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PREFACE

The culmination of a four-year odyssey has brought me to the edge of the precipice,
staring into the unknown abyss of the future. The obstacles I faced along the way
were no mere bumps in the road - they were towering mountains that tested the very
limits of my resilience and strength. Nevertheless, these trials and tribulations have
forged me into the person I am today - a fearless explorer, a passionate researcher,
and a fierce advocate for the power of knowledge. I owe an immeasurable debt of
gratitude to Dr. Heikki Huttunen and Prof. Esa Rahtu for entrusting me with the
opportunity to embark on this transformative journey of self-discovery.

Navigating a new life in a foreign land and grappling with personal challenges
while far away from loved ones is no easy feat. Through it all, I have been blessed
with my family’s unwavering support and love, who have been my guiding light
through the darkest times. Alongside them, my colleagues, especially Bishwo Ad-
hikari, Francesco Lomio, and Xingyang Ni, have been my steadfast companions in
this quest for knowledge, making the research experience more enjoyable and re-
warding than I could have ever imagined.

Through my research, I have been privileged to connect with brilliant minds in
academia and industry, forging bonds that will last a lifetime. I would like to express
my profound appreciation to Antti Siren, who has facilitated meetings and provided
the bridge I needed to connect with such individuals.

As I stand on the cusp of this new chapter in my life, I am reminded of the words
of Ursula K. Le Guin, who famously said, "It is good to have an end to journey
towards, but it is the journey that matters in the end." To all those who dare to
embark on their journey of self-discovery, I urge you to embrace the challenges and
savor the journey itself - for it is the journey that will define you.

Saeed Bakhshi Germi
2024-02-19

Tampere, Finland
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ABSTRACT

Deep learning has demonstrated tremendous potential in solving complex computa-
tional tasks such as human re-identification, optical character recognition, and ob-
ject detection. Despite achieving high performance on various synthetic and real-life
datasets, the absence of functional safety standards in this field hinders the develop-
ment of practical solutions for safety-critical applications. Therefore, this disserta-
tion emphasizes the safety aspect of deep learning to dissect the problem and propose
potential solutions.

The first objective of this study is to investigate classification as the fundamental
component of most deep learning algorithms from a safety perspective. The aim is
to identify and categorize faults and their underlying causes in a typical visual classifi-
cation system. The research systematically categorizes faults from three key phases:
training, evaluation, and inference. Subsequently, eight distinct safety concerns were
defined, and the existing mitigation methods for each fault were discussed to evaluate
their effectiveness and limitations. Furthermore, potential solutions were presented
directed toward the limitations. This list could be used alongside other resources to
build a safety case for utilizing deep learning methods in safety-critical applications.

The second objective delves deeper into the training phase and explores the faults
related to the training dataset, aiming to enhance the existing mitigation methods
with safety in mind. Improved algorithms are introduced to mitigate label noise,
detect outlier data, and bridge the domain gap. These problems have been analyzed
from various perspectives to find practical approaches to address them. The proposed
methods utilize low-cost extra resources to improve overall performance. The trade-
off between cost and performance was a significant focus point in these studies. The
proposed methods were compared to state-of-the-art alternatives with the help of
public benchmarks to evaluate their performance.
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The AI tools used in my thesis and the purpose of their use have been described
below:
OpenAI ChatGPT (GPT-3.5)
Purpose of use and the part in which it was used:

ChatGPT was used primarily to find and correct any grammatical mistakes, in-
consistencies, or incoherent text over the entire thesis. I wrote the initial text and
processed it by ChatGPT on a sub-chapter level. The prompt was  check for gram-
matical mistakes and enhance the text to prevent inconsistencies and improve co-
herency without changing the overall writing style". Afterward, I manually checked
the results, removed any artifacts, and reverted unnecessary changes that didn’t suit
my writing style.

Moreover, ChatGPT has generated the description part for tools and datasets
used in this thesis (e.g. ResNet structure or Clothing 1M dataset) based on the
information given by their respective authors in the original webpage. The prompt
was  generate a description for this tool/database for my doctoral thesis based on
the provided information". Similarly, I double-checked the results to make sure the
information was correct, and the text matched my writing style.

Finally, the "Preface" part of the manuscript heavily relied on using ChatGPT.
My original text was processed multiple times by ChatGPT to get a sophisticated,
dramatic entry to the thesis. The prompt was  make the written text more sophis-
ticated and dramatic while keeping it to the same length".

I am aware that I am totally responsible for the entire content of the thesis, in-
cluding the parts generated by AI, and accept the responsibility for any violations of
the ethical standards of publications.
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1 INTRODUCTION

The extraordinary achievements of Artificial Intelligence (AI) andMachine Learning
(ML) in a variety of real-world applications have drawn interest from safety-critical
fields such as heavy machinery [20], logistics [114], and healthcare [107]. Deep
Learning (DL), an advanced subset of ML, notably excels in tackling complex, non-
linear problems that involve multi-dimensional inputs and extensive optimization
needs [94]. These challenges extend from object detection in autonomous vehicles
[83] to semantic segmentation in advanced medical imaging [125].

Deep neural networks are trained to identify patterns from numerous training
samples, subsequently applying the learned logic to unseen samples to predict out-
comes [94]. Each component of this intricate mechanism is vulnerable to faults [134],
which must be identified and addressed for safety-critical applications. However, this
process is impeded by the demand for comprehensive functional safety standards.

Traditional standardization methods are designed toward deterministic systems
and struggle with deep learning algorithms due to their distinctive traits. For in-
stance, conventional software development follows the ’V model,’ a systematic pro-
cess from requirements to maintenance, with predictable outcomes [85]. However,
DL algorithms deviate from this pattern due to their data-driven nature. Their out-
comes are reliant on the quality and quantity of data, and they may exhibit unpro-
grammed behaviors. Consequently, traditional rules prove insufficient, demanding
novel development, testing, and validation approaches for DL algorithms.

Thus, this dissertation aims to investigate the faults within deep neural networks
designed for visual input classification to determine how to implement such networks
within the confines of safety-critical applications.
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1.1 Objectives and Scope of the Thesis

Classification, a fundamental component of most high-level decision-making AI sys-
tems, is susceptible to various faults in the implementation cycle [134]. Faults can oc-
cur at different stages, including structured training data collection, appropriate hy-
perparameter selection, performance measurement metric definition, and fair com-
parison conduct. This research aims to provide a comprehensive list of faults within
a visual deep neural classification system.

Additionally, this study aims to propose practical strategies for enhancing existing
mitigation methods. While prior works have offered generic lists of safety concerns
and mitigation methods [120, 96, 118], uncertainty and safety wrappers [53, 31], or
targeted specific faults [134, 106], most haven’t adequately considered the practicality
or completeness of their solutions. This study aims to address these shortcomings by
proposing practical and effective mitigation strategies built on realistic assumptions.

1.2 Research Questions

The research questions of this dissertation arise from two main viewpoints. The first
perspective examines the underlying causes of faults in a visual deep neural classifi-
cation system. Since faults can manifest at any stage of the algorithm development
process, it is critical to systematically identify faults, understand their underlying
causes, and design effective mitigation strategies to ensure safety.

The second perspective investigates the practical implementation of mitigation
methods to address data-related faults, such as label noise, outlier data, and domain
shift in a visual deep neural classification system. Current methods often rely on un-
realistic assumptions, posing challenges to their practical implementation in safety-
critical applications. Given the vital role of training and testing in the classifier’s over-
all performance and robustness, finding appropriate data-related mitigation methods
is crucial in deploying classifiers in safety-critical applications.

This work attempts to answer the following research questions:

• Research Question 1:
Which faults can lead to the failure of visual deep neural classification systems,
and how can they be systematically categorized?
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• Research Question 2:
What are the existing mitigation methods for addressing safety concerns in
visual deep neural classification systems, and how effective are they?

• Research Question 3:
How can the existing mitigation methods for data-related faults in visual deep
neural classification systems be enhanced to ensure practical implementation?

1.3 Summary of the Publications

The overall outcome of this thesis can be seen in Figure 1.1. The results of individual
publications are summarized as follows:

Publication I This paper proposes a reject option based on hypothesis testing
with probabilistic neural networks, aiming to implement a selec-
tive classifier that mitigates out-of-distribution data during the in-
ference stage. The proposed method relies on an estimated dis-
tribution of outcomes to detect out-of-distribution data based on
each outcome’s statistical significance. Various experiments were
conducted to evaluate the proposed method using a well-known
network configuration (ResNet), benchmark datasets (COCO
and CIFAR), and various synthetic disturbances. The perfor-
mance was compared against the traditional Softmax Response
method. The results demonstrated an average improvement of
0.15 AUROC value over all test cases. Moreover, the proposed
method offers a broader range of trade-off options between FPR
and TPR.

Publication II This paper delves into the safety concerns of visual deep learning
algorithms and their existing mitigation methods. The research
identifies a gap between the current functional safety standards
and the state-of-the-art methods, hindering the validation/verifi-
cation process of potential deep-learning solutions. To overcome
this, the paper investigates the underlying causes of faults in vi-
sual deep learning algorithms and provides a practical and com-
prehensive list of safety concerns to help build a safety case for
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these algorithms. Additionally, the paper highlights the limita-
tions of current mitigation methods, underscoring the need for
further research in this area. The findings offer valuable insights
for researchers and practitioners working on the safety of visual
deep learning algorithms.

Publication III This paper proposes an iterative data-recalibration method based
on validation data to mitigate noisy labels in classification tasks.
The proposed method relies on a small, clean validation dataset to
update the training dataset labels in each iteration based on the net-
work’s performance. Several experiments were conducted to eval-
uate the proposed method using well-known network configura-
tions (ResNet and VGG), benchmark datasets (CIFAR, Animal-
10N, Food-101N, Clothing1M), and different noise models (in-
stance dependent and independent). The performance was com-
pared against state-of-the-art algorithms based on accuracy. The
results showed an average of 1 - 1.5% increase in accuracy in most
of the experiments.

Publication IV This paper proposes an iterative intermediate domain generation
algorithm for domain adaptation in classification tasks. The pro-
posed method relies on a variable ratio for mixing low and high-
passed images from the source and target domains to create mul-
tiple intermediate domains and train parallel networks to lever-
age different perspectives for better performance. Several exper-
iments were conducted to evaluate the proposed method using
a well-known network configuration (ResNet) and benchmark
datasets (Office-31, Office-Home, and VisDa-2017). The perfor-
mance was compared against state-of-the-art algorithms based on
accuracy, and the results showed an average of 0.2 - 1.7% increase
in accuracy over alternative state-of-the-art algorithms.
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Safety Concerns in Visual Deep Neural Classifiers

Training Stage Evaluation Stage Inference Stage

SC1: Incomplete Dataset

SC2: Inadequate Dataset

SC3: Insufficient/Noisy Dataset

SC4: Ill-Matched Architecture

SC5: Imperfect Metrics/Benchmarks

SC6: Black-Box Behavior

SC7: Defective Hardware

SC8: Harsh Environment

MM: Publication I

MM: Publication IV

MM: Publication III

Figure 1.1 The relation between publications. The overall list is proposed in publication II, with other
publications dealing with specific mitigation methods.

Structure of the Thesis

The dissertation is systematically structured to offer a comprehensive understand-
ing of safety concerns in visual deep learning algorithms. Chapter 2 introduces the
field, including the history of machine learning and deep learning, the existing gaps
in functional safety standards, and the tools and datasets used for experimentation.
Chapter 3 analyzes the faults in visual deep learning algorithms and the effectiveness
of existing mitigation methods. The chapter summarizes the author’s work on devel-
oping a practical safety concern list. Chapter 4 presents the author’s contributions
to the field, proposing and implementing various mitigation methods for data-related
safety concerns, and presents experimental results based on benchmark datasets. Fi-
nally, Chapter 5 concludes the thesis with discussions on the current state of the field
and future research directions, emphasizing the author’s contributions to advancing
the field towards safer, more reliable deep learning algorithms.
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2 BACKGROUND

This chapter provides a general overview of the key concepts and terminologies re-
lated to deep neural classification and functional safety to contextualize the research
work conducted in this thesis. Additionally, this chapter lists the network architec-
tures, benchmark datasets, and evaluation metrics utilized in this thesis.

2.1 Visual Deep Neural Classifier

Visual deep neural classifier can be explained as an image classification algorithm
based on deep neural network. In computer vision, image classification involves
assigning a label or category to an image based on its contents. This task requires
analyzing the visual features of an input image and comparing them with the learned
features of a pre-trained model to determine the most likely class label [101].

The landscape of image classification underwent a significant transformation with
the advancement of deep learning techniques. One of the key advancements in this
field was Convolutional Neural Networks (CNNs), which proved particularly ef-
fective for image classification tasks [9, 87].

Following the success of AlexNet [56], other deep learning architectures were in-
troduced to further improve performance on image classification tasks. In 2016, He
et al. introduced Deep Residual Networks (ResNets), which utilized residual con-
nections to mitigate the vanishing gradient problem, enabling the training of much
deeper networks [44]. Another noteworthy architecture is the Densely Connected
Convolutional Networks (DenseNets) introduced by Huang et al., which improved
information flow within the network by connecting each layer to every other layer
in a feed-forward fashion [47].

In addition to supervised [71] classification methods, unsupervised [17] and semi-
supervised [21] methods have also been explored for situations where labeled data is
scarce or unavailable. Clustering methods like k-means and hierarchical clustering
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can group visually similar instances without labels [70], while generative models such
as Variational AutoEncoders and Generative Adversarial Networks learn to generate
new instances that resemble the training data [130, 6].

The field of image classification is an active area of research, with new methods
and applications being developed constantly. Open-source libraries such as PyTorch
[78] and TensorFlow [1] offer a variety of pre-trained models that can be fine-tuned
on specific datasets or used as feature extractors. The open sharing of research find-
ings and resources has significantly contributed to advancements in visual classifica-
tion tasks.

2.2 Safety-Critical Systems & Functional Safety

In safety engineering, a failure is defined as "the inability of a system to perform
its required functions within specified criteria", while a fault refers to "a flaw in a
component". A system is considered safety-critical when failures could result in out-
comes such as loss of life, serious harm to people, significant damage or destruction of
property, equipment, or environment. In these systems, faults could lead to failures
which significantly increases the safety risk for people and environment [104].

Such risks are typically mitigated through safety engineering practices and tools.
Functional safety ensures that all systems operate correctly in response to their in-
puts, even when things go wrong. Given the increasingly complex nature of modern
machinery and its broad applications, such safety considerations are indispensable
[35].

The history of functional safety dates back to theMachineDirective EN 2006/42-
/EC, which laid the foundation for functional safety in 2006. It was born out of
the pressing need to provide guidance on the safety of machinery, ensuring their in-
tended safe usage and minimizing associated risks throughout their life-cycle [27].
However, as technology evolved, the directive needed to be complemented by more
detailed guidelines.

The Safety of Machinery ISO 13849 standard, published in 2006, provided a
robust framework for assessing machinery safety by delving deeper into the safety
requirements for the control systems used in machinery. This standard aimed to
reduce the risk of accidents caused by machinery by providing explicit guidance on
the design and implementation of the control systems [89].
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As the use of electronics and software in vehicles increased, the need for a spe-
cific standard for functional safety in the automotive industry became apparent. In
response to this need, the International Organization for Standardization published
the ISO 26262 standard in 2011. This standard provides guidance on the functional
safety of electrical and electronic systems in road vehicles. It extends its coverage
over the system’s entire life-cycle, providing a comprehensive framework to manage
associated risks [85]. Other industries soon followed suit, with standards like ISO
25119 for agriculture and forestry machinery [110] and ISO 19014 for earth-moving
machinery [28].

In 2019, the ISO/PAS 21448 standard (Safety of the Intended Functionality or
SOTIF) was introduced, further expanding the horizon of safety standards. Recog-
nizing that risks could stem from the system’s intended functionality and unforeseen
interactions between systems, SOTIF offers guidance on identifying and managing
such risks [86].

All these aforementioned standards were based on traditional definition for soft-
ware, in which the faults of any software component are deterministic by nature
and could be reproduced by following specific steps. However, the emergence of AI
tools, specifically complicated algorithms of DL, resulted in a new methodology for
software development where the faults were not deterministic. New standards such
as UL4600 adopt a risk-based approach to safety, acknowledging that eliminating
all risks is implausible, but managing them to an acceptable level is paramount [31].
They emphasize testing and validation, providing direction on these activities and
integrating their requirements with existing standards like ISO 26262.

This work will try to breach the gap between the existing standards and the prac-
tical approach to ensure safety of deep learning algorithms. This is done by follow-
ing the risk-based approach, and applying it to components of a DL algorithm to
find sources of faults. It is worth noting that the ISO/IEC JTC 1/SC 42 commit-
tee is currently developing safety standards related to artificial intelligence, such as
ISO/IEC TR 5469 [12], indicating the growing integration of AI systems in our
lives. However, at the time of doing the research the mentioned standard was not
published officially.
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2.3 Classification Models used in Thesis

To achieve the objectives of this thesis, a range of deep neural network architectures
were employed to process and analyze the visual data under consideration. These
architectures were selected based on state-of-the-art publications, allowing for easier
comparison with alternative methods. This section describes the various architec-
tures used in this thesis.

ResNet

Residual Network, or ResNet, is a deep convolutional neural network introduced
in 2015 [44]. The main idea behind ResNet is the use of residual connections, which
allow information from earlier layers to bypass some of the layers in between and be
directly added to later layers. This helps alleviate the problem of vanishing gradients
that often arises in very deep networks. ResNet has become a popular choice for
many applications in computer vision due to its impressive performance and the
availability of pre-trained models. Its architecture has been extended and adapted for
various tasks, including image segmentation, face recognition, and video analysis.

VGG

The VGG architecture is a deep convolutional neural network introduced in 2014
[100]. It is characterized by its use of tiny 3x3 convolutional filters and its deep
architecture, with up to 19 layers in the network. VGG has achieved outstanding
results on various image classification benchmarks, including the ImageNet Large
Scale Visual Recognition Challenge [87]. Its architecture has also served as a starting
point for other network designs. Although it is less widely used than ResNet, VGG
remains an essential milestone in developing deep neural networks for computer
vision.

2.4 Datasets used in Thesis

In order to achieve the objectives of this thesis, various classification datasets were
employed for training and testing. These datasets were carefully selected to repre-
sent real-world challenges and were based on state-of-the-art publications to facilitate
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comparison with alternative methods. This section describes the datasets used in this
thesis.

CIFAR

The CIFAR-10 and CIFAR-100 datasets contain color images of different objects.
CIFAR-10 consists of 60,000 images divided into 10 mutually exclusive classes such
as airplane, dog, and truck. On the other hand, CIFAR-100 consists of 60,000 im-
ages divided into 100 classes with hierarchical relationships where every category of
CIFAR-10 is divided into 10 subcategories [55]. These datasets have become popular
benchmarks for evaluating the performance of image classification algorithms. The
relatively small and low-resolution images make them suitable for experimentation
and proof-of-concept across various tasks.

COCO

COCO is a large-scale dataset designed for object detection, segmentation, and cap-
tioning tasks [66]. It comprises over 330,000 images of complex everyday scenes,
such as street scenes, urban environments, and indoor settings. The images are an-
notated with 80 different object categories, including people, animals, vehicles, and
various household items. Additionally, COCO provides segmentation masks for
many objects, allowing for more precise localization and segmentation of objects in
images. The COCO dataset serves as a challenging benchmark for object detection
and other computer vision tasks due to its large size, diverse object categories, and
complex scenes. While initially intended for object detection tasks, the dataset can
be adjusted for classification by manually cropping the images to extract each object
based on the annotations, resulting in a complex classification dataset suitable for
performance evaluation.

Animal-10N

The Animal-10N dataset is valuable for evaluating computer vision models’ robust-
ness to noisy labels across various tasks, including image classification and object
recognition [105]. This dataset comprises 55,000 images of ten animals, collected
through online search engines and categorized into five pairs of visually similar an-
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imals such as cat and lynx. The noise rate of the dataset, estimated through cross-
validation and human inspection, is approximately 8%, reflecting the noise present
in real-world datasets. This makes the Animal-10N dataset a challenging benchmark
for evaluating the robustness of computer vision models.

Food-101N

The Food-101N dataset is a large-scale dataset designed to address label noise with
minimal human supervision [61]. It contains 310,000 images of food recipes belong-
ing to 101 different classes, with an estimated noise rate of around 20%. Each image
in the dataset has a verification label indicating whether the class label is correct or
not. The verification labels are manually assigned to a subset of the images for train-
ing and validation. The Food-101N dataset facilitates learning image classification
with label noise and label noise detection, making it a challenging benchmark for
developing and evaluating robust image classifiers that can handle label noise. It is an
extension of the Food-101 dataset [18] and provides a noisier and larger environment
for model evaluation.

Clothing1M

The Clothing1M dataset is a large-scale dataset of clothing images with noisy labels
[121]. It comprises one million clothing images from 14 classes such as T-shirts,
Shirts, and Knitwear. The data was collected from various online shopping web-
sites, resulting in the inclusion of many mislabeled samples. To address this issue,
the dataset also includes 50k, 14k, and 10k images with clean labels for training,
validation, and testing, respectively. The dataset also includes the surrounding text
provided by the sellers, which can be used as visual tags.

Office-31

The Office-31 dataset serves as a popular benchmark in domain adaptation and trans-
fer learning [88]. It contains 4,110 images across three domains: Amazon, DSLR,
and Webcam, with 31 object categories. The Amazon domain comprises clean back-
ground images captured from online merchants, the DSLR domain consists of high-
quality images captured by a DSLR camera, and the Webcam domain contains low-
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resolution and noisy images captured by a webcam. The dataset has been widely used
to evaluate the ability of algorithms to generalize across different domains, such as
adapting a classifier trained on one domain to perform well on a different domain.

Office-Home

The Office-Home dataset is created for evaluating domain adaptation algorithms for
object recognition using deep learning methods [112]. It consists of 15,500 images
of 65 object categories from four domains: Artistic, Clip Art, Product, and Real-
World images. The images were collected using a web crawler that searched through
different search engines and image directories. They were filtered to ensure that the
desired object was present in each picture, and categories were filtered to ensure a
minimum number of images per category. One of the distinctive features of this
dataset is the diversity of images, including variations in color, lighting, viewpoint,
and background. The dataset poses challenges due to domain shifts between domains
and intra-class variations, making it suitable for evaluating the robustness of object
recognition algorithms in various scenarios.

VisDa-2017

The VisDa-2017 dataset is designed for unsupervised domain adaptation for image
classification [80]. It includes 280,000 samples from 12 object categories, such as air-
plane, horse, and person. The dataset is divided into a training domain (source) with
synthetic 2D renderings of 3D models generated from different angles and lighting
conditions and a validation domain (target) with photo-realistic or real-image sam-
ples. The complexity and realism of the dataset make it a valuable benchmark for
domain adaptation problems, as algorithms must adapt to different image domains
without explicit guidance from labeled data.

2.5 Evaluation Metrics used in Thesis

Several metrics were used to evaluate the performance of the proposed methods,
including accuracy, the area under the receiver operating characteristic curve, and
the Z-test. Each metric was selected based on its relevance to the specific task and its
ability to comprehensively evaluate the effectiveness of the proposed methods. These
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metrics were also used to compare the proposed methods with baseline approaches
and identify areas for further improvement. This section describes the various eval-
uation metrics used in this thesis. The definitions for these metrics are taken from
ISO/IEC TS 4213 [49].

True Positive (TP)

The number of samples correctly classified as positive.

True Negative (TN)

The number of samples correctly classified as negative.

False Positive (FP)

The number of samples wrongly classified as positive, also known as False alarm or
Type I error.

False Negative (FN)

The number of samples wrongly classified as negative, also known as Miss or Type II
error.

Accuracy

The number of correctly classified samples divided by all classified samples.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

True Positive Rate (TPR)

The number of samples correctly classified as positive divided by all positive samples.
Also known as Sensitivity, Recall, and Hit rate.

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
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True Negative Rate (TNR)

The number of samples correctly classified as negative divided by all negative samples.
Also known as Specificity and Selectivity.

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

False Positive Rate (FPR)

The number of samples incorrectly classified as positive divided by all negative sam-
ples. Also known as Fall-out.

𝐹𝐹𝐹𝐹𝑇𝑇 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

False Negative Rate (FNR)

The number of samples incorrectly classified as negative divided by all positive sam-
ples. Also known as Miss rate.

𝐹𝐹𝑇𝑇𝑇𝑇 =
𝐹𝐹𝑇𝑇

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇

Receiver Operating Characteristic (ROC) curve

A graphical method for displaying the true positive rate (TPR) vs. the false positive
rate (FPR) across multiple thresholds.

Area Under Receiver Operating Characteristic curve (AUROC)

The overall area under ROC curve.

Two-sample Z-test

A statistical test used to compare the means of two independent samples to determine
whether they have a significant difference [25].
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𝑍𝑍 =
𝜇𝜇1 − 𝜇𝜇2√︃
𝜎𝜎2
1

𝑛𝑛1
+ 𝜎𝜎2

2
𝑛𝑛2

Where 𝜇𝜇1 and 𝜇𝜇2 are the sample means, 𝜎𝜎1 and 𝜎𝜎2 are the standard deviations, and
𝑛𝑛1 and 𝑛𝑛2 are the sample sizes.
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3 SAFETY CONCERNS IN VISUAL DEEP NEURAL

CLASSIFIERS

Despite the undeniable potential of deep learning in tackling complex computational
tasks, their heuristic and unexplainable nature hinders the verification and validation
for safety-critical applications as traditional functional safety standards and reliability
requirements do not account for the unique properties of deep learning algorithms.
To address this issue, recent research has focused on developing safety concern lists as
effective safety-case frameworks for practically applying these algorithms. However,
many existing works in this area only consider safety criteria and do not address the
implementation challenges of proposed mitigation methods.

This chapter provides an overview of the work on identifying the underlying
causes of faults in visual deep learning algorithms. The aim is to generate a list of
safety concerns and potential state-of-the-art mitigation techniques. The approach
involves breaking down the process of building a deep learning algorithm into three
phases: training, evaluation, and inference. After that, the relevant components in
each phase are analyzed to determine their impact on the algorithm’s overall perfor-
mance. The focus on practical implementation distinguishes this work from previous
research. This chapter corresponds to publication II.

3.1 Safety & Deep Learning

The question of whether deep learning algorithms can be used in safety-critical appli-
cations is important. To answer it, an understanding of how deep learning algorithms
relate to safety must be established. In theory, deep learning algorithms can either re-
place or work in conjunction with traditional safety mechanisms. The three possible
interactions between deep learning and safety can be defined as follows:
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• Deep learning algorithms can entirely replace the traditional safety mecha-
nisms and assume full responsibility for ensuring the safe operation of the
system. For example, in the domain of forestry machines, a deep learning al-
gorithm can autonomously analyze sensor data to detect potential hazards like
falling branches, unstable terrain, or nearby obstacles. By leveraging a trained
model and real-time data, the algorithm can make decisions to avoid accidents
and maintain the safety of the machine and its operator.

• Deep learning algorithms can cooperate with traditional safety mechanisms to
enhance their capabilities and improve overall system safety. For instance, in
port cranes, deep learning algorithms can analyze video feeds from multiple
cameras in combination with existing collision detection systems. By integrat-
ing the knowledge extracted from visual data with the crane’s sensor-based
collision avoidance system, the deep learning algorithm can provide additional
information and insights, enabling more accurate and robust decision-making
to prevent collisions and ensure the safety of personnel.

