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Abstract

Automatic bucket filling is an important puzzle piece in reducing the impact of labor
shortage in the construction industry by lowering the learning curve for new operators
and reducing the required skill-level. This task has proven to be challenging to auto-
mate, because it is difficult to model all the interaction forces between the wheel loader
and the loaded material. This has led to machine learning approaches receiving a lot of
attention in recent years. However, previous works have only focused on loading one
specific material, while, in this paper we investigate the problem of loading multiple
materials. Our controller is a neural network with a 1D-CNN architecture. The con-
trollers are trained using recorded data from expert operators loading three different
materials, namely, sand, gravel and blasted rock, and evaluated on a real machine. We
compare three different cases. In the first case, three controllers were synthesized us-
ing training data from only one material type. In the second case, two controllers were
synthesized by combining training data from all materials. One controller used 100%
of the training data and the other used a third of the available training data. Finally,
in the third case, four controllers per material were synthesized with transfer learning
by retraining the last layer of the controllers trained in case 1 and 2. Nine controllers
in total were evaluated on each material type by measuring the loading time and the
weight in the bucket after each scoop. Our experiments show promising results with
transfer learning as an approach for loading several different bulk materials and effi-
ciently use a limited amount of training data. The best result was achieved by using
blasted rock as a base material and then transfer learning to adopt the neural network
to the other materials. Furthermore, the best controllers achieved human comparable
performance for each material. On the other hand, combining materials into a single
controller proved to not yield satisfying results. They had poor or mediocre perform-
ance on all materials.

Keywords: Bucket Filling, Wheel Loader, Neural Networks, Imitation Learning,
Learning from Demonstrations, Transfer Learning

1 Introduction
Adding assistance functions to help the operator to automate tasks for heavy duty mobile machines (HDMM) is
in general becoming more important when trying to improve fuel and production efficiency. These improvements
can cut operating costs as well as solve the emerging problem of labor shortage in the construction and mining
industries by helping less experienced operators achieve high productivity [1, 2].

Wheel loaders are popular HDMMs because of their versatility and capability to perform various tasks with dif-
ferent attachments. The most typical task for a wheel loader is to load and unload different materials, where
the materials can range from everything between very fine, loose, and homogeneous materials, like sand, to very
rough and non-homogeneous, materials like blasted rock. The materials have very different properties such as
kernel size, shape, roundness, density, etc, from each other and therefore, they require slightly different loading
techniques in order to achieve optimal performance in terms of fill-grade, loading time and fuel consumption. An
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Figure 1: An L576 wheel loader loading sand [3].

experienced wheel loader operator can load different materials fast and efficient with their intuition. However,
it is not straight forward to develop a controller with conventional rule based control techniques because of un-
known material parameters and unknown dynamics in the interaction forces between the wheel loader and the pile.
Previous work using classical control theory and trajectory optimization have not resulted in clear success [4, 5].
Machine learning approaches have therefore gained traction and popularity in recent years as a solution to the
bucket filling problem [6–9]. However, the focus have mostly been on loading a single material, and when using
the same controller to load a different material the performance was degraded [10], which is to be expected since
different materials require slightly different bucket filling techniques and machine learning approaches have a hard
time generalizing to inputs outside of the distribution used for training. This assumption breaks for the bucket
filling task when the training data comes from one material but the controller is loading a different one. However,
there are a lot of similarities between loading two different materials and therefore it would be advantageous to
use and share knowledge between them. This is referred to as transfer learning (TL) in the literature where one
approach is to retrain the last layer of a neural network by providing additional samples from the new material [11].
This can also be achieved by using reinforcement learning (RL) and let the wheel loader self-optimize on a new
material as in [8].

Transfer learning is advantageous in applications where the amount of labeled training data is limited or costly to
acquire, as in our case with real machines, because TL is able to adapt an existing neural network to a new material
with minimum number of new training samples. This approach is necessary in our use-case because wheel loaders
encounters very different materials during normal operation and the effort to collect large amounts of training data
for each material does not scale and is unfeasible.

