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Robottikäden tarttuminen erilaisiin esineisiin on vaikea ongelma ratkaistavaksi. Tätä vaikeut-
taa tartuttavan esineen muoto ja sen asento, tarttumiseen valittu päätetyökalu ja tiedonkeruu. 
Syväoppimista on hyödynnetty paljon robotin tarttumisessa, mikä tekee robotille esineiden tart-
tumisen oppimisen alusta loppuun mahdolliseksi. Syväoppimista hyödynnetään siten, että sillä 
luodaan neuroverkkoja tarttumisista kerätyn datan analysointiin. Tämän työn tarkoituksena oli 
tutkia aihetta kirjallisuuskatsauksena tarttumisen huippuluokkaan ja vertailla eri tarttumismalleja 
keskenään. 

 
Robotin tarttumisen havaitseminen tyypillisesti saadaan aikaiseksi RGB-D-antureilla (Red 

Green Blue-Depth), jotka ottavat tavallisia RGB-kuvia sekä myös syvyyskuvia, jotka sitten 
muunnetaan pistepilvikuviksi 3D-tiloissa. Asennon arviointi tehdään hyödyntäen kuutta vapaus-
astetta (engl. 6-DOF, Six-Degrees-of-Freedom), millä simuloidaan ihmisen kättä täydellä 3D-
liikkeellä. Tutkimusten mukaan nämä kaksi seikkaa ovat perusta tarttumismalleille, jotka hyö-
dyntävät syväoppimista. Kuitenkin 6-DOF:in tilalla saattoi olla yksi ylimääräinen vapausaste joi-
denkin mallien kohdalla. 

 
Tarttumismallit ovat tietokoneohjelmistoja roboteille, mitkä hyödyntävät syväoppimista tart-

tumisissa. Tässä työssä tarkasteltiin kuutta eri tarttumismallia hyödyntämällä niiden kehittäjien 
dokumentteja kyseisistä malleista. 6-DOF GraspNet ja FFB6D (Full Flow Bidirectional fusion 
network for 6D) turvautuvat pistepilvikuvien analysointiin, mutta niillä on paljon muita eroavai-
suuksia. ROI-GD (Region of Interest Grasp Detection) ja GR-ConvNet (Generative Residual 
Convolutional Neural Network) analysoivat kuvia eri moduulien kautta, jotka toimivat yhtäaikai-
sesti. Näiden kahden tarttumismallin välillä oli eniten samankaltaisuuksia muihin verrattuna. 
Dexterity-Network 4.0 kouluttaa tietynlaisia tarttumisvälineitä tarttuakseen tehokkaasti analyytti-
sillä malleilla ja GraspNet 1Billion on valtava dataverkko erilaisille esineille, missä on yli miljardi 
tarttumisasentoa erilaisille skenaarioille. Nämä kaksi tarttumismallia erosivat eniten muista tar-
kastelluista malleista. Tutkimuksen mukaan fyysiset kokeet eivät ole aina tarpeellisia tarttumis-
mallien kehityksessä, koska pelkillä simulaatioillakin voi kouluttaa tarttumismalleja hyvin. 

 
Mitä tulee robotin tarttumisen ja sen syväoppimisen kehittämiseen, tietokoneohjelmisto ro-

bottien tarttumisoperaatioihin vaatii lisää kehitystä, koska robottien kouluttaminen vie aikaa ja 
resursseja, ohjelmiston käytölle ei välttämättä ole taattua tukea ja ohjelmisto ei edes välttämättä 
toimi monille roboteille. Tämän lisäksi robotin tarttuminen vaikuttanee nyt turvautuvan paljon 
RGB-D-antureiden käyttöön, mutta tulevaisuudessa saattaa olla jotain tarkempaakin, kuin näi-
den antureiden ottamat syvyyskuvat. 
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Robot grasping is a difficult problem to solve. What makes it difficult includes the graspable 
object’s type, its pose, the end-effector used in grasping, and data collection. In robot grasping, 
deep learning makes it possible for the robot to learn how to grasp objects in an end-to-end 
manner. Deep learning is utilized by making neural networks from generated grasps to analyze 
collected data. This paper was meant to study this topic as a literature review about its state of 
the art and compare different grasping models with each other. 

 
Robot grasp detections are done typically by using RGB-D (Red Green Blue-Depth) sensors 

that take a regular RGB image, and a depth image that is converted to a point cloud image in a 
3D space. For full 3D movement to simulate a human hand, pose estimation is done with 6-
DOF (Six-Degrees-of-Freedom) grasping. Grasping models are software for robots that perform 
grasps by using deep learning. According to this paper’s findings, these two factors are the ba-
sis for grasping models that make use of deep learning. However, sometimes in place of 6-DOF 
there could have been one additional degree of freedom in some models. 

