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ABSTRACT 

The need for flexibility in the power system will continue to increase when electrification 
progresses, and electricity production becomes more weather dependent. Small-scale 
energy production in residential buildings has become increasingly popular for alleviating 
rising energy costs. Simultaneously, requirements for the electricity grid increase when 
the grid should be capable of transferring increasing amounts of energy with a higher 
variation in demand and production. The grid also needs to be capable of receiving 
surplus energy from customers. Energy storage in residential buildings can decrease the 
pressure to reinforce the grid, reducing the costs for all customers. The poor profitability 
of battery energy storage systems has slowed down to become these systems more 
common. This thesis studies methods that illustrate how profitability can be increased 
and how specific factors can impact profitability. 
 
Customers will invest in energy storage more likely if it is profitable. Currently, 
investment prices have decreased, battery lifetime has been optimized with better 
manufacturing, and new control systems can ensure the state of health of the battery. 
Profitability depends on the economic benefits of battery usage. Many incentives can 
affect the control targets of energy storage. Storage can be used to increase photovoltaic 
self-consumption or decreasing the maximum peak power or market-price-based 
control. This thesis examines the profitability of energy storage by utilizing simulations 
with measured data and modelled energy resources. Further, energy storage utilization is 
optimized using developed control algorithms with various control targets. Simulations 
conducted in this study led to many conclusions, including the identification of factors 
that affect the profitability of energy storage and methods that can determine how 
profitability can be increased. 
 
Profitability can be increased by sizing photovoltaic systems with a battery and 
combining different control targets correctly. Distribution system operators can steer 
storage by correctly designing tariffs. Switching from hourly measurements of electricity 
billing to 15-min periods can increase the profitability of energy storage. Further, 
controlling the load in demand response operations can replace some storage capacity 
requirements; however, this decrease is negligible in terms of the profitability of the 
parallel-used battery energy storage systems. The use of energy storage can help increase 
the size of photovoltaic systems. Establishing energy communities expands the potential 
for utilizing energy storage with even larger photovoltaic systems. 
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1 INTRODUCTION 

This chapter introduces the background and motivation of this thesis, which is 
driven by the energy transition and role of residential buildings in this transition. 
Energy storage is expected to become a critical factor in future energy systems. This 
chapter presents the scope, research questions, and structure of this thesis. 

1.1 Background 

Finland’s electrical energy system requires more flexibility because of the increase in 
weather-dependent variable renewable energy (VRE) production and the rapidly 
progressing electrification [1]. This progress has been ongoing given the 
implementation of climate change mitigation measures; however, the energy crisis 
has been driving this progress as Finland is aiming to be energy self-sufficient. 
Energy storage and demand response (DR) are key technologies for increasing 
flexibility [2]. Energy can be stored in various forms, and therefore, many solutions 
have been proposed for energy storage [3]. Electrical energy storage (EES) systems 
can be charged directly from electricity, and typical solutions include different types 
of batteries, although multiple solutions with various features also exist. Further, 
battery energy storage systems (BESS) are suitable solutions for residential buildings 
because they can be installed easily, their capacity and power can be sized to meet 
the requirements of the buildings, and safe options are available [4]. Lithium-ion (Li-
ion) batteries are a good choice because of their high efficiency and longevity; 
however, their high investment cost is a drawback [5]. 

Poor profitability caused by high investment costs has been the main barrier to the 
higher prevalence of energy storage in the residential sector [6]. Although the cost 
of batteries has decreased rapidly over the past decade [7], this cost is expected to 
decrease further gradually. The decreasing battery costs are expected to affect the 
retail price of the BESS over time; however, retail prices can drop with an increase 
in the number of systems used. The generalization of electric vehicles (EV) is the 
most crucial factor for decreasing battery prices; conversely, EV manufacturers 
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include stationary BESSs to the market for increasing the volume of battery markets 
and push battery cell prices down [8]. 
 
In Finland, residential buildings consume ~20% of the total energy and ~37% of 
the total electricity [9]. Households are significant factors in electrical energy systems, 
and ~64% of the total energy consumption goes to space heating; however, in 2020, 
only 25% of this was electrical [9]. Therefore, households have more electricity–
energy consumption factors compared to that for heating. Progressing electrification 
can increase the share of electrical energy in space heating when heating systems are 
becoming increasingly electricity-based [10]. High electricity consumption makes 
residential buildings as a good target for demand response (DR) operations and 
increasing VRE production, e.g., using photovoltaic (PV) systems. Residential 
buildings are distributed unequally, and sometimes, the distances are considerably 
significant, which implies that the required flexibility can be spread all around the 
grid. Customers are expected to play a larger role in the energy system: If they have 
their own production, they will become prosumers; if they participate in the 
flexibility of the grid, e.g., through DR operations, they will become active 
customers. Further, customers can form energy communities in which shared energy 
resources can be invested. Multiapartment buildings are natural targets for creating 
an energy community; however, several detached houses can also form an energy 
community. 

1.2 Benefits and drawbacks of electrical energy storage 

The EES can be used for many purposes. The EES is used when electric power is 
required; however, the electricity grid is unavailable or in mobile applications, e.g., in 
EVs. Mobility and high-energy density are the most important features of energy 
storage, and they offer advantages of battery-based EESs compared to other energy 
storage solutions such as pumped hydro storage or flywheels. The increasing need 
for flexibility implies that the use of EES in on-grid applications has become more 
common. EESs are easily scalable and can be installed without significantly causing 
any concerns, such as noise or space constraints. 

The use of EES in stationary on-grid residential applications has several advantages. 
For example, the goal of a residential customer is to achieve benefits using EES; 
however, this often causes some drawbacks. An increased VRE production creates 
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the need to store surplus energy for later use. If incentivized, an EES owner can 
obtain economic benefits by storing the surplus energy. When EES and small-scale 
electric energy production systems are installed in a residential building, self-
consumption can be increased via EES. A customer can save costs when increased 
self-consumption decreases the electricity purchased from the grid and when 
electricity purchase costs are higher than the compensation from the surplus energy 
sold to the grid. However, the drawback to this approach is that energy storage 
causes losses, and therefore, some of the energy produced is lost during storage. 
 
Distributed VRE result in higher requirements for the electricity grid when the 
electricity distribution is applied in a complex environment. Historically, the basic 
tasks of grids were designed for transferring and distributing electricity from power 
plants to customers. Increasing the number of small-scale production units 
surrounding the grid implies that the grid must be ready to transfer electricity 
bidirectionally, thereby creating new challenges for grid design. Simultaneously, new 
production closer to consumption implies that less energy must be transmitted. 
Locally, bidirectional power is expected to increase, while the total amount of 
transmitted energy decreases, thereby creating challenges for distribution system 
operators (DSO) when the grid design is based on peak power. However, income is 
based on the amount of energy. Using a local EES can decrease the negative effects 
of the high prevalence of small-scale distributed VRE production. 
 
Further, customers can also benefit from modifying their load profile using an EES. 
If the DSO charge is based on the maximum power, customers can save costs by 
decreasing the maximum power with the ESS, thereby relieving the pressure on the 
grid. Moreover, if electricity prices vary over time, customers can save costs by 
shifting their consumption from high to low levels. Over time, the changing prices 
incentivize shifting loads to better correspond to production. From the perspective 
of the power system, shifting loads during high-price times can decrease the need to 
produce energy with expensive production methods, which can help reduce peak 
prices eventually. Residential customers can shift their loads using an EES. 
 
Methods besides EES can also modify the load profile. Different types of DR 
operations are alternatives for an EES. In residential buildings, DR operations result 
in some loss of comfort or limitations, e.g., less hot water is available if a water boiler 
is used for DR operation. All electrical devices may be unavailable for continuous 
use, or there may be changes in the indoor temperature. When the EES modifies the 
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load profile, customers do not notice any loss of comfort. Further, modifying the 
load profile is a simple process that can be achieved by setting boundaries using the 
EES for the storage capacity and maximum powers of charging and discharging. In 
DR operations, the possibilities (i.e., capacity and power) depend on many factors 
such as the electricity use of the customer or outdoor temperature. 
 
Further, an EES can be used as a backup power supply. The EES is bidirectional, 
and its stored energy can be utilized during interruptions in the supply grid, which 
benefits the owner of the EES, even when its value estimation is difficult. Further, 
interruptions also occur occasionally in modern power grids, and this can harm 
customer experiences because of the variation in the interruption. 

1.3 Scope and research questions 

This thesis deals with the control targets of residential EES in the Finnish market 
environment, providing a direct financial benefits to customers because of control. 
Fig. 1 illustrates the control targets of this thesis and how they are studied in the 
original publications. 
 
This thesis aims to discover factors that affect the profitability of EES and study 
how it can be increased. The research questions in this thesis can be summarized as 
follows: 

• What variables define the profitability of residential energy storage? 
• How do different incentives affect the control of energy storage? 
• What are the economic risks of the energy storage investment? 
• How does energy storage affect the profitability of photovoltaic energy 

production in the residential sector? 
• How can the profitability of residential energy storage be improved? 
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Figure 1.  Content of this thesis divided into control targets and references to the original publications 
in which they are discussed. 

The thesis focused on simulations using measured data for answering the research 
questions. Developing an effective control algorithm for a battery with each control 
target is vital for developing a simulation model. A control algorithm is suitable for 
research with a large number of customers in a study group; however, the results can 
also be utilized for developing the control algorithm for commercial applications. 
The objective is identifying a realistic level of benefit; however, studying the possible 
pitfalls when attempting to maximize economic benefits is important. Further, the 
simulations were made from the data of Finnish electricity customers and Finland’s 



 

4 

load profile, customers do not notice any loss of comfort. Further, modifying the 
load profile is a simple process that can be achieved by setting boundaries using the 
EES for the storage capacity and maximum powers of charging and discharging. In 
DR operations, the possibilities (i.e., capacity and power) depend on many factors 
such as the electricity use of the customer or outdoor temperature. 
 
Further, an EES can be used as a backup power supply. The EES is bidirectional, 
and its stored energy can be utilized during interruptions in the supply grid, which 
benefits the owner of the EES, even when its value estimation is difficult. Further, 
interruptions also occur occasionally in modern power grids, and this can harm 
customer experiences because of the variation in the interruption. 

1.3 Scope and research questions 

This thesis deals with the control targets of residential EES in the Finnish market 
environment, providing a direct financial benefits to customers because of control. 
Fig. 1 illustrates the control targets of this thesis and how they are studied in the 
original publications. 
 
This thesis aims to discover factors that affect the profitability of EES and study 
how it can be increased. The research questions in this thesis can be summarized as 
follows: 

• What variables define the profitability of residential energy storage? 
• How do different incentives affect the control of energy storage? 
• What are the economic risks of the energy storage investment? 
• How does energy storage affect the profitability of photovoltaic energy 

production in the residential sector? 
• How can the profitability of residential energy storage be improved? 

 

5 
 

 

Figure 1.  Content of this thesis divided into control targets and references to the original publications 
in which they are discussed. 

The thesis focused on simulations using measured data for answering the research 
questions. Developing an effective control algorithm for a battery with each control 
target is vital for developing a simulation model. A control algorithm is suitable for 
research with a large number of customers in a study group; however, the results can 
also be utilized for developing the control algorithm for commercial applications. 
The objective is identifying a realistic level of benefit; however, studying the possible 
pitfalls when attempting to maximize economic benefits is important. Further, the 
simulations were made from the data of Finnish electricity customers and Finland’s 



 

6 

market environment as part of the Nordic electricity markets. However, similarities 
in the markets around Europe make it possible to generalize the results for other 
market environments while considering the differences. The data used in this thesis 
were collected from 2013 to 2018. Subsequently, the electricity prices significantly 
changed because of the “energy crisis” at the end of 2021. This thesis presents a brief 
comparison with the new data presented in Chapter 4 for studying the effect of these 
changes.  

1.4 Structure of the thesis 
 
The rest of the thesis is organized as follows:  
Chapter 2 includes the literature review of the topic to be studied. Chapter 3 
introduces the research methods, including a simulation model using a battery model 
and a photovoltaic production model. Further, this chapter presents the used 
demand response model, control methods used, and how load forecasting can be 
utilized in control. Moreover, describes the energy community model. Chapter 4 
presents the results of the thesis. Results are divided into different control targets 
and combinations. Chapter 5 summarizes and concludes the thesis, including a 
discussion and presentation of the main contributions. 
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2 LITERATURE REVIEW 

This chapter presents a wide literature review based on the scope of this thesis. The 
literature review is divided into four topics so that the presented references are closer 
to the topic of this thesis toward the end. These previous publications verify the 
methods used in this thesis. The research gaps identified in the review are also 
addressed. 

2.1 Economic perspective of a photovoltaic system 

Household owners invest in PV systems for several reasons. One survey [11] 
revealed that the Finns are ready to invest in a PV system for ideological and 
sociological reasons, even if profitability is low; however, most define economic 
savings as their most important goal. This trend is currently changing, and economic 
profitability is now being considered a critical factor by household owners when 
making investment decisions. 

Many studies have recently focused on the economic profitability of PV systems. 
There are considerable differences in market environments between countries, 
affecting the profitability and the perspective on how these differences are studied. 
However, the basic principles remain the same. Meriläinen et al. [12] examined the 
following factors affecting residential PV profitability in the Finnish market 
environment: the electricity price, load profile of the building, and orientation of PV 
panels [12]. Vimpari and Junnila [13] studied differences in the profitability of 
rooftop PV between the capital cities of EU countries, considering electricity pricing 
and differences in solar power potential; however, they focused on non-residential 
buildings. In the south part of Europe, the PV energy yield is higher than that in the 
north; however, the electricity pricing strongly affects the profitability of PV, and the 
increase in property value attributed to PV installation varies between countries [13]. 
 
Incomes from small-scale PV production initially emerge from self-consumption 
and subsequently from selling the surplus energy to the grid. Self-consumption 
implies that PV production reduces the electricity purchased from the grid. Escobar 
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et al. [14] studied the profitability of the self-consumption of PV in Spanish 
households and compared Spanish regulations with those of other European 
countries. Their results demonstrated the importance of regulation. Although the 
total annual solar irradiance in Spain is the highest in Europe, the profitability of the 
self-consumption of PV remains meager compared to that in other countries such 
as Finland, where the low total annual solar irradiance decreases profitability but is 
still higher than Spain because of electricity pricing [14]. In addition, the load profiles 
differ for customers in different countries. For example, in the northern European 
countries, there are high heating loads in the cold season, whereas the southern 
European countries have high cooling loads during summer. 
 
Several tools have been used to evaluate the profitability of PV investments. the 
levelized cost of electricity (LCOE) and payback period are commonly used to 
evaluate profitability, similar to that in a case study in Sweden [15]. LCOE is a good 
assessment tool when the PV system is compared with other energy sources, and it 
can be calculated by dividing the energy produced by all costs during the lifetime of 
the system. The LCOE indicates the net present value (NPV) of income from future 
years. Given the dynamic scenario of world economics, it could be is difficult to 
estimate the discount rate. To set the NPV to 0 €, we calculate the internal rate of 
return (IRR), which is an excellent tool to evaluate PV investment profitability, and 
we compare it with different investment options [16]. LCOE, NPV, and IRR are 
better tools for assessing PV profitability compared to the payback period when the 
time value of money is meaningful [17]. 
 
The publications presented in this chapter studied the economic perspectives of PV 
systems from many perspectives. The results of these publications verify the 
selection made in the studies considered in this thesis and confirm that the employed 
methods are correct and proven in the scientific community. However, none of the 
previous publications focused on system sizing or the effect of different energy 
resources on the economics of PV systems. 

2.2 Electrical energy storage system with photovoltaics 
 
 All energy storage systems, which are charged by electricity and output energy, are 
also electrical energy storage and have been referred to as EES; e.g., [3] batteries, 
which are referred to as electrochemical energy storage. In this study, batteries are 
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defined as a group of EES. There are many optional storage solutions that can be 
used with PV in residential buildings, including PV-flywheel energy storage or PV-
compressed air energy storage; however, the PV-battery combination is most 
commonly used [18]. Liu et al. [19] compared many EES applications and reported 
that Li-ion batteries are most suitable for storing PV energy in residential buildings 
in addition to supercapacitors and flywheels. Li-ion batteries are an excellent option 
because many of their market applications are easily scalable. 
 
Thus far, several possible Li-ion battery chemistries have been reported. The most 
common cathode materials include nickel-cobalt-aluminum-oxide (NCA), nickel-
manganese-cobalt (NMC), and lithium-iron-phosphate (LFP) [20]. Hesse et al. [20] 
compared the features of different Li-ion battery chemistries and observed that 
NMC had the lowest cost per kWh and the highest power density, NCA had the 
highest energy density, and LFP has the best safety features and longest lifetime. 
These features indicate that LFP and NMC are the most promising Li-ion battery 
chemistries for residential applications [5]. Diouf and Pode [21] reported that LFP 
is the most promising battery chemistry for large-capacity energy storage because of 
its long lifespan and high safety features. 
 
The lifetime of a Li-ion battery is a critical factor for evaluating the potential of a 
BESS for residential use. The lifetime of the battery strongly affects profitability 
calculations because it determines the replacement frequency for the battery. 
Sarasketa-Zabala et al. [22] predicted the lifetimes of LFP battery cells. Battery ageing 
can be categorized in to calendar and cycling ageing. When a battery is not used, it 
ages over time because of battery accelerating ageing. The state-of-charge (SOC) 
range, depth-of-discharge (DOD), temperature, and C-rate are factors that influence 
the lifetime of a battery [22]. SOC indicates the charge level of the battery (0–100%), 
and DOD indicates the decrease in the SOC before subsequent charging. Further, 
the C-rate indicates the charging and discharging powers (kW) of a battery in terms 
of battery capacity (kWh), i.e., the C-rate indicates the time it takes charge a battery 
from empty to full, or vice versa. 
 
Battery lifetime is defined by utilizing the state-of-health (SOH) value, which is the 
measured capacity as a percentage of the nominal capacity [23]. The SOH varies 
based on the end of lifetime (EOL). In one study [22], the EOL corresponded to 
85–90% SOH, whereas in another study [24], it was 80%. The EOL does not imply 
that the battery can no longer be used; instead, it describes a scenario wherein the 
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battery capacity is diminished, and the losses are too high for the battery to be useful 
for the original application. Batteries of EVs can be reused in residential buildings 
after their EOL [25]. Alimardani and Narimani [26] studied the lifetime extension of 
Li-ion batteries (so-called second-life batteries). Further, the use of EES with PV has 
already been investigated in previous studies [27, 28]. Häring et al. [29] focused on 
using common household thermal storage systems to support PV production. 
Agnew and Dargusch [30] studied customer preferences for BESS at the household 
level. 
 
These publications, which focused on EES, verified the types and features of EESs 
selected in this thesis. Many previous publications have investigated battery 
behaviors and explored approaches for optimizing its lifetime. The results of these 
publications were used to design the simulation model in this thesis. These features 
identified in these publications were utilized to maximize the economic benefits in 
simulated cases in the Finnish environment. 

2.3 Optimization of battery size and control system 
 
Research on BESS control and sizing has primarily focused on increasing the 
profitability. The existing publications focused on three main targets: maximizing 
economic benefits, maximizing battery lifetime, and sizing systems. Vieira et al. [31] 
presented a control system to maximize the self-consumption of PV. Moshövel et 
al. [32] studied the effect of PV production on the peak power of the grid, which can 
decrease battery usage. Nge et al. [33] studied the real-time energy management of 
BESS based on the electricity market price for maximizing economic benefits. Zheng 
et al. [34] studied residential peak-shaving strategies from a financial perspective. 
These publications are representative of research that focus on maximizing 
economic benefits. 
 
The lifetime of a battery indicates the duration for which benefits can be collected 
and how long the costs can be distributed, and therefore, it strongly influences 
economic profitability [35]. Pena-Bello et al. [36] studied battery-lifetime 
optimization with different electricity tariffs and indicated that combining control 
targets increases profitability. Förstl et al. [37] showed that a battery aging model is 
essential for studying battery profitability while considering different control 
strategies because DOD strongly affects battery ageing. Farinet et al. [38] studied 
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battery lifetime when the self-consumption of PV was optimized for a Danish 
environment. The control system attempts to balance between maximizing benefits 
and determining the causes of battery ageing. Avoiding very high or low charges with 
a low DOD can extend a battery’s lifetime. Estimating whether the control act is 
more valuable than reducing the battery’s value can be difficult because of the ageing 
caused by the control act. 
 
Optimal sizing significantly affects the profitability of BESS. The size of the PV can 
affect the size of the BESS [39]. Mohamed et al. [40] showed that the load profiles 
of residential customers strongly affect battery size. Wu et al. [41] used convex 
programming to optimize battery size, which worked well when the daily load 
profiles remained similar year-round. A techno-economical PV battery-sizing system 
was presented in other studies [42, 43], where a PV without a battery was found to 
be more profitable than a PV with a battery; however, this situation can change in 
future. These publications were conducted in different market environments from 
that considered in this thesis, and the batteries were used to increase only the self-
consumption of PV. Bianchi et al. [44] focused on maximizing PV production with 
battery sizing; however, they did not consider the economic perspective. Residential 
BESS sizing from an Australian perspective was presented in another study [45]. 
Further, methods to control BESS have been studied previously [46], [47], [48], and 
[49]. Forecast-based control for enhancing the BESS lifetime was studied in [50]. 
Further, BESS control with EV for reducing peak powers was studied in [51] and 
optional DR operations were studied in [52]. Forecasts used in control have also 
been studied [53]. 
 
These previous studies present significant variations in the control methods; 
however, none of these studies focused on controlling economic targets in the 
Nordic market environment for increasing the profitability of BESS while 
considering the requirements of control, i.e., load forecasting. The studies considered 
in this thesis focus on optimizing the possible benefits of different control targets 
while considering the potential risks of combining controls. 

2.4 Profitability of battery energy storage system 
 
Investment costs, benefits, and lifetime are key factors for evaluating the profitability 
of a BESS. The profitability of a BESS is calculated using PV because batteries are 
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often used to increase self-consumption [16, 54]. BESS can be used for other control 
targets if electricity pricing generates incentives for it, e.g., through dynamic tariffs 
[55]. The profitability of the BESS is evaluated to be weak in Finland, and with low 
investment costs, the payback period is considered very close to the lifetime of the 
system [56]. With PV, the profitability of the BESS is evaluated to be good, e.g., in 
Germany [16]. Alavi et al. [57] suggested that BESS with PV had no benefit for 
prosumers in Belgium. Further, Germany and Belgium used feed-in tariff (FIT) for 
surplus PV energy, and the electricity price level for household customers was found 
to be higher than that of the EU’s average when the calculations were completed 
[16, 57]. Contradictory study results have shown that evaluating the profitability of 
BESS is difficult and that the evaluation method is strongly affected [16, 57]. In 
addition, different initial data related to the market environment and the studied load 
profiles affect the results and conclusions. 
 
Studies that investigate the profitability of EES often focus on its improvement. 
Profitability calculations are used as a tool to evaluate the effectiveness of the 
improvement methods. Pena-Bello et al. [36] improved profitability using a genetic 
algorithm for scheduling optimization. Klingler and Teichtmann [58] studied a 
forecast-based operation strategy; however, the result indicates that a self-
consumption maximizing strategy is more profitable. Arcos-Vargas et al. [59] 
considered increasing storage profitability by decreasing power peaks when an 
electricity tariff included a demand charge. Munzke et al. [60] studied the profitability 
of a BESS with different control strategies and demonstrated battery lifetime can be 
increased with appropriate control. 
 
Policies in different jurisdictions can affect the profitability of BESS. Kazhamiaka et 
al. [61] compared the profitability of a residential PV and BESS combination in three 
jurisdictions—Germany. Southern Ontario, and Austin, Texas—and found that 
policymakers could use the electricity price and upfront subsidies to impact 
profitability and further generalization. Zakeri et al. [62] studied policy options for 
increasing the profitability of PV with BESS and found that a battery can be 
profitable with PV, even in high-latitude countries with the right policy. Further, Fett 
et al. [63] compared different regulatory settings and noted that residential BESS will 
become profitable regardless of the regulations, which play a crucial role in the 
system integration of renewables. 
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Many factors affect the economics of the BESS. The tariffs used affect possible cost 
savings that can be achieved using BESS [64]. Forming distribution tariffs has been 
studied in [65] and [66]. Market electricity prices also affect the attractiveness of DR 
operations [67]. In addition, the economic perspective of BESS has been studied [68, 
69, 70]. 
 