This paper introduces a transfer learning approach to multiple material loading evaluated on blasted rock, gravel
and sand. Figure 2 shows the different strategies used in this paper and how they use the training data. The most
straightforward approach is to collect the necessary amount of training data from all of the target materials and
train a specific controller for each of them. This comes with the caveat of having n controllers for n materials and
the need to collect the same amount of training data from all the materials. A more efficient use of the training data
is achieved with transfer learning where the controller trained on one material adopts to a new material with only
a small amount of new training data by retraining the last layer of the neural network controller. This also results
in n controllers for n materials, but with significantly lower amounts of required training data. Another approach
is to use the same training data but create one controller capable of loading all the target materials by combining
the training data and train a single neural network. However, different materials needs different techniques but the
neural network outputs the average loading technique from the training data, and therefore might not output the
optimal trajectory for any material.

A related approach to transfer learning is multitask learning (MTL), which has been successful in natural language
processing, face recognition [12–14]. In MTL several distinct tasks are combined in the same network but with a
unique output neuron for each task. The idea is that the network will have access to more data and therefore learn
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Figure 2: Overview of different strategies for loading multiple materials. The left-side option is to collect data
and train one controller for each material. The necessary data recording effort might be reduced with transfer
learning. The right-side option is to combine all the materials into a single dataset and controller.

better representations of the inputs and achieve higher performance and robustness. This would result in a network
with n outputs for n materials. It is also possible to add one extra output as an auxiliary task during training,
for example in our case, the type of material being loaded. The extra output is only relevant during training for
biasing the shared hidden layers to increase the predictive performance. Therefore, the extra output does not fulfill
any purpose when the network is deployed as a controller [15]. However, MTL and the previously mentioned RL
approach have not been explored and are out of scope for this paper.

In the next section, the neural network controller and its architecture is explained. The materials and training data
used in this study is described in the section after that. Lastly the results are presented and a conclusion is discussed
in the final sections.

2 Neural Network Controller
Imitation learning (IL) or Learning from demonstrations (LfD) is a method to learn an end-to-end controller for
robotics systems by leveraging demonstrations recorded by humans experts. This paper uses the popular behavior
cloning framework as an imitation learning approach to train a neural network controller [16]. The inputs to the
network consists of five signals from the machine: the angle of the bucket θtilt and boom θli f t , force in the tilt
and lift cylinders Ftilt , Fli f t , and the machine velocity v. The neural network then maps these five measurements
to three outputs commands: utilt , uli f t , uthrottle that are sent to wheel loader. The inputs and outputs of the neural
network controller can be seen in fig. 3 where the outputs from the neural network is a direct replacement of the
operator joystick and throttle pedal signals. Furthermore, each input channel consists of 16 samples of the signal,
sampled with a time window of 225 ms at 15 ms rate, and also normalized to fit the range of -1 to 1.

The controller consists of a combination of a 1 dimensional convolutional neural network (1D-CNN) and a fully
connected output network. All the layers are activated with the rectified linear unit (ReLU) activation function
except for the last layer which is activated by the hyperbolic tangent (tanh) function in order to map the output to
-1, 1 for full control of boom and bucket. The full architecture of the network is illustrated in fig. 3.

CNN uses the convolution operation between the input and a kernel to transform the data and find patterns. The
CNN is most noticeably used in image processing, recognition and object detection with a 2D kernel operating on
image data [17]. It has also been used with 1D kernel in the past for time series data [18–20].

The networks used in this paper was developed with the PyTorch framework [21] and trained to predict the operator
commands in the training data using the aforementioned inputs. The networks were optimized with the ADAM
optimizer [22] and with respect to the mean square error (MSE) between the predicted and true operator command.

A relatively shallow architecture was chosen because of the limited amount of training data available and the CNN
was chosen to be able to use the temporal information in the signals and at the same time reducing the number of
parameters needed to be trained. Furthermore, the CNN approach showed good performance in earlier experiments
motivating the use of the same architecture for this experiment as well. Lastly, this architecture has in total 2641
trainable parameters.
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Figure 3: 5 signals are sent to the neural network controller as inputs. The bucket and boom angles: θtilt , θli f t ,
forces in tilt and lift cylinders: Ftilt , Fli f t and the machine velocity v. The 3 outputs, utilt , uli f t , uthrottle, of the neural
network controls the tilt and lift joystick commands as well as the throttle pedal, respectively. The convolutional
layer uses a kernel size of 5 with stride of 1 and 3 filters. This output is flattened and sent to a fully connected layer
with a hidden dimension of 64. All the layers use the ReLU activation function except for the last one which uses
tanh.