 
Grasping models are computer programs for robots which utilize deep learning in robot 

grasping. In this paper, six grasping models were covered by utilizing their developers’ docu-
ments for said models. 6-DOF GraspNet and FFB6D (Full Flow Bidirectional fusion network for 
6D) rely heavily on point cloud analysis, but they have many other differences. ROI-GD (Region 
of Interest Grasp Detection) and GR-ConvNet (Generative Residual Convolutional Neural Net-
work) analyze images by running them through different modules that work in tandem. These 
two grasping models had the most similarities when they were compared to others. Dexterity-
Network 4.0 trains specific sets of grippers to grasp efficiently with analytic models, and Grasp-
Net 1Billion is a massive datanet for different objects with over one billion grasp poses for dif-
ferent scenarios. These two grasping models differed the most from the other models that were 
covered. According to this paper’s findings, physical tests are not always necessary when de-
veloping grasping models because they could also be trained well with only simulations. 

 
When it comes to further developing robot grasping and its deep learning, the software for 

robots to perform grasps needs more work because it takes time and resources to teach robots, 
there might not be any guaranteed support for its use, and it might not even work for many ro-
bots at all. Also, robot grasping seems to rely now heavily on RGB-D sensors, however in the 
future, there might be something more accurate than the depth images these sensors take. 
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INTRODUCTION 

Robot grasping, the act of a robot arm grasping an object with a gripper on its other 

end to move it to a desirable goal is a challenging problem, one that has seen many 

different methods that try to find a way to implement this operation. What makes it chal-

lenging are its various key components, such as a graspable object’s type and pose, 

the gripper type used in grasping, and data collection for successful grasps. An exam-

ple of a robot arm is presented in figure 1. Data collection, and its utilization is particu-

larly difficult, which is the foundation for various methods trying to achieve robot grasp-

ing. Robot grasping has however evolved to a point where deep learning is utilized to 

achieve reliably successful grasps. Nowadays different researchers make use of deep 

learning to improve their methods, as the success rate of grasping has shown by these 

methods. They develop algorithms that interpret data in their own unique ways, which 

they can even make use of later when creating new methods for robot grasping. 

  

Figure 1. An example of a robot industrial arm, developed by ABB. [19, p. 1] 
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 In this paper, six different methods for robot grasping using deep learning have 

been chosen for analysis, and will be covered briefly; how they work, how they are 

trained, what experiments were done with them etc. After that they will be compared 

with each other to see what differences and similarities they have in their various as-

pects. Before any of that however, robot grasping and its deep learning will be ex-

plained briefly to help the reader understand the chosen six different methods; what 

steps there are in a grasping process, and explaining some terminology related to robot 

grasping. These methods, or models as their developers call them are: 6-DOF Grasp-

Net, Dex-Net 4.0, GraspNet-1Billion, FFB6D, ROI-GD, and GR-ConvNet. They are all 

relatively recent models, which should give the reader a look at the state of the art. 
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1. OVERVIEW OF ROBOT GRASPING 

To understand how to utilize the different methods for robot grasping, the various 

grasping steps and important parts need to be explained, which when working together 

completes the task for a robot to grasp an object. Deep learning in robot grasping 

makes it possible for the robot to learn a grasping model in an end-to-end manner, 

which means that the robot does not need anything from a third party, and instead 

learns it itself. This way it can improve its ability to grasp objects. [1, p. 2] Deep learn-

ing is also defined as the science, in which large artificial neural networks are created 

and developed, also known as deep neural networks (DNN) [2, p. 821]. The different 

methods using deep learning all implement the grasping steps and important parts in 

their own ways in their own models, although with some of the same aspects as the 

others have. 

 Robot grasping consists of the following steps: grasp detection, object pose es-

timation, motion planning, grasping positioning, and the grasping itself. These steps 

can be achieved with different methods. Robot grasping also includes some important 

parts, such as the gripper, the object itself and its features, and data collecting to be 

utilized through deep learning. The data collection to be used in deep neural network 

development can be time consuming if there are no object models available, or if there 

is no suitable imaging system available. Models that use deep neural networks are also 

very demanding regarding resources, which means that many small enterprises can’t 

possibly even use them. The models’ sizes can’t be too big, they need to be fast, they 

must have a low latency, and they need to be accurate enough, so that the robot’s 

grasping succeeds well. [1, p. 4] 

 The positionings and grasp detections are achieved using sensors and cameras. 