In previous studies, the profitability of the BESS focused only on limited control 
targets. The results of these studies showed that the profitability is weak; however, 
there are variables that can affect profitability and make BESS more profitable. The 
scenario changes constantly when electricity prices change, storage functions 
improve, and investment prices vary, thereby indicating that profitability calculations 
are updated continuously. This thesis focuses on identifying variables that affect 
profitability, which can help evaluate profitability in new scenarios. 
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3 RESEARCH METHODS AND DATA 

This chapter presents the methods and models used in the simulations. The control 
methods are also presented. Finally, this chapter summarizes the data used in this 
thesis. 

3.1 Modelling the residential battery energy storage system 
 
A Li-ion battery where LFP is used as the cathode material is modelled in this thesis 
given its good features for residential use. LFPs exhibit good safety features and long 
cycling and calendar lifetimes [71]. The results of this thesis are valid for other Li-
ion battery types; however, there can be small differences in the battery lifetime and 
initial values of modelling, thereby affecting the results related to charging and 
discharging efficiencies. When a battery model is used mathematically, some 
simplifications can cause errors in the results, which are similar to changes that can 
be attributed to a using a different battery type. Finding a realistic level of storage 
loss is paramount in battery modelling. Modelling ensures that the models are as 
simple as possible so that the results present the scenario at yearly levels, and small 
details in the models cannot significantly affect the results.  
 
The self-discharging capability of the LFP is negligible, and therefore, battery loss 
can occur during charging and discharging. Charging losses are higher than discharge 
losses; however, during modelling charging cycles, the charging efficiency can be 
assumed to be the same as the discharge efficiency [72]. Cycle efficiency is an 
essential factor in BESS modelling. The charging efficiency ηc can be modelled using 
the internal serial resistance Rb of a battery [73]. The charging efficiency of a battery 
can be calculated as  

𝜂𝜂𝑐𝑐 = 100
𝑉𝑉𝑏𝑏−𝐼𝐼𝑐𝑐𝑅𝑅𝑏𝑏

𝑉𝑉𝑏𝑏
,    (1) 

where Vb and Ic represent the battery nominal voltage and charging current 
(discharge current when calculating the discharge efficiency), respectively. 
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The battery SOC range is limited to 25–95% in the simulation model for the 
following reasons: (1) The internal serial resistance is not constant and grows 
robustly when the SOC surpasses 95% or drops below 10% [74]. A high internal 
serial resistance indicates high losses during charging and discharging. In this range, 
the internal serial resistance remains nearly constant, indicating that the voltage 
remains almost constant, which is an important advantage of Li-ion batteries. (2) 
Battery ageing depends on the DOD, and a high DOD accelerates aging and 
increases losses; therefore, an SOC below 25% is avoided. When avoiding the very 
low and high SOC, the constant value of internal serial resistance 0.026 Ω can be 
used in the model, as reported in [74] for a Li-ion battery. A battery pack includes 
cells connected in series or parallel. Serial connections in the cell increase voltage, 
whereas parallel connections increase capacity. A nominal voltage of the one LFP 
cell is 3.3 V, and the capacity is 2.5 Ah [74].  
 
The SOC of the battery at time t (SOCt) can be modelled using  

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = 100 % × 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝐵𝐵𝑡𝑡𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1,   (2) 

where Emax, Beff, and Bt represent the maximum capacity of the BESS, efficiency of 
the energy transfer to storage, and amount of energy transferred between the BESS 
and the electricity network of another household, respectively.  
The SOC limits set the range of the SOC. Further, temperature dependency is not 
modelled because it is assumed that the battery is located in the room of a residential 
building at a constant temperature. The presented battery model is used in all studies 
considered in this thesis. 

3.2 Simulation model for residential buildings 

The simulations conducted in this thesis aim to simulate the electricity demand of a 
residential building from the perspective of the grid (G). The demand of a household 
(D) represents the initial data in the simulations and is unchangeable in publications 
[P1–P5]; it is modified only in publication [P6]. Fig. 2 shows how PV production (P) 
and BESS energy (B) are added to the electrical network of a household. PV 
production is not involved in publication [P2]; however, the other parts of the 
network are similar. Converters can cause losses, and the efficiency of the DC-
converters is assumed to be 99%, whereas that of an AC/DC-converter, i.e., the 
efficiency of an inverter (ηinv), is assumed to be 98% [75]. 
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Figure 2.  Connecting BESS to the electricity system of a residential building [P1]. 

In practice, the simulated DC converter after the solar panel corresponds to all power 
electronics required before the inverter, i.e., these losses are modelled, and in 
simulations, the PV system looks like an entire system, thereby including the 
converter. Therefore, the produced PV energy (Pdc) refers to the energy produced 
after the converter in the equation. The simulated electricity demand is expressed as 

𝐺𝐺 =  

{
 

 
𝐵𝐵𝑡𝑡 − 𝑃𝑃𝑑𝑑𝑐𝑐
𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝐷𝐷 ‖𝑖𝑖𝑖𝑖 𝐵𝐵𝑡𝑡 > 𝑃𝑃𝑑𝑑𝑐𝑐 & 𝐵𝐵𝑡𝑡 ≥ 0

−𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃𝑑𝑑𝑐𝑐 − 𝐵𝐵𝑡𝑡) + 𝐷𝐷 ‖𝑖𝑖𝑖𝑖 𝐵𝐵𝑡𝑡 ≤ 𝑃𝑃𝑑𝑑𝑐𝑐 & 𝐵𝐵𝑡𝑡 ≥ 0
𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖(−𝐵𝐵𝑡𝑡 − 𝑃𝑃𝑑𝑑𝑐𝑐) + 𝐷𝐷 ‖𝑖𝑖𝑖𝑖 𝐵𝐵𝑡𝑡 < 0

 (3) 

The three abovementioned equations are derived from BESS operations. In the first 
equation, the PV energy does not require BESS charging and the energy from the 
grid is used for charging. In the second equation, all charged energy comes from the 
PV. In the third equation, the BESS is discharged. Electricity demand (G) can be 
negative if the PV production exceeds D, and not all surplus energy can be stored in 
the BESS. The surplus energy is then fed to the grid. 

3.3 Modelling small-scale photovoltaic electricity production 
 
Small-scale PV production is a key part of this thesis and included in publications 
[P1, P3–P6]. PV production must be modelled in simulations for two reasons: (1) 
Production data in the studied buildings do not exist in real life, and using measured 
data from a different place is an invalid approach because the production profile 
depends on the location, including the temperature at the site. (2) The production 
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profile varies frequently, and repeating the historical production profile is highly 
unlikely. Therefore, variations in possible future PV production profiles can be 
studied through modelling. In addition, BESS control can require a PV production 
forecast, and modelling makes this forecast possible. 
 
Theoretically, the amount of PV energy produced depends linearly on the size of the 
PV system. The nominal power of a PV system (PSTC) is defined under standard test 
conditions (STC). At the STC temperature, TSTC is 25 °C. The PV production (PPV) 
can be calculated using  

𝑃𝑃𝑃𝑃𝑉𝑉 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝑖𝑖(1 − 𝛽𝛽𝑃𝑃(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆)),   (4) 

where βp, Tc, and Gi represent the solar cell power temperature coefficient (0.006), 
solar cell temperature, and total solar irradiance of the solar cell [76], respectively. 
 
PV panels are usually installed as stationary elements, and therefore, the azimuth and 
inclination angles β are constant. The direction of the sun in the sky changes 
constantly, and therefore, the solar irradiance on the solar cells varies 
correspondingly. In PV production modelling, the total solar irradiance of the solar 
cell must be estimated. The model comprises three parts: the direct beam component 
(Gb,i), diffuse component (Gd,i), and reflected component (Gr,i) [77]. The total solar 
irradiance Gi of the tilted panel represents the sum of these three components. These 
components can be calculated using the Reindl model [78]—one of the best diffuse 
solar irradiance models—particularly for tilted surfaces [79]. The components can 
be expressed as  

{
𝐺𝐺𝑏𝑏,𝑖𝑖 = 𝐺𝐺𝑏𝑏(cos 𝜃𝜃𝑖𝑖 sin 𝛼𝛼𝑠𝑠⁄ )
𝐺𝐺𝑑𝑑,𝑖𝑖 = 𝐺𝐺𝑑𝑑 (1 + cos 𝛽𝛽) 2⁄
𝐺𝐺𝑟𝑟,𝑖𝑖 = 𝜌𝜌𝑔𝑔𝐺𝐺𝑔𝑔 (1 − cos 𝛽𝛽) 2⁄

,    (5) 

where θi, αs, and ρg represent the angle of incidence on the surface based on the 
azimuth angle of the sun, solar elevation, and average reflectance of the reflecting 
surface [76], respectively.  
 
Equation (5) contains the basic components of the horizontal irradiance, i.e., Gb, Gd, 
and Gg represent the horizontal beam irradiance, horizontal diffuse irradiance, and 
horizontal global irradiance, respectively. In the publications considered in this 
thesis, the horizontal irradiance is estimated in three ways. Publication [P1] used real 
PV production data, and the PV model was used to form only a PV production 
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profile varies frequently, and repeating the historical production profile is highly 
unlikely. Therefore, variations in possible future PV production profiles can be 
studied through modelling. In addition, BESS control can require a PV production 
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conditions (STC). At the STC temperature, TSTC is 25 °C. The PV production (PPV) 
can be calculated using  

𝑃𝑃𝑃𝑃𝑉𝑉 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝑖𝑖(1 − 𝛽𝛽𝑃𝑃(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆)),   (4) 

where βp, Tc, and Gi represent the solar cell power temperature coefficient (0.006), 
solar cell temperature, and total solar irradiance of the solar cell [76], respectively. 
 
PV panels are usually installed as stationary elements, and therefore, the azimuth and 
inclination angles β are constant. The direction of the sun in the sky changes 
constantly, and therefore, the solar irradiance on the solar cells varies 
correspondingly. In PV production modelling, the total solar irradiance of the solar 
cell must be estimated. The model comprises three parts: the direct beam component 
(Gb,i), diffuse component (Gd,i), and reflected component (Gr,i) [77]. The total solar 
irradiance Gi of the tilted panel represents the sum of these three components. These 
components can be calculated using the Reindl model [78]—one of the best diffuse 
solar irradiance models—particularly for tilted surfaces [79]. The components can 
be expressed as  

{
𝐺𝐺𝑏𝑏,𝑖𝑖 = 𝐺𝐺𝑏𝑏(cos 𝜃𝜃𝑖𝑖 sin 𝛼𝛼𝑠𝑠⁄ )
𝐺𝐺𝑑𝑑,𝑖𝑖 = 𝐺𝐺𝑑𝑑 (1 + cos𝛽𝛽) 2⁄
𝐺𝐺𝑟𝑟,𝑖𝑖 = 𝜌𝜌𝑔𝑔𝐺𝐺𝑔𝑔 (1 − cos𝛽𝛽) 2⁄

,    (5) 

where θi, αs, and ρg represent the angle of incidence on the surface based on the 
azimuth angle of the sun, solar elevation, and average reflectance of the reflecting 
surface [76], respectively.  
 
Equation (5) contains the basic components of the horizontal irradiance, i.e., Gb, Gd, 
and Gg represent the horizontal beam irradiance, horizontal diffuse irradiance, and 
horizontal global irradiance, respectively. In the publications considered in this 
thesis, the horizontal irradiance is estimated in three ways. Publication [P1] used real 
PV production data, and the PV model was used to form only a PV production 
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forecast such that the cloudiness corresponded with the real data. In publications 
[P4] and [P5], these irradiances were considered as measurements from the open 
data of the Finnish Meteorological Institute [80]. The third version was presented in 
publications [P3] and [P6], where irradiances were calculated based on the direction 
of the sun in the sky and the cloudiness probability model in Finland [81]. The 
selected method depends on the objective of the publication. 

3.4 Demand response with electrical heating in small-scale 
residential households 

 
Publication [P6] presents a method to evaluate the demand response potential with 
electrical heating in detached houses. In the publication demand, the response 
potential can be compared to the potential of the BESS system for increasing the 
self-consumption of the PV. Every building has its own thermal features, which must 
first be determined to study the demand response operations. The studied buildings 
were heated using direct electric heaters, which implies that the thermal heat 
produced was equal to the electrical heating load. 
 
These two coefficients describe the thermal features of a building. The total heat loss 
coefficient (cf, W/K) describes the amount of heating power (Eh) required to 
maintain the indoor temperature (Tin) stable when the outdoor temperature (Tout) is 
lower than the set value of the indoor temperature, i.e., the amount of power 
required to replace the thermal losses in a building. The second coefficient is the 
total heat capacity (cp, Wh/K), which describes the capacity of the building to store 
heat. This coefficient affects the temperature-decreasing speed when the heating 
power is considerably low to maintain the indoor temperature stable or when the 
high heating power starts increasing the indoor temperature. A high total heat 
capacity resists changes in the indoor temperature. The total heat loss coefficient 
defines the amount of heating power required, which can vary. Further, the total 
heat capacity defines how long the heating power can be interrupted so that the 
indoor temperature changes remain tolerable. 
 
From Newton’s law of cooling [82], we have  

𝑐𝑐𝑝𝑝
𝑑𝑑𝑆𝑆𝑖𝑖𝑖𝑖
𝑑𝑑𝑡𝑡 = 𝐸𝐸ℎ − 𝑐𝑐𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜).    (6) 
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Equation (6) shows the effect of changes in different variables and coefficients on 
the indoor temperature. Further, it is possible to calculate the values of the 
coefficients when other variables are known. The total heat loss coefficient of a 
building can be solved by maintaining the indoor temperature at a stable value and 
measuring the heating power and outdoor temperature. This is a common scenario 
wherein the thermostat is used to control the heating of a building. Scenarios where 
changes in temperature can be used to determine the total heat capacity of a building 
are investigated. Test setups can be performed by interrupting the heating power of 
a building for a known period and measuring the changes in the indoor temperature. 
However, in buildings with direct electrical heating, both coefficients can be 
estimated by utilizing the electricity-load profiles of the building and outdoor 
temperature measurements, assuming that the setting value of thermostatically 
controlled indoor temperature is stable. Thermodynamically, the effect is the same 
regardless of the changing variable (indoor or outdoor temperature) because the 
temperature difference affects the need for heating power. Utilizing the knowledge 
from the impact, we can estimate the coefficients of many buildings when their load 
profiles and the possibilities of the heating demand response of residential buildings 
are known. This simple model does not consider the internal heat sources or effects 
of solar heating or wind cooling on the building; however, these effects are 
minimized for the results using the data from a large number of customers. 

3.5 Control methods 
 
Control systems play a key role in maximizing the benefits of energy storage or 
flexible loads. Different parts of the control system are presented in all publications 
[P1–P6] considered in this thesis. Incentives, i.e., control targets, define how the 
resources should be controlled. The control algorithm can be divided into two levels: 
(1) The control algorithm decides what should be done in the next period, and (2) 
the control (called continuous control in publication [P1]) attempts to execute this 
decision. The time step of the decision-making process depends on the measurement 
interval of electricity billing. In Finland, the measurement interval is an hour for 
smart meters. Electricity billing depends on cumulative consumption over a metering 
period, and therefore, decision making attempts to impact this value. Controlling at 
the second level operates during the metering period because there are variations in 
the load and possible production during these periods. In future, the measurement 
interval of smart meters will be set to 15 min. The effect of this change has been 
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Equation (6) shows the effect of changes in different variables and coefficients on 
the indoor temperature. Further, it is possible to calculate the values of the 
coefficients when other variables are known. The total heat loss coefficient of a 
building can be solved by maintaining the indoor temperature at a stable value and 
measuring the heating power and outdoor temperature. This is a common scenario 
wherein the thermostat is used to control the heating of a building. Scenarios where 
changes in temperature can be used to determine the total heat capacity of a building 
are investigated. Test setups can be performed by interrupting the heating power of 
a building for a known period and measuring the changes in the indoor temperature. 
However, in buildings with direct electrical heating, both coefficients can be 
estimated by utilizing the electricity-load profiles of the building and outdoor 
temperature measurements, assuming that the setting value of thermostatically 
controlled indoor temperature is stable. Thermodynamically, the effect is the same 
regardless of the changing variable (indoor or outdoor temperature) because the 
temperature difference affects the need for heating power. Utilizing the knowledge 
from the impact, we can estimate the coefficients of many buildings when their load 
profiles and the possibilities of the heating demand response of residential buildings 
are known. This simple model does not consider the internal heat sources or effects 
of solar heating or wind cooling on the building; however, these effects are 
minimized for the results using the data from a large number of customers. 

3.5 Control methods 
 
Control systems play a key role in maximizing the benefits of energy storage or 
flexible loads. Different parts of the control system are presented in all publications 
[P1–P6] considered in this thesis. Incentives, i.e., control targets, define how the 
resources should be controlled. The control algorithm can be divided into two levels: 
(1) The control algorithm decides what should be done in the next period, and (2) 
the control (called continuous control in publication [P1]) attempts to execute this 
decision. The time step of the decision-making process depends on the measurement 
interval of electricity billing. In Finland, the measurement interval is an hour for 
smart meters. Electricity billing depends on cumulative consumption over a metering 
period, and therefore, decision making attempts to impact this value. Controlling at 
the second level operates during the metering period because there are variations in 
the load and possible production during these periods. In future, the measurement 
interval of smart meters will be set to 15 min. The effect of this change has been 
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studied in publication [P4]. The control methods in this thesis focus on controls at 
the first level because the metering interval in the consumption data is the same as 
the time step at the first level of control. Publications [P1] and [P4] evaluated the 
effect of second-level control. 
 
Energy storage and controllable loads are used to achieve various control targets. 
Electricity tariffs create incentives for control targets. There are three main control 
targets: 

a) Increasing self-consumption (if there is a surplus of self-production). 
b) Decreasing the maximum power (if there is a power-based component in the 

tariff). 
c) Decreasing the average electricity price using market-price-based control (if 

there is a market-price-based tariff). 
 
The incentives for the different control targets are obtained from the electricity 
tariffs. In Finland, the electricity bill of a customer comprises the energy retailer’s 
fees, DSO’s fees, and taxes. If a customer produces their own energy (e.g., a rooftop 
PV system), the energy produced is more profitable for personal use compared to 
feeding it to the grid. When self-produced energy replaces the purchased energy, 
customers can save costs by avoiding distribution fees and taxes. A customer can sell 
the surplus energy to an energy retailer and receive compensation at a level that 
corresponds to the purchase price. Energy retailers add margins to purchase prices 
to cover costs and generate profits. A high volumetric component in distribution 
tariffs, high volumetric-based taxes, and high margins of the energy retailers increase 
the incentive for self-consumption. 
 
Power-based distribution tariffs have been discussed actively for small customers in 
Finland [83]. Such tariffs include a demand charge, where part of the distribution 
cost depends on maximum power. Although many models exist, the most common 
are based on the highest power of the sliding year or month [84]. Customers can 
save costs by decreasing the demand, which includes power-based, thereby 
incentivizing peak-saving operations with the energy storage of flexible loads. As 
reported in publication [P2], the control algorithm for peak saving requires memory 
to store the highest peak of a period; further, the loads can be controlled to avoid 
exceeding this limit, or the energy storage can be discharged when exceeding these 
limits is considered a threat [P2]. 
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Energy retailers in Finland offer contracts in which electricity prices change hourly 
based on the day-ahead electricity market prices. Further, price components can vary 
depending on time; for example, prices in the daytime can differ from those at 
nighttime. An on-time price change incentivizes load-shifting control, wherein loads 
are moved for low-price periods. A scenario wherein the price changes every hour 
can be a challenging optimization problem for a control system. This optimization 
problem can be solved easily with linear programming, as indicated in [85]. The 
following limitations make this issue more challenging:  

• In the near future, we will be unable to determine the exact required loads 
and possible production. 

• Electricity prices for the near future’s hours are available only for a short 
period (10–34 h) depending on the hour of the day in Finland. 

• Non-constant efficiency of energy storage affects optimization. 
• Other possible control targets affect optimization. 
• Unknown variables can be forecasted; however, the forecast always include 

errors. 
These factors can follow a scenario where a solution with a traditional optimization 
algorithm such as linear programming does not provide any cost savings in the actual 
case, i.e., the optimization fails because of errors in the initial values. Therefore, this 
thesis develops methods that can yield near-maximal benefits, even with errors in 
the initial values. Utilizing load and production forecasting can minimize the effect 
of unknown future profiles. The availability of futures prices limits the length of the 
optimization period; however, futures prices can also be forecasted. The forecasting 
errors still negatively affect optimization. Regardless of the energy-storage method, 
some energy is lost during storage. This can be utilized to form an optimization 
problem because in many situations, it dramatically limits the number of possible 
solutions. 
 
The possible length of the optimization period varies between 10 and 34 h because 
with a 10-h period, we can identify all future hourly prices. After the 35th future hour, 
we must always forecast the prices. Longer periods make it possible to pursue a 
better solution and higher savings; however, longer periods increase the effect of 
forecasting errors. Publication [P1] stated that using longer than 18-h optimization 
periods provide only minimum extra benefits, and therefore, this thesis used the 18-
h optimization period. During this period, electricity prices varied on an hourly basis. 
However, the variation is not random, and it follows a certain regularity. The price 
is higher during the daytime than that at nighttime, and there are morning and 
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afternoon peaks. Occasionally, the price changes can be very flat, e.g., if high wind-
power production keeps the price low throughout the day. The loss of energy storage 
indicates that the price difference between charging and discharging must be 
sufficiently high. In addition, every charging cycle decreases the battery lifetime if a 
battery is used for energy storage, which further increases the required price 
difference. This leads to a scenario where, the controls are unprofitable if the price 
profile is flat; on a typical day, there are individual periods when charging 
discharging, e.g., for a battery with a C-rate of 1, imply 1 h of charging and 1 h of 
discharging during the optimization period. In the last decade, prices have varied by 
only a small number of days, thereby leading to more than one potential charging 
cycle per day. 
 
Considering all the factors limiting the problem, the nature of the optimization 
problem changes from solving a linear programming problem to finding extreme 
values with limitations. To solve this problem, a method was utilized for finding the 
charging and discharging pairs during the optimization period. If the storage is full 
or nearly full, it must first find a time slot for discharging, i.e., the hour when the 
electricity price is the highest. Subsequently, we must find a timeslot for charging 
(after the discharging timeslot when the electricity price is the lowest. A control 
command can be provided for secondary control when the price difference between 
these timeslots is so high that the cycle is profitable even when considering the 
losses. Then, we can find a second pair using a similar method, which continues until 
the price difference between the timeslots drops that are so low that the cycle is 
unprofitable or all timeslots in the optimization period have gone through. In 
addition, the SOC of the storage must remain inside the set boundaries, which means 
that, in practice, the next pair must be inside, before, or after the previous pairs. If 
the storage is closer to empty than full, the algorithm must determine the lowest 
price for the charging timeslot. 
 
During an 18-h optimization period, there was one pair of charging and discharging 
timeslots, and depending on the C-rate of the battery, the timeslots ranged from 1 h 
to a maximum of 3 h. A second pair exists if the price variation is very high. Fig. 3 
illustrates this scenario, which shows the average day-ahead market prices in an area 
of Finland every hour of the day between 2013 and 2022 [86]. The optimization 
period in which the variation is the highest is marked by red lines. The first pair can 
be found at hours 5 and 20, whereas the second pair can be found at h 10 and 16. If 
the price difference between the two is sufficiently high, the second pair of cycles 
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will also be profitable. Fig. 3 shows the average scenario; naturally, there is a 
considerable variation between the daily price profiles. The second cycle is 
unprofitable; however, the energy crisis in 2022 involve several profitable cycles per 
day.  
 

 

Figure 3.  Background of market-price-based control. 