3 Method
A Liebherr L576 wheel loader was used for this paper for recording data and testing the synthesized controllers.
Figure 1 shows an example of a general image of a Liebherr L576 loading sand. Pressure sensors and sensors for
measuring the length of the tilt and lift cylinders, which are required for calculating the relevant forces and angles,
are already available on the machine. Thus, no additional sensors or equipment except for a standard consumer
grade PC with a CAN-bus interface was used for this paper. The PC was used for running the bucket filling
algorithm described in section 3.2, in a ROS node, as well as receiving sensor data from the machine.

3.1 Training data

We recorded in total 306 bucket fillings spread equally over 3 piles with different materials. The following materials
were selected: sand (0-4 mm), gravel (0-64 mm), and blasted rock (0-200 mm). Figure 4 shows the three different
material piles and a close up of the materials with a shoe as reference for the kernel size. These materials were
selected for this experiment because they are commonly used in quarries and construction sites, and they also have
distinct features and therefore require slightly different loading strategies for an efficient and full bucket. The three
selected materials represents an increasing complexity and non-homogeneous characteristics, where sand is the
least complex and the most homogeneous, and blasted rock is the most complex and non-homogeneous because of
the varied sizes of particles.

The training data was recorded during a period of one month at the same quarry by an expert operator during normal
operation. Figure 5 shows the mean and standard deviation of the operators weight and loading time for bucket
fillings collected from blasted rock, gravel and sand. combined_33, and combined_100 represent a combination of
all the three materials. combined_33 contains 34 samples from each pile selected at random with 102 samples in
total. combined_100, on the other hand, contains all the recorded bucket fillings with 306 samples in total.

The training data shows that the operator is able to fill the bucket with similar loading times and material weights
for different materials, but with relatively high standard deviation. The slight difference in loaded mean weight
of different materials can be explained by the differences in the densities between them. Furthermore, the loading
time is also very similar between materials, usually 5-8 seconds to fill the bucket, where the loading time is defined
as the time the operator spends digging. The loading time starts when the force in the lift cylinders are higher than
a threshold, signifying that the bucket has penetrated the pile, and ends when tilt and lift cylinders are extended to
a certain degree or when the operator switches gear to reverse, signifying that the bucket has left the pile.
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(a) Blasted rock pile. (b) Gravel pile. (c) Sand pile.

(d) Close up of the blasted rock pile. (e) Close up of the gravel pile (f) Close up of the sand pile

Figure 4: The three different material piles with an overview image and a close up image.

Figure 5: Weight and time distributions of the five different collected datasets. The height of each bar corresponds
to the mean value and the error bar to the standard deviation of the dataset. The combined_33 and combined_100
contains a combination of the three other datasets with an inclusion ratio of 33% and 100% respectively.
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3.2 Bucket filling algorithm

We divide the bucket filling into 3 phases as illustrated in fig. 6, similarly to the approach in [6, 8]. With this
approach the neural network controller is only in control of the most challenging stage in the bucket filling process,
that is, phase 2. It also has the advantage of simplifying the output commands from the neural network because
the network does not need to know when it is in the pile by itself, it assumes that it is in pile when being activated.
Furthermore, this resolves the problem where the controller might start tilting and lifting the bucket before it has
reached the pile. Lastly, the bucket filling algorithm assumes that the wheel loader is a few meters in front of the
pile and that no steering is required to reach it.

Phase 1: Approach

Phase 2: Loading

Phase 3: Exit

Figure 6: The three different digging stages. The illustration of the wheel loader is inspired from [23].

1. Approach: The goal of the first phase is to bring the wheel loader into loading position in the pile. The bucket
is automatically lowered and placed flat on the ground and the wheel loader is accelerated with a constant
throttle value of 50% towards the pile. When the bucket penetrates the pile the force in the lift cylinders
increase until it reaches a threshold and the algorithm switches to the next phase.