• Deep learning algorithms can be employed in safety-critical applications with-
out directly influencing the safety mechanisms of the system. Instead, they
serve other purposes such as optimizing operations or providing additional
insights. For example, in mining machines, a deep learning algorithm can an-
alyze sensor data to predict optimal maintenance schedules based on patterns
indicative of wear and tear. By proactively scheduling maintenance tasks, the
algorithm contributes to the overall efficiency and reliability of the machine,
indirectly supporting safety by reducing the likelihood of unexpected failures.

A major drawback in utilizing deep learning algorithms is the heuristic and multi-
dimensional nature which makes them difficult to explain and interpret. As current
safety standards rely on the traditional definition of software, it is impossible to
practically implement standard verification and validation methods for deep learning
algorithms. Consequently, standards such as IEC 61508 [35] advise against using
artificial intelligence (including deep learning algorithms) in systems with a safety
integrity level of two or higher [19].

Researchers have proposed alternative approaches to address the challenges asso-
ciated with safety in deep learning algorithms. One prominent approach involves
the development of explainable safety concern lists, which aim to identify poten-
tial safety risks specific to deep learning algorithms and offer appropriate mitigation
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methods.
A notable example of such an approach is UL4600, which provides a safety-case

solution tailored for implementing artificial intelligence in autonomous vehicles [31].
UL4600 focuses on creating a comprehensive list of arguments that address safety
concerns associated with AI systems. This safety-case approach helps stakeholders in
the autonomous vehicle industry assess and evaluate the safety implications of their
systems.

However, it is essential to note that while UL4600 addresses the evaluation aspect
of safety, it does not provide detailed practical guidance for the entire implementa-
tion cycle. The practical implementation of safety measures involves various stages,
including system design, development, verification, and validation. These stages re-
quire comprehensive guidelines and standards to ensure AI’s safe and reliable inte-
gration in autonomous vehicles.

Thus, this chapter provides a practical safety concern and mitigation method list
for deep learning algorithms. The overall results are illustrated in Figure 3.1. Com-
bining this with existing safety case arguments, proper monitoring tools, contingency
protocols, and practical explanations would result in a safe implementation of deep
learning algorithms.

Safety Concerns and Mitigation Methods in Visual Deep Neural Classifiers

Training Stage Evaluation Stage Inference Stage

SC1: Incomplete Dataset

SC2: Inadequate Dataset

SC3: Insufficient/Noisy Dataset

SC4: Ill-Matched Architecture

SC5: Imperfect Metrics / Benchmarks

SC6: Black-Box Behavior

SC7: Defective Hardware

SC8: Harsh Environment

MM1: Utilizing ensembles

MM2: Multimodal re-learning

MM3: Iterative labeling of data

MM4: Automated search

MM5: Weighted metrics / Risk analysis

MM6: Utilizing safety-case arguments

MM7: Utilizing standards

MM8: Pre/post process

Figure 3.1 The complete list of safety concerns and mitigation methods in a visual deep neural clas-
sifier.
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3.2 Training Stage

By minimizing the empirical risk of the training data, a deep learning algorithm es-
timates the relationship between input data and the desired output. Consequently,
a suitable training dataset is crucial to achieving the desired outcome. Addition-
ally, various model structures have distinct advantages and disadvantages. Selecting
the appropriate architecture, configuring a suitable loss function and optimization
algorithm, and identifying the ideal hyperparameters are all necessary for optimal
performance.

Extracting useful information from visual data is a complex task, posing a chal-
lenge for humans and machines. Ideally, a perfect training dataset would be [134]:

• Complete: Contains samples from a defined input-output space.

• Adequate: Contains samples with identical distribution to the workspace.

• Ample: Contains enough samples for training the algorithm.

• Clean: Contains well-labeled and noise-free samples.

However, it is nearly impossible to perfectly fulfill these conditions in real-world
scenarios. The violation of each condition will result in a unique form of fault in
the deep learning algorithm. Additionally, the incorrect selection of model and hy-
perparameters might result in issues such as overfitting, the divergence of the model,
and overconfidence, which can further contribute to faults.

3.2.1 Safety Concern 1: Incomplete Dataset

The inherent complexity of the real world implies that the defined space for a task
is always much smaller than the unexplored broader space. Potential sources of
faults, such as outlier classes (known unknowns) and adversarial attacks (unknown
unknowns), pose a considerable risk to the algorithm. These factors can cause the
algorithm to produce overconfident yet incorrect predictions [134].

Recent studies suggest utilizing out-of-distribution detectors to identify unseen
samples and reject the algorithm’s overconfident outcomes [22, 92]. While uncer-
tainty metrics have the potential to measure reliability, they often result in a trade-off
between accuracy and safety due to the conservative nature of uncertainty meth-
ods [95]. Alternatively, open-world recognition systems can expand the algorithm’s
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workspace by incorporating outlier samples encountered during the inference stage
[77, 15]. However, learning constantly requires high computational power and
might result in a complicated model that cannot operate efficiently on the origi-
nal classes. As for the adversarial attacks, the model can be trained to defend against
them by incorporating attack patterns into the training dataset [123, 128, 39]. Nev-
ertheless, the attack algorithms keep evolving at the same rate.

A suitable mitigation method could involve utilizing an ensemble of models. By
combining multiple models with different architectures and training datasets, an en-
semble can improve the model’s overall performance and provide a more robust
safety guarantee. For example, the ensemble can consist of models trained on dif-
ferent subsets of the training dataset or models with different architectures or hy-
perparameters. The models in the ensemble can be weighted differently depending
on their performance and safety metrics, and their combined output can be used to
make the final prediction. Using an ensemble, the algorithm can identify and re-
ject out-of-distribution samples and improve its accuracy and safety in safety-critical
applications.

3.2.2 Safety Concern 2: Inadequate Dataset

The dynamic nature of the real world implies that the distribution of data samples
is likely to vary between the training and inference stages over time. Various factors
within and outside system’s control, such as hardware equipment or weather con-
ditions, could result in a distribution shift and affect the algorithm’s performance
[134].

Recent research has proposed using domain adaptation techniques to address the
domain gap between the training and inference stages [33, 138]. These methods of-
ten require a small batch of data during inference to adapt the model to the new
environment. State-of-the-art techniques can be fine-tuned to meet the needs of most
safety-critical applications. Alternatively, an algorithm can integrate multiple sources
of information to perform a single task (e.g., person identification using face, iris,
voice, and fingerprint) [14, 42]. Multimodal methods, such as sensor fusion in au-
tonomous vehicles (using LIDAR, GPS, and IMU for localization), have already
been successfully implemented and are well-suited for safety-critical applications.

A suitable mitigation method could involve utilizing multiple data sources and
sensors during the inference phase and iteratively re-training the model within stan-
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ditions, could result in a distribution shift and affect the algorithm’s performance
[134].
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domain gap between the training and inference stages [33, 138]. These methods of-
ten require a small batch of data during inference to adapt the model to the new
environment. State-of-the-art techniques can be fine-tuned to meet the needs of most
safety-critical applications. Alternatively, an algorithm can integrate multiple sources
of information to perform a single task (e.g., person identification using face, iris,
voice, and fingerprint) [14, 42]. Multimodal methods, such as sensor fusion in au-
tonomous vehicles (using LIDAR, GPS, and IMU for localization), have already
been successfully implemented and are well-suited for safety-critical applications.

A suitable mitigation method could involve utilizing multiple data sources and
sensors during the inference phase and iteratively re-training the model within stan-
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dard time frames. For instance, in an autonomous driving scenario, LIDAR and
camera data can be combined to enhance the detection and tracking of objects, while
GPS and IMU can be used to improve the vehicle’s localization accuracy. Using
multiple data sources and sensors can help ensure the model adapts to the changing
environment and maintains its performance over time.

3.2.3 Safety Concern 3: Insufficient/Noisy Dataset

The manual labeling of samples in a large dataset can be susceptible to errors and
noisy labels due to various factors such as unacquainted workers, insufficient infor-
mation, confusing patterns, and the massive scale of data. Despite the existence of
iterative labeling methods [4], the initial cost of gathering and maintaining a clean
dataset increases exponentially compared to its size. With the unavoidable noise in
every training dataset, the algorithm will memorize the noise pattern, resulting in
poor generalization [134].

Recent research has discovered that one way to mitigate noise in datasets is by
combining various methods, such as robust loss and iterative relabeling [106, 26,
5]. Alternatively, data augmentation methods can create additional samples for the
training dataset using different transformations and generative algorithms [115, 98,
82, 76]. Although synthesized data may not perfectly represent the real world, it
can bridge the gap between the two domains. Additionally, semi-supervised and
unsupervised training techniques can reduce dependency on a clean dataset [29, 93].
However, fully supervised methods usually yield higher accuracy.

A suitable mitigation method could generate an initial dataset using iterative la-
beling techniques and extend it with synthetic data generation methods. This would
help bridge the gap between the real-world and synthesized data and increase the
dataset’s size, leading to improved model generalization.

3.2.4 Safety Concern 4: Ill-Matched Architecture

It can be time-consuming and expensive to manually compare various models and
hyperparameters to determine the best fit for a particular task. Additionally, such
a process necessitates the involvement of an industry expert to provide insights into
the issue at hand. Selecting the wrong architecture can result in unforeseen issues or
performance degradation caused by inherent weaknesses in specific scenarios.
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Automated methods for hyperparameter optimization [127, 67, 48] and neural
architecture search [119, 84] have been developed to alleviate the burden of manual
work and eliminate the requirement for an expert. These methods use various search
algorithms to locate the optimal model and hyperparameters within the relevant
domain.

A suitable mitigation method could involve utilizing automated tools with proper
validation benchmarks to select the model and hyperparameters for each new task.

3.3 Evaluation Stage

To ensure the algorithm’s reliability, the testing dataset should consist of samples
from all identified situations, even infrequent ones. An appropriate dataset should
also uphold similar characteristics to the training dataset. Furthermore, selecting ap-
propriate performance metrics during testing has a crucial effect on the comparisons,
requiring a prior understanding of the task. Moreover, existing verification/valida-
tion methods rely on the explainability and interpretability of the algorithm, thus
making additional information about the algorithm’s function helpful.

While expert knowledge is expected in safety-critical applications, sweeping the
entire working space during the tests is impossible. Furthermore, the black-box
behavior of deep learning algorithms makes it challenging to explore the unknown
workspace for potential safety concerns.

3.3.1 Safety Concern 5: Imperfect Metrics/Benchmarks

While accuracy is the most frequently used performance metric in deep learning
algorithms, it does not fully capture the algorithm’s reliability, uncertainty, and other
attributes.

Recent studies suggest using weighted cost functions that correspond to different
types of errors as performance metrics, which enables the algorithm to be assessed
according to safety criteria [137, 38, 91]. Such novel evaluation metrics would make
it easier to discern the performance and safety trade-offs. Designing a cost function
requires specialized expertise since a poor decision could result in a non-converging
algorithm. Therefore, solid mathematical arguments are needed to prove the algo-
rithm’s convergence.

Conversely, a risk analysis can compile a comprehensive list of all hazardous sce-
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narios relevant to a given task for inclusion in the testing dataset [129, 59]. Such
datasets could serve as benchmarks for evaluating and verifying the performance of
algorithms. While exploring the entire workspace is almost impossible, sharing suit-
able benchmarks could reduce the cost burden.

A suitable mitigation method could involve utilizing third-party experts to model
more sophisticated and specialized metrics for individual tasks and perform risk anal-
ysis to ensure the quality of existing benchmark datasets.

3.3.2 Safety Concern 6: Black-Box Behavior

The massive number of parameters and non-linear functions used in deep learning
algorithms create an uninterpretable system or a black box. Given the need for a
clear correlation between the inputs and outputs of this system and the impossible
challenge of testing the entire workspace, evaluating the reliability and safety of deep
learning algorithms is a difficult task.

Recent studies suggest using representation learning to identify the connection
between input data and output in an interpretable manner by revealing the feature
selection process [132, 64], which helps to understand how the network perceives in-
put data and which data components are more significant in determining the output.
Alternatively, a map of pixel relevance demonstrates each pixel’s significance in the
output calculation [54, 13]. These heat maps can provide information on individual
pixels or the interactions between different pixels. Analyzing these maps can reveal
the impact of minor variations in input on the output and assist in identifying poten-
tial safety hazards. However, this information cannot be utilized to verify/validate
the algorithm according to existing standards.

This issue is one of the most crucial topics in the current research community,
with no adequate solution. A suitable mitigation method could involve using safety
case arguments to simplify the process of verification/validation. Since safety case
arguments involve constructing a logical argument based on available evidence to
demonstrate that the system is safe rather than fully attempting to understand the
algorithm’s inner workings, they could explain the reliability and safety of the deep
learning algorithm even in the presence of black-box behavior.
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3.4 Inference Stage

Once the algorithm is trained and evaluated, it needs multiple hardware parts to
interact with the real world. A visual deep learning algorithm requires a camera
to capture input data, a communication channel to transmit the data, a processing
unit to compute the results, and a power supply to sustain its operation. Different
hardware setups may introduce unintended biases not present during the training or
evaluation stages, resulting in unpredictable behavior.

Furthermore, hardware failures or changes in the environment can affect the sys-
tem’s performance, leading to unexpected outputs or failures. Therefore, the hard-
ware components used during the inference stage must be verified and validated to
ensure they function correctly under different operating conditions.

3.4.1 Safety Concern 7: Defective Hardware

Hardware faults can impact the algorithm’s outcome in various ways. For instance,
sensor faults can cause input data disturbances, leading to data corruption or distor-
tion. Similarly, communication channel faults can result in data loss or corruption,
while processing unit faults can cause incorrect calculations, algorithmic delays, or
system freeze. Lastly, power supply faults can damage other hardware components
or result in a complete system shutdown.

The mentioned hardware components have been in use for safety-critical appli-
cations for decades. Thus, functional safety standards such as ISO 26262 [85] and
ISO/PAS 21448 [86] offer valuable recommendations for verifying and validating
hardware components. Additionally, technical reports based on functional safety
standards can aid in selecting or developing secure hardware components like a cam-
era [30], communication channel [7], and operating system [103]. Furthermore,
safety-critical applications have found other measures helpful, including redundant
hardware, adequate noise shielding, and data fusion techniques [102, 24].

A suitable mitigation method for hardware faults could involve conducting a
thorough risk analysis to identify possible hardware failures and their consequences.
Then, risk mitigation strategies could be implemented, such as selecting hardware
components that meet specific safety standards, implementing hardware redundancy,
and monitoring the system for potential hardware failures. Finally, regular main-
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tenance and testing of hardware components could prevent hardware faults from
leading to catastrophic consequences.

3.4.2 Safety Concern 8: Harsh Environment

Once the hardware is chosen based on appropriate functional safety standards, it
should operate without significant safety concerns. However, the mitigation method
only partially eliminates disturbances or data corruption. Environmental factors,
such as poor illumination, movement, and obscured objects, can affect input image
quality without causing hardware failure. While some of these issues may be unrec-
ognizable by a human annotator, the deep learning algorithm may encounter faults
based on the type and severity of corruption. Additionally, less severe hardware
failures may cause noise variations in the input data.

Recent studies suggest using image processing techniques, such as denoising [32,
40, 50], deblurring [133, 75, 3], and enhancement methods [81], to mitigate the
effect of environmental disturbances on the input data. These techniques are proven
to be effective when the corruption type is known. Otherwise, such functions would
negatively affect the input data, like removing or fading edges. Thus, it is assumed
that corruption of data is inevitable.

As these methods are closely tied with mitigation methods for training data, both
problems can be handled by multiple data-related approaches to mitigate the effect of
noise, corruption, and domain gap. The next chapter explains the work in mitigating
data-related safety concerns.

3.5 Discussion

This chapter discussed various safety concerns for visual deep learning algorithms,
including dataset bias, domain gap, adversarial attacks, overfitting, interpretability,
defective hardware, and harsh environments. This work presented the underlying
causes of each safety concern and state-of-the-art solutions to mitigate them, high-
lighting the limitations of existing mitigation methods and the need for further re-
search in the field.

The chapter also emphasized the importance of considering the entire life cycle of
the algorithm, including the training, validation, and inference stages, as well as the
hardware and environmental factors that could affect the algorithm’s performance
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and safety. Furthermore, the chapter discussed the need for specialized expertise in
designing and implementing suitable mitigation methods for these safety concerns.

Overall, the complexity and non-linearity of deep learning algorithms pose signif-
icant challenges to traditional broad-spectrum standardization methods. However,
alternative solutions such as functional safety standards and safety case arguments,
combined with data-related approaches, can help ensure visual deep learning algo-
rithms’ safe and reliable operation. As such, continued research and development in
this field are crucial to address emerging safety concerns and enable the use of deep
learning algorithms in safety-critical applications.
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4 MITIGATION METHODS FOR DATA-RELATED

SAFETY CONCERNS

In recent years, data-related safety concerns in deep learning algorithms have received
significant attention from the research community. While many academic works
propose complex innovations for state-of-the-art solutions, these methods’ practical
implementation and real-world applicability are often overlooked. Moreover, the
performance metrics used in academia may not fully address the requirements of
safety-critical applications, resulting in a gap between research and practice.

This chapter aims to bridge this gap by presenting practical improvements to ex-
isting mitigation methods for data-related safety concerns. Specifically, the focus is
on three areas: mitigating the effect of outliers and distorted data with probabilistic
selective classifiers, mitigating the effect of label noise with enhanced data recalibra-
tion, and mitigating the domain gap in transfer learning with iterative intermediate
domain generation. The proposed methods improve upon existing approaches by in-
corporating more realistic assumptions about the data and the demands of real-world
applications. These works correspond to publications I, III, and IV, respectively.

Given the lack of functional safety standards in this field, evaluating the safety of
the proposed methods is challenging. Therefore, the performance evaluation relies
on the existing metrics from the literature.

4.1 Selective Visual Classification

Despite achieving high accuracy on public benchmark datasets, state-of-the-art clas-
sifiers may perform incorrectly when faced with circumstances outside the training
set. As stated in the previous chapter, the training dataset is assumed to be complete,
and the testing dataset is supposed to be clean. Thus, the algorithm does not expect
an out-of-distribution or a distorted sample at the inference stage. However, enforc-
ing these restrictions on datasets in real-world applications is nigh impossible. Thus,
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Figure 4.1 The structure of the proposed selective classifier. (1) Feed the test image to the proba-
bilistic classifier 𝑘𝑘 times. (2) Record the class scores generated in each inference. (3)
Calculate the mean and standard deviation for each class. (4) Identify and designate the
maximum mean value as potential output. (5) Conduct two-sample Z-tests between the
potential output and all other classes, and record the resulting Z-scores. (6) Determine the
outcome by comparing the Z-scores against a threshold value. Reproduced with permis-
sion from publication I (©2021 IEEE).

the classifier may produce erroneous results when presented with such samples.
Based on the direction of previous research, a better metric tomeasure a classifier’s

ability to generalize and be robust to environmental changes is essential. Uncertainty
is one such metric that measures the algorithm’s confidence in its decision [10]. Uti-
lizing such a metric would allow a selective classifier to reject uncertain outcomes.
Previous studies have used techniques such as modified activation functions [16, 65,
99], modified loss functions [126, 122], voting systems [58, 36], and combinations
of different ideas [113] to achieve this goal.

Probabilistic NeuralNetwork (PNN) is a type of neural network that uses stochas-
tic weights to perform classification and pattern recognition tasks [72]. During train-
ing, the model learns to estimate the probability distribution function of each class.
When presented with new input data, PNN estimates the probability of each class
and assigns the input data to the class with the highest posterior probability, thereby
reducing the probability of misclassification. Since each inference produces a slightly
different output, a low standard deviation between multiple inferences indicates a
higher level of network certainty, making it a valuable metric for measuring uncer-
tainty.

This work proposes utilizing hypothesis testing on the output of a PNN to calcu-
late the uncertainty of the algorithm. The proposed approach involves performing
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a Z-test on the distribution of outputs generated by the PNN to determine the sta-
tistical significance of a given result and reject any insignificant outcomes. The main
distinction between the proposed method and previous state-of-the-art approaches,
such as ODIN [65], is that the proposed method does not restrict the use of differ-
ent network architectures. Algorithm 1 summarizes the proposed method in steps,
and Figure 4.1 shows its structure. The proposed method is compared to Softmax
Response (SR), which can outperform other alternatives such as Monte Carlo (MC)
dropout, according to Geifman and El-Yaniv [37].

Algorithm 1: Selective Probabilistic Classifier
Require: A trained probabilistic classifier, a threshold value for statistical

significance 𝑇𝑇
1: Run the test image through the classifier 𝑘𝑘 times
2: Store mean (𝜇𝜇) and standard deviation (𝜎𝜎) for all 𝑁𝑁 classes
3: Find the potential output, the class with the highest mean value (c𝑀𝑀)
4: for 𝑖𝑖 ∈ 1, 2, . . . , 𝑁𝑁 ; 𝑖𝑖 ≠ 𝑀𝑀 do
5: Compute the two-sample Z-test between c𝑀𝑀 and c𝑖𝑖
6: Store the Z𝑖𝑖 score
7: end for
8: if Z𝑖𝑖 > 𝑇𝑇 for 𝑖𝑖 ∈ 1, 2, . . . , 𝑁𝑁 ; 𝑖𝑖 ≠ 𝑀𝑀 then
9: C𝑀𝑀 is chosen as the output

10: else
11: C𝑀𝑀 is rejected as an output
12: end if
Return Data classes based on threshold value 𝑇𝑇

The main contributions of this work are twofold. First, a technique is proposed
based on statistical analysis and PNN to estimate the uncertainty of a classifier and
build a reject option to mitigate out-of-distribution and distorted samples during in-
ference time. Second, proposed method is evaluated by conducting extensive tests to
simulate out-of-distribution and distorted samples and demonstrate the effectiveness
of the proposed method over the baseline SR method. The proposed method is not
restricted to any specific architecture and can be combined with similar methods.

The experiment was conducted using the CIFAR [55] and COCO [66] datasets.
The CIFAR dataset was chosen for the feasibility study, whereAutomobile and Truck
classes were excluded from the training set to simulate the out-of-distribution sam-
ples during the inference phase. The COCO dataset was chosen to evaluate the
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ent network architectures. Algorithm 1 summarizes the proposed method in steps,
and Figure 4.1 shows its structure. The proposed method is compared to Softmax
Response (SR), which can outperform other alternatives such as Monte Carlo (MC)
dropout, according to Geifman and El-Yaniv [37].

Algorithm 1: Selective Probabilistic Classifier
Require: A trained probabilistic classifier, a threshold value for statistical

significance 𝑇𝑇
1: Run the test image through the classifier 𝑘𝑘 times
2: Store mean (𝜇𝜇) and standard deviation (𝜎𝜎) for all 𝑁𝑁 classes
3: Find the potential output, the class with the highest mean value (c𝑀𝑀)
4: for 𝑖𝑖 ∈ 1, 2, . . . , 𝑁𝑁 ; 𝑖𝑖 ≠ 𝑀𝑀 do
5: Compute the two-sample Z-test between c𝑀𝑀 and c𝑖𝑖
6: Store the Z𝑖𝑖 score
7: end for
8: if Z𝑖𝑖 > 𝑇𝑇 for 𝑖𝑖 ∈ 1, 2, . . . , 𝑁𝑁 ; 𝑖𝑖 ≠ 𝑀𝑀 then
9: C𝑀𝑀 is chosen as the output

10: else
11: C𝑀𝑀 is rejected as an output
12: end if
Return Data classes based on threshold value 𝑇𝑇

The main contributions of this work are twofold. First, a technique is proposed
based on statistical analysis and PNN to estimate the uncertainty of a classifier and
build a reject option to mitigate out-of-distribution and distorted samples during in-
ference time. Second, proposed method is evaluated by conducting extensive tests to
simulate out-of-distribution and distorted samples and demonstrate the effectiveness
of the proposed method over the baseline SR method. The proposed method is not
restricted to any specific architecture and can be combined with similar methods.

The experiment was conducted using the CIFAR [55] and COCO [66] datasets.
The CIFAR dataset was chosen for the feasibility study, whereAutomobile and Truck
classes were excluded from the training set to simulate the out-of-distribution sam-
ples during the inference phase. The COCO dataset was chosen to evaluate the
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Figure 4.2 Distortions on the sample image. (A) Original image. (B) Motion blur. (C) Frosted glass
blur. (D) Gaussian blur. (E) Noise. (F) Gamma darkening. (G) Gamma lightening. (H)
Occlusion. Reproduced with permission from publication I (©2021 IEEE).

performance on challenging datasets. Since COCO is designed as an object detec-
tion dataset, the instances of objects were manually extracted and categorized into
four classes: Human, Vehicle (any four-wheeled vehicle), Animal (any four-legged
animal), and Background (patches of images with no overlapping objects) where the
Animal class was excluded from the training set to simulate the out-of-distribution
samples during the inference phase.

The ResNet-18 [44] network with probabilistic weights was used to test the pro-
posed method and evaluate its performance against the SR method. The comparison
did not include other state-of-the-art methods due to reliance on a specific structure
or limited test capacity with complex datasets. AUROC was used as a threshold-
independent metric for a fair comparison, and both networks were trained from
scratch with the same initial configuration. Several experiments were conducted to
simulate the effect of out-of-distribution and distorted samples. Out-of-distribution
samples were selected from the classes not present during the training, and distortions
were added artificially based on Kamann’s work (as shown in Figure 4.2) [51].

The ROC curves for the COCO test indicate that the proposed method has a
larger span over the TPR-vs-FPR trade-off (Figure 4.3). While the SR method can
theoretically achieve a 0% FPR, it only happens if the algorithm is set to reject all
outputs. Thus, AUROC is calculated using only the valid parts of the ROC curve,
and the results are presented in Table 4.1. Judging by the results, the proposed
method offers a better option for the trade-off between accuracy and uncertainty,
resulting in a higher value for AUROC. Combined with the fact that the cost of
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Figure 4.3 ROC curves for the COCO dataset. The worst performance of each category was chosen
to be presented. Increasing the threshold value decreases TPR and FPR. Reproduced
with permission from publication I (©2021 IEEE).

false positives versus false negatives may vary in different safety-critical applications,
having a broad range of trade-off is beneficial.

Dataset Method
Out Blur Noise Gamma correction

Occlusionof
Motion

Frosted
Gaussian Gaussian S&P Darkening Lightening

Distribution glass

COCO
Proposed 0.65 0.34 0.25 0.38 0.22 0.21 0.16 0.17 0.23

SR 0.29 0.20 0.18 0.22 0.14 0.09 0.04 0.05 0.06

CIFAR
Proposed 0.89 0.50 0.50 0.59 0.38 0.39 0.37 0.42 0.48

SR 0.52 0.44 0.34 0.47 0.35 0.25 0.22 0.26 0.31

Table 4.1 AUROC values for selective classifier tests. Reproduced with permission from publication I
(©2021 IEEE).