 
If the effect of battery lifetime is not considered, the relationship between the price 
during discharging Ct2 and charging Ct1 should follow  

𝑆𝑆𝑡𝑡2 ≥
1

𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒2
𝑆𝑆𝑡𝑡1.     (7) 

Equation (7) can be derived from the rule that benefits must be greater than the 
losses. For example, if the efficiency Beff is 95% and the electricity price is 0.058 
€/kWh during charging, as in pair 2 in Fig. 3, we can assume that the distribution 
costs and taxes total 0.1 €/kWh, and the total price during discharge can be greater 
than 0.175 €/kWh. Fig. 3 shows that the highest price in pair 2 is only 0.168 €/kWh 
when considering distribution costs and taxes. Equation (7) provides only the 
theoretical minimum; moreover, the effect of the battery lifetime needs to be 
considered. We can estimate that the cyclic lifetime of an LFP battery is ~10, 000 
cycles if the DOD is ~50% [87], which means that two cycles per day correspond to 
a 13.7-year lifetime, i.e., the same level as the calendar lifetime of an LFP battery. 
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than 0.175 €/kWh. Fig. 3 shows that the highest price in pair 2 is only 0.168 €/kWh 
when considering distribution costs and taxes. Equation (7) provides only the 
theoretical minimum; moreover, the effect of the battery lifetime needs to be 
considered. We can estimate that the cyclic lifetime of an LFP battery is ~10, 000 
cycles if the DOD is ~50% [87], which means that two cycles per day correspond to 
a 13.7-year lifetime, i.e., the same level as the calendar lifetime of an LFP battery. 
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Therefore, two cycles per day represent the maximum usage of the battery, which 
does not decrease its lifetime. 
 
The control becomes more challenging when storage is used for several control 
targets. Controlling needs can be opposite for different targets. Publication [P5] 
closely studied the challenges of combined control. The combination becomes 
simpler when we can organize control targets in the order of importance. Decreasing 
the maximum power peaks provides high benefits with low storage usage; however, 
the entire benefit can be lost if the control fails even once. Therefore, the importance 
of decreasing the maximum peak power is the highest. Moreover, increasing self-
consumption provides relatively high benefits; however, failing a few charging or 
discharging periods does not dramatically affect the total benefits. Thus, the 
importance of increasing self-consumption has the second highest importance. 
Market-price-based control requires many cycles; however, its benefits are still 
relatively low. In addition, every cycle is individual and does not affect the others. 
Thus, the importance of market-price-based controls is the lowest. If all control 
targets are used, the primary control targets decrease the maximum power peaks in 
winter, and the secondary control targets increase self-consumption during other 
times. Further, the same battery can be used for market-price-based control when 
charging is timed for low-price times and discharging is timed for high-price times. 
Other control acts of these market–price-based controlled pairs can lead to other 
control targets, such as decreasing maximum peaks. The combination of control 
targets increases with the importance of accurate forecasting. 

3.6 Utilization of forecasting in control 
 
We cannot precisely determine the load or production profiles for the future. 
However, control must be based on future values so that storage can be controlled 
to prepare for future control acts. Optimization algorithms attempt to obtain the 
best possible storage usage profile for the optimization period by forming a new load 
profile for minimizing electricity costs. None of the control targets required forecast-
based control. If storage is used only to increase self-consumption, it can be 
controlled to always charge when the production is higher than consumption and 
discharge immediately when the consumption surpasses production. However, this 
does not lead to an optimal solution and utilizes forecasts for timing discharge better. 
Further, it is possible to obtain higher cost savings. In addition, if a battery is used 
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only to decrease the maximum power peaks, the storage can be controlled to 
discharge when the power attempts to rise higher than that at an earlier peak. 
Forecast-based control with maximum power peak decreasing control increases 
benefits when power peaks can be forecasted, and storage is not used unnecessarily. 
Further, a forecast-based control algorithm is necessary when market-price-based or 
combination control is used. 
 
PV production can be forecasted accurately using solar radiation models for tilted 
panels, as reported in publication [P1]. Cloudiness and shading affect the errors in 
the PV production forecast; however, the total errors continue to be relatively small. 
Load forecasting is a considerably more challenging task. The load forecasting model 
is based on a customer’s historical consumption data and the outdoor temperature 
[88]. All customers can generate individual load forecasts. The temperature-
corrected historical consumption data is stored in memory so that every hour of the 
day has its own average value from the corresponding previous days. Weekdays, 
Saturdays, Sundays, and weekdays that fall on public holidays are stored separately 
in the memory. Temperature corrections were performed using the temperature 
dependence of the load. A temperature correction is made in the opposite direction 
by forming the load forecast, and the forecasted value corresponds to the average 
value on a similar day at the prevailing temperature. 
 
Load forecasts always include error. In the method used in this thesis, the average 
mean absolute error (MAE) is ~0.8 kW for an hourly load in publication [P5]. Even 
if the error is relatively low, it can be very high at some hours, and therefore, 
forecasting the peaks is very difficult. Publication [P5] studies the effect of the error 
level on the potential cost savings with BESS. The load profile of a customer strongly 
affects the forecasting error level, i.e., a repetitive and flat load profile is considerably 
easier to predict than a strongly fluctuating profile. Conversely, a high variation 
increases the need for storage and potential cost savings. The results presented in 
publication [P5] show that the control algorithms perform well with load forecasts, 
including errors. If the predictions are errorless, a longer optimization period and 
linear programming in the optimization can yield better results; however, not in a 
realistic scenario. 



 

24 

Therefore, two cycles per day represent the maximum usage of the battery, which 
does not decrease its lifetime. 
 
The control becomes more challenging when storage is used for several control 
targets. Controlling needs can be opposite for different targets. Publication [P5] 
closely studied the challenges of combined control. The combination becomes 
simpler when we can organize control targets in the order of importance. Decreasing 
the maximum power peaks provides high benefits with low storage usage; however, 
the entire benefit can be lost if the control fails even once. Therefore, the importance 
of decreasing the maximum peak power is the highest. Moreover, increasing self-
consumption provides relatively high benefits; however, failing a few charging or 
discharging periods does not dramatically affect the total benefits. Thus, the 
importance of increasing self-consumption has the second highest importance. 
Market-price-based control requires many cycles; however, its benefits are still 
relatively low. In addition, every cycle is individual and does not affect the others. 
Thus, the importance of market-price-based controls is the lowest. If all control 
targets are used, the primary control targets decrease the maximum power peaks in 
winter, and the secondary control targets increase self-consumption during other 
times. Further, the same battery can be used for market-price-based control when 
charging is timed for low-price times and discharging is timed for high-price times. 
Other control acts of these market–price-based controlled pairs can lead to other 
control targets, such as decreasing maximum peaks. The combination of control 
targets increases with the importance of accurate forecasting. 

3.6 Utilization of forecasting in control 
 
We cannot precisely determine the load or production profiles for the future. 
However, control must be based on future values so that storage can be controlled 
to prepare for future control acts. Optimization algorithms attempt to obtain the 
best possible storage usage profile for the optimization period by forming a new load 
profile for minimizing electricity costs. None of the control targets required forecast-
based control. If storage is used only to increase self-consumption, it can be 
controlled to always charge when the production is higher than consumption and 
discharge immediately when the consumption surpasses production. However, this 
does not lead to an optimal solution and utilizes forecasts for timing discharge better. 
Further, it is possible to obtain higher cost savings. In addition, if a battery is used 

 

25 
 

only to decrease the maximum power peaks, the storage can be controlled to 
discharge when the power attempts to rise higher than that at an earlier peak. 
Forecast-based control with maximum power peak decreasing control increases 
benefits when power peaks can be forecasted, and storage is not used unnecessarily. 
Further, a forecast-based control algorithm is necessary when market-price-based or 
combination control is used. 
 
PV production can be forecasted accurately using solar radiation models for tilted 
panels, as reported in publication [P1]. Cloudiness and shading affect the errors in 
the PV production forecast; however, the total errors continue to be relatively small. 
Load forecasting is a considerably more challenging task. The load forecasting model 
is based on a customer’s historical consumption data and the outdoor temperature 
[88]. All customers can generate individual load forecasts. The temperature-
corrected historical consumption data is stored in memory so that every hour of the 
day has its own average value from the corresponding previous days. Weekdays, 
Saturdays, Sundays, and weekdays that fall on public holidays are stored separately 
in the memory. Temperature corrections were performed using the temperature 
dependence of the load. A temperature correction is made in the opposite direction 
by forming the load forecast, and the forecasted value corresponds to the average 
value on a similar day at the prevailing temperature. 
 
Load forecasts always include error. In the method used in this thesis, the average 
mean absolute error (MAE) is ~0.8 kW for an hourly load in publication [P5]. Even 
if the error is relatively low, it can be very high at some hours, and therefore, 
forecasting the peaks is very difficult. Publication [P5] studies the effect of the error 
level on the potential cost savings with BESS. The load profile of a customer strongly 
affects the forecasting error level, i.e., a repetitive and flat load profile is considerably 
easier to predict than a strongly fluctuating profile. Conversely, a high variation 
increases the need for storage and potential cost savings. The results presented in 
publication [P5] show that the control algorithms perform well with load forecasts, 
including errors. If the predictions are errorless, a longer optimization period and 
linear programming in the optimization can yield better results; however, not in a 
realistic scenario. 



 

26 

3.7 Energy community model 
 
Investing in energy resources such as PV panels or BESS is often unprofitable or 
even impossible for individual customers. Owners or tenants of apartments in 
multiapartment buildings are good examples of such customers. The consumption 
in individual apartments is so low that even small-size resources are unprofitable. In 
addition, implementing resources in multiapartment buildings, particularly if several 
owners want to install a system in the same building, can be difficult. The energy 
resources installed in multiapartment buildings are utilized for common 
consumption by housing companies, such as lighting, warming of common spaces, 
and use of lifts. Possible surplus energy can be sold to the grid; however, the 
compensation price is considerably lower than the cost savings if the same energy is 
compensated for as the purchased energy. From the perspective of energy flow, the 
surplus energy goes straight to consumption of the apartment inside the 
multiapartment buildings. However, the apartments must pay taxes and distribution 
costs from surplus energy because this energy was purchased from the grid, even if 
the energy did not come from the grid. The energy community model enables using 
the energy resources of an apartment building for consumption. The EU Directive 
2019/944 [89] defines an energy community of citizens: Citizens can form an energy 
community for producing affordable energy for its members and increasing energy 
efficiency at the household level. Membership in the energy community is open to 
all citizens, and its primary purpose is not to turn a profit but to produce local 
renewable energy. 
 
Forming an energy community inside an apartment building changes the electricity-
metering infrastructure and ownership of the meters. Fig. 4 describes the difference 
between a typical apartment building, where all apartments have their own meters, 
and the energy resources are connected with common consumption (“building” in 
Fig. 4) based on their own meter, and the energy community model, where the entire 
building uses one meter, and the participants of the energy community have their 
own sub-meters for distributing costs to the participants inside the community. 
Finland’s Electricity Market Act states that every customer must be able to choose 
an energy retailer [90]. This must be considered when forming an energy community. 
All participants must voice their approval to join the energy community, and 
withdrawing from the community must be possible at any time. Other models show 
how an energy community can be formed, e.g., virtually, when the metering 
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infrastructure does not change. The problem with these types of communities is 
identifying how the possible benefits are shared with the participants. 

 

Figure 4.  Electricity metering in a typical apartment building (left) and utilizing an energy community 
model (right) [P3]. 

Forming an energy community increases consumption volume, which increases the 
size of energy resources. These energy resources can be PV panels and energy storage 
(“EESS,” i.e., electrical energy storage system in Fig. 4). In addition, the load profile 
is smoothened when several customers coalesce to form an energy community, 
thereby facilitating the sizing of PV panels. Conversely, this can decrease the need 
for energy storage when the variation is low. Publication [P3] closely studies these 
effects. Publications [91] and [92] studied the economic implications of forming 
energy communities, thereby extending the scope of this thesis. 

3.8 Initial data 
 
This thesis utilizes real-life data obtained from simulations. The load profiles of 
customers played a key role in the simulations. The Studies require numerous 
customers to determine their differences. Data from the smart meters of large 
Finnish DSOs were used. The customers were located in rural areas or small towns, 
and the data included over 8000 customers, from which, suitable customers were 
selected for each study. Publication [P1] used metered data from 2010–2013, and 
publications [P2–P3], [P5], and [P6] used newer data (2014–2016) from these same 
customers. These data were measured at hourly intervals. In addition, measurements 
from individual buildings were used. Publication [P1] used measured data from 2013 
with an average 6-s time step from one single-family household for testing 
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continuous control. Publication [P3] utilized four years (2013–2016) of hourly data 
from a multiapartment building in Tampere, Finland. Another publication [4] used 
data from three detached houses outside the city of Tampere. These data were 
measured in 2018 at a one-minute interval. 
 
For modelling, the PV production utilized solar irradiation measures from an open 
data source at the Finnish Meteorological Institute [61]. Electricity prices were 
crucial for calculating the economic benefits. This thesis utilized the distribution grid 
tariffs from the same DSO where the consumption data were measured. Further, 
the simulations utilized market-price-based energy retailer contracts. The used 
market prices included the day-ahead prices in Finland during the study periods [67]. 
All used data were timed so that in the study cases, the data were from a similar 
period and timed together so that each data point was from the same studied hour. 
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4 RESEARCH RESULTS 

This chapter presents the main results from the publications of this thesis and 
analyses some results for better corresponding to the scenario during the “energy 
crisis” (2021–2022), which significantly affects electricity prices. The results were 
used to answer the research questions posed in this study. 

4.1 Increasing the self-consumption of photovoltaics 

The profitability of self-consumption depends on the price difference between the 
purchase and compensation prices, which a customer can obtain when selling 
surplus energy to the grid. The amount of surplus energy depends on the differences 
between the load and production profiles, particularly on the size of the PV system. 
A larger PV system size increases the amount of surplus energy, whereas the amount 
of self-consumed energy increases. The share of surplus energy increased with an 
increase in the PV system size. In a PV system, the sizing is determined when the 
benefits from self-consumption are the highest compared to the monetary losses 
caused by surplus energy. Examples in Fig. 5 show that increasing the size of the PV 
system is beneficial because the green area expands faster than the red area. With 
“PV 1,” the entire production goes to self-consumption. When the size of the PV 
system increases, the green area grows faster than the red area until the size of “PV 
2,” where “PV 2” corresponds to the ideal size of the PV. Subsequently, with “PV 
3,” the red area grows faster than the green area when the surplus energy increases 
more than the self-consumption. For all customers, the load profile is an individual, 
and the production profiles change daily based on the cloudiness and day of the year. 
Therefore, the exact sizing requires data from the entire year and simulations with 
this data.  
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Figure 5.  Typical load profile of a customer and three PV production profiles for different PV sizes 
[P3]. 

The exact size of the PV system depends on the cost of the system. The cost savings 
increased almost linearly when the green area in Fig. 5 increased faster than the red 
area. Similarly, when the red area expands faster than the green area, the increase in 
savings is almost linear but slower than that when the green area increases faster. 
Fig. 6 illustrates this scenario. Further, we can assume that the annual cost of a PV 
system (per lifetime of the system) increases linearly as a function of the nominal 
power of a PV system. Three possible solutions exist for determining the optimal 
PV cell size. If the yearly PV costs increase faster than the annual cost savings when 
most of the production is self-consumed, the PV system is unprofitable. If the annual 
cost increase in a PV system is lower than the annual cost savings when most of the 
output is surplus energy, the PV system can be so large that installation is possible. 
In a typical scenario, the increased speed of the annual costs of a PV system is 
between these two lines when the optimal PV size can be determined from the 
cutting point of these two annual cost savings lines (d in Fig. 6 when the difference 
k is the highest).  
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Figure 6.  Basic principle of PV sizing [P3]. 

4.1.1 Battery energy storage system 

It is possible to increase the amount of self-consumption using the BESS. The 
Surplus energy can be stored and used later when required. Fig. 7 shows an example 
from one day when the BESS is used to modify the load profile of a customer. All 
surplus energy (negative power) was stored and used in the evening. In this example, 
the customer had only one kWp PV panel to study the impact of storage. The 
measurement interval in this test was six measurements per min. Considerably longer 
simulations are required to study the economic implications. 
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Figure 7.  Example load profiles of customers (simulated electricity power with 25 measurements per 
hour) that have small-scale PV production with and without storage [P1]. 

Economic benefits of increasing self-consumption have been studied in the 
publications of this thesis from many perspectives. Publication [P1] studied the rise 
in self-consumption using market-price-based control. The results indicated that, for 
every customer who can be found, the size of the PV system when cost savings are 
the highest is related to the system costs. The results indicate that the increase in the 
benefits from a growing battery size decreases quickly, i.e., the highest benefits can 
be achieved with small battery sizes because the investment costs of the battery 
increases faster than the costs of the benefits. This result motivated the detailed 
studies in publication [P3]. The results in publication [P1] show that the profitability 
of BESS with possible cost savings is so low that the investment in BESS in 2016 is 
profitable only in very rare instances. Thus, many factors have changed, e.g., 
investment prices of BESS have decreased, lifetime of batteries have increased, and 
electricity pricing has changed. In addition, the studies in publication [P1] focused 
only on detached houses. 
 
The results of publication [P3] showed that using a BESS increased the size of the 
PV system. Using BESS creates more possibilities and flexibility in utilizing self-
produced energy; however, it does not increase the self-consumption rate when the 
PV system is optimally sized. This implies that we can increase the PV production 
when we can avoid surplus energy feeding into the grid, which goes straight to self-
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consumption by increasing the system size. This indicates that the optimal PV system 
size depends on the size of the BESS. In other words, the BESS should be sized 
first, and the PV system should be sized with a usable BESS capacity. An example 
in publication [P3] shows that the optimal PV system size can be increased by 50% 
using BESS. However, this increase is often lower. Currently, the investment costs 
of BESS are so high that using a PV system without BESS is more profitable than 
using one with it, even if BESS has many positive effects, such as a decrease in the 
PV grid feeding and total energy purchase from the grid. High taxes and volumetric 
distribution fees increase the incentive to use BESS for increasing self-consumption. 
Conversely, low electricity prices disincentivize investments in energy resources. 
Electricity pricing (including pricing models and price levels) plays a key role in the 
profitability of increasing the self-consumption of PV with BESS; the investment 
costs and battery features also impact profitability. 

4.1.2 Demand response with electric heating 

DR operations can be used for energy storage. In publication [P6], using the electric 
heating of the building to store energy in its mass was studied as energy storage for 
increasing the self-consumption of PV production, which was compared with BESS 
in publication [P6]. The results indicated that electrically heated houses in Finland 
have a thermal capacity where the surplus PV energy can be stored. The amount of 
energy that can be stored depends on the indoor and outdoor temperature 
differences and the extent of indoor temperature changes. The highest availability of 
surplus energy occurs in the summer, when increasing the indoor temperature is 
impossible because the outdoor temperature is also high. Further, the indoor 
temperature rapidly makes the enclosure more intolerable. Wintertime has the 
highest heating demand when storing surplus energy; however, the surplus energy is 
unavailable during winter. Therefore, spring and autumn are the most critical times 
for storing surplus energy in the building. 
 
There is high variation among customers in terms of their thermal capacity and heat 
loss coefficient. These variations, along with the load profile of the customer, 
strongly affect the amount of surplus energy that can be stored by the building of 
the customer. Only a few customers from the study group stored a similar amount 
of energy that can store over 4 kWh BESS when we let the indoor temperature to 
change to a maximum of 1 °C; for most customers (over 90%), the corresponding 
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There is high variation among customers in terms of their thermal capacity and heat 
loss coefficient. These variations, along with the load profile of the customer, 
strongly affect the amount of surplus energy that can be stored by the building of 
the customer. Only a few customers from the study group stored a similar amount 
of energy that can store over 4 kWh BESS when we let the indoor temperature to 
change to a maximum of 1 °C; for most customers (over 90%), the corresponding 
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BESS size is under 1.5 kWh. However, approximately half of the customers can store 
heat, and more than 1 kWh of BESS can store surplus energy. Small BESS sizes 
provide relatively high profitability, and therefore, the following question arises: 
“Can DR with electric heating demand replace the need for BESS?” The results in 
publication [P6] show that the benefit is almost equal to the sum of these individual 
benefits when the BESS and DR with electric heating are used together, which 
implies that the BESS and DR with electric heating store surplus energy at different 
times. Indeed, some overlaps exist; however, the capacities of the others can be used 
later. The comparison shows that when BESS and DR with electric heating are 
controlled as primary and secondary controls, the benefit is higher when the surplus 
energy remains after BESS operations. Further, the results indicate that the first 
degree of decrease in indoor temperature provides many more benefits than the 
second degree, and therefore, the benefits from the former start increasing 
considerably faster than the benefits from the latter. 

4.1.3 Effect of metering interval 

Changing the metering interval from 1 h to 15 min periods affects how the load and 
production profiles suit each other, as indicated in publication [P4]. Variation 
between periods will be considerably higher when the day is divided into 96 periods 
instead of 24, thereby increasing the risk that quarter-hourly netted production is not 
timed with quarter-hourly netted loads as well as with hourly netted production and 
loads. This change decreases the profitability of PV production because it increase 
the amount of surplus energy. Simultaneously, the profitability of the BESS is used 
for increasing self-consumption because more surplus energy exists for storage. 
 
Publication [P4] studied the effects of different metering periods: hours, quarter-
hours, and minutes. A 1-min period was studied as an example of a scenario in which 
the metering period was very short. The results of the comparison for PV system 
profitability as an average value of three different typical detached houses in Finland 
are shown in Fig. 8, where the NPVs are studied with two PV sizes (2 and 3 kWp), 
two PV system lifetimes (15 and 30 years), and two possible discount rates (1% and 
3%). Fig. 8 shows the investment costs of the PV system at three different price 
levels. Further, Fig. 9 shows similar results for the BESS with two system sizes (2 
and 6 kWh) and two system lifetimes (8 and 15 years). The BESS investment costs 
at the two price levels are also presented. These results support the theory that the 
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profitability of the PV decreases, and the profitability of the BESS increases over 
shorter metering periods. The effect on the profitability of the PV is not dramatic; 
however, that on the profitability of BESS is relatively higher. However, the lifetime 
of the BESS must be high, and the investment price must be very low for it to be 
profitable. In the near future, reaching low retail prices for BESS systems will be 
impossible, and these systems can profit customers only when used to increase self-
consumption. 
 

 

Figure 8.  Net present value of PV lifetime benefits with different metering intervals and three 
possible investment prices for 2 and 3 kWp PV systems. Two possible lifetimes (15 and 30 
years) and discount rates (1% and 3%) are used [P4]. 

 

Figure 9.  Net present value of BESS lifetime benefits with different metering intervals and three 
possible investment prices for 2 and 6 kWh BESS. Two possible lifetimes (15 and 30 
years) and discount rates (1% and 3%) are used [P4]. 
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4.2 Market-price-based control 

 
Using BESS only for market-price-based control is unprofitable when considering 
battery losses, high investment prices, and electricity market prices in the last decade. 
The annual benefits are only a few tens of euros per customer with decent battery 
sizes. Therefore, the investment cannot pay for itself before the lifetime of the 
battery ends, as suggested in publications [P1 and P5]. In addition, this control target 
requires an accurate control system and load forecasting, as reported in publication 
[P5]. Market-price-based control can be used with other control targets, where it can 
yield extra benefits. In addition, the variation in market prices has increased 
significantly over the last few years because of the increasing amount of wind power 
production and energy crisis. Fig. 10 shows the largest difference between the highest 
and lowest daily prices over the last decade. The variation is very low before 2021; 
however, it strongly increases in the last two years. 
 

 

Figure 10.  Highest difference between the highest and lowest prices of the day in Nord Pool 
electricity day-ahead markets (area price of Finland) between the beginning of 2013 and 
the end of 2022. 

We can evaluate the potential of the annual cost savings of the market-price-based 
control when simulating the load that has shifted from the highest price time to the 
lowest price time of the day. Fig. 11 shows theoretical annual cost savings with a 5-
kWh shift in different years over the last decade. This does not indicate the exact 
cost savings of a specific customer because the load profiles of the customers affect 
the results; however, it indicates the level of potential savings. Before 2021, the 
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savings varied around 50 €, which means that BESS is unprofitable for market-price-
based control, even for the lowest possible investment costs, as discussed in 
publication [P1]. The potential savings from 2021 can make the BESS profitable if 
the investment costs are low, and the potential savings from 2022 can make the 
BESS very profitable for market-price-based control. The BESS requires at least 
similar years as 2021 during the entire battery lifetime (8–15 years) to be used 
profitably for market-price-based control. The load profile of the customer should 
be suitable, and the investment cost of the BESS should be low as discussed in 
publication [P1]. 

 

Figure 11.  Theoretical annual cost savings when 5 kWh is shifted from the day’s highest to lowest 
price time. 