The objects to be grabbed are sensed typically as RGB-D (Red Green Blue-Depth) im-

ages. These images consist of a typical RGB image and a depth image, which is then 

transformed into a point cloud image in a 3D space. [3, p. 1679] These images consist 

of various points in a 3D space, which all have their own x, y, and z coordinates [4]. Us-

ing deep learning, these images of objects can then be compared to ones in grasping 

models. These grasping models are created by either physical interactions or by simu-

lations. The models then help robots to basically memorize different object shapes, so 

they can grasp similar looking objects by using the same grasping model. [1, p. 3–4] 
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 One of the most important steps in robot grasping is the object’s pose estima-

tion. In this step the robot estimates the location and orientation of an object that it rec-

ognizes through its database. Pose estimation is required for the robot to assume the 

grasping position, although motion planning is needed for these to work. An object’s 6D 

position is mainly used in an object’s pose estimation, which can be then used in 6-

DOF grasping [3, p. 1679]. The acronym 6-DOF means six-degrees-of-freedom. 6D 

consists of the typical x, y, and z coordinates, which handles the horizontal, vertical, 

and depth aspects respectively, but also the pitch, yaw, and roll [5]. These last three 

degrees of freedom are measured in angles, which are analogous to opening a lid 

(pitch), opening a door (yaw), and rotation (roll) [6]. This 6-DOF is illustrated in figure 2. 

There are also other types of DOFs that robots use but 6-DOF is the most used one, as 

it is a requirement to work in a 3D environment. 

 

Figure 2. Illustration of 6D: forward/back is X, left/right is Y, and up/down is Z. [20] 

 

 The gripper part of the robot is also very important when grasping models are 

created. This is due to the differences between the types of grippers, which can be 

parallel, three-fingered, or even five-fingered grippers. The gripper part is also known 

as an end-effector, which includes a wider conception of grippers, for example suction 
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based end-effectors [3, p. 1678]. The grippers have sensors in them also to detect 

whether they have grabbed an object, and if the grasping pressure is adequate. The 

state of the art in robot grasping software is open software that is free to use. Because 

it is free to use it has no warranty, and no liability in using it. Integrating this software as 

a part of an enterprise’s system can also take time and resources from it. It might also 

take a long time for an enterprise’s developers to learn how to use it. There is also no 

guaranteed support from the software’s original developers, and the software might not 

even work with some hardware at all. [1, p. 5] The grasping software therefore requires 

more development, so that everyone can benefit from it. 
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2. THE GRASPING MODELS 

In this section six different grasping models are covered briefly, explaining what they 

are and how they execute grasps. Also, some new concepts will be briefly explained 

along the way to help the reader understand these models. 

 

2.1 6-DOF GraspNet 

6-DOF GraspNet is a model that generates diverse grasps for various unknown ob-

jects. By its name the model takes advantage of 6-DOF grasping, when determining 

objects and their locations. Alongside the 6-DOF grasping, the model uses a network of 

grasp evaluators, that make sure the generated grasps are going to be successful. The 

network also improves over time in an iterative process. To generate the grasps, the 

model uses a variational auto-encoder (VAE), which samples a variety of grasps for an 

object. These samples can be very inaccurate, so that is why the model uses the net-

work of grasp evaluators in unison. [7, p. 8] 

 The VAE is one of the key aspects of 6-DOF GraspNet. Through it the model 

can determine many possible grasps for point clouds in various objects. It provides 

multiple functioning grasps but also includes a few failures as well. After this is done, it 

gives these grasps to a grasp evaluator, that either accepts or rejects a possible grasp. 

[7, p. 1–3] The point clouds are captured by using RGB-D cameras. The grasp deter-

minations are estimated by focusing on the center mass of the point cloud in an object. 

The failed grasps, that are included among the functioning ones, are very close to be-

ing successful grasps. Taking this into account, the model can attempt to refine many 

of these failed grasps into more successful ones. [7, p. 4–5] This process is illustrated 

in figure 3. 
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Figure 3. The VAE process of determining grasps in a point cloud. [7, p. 4] 

  

 In their paper, Mousavian et al. [7] explained how they trained their model. The 

data used for training is gathered from simulations using FleX, in which grasps for vari-

ous arbitrary object shapes can be provided realistic simulations [7, p. 5]. In training, 

the model uses PointNet++ for the grasp generator and the evaluator networks. Point-

Net++, and PointNet are architectures, that can represent 3D data and extract said rep-

resentation efficiently [7, p. 3]. Due to the nature of the training, no real data is needed 

to train the model, only simulations are needed. Also, any kind of end-effector part 

would do with this model, provided that it has been trained in using the wanted end-

effector. 