Conclusion

In conclusion, the proposedmethod incorporates a rejection option into probabilistic
classifiers through Z-test analysis. The Z-test analyzes multiple runs’ mean and stan-
dard deviation to identify uncertain results and estimate network certainty. Multiple
experiments were conducted using a well-known network configuration (ResNet)
and datasets (CIFAR and COCO), comparing the proposed method with the SR
method using a threshold-independent metric. The proposed method improved the
AUROC value by an average of 0.15 over all test cases while offering a broad range
of trade-offs between accuracy and uncertainty.
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Figure 4.4 Samples of the same category in different datasets: (A) Number two in MNIST [60], (B)
Deer in CIFAR-10 [55], (C) Caesar salad in Food-101N [61], and (D) Underwear in Cloth-
ing1M [121]. The images on the top row are more straightforward to label than those on
the bottom. Reproduced with permission from publication III.

4.2 Data-Recalibration in Visual Classification

As stated in the previous chapter, the training dataset is assumed to be sufficiently
large and clean for practical training of deep learning models. However, manual
labeling of a large dataset can be challenging, with factors such as inexperienced an-
notators, domain-related expertise requirements, complex samples, and the massive
volume of data contributing to the possibility of errors and noisy labels [34, 111].
This poses a challenge to deep learning algorithms, as they may memorize the noisy
patterns, resulting in poor generalization and reduced performance during inference
[131]. This crucial issue in various sectors, such as safety-critical applications [5] and
medical imaging [97], lead researchers to develop mitigation methods for label noise
[34, 8, 106].

While many recent studies assume that annotations are affected byClass-Conditio-
nal Noise (CCN) [69] and try to estimate [45] or mediate it by modifying the ar-
chitecture [11], Chen has demonstrated that label noise in real-world datasets, such
as Clothing1M [121], is instance-dependent [23]. Figure 4.4 provides a better un-
derstanding of this, showing that two samples of the same category have different
labeling complexities, indicating that label noise varies per instance. Based on Chen’s
findings, researchers have started formulating Instance-Dependent Noise (IDN) pat-
terns to study effective mitigation methods.

One of the widely used mitigation methods for noisy labels is iterative data recal-
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ibration. The process involves an iterative loop in which the network is trained to
find the top-performing network, and the noisy labels are corrected based on con-
fidence scores obtained from the top-performing network. This process continues
until convergence, resulting in a model with improved accuracy and better general-
ization ability [63]. This work proposes an iterative data-recalibration method that
utilizes a clean validation dataset to mitigate the effect of label noise in classification.
The approach involves iteratively training a network with labels from the previous
stage, evaluating its performance on a smaller clean validation dataset, and using the
best-performing model to re-label the training dataset. The main distinction between
the proposed method and previous state-of-the-art approaches is the involvement of
validation data in selecting the best-performing network (also known as the Oracle
network). Algorithm 2 summarizes the proposed method in detailed steps.

Algorithm 2: Enhanced Data-Recalibrator
Require: Initial classifier 𝑓𝑓 0, Threshold value 𝜃𝜃, Number of epochs 𝑇𝑇 ,

Training set ˜︁𝐷𝐷0
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
{︁(︁
𝑥𝑥𝑡𝑡 , �̃�𝑦

0
𝑡𝑡

)︁}︁𝑡𝑡
𝑡𝑡=1, Validation set 𝐷𝐷𝑣𝑣𝑡𝑡𝑣𝑣𝑡𝑡𝑣𝑣 = {(𝑥𝑥𝑡𝑡 , 𝑦𝑦𝑡𝑡)}𝑚𝑚𝑡𝑡=1

1: for 𝑡𝑡 ∈ 1, . . . , 𝑇𝑇 do
2: Train 𝑓𝑓 𝑡𝑡−1 on ˜︁𝐷𝐷𝑡𝑡−1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
to get 𝑓𝑓 𝑡𝑡

3: Calculate the performance score 𝑆𝑆𝑡𝑡 of 𝑓𝑓 𝑡𝑡 on 𝐷𝐷𝑣𝑣𝑡𝑡𝑣𝑣𝑡𝑡𝑣𝑣 and compare to
previous scores

4: Find best performing classifier 𝑓𝑓 𝐵𝐵

5: for (𝑥𝑥, �̃�𝑦) ∈ ˜︁𝐷𝐷𝑡𝑡−1
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

do
6: Get the confidence scores (𝐶𝐶1, . . . , 𝐶𝐶𝑘𝑘) of 𝑓𝑓 𝐵𝐵 on 𝑥𝑥

7: Find the best confidence score 𝐶𝐶𝑀𝑀 and the confidence score of the
previous label 𝐶𝐶𝑁𝑁

8: Calculate 𝑃𝑃 =
|︁|︁log(𝐶𝐶𝑀𝑀 ) − log(𝐶𝐶𝑁𝑁 )

|︁|︁
9: if 𝑃𝑃 ≥ 𝜃𝜃 then

10: Set new label �̃�𝑦𝑡𝑡 = 𝑀𝑀

11: else
12: Keep old label �̃�𝑦𝑡𝑡 = �̃�𝑦𝑡𝑡−1

13: end if
14: end for
15: if ∀𝑖𝑖 ∈ [1, . . . , 𝑛𝑛], �̃�𝑦𝑡𝑡𝑡𝑡 = �̃�𝑦𝑡𝑡−1𝑡𝑡 then
16: Decrease 𝜃𝜃 by a small amount
17: end if
18: end for
return Best trained network 𝑓𝑓 𝐵𝐵 and cleaned dataset ˜︁𝐷𝐷𝑇𝑇

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Figure 4.4 Samples of the same category in different datasets: (A) Number two in MNIST [60], (B)
Deer in CIFAR-10 [55], (C) Caesar salad in Food-101N [61], and (D) Underwear in Cloth-
ing1M [121]. The images on the top row are more straightforward to label than those on
the bottom. Reproduced with permission from publication III.

4.2 Data-Recalibration in Visual Classification

As stated in the previous chapter, the training dataset is assumed to be sufficiently
large and clean for practical training of deep learning models. However, manual
labeling of a large dataset can be challenging, with factors such as inexperienced an-
notators, domain-related expertise requirements, complex samples, and the massive
volume of data contributing to the possibility of errors and noisy labels [34, 111].
This poses a challenge to deep learning algorithms, as they may memorize the noisy
patterns, resulting in poor generalization and reduced performance during inference
[131]. This crucial issue in various sectors, such as safety-critical applications [5] and
medical imaging [97], lead researchers to develop mitigation methods for label noise
[34, 8, 106].

While many recent studies assume that annotations are affected byClass-Conditio-
nal Noise (CCN) [69] and try to estimate [45] or mediate it by modifying the ar-
chitecture [11], Chen has demonstrated that label noise in real-world datasets, such
as Clothing1M [121], is instance-dependent [23]. Figure 4.4 provides a better un-
derstanding of this, showing that two samples of the same category have different
labeling complexities, indicating that label noise varies per instance. Based on Chen’s
findings, researchers have started formulating Instance-Dependent Noise (IDN) pat-
terns to study effective mitigation methods.

One of the widely used mitigation methods for noisy labels is iterative data recal-
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ibration. The process involves an iterative loop in which the network is trained to
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Themain contributions of this work are twofold. First, an enhanced data-recalibration
method is proposed based on using a clean validation dataset. The cost of collecting
this dataset is negligible compared to the performance gain. Second, the proposed
method is evaluated by conducting extensive tests on synthetic noise patterns and
public benchmarks to demonstrate the effectiveness of the proposed method over
the state-of-the-art alternatives. Multiple techniques were used in the implementa-
tion stage to improve the performance of the proposed method. First, a high initial
learning rate was used to allow the network to achieve satisfactory accuracy with-
out overfitting to noise [131]. Second, the confidence scores from multiple high-
performing networks are averaged to prevent accidental bias toward a specific class
due to randomness. Third, the selection pool for averaging networks is limited to re-
cent iterations to reduce the effect of confirmation bias from unexpected occurrences
of falsely confident models.

CIFAR [55] dataset was used for the initial tests, where synthetic noise was added
to samples. To ensure comparability, the IDN patterns were based on descriptions
provided by Zhang [135]. The formulas can be seen in Equation 4.1, where ℵ𝐶𝐶1,𝐶𝐶2

is the probability of changing the label of a sample from the most confident class
𝐶𝐶1 to the second-most confident class 𝐶𝐶2, and 𝑓𝑓 ∗ is an oracle classifier trained on
clean samples. Additionally, the CCN patterns were based on descriptions provided
by Patrini [79]. The formulas can be seen in Equation 4.2, where ℶ𝐶𝐶1,𝐶𝐶2 is the
probability of changing the label of a sample from one class to another, R is the
noise rate, and 𝑘𝑘 is the total number of classes.

ℵI
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ℶUniform
𝐶𝐶1,𝐶𝐶2

=




R
𝑘𝑘−1 𝐶𝐶1 ≠ 𝐶𝐶2

1 −R 𝐶𝐶1 = 𝐶𝐶2

ℶAsymmetrical
𝐶𝐶1,𝐶𝐶2

=




R 𝐶𝐶1 ≠ 𝐶𝐶2

1 −R 𝐶𝐶1 = 𝐶𝐶2

(4.2)

To evaluate the performance of the proposed method in realistic cases, Animal-
10N [105], Food-101N [61], and Clothing1M [121] datasets were used. These
datasets represent real-world samples with complex noise patterns. In each case, part
of the dataset was manually re-labeled to create the clean validation set. ResNet-34,
ResNet-50 [44], and VGG-19 [100] network configurations were used to test the
proposed method and evaluate its performance against alternatives. In synthetic ex-
periments, 10% of the clean training data was reserved as the validation set, while in
benchmark experiments, random samples were re-labeled to create the validation set.
The results are presented in Tables 4.2 and 4.3. The proposed approach outperforms
the alternatives in most cases, as illustrated in the tables. Moreover, some alternative
methods exhibited a high standard deviation rate in specific cases, suggesting potential
instability in those approaches.

Conclusion

In conclusion, the proposedmethod enhances the data-recalibration process by incor-
porating a clean validation set to improve the quality of the trained network. Utiliz-
ing existing tools to prepare a small validation set is relatively cheap compared to the
increased performance and stability it offers. Multiple experiments were conducted
using well-known network configurations (ResNet and VGG), noise patterns (CCN
and IDN), and datasets (CIFAR, Animal-10, Food-101N, and Clothing1M), com-
paring the proposed method with state-of-the-art alternatives. The proposed method
has an average of 1.57% higher accuracy in synthetic tests. In benchmark tests, the
average improvement is down to 0.06% since the proposed method is beaten by an
alternative in Food-101N dataset. However, the proposed method has a slight edge
on the alternative when considering both test cases (Animal-10N and Food-101N),
in which the proposed method has a 0.14% improvement on average.
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Themain contributions of this work are twofold. First, an enhanced data-recalibration
method is proposed based on using a clean validation dataset. The cost of collecting
this dataset is negligible compared to the performance gain. Second, the proposed
method is evaluated by conducting extensive tests on synthetic noise patterns and
public benchmarks to demonstrate the effectiveness of the proposed method over
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performing networks are averaged to prevent accidental bias toward a specific class
due to randomness. Third, the selection pool for averaging networks is limited to re-
cent iterations to reduce the effect of confirmation bias from unexpected occurrences
of falsely confident models.

CIFAR [55] dataset was used for the initial tests, where synthetic noise was added
to samples. To ensure comparability, the IDN patterns were based on descriptions
provided by Zhang [135]. The formulas can be seen in Equation 4.1, where ℵ𝐶𝐶1,𝐶𝐶2

is the probability of changing the label of a sample from the most confident class
𝐶𝐶1 to the second-most confident class 𝐶𝐶2, and 𝑓𝑓 ∗ is an oracle classifier trained on
clean samples. Additionally, the CCN patterns were based on descriptions provided
by Patrini [79]. The formulas can be seen in Equation 4.2, where ℶ𝐶𝐶1,𝐶𝐶2 is the
probability of changing the label of a sample from one class to another, R is the
noise rate, and 𝑘𝑘 is the total number of classes.

ℵI
𝐶𝐶1,𝐶𝐶2

(𝑥𝑥) = 1
2
− 1
2

[︂
𝑓𝑓 ∗𝐶𝐶1

(𝑥𝑥) − 𝑓𝑓 ∗𝐶𝐶2
(𝑥𝑥)

]︂2

ℵII
𝐶𝐶1,𝐶𝐶2

(𝑥𝑥) =1 −
[︂
𝑓𝑓 ∗𝐶𝐶1

(𝑥𝑥) − 𝑓𝑓 ∗𝐶𝐶2
(𝑥𝑥)

]︂ 3

ℵIII
𝐶𝐶1,𝐶𝐶2

(𝑥𝑥) =1 − 1
3

[︂
𝑓𝑓 ∗𝐶𝐶1

(𝑥𝑥) − 𝑓𝑓 ∗𝐶𝐶2
(𝑥𝑥)

]︂ 3
− 1
3

[︂
𝑓𝑓 ∗𝐶𝐶1

(𝑥𝑥) − 𝑓𝑓 ∗𝐶𝐶2
(𝑥𝑥)

]︂2

− 1
3

[︂
𝑓𝑓 ∗𝐶𝐶1

(𝑥𝑥) − 𝑓𝑓 ∗𝐶𝐶2
(𝑥𝑥)

]︂
(4.1)
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ℶUniform
𝐶𝐶1,𝐶𝐶2

=




R
𝑘𝑘−1 𝐶𝐶1 ≠ 𝐶𝐶2

1 −R 𝐶𝐶1 = 𝐶𝐶2

ℶAsymmetrical
𝐶𝐶1,𝐶𝐶2

=




R 𝐶𝐶1 ≠ 𝐶𝐶2

1 −R 𝐶𝐶1 = 𝐶𝐶2

(4.2)

To evaluate the performance of the proposed method in realistic cases, Animal-
10N [105], Food-101N [61], and Clothing1M [121] datasets were used. These
datasets represent real-world samples with complex noise patterns. In each case, part
of the dataset was manually re-labeled to create the clean validation set. ResNet-34,
ResNet-50 [44], and VGG-19 [100] network configurations were used to test the
proposed method and evaluate its performance against alternatives. In synthetic ex-
periments, 10% of the clean training data was reserved as the validation set, while in
benchmark experiments, random samples were re-labeled to create the validation set.
The results are presented in Tables 4.2 and 4.3. The proposed approach outperforms
the alternatives in most cases, as illustrated in the tables. Moreover, some alternative
methods exhibited a high standard deviation rate in specific cases, suggesting potential
instability in those approaches.

Conclusion

In conclusion, the proposedmethod enhances the data-recalibration process by incor-
porating a clean validation set to improve the quality of the trained network. Utiliz-
ing existing tools to prepare a small validation set is relatively cheap compared to the
increased performance and stability it offers. Multiple experiments were conducted
using well-known network configurations (ResNet and VGG), noise patterns (CCN
and IDN), and datasets (CIFAR, Animal-10, Food-101N, and Clothing1M), com-
paring the proposed method with state-of-the-art alternatives. The proposed method
has an average of 1.57% higher accuracy in synthetic tests. In benchmark tests, the
average improvement is down to 0.06% since the proposed method is beaten by an
alternative in Food-101N dataset. However, the proposed method has a slight edge
on the alternative when considering both test cases (Animal-10N and Food-101N),
in which the proposed method has a 0.14% improvement on average.
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Dataset Noise Info SL[116] LRT[136] PLC[135] Proposed

CIFAR-10

ℵI
35% 79.76 ± 0.7 80.98 ± 0.8 82.80 ± 0.3 83.60 ± 0.3

ℵI
70% 36.29 ± 0.7 41.52 ± 4.5 42.74 ± 2.1 46.47 ± 1.1

ℵII
35% 77.92 ± 0.9 80.74 ± 0.3 81.54 ± 0.5 83.41 ± 0.3

ℵII
70% 41.11 ± 1.9 44.67 ± 3.9 46.04 ± 2.2 46.24 ± 0.9

ℵIII
35% 78.81 ± 0.3 81.08 ± 0.4 81.50 ± 0.5 83.16 ± 0.3

ℵIII
70% 38.49 ± 1.5 44.47 ± 1.2 45.05 ± 1.1 46.33 ± 1.1

ℵI
35% + ℶUniform

30% 77.79 ± 0.5 75.97 ± 0.3 79.04 ± 0.5 80.94 ± 0.2
ℵI
35% + ℶAsymmetrical

30% 77.14 ± 0.7 76.96 ± 0.5 78.31 ± 0.4 79.93 ± 0.5
ℵII
35% + ℶUniform

30% 75.08 ± 0.5 75.94 ± 0.6 80.08 ± 0.4 81.07 ± 0.2
ℵII
35% + ℶAsymmetrical

30% 75.43 ± 0.4 77.03 ± 0.6 77.63 ± 0.3 79.90 ± 0.5
ℵIII
35% + ℶUniform

30% 76.22 ± 0.1 75.66 ± 0.6 80.06 ± 0.5 80.54 ± 0.3
ℵIII
35% + ℶAsymmetrical

30% 76.09 ± 0.1 77.19 ± 0.7 77.54 ± 0.7 79.54 ± 0.5

CIFAR-100

ℵI
35% 55.20 ± 0.3 56.74 ± 0.3 60.01 ± 0.4 63.85 ± 0.3

ℵI
70% 40.02 ± 0.9 45.29 ± 0.4 45.92 ± 0.6 46.38 ± 0.3

ℵII
35% 56.10 ± 0.7 57.25 ± 0.7 63.68 ± 0.3 63.91 ± 0.3

ℵII
70% 38.45 ± 0.6 43.71 ± 0.5 45.03 ± 0.5 46.63 ± 0.2

ℵIII
35% 56.04 ± 0.7 56.57 ± 0.3 63.68 ± 0.3 63.92 ± 0.4

ℵIII
70% 39.94 ± 0.8 44.41 ± 0.2 44.45 ± 0.6 46.22 ± 0.2

ℵIII
70% 39.94 ± 0.8 44.41 ± 0.2 44.45 ± 0.6 46.22 ± 0.2

ℵI
35% + ℶUniform

30% 51.34 ± 0.6 45.66 ± 1.6 60.09 ± 0.2 61.46 ± 0.4
ℵI
35% + ℶAsymmetrical

30% 50.18 ± 1.0 52.04 ± 0.2 56.40 ± 0.3 59.94 ± 0.4
ℵII
35% + ℶUniform

30% 50.58 ± 0.3 43.86 ± 1.3 60.01 ± 0.6 61.16 ± 0.3
ℵII
35% + ℶAsymmetrical

30% 49.46 ± 0.2 52.11 ± 0.5 61.43 ± 0.3 59.34 ± 0.5
ℵIII
35% + ℶUniform

30% 50.18 ± 0.5 42.79 ± 1.8 60.14 ± 1.0 61.82 ± 0.3
ℵIII
35% + ℶAsymmetrical

30% 48.15 ± 0.9 50.31 ± 0.4 54.56 ± 1.1 59.76 ± 0.5

Table 4.2 Accuracy on the CIFAR dataset for different noise patterns and rates. The best accuracy
is indicated in bold, and the second best is underlined. Reproduced with permission from
publication III.

Dataset Method Accuracy Dataset Method Accuracy Dataset Method Accuracy

Animal-10N

SELFIE [105] 79.40

Food-101N

DeepSelf [43] 79.40

Clothing1M

DeepSelf [43] 74.45
Co-Learning [108] 82.95 PLC [135] 83.40 CleanNet [61] 74.69

PLC [135] 83.40 Proposed 86.34 DivideMix [62] 74.76

Proposed 84.47 Co-Learning [108] 87.57 Proposed 75.11

Table 4.3 Accuracy on the Animal-10N, Food-101N, and Clothing1M datasets. The best accuracy is
indicated in bold, and the second best is underlined. Reproduced with permission from
publication III.
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Figure 4.5 The structure of the proposed method. Samples from the same category are mixed uti-
lizing low/high pass filters. The resulting data is formed into training datasets for two
distinct neural networks. Training is done with categorical cross-entropy loss and a co-
convergence term. Reproduced with permission from publication IV.

4.3 Domain Adaptation in Visual Classification

As mentioned in the previous chapter, acquiring a sizable and labeled dataset for
training deep learning algorithms for practical applications is a significant challenge,
especially considering safety regulations. To overcome this challenge, a common ap-
proach is transfer learning, where the algorithm is initially trained on a label-rich
source dataset (such as synthesized or simulated data) and then fine-tuned using a
much smaller target dataset (such as data collected from the real world) [138]. How-
ever, the algorithm’s performance would be adversely affected if there is a significant
discrepancy between the two domains.

Recent studies propose Gradual Domain Adaptation (GDA), which incorporates
data from intermediary domains to address the discrepancy between source and target
domains [57]. However, these intermediary domains do not naturally exist for most
real-world applications. Therefore, scientists propose methods to create intermedi-
ate domains to overcome this challenge [90, 2, 74]. This work proposes an iterative
domain adaptation algorithm that utilizes filtered images and a variable mixup tech-
nique to create intermediate domains artificially. The proposed approach involves
iteratively merging the low-pass and high-pass filtered images from the source and
target domains based on a dynamic ratio. The resulting domains are then used to
train two distinct models in parallel, with the final output calculated based on the
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Dataset Noise Info SL[116] LRT[136] PLC[135] Proposed

CIFAR-10

ℵI
35% 79.76 ± 0.7 80.98 ± 0.8 82.80 ± 0.3 83.60 ± 0.3

ℵI
70% 36.29 ± 0.7 41.52 ± 4.5 42.74 ± 2.1 46.47 ± 1.1

ℵII
35% 77.92 ± 0.9 80.74 ± 0.3 81.54 ± 0.5 83.41 ± 0.3

ℵII
70% 41.11 ± 1.9 44.67 ± 3.9 46.04 ± 2.2 46.24 ± 0.9

ℵIII
35% 78.81 ± 0.3 81.08 ± 0.4 81.50 ± 0.5 83.16 ± 0.3

ℵIII
70% 38.49 ± 1.5 44.47 ± 1.2 45.05 ± 1.1 46.33 ± 1.1

ℵI
35% + ℶUniform

30% 77.79 ± 0.5 75.97 ± 0.3 79.04 ± 0.5 80.94 ± 0.2
ℵI
35% + ℶAsymmetrical

30% 77.14 ± 0.7 76.96 ± 0.5 78.31 ± 0.4 79.93 ± 0.5
ℵII
35% + ℶUniform

30% 75.08 ± 0.5 75.94 ± 0.6 80.08 ± 0.4 81.07 ± 0.2
ℵII
35% + ℶAsymmetrical

30% 75.43 ± 0.4 77.03 ± 0.6 77.63 ± 0.3 79.90 ± 0.5
ℵIII
35% + ℶUniform

30% 76.22 ± 0.1 75.66 ± 0.6 80.06 ± 0.5 80.54 ± 0.3
ℵIII
35% + ℶAsymmetrical

30% 76.09 ± 0.1 77.19 ± 0.7 77.54 ± 0.7 79.54 ± 0.5

CIFAR-100

ℵI
35% 55.20 ± 0.3 56.74 ± 0.3 60.01 ± 0.4 63.85 ± 0.3

ℵI
70% 40.02 ± 0.9 45.29 ± 0.4 45.92 ± 0.6 46.38 ± 0.3

ℵII
35% 56.10 ± 0.7 57.25 ± 0.7 63.68 ± 0.3 63.91 ± 0.3

ℵII
70% 38.45 ± 0.6 43.71 ± 0.5 45.03 ± 0.5 46.63 ± 0.2

ℵIII
35% 56.04 ± 0.7 56.57 ± 0.3 63.68 ± 0.3 63.92 ± 0.4

ℵIII
70% 39.94 ± 0.8 44.41 ± 0.2 44.45 ± 0.6 46.22 ± 0.2

ℵIII
70% 39.94 ± 0.8 44.41 ± 0.2 44.45 ± 0.6 46.22 ± 0.2

ℵI
35% + ℶUniform

30% 51.34 ± 0.6 45.66 ± 1.6 60.09 ± 0.2 61.46 ± 0.4
ℵI
35% + ℶAsymmetrical

30% 50.18 ± 1.0 52.04 ± 0.2 56.40 ± 0.3 59.94 ± 0.4
ℵII
35% + ℶUniform

30% 50.58 ± 0.3 43.86 ± 1.3 60.01 ± 0.6 61.16 ± 0.3
ℵII
35% + ℶAsymmetrical

30% 49.46 ± 0.2 52.11 ± 0.5 61.43 ± 0.3 59.34 ± 0.5
ℵIII
35% + ℶUniform

30% 50.18 ± 0.5 42.79 ± 1.8 60.14 ± 1.0 61.82 ± 0.3
ℵIII
35% + ℶAsymmetrical

30% 48.15 ± 0.9 50.31 ± 0.4 54.56 ± 1.1 59.76 ± 0.5

Table 4.2 Accuracy on the CIFAR dataset for different noise patterns and rates. The best accuracy
is indicated in bold, and the second best is underlined. Reproduced with permission from
publication III.

Dataset Method Accuracy Dataset Method Accuracy Dataset Method Accuracy
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SELFIE [105] 79.40

Food-101N

DeepSelf [43] 79.40

Clothing1M

DeepSelf [43] 74.45
Co-Learning [108] 82.95 PLC [135] 83.40 CleanNet [61] 74.69

PLC [135] 83.40 Proposed 86.34 DivideMix [62] 74.76

Proposed 84.47 Co-Learning [108] 87.57 Proposed 75.11

Table 4.3 Accuracy on the Animal-10N, Food-101N, and Clothing1M datasets. The best accuracy is
indicated in bold, and the second best is underlined. Reproduced with permission from
publication III.
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Figure 4.5 The structure of the proposed method. Samples from the same category are mixed uti-
lizing low/high pass filters. The resulting data is formed into training datasets for two
distinct neural networks. Training is done with categorical cross-entropy loss and a co-
convergence term. Reproduced with permission from publication IV.

4.3 Domain Adaptation in Visual Classification

As mentioned in the previous chapter, acquiring a sizable and labeled dataset for
training deep learning algorithms for practical applications is a significant challenge,
especially considering safety regulations. To overcome this challenge, a common ap-
proach is transfer learning, where the algorithm is initially trained on a label-rich
source dataset (such as synthesized or simulated data) and then fine-tuned using a
much smaller target dataset (such as data collected from the real world) [138]. How-
ever, the algorithm’s performance would be adversely affected if there is a significant
discrepancy between the two domains.

Recent studies propose Gradual Domain Adaptation (GDA), which incorporates
data from intermediary domains to address the discrepancy between source and target
domains [57]. However, these intermediary domains do not naturally exist for most
real-world applications. Therefore, scientists propose methods to create intermedi-
ate domains to overcome this challenge [90, 2, 74]. This work proposes an iterative
domain adaptation algorithm that utilizes filtered images and a variable mixup tech-
nique to create intermediate domains artificially. The proposed approach involves
iteratively merging the low-pass and high-pass filtered images from the source and
target domains based on a dynamic ratio. The resulting domains are then used to
train two distinct models in parallel, with the final output calculated based on the
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average of these models. The main distinction between the proposed method and
previous state-of-the-art approaches is the involvement of a labeled sub-dataset from
the target domain to create intermediate domains. Additionally, the mixup technique
results in two distinct domains, which train two models with different characteris-
tics. Algorithm 3 summarizes the proposed method in detailed steps, while Figure
4.5 illustrates it.