4.3 Decreasing the maximum peak powers 

The profitability of decreasing the maximum peak power using BESS depends on 
the amount of the demand charge component (€/kW) in the distribution tariff. 
Although discussions on power-based tariffs are beneficial, only a few DSOs have 
been implemented for small-scale customers in Finland [65]. For large-scale 
customers, a low-voltage power tariff that includes a demand charge has been widely 
used. The level of these demand charges is relatively low for many reasons, e.g., the 
basis of the demand charge can be difficult for customers to understand, DSOs 
attempt to increase the weight of basic charges (€/month), and the demand charge 
is sensitive to changes in load profiles of the customers, which can cause significant 
changes in costs of the customers and the incomes of DSOs. Several models showed 
how the demand charge is defined. Publication [P2] studied four power-based tariff 
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models. DSOs’ most commonly used model is the power tariff, which has a demand 
charge (€/kW) parallel to a basic (€/month) and volumetric charge (c/kWh). Other 
possible models include power limits or power steps, which define when a higher 
price should be paid or when a demand charge does not have to be paid. 
 
Some DSOs define the maximum demand for every month separately, while others 
use the highest demand of the sliding year. Fig. 12. shows that the simulated demand 
decreases with a decent-sized BESS (6 kWh battery) for a group of customers (1525) 
when the demand is defined monthly or yearly. The maximum power decrease in 1 
h was ~4 kW when the storage losses and C-rate were considered. Further, ~80 
customers decreased their maximum amount annually. None of the customers 
decreased their maximum amount every month; however, a few were very close. In 
the yearly case, there were few customers who could not reduce the maximum 
demand at all (<100 customers). In these cases, the highest peak follows the earliest 
highest peak so that the battery is empty at the highest peak and when the load 
forecasting cannot predict the peak. This scenario occurs in the monthly case; 
however, this occurring every month for the same customer is highly unlikely, and 
therefore, the variation in the maximum power decrease between the customers is 
lower in the monthly case than that in the yearly case. Conversely, the monthly case 
requires many more cycles (~500 annual cycles on average) than the yearly case (less 
than 100 annual cycles on average), indicating that the battery ages faster, as indicated 
in publication [P2]. 

 

Figure 12.  Demand decreases with BESS (6 kWh, 0.7 C) for 1525 customers’ load profiles when the 
demand is defined as monthly or yearly [P2]. 
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For evaluating the profitability of the BESS to decrease the maximum peak power, 
the yearly benefits and investment costs of the BESS need to be considered. Most 
customers can obtain an ~ 200 €/a cost savings in the study done in P2 by decreasing 
the maximum peaks with BESS when the components of the power tariff are 
calculated to correspond to the cost structure of the DSO[P2]. Indeed, considerable 
variation exists between customers, and the cost savings vary between 0 and 340 €/a, 
which means that the average investment costs of BESS for the average customer 
are slightly lower than the lifetime benefits. Thus, in most cases, BESS will be 
profitable when used to decrease maximum peak powers. The demand charge 
components in tariffs of the DSOs are considerably lower than they could be, 
thereby making the BESS unprofitable. 

4.4 Combining control targets 

The profitability of the BESS is poor, or in the best case, weak, when used for 
individual control targets. As reported in publication [P5], combining different 
control targets increases the profitability of the BESS. Combining controls makes 
controlling the BESS more challenging because it can vary the needs of different 
targets. The BESS needs to be empty to store surplus energy and decrease the 
maximum peaks when attempting to increase the PV production of self-
consumption. Further, the BESS should be full for discharging during peaks. The 
highest peaks and availability of surplus PV energy are timed differently so that both 
targets can be combined. Market-price-based control can be combined with other 
targets if it has the capacity after other targets. Combining controls also requires 
accurate load forecasting, as discussed in publication [P5]. 
 
Combining market-price-based control with the target of increasing the self-
consumption of surplus PV energy can make the BESS investment profitable when 
the load profile of the customer and electricity pricing are suitable, as discussed in 
publication [P1]. The market price variation should be sufficiently high, and the load 
profile of the customer should not be similar to the production profile. Combining 
market-price-based controls with decreasing maximum peak powers increases the 
profitability of BESS when the charging time of a battery during a high-price time 
can be measured, as discussed in publication [P2]. Combining other targets with 
decreasing maximum peak powers significantly increases the risk of control failure, 
and the potential benefits from power decrease are lost when the load forecast is not 
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ideal. The highest benefits can be achieved when all control targets are combined; 
however, this increases the risk of losing benefits because the control fails with 
nonideal load forecasting, as discussed in publication [P5]. 
 
Combining different control methods such as BESS and DR using the electrical 
heating systems of the building, is possible as reported in publication [P6]. The 
competition between the different methods is minor, even when the methods are 
used on the same control targets. Combining different methods (BESS and DR) can 
slightly decrease the profitability of BESS. Further, combining different methods can 
reduce the risk of failure to control because of the errors in the load forecast when 
a backup solution for another method exists. 

4.5 Energy community 

The formation of an energy community has several benefits. An energy community 
allows apartment owners and tenants to participate in energy self-production and 
increase the flexibility of the power system. Without an energy community, the DSO 
can charge for energy transfers inside an apartment building, e.g., from PV panels to 
the consumption of the apartment. Forming an energy community can increase the 
profitability of investing in energy resources for apartment buildings. Conversely, in 
an energy community, there is a crossing between the load profiles of customers, 
which can smooth the variations in the load profile. This smoothing occurs when 
there is still a typical variation in the load profile; however, the loads are higher in 
the profile, which indicates that there is a need for storage capacity using different 
control targets. 
 
Forming an energy community increases the total consumption of one customer, 
compared to that of several individual customers. This can lead to a scenario where 
the customer is no longer a small customer from the perspective of the DSO, and 
the tariff used corresponds to the tariff for small industries (low-voltage power 
tariff). The tariff change introduces new incentives for the BESS; e.g., the new tariff 
includes a demand charge. In addition, the total cost of the basic charge usually 
decreases significantly when several contracts change to one contract. Further, 
metering and billing within the energy community incur additional costs. Higher total 
consumption affects the sizing of energy resources and removes the possible 
limitations of market-price-based control, i.e., discharging during a high-price time 

 

41 
 

is higher without the risk of grid feeding. The results of P3 show that, in an example 
case using the energy community model, the PV system can be sized to double its 
size, and if BESS is used, the PV system can be sized to three times larger than the 
original case, where the PV production can be utilized only in common consumption 
without BESS, as indicated in publication [P3]. 
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5 SUMMARY AND CONCLUSIONS 

This chapter presents a discussion, which includes a deep analysis of the methods 
used and possible error sources that can affect the utilization and generalization of 
the results. Finally, the contributions of this study are discussed. This conclusion 
answers the research questions based on the results of the study. Finally, possibilities 
for utilizing the results of this study are discussed. 

5.1 Discussion 

This thesis examined the results obtained using simulations with actual data. A 
simulation model was developed for this thesis and included several components. 
All components may have inaccuracies. Further, a model never exactly corresponded 
to reality. All models used in this thesis were designed to model actual and possible 
scenarios. The PV and battery models were constructed using proven methods. 
These models included errors; however, in the presented references, they were 
verified carefully. Further, the PV model was verified with real data in publication 
[P1] by the author of this thesis, who stated that the model was suitable for the 
conditions in Finland. 

 
This thesis often suggests that the load profile of a customer affects the results. Using 
a limited number of customers in the study group implies that the results do not 
represent all possible customer load profiles. Many customers were used, and the 
differences among them were studied to minimize the effect of this lack of 
representation. The customers studied represent typical Finland customers. Further, 
the load profiles correspond well with typical customers in Nordic countries, 
whereas a lower heating demand needs to be considered if a customer is from the 
southern area. Similarly, the PV production profile differs when moving southward. 
A significant change in profiles between summer and winter is typical in Nordic 
countries. In addition, the results vary across countries. The profiles in southern 
Finland differed slightly from those in northern Finland. The data used in this thesis 
were obtained from central Finland. 
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The electricity prices and systems used (i.e., PV and BESS), are critical and sensitive 
to the results. The studies in this thesis utilized distribution tariffs in the same area 
where the data were measured. Tariffs change continuously, thereby affecting the 
results. This thesis uses market-price-based energy retailer contracts. The market 
prices vary greatly, and this variation increased strongly, especially after 2021. Studies 
on the publications in this thesis were conducted using data before 2021. Therefore, 
the effects of market prices over the last decade has been studied. Changes in market 
prices are difficult to forecast, and the highest price levels are probably over; 
however, the high price variations will remain permanent in the near future. 

5.2 Research contributions 

The contributions of this thesis are presented below: 
 
• Developed a simulation model, including accurate PV and BESS models, to 

study residential buildings with different energy resources. 
• Designed a BESS control algorithm to minimize electricity costs with 

market-price-based energy retailer contracts and power-based tariffs for the 
DSO. 

• Developed a method for sizing PV systems in residential buildings while 
considering possible energy storage. 

• Found the relationship between the level of PV self-consumption and 
economic benefits by utilizing a PV system and BESS sizing while 
controlling BESS to maximize self-consumption.  

• Developed a method to evaluate the flexibility of electrical heating in 
residential buildings that utilize only the load profile measured by a smart 
meter of the DSO and the outdoor temperature measurements. 

• Produced knowledge for end users and service providers regarding factors 
that affect the profitability of BESS investments. 

• Produced knowledge for DSOs on how tariff structures should be modified 
to steer customers to alter their load profile for the benefit of the DSO by 
utilizing BESS. 
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5 SUMMARY AND CONCLUSIONS 

This chapter presents a discussion, which includes a deep analysis of the methods 
used and possible error sources that can affect the utilization and generalization of 
the results. Finally, the contributions of this study are discussed. This conclusion 
answers the research questions based on the results of the study. Finally, possibilities 
for utilizing the results of this study are discussed. 

5.1 Discussion 

This thesis examined the results obtained using simulations with actual data. A 
simulation model was developed for this thesis and included several components. 
All components may have inaccuracies. Further, a model never exactly corresponded 
to reality. All models used in this thesis were designed to model actual and possible 
scenarios. The PV and battery models were constructed using proven methods. 
These models included errors; however, in the presented references, they were 
verified carefully. Further, the PV model was verified with real data in publication 
[P1] by the author of this thesis, who stated that the model was suitable for the 
conditions in Finland. 

 
This thesis often suggests that the load profile of a customer affects the results. Using 
a limited number of customers in the study group implies that the results do not 
represent all possible customer load profiles. Many customers were used, and the 
differences among them were studied to minimize the effect of this lack of 
representation. The customers studied represent typical Finland customers. Further, 
the load profiles correspond well with typical customers in Nordic countries, 
whereas a lower heating demand needs to be considered if a customer is from the 
southern area. Similarly, the PV production profile differs when moving southward. 
A significant change in profiles between summer and winter is typical in Nordic 
countries. In addition, the results vary across countries. The profiles in southern 
Finland differed slightly from those in northern Finland. The data used in this thesis 
were obtained from central Finland. 
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5.3 Responses to the research questions 

This summary answers the research questions of this thesis based on the obtained 
results. The research questions are as follows: 

 
• What variables define the profitability of residential energy storage? 
• How do different incentives affect the control of energy storage? 
• What are the economic risks of the energy storage investment? 
• How does energy storage affect the profitability of photovoltaic energy 

production in the residential sector? 
• How can the profitability of residential energy storage be improved? 

 
However, the profitability of energy storage in residential buildings remains low. 
Profitability depends on three main factors: storage cost, storage system lifetime, and 
benefits during storage. The storage costs include investment and maintenance costs, 
which can be divided along the lifetime of the storage for evaluating the approximate 
yearly costs. Li-ion-based BESS are suitable energy-storage technologies for 
residential buildings. The lifetime of Li-ion batteries has increased in the last decade 
because of the development of manufacturing and better control methods that can 
maintain the health of the batteries. The effects of the control targets on battery 
lifetime should also be noted. The investment costs of BESS rapidly decreased 
during the last decade; however, they have been seen in retail prices, although with 
a delay. The retail prices are expected to decline in the near future. Battery lifetime 
and costs can be considered as almost constant factors, and therefore, when 
increasing profitability, the focus is on maximizing benefits. 
 
Different incentives affect energy storage control. These incentives follow the 
electricity tariffs. The energy storage can increase the self-consumption of small-
scale local energy self-production, e.g., PV production. The benefits depend on the 
difference between the purchase price and compensation from feeding the grid 
surplus energy and the sizing of energy resources. Using energy storage can increase 
the size of a PV system while increasing its profitability. The energy storage can 
decrease the maximum power peaks if a tariff includes a power-based component, 
thereby saving costs and increasing the benefits of storage. The time-of-use tariffs, 
e.g., market-price-based energy retailer contracts, incentivizes shifting loads during 
low-price times. The profitability of using the BESS for individual control targets is 
weak; however, combining different targets will make investments profitable. Using 
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the same storage on different control targets involves a risk in that some benefits are 
lost if control cannot ideally forecast the following loads and production. Even if the 
BESS investment is profitable in theory, the benefits could be difficult to achieve in 
practice. Some of the required storage capacity can be replaced with DR operations, 
e.g., controlling the indoor temperatures with an electrical heating system. 
 
Residential-level energy storage can considerably benefit different actors in a power 
system, making it possible to increase the size of PV systems and increase the local 
fossil-free production. Without local storage, increasing the amount of PV 
production can increase the surplus energy in the grid, thereby posing challenges to 
the DSO in protecting the grid components and sizing the grid. In Finland, DSOs 
cannot bill for transmitting surplus PV energy, and therefore, all customers must pay 
these costs. Using residential BESS can decrease the surplus energy significantly and 
maximum peaks in the grid if the tariff includes a power-based component. The grid 
components are sized based on the maximum power in these parts of the grid. The 
flexibility of the BESS can smoothen the demand in the grid when it is possible to 
make the grid components smaller, thereby making grid construction more 
inexpensive. Further, consumption can be timed with uncontrollable production, 
e.g., wind power, with increasing flexibility, which can smooth the variation in the 
electricity market prices. 
 
Given the positive effects of using a BESS, actors in the power system perform 
supportive acts for residential-level energy storage would be beneficial. DSO tariffs 
can be designed such that decreasing the maximum peaks and avoiding surplus 
energy grid feeding is profitable for customers, thereby implying the right ratio 
between tariff components. This state supports flexible investment. The electricity 
tax increases the incentive for increasing self-consumption; however, supporting 
BESS systems parallel to PV makes it possible to make PV systems considerably 
larger, increasing fossil-free energy production. The profitability of BESS 
investments will increase when investment costs decrease; however, it is possible to 
improve the annual benefits by developing a control system with accurate load 
forecasts. 



 

44 

5.3 Responses to the research questions 

This summary answers the research questions of this thesis based on the obtained 
results. The research questions are as follows: 

 
• What variables define the profitability of residential energy storage? 
• How do different incentives affect the control of energy storage? 
• What are the economic risks of the energy storage investment? 
• How does energy storage affect the profitability of photovoltaic energy 

production in the residential sector? 
• How can the profitability of residential energy storage be improved? 

 
However, the profitability of energy storage in residential buildings remains low. 
Profitability depends on three main factors: storage cost, storage system lifetime, and 
benefits during storage. The storage costs include investment and maintenance costs, 
which can be divided along the lifetime of the storage for evaluating the approximate 
yearly costs. Li-ion-based BESS are suitable energy-storage technologies for 
residential buildings. The lifetime of Li-ion batteries has increased in the last decade 
because of the development of manufacturing and better control methods that can 
maintain the health of the batteries. The effects of the control targets on battery 
lifetime should also be noted. The investment costs of BESS rapidly decreased 
during the last decade; however, they have been seen in retail prices, although with 
a delay. The retail prices are expected to decline in the near future. Battery lifetime 
and costs can be considered as almost constant factors, and therefore, when 
increasing profitability, the focus is on maximizing benefits. 
 
Different incentives affect energy storage control. These incentives follow the 
electricity tariffs. The energy storage can increase the self-consumption of small-
scale local energy self-production, e.g., PV production. The benefits depend on the 
difference between the purchase price and compensation from feeding the grid 
surplus energy and the sizing of energy resources. Using energy storage can increase 
the size of a PV system while increasing its profitability. The energy storage can 
decrease the maximum power peaks if a tariff includes a power-based component, 
thereby saving costs and increasing the benefits of storage. The time-of-use tariffs, 
e.g., market-price-based energy retailer contracts, incentivizes shifting loads during 
low-price times. The profitability of using the BESS for individual control targets is 
weak; however, combining different targets will make investments profitable. Using 

 

45 
 

the same storage on different control targets involves a risk in that some benefits are 
lost if control cannot ideally forecast the following loads and production. Even if the 
BESS investment is profitable in theory, the benefits could be difficult to achieve in 
practice. Some of the required storage capacity can be replaced with DR operations, 
e.g., controlling the indoor temperatures with an electrical heating system. 
 
Residential-level energy storage can considerably benefit different actors in a power 
system, making it possible to increase the size of PV systems and increase the local 
fossil-free production. Without local storage, increasing the amount of PV 
production can increase the surplus energy in the grid, thereby posing challenges to 
the DSO in protecting the grid components and sizing the grid. In Finland, DSOs 
cannot bill for transmitting surplus PV energy, and therefore, all customers must pay 
these costs. Using residential BESS can decrease the surplus energy significantly and 
maximum peaks in the grid if the tariff includes a power-based component. The grid 
components are sized based on the maximum power in these parts of the grid. The 
flexibility of the BESS can smoothen the demand in the grid when it is possible to 
make the grid components smaller, thereby making grid construction more 
inexpensive. Further, consumption can be timed with uncontrollable production, 
e.g., wind power, with increasing flexibility, which can smooth the variation in the 
electricity market prices. 
 
Given the positive effects of using a BESS, actors in the power system perform 
supportive acts for residential-level energy storage would be beneficial. DSO tariffs 
can be designed such that decreasing the maximum peaks and avoiding surplus 
energy grid feeding is profitable for customers, thereby implying the right ratio 
between tariff components. This state supports flexible investment. The electricity 
tax increases the incentive for increasing self-consumption; however, supporting 
BESS systems parallel to PV makes it possible to make PV systems considerably 
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5.4 Further work 
 
The research contributions of this thesis can be utilized widely in scientific and 
practical applications. Future studies can utilize the developed simulation models. 
This model is designed such that new components can be added, thereby making it 
possible to study the effects of different flexible energy resources, e.g., the charging 
of electric vehicles. Further, the simulation model makes it possible to utilize 
different tariffs when the effects of tariff components are widely studied. Further, 
the results of this thesis can be used for the tariff design of the DSO. The DSOs can 
steer customers to utilize energy resources for minimizing the grid impact by 
designing tariffs. A method for evaluating the flexibility of heating demand in 
residential buildings can be widely utilized. For example, this method makes it 
possible to study the potential of interrupting heating during power shortage 
scenarios or the energy efficiency of the buildings. 
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households’ energy usage smaller. A storage could improve the profitability of household level 

electricity production and could also decrease the load in the electricity networks. So far, poor 

profitability has been the greatest barrier to the use of storages. The battery systems prices have 

been high and the benefits difficult to predict. The benefit of the use of storage and the factors 

affecting to the benefits are studied in this paper. For this purpose, a simulator has been designed 

for modelling the energy storage as part of the household’s electricity grid. The control of the 

storage significantly affects to the amount of benefits. The developed control method of the 

simulator aims to maximize the benefits. The simulations took into account the variables that are 

not accurately known when the storage is controlled. For these variables, such as e.g. future 

consumption, various forecasts were formed. Copyright © 2016 Praise Worthy Prize S.r.l. - All 

rights reserved. 
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Nomenclature 

ηcha Battery charging efficiency 
ηdc DC-converters efficiency 
ηdech Battery discharge efficiency 
ηinv Inverter efficiency 
B1 First element of the optimized estimate 

vector 
Bt Storage energy transmission during an hour t 
Beff Efficiency of the storage energy transfer 
Bh Storage cumulative energy transfer 
Bmax Maximum charging power 
Bmin Maximum discharging power 
C Variable electricity costs 
Ct Energy price during an hour t 
Dh Household’s momentary demand 
Dt Demand during hour an t 
Emax Maximum capacity of storage 
Et Amount of stored energy at time t 
G Demand to power grid 
Gmax Maximum power from the grid 
Gt Energy transmission from the grid at time t 
Icha Battery charging current 
p Length of optimization period 
Ph Household’s momentary production 
Pdc Production after DC-converter 
QlithiumC Capacity of lithium-ion battery cell 
Rb Battery internal serial resistance 
Rb_lithium Internal resistance of lithium-ion battery cell 
Scontrol Control signal to storage 
SOC State of charge 
SOCmax Upper limit of SOC 

SOCmin Lower limit of SOC 

SOCt State of charge at time t 
Vb Battery nominal voltage 
Vb_cha Charging voltage 
Vb_lithiumC Nominal voltage of lithium-ion battery cell 

I. Introduction 

Electric energy storage allows the time shifting of 
households’ electricity consumption and more efficient 
use of own production. 

In Finland, the customer can choose the wholesale 
market price based electric energy pricing, where every 
hour has its own price. 

By shifting consumption from expensive hours to 
cheaper hours, it is possible to reduce the price paid for 
electricity energy. In addition, if the customer has their 
own electricity production, a storage allows a greater part 
of this energy to be used for own demand. This is more 
profitable than selling the overproduced energy to the 
grid and so the customer can also reduce the electricity 
price to be paid. These two factors compose the cost 
benefit of the storage and are more closely investigated 
and quantified in this paper. Cost benefit means the 
difference between a customer’s yearly electricity bill 
when the storage system is used versus not used. 

Energy storage enables the use of electricity during 
power outages. In the future, storage control can be given 
to be controlled by the network company, when the 
storage could be used in demand response for the needs 
of the network company [1]. 
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electricity energy. In addition, if the customer has their 
own electricity production, a storage allows a greater part 
of this energy to be used for own demand. This is more 
profitable than selling the overproduced energy to the 
grid and so the customer can also reduce the electricity 
price to be paid. These two factors compose the cost 
benefit of the storage and are more closely investigated 
and quantified in this paper. Cost benefit means the 
difference between a customer’s yearly electricity bill 
when the storage system is used versus not used. 

Energy storage enables the use of electricity during 
power outages. In the future, storage control can be given 
to be controlled by the network company, when the 
storage could be used in demand response for the needs 
of the network company [1]. 
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Also, with new potential power-based transmission 
tariffs a greater cost benefit of the energy storage could 
be obtained [2]. Energy storage capacity can also be used 
for frequency control when the storage control is sold to 
reserve market [3]. Energy storages can also be utilized 
for a microgrid systems in the future [4]. 

These opportunities are kept outside of this paper as 
future studies. Ways to store energy are numerous, but in 
this study only lithium-ion batteries are considered, 
because they have been shown to be the best alternative 
by its characteristics for households’ energy storage in 
the near future [5]. 

The connection of the electrical energy storage to the 
household network used in this study is shown in Fig. 1. 
Production connected with DC-to-DC converter and 
storage connected with bidirectional converter to 
controlled inverter, which are connected to household’s 
electricity network. AC-bar in Fig. 1 present household’s 
connection with the power grid. Production and storage 
system connect to this bar after main fuses and metering. 
In figure, the positive direction shows how different 
components affect the demand from the grid. 

Energy storage systems for households’ use have been 
investigated a lot. Different storage system types have 
been compared and their feasibility for household use 
have been studied, but often efficiency, size or price is 
the biggest problem [5]. Batteries and specially lithium-
ion batteries have proven potential choices for household 
usage and also for PV production [5]-[7]. Optimal battery 
control strategy is an important part of the storage system 
and this has been discussed in many papers [8], [9]. 

The control systems with battery in distribution 
substation usage is discussed in reference [10]. 

Battery control can be part of intelligent control 
strategy of smart buildings, as in reference [11]. Utilizing 
energy storage systems in electricity markets is based on 
maximizing the daily total profit from economic point of 
view [12]. Price changes in The Nord Pool spot market 
makes control system design even more challenging but 
it also makes load shifting possible [13]. 

The cost benefits for load shifting depend on the 
electricity energy price changes between hours of the 
day, and in Finland these changes are Nord Pool’s second 
largest after Denmark [14]. 

In study [14] results show that benefits are lower than 
storage system costs in Finland. In study [14] only 
centralized storages in distribution network are discussed 
and lithium-ion batteries weren’t taken into account. 

 

 
 

Fig. 1. Connecting electrical energy storage to the household’s 
electrical network 

In paper [15] the cost benefits in single-family houses 
in Finland with energy storage and PV have been studied.  