 In their paper, Mousavian et al. [7] conducted experiments using their model af-

ter providing training for it in simulations. They used their model and a basic 6-DOF 

grasp planner, and then compared how they performed. They chose a variety of differ-

ent common household items, and observed which model was more successful. The 

average success rate for 6-DOF GraspNet was 90%, while the basic 6-DOF grasp 

planner was 52%, outperforming it vastly. [7, p. 7–8] 

 

2.2 Dex-Net 4.0 

Dexterity Network 4.0, or just Dex-Net 4.0, is a dataset generation model based on its 

previous versions Dex-Net 2.0 and 3.0. It is a model that trains a specific set of end-

effectors to grasp efficiently in a hybrid approach of synthetic datasets using domain 

randomization with analytic models of physics and geometry. All grasps that are evalu-

ated by Dex-Net 4.0 take account of task-specific forces and torques, and then try to 

resist them under random perturbations. Grasp planning is done by using depth imag-

es, instead of relying on sensors and manually inputted physical parameters. By taking 
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depth images, grasps can be effectively and accurately simulated via ray tracing. [8, p. 

1] 

 In their paper, Mahler et al. [8] implemented this model for a robot with two end-

effectors: a parallel-jaw gripper and a suction cup-based gripper. They trained their 

Dex-Net 4.0 model with 1664 unique 3D objects with their dataset containing over 5 

million grasps. Both grippers also had their own Grasp Quality Convolutional Neural 

Network, or CQ-CNN so they could work in unison to plan grasps for each object’s 

point cloud. A CNN is an algorithm utilized in deep learning, that takes an input image 

and assigns important attributes to it, and then can differentiate various objects from 

the others [9]. The purpose of this was to show the efficiency of Dex-Net 4.0, with it re-

sulting in very reliable grasping results. According to their experiments, Dex-Net 4.0 

managed to achieve 95% reliability on a physical robot. [8, p. 1] Also according to their 

experiments, using a consistent reward system helps increase the physical robot’s reli-

ability when performing grasps across different end-effectors. In addition, regarding 

their experiments, when the number of objects to be grabbed are increased in a heap, 

the reliability on those grasps decreases. The same happens when the objects have 

complex geometries and material properties, such as transparent materials. But in 

these cases, a memory system can aid to remedy the decreasing reliability from 63% 

to 80%. [8, p. 5] 

 

Figure 4. The setup for Dex-Net 4.0 model’s experiment. [8, p. 3] 
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 Mahler et al. [8] came to these conclusions from the following experiment using 

the aforementioned setup. The experiment included the robot with the two different 

end-effectors, two empty blue outlined bins, and one green outlined bin with various 

objects with different geometries and materials, all of them common household items. 

This setup is shown in figure 4. The test included more than 2500 grasp attempts and 

50 test objects. In the test the robot’s depth camera determined whether to use the 

parallel-jaw gripper, or the suction cup gripper, and then move the objects from the 

green bin to the blue bins next to it. The objects themselves had two difficulty levels 1 

and 2, with the level 2 objects having more complexity. After the test they determined 

that level 1 and level 2 objects had a grasping reliability of 97% and 95% respectively, 

and that the robot used the suction cup end-effector on 82% of the grasps. [8, p. 2–4] 

 

2.3 GraspNet-1Billion 

GraspNet-1Billion is a model that utilizes a multi-object-multi-grasp setting by being a 

large-scale datanet. It was made for large, cluttered scenarios, that has a rich and 

dense annotation database for pose estimation. The dataset consists of 88 household 

objects with high quality 3D models, which have been captured in RGB-D images by 

two depth cameras in 190 cluttered scenes. Each of these scenes have had 512 imag-

es taken by both cameras, bringing in a total of 97,280 images for the whole dataset. 

All images have 6-DOF annotations for grasp poses, and each scene has a varied 

amount of grasp poses ranging from 3,000,000 to 9,000,000, bringing in over 1.1 billion 

grasp poses, from which the model gets its name from. The dataset also has accurate 

6D pose annotations, object masks and bounding boxes, and with each frame having 

an associated camera pose. [10, p. 3] Fang et al. [10] created this model because they 

proposed that many different researches lack sufficient training data for their robots, 

and therefore suffer in making them grasp efficiently. 
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Figure 5. The model’s data gathering and annotation process. [10, p. 3] 

 

 In their paper, Fang et al. [10] described how they collected all the data for their 

GraspNet-1Billion model. All the objects used in data collection were their own making, 

from the Dex-Net 2.0, and from the YCB dataset. The latter, Yale-CMU-Berkeley da-

taset is an object and model set designed for benchmarking robotic manipulation. It has 

many daily household objects with different shapes, sizes, etc. [11] The data was col-

lected by placing 10 random objects in a heap, and then having a robot with two 

mounted cameras, as was described before, picking the objects along a fixed move-

ment trajectory. After the pictures were taken, they were annotated with an automated 

process to avoid a taxing amount of labor. [10, p. 3–4] This process is shown in figure 

5. 