Algorithm 3: IFMix: Intermediate Filtered Mixup
Require: Source dataset D𝑠𝑠, Labeled Target subset D𝑡𝑡

𝑙𝑙
, Number of epochs 𝑇𝑇 ,

Batch size 𝐵𝐵, Warm-up period𝑊𝑊 , Mixup ratio 𝐻𝐻0, Mixup increment rate 𝛼𝛼
1: for 𝑡𝑡 ∈ 1, . . . , 𝑇𝑇 do
2: Select samples from same category in D𝑠𝑠 and D𝑡𝑡

𝑙𝑙
and apply filters.

3: Create intermediate domains:
𝑥𝑥𝑙𝑙𝑙𝑙
𝑖𝑖

= (1 − 𝐻𝐻𝑖𝑖) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑠𝑠
𝑖𝑖
) + 𝐻𝐻𝑖𝑖 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡

𝑗𝑗
)

𝑥𝑥ℎ𝑖𝑖
𝑖𝑖

= (1 − 𝐻𝐻𝑖𝑖) × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑠𝑠
𝑖𝑖
) + 𝐻𝐻𝑖𝑖 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡

𝑗𝑗
)

4: for 𝑏𝑏 ∈ 1, . . . , 𝐵𝐵 do
5: Update loss functions:

L 𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐 =

1
𝐵𝐵

∑︁𝐵𝐵
𝑖𝑖 𝑦𝑦𝑙𝑙𝑙𝑙

𝑖𝑖
× 𝑙𝑙𝐿𝐿𝐻𝐻

(︁
𝑝𝑝
(︁
𝑦𝑦 |𝑥𝑥𝑙𝑙𝑙𝑙

𝑖𝑖

)︁ )︁
L ℎ𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐 =

1
𝐵𝐵

∑︁𝐵𝐵
𝑖𝑖 𝑦𝑦ℎ𝑖𝑖

𝑖𝑖
× 𝑙𝑙𝐿𝐿𝐻𝐻

(︁
𝑞𝑞
(︁
𝑦𝑦 |𝑥𝑥ℎ𝑖𝑖

𝑖𝑖

)︁ )︁
6: if 𝐻𝐻 ≥ 𝑊𝑊 then
7: Update co-convergence term:

L𝑐𝑐𝑐𝑐𝑡𝑡 = 1
𝐵𝐵

∑︁𝐵𝐵
𝑖𝑖 𝑦𝑦𝑖𝑖 × 𝑙𝑙𝐿𝐿𝐻𝐻

(︂
𝑝𝑝(𝑦𝑦 |𝑥𝑥𝑙𝑙𝑙𝑙𝑖𝑖 )+𝑞𝑞(𝑦𝑦 |𝑥𝑥ℎ𝑖𝑖𝑖𝑖 )

2

)︂

8: end if
9: end for

10: Update the mixup ratio: 𝐻𝐻𝑖𝑖+1 = 𝐻𝐻𝑖𝑖 + 𝛼𝛼 × 𝑡𝑡

11: end for
return Two trained networks.

The main contributions of this work are twofold. First, an iterative intermedi-
ate domain creation technique was proposed based on utilizing filtered images and
a labeled subset from the target domain. The cost of preparing the required data
is negligible compared to the performance gain. Second, the proposed method was
evaluated by conducting extensive tests on public benchmarks and demonstrate the
effectiveness of the proposed method over the state-of-the-art alternatives. The exper-
iment was conducted using the Office-31 [88], Office-Home [112], and VisDa-2017
[80] datasets to evaluate the performance of the proposed method against alterna-
tives. The Office-31 and Office-Home datasets were chosen for the feasibility study.
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The domains in Office-31 were named 𝐴𝐴 for images taken from Amazon.com, 𝐷𝐷 for
photos taken with a DSLR camera, and 𝑊𝑊 for photos taken with a webcam, while
the domains in Office-Home were named 𝐴𝐴 for arts and paintings, 𝐶𝐶 for clip-art im-
ages, 𝑃𝑃 for product images without a background, and 𝑅𝑅 for real-world images taken
with a camera. The VisDa-2017 dataset was chosen to evaluate the performance on
challenging datasets, where the domains were named 𝑆𝑆 for simulation and 𝑅𝑅 for real-
world. Moreover, ResNet-50 and ResNet-101 [44] network configurations were
used to test the proposed method and evaluate its performance against alternatives.
In each experiment, 5% of the target domain samples were utilized as the labeled
target subsets, while the remaining 95% of samples were reserved as test data. Ta-
bles 4.4, 4.5, and 4.6 show the performance of the proposed method compared to
alternatives on the Office-31, Office-Home, and VisDa-2017 datasets, respectively.
The proposed method outperforms the alternatives in most cases, with the average
improvement of 0.2%, 0.8%, and 1.7% in accuracy, respectively.

Conclusion

In conclusion, the proposed method enhances the domain adaptation process by
incorporating a labeled subset from the target domain and high/low pass filters to
generate intermediate domains iteratively. Utilizing existing tools to prepare a small
labeled subset from the target domain is relatively cheap compared to the increased
performance and stability it offers. Multiple experiments were conducted using well-
known network configurations (ResNet) and datasets (Office-31, Office-Home, and
VisDa-2017), comparing the proposed method with state-of-the-art alternatives. The
proposedmethod improved the accuracy by an average of 0.2 - 1.7% in different tests.

Method 𝐴𝐴 → 𝐷𝐷 𝐴𝐴 → 𝑊𝑊 𝐷𝐷 → 𝐴𝐴 𝐷𝐷 → 𝑊𝑊 𝑊𝑊 → 𝐴𝐴 𝑊𝑊 → 𝐷𝐷 Average

GSDA [46] 94.8 95.7 73.5 99.1 74.9 100 89.7
SRDC [109] 95.8 95.7 76.7 99.2 77.1 100 90.8
RSDA [41] 95.8 96.1 77.4 99.3 78.9 100 91.1
FixBi [74] 95 96.1 78.7 99.3 79.4 100 91.4
CoVi [73] 98 97.6 77.5 99.3 78.4 100 91.8
Proposed 97.6 97.5 77.9 99.3 79.7 100 92

Table 4.4 Accuracy on the Office-31 dataset. The best accuracy is indicated in bold, and the second
best is underlined. Reproduced with permission from publication IV.
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average of these models. The main distinction between the proposed method and
previous state-of-the-art approaches is the involvement of a labeled sub-dataset from
the target domain to create intermediate domains. Additionally, the mixup technique
results in two distinct domains, which train two models with different characteris-
tics. Algorithm 3 summarizes the proposed method in detailed steps, while Figure
4.5 illustrates it.

Algorithm 3: IFMix: Intermediate Filtered Mixup
Require: Source dataset D𝑠𝑠, Labeled Target subset D𝑡𝑡

𝑙𝑙
, Number of epochs 𝑇𝑇 ,

Batch size 𝐵𝐵, Warm-up period𝑊𝑊 , Mixup ratio 𝐻𝐻0, Mixup increment rate 𝛼𝛼
1: for 𝑡𝑡 ∈ 1, . . . , 𝑇𝑇 do
2: Select samples from same category in D𝑠𝑠 and D𝑡𝑡

𝑙𝑙
and apply filters.

3: Create intermediate domains:
𝑥𝑥𝑙𝑙𝑙𝑙
𝑖𝑖

= (1 − 𝐻𝐻𝑖𝑖) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑠𝑠
𝑖𝑖
) + 𝐻𝐻𝑖𝑖 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡

𝑗𝑗
)

𝑥𝑥ℎ𝑖𝑖
𝑖𝑖

= (1 − 𝐻𝐻𝑖𝑖) × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑠𝑠
𝑖𝑖
) + 𝐻𝐻𝑖𝑖 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡

𝑗𝑗
)

4: for 𝑏𝑏 ∈ 1, . . . , 𝐵𝐵 do
5: Update loss functions:

L 𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐 =

1
𝐵𝐵

∑︁𝐵𝐵
𝑖𝑖 𝑦𝑦𝑙𝑙𝑙𝑙

𝑖𝑖
× 𝑙𝑙𝐿𝐿𝐻𝐻

(︁
𝑝𝑝
(︁
𝑦𝑦 |𝑥𝑥𝑙𝑙𝑙𝑙

𝑖𝑖

)︁ )︁
L ℎ𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐 =

1
𝐵𝐵

∑︁𝐵𝐵
𝑖𝑖 𝑦𝑦ℎ𝑖𝑖

𝑖𝑖
× 𝑙𝑙𝐿𝐿𝐻𝐻

(︁
𝑞𝑞
(︁
𝑦𝑦 |𝑥𝑥ℎ𝑖𝑖

𝑖𝑖

)︁ )︁
6: if 𝐻𝐻 ≥ 𝑊𝑊 then
7: Update co-convergence term:

L𝑐𝑐𝑐𝑐𝑡𝑡 = 1
𝐵𝐵

∑︁𝐵𝐵
𝑖𝑖 𝑦𝑦𝑖𝑖 × 𝑙𝑙𝐿𝐿𝐻𝐻

(︂
𝑝𝑝(𝑦𝑦 |𝑥𝑥𝑙𝑙𝑙𝑙𝑖𝑖 )+𝑞𝑞(𝑦𝑦 |𝑥𝑥ℎ𝑖𝑖𝑖𝑖 )

2

)︂

8: end if
9: end for

10: Update the mixup ratio: 𝐻𝐻𝑖𝑖+1 = 𝐻𝐻𝑖𝑖 + 𝛼𝛼 × 𝑡𝑡

11: end for
return Two trained networks.

The main contributions of this work are twofold. First, an iterative intermedi-
ate domain creation technique was proposed based on utilizing filtered images and
a labeled subset from the target domain. The cost of preparing the required data
is negligible compared to the performance gain. Second, the proposed method was
evaluated by conducting extensive tests on public benchmarks and demonstrate the
effectiveness of the proposed method over the state-of-the-art alternatives. The exper-
iment was conducted using the Office-31 [88], Office-Home [112], and VisDa-2017
[80] datasets to evaluate the performance of the proposed method against alterna-
tives. The Office-31 and Office-Home datasets were chosen for the feasibility study.
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The domains in Office-31 were named 𝐴𝐴 for images taken from Amazon.com, 𝐷𝐷 for
photos taken with a DSLR camera, and 𝑊𝑊 for photos taken with a webcam, while
the domains in Office-Home were named 𝐴𝐴 for arts and paintings, 𝐶𝐶 for clip-art im-
ages, 𝑃𝑃 for product images without a background, and 𝑅𝑅 for real-world images taken
with a camera. The VisDa-2017 dataset was chosen to evaluate the performance on
challenging datasets, where the domains were named 𝑆𝑆 for simulation and 𝑅𝑅 for real-
world. Moreover, ResNet-50 and ResNet-101 [44] network configurations were
used to test the proposed method and evaluate its performance against alternatives.
In each experiment, 5% of the target domain samples were utilized as the labeled
target subsets, while the remaining 95% of samples were reserved as test data. Ta-
bles 4.4, 4.5, and 4.6 show the performance of the proposed method compared to
alternatives on the Office-31, Office-Home, and VisDa-2017 datasets, respectively.
The proposed method outperforms the alternatives in most cases, with the average
improvement of 0.2%, 0.8%, and 1.7% in accuracy, respectively.

Conclusion

In conclusion, the proposed method enhances the domain adaptation process by
incorporating a labeled subset from the target domain and high/low pass filters to
generate intermediate domains iteratively. Utilizing existing tools to prepare a small
labeled subset from the target domain is relatively cheap compared to the increased
performance and stability it offers. Multiple experiments were conducted using well-
known network configurations (ResNet) and datasets (Office-31, Office-Home, and
VisDa-2017), comparing the proposed method with state-of-the-art alternatives. The
proposedmethod improved the accuracy by an average of 0.2 - 1.7% in different tests.

Method 𝐴𝐴 → 𝐷𝐷 𝐴𝐴 → 𝑊𝑊 𝐷𝐷 → 𝐴𝐴 𝐷𝐷 → 𝑊𝑊 𝑊𝑊 → 𝐴𝐴 𝑊𝑊 → 𝐷𝐷 Average

GSDA [46] 94.8 95.7 73.5 99.1 74.9 100 89.7
SRDC [109] 95.8 95.7 76.7 99.2 77.1 100 90.8
RSDA [41] 95.8 96.1 77.4 99.3 78.9 100 91.1
FixBi [74] 95 96.1 78.7 99.3 79.4 100 91.4
CoVi [73] 98 97.6 77.5 99.3 78.4 100 91.8
Proposed 97.6 97.5 77.9 99.3 79.7 100 92

Table 4.4 Accuracy on the Office-31 dataset. The best accuracy is indicated in bold, and the second
best is underlined. Reproduced with permission from publication IV.
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Method 𝐴𝐴 → 𝐶𝐶 𝐴𝐴 → 𝑃𝑃 𝐴𝐴 → 𝑅𝑅 𝐶𝐶 → 𝐴𝐴 𝐶𝐶 → 𝑃𝑃 𝐶𝐶 → 𝑅𝑅 𝑃𝑃 → 𝐴𝐴 𝑃𝑃 → 𝐶𝐶 𝑃𝑃 → 𝑅𝑅 𝑅𝑅 → 𝐴𝐴 𝑅𝑅 → 𝐶𝐶 𝑅𝑅 → 𝑃𝑃 Average

MetaAlign [117] 59.3 76 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
FixBi [74] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CoVi [73] 58.5 78.1 80 68.1 80 77 66.4 60.2 82.1 76.6 63.6 86.5 73.1

CDTrans [124] 60.6 79.5 82.4 75.6 81 82.3 72.5 56.7 84.4 77 59.1 85.5 74.7
WinTR [68] 65.3 84.1 85 76.8 84.5 84.4 73.4 60 85.7 77.2 63.1 86.8 77.2
Proposed 66.1 84 86.6 77.4 84.1 86.1 75.2 61.1 86.5 78.4 62.8 87.4 78

Table 4.5 Accuracy on the Office-Home dataset. The best accuracy is indicated in bold, and the
second best is underlined. Reproduced with permission from publication IV.

Method Plane Bike Bus Car Horse Knife Motor Human Plant Skate Train Truck Average

CAN [52] 97 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi [74] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

CDTrans [124] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
CoVi [73] 96.8 85.6 88.9 88.6 97.8 93.4 91.9 87.6 96 93.8 93.6 48.1 88.5
WinTR [68] 98.7 91.2 93 91.9 98.1 96.1 94 72.7 97 95.5 95.3 57.9 90.1
Proposed 98.2 91.7 92.9 92.2 98.5 96.5 93.7 88 98 95.5 94.8 61.8 91.8

Table 4.6 Accuracy on the VisDa-2017 dataset. The best accuracy is indicated in bold, and the second
best is underlined. Reproduced with permission from publication IV.

4.4 Discussion

This chapter explored three different mitigation methods for data-related safety con-
cerns. First, the Selective Probabilistic Classifier Based on Hypothesis Testing was
introduced, which utilized a hypothesis testing approach to reject uncertain samples
based on their probability distribution. The proposed method demonstrated supe-
rior performance compared to traditional classifiers in handling out-of-distribution
and distorted samples. Next, Enhanced Data-Recalibration was discussed, which uti-
lized a clean validation set to identify and mitigate instance-dependent noise in clas-
sification tasks. The proposed method demonstrated promising results in improving
the robustness and reliability of classification models in the presence of noisy labels.
Finally, IFMix was introduced, which utilized a small labeled subset from the target
domain and high/low pass filters to generate intermediate domains iteratively for do-
main adaptation. The proposed method demonstrated better performance compared
to alternative methods.
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5 CONCLUSIONS

Modern visual classifiers present a significant challenge to existing safety standards
owing to their complexity and the conventional approaches used to define software
in established standards. This dissertation has addressed two crucial safety aspects in
visual classifiers: fault identification and mitigation. First, the faults in visual deep
neural classifiers were systematically identified and categorized as safety concerns.
Then, the efficacy and limitations of current mitigation methods were evaluated. Af-
ter that, potential mitigation methods for each safety concern were proposed with a
focus on data-related safety concerns, such as noisy labels, outlier data, and domain
gaps. The following holds the detailed answers to the research questions posed in
this study:

Research Question 1: Which faults could result in visual classification systems
failing, and how can they be systematically categorized?

The faults in a visual deep neural classifier and their underlying causation was
investigated. The research methodology involved systematically decomposing a vi-
sual deep neural classifier into three key phases: training, evaluation, and inference.
Through a comprehensive analysis of each phase, the faults commonly associated
with them were identified. Subsequently, eight distinct safety concerns were formu-
lated based on the impact of each identified fault on the overall system.

Research Question 2: What are the existing mitigation methods for dealing with
safety concerns in visual classification systems, and how effective are they?

An overview of existing mitigation methods for each identified safety concern
was provided with a critical evaluation of their effectiveness and limitations. It is
important to note that assigning a definitive safety level to each mitigation method is
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Method 𝐴𝐴 → 𝐶𝐶 𝐴𝐴 → 𝑃𝑃 𝐴𝐴 → 𝑅𝑅 𝐶𝐶 → 𝐴𝐴 𝐶𝐶 → 𝑃𝑃 𝐶𝐶 → 𝑅𝑅 𝑃𝑃 → 𝐴𝐴 𝑃𝑃 → 𝐶𝐶 𝑃𝑃 → 𝑅𝑅 𝑅𝑅 → 𝐴𝐴 𝑅𝑅 → 𝐶𝐶 𝑅𝑅 → 𝑃𝑃 Average

MetaAlign [117] 59.3 76 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
FixBi [74] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CoVi [73] 58.5 78.1 80 68.1 80 77 66.4 60.2 82.1 76.6 63.6 86.5 73.1

CDTrans [124] 60.6 79.5 82.4 75.6 81 82.3 72.5 56.7 84.4 77 59.1 85.5 74.7
WinTR [68] 65.3 84.1 85 76.8 84.5 84.4 73.4 60 85.7 77.2 63.1 86.8 77.2
Proposed 66.1 84 86.6 77.4 84.1 86.1 75.2 61.1 86.5 78.4 62.8 87.4 78

Table 4.5 Accuracy on the Office-Home dataset. The best accuracy is indicated in bold, and the
second best is underlined. Reproduced with permission from publication IV.

Method Plane Bike Bus Car Horse Knife Motor Human Plant Skate Train Truck Average

CAN [52] 97 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi [74] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

CDTrans [124] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
CoVi [73] 96.8 85.6 88.9 88.6 97.8 93.4 91.9 87.6 96 93.8 93.6 48.1 88.5
WinTR [68] 98.7 91.2 93 91.9 98.1 96.1 94 72.7 97 95.5 95.3 57.9 90.1
Proposed 98.2 91.7 92.9 92.2 98.5 96.5 93.7 88 98 95.5 94.8 61.8 91.8

Table 4.6 Accuracy on the VisDa-2017 dataset. The best accuracy is indicated in bold, and the second
best is underlined. Reproduced with permission from publication IV.

4.4 Discussion

This chapter explored three different mitigation methods for data-related safety con-
cerns. First, the Selective Probabilistic Classifier Based on Hypothesis Testing was
introduced, which utilized a hypothesis testing approach to reject uncertain samples
based on their probability distribution. The proposed method demonstrated supe-
rior performance compared to traditional classifiers in handling out-of-distribution
and distorted samples. Next, Enhanced Data-Recalibration was discussed, which uti-
lized a clean validation set to identify and mitigate instance-dependent noise in clas-
sification tasks. The proposed method demonstrated promising results in improving
the robustness and reliability of classification models in the presence of noisy labels.
Finally, IFMix was introduced, which utilized a small labeled subset from the target
domain and high/low pass filters to generate intermediate domains iteratively for do-
main adaptation. The proposed method demonstrated better performance compared
to alternative methods.
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5 CONCLUSIONS

Modern visual classifiers present a significant challenge to existing safety standards
owing to their complexity and the conventional approaches used to define software
in established standards. This dissertation has addressed two crucial safety aspects in
visual classifiers: fault identification and mitigation. First, the faults in visual deep
neural classifiers were systematically identified and categorized as safety concerns.
Then, the efficacy and limitations of current mitigation methods were evaluated. Af-
ter that, potential mitigation methods for each safety concern were proposed with a
focus on data-related safety concerns, such as noisy labels, outlier data, and domain
gaps. The following holds the detailed answers to the research questions posed in
this study:

Research Question 1: Which faults could result in visual classification systems
failing, and how can they be systematically categorized?

The faults in a visual deep neural classifier and their underlying causation was
investigated. The research methodology involved systematically decomposing a vi-
sual deep neural classifier into three key phases: training, evaluation, and inference.
Through a comprehensive analysis of each phase, the faults commonly associated
with them were identified. Subsequently, eight distinct safety concerns were formu-
lated based on the impact of each identified fault on the overall system.

Research Question 2: What are the existing mitigation methods for dealing with
safety concerns in visual classification systems, and how effective are they?

An overview of existing mitigation methods for each identified safety concern
was provided with a critical evaluation of their effectiveness and limitations. It is
important to note that assigning a definitive safety level to each mitigation method is
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not feasible due to the absence of appropriate standardization. However, a suitable
combination of meticulously crafted safety-case questions and appropriate metrics
can aid in building a compelling case for the system’s overall safety. Additionally,
potential mitigation methods for each safety concern was presented, with the intend
of mitigating the limitations of individual methods as much as possible.

Research Question 3: How can the existing mitigation methods for data-related
faults be improved in visual classification systems to ensure practical implementation?

A selective classification method was proposed based on probabilistic neural net-
works and statistical significance tests to estimate the uncertainty of the classifier,
which can serve as a metric for rejecting uncertain outcomes. To evaluate the ef-
ficacy of the proposed method, several experiments were conducted using a well-
known network configuration (ResNet), benchmark datasets (COCO and CIFAR),
and various synthetic disturbances. The performance of the proposed method was
compared against the traditional Softmax Response method, using the Area Under
the Receiver Operating Characteristic curve as a threshold-independent metric. The
experimental results demonstrated that the proposed method outperformed the tra-
ditional method while offering a wider range of trade-off options between accuracy
and uncertainty.

Furthermore, an iterative data-recalibration method was proposed based on uti-
lizing a small clean validation dataset to iteratively cleanse the noisy labels from the
training dataset for visual classifiers. To evaluate the effectiveness of the proposed
method, several experiments were conducted using well-known network configura-
tions (ResNet and VGG), benchmark datasets (CIFAR, Animal-10N, Food-101N,
Clothing-1M), and different noise models (instance dependent and independent).
The performance of the proposed method was compared against state-of-the-art al-
gorithms based on accuracy. The experimental results indicated that the proposed
method offers a robust solution and a significant improvement over existing alterna-
tives at a negligible cost of manually cleaning a small validation dataset.

Finally, an iterative intermediate domain generation method was proposed based
on utilizing a small clean subset from the target domain, low-/high-pass filters,
and a dynamic mixing ratio to iteratively bridge the gap between the source and
target domains in visual classifiers. To evaluate the effectiveness of the proposed
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method, several experiments were conducted using a well-known network configu-
ration (ResNet) and benchmark datasets (Office-31, Office-Home, and VisDa-2017).
The performance of the proposed method was compared against state-of-the-art al-
gorithms based on accuracy. The experimental results indicated that the proposed
method offers a robust solution and a significant improvement over existing alterna-
tives at a negligible cost of manually labeling a small portion of the target domain.

Throughout this work, the focus was on simplifying complicated and unnecessary
assumptions to reflect the practical use cases in safety-critical applications. Further-
more, the trade-off between cost and safety was considered and negligible costs that
favored higher performance were embraced in the proposed approaches wherever
possible.

Future Work

The utilization of AI in safety-critical applications is swiftly expanding, and the chal-
lenges of using deep neural classifiers in this domain have been explored in this the-
sis. These challenges have been under review for a significant duration, and notable
headway has been made with every new research outcome. To further advance the
current state of research, some potential areas for future investigation are proposed.

The use of AI in safety-critical applications is gaining prominence and is increas-
ingly acknowledged in emerging standards for functional safety in industries such
as the automotive sector. While practical solutions may take time to develop, the
demand for autonomy and the growing importance of AI reinforces the need for
continued research in this area. In this context, exploring the potential of safety-case
arguments and safety concern lists for using AI in various fields may prove beneficial.
Further research can also investigate the development of standardized approaches for
assigning safety levels to mitigation methods and the identification of novel mitiga-
tion strategies that address the limitations of current techniques. Finally, research
can focus on developing methods that consider AI systems’ uncertainty and gen-
eralization capabilities in safety-critical applications to ensure their reliability and
robustness.

While publication I proposed a successful selective classification method, the test-
ing was limited to synthetic data, and the comparison was made with simple baseline
methods. Future research should focus on evaluating the performance of the pro-
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not feasible due to the absence of appropriate standardization. However, a suitable
combination of meticulously crafted safety-case questions and appropriate metrics
can aid in building a compelling case for the system’s overall safety. Additionally,
potential mitigation methods for each safety concern was presented, with the intend
of mitigating the limitations of individual methods as much as possible.

Research Question 3: How can the existing mitigation methods for data-related
faults be improved in visual classification systems to ensure practical implementation?

A selective classification method was proposed based on probabilistic neural net-
works and statistical significance tests to estimate the uncertainty of the classifier,
which can serve as a metric for rejecting uncertain outcomes. To evaluate the ef-
ficacy of the proposed method, several experiments were conducted using a well-
known network configuration (ResNet), benchmark datasets (COCO and CIFAR),
and various synthetic disturbances. The performance of the proposed method was
compared against the traditional Softmax Response method, using the Area Under
the Receiver Operating Characteristic curve as a threshold-independent metric. The
experimental results demonstrated that the proposed method outperformed the tra-
ditional method while offering a wider range of trade-off options between accuracy
and uncertainty.

Furthermore, an iterative data-recalibration method was proposed based on uti-
lizing a small clean validation dataset to iteratively cleanse the noisy labels from the
training dataset for visual classifiers. To evaluate the effectiveness of the proposed
method, several experiments were conducted using well-known network configura-
tions (ResNet and VGG), benchmark datasets (CIFAR, Animal-10N, Food-101N,
Clothing-1M), and different noise models (instance dependent and independent).
The performance of the proposed method was compared against state-of-the-art al-
gorithms based on accuracy. The experimental results indicated that the proposed
method offers a robust solution and a significant improvement over existing alterna-
tives at a negligible cost of manually cleaning a small validation dataset.

Finally, an iterative intermediate domain generation method was proposed based
on utilizing a small clean subset from the target domain, low-/high-pass filters,
and a dynamic mixing ratio to iteratively bridge the gap between the source and
target domains in visual classifiers. To evaluate the effectiveness of the proposed
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method, several experiments were conducted using a well-known network configu-
ration (ResNet) and benchmark datasets (Office-31, Office-Home, and VisDa-2017).
The performance of the proposed method was compared against state-of-the-art al-
gorithms based on accuracy. The experimental results indicated that the proposed
method offers a robust solution and a significant improvement over existing alterna-
tives at a negligible cost of manually labeling a small portion of the target domain.

Throughout this work, the focus was on simplifying complicated and unnecessary
assumptions to reflect the practical use cases in safety-critical applications. Further-
more, the trade-off between cost and safety was considered and negligible costs that
favored higher performance were embraced in the proposed approaches wherever
possible.

Future Work

The utilization of AI in safety-critical applications is swiftly expanding, and the chal-
lenges of using deep neural classifiers in this domain have been explored in this the-
sis. These challenges have been under review for a significant duration, and notable
headway has been made with every new research outcome. To further advance the
current state of research, some potential areas for future investigation are proposed.