The results of the study show that it is possible to get 
savings for using storage and no differences were found 
between different sizes of storages. The storage sizes are 
10-30 kWh and savings are optimized monthly. 

None of the previous studies took into account all 
storage system losses, differences between customers’ 
consumption and real control system required forecasts 
for the same time. 

This study examines these matters and investigates the 
accuracy of customers’ cost benefits and the variables 
affecting it. 

II. Simulation Model 

The profitability of the electrical energy storage was 
investigated by simulating households’ storage systems 
usage with Simulink® modelling. The control of the 
energy storage is the main issue to maximize the 
utilization of a storage system [16]. 

Control is responsible for the use of storage capacity 
in maximizing the cost benefits. In this case the cost 
benefits mean how much the customer can save money 
by using energy storage. By control we can affect the 
price of electricity variable costs which mean time and 
demand depending price components. In this paper 
optimization is done every simulated hour. 

They correspond to real-life situations. A new 
optimization starts every hour and during an hour that 
must be fixed. 

II.1. Optimization Problem 

The objective of optimization is to minimize the price 
of electricity over a given period of time. 

Variable costs C can be calculated as following: 
 

     
1 1

p p

t t t t t

t t

C D P C B C
 

      (1) 

 
where p is length of optimization period. Dt is electricity 
demand, Pt is self-consumed electric energy Bt is energy 
transmission between storage and household’s network 
and Ct is energy price during an hour t [17]. 

Equation’s variables’ positive and negative directions 
follows Fig. 1, so when storage is discharged, Bt is 
positive. 

All directions have to be seen from the grid. Energy 
price for future hours is known and therefore the 
optimization problem in this case is dividing the demand 
between the coming optimization period hours in such a 
way that C will minimize. Assuming that the customer’s 
consumption and production can’t be influenced, the 
only controlled term in equation (1) whose cost we can 
affect is Bt. When the equation’s first summation is 
constant with respect to Bt, the second summation forms 
the optimization problem. 
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II.2. Constrains of Optimization 

To solve the optimization problem, we need to set the 
solution constraints [17]. For the storage we set capacity 
upper SOCmax and lower SOCmin limits that show how full 
or empty it can be charged or discharged. 

The constraint is in the inequality form: 
 

 100 t
min t max

max

E
SOC SOC SOC

E
    (2) 

 
where Et is the amount of stored energy at time t and Emax 
is maximum capacity of storage. State of charge at time t 
is SOCt. The lower limit is set according to how much 
energy is desired to be a minimum stored for the event of 
failure [6]. 

The upper limit protects the storage from 
overcharging. Constraint presented in equation (2) affect 
the variable Bt which is optimized by the following: 
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eff t

t t
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B B
SOC SOC

E
    (3) 

 
where Beff is the efficiency of the energy transfer to 
storage. In addition to these constraints are set the 
charging Bmax and discharging Bmin speed, and thus 
limited to maximum currents [18]. 

This can be represented as follows: 
 
 min t maxB B B   (4) 

 
Continuous constrains which are described above, 

result from the physical limits. Usually self-produced 
energy isn’t profitable supplied to the grid and it is more 
profitable used in the customer’s own consumption [19]. 

In this case, a constraint can also be set blocking to the 
grid transmission Gt. We can also set a limit for energy 
taken from grid Gmax. As an equation, this can be 
expressed as follows: 
 
 0 t maxG G   (5) 

 
This constraint isn’t strict in this paper’s simulations 

but it is used as a target and energy taken from grid is 
tried to maintain between these limits. In all cases it is 
impossible, so sometimes energy must also be supplied 
to the grid. 

The aim of optimization is to find the estimate that 
minimized equation (1) from the constraints bounded 
area. Constraints (4) and (5) affect each element of 
estimate vector, and don’t form dependencies between 
the elements. Constrain (2) affect elements in accordance 
with Eq. (3), thus establishing a dependency between the 
elements of estimate. This makes the optimization 
problem nonlinear, and such problem solving globally is 
extremely difficult. In problem solving it is necessary to 
use numerical iterative methods, and none of them 
guarantee a solution [20]. 

In addition, when the optimized elements are 
numerous, it means that also a lot of iteration loops are 
needed, and the calculation will be heavy [30][31]. 

Since the optimization in this study has to be done 
indeed number of times, the used method should be as 
effective with processing as possible. For these reasons, 
in this study we used the optimization method which 
quickly and effectively reaches one nearby locale 
estimate for a minimum. For this we design our own 
effective algorithm. 

II.3. Optimization Algorithm 

The optimization algorithm, shown in Fig. 2, is based 
on that always known one certainly allowed estimate 
vector and direction which improves it. The first allowed 
estimate vector is the zero vector which corresponds to 
the situation where the storage is not used at all. 

Estimate vector length is the same as the length of 
optimization period. In this paper the optimization period 
is sliding and this means that the period moves forward 
together with time. An optimization period is always the 
same length with the same amount of hours. The suitable 
length of an optimization period is calculated in the 
results of this paper. 

The estimate vector improved when the element 
whose coefficient Ct is the lowest increased, and vice 
versa. In practice this means that when the price of 
electricity is low, the storage charged and vice versa. 

As illustrated step by step in the flow chart of Fig. 2, 
the algorithm is as follows: 
1. Find the minimum and maximum prices during an 

optimization period. 
 

 
 

Fig. 2. Overall flow chart of the optimization algorithm 
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Also, with new potential power-based transmission 
tariffs a greater cost benefit of the energy storage could 
be obtained [2]. Energy storage capacity can also be used 
for frequency control when the storage control is sold to 
reserve market [3]. Energy storages can also be utilized 
for a microgrid systems in the future [4]. 

These opportunities are kept outside of this paper as 
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storage connected with bidirectional converter to 
controlled inverter, which are connected to household’s 
electricity network. AC-bar in Fig. 1 present household’s 
connection with the power grid. Production and storage 
system connect to this bar after main fuses and metering. 
In figure, the positive direction shows how different 
components affect the demand from the grid. 

Energy storage systems for households’ use have been 
investigated a lot. Different storage system types have 
been compared and their feasibility for household use 
have been studied, but often efficiency, size or price is 
the biggest problem [5]. Batteries and specially lithium-
ion batteries have proven potential choices for household 
usage and also for PV production [5]-[7]. Optimal battery 
control strategy is an important part of the storage system 
and this has been discussed in many papers [8], [9]. 

The control systems with battery in distribution 
substation usage is discussed in reference [10]. 

Battery control can be part of intelligent control 
strategy of smart buildings, as in reference [11]. Utilizing 
energy storage systems in electricity markets is based on 
maximizing the daily total profit from economic point of 
view [12]. Price changes in The Nord Pool spot market 
makes control system design even more challenging but 
it also makes load shifting possible [13]. 

The cost benefits for load shifting depend on the 
electricity energy price changes between hours of the 
day, and in Finland these changes are Nord Pool’s second 
largest after Denmark [14]. 

In study [14] results show that benefits are lower than 
storage system costs in Finland. In study [14] only 
centralized storages in distribution network are discussed 
and lithium-ion batteries weren’t taken into account. 
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in maximizing the cost benefits. In this case the cost 
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by using energy storage. By control we can affect the 
price of electricity variable costs which mean time and 
demand depending price components. In this paper 
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They correspond to real-life situations. A new 
optimization starts every hour and during an hour that 
must be fixed. 
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The objective of optimization is to minimize the price 
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Variable costs C can be calculated as following: 
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where p is length of optimization period. Dt is electricity 
demand, Pt is self-consumed electric energy Bt is energy 
transmission between storage and household’s network 
and Ct is energy price during an hour t [17]. 

Equation’s variables’ positive and negative directions 
follows Fig. 1, so when storage is discharged, Bt is 
positive. 

All directions have to be seen from the grid. Energy 
price for future hours is known and therefore the 
optimization problem in this case is dividing the demand 
between the coming optimization period hours in such a 
way that C will minimize. Assuming that the customer’s 
consumption and production can’t be influenced, the 
only controlled term in equation (1) whose cost we can 
affect is Bt. When the equation’s first summation is 
constant with respect to Bt, the second summation forms 
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II.2. Constrains of Optimization 

To solve the optimization problem, we need to set the 
solution constraints [17]. For the storage we set capacity 
upper SOCmax and lower SOCmin limits that show how full 
or empty it can be charged or discharged. 

The constraint is in the inequality form: 
 

 100 t
min t max

max

E
SOC SOC SOC

E
    (2) 

 
where Et is the amount of stored energy at time t and Emax 
is maximum capacity of storage. State of charge at time t 
is SOCt. The lower limit is set according to how much 
energy is desired to be a minimum stored for the event of 
failure [6]. 

The upper limit protects the storage from 
overcharging. Constraint presented in equation (2) affect 
the variable Bt which is optimized by the following: 

 

 1100
eff t

t t
max

B B
SOC SOC

E
    (3) 

 
where Beff is the efficiency of the energy transfer to 
storage. In addition to these constraints are set the 
charging Bmax and discharging Bmin speed, and thus 
limited to maximum currents [18]. 

This can be represented as follows: 
 
 min t maxB B B   (4) 

 
Continuous constrains which are described above, 

result from the physical limits. Usually self-produced 
energy isn’t profitable supplied to the grid and it is more 
profitable used in the customer’s own consumption [19]. 

In this case, a constraint can also be set blocking to the 
grid transmission Gt. We can also set a limit for energy 
taken from grid Gmax. As an equation, this can be 
expressed as follows: 
 
 0 t maxG G   (5) 

 
This constraint isn’t strict in this paper’s simulations 

but it is used as a target and energy taken from grid is 
tried to maintain between these limits. In all cases it is 
impossible, so sometimes energy must also be supplied 
to the grid. 

The aim of optimization is to find the estimate that 
minimized equation (1) from the constraints bounded 
area. Constraints (4) and (5) affect each element of 
estimate vector, and don’t form dependencies between 
the elements. Constrain (2) affect elements in accordance 
with Eq. (3), thus establishing a dependency between the 
elements of estimate. This makes the optimization 
problem nonlinear, and such problem solving globally is 
extremely difficult. In problem solving it is necessary to 
use numerical iterative methods, and none of them 
guarantee a solution [20]. 

In addition, when the optimized elements are 
numerous, it means that also a lot of iteration loops are 
needed, and the calculation will be heavy [30][31]. 

Since the optimization in this study has to be done 
indeed number of times, the used method should be as 
effective with processing as possible. For these reasons, 
in this study we used the optimization method which 
quickly and effectively reaches one nearby locale 
estimate for a minimum. For this we design our own 
effective algorithm. 

II.3. Optimization Algorithm 

The optimization algorithm, shown in Fig. 2, is based 
on that always known one certainly allowed estimate 
vector and direction which improves it. The first allowed 
estimate vector is the zero vector which corresponds to 
the situation where the storage is not used at all. 

Estimate vector length is the same as the length of 
optimization period. In this paper the optimization period 
is sliding and this means that the period moves forward 
together with time. An optimization period is always the 
same length with the same amount of hours. The suitable 
length of an optimization period is calculated in the 
results of this paper. 

The estimate vector improved when the element 
whose coefficient Ct is the lowest increased, and vice 
versa. In practice this means that when the price of 
electricity is low, the storage charged and vice versa. 

As illustrated step by step in the flow chart of Fig. 2, 
the algorithm is as follows: 
1. Find the minimum and maximum prices during an 

optimization period. 
 

 
 

Fig. 2. Overall flow chart of the optimization algorithm 



 

J. Koskela, A. Rautiainen, P. Järventausta 

Copyright © 2016 Praise Worthy Prize S.r.l. - All rights reserved                                     International Review of Electrical Engineering, Vol. 11, N. 6 

610 

2. Calculate the largest amount of energy that can be 
charged to the battery during the hours when price is 
at minimum and the amount that can be discharged 
from battery during the hours when price is at 
maximum. Calculate first the minimum or maximum, 
it depends SOC. If SOC are closer to upper limit, 
calculate first the maximum price corresponding 
boundary, because then the storage has potential to 
discharge more than charge. Boundaries follow from 
constraints in equations (2), (4), (5) and estimated 
SOC before these hours, which is calculated by 
equation (3).  

3. Update calculated values in corresponding elements 
of estimate vector. 

4. Find the next minimum and next maximum prices, 
when the hours calculated earlier aren’t taken into 
account. 

5. Go back to step 2 and continue algorithm when all 
elements of estimate vector are calculated or stop 
algorithm if profitability falls below the limit. 
Profitability means the difference between maximum 
and minimum prices of step round.  

With this algorithm we didn’t always get the exact 
optimum storage use model and by using iterative 
numerical algorithms, even better results can be obtained.  

Because, the storage control optimization problem 
includes many variables and SOC optimization variables 
depends on each other, iterative numerical algorithms 
have convergence problems. Thus, an effective and fast 
converging algorithm is needed to solve this kind of a 
problem. This algorithm is very effective, because it 
doesn’t need many hard calculations and we can get new 
storage use model very fast. This is a very good feature 
when we need to calculate many customers’ simulations 
for the whole year in short time.  

The errors caused by using this algorithm happens 
only in a few hours of the whole year simulation and it’s 
very small, so error in simulation results is only 
marginal. During the model construction process, we 
tested also many other control or optimization 
algorithms, but with no other algorithm the cost benefit 
was smaller than with the above proposed algorithm, or 
calculations were so heavy that the needed time to get the 
necessary results was not decent. 

II.4. Forecasts 

Control needs to know, how the customer’s 
consumption and self-production will behave in the next 
few hours. Because we can’t know in advance exactly 
the consumption and production, forecasts must be 
formed. Customers’ consumption can be predicted by the 
model which is based on previous consumption and 
outdoor air temperature [21]. Forecast for a simulation 
model is formed with Matlab® function. For forecasting 
production, we used solar radiation modelling which is 
shown in literature [22]. Forecasts form input data for the 
simulator. The accuracy of the forecasts models real-life 
situation. Simulator takes into account forecast errors 

which are equivalent with real life errors. 

II.5. Continuous Control 

The objective of continuous controller is to implement 
a result of the optimization during the hours and monitor 
the compliance of the constraints. Since the actual 
consumption and production are not necessarily in line 
with forecasts, continuous control must continually react 
to actual power measurements. Adjustable variable in 
continuous control is the cumulative energy transfer 
between storage and household’s network Bh, which is 
the cumulative sum of charged and discharged energy of 
storage from the beginning of an hour. 

The first element of the optimized estimate vector B1 
is used for the target value for the continuous controller.  

The aim is to adjust the whole hour cumulative energy 
transfer to the target value. Depending on whether the Bh 
is less than or greater than B1, storage, either charged or 
discharged. The constraint in equation (4) is to limit the 
rate of change of the variable Bh; how high a current the 
storage can charge. Continuous controller gives a signal 
Scontrol to the storage unit, how it has to charge or 
discharge. Maximum charging signal is 1 and maximum 
discharging is -1, otherwise the signal is between these 
figures. Continuous controller must control in addition to 
the basic adjustment also other constraints and take into 
account the exceptional cases. If production exceeds 
consumption, the energy that is produced over own 
consumption is a profitable to charge to the storage rather 
than supply to grid. In this case, the control signal is 
formed: 

 h h
control

max

P D
S

B


  (6) 

 
where Ph and Dh are household’s momentary production 
and demand. However, the control signal maximum is 
still one. The important part of activities of the 
continuous controller is also monitoring storage capacity 
limits. There is derogation compared with Eq. (2), the 
physical limits of storage constraints can be used in 
control. It must be taken into account that, during the 
hours, the available resources can be reduced when 
compared to the limits set in Eq. (2). 

II.6. Battery Modelling 

The energy storage system losses mainly consist of the 
converters and the storage itself. [23] In this paper 
inverter efficiency ηinv is 98 % and DC-converters 
efficiency ηdc is 99 %. Thus, the energy transfer 
efficiency between the network and storage have been 97 
% and self-produced energy storage efficiency is 99 %. 

Energy storage losses occur, during both charging and 
discharging but most of the loss occurs during charging. 
[24] In losses modeling, it can be approximated that the 
battery discharge efficiency ηdech and the charging 
efficiency ηcha is the same. Thus, modeling can be 
performed by a single equation in both directions. The 
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charging efficiency depends on the nonlinearly charging 
current [25]. When the battery doesn’t charge completely 
full or discharge to completely empty, efficiency can be 
expected behave linearly. In this case, the charging losses 
can be modeled by internal serial resistance Rb and that 
can be shown: 

 

 100 b cha b
cha dech

b

V I R

V
 


    (7) 

 

where Vb is battery nominal voltage and Icha is charging 
current. The advantages of modeling to the internal serial 
resistance based model is that the various batteries are 
easy to compare with each other and also aging of the 
battery can be modeled using the same resistance [26].  

For lithium-ion battery modeling we use the internal 
serial resistance Rb_lithium values 0.026 Ω, which is 
resistance of one cell with a voltage Vb_lithiumC 3.3 V and 
capacity QlithiumC is 2.5 Ah [27]. This cell type is 
LiFePO4, which is suitable for household use because it 
has long cyclic (+4000 cycles) and calendar lifetime (+5 
years) and it also has good safety features [28]. 

Charging and discharging of the electrical energy 
storage systems are modeled based on the battery, 
inverter and converters efficiencies. [24] Battery charge 
can be calculated on the basis of Eq. (3). The efficiency 
of energy transmission Be being obtained by multiplying 
the efficiencies of the ηdc and ηcha. The energy transfer of 
storage Bt is calculated by multiplying the charge current 
Icha and charge voltage Vb_cha, which can be calculated as 
follows: 
 b _cha b cha bV V I R    (8) 

 

Multiplying the maximum charging current Icha_max to 
control signal Scontrol, obtained a momentary charging 
current Icha of the battery. The energy taken into the 
power grid G is determined by a model which based on 
the transmission of energy between storage, consumption 
and production. This is determined by the three options.  

When storage is charged, the energy transmission 
between household and power grid can be presented by 
equation: 
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 (9) 

 

where Pdc is own energy produced by DC. 
The third option is the discharging of the storage, for 

which the equation is as follows: 
 

  inv t dcG B P D      (10) 

III. Initial Data 

Measurements of electricity consumption used for the 
study are hourly measurements of electricity use from 
real customers, which are measured by automatic meter 

reading (AMR) in the area of one Finnish distribution 
system operator’s (DSO) power distribution network. 

Customers have to pay for the electricity energy and 
transmission on the basis of these measurements. 

Measurements have been made during the period 
between June 2010 and December 2013. The 2013 
measurements are used in the simulation as real 
consumption of electricity and earlier measurements are 
used to generate consumption forecasts. A total of 495 
customers are divided into three groups based on their 
consumption type. The first group is a group of electric 
heating customers whose houses are heated by direct 
electric heating; there are 270 customers in this group. 
The second group is electric storage heating customers 
whose houses are heated by electric storage heaters; there 
are 53 of them. The third group is the oil-heating 
customers, who don’t use electricity for heating the 
house and there are 172 of them. For testing the 
operations of the continuous controller and to view the 
changes occurring during an hour, the electricity 
consumption data measured from a single family house is 
used. In this the measuring frequency is one measuring 
about 6 seconds. Different customers’ behavior during 
the hours varies a lot, so the examination of a single 
customer is only indicative. The measurements are made 
in Kontiolahti during the period between June 2013 and 
September 2013, the measurements are used in the 
Current Cost - measuring equipment. In these 
measurements we can see variations and how fast power 
changes in household electricity consumption happens 
during the hour. Solar power production measurements 
are based mainly on the measurements of radiation which 
have been made on the roof of the Tampere University of 
Technology building with the radiation sensors. [29] 
Horizontal solar radiation is measured by CMP22 
Pyrometer and the incident radiation to 45 degrees tilted 
level has been measured by SPlite 2 Photodiode sensor. 
The solar panels’ azimuthal angle is 22 degrees from the 
south to the east. Radiation measurements have been 
made during the years 2012 and 2013. The measurements 
are mostly minute averages, but one day measurements 
have been made at intervals of seconds into tilted 
position level. Because production has to be calculated 
from the measurements of radiation, calculations caused 
errors. For this reason, the actual produced apparent 
power of the panels of a few days is also measured.  
These measurements are the products of 17 series 
connected panels, with a total summarized power 3.23 
kW in the maximum power point. The panels are the 
model NP190GK and one panel covers an area of 
approximately 1.45 m2. Measurements have been made 
on three different days for weather type and these types 
are cloudy, partly cloudy and clear. 

IV. Verification of the Simulation Model 

When simulating situations corresponding to reality it 
must be taken into account that even if we have 
electricity consumption and production data available for 
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2. Calculate the largest amount of energy that can be 
charged to the battery during the hours when price is 
at minimum and the amount that can be discharged 
from battery during the hours when price is at 
maximum. Calculate first the minimum or maximum, 
it depends SOC. If SOC are closer to upper limit, 
calculate first the maximum price corresponding 
boundary, because then the storage has potential to 
discharge more than charge. Boundaries follow from 
constraints in equations (2), (4), (5) and estimated 
SOC before these hours, which is calculated by 
equation (3).  

3. Update calculated values in corresponding elements 
of estimate vector. 

4. Find the next minimum and next maximum prices, 
when the hours calculated earlier aren’t taken into 
account. 

5. Go back to step 2 and continue algorithm when all 
elements of estimate vector are calculated or stop 
algorithm if profitability falls below the limit. 
Profitability means the difference between maximum 
and minimum prices of step round.  

With this algorithm we didn’t always get the exact 
optimum storage use model and by using iterative 
numerical algorithms, even better results can be obtained.  

Because, the storage control optimization problem 
includes many variables and SOC optimization variables 
depends on each other, iterative numerical algorithms 
have convergence problems. Thus, an effective and fast 
converging algorithm is needed to solve this kind of a 
problem. This algorithm is very effective, because it 
doesn’t need many hard calculations and we can get new 
storage use model very fast. This is a very good feature 
when we need to calculate many customers’ simulations 
for the whole year in short time.  

The errors caused by using this algorithm happens 
only in a few hours of the whole year simulation and it’s 
very small, so error in simulation results is only 
marginal. During the model construction process, we 
tested also many other control or optimization 
algorithms, but with no other algorithm the cost benefit 
was smaller than with the above proposed algorithm, or 
calculations were so heavy that the needed time to get the 
necessary results was not decent. 

II.4. Forecasts 

Control needs to know, how the customer’s 
consumption and self-production will behave in the next 
few hours. Because we can’t know in advance exactly 
the consumption and production, forecasts must be 
formed. Customers’ consumption can be predicted by the 
model which is based on previous consumption and 
outdoor air temperature [21]. Forecast for a simulation 
model is formed with Matlab® function. For forecasting 
production, we used solar radiation modelling which is 
shown in literature [22]. Forecasts form input data for the 
simulator. The accuracy of the forecasts models real-life 
situation. Simulator takes into account forecast errors 

which are equivalent with real life errors. 

II.5. Continuous Control 

The objective of continuous controller is to implement 
a result of the optimization during the hours and monitor 
the compliance of the constraints. Since the actual 
consumption and production are not necessarily in line 
with forecasts, continuous control must continually react 
to actual power measurements. Adjustable variable in 
continuous control is the cumulative energy transfer 
between storage and household’s network Bh, which is 
the cumulative sum of charged and discharged energy of 
storage from the beginning of an hour. 

The first element of the optimized estimate vector B1 
is used for the target value for the continuous controller.  

The aim is to adjust the whole hour cumulative energy 
transfer to the target value. Depending on whether the Bh 
is less than or greater than B1, storage, either charged or 
discharged. The constraint in equation (4) is to limit the 
rate of change of the variable Bh; how high a current the 
storage can charge. Continuous controller gives a signal 
Scontrol to the storage unit, how it has to charge or 
discharge. Maximum charging signal is 1 and maximum 
discharging is -1, otherwise the signal is between these 
figures. Continuous controller must control in addition to 
the basic adjustment also other constraints and take into 
account the exceptional cases. If production exceeds 
consumption, the energy that is produced over own 
consumption is a profitable to charge to the storage rather 
than supply to grid. In this case, the control signal is 
formed: 

 h h
control

max

P D
S

B


  (6) 

 
where Ph and Dh are household’s momentary production 
and demand. However, the control signal maximum is 
still one. The important part of activities of the 
continuous controller is also monitoring storage capacity 
limits. There is derogation compared with Eq. (2), the 
physical limits of storage constraints can be used in 
control. It must be taken into account that, during the 
hours, the available resources can be reduced when 
compared to the limits set in Eq. (2). 