 Fang et al. [10] also detailed how they put together their end-to-end grasp pose 

detection network. They had to split their data into three different categories for scenes 

with seen objects, with unseen but similar objects, and novel objects so that data eval-

uation for grasp pose estimation. When building a solid foundation for viewpoint classi-

fication, they used PointNet++ as a base network for capturing point cloud geometry. 

This way they could get approaching vectors from points in the point clouds that are 

graspable. They could then use this data to create an algorithm that can create and 

predict accurate grasp poses in their end-to-end design. [10, p. 5–7] 
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2.4 FFB6D 

Full Flow Bidirectional fusion network for 6D, or just FFB6D for short utilizes 6D pose 

estimation from a single RGB-D image to generate a grasp. The model takes ad-

vantage of the taken RGB-D image’s data in a two-fold operation, where it analyzes the 

image from its RGB data, and the depth image data with a point cloud. These two 

analyses work in tandem in their own separate networks, and fuse together for further 

analysis at certain intervals, providing a grasp detection at the end. With its RGB based 

CNN, each pixel of the taken image is used to create a point in XYZ-coordinate map, 

while the point cloud based PCN (point cloud network) works together with these coor-

dinates to provide points in the point cloud near the coordinates. [12, p. 3–4] These are 

then used by a 3D key point detection module and an instance semantic segmentation 

module to provide an object pose estimation. After selecting these key points, a least-

squares fitting algorithm is used to generate a grasp pose estimation from said key 

points for different objects. [12, p. 4–5] This process is illustrated in figure 6. 

 

Figure 6. The model’s two networks working in tandem and fusing. [12, p. 3] 

 

He et al. [12] developed an earlier grasping model called Point-wise Voting Net-

work 3D, or just PVN3D for short, which they used in their new FFB6D model when de-

termining 3D key points. PVN3D is a 6-DOF based grasping model, that utilizes 3D key 

points to train a robot to effectively grasp an object. Key points are a couple of points in 

an object’s point cloud, that the model’s algorithm uses to accurately determine the 

shape of the object. As with many other models, RGB-D pictures are utilized to get 

these point clouds in the first place. He et al. [13] stated in their paper that current key 
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point-based models at first detect 2D key points, so that they can be utilized to estimate 

6D poses with a PnP algorithm [13, p. 2]. PnP stands for Perspective-n-Point, which is 

defined as a problem of finding the relative pose between an object and a camera. This 

pose is determined from a set of “n” pairing between 3D points of an object, and their 

corresponding 2D projections on a focal plane. [14] He et al. [13] stated that 2D key 

point-based methods aim to minimize 2D projection errors of objects, but that in the re-

al 3D world these small errors may be large. However, RGB-D sensors have cheap-

ened, which allowed them to do everything fully in 3D by using depth images. [13, p. 2] 

They also concluded that 3D key point-based approach in these models is a promising 

way to tackle the 6-DOF pose estimation problems [13, p. 8]. 

 PVN3D is based on a deep 3D Hough voting network, that uses a multi-tasking 

algorithm with three different modules: a key point detection module, a semantic seg-

mentation module, and a center voting module. These modules are for predicting key 

point offsets per-point, predicting semantic labels per-point, and predicting offsets to an 

object’s center per-point respectively. [13, p. 3] Hough voting itself is a computer vision 

and image processing technique, that can be used to detect patterns in an image, 

which are then represented by mathematical curves or shapes [15]. With the algorithm 

using these three modules working in tandem, they boost each other’s performances 

and increasing the learning efficiency. After the multi-tasking is complete, there is one 

more algorithm in use for 6-DOF pose estimation that uses least-square fitting to 

achieve its goal. [13, p. 3–4] 

 He et al. [12] explained how they trained their model by using three different da-

tasets: the YCB-Video dataset, LineMOD dataset, and Occlusion LineMOD dataset. 