The use of AI in safety-critical applications is gaining prominence and is increas-
ingly acknowledged in emerging standards for functional safety in industries such
as the automotive sector. While practical solutions may take time to develop, the
demand for autonomy and the growing importance of AI reinforces the need for
continued research in this area. In this context, exploring the potential of safety-case
arguments and safety concern lists for using AI in various fields may prove beneficial.
Further research can also investigate the development of standardized approaches for
assigning safety levels to mitigation methods and the identification of novel mitiga-
tion strategies that address the limitations of current techniques. Finally, research
can focus on developing methods that consider AI systems’ uncertainty and gen-
eralization capabilities in safety-critical applications to ensure their reliability and
robustness.

While publication I proposed a successful selective classification method, the test-
ing was limited to synthetic data, and the comparison was made with simple baseline
methods. Future research should focus on evaluating the performance of the pro-
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posed method with real-world data to identify a more sophisticated approach for
enhancing the performance of visual classifiers. Furthermore, exploring the scala-
bility of the proposed method for large datasets and complex network architectures
should also be a focus for future research.

Revisiting the mathematical foundation of mitigating label noise in visual clas-
sifiers is imperative due to recent discoveries about the nature of label noise. Al-
though Publication III has provided a comprehensive approach using synthetic and
real-world data, further exploration is needed to expand and adapt the current math-
ematical framework. New insights and discoveries can be integrated to advance the
field of label noise mitigation and provide more accurate and reliable visual classi-
fiers.
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ABSTRACT

In this paper, we propose a simple yet effective method to deal
with the violation of the Closed-World Assumption for a clas-
sifier. Previous works tend to apply a threshold either on the
classification scores or the loss function to reject the inputs
that violate the assumption. However, these methods cannot
achieve the low False Positive Ratio (FPR) required in safety
applications. The proposed method is a rejection option based
on hypothesis testing with probabilistic networks. With prob-
abilistic networks, it is possible to estimate the distribution
of outcomes instead of a single output. By utilizing Z-test
over the mean and standard deviation for each class, the pro-
posed method can estimate the statistical significance of the
network certainty and reject uncertain outputs. The proposed
method was experimented on with different configurations of
the COCO and CIFAR datasets. The performance of the pro-
posed method is compared with the Softmax Response, which
is a known top-performing method. It is shown that the pro-
posed method can achieve a broader range of operation and
cover a lower FPR than the alternative.

Index Terms— Selective Classifier, Probabilistic Neural
Network, Statistical Analysis, Uncertainty Estimation

1. INTRODUCTION

Artificial Intelligence (AI) is becoming a vital part of many
real-life applications such as healthcare, logistics, surveil-
lance, and industry. Classification is a common concept in
the AI field, and it can be considered one of the building
blocks for higher-level reasoning and decision-making sys-
tems. With the increasing demand for robust and reliable
algorithms, especially in safety-critical systems [1], the re-
search community has been trying to define the robustness
[2], evaluation metrics [3], and solutions to satisfy the re-
quirements of a robust classifier [4].

State-of-the-art classifiers have achieved high accuracy
numbers when dealing with simple datasets such as MNIST
[5] or challenging ones like ImageNet [6]. However, several
open questions remain on how the classifier should behave in
the circumstances not covered in the training set, for example,
when unseen classes appear (out-of-distribution samples) or
when inputs are distorted in a way not seen in the training set.

In such cases, a classifier might generate faulty results. So it
becomes clear that accuracy is not enough for measuring the
performance of classifiers, and the generalization to new en-
vironments and robustness to environmental changes should
also be considered.

In their review, Zhang et al. argue that unexpected faulty
result in a pattern recognition algorithm can happen due to
the violation of either of the following assumptions[7]: (1)
Closed-World Assumption where the data is assumed to have
a fixed number of classes, all covered in the training set, (2)
Independent and Identically Distributed Assumption where
the classes in the data are assumed to be independent of
each other and have the same distribution, and (3) Clean and
Big Data Assumption where the data is assumed to be well-
labeled and large enough for training the network properly.
While fulfilling these assumptions is more accessible in a
controlled environment, real-world applications rarely cover
them completely.

This paper deals with the violation of the Closed-World
Assumption. While a straightforward way of dealing with
this issue is introducing a trash class in the training set to
cover all out-of-distribution samples, the complex distribu-
tion of them makes it impossible to train an effective classifier
in most cases. Moreover, different distortions might make a
sample not easy to classify, even for a human. While there
is ongoing research for adversarial attacks, the phenomenon
is not that common in the everyday use of AI algorithms. In
a typical case, distortions usually are from these categories:
blur, noise, occlusion, and digital alteration of the image.

Recent works try to solve this issue by formulating it to
reliable rejection of the predictions when the network is un-
certain. The rejection option, also known as selective classi-
fication, is a central concept in different classification appli-
cations when dealing with uncertainty (e.g., optical character
recognition). Previous works either rely on using a specific
type of activation function in the classifier, such as OpenMax
[8], temperature scaling for SoftMax [9], and Sigmoid [10],
modifying the loss function such as discrepancy loss [11],
using more resources such as an ensemble of multiple clas-
sifiers [12] and Monte-Carlo dropout [13]. Moreover, some
also suggest a combination of different ideas [14].

The proposed method is a rejection option based on hy-
pothesis testing with probabilistic networks. By utilizing a
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Z-test over the distribution of outcomes from a probabilistic

network, it is possible to estimate the statistical significance

of a given output and reject insignificant results. The main

difference between the proposed method and previous state-

of-the-art methods such as ODIN [9] is the non-restricted use

of different architectures. The proposed method can be ap-

plied to any architecture and improve the performance when

dealing with violation of the Closed-World Assumption by

not limiting the network to a specific loss function or activa-

tion function.

In their work, Geifman and El-Yaniv show that Soft-

max Response (SR) is a simple yet top-performing method

in selective classifiers [15] that outperforms Monte Carlo

(MC) dropout. However, this paper shows that if utilized

correctly, the probabilistic network can easily outperform the

SR method, making it a viable choice.

The main contributions of this paper are as follows:

• Proposing a simple yet effective method (rejection

based on the statistical significance of probabilistic net-

work output) to deal with the violation of the Closed-

World Assumption in classifiers. This method can be

utilized in any modern network architecture by chang-

ing the structure into a probabilistic model, which is

possible with the help of existing tools.

• Testing the proposed method on state-of-the-art archi-

tecture (ResNet) with a diverse set of distortions (blur,

noise, gamma correction, and occlusion) to show the

effectiveness of the proposed method over the baseline

SR method.

The rest of this paper is structured as follows. The details

of the proposed method are presented in Section 2. Then Sec-

tion 3 deals with the experiments and their results. Finally,

Section 4 concludes the work and suggests potential research

directions for the future.

2. METHODS

2.1. Proposed method

The proposed method requires a fully trained probabilistic

classifier to work. Due to the nature of the probabilistic clas-

sifier, each inference of it will result in a slightly different

class score. To utilize this fact, first, the test image is passed

through the network n times to get the mean and standard de-

viation values for each class. After that, the maximum mean

value between classes is chosen as the potential output. Next,

two-sample Z-tests [16] are deployed between the potential

output and all other classes to find the statistical significance

between their difference. Finally, if the Z-scores indicate a

significant difference, then the potential output is chosen to

be correct. Algorithm 1 summarizes these steps and Figure 1

shows the structure of the proposed method.

Algorithm 1: Selective Probabilistic Classifier

Require: A trained probabilistic classifier.

1: run the image through the classifier n times

2: find mean (μ) and std. dev. (σ) for all N classes

3: find the class with the highest mean value (cM )

4: for i ∈ 1, 2, . . . , N ; i �= M do
5: run the two-sample Z-test between cM and ci
6: store the Zi score

7: end for
8: if Zi > z for i ∈ 1, 2, . . . , C; i �= M then
9: set output to be CM

10: else
11: set output to be Reject

12: end if
return output value for the image

2.1.1. Probabilistic Neural Network

A probabilistic neural network (PNN) classifier [17] uses a

stochastic weighting system. The classifier can allocate a

class to an input sample by utilizing the posterior probability,

which means each run of the network will result in a slightly

different output. The amount of difference between several

runs is the key to network certainty. A low standard deviation

between several runs indicates a higher level of certainty for

the network, making standard deviation a suitable metric for

selective classification. The convolution layers for such a net-

work are constructed based on Flipout [18]. The code can be

found in the Tensorflow probability directory [19].

2.1.2. Two-Sample Z-test

A Z-test [20] refers to any statistical test that can approxi-

mate the distribution of the hypothesis by a normal distribu-

tion. The two-sample Z-test can be used to test whether two

samples are similar to each other or not. The formula is as

follows:

Z =
μ1 − μ2 −Δ√

σ2
1

n1
+

σ2
2

n2

Where μ1 and μ2 are the mean values for two samples, Δ is

the hypothesized difference between the means (0 if testing

for equality), σ1 and σ2 are the standard deviations, and n1

and n2 are the sample sizes (which are equal in this paper).

By setting the null hypothesis as H0 : μ1 = μ2, the al-

ternative hypothesis as Ha : μ1 �= μ2, and Δ to zero, the

two-sample Z-test will result in a score that indicates the like-

lihood of two samples being different from each other. A

higher score means more likelihood for the samples to be dif-

ferent. This score can be compared to critical values to get

the percentage for the likelihood of a significant difference
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Fig. 1. The structure of the proposed method. (1) Pass the test image through the probabilistic classifier. (2) Repeat it n
times and store the class scores for each inference. (3) Calculate the mean and standard deviation for each class. (4) Find the

maximum mean value and label it as potential output. (5) Run two-sample Z-tests between the potential output and all other

classes, then store the Z-scores. (6) Compare Z-scores with the threshold value to decide the acceptance or rejection of the

potential output.

between samples. These values can be found in any Z-Score

table, such as [21].

2.2. Softmax Response

The SR method applies a threshold directly to the output of

the Softmax layer from a deep neural network (DNN) and re-

jects any output below the threshold. This method was chosen

as the baseline for comparison. While the method is simple,

it is a known top-performer [15].

3. EXPERIMENTS AND RESULTS

The proposed method was experimented on with the well-

known ResNet-18 network configuration [22]. The goal is to

show the performance of it in case of violating the Closed-

World Assumption. A comparison with the SR was made

to evaluate the performance. This comparison was based on

the area under the Receiver Operating Characteristic curve

(ROC), which is threshold-independent. Both networks are

trained from scratch with the same initial configuration to

have a fair comparison. Other state-of-the-art methods were

not included in the comparison as they either require a spe-

cific structure for the model, limiting the use case, or were

only tested on more simple datasets such as MNIST.

Multiple experiments were conducted to represent vari-

ous violations of Closed-World Assumption in real-world ap-

plications. In these experiments, the classifiers are trained

with a limited number of classes and presented with both in-

distribution and out-of-distribution samples. Further experi-

ments also distort the test samples to see the effect of each

distortion on the performance. The chosen distortions were

based on [23]. Before discussing the results, the dataset and

distortions are explained in detail.

3.1. Dataset and Distortions

COCO — COCO [24] was chosen as the first dataset. It is a

complex dataset where the objects have various sizes, quali-

ties, and overlaps. Since the COCO is originally an object de-

tection dataset, all instances were extracted from it manually

based on the bounding boxes provided in the dataset. The data

was separated into four classes: Human, Vehicle (containing

4-wheeled vehicles), Animal (containing 4-legged animals),

and Background (patches of images with no overlapping ob-

jects). 260k images were used for training, excluding the ani-

mal class, and 40k images were used as test samples. The rea-

son behind using a commonly known object detection dataset

for classification is to have a more realistic dataset where an

external source does not filter the samples.

CIFAR — CIFAR [25] was chosen as the second dataset. It

is a more straightforward dataset where objects are classified

into ten categories. The dataset is small yet sufficiently com-

plex, which makes it an ideal case for testing algorithms. 40k

images were used for training, excluding the automobile and

truck classes, and 10k images were used as test samples.

Blur — Three different blurring algorithms were used to see

their effect on the performance: Motion blur, Frosted glass

blur, and Gaussian blur. The effect of each algorithm can be

seen in Figure 2(B-D). Each algorithm will simulate a situ-
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Fig. 2. Distortions on the image. (A) Original image. (B) Motion blur. (C) Frosted glass blur. (D) Gaussian blur. (E) Noise.

(F) Gamma darkening. (G) Gamma lightening. (H) Occlusion.

ation where the object is not sharp (e.g., the camera is not

focused, the object is moving, a semi-transparent object is

between the camera and the object)

Noise — Two different noises were added to test samples to

see their effect on the performance: Gaussian noise and Salt-

and-pepper noise. The effect of a sample noise can be seen

in Figure 2(E). It will simulate a situation where the input is

noisy due to internal or external sources.

Gamma Correction — The gamma correction technique was

applied to each test sample to see the illumination effect on

the performance. The effect of darkening and lightening can

be seen in Figure 2(F-G). It will simulate a situation where

the amount of light in the environment changes due to envi-

ronmental factors.

Occlusion — A black patch was added to test samples to see

the effect of occlusion on the performance. The effect of oc-

clusion can be seen in Figure 2(H). It will simulate a situation

where the object is partially visible.

3.2. Results

After conducting the tests, ROC curves were used to examine

the effectiveness of each algorithm. These curves can be seen

in Figure 3-4. In general, each point in the ROC curve corre-

sponds to a specific threshold value for the rejection option.

If this threshold is set to 0, the algorithm will not reject any

input, resulting in a 100% FPR. The more extreme threshold

values will result in lower FPR and True Positive Ratio (TPR)

until, at some point, the algorithm rejects all inputs (0% FPR

and TPR). The SR method hits this value when the threshold

is set to 1. As the output of Softmax cannot be larger than 1,

any output will be rejected. However, since a DNN typically

generates high scores for the output, this threshold ends up

preventing the SR algorithm from reaching lower FPR rates.

On the other hand, the proposed method does not rely on the

limit of Softmax output, as it compares the significance of

each class to the others. Such a limit will cause a significant

gap in AUROC scores, as seen in Table 1.

Judging by the ROC curves, both algorithms start roughly

on the same point. This means that both algorithms function

similarly when it comes to classification. However, the SR

method has the mentioned drawback, which is visible in the

curves.

The comparison must be threshold-independent for it to

be fair. Thus, the area under the ROC curve (AUROC) was

used as a comparison method. The area calculation must con-

sider the limitations of both algorithms. While the SR algo-

rithm can reach 0% FPR, it only happens when the threshold

is at one (1) or higher, which means the output is not valid.

Thus, only the area under the valid parts of the ROC curve

was used in calculating the AUROC values. These values can

be found in Table 1.

While every distortion reduces the performance, gamma

correction has the most significant effect, and blurring has an

almost negligible effect on the proposed method. It can be

justified by how a classifier works, as changing the intensity

of the image makes it harder to separate the objects from the

Background class. That being said, the proposed algorithm

still outperforms the SR method by a notable margin.



Dataset Method

Out Blur Noise Gamma correction

Occlusionof
Motion

Frosted
Gaussian Gaussian S&P Darkening Lightening

Distribution glass

COCO
Proposed 0.65 0.34 0.25 0.38 0.22 0.21 0.16 0.17 0.23

SR 0.29 0.20 0.18 0.22 0.14 0.09 0.04 0.05 0.06

CIFAR
Proposed 0.89 0.50 0.50 0.59 0.38 0.39 0.37 0.42 0.48

SR 0.52 0.44 0.34 0.47 0.35 0.25 0.22 0.26 0.31

Table 1. AUROC values of the tests. The values are calculated by taking the area under the ROC where the algorithm could

produce a valid response.

Fig. 3. ROC curves for proposed method in COCO test. The

worst performance of each category was chosen to present the

tolerance of the algorithm to extreme distortions.

4. CONCLUSION

In this paper, we propose a rejection option for probabilistic

classifiers based on Z-test analysis. This method will address

the violation of the Closed-World Assumption. By utilizing a

probabilistic classifier, each run results in a slightly different

class score. A Z-test analyses the mean and standard devia-

tion values for multiple runs to estimate network certainty and

filter out uncertain results.

We designed several experiments based on a well-known

network configuration (ResNet-18) and datasets (COCO and

CIFAR). A comparison with the SR method was made based

on AUROC as a threshold-independent metric. The proposed

method was shown to have better performance than the SR

method by a notable margin while maintaining robustness in

the presence of distortions. This makes the proposed method

more suitable in safety applications.

Fig. 4. ROC curves for SR method in COCO test. The worst

performance of each category was chosen to present the tol-

erance of the algorithm to extreme distortions.

In the future, we will consider expanding the method by

merging it with existing tools such as ODIN and covering

more complex systems such as object detection.
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Abstract

This paper proposes a practical list of safety concerns and
mitigation methods for visual deep learning algorithms. The
growing success of deep learning algorithms in solving non-
linear and complex problems has recently attracted the atten-
tion of safety-critical applications. While the state-of-the-art
methods achieve high performance in synthetic and real-case
scenarios, it is impossible to verify/validate their reliability
based on currently available safety standards. Recent works
try to solve the issue by providing a list of safety concerns and
mitigation methods in generic machine learning algorithms
from the standards’ perspective. However, these solutions are
either vague, and non-practical when dealing with deep learn-
ing methods in real-case scenarios, or they are shallow and
fail to address all potential safety concerns. This paper pro-
vides an in-depth look at the underlying cause of faults in a
visual deep learning algorithm to find a practical and com-
plete safety concern list with potential state-of-the-art mitiga-
tion strategies.

1 Introduction
Deep learning is a powerful tool that solves mathemati-
cally challenging tasks with high dimensional inputs and
multi-variable optimization requirements such as human re-
identification, optical character recognition, and object de-
tection. The learning process involves using heuristic and
numerical methods, which are often hard to explain or inter-
pret as the dimension grows (black-box behavior).
While state-of-the-art deep learning algorithms achieve

high performance in various synthetic and real-life cases,
there is no guarantee for the reliability requirements that
safety-critical applications typically demand since avail-
able safety standards do not provide a suitable verifica-
tion/validation method for deep learning models.
Recent works found another way of dealing with the prob-

lem. By explaining the potential safety concerns of a deep
learning algorithm, it is possible to provide suitable mitiga-
tion methods around them.While the overall strategy sounds
effective, most works fail to provide a practical list of safety
concerns and mitigation methods. These lists are typically
vague, impractical to implement, shallow, and incomplete.

Copyright © 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
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This paper focuses on the underlying cause of faults in
a visual deep learning algorithm to provide a list of safety
concerns and potential state-of-the-art mitigation methods.
The main contributions of this paper are:

• Providing a practical, complete, and categorical list of
possible faults with their underlying cause for different
visual deep learning algorithm components.

• Providing potential state-of-the-art mitigation methods to
deal with the faults.

The rest of this paper is structured as follows. Section 2
covers related works. Next, Section 3 explains safety con-
cerns related to a visual deep learning algorithm and pro-
vides existing mitigation methods to deal with them. Finally,
Section 4 concludes the work.

2 Related Works
A visual deep learning algorithm is prone to different types
of faults. Recent papers focus on either solving specific
faults or providing an overview of all system-related safety
concerns. Here we discuss some of the most important con-
temporary works:
Zhang’s review of recent papers explains how violation of

critical assumptions in the training stage would lead to faults
and a non-robust system (Zhang, Liu, and Suen 2020). This
review also categorically covers existing mitigation methods
and discusses each technique’s effectiveness. Song focuses
on learning with noisy labels and discusses major strategies
to overcome the challenges of this topic (Song et al. 2021).
While these works and similar titles provide potential miti-
gation methods for specific faults, they do not offer a com-
plete list of all safety concerns.
Kläs suggests using uncertainty wrappers on deep learn-

ing components to ensure the outcome is dependable (Kläs
and Jöckel 2020). However, these wrappers rely on specific
metrics that require prior knowledge of data, which is con-
sidered impractical in the deep learning field.
Wozniak, Schwalbe, and Willers suggest different ap-

proaches to providing a safety concern list and mitigation
methods for developing a deep learning algorithm (Woz-
niak et al. 2020; Schwalbe et al. 2020; Willers et al. 2020).
The proposed strategies contain various goals related to the
dataset, model, and training/inference stage. However, some
goals are vague and non-practical, with no explanation on
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The proposed strategies contain various goals related to the
dataset, model, and training/inference stage. However, some
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how to achieve them or what to do if the goal is not achiev-
able. Moreover, the list is not complete in either work.
Houben provides an extensive list of practical methods to

improve the safety of a deep learning algorithm (Houben
et al. 2021). The work covers the current state-of-the-art
methods to deal with specific problems. However, the pro-
vided safety concern list is neither complete nor adequately
categorized.
Other similar works, such as (Heyn et al. 2021), also suf-

fer from the same issues. The flaws of recent works can be
listed as one or more of the following:

• Not covering the underlying causes of faults, which
might lead to poor choice of mitigation methods.

• Providing non-practical and vague mitigation methods,
which are not suitable for implementation.

• Overestimating the practical capabilities of mitigation
methods in dealing with faults and not providing backup
plans in case of failure.

3 Safety Concerns (SC) and Mitigation
Methods (MM)

The development of a visual deep learning algorithm has
three major stages: (1) training, (2) evaluation, and (3)
inference. This section presents the list of possible faults
within each stage.

3.1 Faults in the Training Stage
Visual data is one of the significant sources of information
for deep learning algorithms. Extracting useful information
from visual data is a complex task that makes it prone to
faults.
A deep learning algorithm approximates the relationship

between the input data and the objects in the real world by
reducing the empirical risk on training data. Thus, having a
proper training dataset is essential to reach the desired qual-
ity in the algorithm. A training dataset should be:

• Complete: contain samples from the defined output space
for the task.

• Adequate: contain samples with identical distribution to
real-world.

• Ample: contain a sufficient amount of samples for con-
vergence of the algorithm.

• Clean: contain well-labeled samples.

Moreover, different model structures come with specific
sets of benefits and weaknesses. Choosing the correct model,
setting up a suitable loss function and optimization algo-
rithm, and finding the perfect hyperparameters are essential
to achieve the best performance.

SC 1 – Incomplete Dataset: Due to the natural complex-
ity of the real world, there is always a much larger open
space than the defined output space for the task. Even with
defined boundaries for the output space, known unknowns
( e.g., outlier classes) and unknown unknowns (e.g., adver-
sarial attacks) pose a significant issue for the algorithm by
producing over-confident wrong predictions.

SC 2 – Inadequate Dataset: Due to the ever-changing na-
ture of real-world conditions, the collected data for training
will not have identical distribution with the real-world en-
vironment in the inference stage. Even a slight mismatch in
the distribution can cause a significant drop in performance
and result in poor generalization.

SC 3 – Insufficient/Noisy Dataset: The cost of manu-
ally labeling a dataset increases exponentially with its size.
While having a small clean validation dataset is feasible,
larger datasets tend to have noisy labels. A deep learning
algorithm can memorize this noise, leading to poor general-
ization and low performance.

SC 4 – Ill-Matched Architecture: Manually comparing
different models and hyperparameters to find the best match
for the task is time-consuming and costly. Moreover, it re-
quires an expert in the field to provide an insight into the
problem. An ill-matched architecture could result in unfore-
seen faults due to inherent weakness against specific situa-
tions that might exist.

MM 1 – Learning with Unseen Data: Modern deep
learning tools could be utilized to force the boundaries of
the training dataset even further. Out-of-distribution detec-
tors can be used in the algorithm to detect unseen samples
in the inference stage and reject the over-confident results of
the algorithm. These methods introduce uncertainty metrics
to determine whether the algorithm should be trusted or not
(Chen et al. 2020; Sastry and Oore 2020; Bakhshi Germi,
Rahtu, and Huttunen 2021).
Also, open-world recognition systems can be used to ex-

tend the output space of the algorithm as it encounters out-
lier samples in the inference stage. These methods con-
tinue to learn new classes during the inference stage to re-
duce the chance of over-confident wrong predictions (Par-
mar, Chouhan, and Rathore 2021; Bendale and Boult 2015).
Moreover, the model could be trained to defend against

adversarial attacks by including such patterns in the training
dataset (Xu et al. 2020; Yuan et al. 2019).

Discussing MM 1: Out-of-distribution detectors typically
result in lower accuracy, open-world recognition systems are
slow and demanding, and adversarial attacks keep evolving
and changing every day. The mentioned methods all have
their limitation. A suitable backup plan would involve utiliz-
ing several models with various mitigation methods to create
an ensemble to vote for the final result.

MM 2 – Learning with Unequally Distributed Data:
Modern deep learning tools could be utilized to reduce the
distribution mismatch between the training and inference
domain. Transfer learning and domain adaptation can be
used to fine-tune the algorithm online during the inference
stage. These methods help the model to adapt to new envi-
ronments quickly and achieve better generalization by using
a small batch of data in the inference stage (Farahani et al.
2020; Zhuang et al. 2020).
On the other hand, the algorithm can achieve higher

performance by utilizing multiple sources of information
for a single task (e.g., person identification with face, iris,

Figure 1: Samples of the same category in MNIST (Top) (Lecun et al. 1998) and CIFAR-10 (Bottom) (Krizhevsky 2009)
datasets (Taken from (Chen et al. 2021)). From left to right, the difficulty of classifying is increasing for both manual and
automatic label assignment, thus resulting in the increased chance of noisy labels.

voice, and fingerprint). Multimodal learning methods incor-
porate supplementary and complementary data from mul-
tiple modalities to the performance of a single task (Bal-
trušaitis, Ahuja, and Morency 2018; Guo, Wang, and Wang
2019).

Discussing MM 2: Transfer learning and domain adapta-
tion methods typically rely on having a decent starting point
(trained network) and quality samples from the inference
stage to fine-tune the model successfully. While the require-
ments are hard to achieve, it is not impossible. Moreover,
multimodal methods have already been used with sensor fu-
sion in autonomous vehicles (LIDAR, GPS, IMU, and so
on), making them a strong candidate for use in deep learn-
ing systems. A suitable backup plan would involve storing
the input data during the inference stage to re-evaluate and
re-calibrate the algorithm by replacing parts of the older and
non-useful training dataset in an iterative cycle.

MM 3 – Learning with Noisy Labels and Small Dataset:
Modern deep learning tools could be utilized to reduce
the effect of label noise or eliminate the need for a large
labeled dataset. Robust loss, sample selection, relabeling,
and weighted training are all potential solutions to deal
with noisy labels in the training dataset (Song et al. 2021;
Cordeiro and Carneiro 2020; Adhikari et al. 2021). A com-
bination of multiple methods usually leads to better results.
On the other hand, data augmentation methods can be

used to create additional samples for the training dataset.
These methods typically involve rotating, scaling, shifting,
and flipping data (Wang, Wang, and Lian 2020; Shorten
and Khoshgoftaar 2019). More advanced synthesizing tech-
niques can lead to the creation of entire datasets (Raghu-
nathan 2021; Nikolenko 2019). Additionally, existing public
datasets can be utilized to extend the samples at a lower cost.
Moreover, the cost and time for manually labeling

datasets can be drastically reduced by using iterative label-
ing methods (Adhikari and Huttunen 2021).
Finally, semi-supervised and unsupervised training tech-

niques can be used to decrease the dependency on a clean
training dataset (Van Engelen and Hoos 2020; Schmarje
et al. 2021).