II.6. Battery Modelling 

The energy storage system losses mainly consist of the 
converters and the storage itself. [23] In this paper 
inverter efficiency ηinv is 98 % and DC-converters 
efficiency ηdc is 99 %. Thus, the energy transfer 
efficiency between the network and storage have been 97 
% and self-produced energy storage efficiency is 99 %. 

Energy storage losses occur, during both charging and 
discharging but most of the loss occurs during charging. 
[24] In losses modeling, it can be approximated that the 
battery discharge efficiency ηdech and the charging 
efficiency ηcha is the same. Thus, modeling can be 
performed by a single equation in both directions. The 
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charging efficiency depends on the nonlinearly charging 
current [25]. When the battery doesn’t charge completely 
full or discharge to completely empty, efficiency can be 
expected behave linearly. In this case, the charging losses 
can be modeled by internal serial resistance Rb and that 
can be shown: 

 

 100 b cha b
cha dech

b

V I R

V
 


    (7) 

 

where Vb is battery nominal voltage and Icha is charging 
current. The advantages of modeling to the internal serial 
resistance based model is that the various batteries are 
easy to compare with each other and also aging of the 
battery can be modeled using the same resistance [26].  

For lithium-ion battery modeling we use the internal 
serial resistance Rb_lithium values 0.026 Ω, which is 
resistance of one cell with a voltage Vb_lithiumC 3.3 V and 
capacity QlithiumC is 2.5 Ah [27]. This cell type is 
LiFePO4, which is suitable for household use because it 
has long cyclic (+4000 cycles) and calendar lifetime (+5 
years) and it also has good safety features [28]. 

Charging and discharging of the electrical energy 
storage systems are modeled based on the battery, 
inverter and converters efficiencies. [24] Battery charge 
can be calculated on the basis of Eq. (3). The efficiency 
of energy transmission Be being obtained by multiplying 
the efficiencies of the ηdc and ηcha. The energy transfer of 
storage Bt is calculated by multiplying the charge current 
Icha and charge voltage Vb_cha, which can be calculated as 
follows: 
 b _cha b cha bV V I R    (8) 

 

Multiplying the maximum charging current Icha_max to 
control signal Scontrol, obtained a momentary charging 
current Icha of the battery. The energy taken into the 
power grid G is determined by a model which based on 
the transmission of energy between storage, consumption 
and production. This is determined by the three options.  

When storage is charged, the energy transmission 
between household and power grid can be presented by 
equation: 
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where Pdc is own energy produced by DC. 
The third option is the discharging of the storage, for 

which the equation is as follows: 
 

  inv t dcG B P D      (10) 

III. Initial Data 

Measurements of electricity consumption used for the 
study are hourly measurements of electricity use from 
real customers, which are measured by automatic meter 

reading (AMR) in the area of one Finnish distribution 
system operator’s (DSO) power distribution network. 

Customers have to pay for the electricity energy and 
transmission on the basis of these measurements. 

Measurements have been made during the period 
between June 2010 and December 2013. The 2013 
measurements are used in the simulation as real 
consumption of electricity and earlier measurements are 
used to generate consumption forecasts. A total of 495 
customers are divided into three groups based on their 
consumption type. The first group is a group of electric 
heating customers whose houses are heated by direct 
electric heating; there are 270 customers in this group. 
The second group is electric storage heating customers 
whose houses are heated by electric storage heaters; there 
are 53 of them. The third group is the oil-heating 
customers, who don’t use electricity for heating the 
house and there are 172 of them. For testing the 
operations of the continuous controller and to view the 
changes occurring during an hour, the electricity 
consumption data measured from a single family house is 
used. In this the measuring frequency is one measuring 
about 6 seconds. Different customers’ behavior during 
the hours varies a lot, so the examination of a single 
customer is only indicative. The measurements are made 
in Kontiolahti during the period between June 2013 and 
September 2013, the measurements are used in the 
Current Cost - measuring equipment. In these 
measurements we can see variations and how fast power 
changes in household electricity consumption happens 
during the hour. Solar power production measurements 
are based mainly on the measurements of radiation which 
have been made on the roof of the Tampere University of 
Technology building with the radiation sensors. [29] 
Horizontal solar radiation is measured by CMP22 
Pyrometer and the incident radiation to 45 degrees tilted 
level has been measured by SPlite 2 Photodiode sensor. 
The solar panels’ azimuthal angle is 22 degrees from the 
south to the east. Radiation measurements have been 
made during the years 2012 and 2013. The measurements 
are mostly minute averages, but one day measurements 
have been made at intervals of seconds into tilted 
position level. Because production has to be calculated 
from the measurements of radiation, calculations caused 
errors. For this reason, the actual produced apparent 
power of the panels of a few days is also measured.  
These measurements are the products of 17 series 
connected panels, with a total summarized power 3.23 
kW in the maximum power point. The panels are the 
model NP190GK and one panel covers an area of 
approximately 1.45 m2. Measurements have been made 
on three different days for weather type and these types 
are cloudy, partly cloudy and clear. 

IV. Verification of the Simulation Model 

When simulating situations corresponding to reality it 
must be taken into account that even if we have 
electricity consumption and production data available for 
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the entire simulation period, in the actual situation the 
future data can’t be know in advance. For this reason, the 
simulations also need to simulate the errors which result 
from the fact that future consumption can’t be forecast 
perfectly. Forming the production and consumption 
forecasts, we can simulate the situation which is reality 
when we need to solve when energy storage charging is 
profitable and when it isn’t. 

IV.1. Accuracy of Production Forecast 

A solar power production forecast is formed by 
calculating the future theoretical solar radiation for 
parallel horizontal panels tilted 45 degrees, and 
correcting it by using the brightness factor that depends 
on cloudiness. The energy production forecast can be 
calculated from solar radiation forecast. The simulation 
examined different sizes of panels. An example case 
deals with nominal power 3.23 kW of solar panels. 

Production after a single-phase inverter is measured 
from three different weather types of day from the 
summer of 2015. Three days of nearby the same level of 
cloudiness were chosen from over a year of forecasted 
production. Fig. 3 shows the hourly calculated averages 
for the production graphs for three different types of day. 

Forecasts have been multiplied by efficiency 0.85 so 
that the maximum points correlate to the measurements. 

Because the days which are being compared in Fig. 3 
don’t correspond to each other exactly for cloudiness, 
temperature and radiation intensity, also the forecasts and 
measurements don’t correspond exactly. However, the 
figure shows that the production forecasts’ magnitude 
corresponds well to the actual production with a similar 
cloudiness. When the sky is cloudy, radiation intensity is 
more difficult to forecast than when the sky is clear. 

The forecast estimates for production are too small 
when the sun is near the horizon, because the forecast 
doesn’t take into account the possible reflections caused 
by trees and buildings. In this examination we look at the 
production of solar power after the power control and the 
converter, but before the inverter. 

IV.2. Error Caused by Hour Time Step 

Hourly average values in the simulation input data 
cause an error for the continuous controller. In reality, 
consumption and production varies very much during the 
hours. Hourly averages are used for two reasons. First, 
initial consumption data from DSO is hourly averages 
and second. Pricing is also hourly, so this also makes 
calculations easier. The magnitude of the error can be 
estimated by simulating short periods of time with 
shorter discretized time intervals. When we used hourly 
average values and hour time step in simulation the 
shortest time period the simulator can calculate is 0.04 
times to time step. This is caused by the used discrete 
calculation method in Simulink. So, with an hour time 
step, this time period is 2.4 minute. We simulated one 
customer cost benefit for about a two-month period for 

2.4-minute time step and calculated the estimated 
benefits for one year. These results were compared with 
the same customer’s simulated cost benefits for hour 
time step. Fig. 4 shows a comparison between the 
different time steps in such a way that the simulations 
have been used in various sizes of solar panels. Cost 
benefit means the difference in the whole year’s 
electricity price for the customer with and without 
storage. As seen in Fig. 4, use of an hour time step causes 
only a very small error in the results of the simulation. In 
the shorter time step, growth of the cost benefits is more 
stable than hour time step when size of solar panel 
increasing. But the error caused by used time step is only 
few euros. So, we can note that this comparison reveal to 
used hour time step to sufficient accuracy. 

Changes in electricity consumption and production 
can be really fast, so even large changes may happen 
during just minutes. For this reason, we simulated a one-
day simulation for one more customer. We are interested 
to know what happens during one minute. 

So, we simulated storage use during one day with 2.4 
second time step. Fig. 5 shows the results of the second-
level simulation, with and without energy storage system. 

In the simulation, the production of 1 kW solar panel 
is used. This figure is interesting also for the reason that 
here we can see accuracy changes in power from the grid 
side. The graph shows that without storage, power would 
be supplied to the grid especially at midday, whereas for 
example in the evening, a lot of power has to be taken 
from the grid. 

 

 
 

Fig. 3. Measured and forecasted production for three different 
weather type days 

 

 
 

Fig. 4. The simulation time step impact on the cost benefits 
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Fig. 5. Household’s electricity consumption for one customer for one day with storage and without storage 
 

As seen, consumption is much smoother with the 
storage than without and the power doesn’t need to be 
supplied to the grid. When we compare the second-level 
simulation and an hour time step simulation for one day 
and the same customer, the difference of the cost benefit 
is only 0.01 €. This comparison shows the same as the 
simulation with the 2.4-minute time step: by using an 
hour time step we get a good estimate of the whole year 
cost benefits. 

V. The Results of the Simulation 

Amount of customer cost benefits were calculated for 
a simulator. First, we had to find the suitable length of 
optimization time and then we could calculate the other 
results. The most interesting case is how battery size and 
nominal power of solar panels affected the amount of 
cost benefits. Especially, the effect of the battery size is 
very interesting, because size affected storage costs and 
further to the profitability of energy storage. 

In results, the used electric energy pricing system is 
hourly real-time pricing. The price consists of the Nordic 
market price multiplied by value-added tax 24 % and 
added to electricity sales company’s marginal 25 c/kWh. 

If customer sales overproduced energy to grid, they 
would get compensated with the market price minus the 
company’s marginal. In addition, customers have to pay 
transmission payment 6 c/kWh for electricity that they 
buy. Transmission payment includes 2,79 c/kWh 
electricity tax. These are overall prices that are used in 
Finland and these are used in all calculations in this 
paper. 

V.1. Optimization Period 

To determine a suitable length of the optimization 
time, we simulated 12 different customer’s electricity 
consumption over the year by various lengths of 
optimization time. 

Customers are selected from all three groups so that 
the consumption differences between customers are 
maximally large. To avoid errors, the simulations aren’t 
used for forecasts. The used electricity price data is 
hourly market prices for the year 2013. Production data 
was from 2 kW nominal power solar panels and energy 
storage of about 10 kWh lithium-ion batteries. 

The results of the simulation are shown in Fig. 6 and 
in addition the average of the various customers is shown 
with the red line. According to the simulations, the 18-
hour long optimization time had the best cost benefits. 

This result is utilized in this paper. 

V.2. Influence of Battery Size and Nominal Power                

of Solar Panels 

The amount of households’ own production and their 
impact on cost benefits was studied by simulating the use 
of electricity with different size lithium ion batteries and 
various size solar panels of nominal power. 

The group of electric heaters elected to customers by 
total consumption of the year was 18.3 MWh. 

Fig. 6 shows the results of simulations made with the 
2015 market prices. With small solar panels the cost 
benefit will be even lower than without own production. 

 

 
 

Fig. 6. The length of optimization time impact on the cost benefits 
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the entire simulation period, in the actual situation the 
future data can’t be know in advance. For this reason, the 
simulations also need to simulate the errors which result 
from the fact that future consumption can’t be forecast 
perfectly. Forming the production and consumption 
forecasts, we can simulate the situation which is reality 
when we need to solve when energy storage charging is 
profitable and when it isn’t. 

IV.1. Accuracy of Production Forecast 

A solar power production forecast is formed by 
calculating the future theoretical solar radiation for 
parallel horizontal panels tilted 45 degrees, and 
correcting it by using the brightness factor that depends 
on cloudiness. The energy production forecast can be 
calculated from solar radiation forecast. The simulation 
examined different sizes of panels. An example case 
deals with nominal power 3.23 kW of solar panels. 

Production after a single-phase inverter is measured 
from three different weather types of day from the 
summer of 2015. Three days of nearby the same level of 
cloudiness were chosen from over a year of forecasted 
production. Fig. 3 shows the hourly calculated averages 
for the production graphs for three different types of day. 

Forecasts have been multiplied by efficiency 0.85 so 
that the maximum points correlate to the measurements. 

Because the days which are being compared in Fig. 3 
don’t correspond to each other exactly for cloudiness, 
temperature and radiation intensity, also the forecasts and 
measurements don’t correspond exactly. However, the 
figure shows that the production forecasts’ magnitude 
corresponds well to the actual production with a similar 
cloudiness. When the sky is cloudy, radiation intensity is 
more difficult to forecast than when the sky is clear. 

The forecast estimates for production are too small 
when the sun is near the horizon, because the forecast 
doesn’t take into account the possible reflections caused 
by trees and buildings. In this examination we look at the 
production of solar power after the power control and the 
converter, but before the inverter. 

IV.2. Error Caused by Hour Time Step 

Hourly average values in the simulation input data 
cause an error for the continuous controller. In reality, 
consumption and production varies very much during the 
hours. Hourly averages are used for two reasons. First, 
initial consumption data from DSO is hourly averages 
and second. Pricing is also hourly, so this also makes 
calculations easier. The magnitude of the error can be 
estimated by simulating short periods of time with 
shorter discretized time intervals. When we used hourly 
average values and hour time step in simulation the 
shortest time period the simulator can calculate is 0.04 
times to time step. This is caused by the used discrete 
calculation method in Simulink. So, with an hour time 
step, this time period is 2.4 minute. We simulated one 
customer cost benefit for about a two-month period for 

2.4-minute time step and calculated the estimated 
benefits for one year. These results were compared with 
the same customer’s simulated cost benefits for hour 
time step. Fig. 4 shows a comparison between the 
different time steps in such a way that the simulations 
have been used in various sizes of solar panels. Cost 
benefit means the difference in the whole year’s 
electricity price for the customer with and without 
storage. As seen in Fig. 4, use of an hour time step causes 
only a very small error in the results of the simulation. In 
the shorter time step, growth of the cost benefits is more 
stable than hour time step when size of solar panel 
increasing. But the error caused by used time step is only 
few euros. So, we can note that this comparison reveal to 
used hour time step to sufficient accuracy. 

Changes in electricity consumption and production 
can be really fast, so even large changes may happen 
during just minutes. For this reason, we simulated a one-
day simulation for one more customer. We are interested 
to know what happens during one minute. 

So, we simulated storage use during one day with 2.4 
second time step. Fig. 5 shows the results of the second-
level simulation, with and without energy storage system. 

In the simulation, the production of 1 kW solar panel 
is used. This figure is interesting also for the reason that 
here we can see accuracy changes in power from the grid 
side. The graph shows that without storage, power would 
be supplied to the grid especially at midday, whereas for 
example in the evening, a lot of power has to be taken 
from the grid. 

 

 
 

Fig. 3. Measured and forecasted production for three different 
weather type days 

 

 
 

Fig. 4. The simulation time step impact on the cost benefits 
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Fig. 5. Household’s electricity consumption for one customer for one day with storage and without storage 
 

As seen, consumption is much smoother with the 
storage than without and the power doesn’t need to be 
supplied to the grid. When we compare the second-level 
simulation and an hour time step simulation for one day 
and the same customer, the difference of the cost benefit 
is only 0.01 €. This comparison shows the same as the 
simulation with the 2.4-minute time step: by using an 
hour time step we get a good estimate of the whole year 
cost benefits. 

V. The Results of the Simulation 

Amount of customer cost benefits were calculated for 
a simulator. First, we had to find the suitable length of 
optimization time and then we could calculate the other 
results. The most interesting case is how battery size and 
nominal power of solar panels affected the amount of 
cost benefits. Especially, the effect of the battery size is 
very interesting, because size affected storage costs and 
further to the profitability of energy storage. 

In results, the used electric energy pricing system is 
hourly real-time pricing. The price consists of the Nordic 
market price multiplied by value-added tax 24 % and 
added to electricity sales company’s marginal 25 c/kWh. 

If customer sales overproduced energy to grid, they 
would get compensated with the market price minus the 
company’s marginal. In addition, customers have to pay 
transmission payment 6 c/kWh for electricity that they 
buy. Transmission payment includes 2,79 c/kWh 
electricity tax. These are overall prices that are used in 
Finland and these are used in all calculations in this 
paper. 

V.1. Optimization Period 

To determine a suitable length of the optimization 
time, we simulated 12 different customer’s electricity 
consumption over the year by various lengths of 
optimization time. 

Customers are selected from all three groups so that 
the consumption differences between customers are 
maximally large. To avoid errors, the simulations aren’t 
used for forecasts. The used electricity price data is 
hourly market prices for the year 2013. Production data 
was from 2 kW nominal power solar panels and energy 
storage of about 10 kWh lithium-ion batteries. 

The results of the simulation are shown in Fig. 6 and 
in addition the average of the various customers is shown 
with the red line. According to the simulations, the 18-
hour long optimization time had the best cost benefits. 

This result is utilized in this paper. 

V.2. Influence of Battery Size and Nominal Power                

of Solar Panels 

The amount of households’ own production and their 
impact on cost benefits was studied by simulating the use 
of electricity with different size lithium ion batteries and 
various size solar panels of nominal power. 

The group of electric heaters elected to customers by 
total consumption of the year was 18.3 MWh. 

Fig. 6 shows the results of simulations made with the 
2015 market prices. With small solar panels the cost 
benefit will be even lower than without own production. 

 

 
 

Fig. 6. The length of optimization time impact on the cost benefits 
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This is due to the fact that from the viewpoint of the 
grid, consumption is decreased and the amount of 
consumption begins to limit the cost benefits. 

When the panels’ power increases above 3 kW, the 
storage allows to increase the share of production used in 
own consumption and thereby the overall cost benefit 
begins to grow. As panel size increases, the cost benefits 
of growth will slow down, and this is due to the fact that 
the expensive price hours of time consumption are 
already largely filled by own production. Fig. 7 also 
shows that approximately 5 kWh in a battery gives the 
greatest benefit in relation to the size of the battery. 

Simulated results of oil heaters and electric storage 
heaters groups of customers are very similar to those of 
the electric heaters customers. In oil heaters the overall 
consumption is often lower than other groups. 

In this case, the magnitude of the consumption already 
begins to limit the growth of cost benefits faster. With 
the electric storage heaters, a large part of consumption is 
already timed to the cheapest hours and the cost benefit 
will be less than electric heaters for this reason. 

V.3. Comparison of Storage Control Methods 

This paper presented a control method that was 
compared with three alternative control methods. 

The first optional control method (OC1) is based only 
on own consumption produced energy charge in storage 
and its use when consumption surpasses production. 

Option 2 (OC2) is based on the power limit, where the 
storage discharges when consumption exceeds the limit, 
and when consumption drops below the limit, storage is 
charged. If SOC limits to charge or discharge, storage 
SOC is maintained. The third option (OC3) is based on 
the intensity of solar radiation, the amount of 
consumption and the relationship with the production of 
consumption, as in [6]. The algorithm decides whether or 
not charging or discharging is profitable at a particular 
time. The basic idea is that if solar radiation is strong and 
consumption is small, the storage charges and if radiation 
and consumption are to the contrary, the storage 
discharges. Other control depends on SOC and other 
variables.  

 

 
 

Fig. 7. The electric heaters group customer cost benefits with different 
size lithium-ion batteries and various size solar panels 

 

Comparative simulation was made with different-
sized solar panels and a 6.2 kWh lithium-ion battery. 

Fig. 8 shows the results of the simulation of a 
customer in the electric heaters group. The results of the 
comparative simulation show that the control method 
presented in this paper gives the biggest cost benefits, as 
Fig. 8 shows. Options 1 and 2 are for cost benefits 
slightly smaller than the best option, but option 3 is 
clearly the worst. Option 3 is more suitable for use with 
normal pricing, where energy only has one price and in 
addition, the production should be very high.  

The results of the other customer groups’ simulations 
were also similar. 

V.4. Energy Storage Payback Period 

According to the simulations households can reduce 
their annual electricity bill with electrical energy storage.  

When looking at the profitability of storage, one must 
also take into account the cost of the storage. So that 
storage would be profitable, the benefit during the 
lifetime must be greater than costs. The simulations 
showed that the about 5 kWh lithium-ion battery for its 
size, the most effective solution. Fig. 9 shows the 5 kWh 
battery storage payback period’s dependence on the 
annual cost benefits in different storage purchasing 
prices. The life time of a lithium-ion battery is maximum 
8-15 years, so the payback period should be shorter than 
this.  

 

 
 

Fig. 8. The result of a comparison of the electric heaters group 
customer number 13 with 6.2 kWh lithium-ion battery storage 

 

 
 

Fig. 9. 5 kWh lithium-ion battery storage payback period dependence 
of the annual cost benefit in different storage purchasing prices 
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If the battery acquisition cost is 200 €/kWh, a 15-year 
payback period could reach about 65 € annual cost 
benefit and 8-year payback period 125 € cost benefit.  

Simulated cost benefit with the 2015 electricity 
market prices was without own production from 25 to 30 
€ and with own production 40-50 €. This means at least 
20-40 years’ payback period at current prices, when the 
introduction of the system is not profitable. If the battery 
system succeeds in reducing the price of 100 €/kWh, the 
payback period would be shortened without own 
production to 20 years, and with own production to 10 
years, when the storage would already be profitable. 

This analysis doesn’t take into account possible new 
transmission tariffs or the effects of demand response, 
which may reduce the payback period in the future. 

V.5. Effect of Electric Energy Price Trend in Future 

When looking at the development of the electricity 
market prices between 2013 and 2015, the average 
difference between the daily minimum and maximum 
prices has increased from 21.82 € to 29.84 € and price 
average standard deviation has also increased from 4,59 
€ to 9,84 €. These factors directly affect the cost benefit 
which comes from using storage to demand time shifting. 

As a result of the change between the years 2014 and 
2015, the cost benefit increased by an average of 7%.  

Between 2013 and 2014 the change was so big that the 
entire two-year period, the cost benefit even doubled. If 
the price trend is to continue in the coming years, the 
cost benefit will increase substantially. 

Fig. 10 shows the simulated situation, how the 
cumulative total cost benefit would accumulate from the 
beginning of 2017 with 5 kWh lithium-ion battery 
storage, without own production (D) and with own 
production (P). In the simulation three possible price 
development models have been used for relative price 
trend of average maximum and minimum price 
difference and average standard deviation. 

First (1), if the price trend will continue similar to the 
years 2014-2015, the second (2), if the price trend is 
similar than the whole two-year period 2013-2015, and 
the third (3), if the price trend stops at the 2015 level. 

 

 
 

Fig. 10. Electrical energy storage cumulative total cost benefit of 5 
kWh lithium-ion battery storage, when the use of the storage will start 

in the beginning of 2017 with own production and without, three 
possible electricity price developments 

As seen in Fig. 10, the electricity price trends strongly 
influence the cost benefit and profitability of storage in 
the coming years. If, for example, storage purchase cost 
should be over 1,000 €, the price development should be 
beneficial for the purchase to be profitable.  

But it is also possible to achieve large gains. 
Improving the profitability of the electrical energy 
storage is significant in lowering storage system 
acquisition costs. This is one of the most important 
targets for development in the future. Also improving the 
battery and power electronics efficiencies could increase 
cost benefits, but already the devices are so good that 
growth would only be marginal. 

On the other hand, if the variation in the price of 
electricity will increase, improving the efficiency will 
also be more profitable. As has been stated, the most 
impressive factor of the profitability of the electrical 
energy storage is the price development of the electricity 
in the future. The electric energy storage also makes it 
possible to reduce the demand from the grid. For this 
reason, it is worthwhile to consider if the grid companies 
would support the purchase of energy storage. 

Transmission tariffs also need to develop, because 
without the power based tariff the use of energy storage 
may even increase the network load. This means that if 
electric energy price is low and customer has large 
storage, it is profitable for him to charge the storage with 
large power which might make the demand on the grid 
greater than without storage. So, it is appropriate that the 
maximum demand is limited in the same way. With the 
right transmission tariff structure, it is also possible to get 
a much greater cost benefit with energy storage, but this 
needs to be examined further. 