LineMOD is a dataset that consists of 13 low-textured objects in 13 videos with varying 

lighting and cluttering. Occlusion LineMOD is a modified dataset from the original 

LineMOD, in which multi annotated objects are heavily occluded. [12, p. 5] According to 

their paper, He et al. [12] didn’t perform any physical experiments, training their model 

entirely with simulations. After performing their experiments, their model managed to 

perform over 90% successful grasp poses with the LineMOD and YCB-Video datasets, 

and over 65% successful grasp poses with the Occlusion LineMOD dataset. They con-

cluded that their model outperformed various other models in these same experiments, 

and that their model’s implementation of a full flow bidirectional fusion network has 

more applications, and that more research should be done to explore this further. [12, 

p. 7] 
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2.5 ROI-GD 

ROI-GD is a Region of Interest based grasp detection model, in which it bases all 

grasps on regions of taken images that are likely to contain objects to be grabbed. It 

creates grasps in a two-part process. In the first part, RGB images are taken so that 

the ROIs can be generated. In the second part, grasp detections are made based on 

the generated ROIs. When generating regions of interest, the taken RGB image is split 

into different parts using CNN to extract deep features of the image. Then a Region 

Proposal Network, or RPN for short, is made from 3 x 3 convolutional layers to provide 

bounding boxes for objects in order to generate grasp detections. These bounding 

boxes are in fact the regions of interest. After these ROIs are generated, they can then 

be used for grasp detections one ROI at a time, and then be combined into a singular 

image with all the grasp detections present. This architecture is presented on figure 7. 

Zhang et al. [16] explained in their paper, that many other models try to create grasp 

detections purely on RGB or RGB-D images, treating the entire images as singular 

ROIs, and that their model separates the input image into multiple ROIs. This works 

well with multiple objects in a scene, where the objects are overlapping each other. [16, 

p. 2–3] 

 

Figure 7. The model’s architecture and process visualized. [16, p. 3] 

 

 In their paper, Zhang et al. [16] explained their ROI method further by saying 

that they made a new network in ROI-GD to create grasp detections for multiple ob-

jects in heaps. While their model makes the bounding box ROIs as was explained ear-

lier, it also detects the specific objects and annotates them. With both ROIs and the ob-

ject details working in tandem, it results in a more accurate grasp detection for each 

object. [16, p. 3–4] Based on experiments made with Cornell Grasp Dataset, Jacquard 
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Dataset, and Visual Manipulation Relationship Dataset, their model compares with oth-

er state-of-the-art grasp detection models in single-object grasps. However, in multi-

object grasps their model seems to perform better. [16, p. 8] 

 Zhang et al. [16] trained their model to make multi-object grasps by using the 

Visual Manipulation Relationship Dataset, or VMRD for short includes 5185 images 

with over 17000 object instances and 51000 manipulation relationships. With single-

object grasps they used Cornell Grasp Dataset and Jacquard Dataset, which contain 

885 images and 54000 images respectively. [16, p. 5] Examples of how these datasets 

are distinguished are shown in figure 8. In the training and the experiments, they used 

a robot with two arms utilizing 7-DOF instead of 6-DOF [16, p. 7]. 7-DOF contains all 

the degrees of freedom that 6-DOF has, however it comes with the ability to move the 

robot from one place to another along an axis [17]. The robot in training had identical 

end-effectors, with them being two parallel fingered grippers. From their experiments 

they concluded that in single object scenes their model can achieve grasps on a 97.5% 

and 92.5% success rate for prediction and execution respectively. On multi-object 

scenes the model had a success rate of 88.8% and 83.8% for prediction and execution 

respectively. [16, p. 7] 

 

Figure 8. Example images in the three datasets used in the model. [16, p. 5] 
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2.6 GR-ConvNet 

Generative Residual Convolutional Neural Network, or GR-ConvNet for short is a 

grasping model that generates grasp detections by taking RGB-D images, and then 

creates three different pictures to generate these grasps. The images are gone over 

pixel by pixel in the model, that includes quality, angle, and width. After these three 

have been analyzed by the model, it then generates a grasp based on the data gath-

ered from the three generated images. It has two modules that handle this model, one 

of which is the inference module that goes over the aforementioned parts, and the oth-

er being the control module, which handles the motion of the robot, such as trajectory 

planning and task controlling. [18, p. 1] These modules are represented in figure 9. 

 

Figure 9. The model’s two modules: the interference and control. [18, p. 1] 

 

 In their paper, Kumra et al. [18] went into further detail about their model and 

how it extracts the data from the depth image so that it can be split into three images 

concerning quality, angle, and width, although technically the angle image actually 

consists of two images regarding sine and cosine combined into one. The image goes 

through many different convolutional layers in the algorithm to extract data, so they can 
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be reconstructed into the three desired images that can then be turned into grasp de-

tections. There are three convolutional layers that the input image goes through, which 

then passes through five residual layers, and then three other convolutional transpose 

layers to generate the images. This generative residual convolutional network is illus-

trated in figure 10. Their model focuses on treating the input image heavily so they can 

generate reliable grasp detections. [18, p. 3–4] 

 

Figure 10. The proposed generative residual convolutional network’s architecture. 