Discussing MM 3: Recent works prove that the label
noise is instance-dependent, as shown in Figure 1. This dis-
covery means most state-of-the-art methods in dealing with
label noise need revision on how to mitigate the effects of
label noise. Recent works happen to focus on this topic and
provide effective solutions. While these solutions do not
have mathematical proof, they perform decently on public
benchmarks.
Meanwhile, the research around synthesized data indi-

cates that it may not represent the real world in every sit-
uation due to the limitations of simulation environments and
lack of involved experts in the process. Moreover, the exist-
ing public datasets might not suit the specific task or have
other inconsistencies, such as low-quality images and noisy
labels.
A suitable backup plan would involve developing a more

realistic simulation environment while including the physi-
cal knowledge about the task in the training process.

MM 4 – Automated Architecture Selection: Modern
deep learning tools could be utilized to select the optimum
model and hyperparameter for a given task. Automated hy-
perparameter optimization (Yu and Zhu 2020; Luo 2016;
Hutter, Lücke, and Schmidt-Thieme 2015) and neural ar-
chitecture search (Wistuba, Rawat, and Pedapati 2019; Ren
et al. 2021) methods can reduce manual labor while elimi-
nating the need for an expert. These methods rely on differ-
ent search algorithms to find the best model and hyperpa-
rameters within the working domain.

Discussing MM 4: Relying on search algorithms requires
high computational power and proper comparison tools.
While it will cost money and time to do it, the solution is
not impossible or impractical in most safety-critical applica-
tions.

3.2 Faults in the Evaluation Stage
Evaluation of a trained deep learning algorithm requires
prior knowledge about the task. A testing dataset should in-
clude samples from all scenarios, no matter how rare, to en-
sure the safety of the algorithm. Also, proper performance
metrics should be selected during the tests to obtain compa-
rable outputs.
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for the task is time-consuming and costly. Moreover, it re-
quires an expert in the field to provide an insight into the
problem. An ill-matched architecture could result in unfore-
seen faults due to inherent weakness against specific situa-
tions that might exist.

MM 1 – Learning with Unseen Data: Modern deep
learning tools could be utilized to force the boundaries of
the training dataset even further. Out-of-distribution detec-
tors can be used in the algorithm to detect unseen samples
in the inference stage and reject the over-confident results of
the algorithm. These methods introduce uncertainty metrics
to determine whether the algorithm should be trusted or not
(Chen et al. 2020; Sastry and Oore 2020; Bakhshi Germi,
Rahtu, and Huttunen 2021).
Also, open-world recognition systems can be used to ex-

tend the output space of the algorithm as it encounters out-
lier samples in the inference stage. These methods con-
tinue to learn new classes during the inference stage to re-
duce the chance of over-confident wrong predictions (Par-
mar, Chouhan, and Rathore 2021; Bendale and Boult 2015).
Moreover, the model could be trained to defend against

adversarial attacks by including such patterns in the training
dataset (Xu et al. 2020; Yuan et al. 2019).

Discussing MM 1: Out-of-distribution detectors typically
result in lower accuracy, open-world recognition systems are
slow and demanding, and adversarial attacks keep evolving
and changing every day. The mentioned methods all have
their limitation. A suitable backup plan would involve utiliz-
ing several models with various mitigation methods to create
an ensemble to vote for the final result.

MM 2 – Learning with Unequally Distributed Data:
Modern deep learning tools could be utilized to reduce the
distribution mismatch between the training and inference
domain. Transfer learning and domain adaptation can be
used to fine-tune the algorithm online during the inference
stage. These methods help the model to adapt to new envi-
ronments quickly and achieve better generalization by using
a small batch of data in the inference stage (Farahani et al.
2020; Zhuang et al. 2020).
On the other hand, the algorithm can achieve higher

performance by utilizing multiple sources of information
for a single task (e.g., person identification with face, iris,

Figure 1: Samples of the same category in MNIST (Top) (Lecun et al. 1998) and CIFAR-10 (Bottom) (Krizhevsky 2009)
datasets (Taken from (Chen et al. 2021)). From left to right, the difficulty of classifying is increasing for both manual and
automatic label assignment, thus resulting in the increased chance of noisy labels.

voice, and fingerprint). Multimodal learning methods incor-
porate supplementary and complementary data from mul-
tiple modalities to the performance of a single task (Bal-
trušaitis, Ahuja, and Morency 2018; Guo, Wang, and Wang
2019).

Discussing MM 2: Transfer learning and domain adapta-
tion methods typically rely on having a decent starting point
(trained network) and quality samples from the inference
stage to fine-tune the model successfully. While the require-
ments are hard to achieve, it is not impossible. Moreover,
multimodal methods have already been used with sensor fu-
sion in autonomous vehicles (LIDAR, GPS, IMU, and so
on), making them a strong candidate for use in deep learn-
ing systems. A suitable backup plan would involve storing
the input data during the inference stage to re-evaluate and
re-calibrate the algorithm by replacing parts of the older and
non-useful training dataset in an iterative cycle.

MM 3 – Learning with Noisy Labels and Small Dataset:
Modern deep learning tools could be utilized to reduce
the effect of label noise or eliminate the need for a large
labeled dataset. Robust loss, sample selection, relabeling,
and weighted training are all potential solutions to deal
with noisy labels in the training dataset (Song et al. 2021;
Cordeiro and Carneiro 2020; Adhikari et al. 2021). A com-
bination of multiple methods usually leads to better results.
On the other hand, data augmentation methods can be

used to create additional samples for the training dataset.
These methods typically involve rotating, scaling, shifting,
and flipping data (Wang, Wang, and Lian 2020; Shorten
and Khoshgoftaar 2019). More advanced synthesizing tech-
niques can lead to the creation of entire datasets (Raghu-
nathan 2021; Nikolenko 2019). Additionally, existing public
datasets can be utilized to extend the samples at a lower cost.
Moreover, the cost and time for manually labeling

datasets can be drastically reduced by using iterative label-
ing methods (Adhikari and Huttunen 2021).
Finally, semi-supervised and unsupervised training tech-

niques can be used to decrease the dependency on a clean
training dataset (Van Engelen and Hoos 2020; Schmarje
et al. 2021).

Discussing MM 3: Recent works prove that the label
noise is instance-dependent, as shown in Figure 1. This dis-
covery means most state-of-the-art methods in dealing with
label noise need revision on how to mitigate the effects of
label noise. Recent works happen to focus on this topic and
provide effective solutions. While these solutions do not
have mathematical proof, they perform decently on public
benchmarks.
Meanwhile, the research around synthesized data indi-

cates that it may not represent the real world in every sit-
uation due to the limitations of simulation environments and
lack of involved experts in the process. Moreover, the exist-
ing public datasets might not suit the specific task or have
other inconsistencies, such as low-quality images and noisy
labels.
A suitable backup plan would involve developing a more

realistic simulation environment while including the physi-
cal knowledge about the task in the training process.

MM 4 – Automated Architecture Selection: Modern
deep learning tools could be utilized to select the optimum
model and hyperparameter for a given task. Automated hy-
perparameter optimization (Yu and Zhu 2020; Luo 2016;
Hutter, Lücke, and Schmidt-Thieme 2015) and neural ar-
chitecture search (Wistuba, Rawat, and Pedapati 2019; Ren
et al. 2021) methods can reduce manual labor while elimi-
nating the need for an expert. These methods rely on differ-
ent search algorithms to find the best model and hyperpa-
rameters within the working domain.

Discussing MM 4: Relying on search algorithms requires
high computational power and proper comparison tools.
While it will cost money and time to do it, the solution is
not impossible or impractical in most safety-critical applica-
tions.

3.2 Faults in the Evaluation Stage
Evaluation of a trained deep learning algorithm requires
prior knowledge about the task. A testing dataset should in-
clude samples from all scenarios, no matter how rare, to en-
sure the safety of the algorithm. Also, proper performance
metrics should be selected during the tests to obtain compa-
rable outputs.
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Figure 2: Effects of camera faults on the input image (Taken from (TND6233-D)): (A) Faulty clocking system, (B) Faulty
pipeline, and (C) Faulty row addressing logic.

Moreover, formal verification/validation methods depend
on having an interpretable algorithm, which contrasts deep
learning.

SC 5 – Incompatible Metrics and Benchmarks: The
most common performance metric in deep learning algo-
rithms is accuracy. However, other metrics might hold more
value in safety-critical applications as the importance of
false-positive and false-negative grow exponentially in this
field. Moreover, gathering a proper dataset to use as a bench-
mark has similar challenges to the training dataset.

MM 5 – Using Safety-Aware Metrics and Hazard-Aware
Benchmarks: By including a weighted cost for each type
of fault in the performance metric, the algorithm can be eval-
uated according to safety requirements (Zhou et al. 2021;
Gharib and Bondavalli 2019; Salman et al. 2020). These new
evaluation metrics would make the trade-off between perfor-
mance and safety more visible.
On the other hand, a list of all hazardous scenarios can be

prepared for every task for inclusion in the testing dataset
by performing a risk analysis on the task (Zendel et al.
2018; Lambert et al. 2020). Such datasets could be treated
as benchmarks for comparing different algorithms or vali-
dating their performance.

Discussing MM 5: While formulating a new cost function
requires expert knowledge, it is within the scope of expec-
tations in a safety-critical application. Various combination
of weighted metrics can be utilized and compared to find
the most suitable one for the task. However, a bad decision
could result in a non-converging algorithm, thus there is a
necessity for mathematical proof about the convergence of
the algorithm.
Moreover, the competitive nature of industry typically

prevents them from sharing any suitable benchmarks or
cost functions publicly, which means each company has to
spend time and resources on developing their own system. A
suitable backup plan would involve third-party associations
funded by multiple companies to handle the problem for the
benefit of all members.

SC 6 – Black-Box Behavior: The large volume of param-
eters and non-linear functions in deep learning algorithms
result in an uninterpretable system. With no clear relation
between the input and output of this black-box system and
the impossible task of testing the entire input domain, it is
hard to verify/validate deep learning algorithms based on
safety standards.

MM 6 – Opening the Black-Box: Representation learn-
ing enables the deep learning algorithm to discover the re-
lation between input data and output in a presentable way
by showing the process of feature selection (Zhang et al.
2018; Li, Yang, and Zhang 2018). Understanding this pro-
cess helps to gain an insight into how the network interprets
input data, and which parts of data play a more significant
role in deciding the outcome.
Another way to gain such insight is to present a map of

pixel relevance for the algorithm. These heat maps illustrate
the importance of each pixel when calculating the output
(König et al. 2021; Bach et al. 2015). Such information can
be about isolated pixels or the interconnection of different
pixels. Studying these maps could show the effects of slight
changes in input on the output and help find potential haz-
ardous cases.

Discussing MM 6: This specific problem could be one of
the most important ones with the least proper solutions as of
yet. While it is possible to gain some insight into the opera-
tion of deep learning algorithms, the information cannot be
used in any form to verify/validate the algorithm based on
traditional standards. A suitable backup plan would involve
using safety case arguments and other similar approaches to
bypass the need for verification/validation for now.

3.3 Faults in the Inference Stage
In a typical case, a similar sensor used for collecting offline
data provides the online data for the implemented algorithm.
On top of it, other hardware components are required for
the algorithm to work correctly. These components can be
summarized as:

Figure 3: Effects of environmental factors on the input image (Taken from (Bakhshi Germi, Rahtu, and Huttunen 2021)): (A)
Original image, (B) Movement of camera/object (Motion blur), (C) Raindrop on the lens (Frosted-glass blur), (D) Out-of-
focus object (Gaussian blur), (E) Low illumination (Gaussian noise), (F,G) Improper balance of light and darkness (Low/High
brightness), and (H) Obscured object (Occlusion).

• A camera to capture the input image.
• A communication channel to transfer the captured image.
• A processing unit to host the deep learning algorithm.
• A power supply to keep the system running.

SC 7 – Defective Hardware: The first concern in deep
learning algorithms is providing the necessary hardware
mentioned above. Hardware faults can have a wide range
of effects on the algorithm based on the faulty component,
an example being the results of a faulty camera on the cap-
tured image, as shown in Figure 2. An implementation of
the algorithm might run into problems based on the defec-
tive hardware component:

• Camera faults that might result in various disturbances in
the input image, such as pixel corruption or image distor-
tion.

• Communication channel faults that might result in data
corruption or data loss.

• Processing unit faults that might result in wrong calcula-
tions, lagging, or freezing of the algorithm.

• Power supply faults might result in breaking other hard-
ware components or total system shutdown.

MM 7.1 – Following Functional Safety Standards: The
mentioned hardware components are not unique to deep
learning algorithms and have been used for decades in
safety-critical applications. As a result, the current func-
tional safety standards such as ISO 26262 (ISO 26262)

and ISO/PAS 21448 (ISO/PAS 21448) provide practical
guidelines for verifying and validating hardware compo-
nents. Also, technical reports based on functional safety
standards can help develop or choose safe hardware com-
ponents such as a camera (TND6233-D), communication
channel (Alanen, Hietikko, and Malm 2004), and operating
system (Slačka and Halás 2015).
Moreover, other precautions such as using redundant

hardware, proper noise shielding, and data fusion techniques
have already proved helpful in safety-critical applications
(Sklaroff 1976; Ciftcioglu and Turkcan 1996).

Discussing MM 7.1: Assuming the hardware is chosen
based on the proper functional safety standards, it should op-
erate without significant safety concerns. However, this mit-
igation method does not guarantee the complete removal of
any disturbance or corruption of data. Environmental factors
such as lousy illumination, movement, and obscured objects
can affect input image quality without causing a hardware
failure, as seen in Figure 3. While some of these problems
might not be recognizable by a human annotator, the deep
learning algorithm could run into faults based on the type
and severity of corruption. Moreover, less severe levels of
hardware failure might cause noise variations on the input
data. A suitable backup plan would involve utilizing another
mitigation approach described as follows.

MM 7.2 – Using Image Processing Techniques: Since
the exact relation between the input image and the output
of the deep learning algorithm is not known, it is recom-
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Figure 2: Effects of camera faults on the input image (Taken from (TND6233-D)): (A) Faulty clocking system, (B) Faulty
pipeline, and (C) Faulty row addressing logic.

Moreover, formal verification/validation methods depend
on having an interpretable algorithm, which contrasts deep
learning.

SC 5 – Incompatible Metrics and Benchmarks: The
most common performance metric in deep learning algo-
rithms is accuracy. However, other metrics might hold more
value in safety-critical applications as the importance of
false-positive and false-negative grow exponentially in this
field. Moreover, gathering a proper dataset to use as a bench-
mark has similar challenges to the training dataset.

MM 5 – Using Safety-Aware Metrics and Hazard-Aware
Benchmarks: By including a weighted cost for each type
of fault in the performance metric, the algorithm can be eval-
uated according to safety requirements (Zhou et al. 2021;
Gharib and Bondavalli 2019; Salman et al. 2020). These new
evaluation metrics would make the trade-off between perfor-
mance and safety more visible.
On the other hand, a list of all hazardous scenarios can be

prepared for every task for inclusion in the testing dataset
by performing a risk analysis on the task (Zendel et al.
2018; Lambert et al. 2020). Such datasets could be treated
as benchmarks for comparing different algorithms or vali-
dating their performance.

Discussing MM 5: While formulating a new cost function
requires expert knowledge, it is within the scope of expec-
tations in a safety-critical application. Various combination
of weighted metrics can be utilized and compared to find
the most suitable one for the task. However, a bad decision
could result in a non-converging algorithm, thus there is a
necessity for mathematical proof about the convergence of
the algorithm.
Moreover, the competitive nature of industry typically

prevents them from sharing any suitable benchmarks or
cost functions publicly, which means each company has to
spend time and resources on developing their own system. A
suitable backup plan would involve third-party associations
funded by multiple companies to handle the problem for the
benefit of all members.

SC 6 – Black-Box Behavior: The large volume of param-
eters and non-linear functions in deep learning algorithms
result in an uninterpretable system. With no clear relation
between the input and output of this black-box system and
the impossible task of testing the entire input domain, it is
hard to verify/validate deep learning algorithms based on
safety standards.

MM 6 – Opening the Black-Box: Representation learn-
ing enables the deep learning algorithm to discover the re-
lation between input data and output in a presentable way
by showing the process of feature selection (Zhang et al.
2018; Li, Yang, and Zhang 2018). Understanding this pro-
cess helps to gain an insight into how the network interprets
input data, and which parts of data play a more significant
role in deciding the outcome.
Another way to gain such insight is to present a map of

pixel relevance for the algorithm. These heat maps illustrate
the importance of each pixel when calculating the output
(König et al. 2021; Bach et al. 2015). Such information can
be about isolated pixels or the interconnection of different
pixels. Studying these maps could show the effects of slight
changes in input on the output and help find potential haz-
ardous cases.

Discussing MM 6: This specific problem could be one of
the most important ones with the least proper solutions as of
yet. While it is possible to gain some insight into the opera-
tion of deep learning algorithms, the information cannot be
used in any form to verify/validate the algorithm based on
traditional standards. A suitable backup plan would involve
using safety case arguments and other similar approaches to
bypass the need for verification/validation for now.

3.3 Faults in the Inference Stage
In a typical case, a similar sensor used for collecting offline
data provides the online data for the implemented algorithm.
On top of it, other hardware components are required for
the algorithm to work correctly. These components can be
summarized as:

Figure 3: Effects of environmental factors on the input image (Taken from (Bakhshi Germi, Rahtu, and Huttunen 2021)): (A)
Original image, (B) Movement of camera/object (Motion blur), (C) Raindrop on the lens (Frosted-glass blur), (D) Out-of-
focus object (Gaussian blur), (E) Low illumination (Gaussian noise), (F,G) Improper balance of light and darkness (Low/High
brightness), and (H) Obscured object (Occlusion).

• A camera to capture the input image.
• A communication channel to transfer the captured image.
• A processing unit to host the deep learning algorithm.
• A power supply to keep the system running.

SC 7 – Defective Hardware: The first concern in deep
learning algorithms is providing the necessary hardware
mentioned above. Hardware faults can have a wide range
of effects on the algorithm based on the faulty component,
an example being the results of a faulty camera on the cap-
tured image, as shown in Figure 2. An implementation of
the algorithm might run into problems based on the defec-
tive hardware component:

• Camera faults that might result in various disturbances in
the input image, such as pixel corruption or image distor-
tion.

• Communication channel faults that might result in data
corruption or data loss.

• Processing unit faults that might result in wrong calcula-
tions, lagging, or freezing of the algorithm.

• Power supply faults might result in breaking other hard-
ware components or total system shutdown.

MM 7.1 – Following Functional Safety Standards: The
mentioned hardware components are not unique to deep
learning algorithms and have been used for decades in
safety-critical applications. As a result, the current func-
tional safety standards such as ISO 26262 (ISO 26262)

and ISO/PAS 21448 (ISO/PAS 21448) provide practical
guidelines for verifying and validating hardware compo-
nents. Also, technical reports based on functional safety
standards can help develop or choose safe hardware com-
ponents such as a camera (TND6233-D), communication
channel (Alanen, Hietikko, and Malm 2004), and operating
system (Slačka and Halás 2015).
Moreover, other precautions such as using redundant

hardware, proper noise shielding, and data fusion techniques
have already proved helpful in safety-critical applications
(Sklaroff 1976; Ciftcioglu and Turkcan 1996).

Discussing MM 7.1: Assuming the hardware is chosen
based on the proper functional safety standards, it should op-
erate without significant safety concerns. However, this mit-
igation method does not guarantee the complete removal of
any disturbance or corruption of data. Environmental factors
such as lousy illumination, movement, and obscured objects
can affect input image quality without causing a hardware
failure, as seen in Figure 3. While some of these problems
might not be recognizable by a human annotator, the deep
learning algorithm could run into faults based on the type
and severity of corruption. Moreover, less severe levels of
hardware failure might cause noise variations on the input
data. A suitable backup plan would involve utilizing another
mitigation approach described as follows.

MM 7.2 – Using Image Processing Techniques: Since
the exact relation between the input image and the output
of the deep learning algorithm is not known, it is recom-



mended to have clean input data to reduce the change of
unwanted outcomes. The current state-of-the-art image pro-
cessing techniques such as denoising (Fan et al. 2019; Goyal
et al. 2020; Jebur, Der, and Hammood 2020), deblurring
(Sada and Goyani 2018; Nah et al. 2021; Abuolaim, Tim-
ofte, and Brown 2021), and enhancement (Putra, Purboyo,
and Prasasti 2017) methods can improve the quality of the
input images and remove most of the disturbances not cov-
ered by the previous mitigation method. Most image pro-
cessing techniques have solid mathematical foundations and
passed extensive testing cycles to prove their effectiveness,
making them easy to validate and verify for safety-critical
applications.

Discussing MM 7.2: Image processing techniques are
only valid when it’s known that the image is corrupted. Oth-
erwise, such functions can negatively affect a clean image
during the operation (e.g., removing/fading edges, bright-
ening the image without necessity, etc.). Applying a filter
without knowing the type of corruption is almost as dan-
gerous as not utilizing any technique. So, it is safe to as-
sume that some form of corruption is inevitable. A suitable
backup plan would involve using the rejection option as de-
scribed before to reduce the amount of overconfident wrong
outputs.

4 Conclusion
The research around using deep learning algorithms in
safety-critical applications is growing rapidly, with the cur-
rent state-of-the-art answers partially fulfilling the require-
ments of old standards. However, the nature of the problem
demands to move away from the traditional broad-spectrum
method of standardization as it is not suitable for deep learn-
ing algorithms. There is a high demand for task-specific
standards to be developed. Until such standards are devel-
oped, the research community focuses on alternative ap-
proaches and empirical analysis to provide practical solu-
tions on specific cases.
This paper provides a practical list of safety concerns for

a visual deep learning algorithm by explaining the under-
lying cause of faults and providing current state-of-the-art
solutions to mitigate them. By presenting the limitations of
existing mitigation methods, the need for further study is ex-
pressed. We hope this paper offers an insight to those who
want to utilize deep learning algorithms in their applications
or those who want to develop proper standard or safety case
arguments for such systems.
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mended to have clean input data to reduce the change of
unwanted outcomes. The current state-of-the-art image pro-
cessing techniques such as denoising (Fan et al. 2019; Goyal
et al. 2020; Jebur, Der, and Hammood 2020), deblurring
(Sada and Goyani 2018; Nah et al. 2021; Abuolaim, Tim-
ofte, and Brown 2021), and enhancement (Putra, Purboyo,
and Prasasti 2017) methods can improve the quality of the
input images and remove most of the disturbances not cov-
ered by the previous mitigation method. Most image pro-
cessing techniques have solid mathematical foundations and
passed extensive testing cycles to prove their effectiveness,
making them easy to validate and verify for safety-critical
applications.

Discussing MM 7.2: Image processing techniques are
only valid when it’s known that the image is corrupted. Oth-
erwise, such functions can negatively affect a clean image
during the operation (e.g., removing/fading edges, bright-
ening the image without necessity, etc.). Applying a filter
without knowing the type of corruption is almost as dan-
gerous as not utilizing any technique. So, it is safe to as-
sume that some form of corruption is inevitable. A suitable
backup plan would involve using the rejection option as de-
scribed before to reduce the amount of overconfident wrong
outputs.

4 Conclusion
The research around using deep learning algorithms in
safety-critical applications is growing rapidly, with the cur-
rent state-of-the-art answers partially fulfilling the require-
ments of old standards. However, the nature of the problem
demands to move away from the traditional broad-spectrum
method of standardization as it is not suitable for deep learn-
ing algorithms. There is a high demand for task-specific
standards to be developed. Until such standards are devel-
oped, the research community focuses on alternative ap-
proaches and empirical analysis to provide practical solu-
tions on specific cases.
This paper provides a practical list of safety concerns for

a visual deep learning algorithm by explaining the under-
lying cause of faults and providing current state-of-the-art
solutions to mitigate them. By presenting the limitations of
existing mitigation methods, the need for further study is ex-
pressed. We hope this paper offers an insight to those who
want to utilize deep learning algorithms in their applications
or those who want to develop proper standard or safety case
arguments for such systems.
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Abstract. This paper proposes a practical approach to deal with
instance-dependent noise in classification. Supervised learning with noisy
labels is one of the major research topics in the deep learning commu-
nity. While old works typically assume class conditional and instance-
independent noise, recent works provide theoretical and empirical proof
to show that the noise in real-world cases is instance-dependent. Current
state-of-the-art methods for dealing with instance-dependent noise focus
on data-recalibrating strategies to iteratively correct labels while training
the network. While some methods provide theoretical analysis to prove
that each iteration results in a cleaner dataset and a better-performing
network, the limiting assumptions and dependency on knowledge about
noise for hyperparameter tuning often contrast their claims. The pro-
posed method in this paper is a two-stage data-recalibration algorithm
that utilizes validation data to correct noisy labels and refine the model
iteratively. The algorithm works by training the network on the latest
cleansed training Set to obtain better performance on a small, clean val-
idation set while using the best performing model to cleanse the training
set for the next iteration. The intuition behind the method is that a
network with decent performance on the clean validation set can be uti-
lized as an oracle network to generate less noisy labels for the training
set. While there is no theoretical guarantee attached, the method’s effec-
tiveness is demonstrated with extensive experiments on synthetic and
real-world benchmark datasets. The empirical evaluation suggests that
the proposed method has a better performance compared to the cur-
rent state-of-the-art works. The implementation is available at https://
github.com/Sbakhshigermi/EDR.

Keywords: Label noise · Classification · Data-recalibration

1 Introduction

Inexperienced workers, insufficient information about samples, confusing pat-
terns, tiresome nature of the work, and other factors make the manual labeling
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Fig. 1. Multiple samples of the same category in different datasets: (A) Number two in
MNIST [15], (B) Deer in CIFAR-10 [14], (C) Caesar salad in Food-101N [16], and (D)
Underwear in Clothing1M [34]. The images on the top row are more straightforward
to label than the images on the bottom row.

of samples in a large dataset prone to errors and noisy labels [10,29]. Unfor-
tunately, deep learning algorithms have the potential to memorize these noisy
labels, which leads to poor generalization and lower performance on clean test
datasets [37]. Due to the importance of the topic in different sectors, such as
safety-critical applications [2] and medical imaging [23], researchers have been
developing methods to mitigate such label noise [3,10,27].

Most recent works assume the labels to be affected by a class-conditional noise
(CCN) where the noise is instance-independent [20]. This type of noise can be
estimated [13] or mitigated by adding extra loss terms in the model [4]. However,
Chen utilized visual examples and mathematical analysis to prove that the label
noise in a real-world dataset (Clothing1M [34]) is actually instance-dependent.
To better understand why this is the case, take a look at Fig. 1. As seen in this
figure, two samples of the same category have different complexity of labeling,
which suggests that the label noise is instance-dependent.

With the previous assumption of CCN proven wrong, a new mathematical
foundation for mitigation methods had to be developed. Therefore, researchers
started defining variations of instance-dependent noise (IDN) patterns to rep-
resent synthetic noise and propose mitigation approaches based on them. One
of the effective strategies used in the state-of-the-art methods is the iterative
data-recalibration [18]. These methods use the predictions of a network trained
over noisy samples to select and correct samples iteratively.

While recent works on IDN provided theoretical analysis to prove the conver-
gence of their models to an oracle Bayes classifier [5,38], the limiting assumptions
in their theories cannot be met in practical implementation, as shown by their
empirical findings. Due to these limitations, this paper will focus on empirical
experiments on synthetic and real-world datasets to showcase the effectiveness
of the proposed method.