VI. Conclusion 

Annual energy costs of households can be reduced 
using energy storage with or without own energy 
production. The efficiencies of lithium-ion batteries are 
so high that even small differences in electricity prices 
between hours make load shifting by battery profitable.  

However, in order to obtain the maximum cost benefit 
of this, the right kind of control method is needed. 

Control must be able to take into account the price of 
electricity over the next few hours and know how to 
predict future consumption and production. Production of 
solar power can be predicted quite accurately, but the 
forecasting of future consumption is challenging. The 
storage also allows a greater part of self-produced energy 
to be used in own consumption, which is more profitable 
for the customer than selling the overproduced energy to 
the grid. Lithium-ion battery prices are still so high that 
during the battery lifetime the total economic benefit will 
be lower than the costs. However, if the electricity price 
trend continues in the future similar to the past few years 
and battery prices go down, storage can become 
profitable in the very near future. Profitability could 
improve with power-based distribution tariffs, but this 
has to be explored more in the future. 
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This is due to the fact that from the viewpoint of the 
grid, consumption is decreased and the amount of 
consumption begins to limit the cost benefits. 

When the panels’ power increases above 3 kW, the 
storage allows to increase the share of production used in 
own consumption and thereby the overall cost benefit 
begins to grow. As panel size increases, the cost benefits 
of growth will slow down, and this is due to the fact that 
the expensive price hours of time consumption are 
already largely filled by own production. Fig. 7 also 
shows that approximately 5 kWh in a battery gives the 
greatest benefit in relation to the size of the battery. 

Simulated results of oil heaters and electric storage 
heaters groups of customers are very similar to those of 
the electric heaters customers. In oil heaters the overall 
consumption is often lower than other groups. 

In this case, the magnitude of the consumption already 
begins to limit the growth of cost benefits faster. With 
the electric storage heaters, a large part of consumption is 
already timed to the cheapest hours and the cost benefit 
will be less than electric heaters for this reason. 

V.3. Comparison of Storage Control Methods 

This paper presented a control method that was 
compared with three alternative control methods. 

The first optional control method (OC1) is based only 
on own consumption produced energy charge in storage 
and its use when consumption surpasses production. 

Option 2 (OC2) is based on the power limit, where the 
storage discharges when consumption exceeds the limit, 
and when consumption drops below the limit, storage is 
charged. If SOC limits to charge or discharge, storage 
SOC is maintained. The third option (OC3) is based on 
the intensity of solar radiation, the amount of 
consumption and the relationship with the production of 
consumption, as in [6]. The algorithm decides whether or 
not charging or discharging is profitable at a particular 
time. The basic idea is that if solar radiation is strong and 
consumption is small, the storage charges and if radiation 
and consumption are to the contrary, the storage 
discharges. Other control depends on SOC and other 
variables.  

 

 
 

Fig. 7. The electric heaters group customer cost benefits with different 
size lithium-ion batteries and various size solar panels 

 

Comparative simulation was made with different-
sized solar panels and a 6.2 kWh lithium-ion battery. 

Fig. 8 shows the results of the simulation of a 
customer in the electric heaters group. The results of the 
comparative simulation show that the control method 
presented in this paper gives the biggest cost benefits, as 
Fig. 8 shows. Options 1 and 2 are for cost benefits 
slightly smaller than the best option, but option 3 is 
clearly the worst. Option 3 is more suitable for use with 
normal pricing, where energy only has one price and in 
addition, the production should be very high.  

The results of the other customer groups’ simulations 
were also similar. 

V.4. Energy Storage Payback Period 

According to the simulations households can reduce 
their annual electricity bill with electrical energy storage.  

When looking at the profitability of storage, one must 
also take into account the cost of the storage. So that 
storage would be profitable, the benefit during the 
lifetime must be greater than costs. The simulations 
showed that the about 5 kWh lithium-ion battery for its 
size, the most effective solution. Fig. 9 shows the 5 kWh 
battery storage payback period’s dependence on the 
annual cost benefits in different storage purchasing 
prices. The life time of a lithium-ion battery is maximum 
8-15 years, so the payback period should be shorter than 
this.  

 

 
 

Fig. 8. The result of a comparison of the electric heaters group 
customer number 13 with 6.2 kWh lithium-ion battery storage 

 

 
 

Fig. 9. 5 kWh lithium-ion battery storage payback period dependence 
of the annual cost benefit in different storage purchasing prices 
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If the battery acquisition cost is 200 €/kWh, a 15-year 
payback period could reach about 65 € annual cost 
benefit and 8-year payback period 125 € cost benefit.  

Simulated cost benefit with the 2015 electricity 
market prices was without own production from 25 to 30 
€ and with own production 40-50 €. This means at least 
20-40 years’ payback period at current prices, when the 
introduction of the system is not profitable. If the battery 
system succeeds in reducing the price of 100 €/kWh, the 
payback period would be shortened without own 
production to 20 years, and with own production to 10 
years, when the storage would already be profitable. 

This analysis doesn’t take into account possible new 
transmission tariffs or the effects of demand response, 
which may reduce the payback period in the future. 

V.5. Effect of Electric Energy Price Trend in Future 

When looking at the development of the electricity 
market prices between 2013 and 2015, the average 
difference between the daily minimum and maximum 
prices has increased from 21.82 € to 29.84 € and price 
average standard deviation has also increased from 4,59 
€ to 9,84 €. These factors directly affect the cost benefit 
which comes from using storage to demand time shifting. 

As a result of the change between the years 2014 and 
2015, the cost benefit increased by an average of 7%.  

Between 2013 and 2014 the change was so big that the 
entire two-year period, the cost benefit even doubled. If 
the price trend is to continue in the coming years, the 
cost benefit will increase substantially. 

Fig. 10 shows the simulated situation, how the 
cumulative total cost benefit would accumulate from the 
beginning of 2017 with 5 kWh lithium-ion battery 
storage, without own production (D) and with own 
production (P). In the simulation three possible price 
development models have been used for relative price 
trend of average maximum and minimum price 
difference and average standard deviation. 

First (1), if the price trend will continue similar to the 
years 2014-2015, the second (2), if the price trend is 
similar than the whole two-year period 2013-2015, and 
the third (3), if the price trend stops at the 2015 level. 

 

 
 

Fig. 10. Electrical energy storage cumulative total cost benefit of 5 
kWh lithium-ion battery storage, when the use of the storage will start 

in the beginning of 2017 with own production and without, three 
possible electricity price developments 

As seen in Fig. 10, the electricity price trends strongly 
influence the cost benefit and profitability of storage in 
the coming years. If, for example, storage purchase cost 
should be over 1,000 €, the price development should be 
beneficial for the purchase to be profitable.  

But it is also possible to achieve large gains. 
Improving the profitability of the electrical energy 
storage is significant in lowering storage system 
acquisition costs. This is one of the most important 
targets for development in the future. Also improving the 
battery and power electronics efficiencies could increase 
cost benefits, but already the devices are so good that 
growth would only be marginal. 

On the other hand, if the variation in the price of 
electricity will increase, improving the efficiency will 
also be more profitable. As has been stated, the most 
impressive factor of the profitability of the electrical 
energy storage is the price development of the electricity 
in the future. The electric energy storage also makes it 
possible to reduce the demand from the grid. For this 
reason, it is worthwhile to consider if the grid companies 
would support the purchase of energy storage. 

Transmission tariffs also need to develop, because 
without the power based tariff the use of energy storage 
may even increase the network load. This means that if 
electric energy price is low and customer has large 
storage, it is profitable for him to charge the storage with 
large power which might make the demand on the grid 
greater than without storage. So, it is appropriate that the 
maximum demand is limited in the same way. With the 
right transmission tariff structure, it is also possible to get 
a much greater cost benefit with energy storage, but this 
needs to be examined further. 

VI. Conclusion 

Annual energy costs of households can be reduced 
using energy storage with or without own energy 
production. The efficiencies of lithium-ion batteries are 
so high that even small differences in electricity prices 
between hours make load shifting by battery profitable.  

However, in order to obtain the maximum cost benefit 
of this, the right kind of control method is needed. 

Control must be able to take into account the price of 
electricity over the next few hours and know how to 
predict future consumption and production. Production of 
solar power can be predicted quite accurately, but the 
forecasting of future consumption is challenging. The 
storage also allows a greater part of self-produced energy 
to be used in own consumption, which is more profitable 
for the customer than selling the overproduced energy to 
the grid. Lithium-ion battery prices are still so high that 
during the battery lifetime the total economic benefit will 
be lower than the costs. However, if the electricity price 
trend continues in the future similar to the past few years 
and battery prices go down, storage can become 
profitable in the very near future. Profitability could 
improve with power-based distribution tariffs, but this 
has to be explored more in the future. 
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It is still possible to improve the control algorithm of 
the storage in order to increase the total benefits. 
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It is still possible to improve the control algorithm of 
the storage in order to increase the total benefits. 
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Abstract—Energy storage enables modification of the customer
load profile from the grid perspective without leading to a decrease
in comfort level. To meet the future challenges of the energy sec-
tor, distribution system operators (DSOs) in Finland have recently
discussed power-based distribution tariffs (PBDTs) for small cus-
tomers. The current distribution tariffs of small customers do not
respond well to current challenges, and they require reform. The
peak powers of the customers can be decreased with energy stor-
age, and via incentives included in the PBDTs, energy storage can
prove to be profitable for household customers. In this paper, we
study the profitability of electrical energy storage under different
pricing structures. The study simulates changes in customer con-
sumption with a modeled storage system. Simulations consider the
requirement of load forecasting in the storage control system. The
results of the study show that energy storage can be profitable if
the consumption includes only a small number of high peak loads
during the pricing period when applying new distribution tariff
structures. However, the price level of the tariffs and the tariff
mechanisms affect the results.

Index Terms—Batteries, cost optimal control, energy manage-
ment, energy storage.

I. INTRODUCTION

D EMAND response (DR) for small customers is not com-
mon, mainly because of its poor profitability and vari-

ous other factors. For example, there is a lack of DR service
providers that can offer profitable and easy ways to implement
the necessary actions without any loss of comfort for the cus-
tomers. Electrical energy storage makes it possible to change
the load profile of the customer from the grid point of view such
that the customer does not notice the changes. Energy storage
can be used in DR if, e.g., it is controlled based on the hourly
spot price of electricity in the day-ahead market [1], [2]. In this
manner, individual customers can participate in smoothing the
demand of the entire power system. However, in recent years,
variation of the energy price in Northern Europe has been so low
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that the profitability of energy storage has been poor [3], and its
profitability in Finland has been studied, e.g., in [1]. Profitability
can be improved if customers have their own energy production
(e.g., solar panels), but currently, profits are still low. The ben-
efits that a customer can derive from self-production depend
primarily on the energy-dependent volumetric component of
the distribution tariffs. The magnitude of the volumetric por-
tion of the electricity bill can be significantly lowered if the
produced electricity is self-consumed on-site. Additionally, the
type of electricity contract that the customer has with the en-
ergy retailer and the energy-related taxes affect the benefits of
self-production. Another possible benefit for the customer who
owns energy storage is that it enables the use of electricity during
power outages.
Smart metering is a key component in the development of

electricity distribution pricing. Due to the decree set by the
Finnish Government in 2009, almost all customers (approxi-
mately 98%) are currently supplied with a new smart meter that
features hourly energy measurements as well as registrations
of supply quality and DR functionality [4]. Much discussion of
the use of power-based distribution tariffs (PBDTs) for small
customers in Finland has ensued [5]. PBDTs have long been
available for large customers, but with the help of advanced
metering infrastructure, they could also be applied for smaller
customers. PBDTs can create an incentive for customers to de-
crease their hourly average maximum power (HMP) values,
which are determined by hourly energy measurements gathered
from smart meters. If the HMPs could be decreased for several
customers, the entire power system could benefit, e.g., if loading
of the distribution transformers can be decreased [6].
PBDTs have been studied, e.g., in [7] and [8]. The operational

environment of a distribution system operator (DSO) strongly
affects the cost structure of the DSO. The variation in the op-
erational environments between different DSOs means that the
price levels of the distribution tariffs vary significantly.
Energy storage has multiple advantages, and it is important

to search for new ways to improve the profitability of energy
storage because it is currently quite poor.At present, the prices of
energy storage with sufficiently high efficiency (e.g., lithium-
ion batteries) are high, but in recent years, their acquisition
prices have become more affordable, and this trend is expected
to continue in the future [9]. Lower acquisition price improves
the profitability of energy storage, but in this paper, the focus
is on assessing the cost benefits of energy storage in the near
future and investigating how profitability could be improved,
especially if PBDTs are applied across a wide scale. The cost

0885-8950 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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load profile from the grid perspective without leading to a decrease 
in comfort level. To meet the future challenges of the energy sector, 
distribution system operators (DSOs) in Finland have recently 
discussed power-based distribution tariffs (PBDTs) for small 
customers. The current distribution tariffs of small customers do 
not respond well to current challenges, and they require reform. 
The peak powers of the customers can be decreased with energy 
storage, and via incentives included in the PBDTs, energy storage 
can prove to be profitable for household customers. In this paper, 
we study the profitability of electrical energy storage under 
different pricing structures. The study simulates changes in 
customer consumption with a modeled storage system. 
Simulations consider the requirement of load forecasting in the 
storage control system. The results of the study show that energy 
storage can be profitable if the consumption includes only a small 
number of high peak loads during the pricing period when 
applying new distribution tariff structures. However, the price 
level of the tariffs and the tariff mechanisms affect the results. 
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I.  INTRODUCTION 
EMAND response (DR) for small customers is not 
common, mainly because of its poor profitability and 
various other factors. For example, there is a lack of DR 

service providers that can offer profitable and easy ways to 
implement the necessary actions without any loss of comfort for 
the customers. Electrical energy storage makes it possible to 
change the load profile of the customer from the grid point of 
view such that the customer does not notice the changes. Energy 
storage can be used in DR if, e.g., it is controlled based on the 
hourly spot price of electricity in the day-ahead market [1]–[2]. 
In this manner, individual customers can participate in 
smoothing the demand of the entire power system. However, in 
recent years, variation of the energy price in Northern Europe 
has been so low that the profitability of energy storage has been 
poor [3], and its profitability in Finland has been studied, e.g., 
in [1]. Profitability can be improved if customers have their own 
energy production (e.g., solar panels), but currently, profits are 
still low. The benefits that a customer can derive from self-
production depend primarily on the energy-dependent 
volumetric component of the distribution tariffs. The magnitude 
of the volumetric portion of the electricity bill can be 
significantly lowered if the produced electricity is self-
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consumed on-site. Additionally, the type of electricity contract 
that the customer has with the energy retailer and the energy-
related taxes affect the benefits of self-production. Another 
possible benefit for the customer who owns energy storage is 
that it enables the use of electricity during power outages. 
 Smart metering is a key component in the development of 
electricity distribution pricing. Due to the decree set by the 
Finnish Government in 2009, almost all customers 
(approximately 98%) are currently supplied with a new smart 
meter that features hourly energy measurements as well as 
registrations of supply quality and DR functionality [4]. Much 
discussion of the use of power-based distribution tariffs 
(PBDTs) for small customers in Finland has ensued [5]. PBDTs 
have long been available for large customers, but with the help 
of advanced metering infrastructure, they could also be applied 
for smaller customers. PBDTs can create an incentive for 
customers to decrease their hourly average maximum power 
(HMP) values, which are determined by hourly energy 
measurements gathered from smart meters. If the HMPs could 
be decreased for several customers, the entire power system 
could benefit, e.g., if loading of the distribution transformers 
can be decreased [6]. 

PBDTs have been studied, e.g., in [7] and [8]. The 
operational environment of a distribution system operator 
(DSO) strongly affects the cost structure of the DSO. The 
variation in the operational environments between different 
DSOs means that the price levels of the distribution tariffs vary 
significantly. 

Energy storage has multiple advantages, and it is important 
to search for new ways to improve the profitability of energy 
storage because it is currently quite poor. At present, the prices 
of energy storage with sufficiently high efficiency (e.g., 
lithium-ion batteries) are high, but in recent years, their 
acquisition prices have become more affordable, and this trend 
is expected to continue in the future [9]. Lower acquisition price 
improves the profitability of energy storage, but in this paper, 
the focus is on assessing the cost benefits of energy storage in 
the near future and investigating how profitability could be 
improved, especially if PBDTs are applied across a wide scale. 
The cost benefit of the energy storage in this work means a 
difference in the annual total electricity bills of the customers 
(i.e., charges of the DSO and the retailer) when the storage is 
used versus not used. 

PBDTs have not been comprehensively studied with energy 
storage. Storage operations with demand charges have been 
studied, e.g., in [10]–[11], where the use of energy storage was 
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investigated in a similar setting to the one discussed in this 
paper. In the U.S., certain utilities apply tariffs, which include 
demand charges for residential customers. One possibility in 
designing demand charges for industrial and commercial 
customers, as presented in [10], is to make the customer pay for 
the highest 15-minute average power (kW) of the billing period. 
The results presented in [10] show that customers could achieve 
cost savings with the use of energy storage. Designs for the 
demand charge have been more widely introduced, and the 
impacts on residential customers with storage operations with 
one presented PBDT structure was studied in [11]. The results 
presented in [11] also showed that residential customers could 
achieve cost savings with use of energy storage together with 
the PBDT and control systems that are considerably different 
from those in our study. In this paper, different PBDTs and 
actual consumption data are used, and we highlight the fact that 
customer consumption must be forecasted for the future. 
Thermal energy storage with demand charges has been studied, 
e.g., in [12], but that study did not include electrical energy 
storage.  

The benefits of energy storage have been extensively 
investigated. Sizing of the energy storage and its optimal 
management with dynamic pricing and integration of renewable 
energy production have also been studied, e.g., in [13]. The 
study presented in [13] investigated the factors on which 
optimal storage sizing depends and strategies for how to control 
the storage in a profitable way. The results presented in [12] are 
similar to our studies in [1], but the problem formulation and 
the solution are different. 

The PBDT structures examined in this paper were presented 
in [14] and [15]. The studied tariffs and their components are 
listed as follows: 

1. Power tariff (PT), including basic charge (€/month), 
volumetric charge (€/kWh) and power charge (€/kW) 
based on the highest HMP of each month; 

2. Threshold power tariff (TPT), including basic charge 
(€/month), volumetric charge (€/kWh), and power 
charge (€/kW), which is used only if the HMP of the 
month exceeds a set threshold limit; 

3. Power limit tariff (PLT), including power charge 
(€/kW) based on a preordered capacity that the customer 
can select and commit to not exceed; and 

4. Step tariff (ST), including basic charge (€/month) and 
volumetric charge (€/kWh), which depends on the 
average power of each hour. If the average power 
exceeds a step limit, the unit charge is greater than that 
below the limit. 

The tariff structures have many advantages and disadvantages, 
and it is important that the properties of different options are 
studied thoroughly before they are introduced in practical 
implementation. The properties of various distribution tariff 
structures were compared from multiple viewpoints in [14]. In 
this paper, the focus is on household customers with energy 
storage. The study investigates the benefits of energy storage 
with PBDTs, and for this purpose, an evaluation method is 
introduced to assess their profitability. 
 Energy storage and its benefits have been investigated in 
previous studies. However, earlier work did not include a 
simulation case in which control of energy storage is based on 
PBDTs combined with the market price of electricity. A 

comparison of the impacts of different PBDTs on the 
profitability of energy storage by small customers has never 
been conducted. Additionally, the fact that the consumption of 
the customer must be forecasted for the control system to 
compute the amount of energy that must be stored at each 
moment was not considered in earlier studies. 

This paper proposes a novel energy storage control 
algorithm. Additionally, the profitability of household energy 
storage is evaluated in an operational environment that includes 
novel incentives. The evaluations applied in earlier studies did 
not consider different possible PBDT structures of the DSO 
combined with control based on the day-ahead market price of 
electricity. Additionally, this novel perspective simultaneously 
considers modeling of the energy storage losses, load 
forecasting and different incentives in use of the energy storage. 
Therefore, this paper offers a more comprehensive view of the 
profitability of energy storage compared with the evaluations 
presented in earlier studies. 
In summary, the novelty of this paper results from the following 
key items that supply a clear contribution to the scientific 
community. First, the study presented in this paper involves 
various PBDT structures and their impacts on the profitability 
of energy storage. These aspects have not been investigated as 
extensively in recent academic literature. Second, a novel smart 
control method for cost-based optimization is developed using 
load forecasting and including various cost incentives. 
Additionally, we study the impacts of errors in load forecasting. 
Finally, our study is based on actual load data from a large 
group of small customers, which increases the value and 
practicality of our investigations. 

The paper is organized as follows. A simulation model that 
includes battery modeling and control systems is described in 
Section II. Section III presents the input data used in the 
simulations. The simulations and their results are discussed in 
Section IV. Section V presents conclusions of the study. 

II.  SIMULATION MODEL 
The simulation model consists of a two-step control system 

and a battery model. Two-step control means that the control 
initially makes a decision as to what strategy is profitable 
during the next hour based on load forecasting and the state of 
charge (SOC) of the storage. The first step in the control is 
known as hourly control. The second control step is known as 
continuous control, and the purpose is to control the storage 
during the hour to execute the objective given by the first step. 
This scenario is rarely possible because the load forecast is not 
equal to the real consumption in every case, and various control 
actions must be performed during the hours. Simulation is 
applied for a large group of customers, and the optimization 
must be performed for every simulated hour, which requires the 
algorithm to be efficient. To perform the aforementioned tasks, 
we apply the following algorithm. 

A.  Battery model 
In battery modeling, the state of charge is the most important 

variable because all other variables model how the SOC 
changes between the two different time steps (i.e., hour) [1]. 
These changes can be modeled by the following (1) 
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, (1)

where Et is the amount of stored energy at time t, Emax is the 
maximum capacity of the energy storage, the SOC at time t is 
SOCt , SOCt-1 is the SOC of the previous time step from time t,
variable Bt is the energy transfer to or from the energy storage,
and Beff is the efficiency of the transfer.

The energy storage SOC model can be produced with (1) for 
all different battery types. Differences between battery types 
derive from losses, which are depicted by the variable Beff. The 
cell type of the studied battery is lithium iron phosphate (LFP, 
LiFePO4) with graphite as the negative electrode. This 
alternative is suitable for household use because of its long 
cyclic and calendar lifetime and its good safety features [16]. 

The energy storage systems losses mainly occur in the 
converters and in the storage itself [16]. In this study, the 
efficiency of the inverter ηinv is assumed to be 98%, and the DC 
converter efficiency ηdc is assumed to be 99%. Thus, the energy 
transfer efficiency between the network and storage is 97%. 
Energy storage losses occur during both charging and 
discharging, but the major portion of the losses occurs during 
charging [17]. In modeling the losses, it can be approximated 
that the battery discharge efficiency ηd and the charging 
efficiency ηc are equal. Therefore, modeling can be performed 
with a single equation for both flow directions. The charging 
efficiency depends nonlinearly on the charging current Ic [18].
When the battery is not charged or discharged completely, 
charging losses depend linearly on the charging current if the 
internal serial resistance Rb is assumed constant. In this case, 
charging efficiency can be calculated by (2).

, (2)

where Vb is the nominal voltage of the battery. The advantages 
of including the internal serial resistance-based model is that 
the various batteries are easily compared with each other, and 
the aging of the battery can be modeled using the same 
resistance [19].

Charging and discharging of the electrical energy storage 
systems are modeled based on the battery, inverter, and 
converter efficiencies [16]. The SOC of the battery can be 
calculated by (1). The efficiency Beff can be obtained by 
multiplying the efficiencies ηdc, ηinv, and ηc. The energy transfer 
of storage Bt is calculated by multiplying the charging current 
Ic with the charging voltage Vc, which can be calculated by (3).

(3)
Based on the transmission of energy among the storage, 

consumption and power grid, the energy drawn from the power 
grid G can be determined by (4).

,

(4)

where D is the consumption of customer. The upper portion of 
the equation is valid when charging, and when discharging, 
the lower portion of the equation is in effect.

B.  Battery control boundaries
Compliance with certain basic principles is necessary in 

battery control [1]. Use of a battery in a low SOC is not 
profitable because when the battery SOC drops, the internal 
losses increase rapidly as the terminal voltage decreases and the 
internal resistance of the battery increases, leading to increasing 
discharging losses [18]. For these reasons, the battery SOC has 
a lower boundary of 25% of the initial capacity. The limit is 
lower for an LFP battery, but for hourly control, this boundary 
is set higher such that the continuous controller can react better 
in unexpected situations. The battery SOC also has an upper 
limit of 95% of the initial capacity because with a notably high 
SOC, the internal resistance of the battery increases rapidly.

