for instance, a child 
climbing on a still caregiver can be considered as moving independently or as being held by the caregiver. Such 
ambiguities cannot be resolved with algorithmic solutions, but they call for question-guided instrumentation 
coupled with a careful consideration of the C/H phenomenology.

An automated and objective algorithm for C/H detection can be used in multiple ways: First, the C/H detector 
could be used as a component in a larger analysis pipeline. Our present work was initially motivated by the need 
to improve the specificity of motor assessment with the MAIJU  wearable10, which may be readily confounded by 
carrying or holding the infant during unsupervised measurement sessions. We reasoned that using C/H detection 
in the preprocessing phase of the automated MAIJU analysis pipeline would improve focusing on time periods 
when the infants are moving by themselves. The same need to distinguish a child’s own activity from other 
physical movements is clear in studies that aim to understand developmental origins of childhood obesity and 
related health  adversities34. Second, there are also many other comparable needs in infant behavioral research 
where unsupervised measurement sessions need to be segmented for movement periods by the infant versus by 
an external  force13,16. For instance, studies on parent-infant interaction or child’s language development in natural 
environments may utilize audio  signals35,36; the yield of such data analyses could be substantially improved by 
segmenting and assessing the results with respect to C/H epochs. Third, the C/H detector could be particularly 
useful when used in combination with other algorithmic assessments of infants’ performance; taken together 
they may provide a “multimodal behavioral assessment” by using the same physical recording data. Our proof-
of-context experiment shows how C/H behavior can be quantified in the context of “play time” recognized by 
a third algorithm. This algorithm combination disclosed an age-related increase in C/H across the age range 
in our population; moreover the results suggested that C/H may relate to the individual-level transition from 
predominantly crawling to walking activity. It is intuitively conceivable that infants’ attempts to move in a novel 
manner are reflected in caregivers’ C/H behavior. Such causal relations will obviously remain only speculative 
with this retrospectively analyzed data, yet the observations per se provide a clear case for the potential of our C/H 
detection algorithm. Fourth, C/H detection may be useful for understanding the relationships between infants’ 
motor activity and social or neurocognitive  development37. Infants’ own motor activity is considered to facilitate 
exploratory behavior, which in turn is essential for neurocognitive  development38. Studying these relationships 
would benefit from methods that can distinguish parental C/H behavior from self-initiated movements.

Data availability
The data or materials for the experiments reported here can be made available at reasonable request and within 
relevant legal constraints. Please contact Sampsa Vanhatalo (sampsa.vanhatalo@helsinki.fi) for requests.
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