[18, p. 4] 

 

 For training their model Kumra et al. [18] used the Cornell Grasp Dataset and 

Jacquard Dataset. Unlike previously mentioned usage of Cornell Grasp Dataset, in this 

model an extended version of Cornell Grasp Dataset was used, which contained 1035 

images of objects and grasps instead of 885 images. Objects used in training their 

model included household objects, more complex adversarial objects, and objects in 

heaps. A 7-DOF robot with a two-fingered parallel end-effector was used to execute 

grasps. Grasps over all these datasets and experiments yielded over 93% success 

rate, with failures being mostly objects that were already grabbed by the robot but 

slipped away from the end-effector for various reasons, such as bumping into another 

object in a heap. [18, p. 5–7] 
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3. COMPARISONS 

In this section the previously covered six grasping models are compared with each 

other. Attributes gathered and compared in the following two tables are: method of 

grasping, means of acquiring data for grasping, datasets a model uses, training a mod-

el, end-effector used for grasping, and experiments done to test a model. 

 

 6-DOF GraspNet [7] Dex-Net 4.0 [8] GraspNet 1Billion [10] 

Method Uses 6-DOF grasping 

with a VAE to deter-

mine multiple grasps in 

a point cloud with a 

network of grasp evalu-

ators. 

Trains specific sets of 

grippers to grasp effi-

ciently by domain ran-

domization with analytic 

models of physics and 

geometry. 

Utilizes a multi-object-

multi-grasp setting by be-

ing a large-scale datanet, 

mostly for large, cluttered 

scenarios; it has a rich 

and dense annotation 

database for pose esti-

mation. 

Data modality RGB-D camera focuses 

on the center mass of a 

point cloud. 

Depth images are taken 

and evaluated in simula-

tions with ray tracing. 

Two RGB-D cameras 

taking pictures of various 

cluttered scenes, which 

are annotated. 

Dataset(s) Custom dataset simu-

lated with FleX; boxes, 

cylinders, bowls, bot-

tles, mugs. 

Custom dataset generat-

ed by the model itself; 

5000 unique object 

heaps. 

Custom dataset made for 

the model alongside 

Dex-Net 2.0 and YCB 

datasets. 

Training Various simulations on-

ly with PointNet++ used 

for grasp evaluations. 

Using various 3D objects 

in simulations to gener-

ate 5 million grasps. 

Simulations through 100 

different scenes with re-

fining different grasps by 

separating them by 

score. 
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Table 1. Six grasping models previously covered, broken down; the first half. 

 

Gripper used Simulations used a 

parallel fingered grip-

per; however, any type 

of gripper should be fi-

ne. 

Model used parallel fin-

gered gripper, and a suc-

tion cup gripper. 

Two-fingered parallel 

gripper was the focus of 

this model. 

Experiments 

done 

Parallel finger gripper 

7-DOF robot performed 

grasps on items similar 

to the ones in simula-

tions. 

A robot armed with two 

gripers; parallel fingered 

and a suction cup were 

used to move objects to 

two different bins. 

Only simulations done 

with PyTorch, Adam op-

timizer and an Nvidia 

graphics driver; with the 

parallel fingered gripper 

in mind. 

 FFB6D [12] ROI-GD [16] GR-ConvNet [18] 

Method Utilizes 6D pose esti-

mation from a single 

RGB-D image; breaks 

image down in a two-

fold operation. Detects 

key points in a point 

cloud for grasp detec-

tion. 

Uses Regions of Interest 

as its basis; parts of a 

scene with most likely to 

have objects for grasping. 

Uses different CNNs for 

analysis, combining split 

parts into a whole with 

grasp detection. 

Takes RGB-D images 

and splits them into three 

separate images, which 

the inference module 

handles. Afterwards the 

control module executes 

the grasp based on the 

inference module’s data. 

Data modality RGB-D picture is taken 

and divided into two 

categories for analysis: 

RGB data and a depth 

image with a point 

cloud. 

RGB image is taken and 

split into different parts for 

analysis: each object has 

its own split image based 

on regions of interest. 

RGB-D images are split 

into three separate im-

ages concerning angle, 

quality, and width; angle 

image is technically two 

images combined into 

one. Data is extracted 

from these in convolu-

tional layers. 



23 
 

 

Table 2. Six grasping models previously covered, broken down; the second half. 