2. Loading: During this phase the θtilt , θli f t , Ftilt , Fli f t , and v signals are sent to neural network controller
which determine the commands utilt , uli f t , and uthrottle from the outputs of the neural network controller
which are sent to the wheel loader via the CAN-bus. The output of the neural network is in the range of -1 to
1, meaning it is capable of both lifting and lowering the boom, and tilting the bucket inwards and outwards.
However, the throttle command is restricted to forward motion only, by clipping the output. The next phase
starts when the tilt or lift cylinder lengths are extended to a certain degree.

3. Exit: This phase makes sure that the bucket is fully tilted inwards so that no material gets spilled from the
bucket. The bucket is also automatically raised in order for the built-in weighing system to weigh the mass
of the material in the bucket.

3.3 Controllers

We synthesized 17 controllers in total from the 3 datasets described in section 3.1, the selection of the controllers
was chosen in accordance with fig. 2. The controllers are grouped into 3 categories depending on which training
data was used for the training: specialized, combined, and transfer. The categories are explained in the next
sections. A summary of all the controllers and the training data used in the synthesizing is described in tab. 1.

3.3.1 Specialized controllers

Three specialized controllers, namely blst_rock, gravel and sand, were trained with only one material type. Train-
ing data for each controller included 102 samples. These controllers should perform the best when evaluated on
the same pile as the training data.

3.3.2 Combined controllers

Two controllers, namely cmb100 and cmb33, were synthesized by training on the combined_100 and combined_33
datasets, respectively. These controllers will evaluate the generalization capabilities of the neural network by
testing if it is possible to distill the knowledge from several bucket filling techniques or if the output will be an
average of the techniques and thus have poor performance on all materials.
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Table 1: Overview of the synthesized controllers and the training data used. The specialized controllers were
trained on one material each. The combined controllers used a mixture of the materials as training data. The
transfer controllers used the previous controllers as a basis and transfer learning to adopt to a different material.
The transfer controllers use the naming convention: <base_controller>_tl_<target_material>.

No. bucket fillings
Type Controller Total Blasted rock Gravel Sand

Specialized
blst_rock 102 102
gravel 102 102
sand 102 102

Combined cmb100 306 102 102 102
cmb33 102 34 34 34

Transfer

blst_rock_tl_gravel 112 102 10
blst_rock_tl_sand 112 102 10
gravel_tl_blst_rock 112 10 102
gravel_tl_sand 112 102 10
sand_tl_blst_rock 112 10 102
sand_tl_gravel 112 10 102
cmb100_tl_blst_rock 316 112 102 102
cmb100_tl_gravel 316 102 112 102
cmb100_tl_sand 316 102 102 112
cmb33_tl_blst_rock 112 44 34 34
cmb33_tl_gravel 112 34 44 34
cmb33_tl_sand 112 34 34 44

3.3.3 Transfer controllers

Additionally, 12 more controllers were synthesized using the specialized and combined controllers as a basis for
transfer learning. The last layer of the previous controllers were retrained with only 10 samples from the target ma-
terial. The synthesized transfer learning controllers use the naming convention: <base_controller>_tl_<target_material>,
for example, blst_rock_tl_gravel uses the blst_rock as a base controller and transferred to the gravel material by
using 10 samples for retraining.

3.4 Evaluation metrics

We want to find a high performing and robust controller by measuring and evaluating three metrics: weight in
bucket, loading time, and success rate. The weight of the material in the bucket is used as a proxy for fill-grade
because it is easier to measure the weight in the bucket than the volume with the available sensors on the machine.
A downside with this approach is that the material density influences the weight of a full bucket for different
materials. Therefore, the weight is always compared to the human operator for each material pile. The loading
time metric is defined as the time the wheel loader is in phase 2 where the neural network is in control. This
definition also ignores different starting distances from the pile and only measures the interesting part of the bucket
filling process. Lastly, a successful bucket fill is defined as the controller reaching phase 3 and therefore completing
the loading.