This paper proposes an enhanced data-recalibration algorithm that corrects
labels affected by instance-dependent noise by utilizing validation set. On each
iteration, the proposed method trains a model with the cleansed data from the
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last iteration to achieve higher performance on a small, clean validation set.
Then, the best-performing model is chosen to correct labels in the training set
based on the model’s confidence for the next iteration. The intuition is that
better performance on the clean validation set means a better prediction of
training labels than the previous iteration.

The main difference between the proposed method and previous works is
utilizing a clean validation set to influence the training stage to help the network
approach an oracle model that can predict ground truth labels. Small, clean
validation sets can be easily obtained with computer-assisted tools [1]. While
previous works often use the validation set as a selector of the final model for
accuracy reports, none utilize it any further to the best of the authors’ knowledge.
The main contributions of this paper are:

– Proposing a practical data-recalibration algorithm that utilizes easy-to-gather
clean validation set to enhance the performance over the existing state-of-the-
art methods.

– Providing empirical evaluation with extensive experiments on both synthetic
and real-world datasets to show the effectiveness of the proposed method.

The rest of the paper is structured as follows. Section 2 covers the related
works. Next, Sect. 3 explains the proposed method in detail. After that, Sect. 4
deals with the experiments and the empirical evaluation to show the effectiveness
of the proposed method. Finally, Sect. 5 concludes the work.

2 Related Works

Menon provided one of the major theoretical frameworks for IDN in binary
problems. This framework provided the basis to construct a loss function with
specific criteria to mitigate IDN. While the work was necessary at the time, the
method is not extensible to deep neural networks [21]. Chen provided mathemat-
ical proof that the label noise in a large real-world dataset called Clothing1M [34]
follows the IDN pattern. They proposed a method of generating IDN patterns
by averaging the predictions of an oracle classifier over the training session to
find complex samples and flip their labels. The mitigation method provided also
relies on averaging the predictions of a network, with the intuition that the net-
work can find a soft representation of labels that are closer to ground truth over
time. While this work provided essential information about IDN, the mitigation
method is cost-heavy with low performance compared to other works [7].

Zhang defined a new family of noise called poly-margin diminishing (PMD).
This new noise family follows the same intuition that data points near the deci-
sion boundary are more challenging to classify, thus more prone to noise. Based
on the previously stated reasons for label noise, this definition seems realistic.
To mitigate this family of noise, they proposed an iterative correction method
that corrects the labels based on the network confidence over the training set in
each iteration. While the work provided theories to prove the effectiveness, their
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Fig. 1. Multiple samples of the same category in different datasets: (A) Number two in
MNIST [15], (B) Deer in CIFAR-10 [14], (C) Caesar salad in Food-101N [16], and (D)
Underwear in Clothing1M [34]. The images on the top row are more straightforward
to label than the images on the bottom row.
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last iteration to achieve higher performance on a small, clean validation set.
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training labels than the previous iteration.

The main difference between the proposed method and previous works is
utilizing a clean validation set to influence the training stage to help the network
approach an oracle model that can predict ground truth labels. Small, clean
validation sets can be easily obtained with computer-assisted tools [1]. While
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Zhang defined a new family of noise called poly-margin diminishing (PMD).
This new noise family follows the same intuition that data points near the deci-
sion boundary are more challenging to classify, thus more prone to noise. Based
on the previously stated reasons for label noise, this definition seems realistic.
To mitigate this family of noise, they proposed an iterative correction method
that corrects the labels based on the network confidence over the training set in
each iteration. While the work provided theories to prove the effectiveness, their
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hyperparameter settings and assumption violation in implementing the method
contradict their idea [38].

Several state-of-the-art methods managed to reach high performance on real-
world benchmarks. Tan combined a supervised and an unsupervised network and
co-teach them with the help of an encoder to maximize the agreement between
the networks in latent space [28]. Wu utilized the spatial topology of data in
the latent space of the network iteratively to collect clean labels and refine the
network further [32]. Zhu focused on the second-order approach to estimate
covariance terms for IDN with peer loss function [19] and defined a new loss
function to change the problem to CCN [40]. Xia eliminated the need for anchor
points in estimating the noise transition matrix [33]. Han described a two-stage
algorithm where the trained network is used to select multiple class prototypes
to represent the characteristics of the data better and correct the noisy labels
[11]. Lee focused on reducing human supervision by introducing a method that
required a small clean training set to extract the information about label noise
[16]. Li divides the training data into labeled clean and unlabeled noisy sam-
ples to utilize semi-supervised learning techniques by training two networks and
correcting more labels over each iteration [17]. Other methods such as PEN-
CIL [36], ILFC [5], CORES2 [8], Meta-Weight-Net [24], estimation of transition
matrix [35], and JoCoR [31] are also noteworthy.

3 Proposed Method

In this section, we present the details of our proposed method. The proposed
method alternates between training the network to find the best performance
on the clean validation set and correcting the noisy labels based on confidence
scores from the top-performing network. Before the proposed algorithm starts
the process, we prepare a deep neural network by training it for a few epochs with
a high learning rate, which allows the network to reach a reasonable confidence
level without overfitting to noise [37].

3.1 Preliminaries

Let X be the feature space, L be the label space, (x, y), (x, ỹ) ∈ X × L be a
clean and a noisy sample respectively, D = {(xi, yi)}ni=1 be a dataset, f t(x) =
(C1, . . . , Ck) be a classifier at the t-th iteration of the algorithm, where Ci is the
confidence score of the network for the i-th class (output of softmax layer in this
paper), and k is the total number of classes. Finally, let St be the performance
of the classifier over clean validation set at t-th iteration of the algorithm.

3.2 Iterative Label Correction Method

The overall algorithm is summarized in Algorithm1. In practice, we use an aver-
age of confidence scores from several top-performing networks. Since there is no
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Algorithm 1: Enhanced Data-Recalibration

Require: Initial training set D̃0
train =

{(
xi, ỹ

0
i

)}n

i=1
, Initial classifier f0,

threshold value θ, Number of epochs T , Validation set Dvalid = {(xi, yi)}mi=1

1: for t ∈ 1, . . . , T do
2: Train f t−1 on D̃t−1

train to get f t and get the performance score St

3: Compare St to previous scores {Si}t−1
i=1 to find best performing classifier fB

4: for (x, ỹ) ∈ D̃t−1
train do

5: Get the confidence scores (C1, . . . , Ck) of f
B on x

6: Find the best confidence score CM and the noisy confidence score CN

7: Calculate Gap = |log(CM )− log(CN )|
8: if Gap ≥ θ then
9: Set new label ỹt = M
10: else
11: Keep old label ỹt = ỹt−1

12: end if
13: end for
14: if ∀i ∈ [1, . . . , n], ỹt

n = ỹt−1
n then

15: Decrease θ by a small amount
16: end if
17: end for

return Best trained network fB

guarantee of improving the network on every iteration, there might be a ran-
dom instance where the trained network arbitrarily achieves a high performance
score. Averaging multiple confidence scores mitigates the effect of these random
encounters as they do not introduce a bias towards any class. Moreover, the
top-performing networks are selected from a range of recently trained networks
to ensure that the network is not stuck in a loop. In the following subsections,
we will describe what happens in the t-th iteration of the algorithm:

3.3 Stage One

In this stage, the algorithm starts training the network for one epoch with the
labels acquired from the previous iteration. In other terms, the network from
the previous iteration f t−1 is trained on the training set with labels generated
in the previous iteration D̃t−1

train =
{(

xi, ỹ
t−1
i

)}n

i=1
to obtain the new network f t.

Then, the performance of the network is evaluated to obtain the top-performing
network for the next stage. It is done by evaluating the new network f t on the
clean validation set Dvalid = {(xi, yi)}mi=1 to get its performance score St. Then,
this performance score St is compared to all previous scores {Si}t−1

i=1 to find the
best-performing network

{
fB | ∀i ≤ t : SB ≥ Si

}
.

3.4 Stage Two

In this stage, the algorithm starts collecting the confidence scores of the cho-
sen network on the training set. It is done by predicting the confidence scores
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(C1, . . . , Ck) of the best-performing network fB for each sample in training set

from the previous iteration (x, ỹ) ∈ D̃t−1
train. Then, the confidence scores are eval-

uated to decide the labels for the next iteration. For each sample in the dataset
(x, ỹ) ∈ D̃t−1

train, the highest confidence score {CM | ∀i ≤ k : CM ≥ Ci} and
the confidence score for the noisy label CN=ỹ are considered. If the difference of
logarithms between them is greater than a threshold |log(CM )− log(CN )| ≥ θ,
then the sample is selected for correction. The intuition behind the process is
that a noticeable gap between the prediction of the best-performing network
and the current label suggests the label is noisy. After that, the labels for the
next iteration are generated. It is done by swapping the label of the selected
samples to the prediction of the best-performing network ỹtsel = M while keep-
ing the labels of other samples the same as before ỹtrest = ỹt−1. Finally, the
threshold value is evaluated and reduced if the algorithm cannot select samples
anymore. By initializing a high threshold value and lowering it in small steps, the
best-performing network gains more trust from the algorithm gradually, which
prevents confirmation bias to some degree.

4 Experiments and Evaluation

4.1 Synthetic Datasets

For proof of concept, the public datasets CIFAR-10 and CIFAR-100 [14] are cho-
sen for synthetic experiments. Both datasets contain 50,000 training and 10,000
testing samples over ten categories. In the case of CIFAR-100, each category is
further divided into ten subclasses. As argued by the previous works [5,7,38], a
realistic noise does not uniformly affect all data space points. The most common
solution among previous works to generate reliable IDN is to find challenging
samples and then flip their label from the most confident category to the second
most confident category. A challenging sample is typically located at the edges of
the decision boundary and results in a low network confidence score. Such sam-
ples can be found by training an oracle network and selecting the low confidence
samples [5] or averaging the network’s confidence over the training period and
selecting the confusing samples [7]. To generate reliable and comparable IDN,
we follow the definition for the PMD noise family [38].

Let ℵC1,C2
(x) = P [ỹ = C2 | y = C1, x] be the probability of corrupting the

label of a sample from the most confident class C1 to the second-most confident
class C2, and f∗(x) be an oracle classifier trained on clean samples. The three
types of IDN used in our experiments are defined as in Eq. 1.
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For the sake of completion, we also include the most common CCN noise
types in our experiments: uniform and asymmetrical [22]. Let C1,C2

=
P [ỹ = C2 | y = C1] be the probability of corrupting the label of a sample from
class C1 to class C2, R be the noise rate and k be the total number of classes.
The two types of CCN used in our experiments are defined as in Eq. 2.

Uniform
C1,C2

=

{
R

k−1 C1 = C2

1−R C1 = C2

Asymmetrical
C1,C2

=

{
R C1 = C2

1−R C1 = C2

(2)

The ResNet-34 [12] is used for synthetic experiments. All models are trained
from scratch for 180 epochs with a batch size of 128 images. Stochastic gradient
descent is used as the optimizer with a momentum value equal to 9 × 10−1

and a weight decay rate of 5× 10−4. The learning rate is initialized as 1× 10−2

and gets divided by 2 after 40 and 80 epochs. Standard data augmentations
are applied: random horizontal flip, 32× 32 random crop after padding 4 pixels,
and standard normalizing with mean= (0.4914, 0.4822, 0.4465), std= (0.2023,
0.1994, 0.2010). In each experiment, 10% of the clean training data is reserved
as the validation set. Each experiment is repeated 5 times to report the mean
and standard deviation for final accuracy. The initial value for θ in Algorithm1
is set to 7×10-1 with a decrement step of 1 × 10−1. The algorithm averages 5
top-performing networks from the last 30 epochs on each iteration.

Table 1. Final accuracy on the CIFAR datasets for different IDN patterns and rates.

Dataset Noise info SL [30] LRT [39] PLC [38] Ours

CIFAR-10 ℵI
35% 79.76 × 0.7 80.98 × 0.8 82.80 × 0.3 83.60 × 0.3

ℵI
70% 36.29 × 0.7 41.52 × 4.5 42.74 × 2.1 46.47 × 1.1

ℵII
35% 77.92 × 0.9 80.74 × 0.3 81.54 × 0.5 83.41 × 0.3

ℵII
70% 41.11 × 1.9 44.67 × 3.9 46.04 × 2.2 46.24 × 0.9

ℵIII
35% 78.81 × 0.3 81.08 × 0.4 81.50 × 0.5 83.16 × 0.3

ℵIII
70% 38.49 × 1.5 44.47 × 1.2 45.05 × 1.1 46.33 ×1.1

CIFAR-100 ℵI
35% 55.20 × 0.3 56.74 × 0.3 60.01 × 0.4 63.85 ×0.3

ℵI
70% 40.02 × 0.9 45.29 × 0.4 45.92 × 0.6 46.38 × 0.3

ℵII
35% 56.10 × 0.7 57.25 × 0.7 63.68 × 0.3 63.91 × 0.3

ℵII
70% 38.45 × 0.6 43.71 × 0.5 45.03 × 0.5 46.63 × 0.2

ℵIII
35% 56.04 × 0.7 56.57 × 0.3 63.68 × 0.3 63.92 ×0.4

ℵIII
70% 39.94 × 0.8 44.41 × 0.2 44.45 × 0.6 46.22 ×0.2

Table 1 holds the results of testing the proposed method on synthetic data
affected by three different IDN patterns with 35% and 70% noise rates. The
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(C1, . . . , Ck) of the best-performing network fB for each sample in training set
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Table 1 holds the results of testing the proposed method on synthetic data
affected by three different IDN patterns with 35% and 70% noise rates. The
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performance of baseline methods is obtained from [38]. As shown in this table,
our method outperforms the alternatives in all cases. Judging by the numbers,
some alternative approaches have a high standard deviation rate, indicating
possible instability of that method.

Table 2. Final accuracy on the CIFAR datasets for different combinations of noise.

Dataset Noise info SL [30] LRT [39] PLC [38] Ours

CIFAR-10 ℵI
35%

+ �Uniform
30%

77.79 × 0.5 75.97 × 0.3 79.04 × 0.5 80.94 × 0.2

ℵI
35%

+ �Asymmetrical
30%

77.14 × 0.7 76.96 × 0.5 78.31 × 0.4 79.93 × 0.5

ℵII
35%

+ �Uniform
30%

75.08 × 0.5 75.94 × 0.6 80.08 × 0.4 81.07 × 0.2

ℵII
35%

+ �Asymmetrical
30%

75.43 × 0.4 77.03 × 0.6 77.63 × 0.3 79.90 × 0.5

ℵIII
35%

+ �Uniform
30%

76.22 × 0.1 75.66 × 0.6 80.06 × 0.5 80.54 × 0.3

ℵIII
35%

+ �Asymmetrical
30%

76.09 × 0.1 77.19 × 0.7 77.54 × 0.7 79.54 × 0.5

CIFAR-100 ℵI
35%

+ �Uniform
30%

51.34 × 0.6 45.66 × 1.6 60.09 × 0.2 61.46 × 0.4

ℵI
35%

+ �Asymmetrical
30%

50.18 × 1.0 52.04 × 0.2 56.40 × 0.3 59.94 × 0.4

ℵII
35%

+ �Uniform
30%

50.58 × 0.3 43.86 × 1.3 60.01 × 0.6 61.16 × 0.3

ℵII
35%

+ �Asymmetrical
30%

49.46 × 0.2 52.11 × 0.5 61.43 × 0.3 59.34 × 0.5

ℵIII
35%

+ �Uniform
30%

50.18 × 0.5 42.79 × 1.8 60.14 × 1.0 61.82 × 0.3

ℵIII
35%

+ �Asymmetrical
30%

48.15 × 0.9 50.31 × 0.4 54.56 × 1.1 59.76 × 0.5

Table 2 holds the results of testing the proposed method on synthetic data
simultaneously affected by IDN and CCN patterns. The final noise rate is typi-
cally lower than the sum of two individual noise rates due to overlaps in selected
samples. As shown in this table, our method still outperforms the alternatives
in almost all cases.

4.2 Real-World Datasets

To evaluate the performance of the proposed method on real-world cases, three
commonly used datasets were chosen for testing:

ANIMAL-10N [26] – This dataset contains 50,000 training and 5,000 test-
ing samples over ten categories. According to the creators of the dataset, the
estimated noise rate is about 8%. Following the authors’ work, we chose VGG-
19 [25] with a batch normalization for this experiment. The model is trained
from scratch for 180 epochs with a batch size of 128 images. Stochastic gradient
descent is used as the optimizer with a weight decay rate of 1×10−3. The learn-
ing rate is initialized as 1× 10−1 and gets divided by 5 after 50 and 75 epochs.
Standard data augmentations are applied: random horizontal flip and standard
normalizing with mean= (0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225). 10%
of the training data is manually labeled with the help of [1] and reserved as the
validation set. The initial value for θ in Algorithm1 is set to 7× 10−1 with a
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decrement step of 1× 10−1. The algorithm averages 10 top-performing networks
from the last 30 epochs on each iteration. Table 3 holds the results of testing
the proposed method on the ANIMAL-10N dataset. The performance of base-
line methods is obtained from their respective papers. As seen in this table, the
proposed method outperforms the alternatives.

Table 3. Final accuracy on the Animal-10N and Food-101N datasets.

Dataset Method Accuracy Dataset Method Accuracy

Animal-10N SELFIE [26] 79.40 Food-101N DeepSelf [11] 79.40

Co-learning [28] 82.95 PLC [38] 83.40

PLC [38] 83.40 Ours 86.34

Ours 84.47 Co-learning [28] 87.57

Food-101N [16] – This dataset contains 310,000 training samples and utilizes
the 25,000 testing samples provided by the Food-101 dataset [6] over 101 cate-
gories. According to the creators of the dataset, the estimated noise rate is about
10%. Following the authors’ work, we chose ResNet-50 with pre-trained weights
on ImageNet [9] for this experiment. The model is fine-tuned for 30 epochs with a
batch size of 32 images. Stochastic gradient descent is used as the optimizer with
a weight decay rate of 1×10−3. The learning rate is initialized as 5×10-3 and gets
divided by 10 after 10 and 20 epochs. Standard data augmentations are applied:
random horizontal flip, 224× 224 random crop, and standard normalizing with
mean= (0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225). 14% of the labels are
verified by the creators of the dataset to be used as the validation set. The initial
value for θ in Algorithm 1 is set to 9× 10−1 with a decrement step of 1× 10−1.
The algorithm averages 4 top-performing networks from the last 8 epochs on
each iteration. Table 3 holds the results of testing the proposed method on the
Food-101N dataset. The performance of baseline methods is obtained from their
respective papers. This table shows that the proposed method outperforms most
of the alternatives but gets beaten by Co-Learning [28].

Clothing1M [16,34] – This dataset contains 1,000,000 samples over 14 cate-
gories, out of which 50,000 training, 14,000 validation, and 10,000 testing sam-
ples are verified by the creators of the dataset. Following the previous works
[16,17,32], the clean training data is discarded. We chose ResNet-50 with pre-
trained weights on ImageNet for this experiment. The model is fine-tuned for 20
epochs with a batch size of 32 images. Stochastic gradient descent is used as the
optimizer with a momentum value equal to 9× 10−1 and a weight decay rate of
5×10−4. The learning rate is initialized as 1×10−3 and gets divided by 10 after
5 and 10 epochs. Standard data augmentations are applied: random horizon-
tal flip, 224× 224 random crop, and standard normalizing with mean= (0.485,
0.456, 0.406), std= (0.229, 0.224, 0.225). The verified validation data is used



628 S. B. Germi and E. Rahtu

performance of baseline methods is obtained from [38]. As shown in this table,
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possible instability of that method.
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Table 2 holds the results of testing the proposed method on synthetic data
simultaneously affected by IDN and CCN patterns. The final noise rate is typi-
cally lower than the sum of two individual noise rates due to overlaps in selected
samples. As shown in this table, our method still outperforms the alternatives
in almost all cases.

4.2 Real-World Datasets

To evaluate the performance of the proposed method on real-world cases, three
commonly used datasets were chosen for testing:

ANIMAL-10N [26] – This dataset contains 50,000 training and 5,000 test-
ing samples over ten categories. According to the creators of the dataset, the
estimated noise rate is about 8%. Following the authors’ work, we chose VGG-
19 [25] with a batch normalization for this experiment. The model is trained
from scratch for 180 epochs with a batch size of 128 images. Stochastic gradient
descent is used as the optimizer with a weight decay rate of 1×10−3. The learn-
ing rate is initialized as 1× 10−1 and gets divided by 5 after 50 and 75 epochs.
Standard data augmentations are applied: random horizontal flip and standard
normalizing with mean= (0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225). 10%
of the training data is manually labeled with the help of [1] and reserved as the
validation set. The initial value for θ in Algorithm1 is set to 7× 10−1 with a
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decrement step of 1× 10−1. The algorithm averages 10 top-performing networks
from the last 30 epochs on each iteration. Table 3 holds the results of testing
the proposed method on the ANIMAL-10N dataset. The performance of base-
line methods is obtained from their respective papers. As seen in this table, the
proposed method outperforms the alternatives.

Table 3. Final accuracy on the Animal-10N and Food-101N datasets.

Dataset Method Accuracy Dataset Method Accuracy

Animal-10N SELFIE [26] 79.40 Food-101N DeepSelf [11] 79.40

Co-learning [28] 82.95 PLC [38] 83.40

PLC [38] 83.40 Ours 86.34
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Food-101N [16] – This dataset contains 310,000 training samples and utilizes
the 25,000 testing samples provided by the Food-101 dataset [6] over 101 cate-
gories. According to the creators of the dataset, the estimated noise rate is about
10%. Following the authors’ work, we chose ResNet-50 with pre-trained weights
on ImageNet [9] for this experiment. The model is fine-tuned for 30 epochs with a
batch size of 32 images. Stochastic gradient descent is used as the optimizer with
a weight decay rate of 1×10−3. The learning rate is initialized as 5×10-3 and gets
divided by 10 after 10 and 20 epochs. Standard data augmentations are applied:
random horizontal flip, 224× 224 random crop, and standard normalizing with
mean= (0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225). 14% of the labels are
verified by the creators of the dataset to be used as the validation set. The initial
value for θ in Algorithm 1 is set to 9× 10−1 with a decrement step of 1× 10−1.
The algorithm averages 4 top-performing networks from the last 8 epochs on
each iteration. Table 3 holds the results of testing the proposed method on the
Food-101N dataset. The performance of baseline methods is obtained from their
respective papers. This table shows that the proposed method outperforms most
of the alternatives but gets beaten by Co-Learning [28].

Clothing1M [16,34] – This dataset contains 1,000,000 samples over 14 cate-
gories, out of which 50,000 training, 14,000 validation, and 10,000 testing sam-
ples are verified by the creators of the dataset. Following the previous works
[16,17,32], the clean training data is discarded. We chose ResNet-50 with pre-
trained weights on ImageNet for this experiment. The model is fine-tuned for 20
epochs with a batch size of 32 images. Stochastic gradient descent is used as the
optimizer with a momentum value equal to 9× 10−1 and a weight decay rate of
5×10−4. The learning rate is initialized as 1×10−3 and gets divided by 10 after
5 and 10 epochs. Standard data augmentations are applied: random horizon-
tal flip, 224× 224 random crop, and standard normalizing with mean= (0.485,
0.456, 0.406), std= (0.229, 0.224, 0.225). The verified validation data is used
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as the validation set. The initial value for θ in Algorithm1 is set to 3 × 10−1

with a decrement step of 1 × 10−1. The algorithm averages 4 top-performing
networks from the last 8 epochs on each iteration. Table 4 holds the results of
testing the proposed method on the Clothing1M dataset. The performance of
baseline methods is obtained from their respective papers. As seen in this table,
the proposed method outperforms the alternatives.

Table 4. Final accuracy on the Clothing1M dataset.

Method Accuracy

CAL [40] 74.17

Reweight [33] 74.18

DeepSelf [11] 74.45

CleanNet [16] 74.69

DivideMix [17] 74.76

Ours 75.11

5 Conclusion

This paper proposes a practical iterative label correction method that utilizes
clean validation sets to achieve better performance when dealing with instance-
dependent noise. The effectiveness of the proposed method is shown with empir-
ical experiments on both synthetic and real-world benchmark datasets. The
proposed method outperformed the current state-of-the-art methods in these
experiments. The findings suggest that the proposed method’s intuition might
be correct, and utilizing a clean validation set in iterative label correction meth-
ods is helpful.
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Abstract: This paper proposes an iterative intermediate domain generation method using low- and high-pass filters.
Domain shift is one of the prime reasons for the poor generalization of trained models in most real-life appli-
cations. In a typical case, the target domain differs from the source domain due to either controllable factors
(e.g., different sensors) or uncontrollable factors (e.g., weather conditions). Domain adaptation methods bridge
this gap by training a domain-invariant network. However, a significant gap between the source and the target
domains would still result in bad performance. Gradual domain adaptation methods utilize intermediate do-
mains that gradually shift from the source to the target domain to counter the effect of the significant gap. Still,
the assumption of having sufficiently large intermediate domains at hand for any given task is hard to fulfill in
real-life scenarios. The proposed method utilizes low- and high-pass filters to create two distinct representa-
tions of a single sample. After that, the filtered samples from two domains are mixed with a dynamic ratio to
create intermediate domains, which are used to train two separate models in parallel. The final output is ob-
tained by averaging out both models. The method’s effectiveness is demonstrated with extensive experiments
on public benchmark datasets: Office-31, Office-Home, and VisDa-2017. The empirical evaluation suggests
that the proposed method performs better than the current state-of-the-art works.

1 INTRODUCTION

With the increasing popularity of deep learning algo-
rithms in the heavy machine industry and the inclu-
sion of artificial intelligence in new regulations (e.g.,
EU AI Act) and safety standards (e.g., ISO/IEC JTC
1/SC 42 Committee), the practical issues of utilizing
such algorithms in safety-critical applications have
become more apparent. One of the challenges for
any practical application of a deep learning algorithm
is collecting and labeling a large dataset for training
the algorithm while considering the safety criteria for
the application (Bakhshi Germi and Rahtu, 2022b).
A standard method to deal with this issue is utiliz-
ing transfer learning (Zhuang et al., 2021), where the
model is trained with a label-rich source dataset (e.g.,
synthesized or simulated data) and fine-tuned on a
much smaller target dataset (e.g., data collected from
the real world). However, a significant gap between
these two domains would result in poor performance.

Gradual domain adaptation (GDA) deals with the
gap problem by adding data from intermediate do-
mains that interpolate between the source and the tar-

a https://orcid.org/0000-0003-3048-220X
b https://orcid.org/0000-0001-8767-0864

get domains (Kumar et al., 2020). The intermedi-
ate domains are assumed to be available with suffi-
cient data for the training process. The accuracy of
GDAmethods is highly dependent on the distance be-
tween the source and the target domains. Moreover,
GDA methods are usually unsupervised and do not
require labels from intermediate or target domains.
While unsupervised methods attract more attention in
the research community, using a small labeled sub-
set from the target domain is more realistic in real-
world applications. Various annotation tools (Ad-
hikari and Huttunen, 2021) and denoising techniques
(Bakhshi Germi and Rahtu, 2022a) could be utilized
to help with gathering the required labeled subset.
Meanwhile, intermediate domains do not naturally
exist for most real-world applications. Thus, this pa-
per focuses on generating intermediate domains based
on a large labeled source dataset and a small labeled
target dataset.