 

 There are many similarities in some aspects of these six models, and quite a few 

differences as well. When it comes to the methods of these models, they are indeed 

different from each other. Some similarities occur when it comes to them, such as 6-

DOF GraspNet’s and FFB6D’s methods using 6D grasping and heavily relying on point 

cloud analysis. When it boils down to data acquisition, RGB-D sensors seem to be al-

most universal. How the data is processed after these types of sensors take images 

Dataset(s) Uses three different 

datesets: YCB-Video 

dataset, LineMOD da-

taset, and Occlusion 

LineMOD dataset. 

For multi-object grasps the 

model uses VMRD, and 

for single object grasps: 

Cornell Grasp Dataset and 

Jacquard Dataset.  

Two different datasets 

are used by this model: 

Jacquard Dataset, and 

an extended version of 

Cornell Grasp Dataset. 

Training Using the three differ-

ent datasets, simula-

tions were made to 

train the model. 

Each dataset is handled 

by the model; annotating 

objects in the datasets 

heavily, and by using 

bounding boxes to sepa-

rate objects in clutters. 

Each image from the two 

different datasets were 

ran through the model’s 

process. 

Gripper used No specified gripper 

was mentioned; model 

focused mostly on ob-

ject detection. 

Model used two-fingered 

parallel grippers. In theory 

any sort of gripper would 

do depending on objects. 

Model used two-fingered 

parallel grippers. The 

model’s developers have 

stated that implementa-

tion of different gripper 

types must be re-

searched. 

Experiments 

done 

No physical experi-

ments were made, only 

simulations to train the 

model. 

A 7-DOF robot with two 

arms, both armed with 

two-fingered parallel grip-

pers performed grasps on 

multi-object and single-

object scenes. 

A 7-DOF robot that was 

armed with a two-

fingered parallel gripper 

was used to grasp ob-

jects. 
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varies somewhat on the method of the grasping model. The images are either used in 

simulations or processed according to the method of the grasping model. Datasets al-

ways vary depending on the model, with some of them making their own datasets. 

However, there are some popular datasets used by various models, such as the Cor-

nell Grasp Dataset, and the Jacquard Dataset. 

 The models covered here mostly trained with different simulations in a virtual 3D 

environment, except for ROI-GD and GR-ConvNet. The latter have their own unique 

training methods, which are based on the grasping model’s data analysis process. 

When it comes to end-effectors, the parallel fingered gripper with two fingers is the 

most popular one. Some of these models seem to be purely based on said end-

effector, however a couple of models should work with multiple types of grippers, such 

as the 6-DOF GraspNet. All the models had physical experiments done with the model, 

usually done with a 7-DOF robot arm, all except for GraspNet 1Billion and FFB6D. The 

latter only performed simulations for their model to train it, and the former performed 

simulations in a virtual 3D environment to grasp objects in their dataset. 
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4. CONCLUSION 

In this paper, six different models for robot grasping were covered: 6-DOF GraspNet, 

Dex-Net 4.0, GraspNet 1Billion, FFB6D, ROI-GD, and GR-ConvNet. Robot grasping it-

self and its deep learning were also covered briefly to give the reader context how 

these grasping models operated. To sum the process of grasping, it goes as follows: 

grasp detection, object pose estimation, motion planning, grasping positioning, and fi-

nally the implemented grasp. Deep learning is the process, in which a grasping model 

teaches itself to grasp objects in an end-to-end manner, in other words, without third 

party help. RGB-D cameras are a necessity to achieve very reliable grasps, and 6-DOF 

ensures that a robot can work in 3D environment. 

 The grasping models had some similarities when they were compared with each 

other, however their overall method was unique to their own respective models. 6-DOF 

GraspNet uses 6-DOF grasping with a VAE to determine multiple grasps in a point 

cloud with a network of grasp evaluators. Dex-Net 4.0 trains specific sets of grippers to 

grasp efficiently by domain randomization with analytic models of physics and geome-

try. GraspNet 1Billion utilizes a multi-object-multi-grasp setting by being a large-scale 

datanet, mostly for large, cluttered scenarios. FFB6D utilizes 6D pose estimation from 

a single RGB-D image; breaks image down in a two-fold operation; it detects key points 

in a point cloud for grasp detection. ROI-GD uses Regions of Interest as its basis; parts 

of a scene with most likely to have objects for grasping. GR-ConvNet takes RGB-D im-

ages and splits them into three separate images, which the inference module handles, 

and afterwards the control module executes the grasp based on the inference module’s 

data. 

 In conclusion none of these grasping models would have worked without an 

RGB-D camera. The depth images provide highly accurate and useful data for the 

models’ analysis processes. However, in the future there may be even more accurate 

ways to gather data with than an RGB-D camera but right now it seems to be the best 

option available. When conducting experiments with grasping models, they either boil 

down to simulations and/or physical experiments with a robot, armed with an adequate 

end-effector. 
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