All of these metrics are important, and a controller needs to be able to achieve a minimum performance and
robustness criterion in order for it to be considered as a viable method. It has to achieve a full bucket in under 10.0
seconds with a 100% success rate. A weight of 800 kg is considered as a full bucket with the the specific bucket
and target materials used in the tests. Finally, the mean weight and loading time should preferably be comparable
to human level performance. In other words, the controller should be able to always achieve a full bucket load in a
timely manner.

4 Results
This section presents the closed-loop performance of the developed controllers on the same material piles as the
collected training data. For each material a total of 9 controllers were evaluated: all of the specialized and combined
controllers and the relevant transferred controllers. For the transferred controllers, only the controllers transferred
to the specific material being evaluated were tested. For example, when evaluating the controllers on the blasted
rock material only the transfer controller that did not use blst_rock as a base controller but blasted rock as a target
material were evaluated.
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The mean weight and loading time µweight , µtime as well as the standard deviation σweight , σtime are calculated over
a sample size of 5 trials for each of the controllers, and are reported in Table 2 and in fig. 7. Furthermore, fig. 7
shows the controllers sorted from left to right with the highest loaded material weight on the left. The controllers
left of the red dotted line achieved the aforementioned minimum performance and robustness criterion.

Table 2: Reported mean and standard deviation for the material weight and the loading time for each controller
evaluated on the three piles. No evaluation of controller on a pile is denoted with a -. NaN denotes the complete
failure of a controller on a pile.

Material Blasted Rock Gravel Sand
Controller Score µw σw µt σt µw σw µt σt µw σw µt σt
blst_rock 9005 667 8.45 0.73 9562 429 8.99 0.47 9757 646 7.51 0.87
gravel 5665 1882 9.49 4.13 8521 671 6.02 0.47 8213 718 5.15 0.47
sand NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
cmb100 7710 526 6.62 0.85 8515 500 9.63 2.28 7758 233 6.34 0.89
cmb33 7812 1191 12.39 3.27 8125 2651 11.91 5.57 NaN NaN NaN NaN
blst_rock_tl_gravel - - - - 10521 671 6.99 0.52 - - - -
blst_rock_tl_sand - - - - - - - - 9834 908 6.94 0.33
gravel_tl_blst_rock 7913 823 7.14 0.99 - - - - - - - -
gravel_tl_sand - - - - - - - - 5893 316 5.04 0.36
sand_tl_blst_rock 8481 495 9.44 0.56 - - - - - - - -
sand_tl_gravel - - - - 5743 1556 4.55 0.87 - - - -
cmb100_tl_blst_rock 8171 234 7.19 0.97 - - - - - - - -
cmb100_tl_gravel - - - - 8984 178 6.97 1.94 - - - -
cmb100_tl_sand - - - - - - - - 8075 885 9.99 2.39
cmb33_tl_blst_rock 6271 1958 5.19 0.36 - - - - - - - -
cmb33_tl_gravel - - - - NaN NaN NaN NaN - - - -
cmb33_tl_sand - - - - - - - - NaN NaN NaN NaN

Units [kg] [kg] [s] [s] [kg] [kg] [s] [s] [kg] [kg] [s] [s]

As mentioned in section 3.4, a successfully bucket fill is defined as the controller reaching phase 3. The common
failure modes for not reaching this phase are the following: wheel loader started to lift itself up with the boom
and bucket, excessive wheel spin and the wheel loader getting stuck in the pile. When any of these failure mode
occurred the experiment was manually aborted and the trial was counted as a fail.

4.1 Specialized controllers

Figure 7 shows that the specialized controllers except for the sand controller had a high and robust performance
on their specific material. The sand controller did not succeed in filling a bucket from any pile because the wheel
loader either got stuck in pile or using too much throttle commands resulting in excessive wheel spin. The gravel
controller was the fastest on both the sand and gravel piles but with less weight than the operator mean and some
other controllers. The blst_rock controller was the only one of the specialized controllers to reach the minimum
requirements on the blasted rock pile. It was also the best performing controller overall on that pile. Furthermore,
it also had a good performance on the gravel pile.