This paper proposes IFMix, a domain adaptation
algorithm that utilizes a filtered-image-based mixup
technique to create intermediate domains iteratively.
A new domain is created by merging the low-pass or
high-pass filtered images from both domains with a
dynamic ratio. The images are chosen from the same
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Figure 1: The overall structure of the proposed method. Two samples of the same category are chosen from two domains to
be mixed. The mixup unit utilizes low-pass and high-pass filters to mix images with different ratios. The resulting images
are used as training samples for two separate models. Each model is trained with a categorical cross-entropy loss. A co-
convergence term is utilized to ensure the convergence of both models towards the same point.

category in both domains to keep the labels intact. Af-
ter that, the proposed method utilizes the intermedi-
ate domains to train two separate models in parallel.
Both models’ average output is considered the pro-
posed method’s final output. The intuition behind the
proposed method is that a supervised method that re-
lies on a small amount of data from the target domain
would be practical and realistic, the iterative domain
creation would compensate for the lack of data in real-
world applications, and the two models develop dif-
ferent perspectives based on their respective filters.

The main difference between the proposed
method and previous works is utilizing a small la-
beled target dataset to create intermediate domains,
resulting in accurate labels instead of pseudo-labels.
Also, using the low- and high-pass filters would re-
sult in two distinct representations of the same sam-
ple, creating substantially different intermediate do-
mains for training two different models. Moreover,
the iterative and gradual nature of the algorithm en-
sures that the model is not overwhelmed by new in-
formation while the gap between the two domains is
breached. The effectiveness of the proposed method
is shown by comparing the performance with previ-
ous state-of-the-art methods in standard public bench-
marks such as Office-31 (Saenko et al., 2010), Office-
Home (Venkateswara et al., 2017), and VisDa-2017
(Peng et al., 2017). The main contributions of this
paper are summarized as follows:

• Proposing an iterative intermediate domain cre-
ation technique based on filtered images to bridge
the gap between the source and the target do-
mains.

• Providing a practical domain adaptation algorithm
based on the proposed intermediate domains.

• Providing empirical evaluation with extensive ex-
periments on three standard benchmarks to show
the effectiveness of the proposed method.

The rest of the paper is structured as follows. Sec-
tion 2 covers the related works. Next, Section 3 ex-
plains the proposed method in detail. After that, Sec-
tion 4 deals with the experiments and the empirical
evaluation to show the effectiveness of the proposed
method. Finally, Section 5 concludes the work.

2 RELATEDWORKS

2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) methods uti-
lize domain-invariant representation to generalize a
model from a rich-labeled source domain to an un-
labeled target domain (Wilson and Cook, 2020). The
process can be done by either optimizing distribution
discrepancy metrics (e.g., maximum mean discrep-
ancy) (Li et al., 2021a; Peng et al., 2019) or utilizing
adversarial training (Li et al., 2021b; Liu et al., 2019;
Wang et al., 2019). On top of that, utilizing pseudo-
labeling ideas from semi-supervised learning meth-
ods improves the performance of UDA algorithms
(Chen et al., 2020; Liang et al., 2020; Liang et al.,
2021; Liu et al., 2021; Zhang et al., 2021b). More-
over, the natural advantage of transformers in ex-
tracting transferable representations was studied fur-
ther for application in domain adaptation (Ma et al.,
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Source Domain Target Domain 
Figure 2: The creation of multiple intermediate domains by the proposed method. The shown samples are not filtered to
understand better how the method works. Samples progress from the source domain (left) to the target domain (right) with
each iteration based on the value of H.

2021; Xu et al., 2021; Yang et al., 2021a). Unsu-
pervised methods have been the research focus for a
while in academic applications. However, utilizing
a small labeled dataset could result in a performance
surge without significantly increasing the overall cost
of gathering data.

2.2 Gradual Domain Adaptation

Gradual domain adaptation methods utilize interme-
diate domains to improve the performance of basic
domain adaptation techniques (Choi et al., 2020; Cui
et al., 2020; Dai et al., 2021; Hsu et al., 2020). GDA
methods utilize generative models (e.g., generative
adversarial networks) to create an intermediate do-
main by mixing the source and the target data at an
arbitrary ratio (Sagawa and Hino, 2022). By doing so,
the model can learn common features shared between
two domains. In the original work, Kumar assumed
that the intermediate domains gradually shift from
the source to the target domain, and their sequence
is known prior to learning (Kumar et al., 2020). How-
ever, the method is effective even if the sequence of
these domains is unknown (Chen and Chao, 2021;
Zhang et al., 2021a) or when no intermediate domain
is available (Abnar et al., 2021; Na et al., 2021b). The
main difference between current state-of-the-art GDA
algorithms is their technique for creating intermediate
domains.

2.3 Mixup Technique

Mixup techniques are a family of data augmentation
methods based on mixing two or more data points.
Mixup and its variants have proven helpful in super-
vised and semi-supervised learning (Berthelot et al.,
2019; Yun et al., 2019; Zhang et al., 2017). Some
recent domain adaptation methods tried utilizing this
technique to create a continuous latent space across
domains (Wu et al., 2020; Xu et al., 2020), obtain
pseudo labels for intermediate domains (Na et al.,
2021b; Yan et al., 2020; Yang et al., 2021b), or gener-
ate more positive/negative samples (Kalantidis et al.,
2020; Zhang et al., 2022; Zhu et al., 2021).

This paper utilizes the intermediate domains from
GDA, a mixup technique based on low- and high-

pass filters, and a small labeled subset from the tar-
get domain to achieve high performance in real-world
scenarios. The assumptions in this paper are tai-
lored around practical use cases of domain adapta-
tion where a large labeled source domain and a small
labeled target domain are available. While similar
works exist in this field, the proposed method outper-
forms the existing state-of-the-art, as shown in Sec-
tion 4.

3 PROPOSED METHOD

This section presents the details of the proposed
method, as shown in Figure 1. Let Ds = {(xsi ,ysi )}ni=1
be the labeled dataset from the source domain, Dt =
{(xtj)}mj=1 be the unlabeled dataset from the target
domain, and Dt

l = {(xtk,ytk)}
p
k=1 be the labeled sub-

set from the target domain. The task is transferring
knowledge fromDs toDt when there is a large distri-
bution gap between them.

3.1 Iterative Filtered Mixup

The proposed method selects random samples with
the same category label fromDs andDt

l , applies low-
and high-pass filters on them, and mixes them to cre-
ate new samples as follows:

xloi = (1−H)×LoPass(xsi )+H×LoPass(xtj)

xhii = (1−H)×HiPass(xsi )+H×HiPass(xtj)
(1)

Where (0 ≤ H ≤ 1) denotes a dynamic ratio for the
mixing step, LoPass and HiPass denote the low-pass
and high-pass filter functions, respectively. These fil-
ters could be implemented using the Gaussian filter
function in the Multidimensional Image Processing
package (scipy.ndimage). Moreover, the labels yloi
and yhii for generated samples would be the same as
the original label yi due to choosing samples from the
same category. Finally, the mixing ratio H is updated
based on the number of epochs as follows:

Hi+1 = Hi+α× t (2)
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Figure 1: The overall structure of the proposed method. Two samples of the same category are chosen from two domains to
be mixed. The mixup unit utilizes low-pass and high-pass filters to mix images with different ratios. The resulting images
are used as training samples for two separate models. Each model is trained with a categorical cross-entropy loss. A co-
convergence term is utilized to ensure the convergence of both models towards the same point.

category in both domains to keep the labels intact. Af-
ter that, the proposed method utilizes the intermedi-
ate domains to train two separate models in parallel.
Both models’ average output is considered the pro-
posed method’s final output. The intuition behind the
proposed method is that a supervised method that re-
lies on a small amount of data from the target domain
would be practical and realistic, the iterative domain
creation would compensate for the lack of data in real-
world applications, and the two models develop dif-
ferent perspectives based on their respective filters.

The main difference between the proposed
method and previous works is utilizing a small la-
beled target dataset to create intermediate domains,
resulting in accurate labels instead of pseudo-labels.
Also, using the low- and high-pass filters would re-
sult in two distinct representations of the same sam-
ple, creating substantially different intermediate do-
mains for training two different models. Moreover,
the iterative and gradual nature of the algorithm en-
sures that the model is not overwhelmed by new in-
formation while the gap between the two domains is
breached. The effectiveness of the proposed method
is shown by comparing the performance with previ-
ous state-of-the-art methods in standard public bench-
marks such as Office-31 (Saenko et al., 2010), Office-
Home (Venkateswara et al., 2017), and VisDa-2017
(Peng et al., 2017). The main contributions of this
paper are summarized as follows:

• Proposing an iterative intermediate domain cre-
ation technique based on filtered images to bridge
the gap between the source and the target do-
mains.

• Providing a practical domain adaptation algorithm
based on the proposed intermediate domains.

• Providing empirical evaluation with extensive ex-
periments on three standard benchmarks to show
the effectiveness of the proposed method.

The rest of the paper is structured as follows. Sec-
tion 2 covers the related works. Next, Section 3 ex-
plains the proposed method in detail. After that, Sec-
tion 4 deals with the experiments and the empirical
evaluation to show the effectiveness of the proposed
method. Finally, Section 5 concludes the work.

2 RELATEDWORKS

2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) methods uti-
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model from a rich-labeled source domain to an un-
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process can be done by either optimizing distribution
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ods improves the performance of UDA algorithms
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Where α is a positive constant and t is the current
number of epochs. Two labeled datasets,D lo

H andDhi
H ,

are created with each iteration. These intermediate
datasets fill the gap between the source and the target
domains, as shown in Figure 2. Note that the figure
shows unfiltered samples for a more straightforward
interpretation of how the algorithm works.

3.2 Training and Loss Functions

In the next step, two models are trained on D lo
H and

Dhi
H using the categorical cross-entropy loss function:

L lo
cce =

1
B

B

∑
i
yloi × log

(
p
(
y|xloi

))

Lhi
cce =

1
B

B

∑
i
yhii × log

(
q
(
y|xhii

)) (3)

Where p(y|xloi ) and q(y|xhii ) denote the predicted class
for each network on their respective input, and B is the
batch size. The models are trained separately for a
few epochs (warm-up period) to ensure they gain dif-
ferent perspectives without the influence of the other
model.

3.3 Output and Co-Convergence Term

With each model training to recognize different char-
acteristics of a given sample, their average output is
used to determine the final output of the algorithm.
Since the models should converge towards the same
goal, a co-convergence term is added to the overall
loss after the warm-up period. This term ensures that
each model can influence the other model slightly to
reach a similar conclusion on their output.

Lcct =
1
B

B

∑
i
yi× log

(
p
(
y|xloi

)
+q

(
y|xhii

)

2

)
(4)

3.4 Overall Process

The overall process of the IFMix algorithm is sum-
marized in Algorithm 1. The algorithm starts with
creating the intermediate domains in each iteration.
Then two networks are trained with the new interme-
diate domains using the defined loss functions. The
co-convergence term is added after the warm-up pe-
riod to allow the models to develop unique character-
istics without the influence of the other model.
In experiments, the mixup ratio H is updated every
few epochs to prevent potential divergence of models.

Algorithm 1: IFMix Algorithm.
Require: Source dataset Ds, Labeled Target

subset Dt
l , Number of epochs T , Batch size

B, Warm-up periodW , Mixup ratio H,
Mixup increment rate α

1: for t ∈ 1, . . . ,T do
2: Select samples from same category in Ds

and Dt
l

3: Create intermediate domains Dhi
H and D lo

H
using Eq. 1

4: for b ∈ 1, . . . ,B do
5: Update loss functions Llocce and L

hi
cce

using Eq. 3
6: if i≥W then
7: Update co-convergence term Lcct

using Eq. 4
8: end if
9: end for
10: Update the mixup ratio

using Eq. 2
11: end for

4 EXPERIMENTS &
EVALUATION

To evaluate the proposed method, three different do-
main adaptation benchmarks are chosen so that the
performance of the proposed method can be com-
pared with state-of-the-art methods. In each exper-
iment, 5% of samples from the target domain are
selected as labeled target subsets for the proposed
method, and the remaining 95% of samples are left
as test data.

4.1 Office-31

Office-31 (Saenko et al., 2010), a domain adaptation
benchmark, provides samples for 31 categories from
three domains. These domains are denoted as A for
images taken from Amazon.com, D for images taken
with a DSLR camera, andW for images taken with a
webcam. The dataset has around 4000 samples, mak-
ing it a perfect benchmark for proof of concept.

4.2 Office-Home

Office-Home (Venkateswara et al., 2017), a domain
adaptation benchmark, provides samples for 65 cate-
gories from four domains. These domains are denoted
as A for arts and paintings,C for clipart images, P for
product images without a background, and R for real-
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Table 1: Accuracy (%) on the Office-31 dataset. The best accuracy is indicated in bold, and the second best is underlined.
Method A→ D A→W D→ A D→W W → A W → D Average

GSDA (Hu et al., 2020) 94.8 95.7 73.5 99.1 74.9 100 89.7
SRDC (Tang et al., 2020) 95.8 95.7 76.7 99.2 77.1 100 90.8
RSDA (Gu et al., 2020) 95.8 96.1 77.4 99.3 78.9 100 91.1
FixBi (Na et al., 2021b) 95 96.1 78.7 99.3 79.4 100 91.4
CoVi (Na et al., 2021a) 98 97.6 77.5 99.3 78.4 100 91.8

IFMix (Ours) 97.6 97.5 77.9 99.3 79.7 100 92

Table 2: Accuracy (%) on the Office-Home dataset. The best accuracy is indicated in bold, and the second best is underlined.
Method A→C A→ P A→ R C→ A C→ P C→ R P→ A P→C P→ R R→ A R→C R→ P Average

MetaAlign (Wei et al., 2021) 59.3 76 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
FixBi (Na et al., 2021b) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CoVi (Na et al., 2021a) 58.5 78.1 80 68.1 80 77 66.4 60.2 82.1 76.6 63.6 86.5 73.1

CDTrans (Xu et al., 2021) 60.6 79.5 82.4 75.6 81 82.3 72.5 56.7 84.4 77 59.1 85.5 74.7
WinTR (Ma et al., 2021) 65.3 84.1 85 76.8 84.5 84.4 73.4 60 85.7 77.2 63.1 86.8 77.2

IFMix (Ours) 66.1 84 86.6 77.4 84.1 86.1 75.2 61.1 86.5 78.4 62.8 87.4 78

Table 3: Accuracy (%) on the VisDa-2017 dataset. The best accuracy is indicated in bold, and the second best is underlined.
Method Plane Bike Bus Car Horse Knife Motor Human Plant Skate Train Truck Average

CAN (Kang et al., 2019) 97 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi (Na et al., 2021b) 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2
CDTrans (Xu et al., 2021) 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
CoVi (Na et al., 2021a) 96.8 85.6 88.9 88.6 97.8 93.4 91.9 87.6 96 93.8 93.6 48.1 88.5
WinTR (Ma et al., 2021) 98.7 91.2 93 91.9 98.1 96.1 94 72.7 97 95.5 95.3 57.9 90.1

IFMix (Ours) 98.2 91.7 92.9 92.2 98.5 96.5 93.7 88 98 95.5 94.8 61.8 91.8

world images taken with a camera. The dataset has
around 15000 samples, making it a more challenging
task than Office-31.

4.3 VisDa-2017

VisDa-2017 (Peng et al., 2017), a domain adaptation
benchmark, provides samples for 12 categories from
two domains, simulated and real-world. The dataset
has around 280000 samples, making it a complex and
realistic benchmark for domain adaptation problems.

4.4 Hyper-Parameters

In the experiments with Office datasets, ResNet-50
with stochastic gradient descent (SGD) is used as the
base model. The initial learning rate is 0.001, the mo-
mentum is 0.9, the weight decay is 0.005, the initial
mixup ratio is 0.05 with a 0.05 increment every 10
epochs, and the total number of epochs is 200. In
the experiments with VisDA dataset, the base model
is swapped to ResNet-101. The initial learning rate
is 0.0001, the initial mixup ratio is 0.1 with a 0.1
increment every 5 epochs, and the total number of
epochs is 50. In all experiments, the models utilize
pre-trained weights on ImageNet (Russakovsky et al.,
2015).

4.5 Results and Comparison

Table 1 holds the results for the Office-31 dataset.
Six different tasks are experimented upon, and the
results are compared with state-of-the-art methods.

The accuracy of state-of-the-art methods is obtained
from their respective published papers. The results
from each task indicate that the proposed method is
competitive. The average accuracy of the proposed
method is 92%, which is a slight improvement over
the previous best method, CoVi (Na et al., 2021a).
As stated before, the Office-31 dataset was utilized
to prove that the proposed method works as intended,
even if the improvement is slight and negligible.

Table 2 holds the results for the Office-Home
dataset. Twelve different tasks are experimented
upon, and the results are compared with state-of-the-
art methods. Similar to previous experiments, the ac-
curacy of state-of-the-art methods is obtained from
their respective published papers. The results from
each task indicate that the proposed method is still
competitive. The average accuracy of the proposed
method is 78%, which is an improvement over the
previous best method, WinTR (Ma et al., 2021). Note
that the proposed method outperformed CoVi (Na
et al., 2021a), the previous best method on the Office-
31 dataset, by 4.9% on average. This experiment of-
fers more insight into the value of utilizing the pro-
posed method. While the proposed method slightly
outperforms the alternatives in this case, it also of-
fers a more robust solution that works on different
datasets.

Table 3 holds the results for the VisDa-2017
dataset. The results are compared on category and
overall level. Similar to previous experiments, the ac-
curacy of state-of-the-art methods is obtained from
their respective published papers. The results from
each category indicate that the proposed method is
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Where α is a positive constant and t is the current
number of epochs. Two labeled datasets,D lo

H andDhi
H ,

are created with each iteration. These intermediate
datasets fill the gap between the source and the target
domains, as shown in Figure 2. Note that the figure
shows unfiltered samples for a more straightforward
interpretation of how the algorithm works.

3.2 Training and Loss Functions

In the next step, two models are trained on D lo
H and

Dhi
H using the categorical cross-entropy loss function:

L lo
cce =

1
B

B

∑
i
yloi × log

(
p
(
y|xloi

))

Lhi
cce =

1
B

B

∑
i
yhii × log

(
q
(
y|xhii

)) (3)

Where p(y|xloi ) and q(y|xhii ) denote the predicted class
for each network on their respective input, and B is the
batch size. The models are trained separately for a
few epochs (warm-up period) to ensure they gain dif-
ferent perspectives without the influence of the other
model.

3.3 Output and Co-Convergence Term

With each model training to recognize different char-
acteristics of a given sample, their average output is
used to determine the final output of the algorithm.
Since the models should converge towards the same
goal, a co-convergence term is added to the overall
loss after the warm-up period. This term ensures that
each model can influence the other model slightly to
reach a similar conclusion on their output.

Lcct =
1
B

B

∑
i
yi× log

(
p
(
y|xloi

)
+q

(
y|xhii

)

2

)
(4)

3.4 Overall Process

The overall process of the IFMix algorithm is sum-
marized in Algorithm 1. The algorithm starts with
creating the intermediate domains in each iteration.
Then two networks are trained with the new interme-
diate domains using the defined loss functions. The
co-convergence term is added after the warm-up pe-
riod to allow the models to develop unique character-
istics without the influence of the other model.
In experiments, the mixup ratio H is updated every
few epochs to prevent potential divergence of models.

Algorithm 1: IFMix Algorithm.
Require: Source dataset Ds, Labeled Target

subset Dt
l , Number of epochs T , Batch size

B, Warm-up periodW , Mixup ratio H,
Mixup increment rate α

1: for t ∈ 1, . . . ,T do
2: Select samples from same category in Ds

and Dt
l

3: Create intermediate domains Dhi
H and D lo

H
using Eq. 1

4: for b ∈ 1, . . . ,B do
5: Update loss functions Llocce and L

hi
cce

using Eq. 3
6: if i≥W then
7: Update co-convergence term Lcct

using Eq. 4
8: end if
9: end for
10: Update the mixup ratio

using Eq. 2
11: end for

4 EXPERIMENTS &
EVALUATION

To evaluate the proposed method, three different do-
main adaptation benchmarks are chosen so that the
performance of the proposed method can be com-
pared with state-of-the-art methods. In each exper-
iment, 5% of samples from the target domain are
selected as labeled target subsets for the proposed
method, and the remaining 95% of samples are left
as test data.

4.1 Office-31

Office-31 (Saenko et al., 2010), a domain adaptation
benchmark, provides samples for 31 categories from
three domains. These domains are denoted as A for
images taken from Amazon.com, D for images taken
with a DSLR camera, andW for images taken with a
webcam. The dataset has around 4000 samples, mak-
ing it a perfect benchmark for proof of concept.

4.2 Office-Home

Office-Home (Venkateswara et al., 2017), a domain
adaptation benchmark, provides samples for 65 cate-
gories from four domains. These domains are denoted
as A for arts and paintings,C for clipart images, P for
product images without a background, and R for real-
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Table 1: Accuracy (%) on the Office-31 dataset. The best accuracy is indicated in bold, and the second best is underlined.
Method A→ D A→W D→ A D→W W → A W → D Average

GSDA (Hu et al., 2020) 94.8 95.7 73.5 99.1 74.9 100 89.7
SRDC (Tang et al., 2020) 95.8 95.7 76.7 99.2 77.1 100 90.8
RSDA (Gu et al., 2020) 95.8 96.1 77.4 99.3 78.9 100 91.1
FixBi (Na et al., 2021b) 95 96.1 78.7 99.3 79.4 100 91.4
CoVi (Na et al., 2021a) 98 97.6 77.5 99.3 78.4 100 91.8

IFMix (Ours) 97.6 97.5 77.9 99.3 79.7 100 92

Table 2: Accuracy (%) on the Office-Home dataset. The best accuracy is indicated in bold, and the second best is underlined.
Method A→C A→ P A→ R C→ A C→ P C→ R P→ A P→C P→ R R→ A R→C R→ P Average

MetaAlign (Wei et al., 2021) 59.3 76 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
FixBi (Na et al., 2021b) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CoVi (Na et al., 2021a) 58.5 78.1 80 68.1 80 77 66.4 60.2 82.1 76.6 63.6 86.5 73.1

CDTrans (Xu et al., 2021) 60.6 79.5 82.4 75.6 81 82.3 72.5 56.7 84.4 77 59.1 85.5 74.7
WinTR (Ma et al., 2021) 65.3 84.1 85 76.8 84.5 84.4 73.4 60 85.7 77.2 63.1 86.8 77.2

IFMix (Ours) 66.1 84 86.6 77.4 84.1 86.1 75.2 61.1 86.5 78.4 62.8 87.4 78

Table 3: Accuracy (%) on the VisDa-2017 dataset. The best accuracy is indicated in bold, and the second best is underlined.
Method Plane Bike Bus Car Horse Knife Motor Human Plant Skate Train Truck Average

CAN (Kang et al., 2019) 97 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi (Na et al., 2021b) 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2
CDTrans (Xu et al., 2021) 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
CoVi (Na et al., 2021a) 96.8 85.6 88.9 88.6 97.8 93.4 91.9 87.6 96 93.8 93.6 48.1 88.5
WinTR (Ma et al., 2021) 98.7 91.2 93 91.9 98.1 96.1 94 72.7 97 95.5 95.3 57.9 90.1

IFMix (Ours) 98.2 91.7 92.9 92.2 98.5 96.5 93.7 88 98 95.5 94.8 61.8 91.8

world images taken with a camera. The dataset has
around 15000 samples, making it a more challenging
task than Office-31.

4.3 VisDa-2017

VisDa-2017 (Peng et al., 2017), a domain adaptation
benchmark, provides samples for 12 categories from
two domains, simulated and real-world. The dataset
has around 280000 samples, making it a complex and
realistic benchmark for domain adaptation problems.

4.4 Hyper-Parameters

In the experiments with Office datasets, ResNet-50
with stochastic gradient descent (SGD) is used as the
base model. The initial learning rate is 0.001, the mo-
mentum is 0.9, the weight decay is 0.005, the initial
mixup ratio is 0.05 with a 0.05 increment every 10
epochs, and the total number of epochs is 200. In
the experiments with VisDA dataset, the base model
is swapped to ResNet-101. The initial learning rate
is 0.0001, the initial mixup ratio is 0.1 with a 0.1
increment every 5 epochs, and the total number of
epochs is 50. In all experiments, the models utilize
pre-trained weights on ImageNet (Russakovsky et al.,
2015).

4.5 Results and Comparison

Table 1 holds the results for the Office-31 dataset.
Six different tasks are experimented upon, and the
results are compared with state-of-the-art methods.

The accuracy of state-of-the-art methods is obtained
from their respective published papers. The results
from each task indicate that the proposed method is
competitive. The average accuracy of the proposed
method is 92%, which is a slight improvement over
the previous best method, CoVi (Na et al., 2021a).
As stated before, the Office-31 dataset was utilized
to prove that the proposed method works as intended,
even if the improvement is slight and negligible.

Table 2 holds the results for the Office-Home
dataset. Twelve different tasks are experimented
upon, and the results are compared with state-of-the-
art methods. Similar to previous experiments, the ac-
curacy of state-of-the-art methods is obtained from
their respective published papers. The results from
each task indicate that the proposed method is still
competitive. The average accuracy of the proposed
method is 78%, which is an improvement over the
previous best method, WinTR (Ma et al., 2021). Note
that the proposed method outperformed CoVi (Na
et al., 2021a), the previous best method on the Office-
31 dataset, by 4.9% on average. This experiment of-
fers more insight into the value of utilizing the pro-
posed method. While the proposed method slightly
outperforms the alternatives in this case, it also of-
fers a more robust solution that works on different
datasets.

Table 3 holds the results for the VisDa-2017
dataset. The results are compared on category and
overall level. Similar to previous experiments, the ac-
curacy of state-of-the-art methods is obtained from
their respective published papers. The results from
each category indicate that the proposed method is
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operating as intended. The average accuracy of the
proposed method is 91.8%, which is a significant im-
provement over the previous best method, WinTR
(Ma et al., 2021). The proposed method offers a no-
ticeable improvement in this experiment.

5 CONCLUSION

This paper proposed a practical domain adaptation
method that utilizes a labeled subset from the target
domain and low- and high-pass filters to create inter-
mediate domains. The iterative creation of interme-
diate domains helps the model quickly adapt despite
a significant gap between domains. The effectiveness
of the proposed method is shown with empirical ex-
periments on public benchmark datasets. The pro-
posed method outperforms the current state-of-the-art
methods by a noticeable margin while maintaining ro-
bustness over different datasets.
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operating as intended. The average accuracy of the
proposed method is 91.8%, which is a significant im-
provement over the previous best method, WinTR
(Ma et al., 2021). The proposed method offers a no-
ticeable improvement in this experiment.

5 CONCLUSION

This paper proposed a practical domain adaptation
method that utilizes a labeled subset from the target
domain and low- and high-pass filters to create inter-
mediate domains. The iterative creation of interme-
diate domains helps the model quickly adapt despite
a significant gap between domains. The effectiveness
of the proposed method is shown with empirical ex-
periments on public benchmark datasets. The pro-
posed method outperforms the current state-of-the-art
methods by a noticeable margin while maintaining ro-
bustness over different datasets.
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