4.2 Combined controllers

The combined controllers did not have a good performance or robustness in general since none of the cmb100 or
cmb33 reached the minimum performance and robustness requirement on any of the piles as is evident from fig.
7. The best of the combined controllers was cmb100 on blasted rock. It succeeded every time to fill the bucket
quickly but sometimes with lower than 8000 kg of material. Furthermore, the cmb100 performed better and more
robust than the cmb33 on all materials. The failure mode for these controllers were excessive wheel spin, getting
stuck in the pile or lifting itself up with the boom.
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(a) Weight and time distributions of the controllers evaluated on the blasted rock pile

(b) Weight and time distributions of the controllers evaluated on the gravel pile

(c) Weight and time distributions of the controllers evaluated on the sand pile

Figure 7: Weight and time distributions of the different controllers evaluated on each of the three target materials.
The x-axis contains the name and success rate of the controller. The controllers left of the red dotted line have
acceptable performance and robustness according to the definition of: 100% success rate, higher weight than 8000
kg, faster than 10 seconds. The acceptable controllers are sorted by weight with the leftmost having the highest
weight.
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4.3 Transfer controllers

The transfer controller could improve the performance and robustness in most cases. In fig. 7b the blasted_rock
controller was improved with transfer learning to both increase the material weight and reduce the loading time
to human comparable levels. It it shown that the blst_rock base controller transferred to the target material could
achieve highest weight in a timely manner for all the investigated materials. The figure also show that the cmb100
was improved with transfer learning to reach the minimum performance and robustness criterion. Lastly, fig. 7a
shows that the transfer learning approach could improve the sand controller to successfully load the blasted rock.

5 Conclusions and Outlook
This paper explores a transfer learning approach for loading of three distinct materials with a 1D-CNN neural
network controller using training data recorded by an expert operator. The results shows that the best use of training
data for synthesizing controllers with high performance and robustness is to first train on a non-homogeneous
material like blasted rock and then use transfer learning to learn loading of a specific material. This strategy
minimizes the data collection effort since it only needs 10 additional training samples from a new material in order
to achieve high robustness and performance on it. Furthermore, it is also possible to first combine all the training
data and then use transfer learning to adopt the controller to the target material, but this requires more data to be
collected and lower performance than the first option.

The combined controllers did not generalize to all of the different bucket filling techniques, but averaged the actions
and had mediocre performance on all of the materials. When combining training data from multiple materials it
might be necessary to use a larger network in order catch the different dynamics between the material and bucket.
Having one controller being capable of loading all materials can be an advantage in some applications if the
material to be loaded is unknown. It would also be interesting to use multitask learning where the neural network
has different heads for each material, i.e the number of outputs from the network would be 3 times n materials but
only the 3 relevant outputs would be used for each material. These strategies were not tested in this paper but they
might work better than our approach, and could be interesting to explore in the future.

The specialized controller performed well on the same materials as the training data, except for the sand controller,
which failed in loading all of the materials. This can be explained by the homogeneity and low complexity of sand,
and therefore the controller is only exposed to a limited state space and does not learn to generalize well to any
material. This can also be explained by overfitting on the training data caused by similar reasons. Furthermore,
it proves that it is better to use training data from more complex materials because of a higher degree of explored
state space.

The promising results of the transfer learning approach shows that it’s also interesting to explore reinforcement
learning for loading different and unknown materials. This approach is similar to the transfer learning approach
used in this paper, but instead of retraining the last layer of the controller with additionally recorded bucket fillings
from an operator, it is retrained by the wheel loader exploring automatically the best strategy on its own.
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Acronyms

CNN convolutional neural network
HDMM heavy duty mobile machine
IL imitation learning
ML machine learning
MSE mean square error
MTL multitask learning
RL reinforcement learning
TL transfer learning

Nomenclature

Designation Denotation Unit

θtilt Bucket angle rad
θli f t Boom angle rad
Ftilt Force in tilt cylinder N
Fli f t Force in lift cylinder N
v Velocity of wheel loader m/s
µweight mean of weight kg
µtime mean of loading time s
σweight standard deviation of weight kg
σtime standard deviation of loading

time
s
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