C.  Load forecasting
Load forecasting plays a key role in the control system 

because the future consumption of customers cannot be known 
exactly. The control system requires information on what will
happen in the next few hours such that decisions can be made 
with respect to the amount of energy that must be stored for the 
coming hours. The load forecast for the simulation model is 
constructed using a MATLAB® function, and the forecast is 
based on the historical consumption of the customers and the 
outdoor temperature [20].

Consumption variation during the days can be forecasted 
with sufficient accuracy, as shown, e.g., in [1]. However, the 
individual daily HMPs are rather difficult to forecast because 
they depend strongly on customer choices, e.g., how various 
everyday electrical appliances are used. Forecasting errors are 
examined later in the simulations. Forecasting of hourly 
consumption is a highly important task if the control system 
attempts to minimize the HMP. If the forecasted HMP is too 
low, it leads to storage over usage when the control attempts to 
keep the HMP below the set limit. However, if the forecasted 
HMP is too high, the storage might not be used at all in the 
worst case.

Because the results of the simulations depend on the 
accuracy of the load forecast, the effects of the forecasting 
errors are studied as follows. First, the number of customers in 
the study group is sufficiently high to enable stochasticity in the 
simulations. Individual load forecasts for each customer create
variability of the forecasting errors in the study group, and this 
can be observed from the results in the benefit distribution. 
Second, the simulations are run using two types of load 
forecast: non-ideal and ideal. An ideal forecast means that the 
consumption of a customer is known exactly before any control
actions are applied. This situation is highly unlikely in reality, 
but in the simulation, this scenario is used to compare the effects
of forecasting errors and to evaluate the ideal cost benefits of
the energy storage. When the load is forecasted, it is known as 
a nonideal load forecast thereafter.

D.  HMP decrease with energy storage
With the PBDTs, customers can decrease their electricity 

costs by decreasing their HMPs. Discharging the battery energy 
storage during the peak load hours is one way to accomplish 
this goal. The problem in this scenario is that the control system 
must know how much energy can be discharged from the 
energy storage during different hours such that the HMP is 
minimized for the entire pricing period. The risk exists that the 
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energy storage is empty when discharging is needed if the past 
HMPs have decreased the SOC to an excessive extent. For this 
reason, load forecasting is an essential component of the control 
system. However, forecasting errors cause unexpected 
situations in which it is often difficult for the control system to 
react. 

The solution for the optimization problem of decreasing the 
HMP is based on the optimal power limit, which is the 
optimized upper limit of the HMP. The control system aims to 
maintain the HMP below the set value. The power limit can be 
set based on the structure of the tariff. With the PLT, customers 
can select the HMP limit, and with energy storage, the control 
system aims to maintain the power below the set value. If the 
tariff structure is ST, the step-limit can also be set as the power 
limit. With TPT, the threshold can be set as the power limit, or 
if the energy storage capacity is not sufficient, minimization of 
the power limit must be attempted. The PT is the only tariff 
structure in this paper in which the power limit is based only on 
the minimization algorithm and the capacity of the energy 
storage can be utilized completely. 

Minimization of the HMP in this paper is accomplished with 
an algorithm, which is shown in the flow chart in Fig. 1. In the 
algorithm, load forecasting for the following 18 hours is 
performed hourly. The selected forecasting and optimization 
period is suitable, as presented in [1]. Based on the load forecast 
and the output power of the energy storage, the algorithm 
calculates a power that is the theoretical minimum. This power 
is set as the new power limit. The algorithm subsequently 
calculates whether it is possible to remain under the power limit 
when the changes in the SOC during the optimization period are 
considered. If the limit is not possible to achieve, the power 
limit is increased until it can be achieved in the set SOC range. 
The calculated power limit is used in energy storage control. At 
times, forecasting errors make it impossible to remain under the 
power limit if the real HMP is higher than the forecasted value. 
In this situation, the HMP is decreased as much as possible, and 
the highest HMP is set as the new power limit. The algorithm 
subsequently moves to the next hour. During the pricing period, 
the power limit only increases and never scales down because 
the power charge of the PBDT is billed based on the highest 
HMP of the pricing period. 

E.  Market price-based control of energy storage 
In the Finnish deregulated market, competitive energy 

retailers are in charge of energy trading, and the DSOs control 
the power delivery in the distribution networks and operate their 
businesses as monopolies. In one of the energy tariff options in 
Finland, the price of energy is based on the hourly spot price of 
the day-ahead electricity market, which means that a separate 
price exists for each hour. The customer can benefit from 
shifting consumption to cheaper hours and avoiding use of 
energy when the price is high. The benefits of market price-
based control have been studied, e.g., in [1]. In this paper, the 
same market price-based control algorithm is used. The 
algorithm is based on the near-future day-ahead market spot 
prices and on the load forecasting. 

The goal of the algorithm is to find pairs from the hours of 
the optimization period, i.e., when the prices are at their highest 
and lowest. If the price difference between the values is 
sufficiently high, the energy storage charges during the 

cheapest hour and discharges during the most expensive hour. 
The algorithm subsequently searches for the second highest and 
lowest prices, etc. Charging and discharging are limited such 
that the SOC must remain within the set boundaries, and 
feeding of electricity to the grid is not permitted. For this 
reason, load forecasting is important because it is essential to 
know how much energy can be discharged from the battery 
during the target hours. 

The use of energy storage for load shifting is not profitable 
if the price difference between different hours is not sufficiently 
high [1]. The lower price must be cheaper than the higher price 
multiplied by the efficiency coefficient of the energy storage, 
but even this is not necessarily sufficient because use of the 
battery causes aging. A sufficiently high price difference 
depends on many factors, such as the future load profile of the 
customer, which is difficult to determine exactly. 

F.  Combination of different control methods 
Different control aims can be combined at the same time. For 

example, energy storage can be simultaneously applied for both 
HMP decrease and for market price-based control. Fulfilling 
both objectives simultaneously might prove to be difficult 
because the benefits from both aims derive from different 
principles. 

The power-based charges of PBDTs are so high in this study 
that even a small decrease in the HMP gives at least the same 
benefit as market price-based control. For this reason, we use a 
control principle in which the energy storage is used first in 
HMP decrease and second in market price-based control to 
combine the two control methods. If the variation of the energy 
price increases as expected in the future market, which includes 
more weather-dependent renewables, it might change the 
outcome, i.e., the achievable benefits. In this case, we must 
calculate the costs of energy storage with different control 
methods and compare the results against the benefits. Based on 
this information, the control system attempts to reach the most 
profitable solution at each moment. 

Fig. 1.  Flow chart of the algorithm for HMP minimization. 
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III.  INITIAL DATA

A.  PBDT prices
To compare the effect of different PBDTs, we apply the 

charge components presented in [15] for the example network 
of the study. The studied network is located in a rural area in 
Finland. The tariffs aim to fulfill the planned revenue for the 
DSO when no major changes in the consumption behavior of 
the customers are expected (i.e., changes based on the tariffs). 
The tariff design principles are described in additional detail in 
[21]. The PBDT structures applied in the study are presented in 
Table I.

B.  Spot prices
In spot price-based control, we apply the day-ahead spot 

prices of the Nord Pool (Finland area price) from the year 2015 
[22]. The benefit of load shifting depends on the variation of 
electricity energy prices from hour to hour. The variation 
between different years and their effects on the benefits from 
the DR point of view has been studied, e.g., in [3]. The variation 
of spot prices was highest during the 2013-2016 period in 
Finland. In 2015, the average difference between the highest 
and lowest daily prices, which is also known as the average 
daily price range, was approximately 30 €/MWh, and during the 
other years of the same period, the range was approximately 22-
25 €/MWh. The average daily price varied in the range 30-41 
€/MWh during the 2013-2016 period, and the price was the
lowest in 2015.

C.  Consumption data
Consumption measurements used in the study are hourly 

energy measurements collected from actual customers between 
January 2014 and August 2016. Customer consumption is 
measured using a smart meter, and the DSO automatically reads 
the consumption data remotely. The customers under 
investigation are household customers living in detached 
houses. Based on the information system of the DSO, the 
majority of these customers have electrical heating systems, 
which means that their electricity consumption is more or less 
dependent on the outdoor temperature. The group also includes 
a few larger customers, e.g., farms. The total number of 
customers in the study is 1525.

From the PBDT point of view, it is important to know how 
high the HMPs of the customers will be. Fig. 2 depicts the 
distribution of the HMPs in the study group. The average HMP 
is near 9 kW, but for the majority of the customers, this value is 
lower. The HMPs, together with average consumption, show 
how much the demand peaks of the customers could potentially 
be decreased using energy storage. For example, if the average 
consumption of the customer is 2 kW and the HMP is 7 kW, 

then even with an ideal energy storage system, the HMP can be 
cut by only 5 kW during the peak load hour of the customer.

IV.  SIMULATIONS AND RESULTS

A.  Forecasting errors
Because the control algorithm uses the load forecast in

decision-making, the forecasting errors affect the results of 
optimizations in hourly control. Forecasting is difficult if 
customers have high individual HMPs. Fig. 3 presents the mean 
absolute error (MAE) of the next hour load forecast as a 
function of the total annual energy consumption of the 
customer. We observe that the forecasting errors increase when 
the total energy consumption increases. The average total 
annual energy consumption of the customers in the study group 
is 13.6 MWh, and the average MAE of the next hour load 
forecast of the customer is 0.8 kW/h.

Although the MAE is not as high, the magnitudes of the 
HMPs are especially difficult to forecast. The forecasting 
algorithm is based on the average consumption as a function of 
temperature and time. The forecasting does not consider
individual high HMPs. For example, if the consumption of the 
customer has been smooth, and if at a certain point in time, the 
customer uses a high-powered electrical device, the HMP is 
highly difficult to forecast. For many customers, the HMP 
forecast is systematically too low because the forecast is based 
on average values. An HMP forecast that is too low does not 
cause much loss because the information from HMP timing is 
much more important than the exact information from the 
magnitude of the HMP. The size and maximum output power 
of the energy storage limit the maximum decrease of HMP, and 
the decrease does not depend on the magnitude of HMP. To 
evaluate the effects of forecasting errors, the simulations were
also conducted using ideal load forecasts.

B.  Decrease of yearly HMP
If the power charge of the PBDT is determined by the HMP 

of the year and the energy pricing is not based on the market 
spot price, the capacity of the energy storage is only used to 
decrease the HMP. The potential for how much the HMP can 
be decreased depends on the load profile of the customer, the 
forecasting errors and capacity, the efficiency, and the C-rate of 
the battery energy storage. Our objective is to attempt to find a 
suitable battery size with a capacity and C-rate that is the most 
profitable solution for the customer.

Fig. 2.  Distribution of HMPs of the customers in the study group in 2015.
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TABLE I
APPLIED PBDT STRUCTURES [15]

Basic charge Energy charge Power charge

PT   4.74 (€/Month) 0.72 (c/kWh) 7.23 (€/kW/Month)
TPT 23.61 (€/Month) 0.72 (c/kWh) 7.23 (€/kW/Month, 

if p>5 kW)
PLT 258.84 (€/year/5

kW)
ST   4.74 (€/Month) 4.10 (c/kWh) or 8.43 

(c/kWh, if p>5 kW)
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In the simulations, we assumed that every customer of the 
study group has an energy storage system. Fig. 4 shows how 
much the HMP can be decreased with energy storage of 
different sizes. We use three different capacities (3, 6, and 
9 kWh), each of which has three different C-rates (0.4C, 0.7C, 
and 1C). The average HMP decreases when the storage capacity 
increases, but the change is higher between 3 and 6 kWh than 
between 6 and 9 kWh. The same trend is also shown in the 
median and maximum values. When we look at the effect of the 
C-rate, we note that the average is highest with 0.7C and the 
median is highest with 0.4C, except for the 3 kWh storage, for 
which 0.7C leads to the highest value. The maximum is highest 
with 1C, but the change between 0.7C and 1C is minimal. We 
also observe that the increase of the C-rate enables a higher 
HMP decrease, but it also increases the risk that the control fails 
and the actual HMP does not decrease at all. 

C.  Impact of pricing period
The power charge of the PBDT can also be determined by 

the HMP for the month, which means that the power decrease 
optimization must be calculated monthly. We can assume that 
the energy storage must be used approximately 12 times more 
often than the current yearly rate to gain the same benefit. The 
theoretical maximum of the HMP decrease is the same as the 
annual one, but the risk exists that the maximum decrease is not 
achieved.

The difference between the monthly and yearly pricing 
periods can be evaluated by comparing the average of the 
monthly and yearly power decreases. Fig. 5 presents the HMP 
decrease of the customers when the pricing period is the whole 
year and the average monthly HMP decreases when the pricing 

period is one month. Energy storage with the capacity of 6 kWh 
and a C-rate of 0.7C is used in the simulation.

The results show that approximately two-thirds of customers 
have a higher power decrease with a yearly period and one third 
has a higher average power decrease when the pricing period is 
one month. In the monthly case, zero customers achieved the 
maximum benefit, and only a few customers had high (a 
decrease of over 75% of the HMP) benefits. Most of the 
customers had rather similar benefits, and for only a few 
customers, the benefits turned out to be quite low because of
discrepancies between the months and the customer behavior. 
The same customer can achieve the maximum benefit one 
month and a low benefit the next. This scenario also means that 
if certain customers do not receive any benefit from the yearly 
pricing period, the monthly pricing period can still lead to a 
near-average benefit for the whole group.

Another difference between pricing periods is how much and 
how often the energy storage must be used to obtain the benefit. 
The hours that the energy storage must be discharged compared 
with the HMP decrease for monthly and yearly pricing periods 
are shown in Fig. 6. We observe that the number of discharge 
hours and the magnitude of the HMP decrease do not show 
much dependency. With the same number of discharge hours, 
one customer might achieve a 4 kW HMP decrease, whereas 
another customer might not achieve any decrease in power.

Energy storage must be used much more often with the 
monthly pricing period than with the yearly period to achieve 
the same benefit. With the monthly pricing period, the energy
storage should be discharged for over 548 hours per year on 
average such that the average monthly HMP decrease is 
1.65 kW, which means that the energy storage must be 
discharged for over 332 hours on average to achieve a decrease 
of 1 kW. With the yearly pricing period, a 1.81 kW power 
decrease can be achieved with 78 discharge hours on average, 
meaning an average of 43 discharge hours for a 1 kW power 
decrease, which is approximately 13% of the hours needed in 
the monthly pricing period case.

D.  Combination of HMP decrease and market price-based 
control

The combination of different control methods produces an 
ideal situation to sum the benefits from both control methods. 
There is also a risk that when the spot price-based control is 

Fig. 4.  HMP decrease of 1525 customers with three different energy storage 
system capacities and three different C-rates.
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combined with the power decrease, different control targets can 
lead to loss of the achievable benefit from both methods. 
Changes in the HMP decrease of customers when the spot 
price-based control is used with an energy storage capacity of 
6 kWh and a C-rate of 0.7C are shown in Fig. 7. The changes 
are presented as histograms in which the customers are divided 
into groups based on their HMP decrease. We note that for the 
majority, the HMP decrease is lower when the spot price-based 
control is involved. If the pricing period is one year, the HMP 
decrease for approximately 26% of the customers remains the 
same or is better than it was without the spot price-based 
control. If the pricing period is one month, the same ratio is 
16%. Involvement of the spot price-based control caused a loss 
of benefits for all other customers. The HMP decrease might be 
higher even if the spot price-based control is involved.

E.  Profitability of energy storage
The investment costs and magnitude of tariff components 

affect the profitability of the energy storage. The investment 
costs of the energy storage include the costs of the battery and 
power electronics. These costs are estimated to decrease in the 
near future. The investment costs of the energy storage were 
studied, e.g., in [23], where it is stated that in 2015, the LFP 
battery cell prices were in the 200-350 €/kWh range and the 
estimated price in 2020 is expected to range from 100 to 200 
€/kWh. Taxes, installation costs, management system costs and 
other costs should be added to these prices. The realistic level 
of the consumer prices is closer to double what is listed. The 
cost of the necessary power electronics was in the 100-
150 €/kW range in 2015, and it is assumed to be approximately 
80-110 €/kW in 2020 [23]. In this paper, we assume that the 
power electronic costs are 120 €/kW and that the cell price is 
200 €/kWh. For a 6 kWh battery and 0.7C rate, the costs are
approximately 2900 €. The lowest possible price in 2020 is
approximately 1500 €, and the maximum price in 2015 is
approximately 4800 €. These prices are used as benchmark 
values when we estimate the profitability of the energy storage.

Investment in the energy storage system is profitable if the 
benefit from the annual electricity costs is sufficiently high that 
the total benefits exceed the investment costs before the lifetime 
of the energy storage ends. The calendar lifetime of the LFP 
battery system is approximately 15 years, as presented in [24]. 
If we calculate a discounted cash flow for the next 15 years of 
energy storage use, the value of cost benefits in the future will 

be higher than now. Additionally, the changes in energy prices 
are difficult to forecast. However, if we make a supposition that 
the prices remain stable and the losses caused by battery 
degeneracy are compensated with the changes in currency 
value, we can calculate that the benefit will be constant over a 
15-year period. This scenario means that the average yearly 
benefit must be at least 100 € with 1500 € investment costs, 194 
€ with 2900 € investment costs, and 320 € with 4800 € 
investment costs.

Fig. 8 shows the savings in distribution costs with different 
PBDT structures and control methods when the non-ideal load 
forecast is used in the control. Similar results are presented in 
Fig. 9, but the calculation is based on the ideal load forecast. 
Customers are divided into groups based on their achievable 
savings in 10 € blocks. We observe that the losses in annual 
savings caused by the error in the load forecast are minimal. 
The use of load forecast impacts only a few customers, and the 
changes are so low that they are not noticeable from the 
distribution with the 10 € blocks. The results are quite similar 
in both Figs. 8 and 9. With PT, the annual cost savings are 
distributed between 0 and 340 €/a such that the majority of the 
customers achieve savings of approximately 150 €/a. The 
average savings per customer is 143 €/a with a non-ideal load 
forecast and 205 €/a with an ideal load forecast. If a threshold 
limit of 5 kW is included in the power tariff (TPT), the 
customers with HMP values below this limit do not receive 
benefits. Other customers can achieve notably high benefits if 
the HMPs are slightly over the threshold limit, and the best 
benefit can reach as high as 680 € in a year. The average cost 
savings per customer are 135 €/a with a non-ideal load forecast 
and 270 €/a with an ideal load forecast. The tariff and the 
control method ST lead to significant cost benefits (i.e., over 
100 €/a and even 460 €/a) for a small group of customers, but 
the majority is left either completely without cost benefits or 
with only a rather low benefit. The average cost savings per 
customer are 41 €/a with both load forecasts. Benefit 
distribution among customers with PLT appears highly
interesting because almost half of the customers gain a 259 €/a 
benefit while the other half receives no benefit. The average 
cost savings per customer is 133 €/a with a non-ideal load 
forecast and 138 €/a with an ideal load forecast.

Fig. 7.  Changes in HMP decrease of customers when spot price-based control 
is involved.
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Figs. 10 and 11 show the total benefit achieved from energy 
and distribution costs with different control methods in which 
the spot price-based control is combined with the PBDT. In Fig. 
10, non-ideal load forecasts were used, and in Fig. 11, ideal load 
forecasts were used. Additionally, the benefit achieved from 
spot price-based control without the PBDT is shown in Figs. 10 
and 11. The forecasting errors affect the results significantly 
when spot price-based control is involved. The average savings
per customer with different tariffs in PT, TPT, ST, and PLT are
81, 142, 24, and 54 €/a, respectively, with a non-ideal load
forecast and 214, 276, 55, and 151 €/a with an ideal load 
forecast. The average savings per customer with only the spot 
price-based control are 22 €/a with a non-ideal load forecast and 
27 €/a with an ideal load forecast. We observe from Figs. 8 and
10 that with a spot price-based control, the cost benefits are 
lower on average than without it if the non-ideal load forecast 
is used in the control. Individual customers can achieve even 
higher benefits with a spot price-based control, but with all 
control methods, they are more likely to achieve higher benefits 
without it. A combination of the PBDT and a spot price-based 
control makes it possible to achieve higher benefits than with 
spot price-based control alone.

The benefits from the combination of spot price-based 
control and control based on the PBDT could be higher if the 
load forecasts are accurate, and enhancing the accuracy of load 
forecasting to account for both control aspects requires further 
research. Based on the results of this paper, it can be stated that 

the importance of the load forecast accuracy is more critical in 
the case in which energy storage must be activated more often 
to gain the benefit. As shown in the study (e.g., in Fig. 6), usage 
of the energy storage varies between different PBDT structures, 
although the achievable benefits are similar. Actual cost 
benefits achieved from the energy storage depend on, e.g., the 
magnitudes and structure of the tariff components and the actual 
realized consumption behavior of the customer. When the 
PBDTs are widely introduced, their structures and prices vary 
between different DSOs.

The results of this paper do not directly indicate whether 
energy storage is profitable or not. However, the results show 
how different tariff structures affect the benefits of customers. 
The prices of the energy storage system used in the study are 
rather rough estimates and are used only as benchmark values 
to compare the annual benefits of the energy storage and related 
investment costs. In this paper, the only flexible element is the 
energy storage, but it is also possible to combine the use of 
energy storage and traditional load control. For example, a 
portion of the high HMPs can be decreased by controlling the
water boiler first, and after doing so, the energy storage can be 
used in further HMP decrease. The profitability and benefit 
studies of these types of DR actions require further research.

Fig. 8.  Savings in annual distribution costs for customers with different energy 
storage control methods and distribution pricing structures when using a non-
ideal load forecast. Profitability limits with three different energy storage 
system prices are depicted by the vertical lines.
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Fig. 10.  Total benefits for customers with different control methods and 
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Fig. 9.  Savings in annual distribution costs for customers with different energy 
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load forecast. Profitability limits with three different energy storage system 
prices are depicted by the vertical lines.
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V.  CONCLUSIONS 
This paper introduces an evaluation method designed to 

assess the profitability of the DR, especially in the case of 
energy storage applied by household customers. The 
investment costs of energy storage and the load forecast of 
customers strongly affect the profitability, and the impacts of 
these factors are evaluated in this paper. Additionally, the 
electricity market environment, which defines the level of 
electricity prices and the volatility of the market spot prices, 
affect the profitability of the energy storage. This paper focuses 
on the impacts of power-based distribution tariffs (PBDT) on 
the benefits achieved through the use of energy storage. Novel 
PBDTs of small customers can significantly change the 
profitability and control targets of electrical energy storage in 
households. Without the use of the power-based component of 
the distribution tariff and with the present volatility of the 
market spot prices for electricity, energy storage is not 
profitable. The results of this paper show that energy storage 
can be profitable with a PBDT, or at least that the profitability 
can be improved. 

The results also show how different tariff structures affect 
the customer benefits. The tariff structure TPT enables the 
highest customer benefits for those with an HMP that is high 
relative to their average consumption. From the DSO 
viewpoint, this scenario is favorable because the TPT especially 
encourages these customers to lower their HMPs. With PT, the 
effect is similar to that of TPT but is not as powerful because 
the benefits are lower for customers whose HMPs are the 
highest. The PLT and ST structures are problematic because 
they include discontinuous steps or boundaries in the structures, 
which make the storage profitable for a subset of the customers. 
The benefits are not in line with the relationship of the HMP 
and average consumption. More accurate load forecasting can 
increase the profitability of the energy storage with PBDT 
structures, which requires frequent use of energy storage, e.g., 
with market price-based control. A topic for further research is 
the development of a stochastic control method that minimizes 
the effect of errors in the load forecasts or at least improves their 
accuracy. 

Although the results of this study are achieved in the Finnish 
electricity market environment, the proposed method and 
algorithm are globally applicable with modification and 
consideration of the differences in the given electricity market 
environment. Additionally, the algorithm can be applied in a 
home energy management system (HEMS) in the future. 
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• The basic novel concepts used for the sizing of the solar panel were introduced.

• Use of storage could increase the profitability of photovoltaic power generation.

• Different incentives could be combined in the control of electrical energy storage.

• The size of the solar panel could increase when the community model was applied.
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A B S T R A C T

The popularity of small-scale residential energy production using photovoltaic power generation is predicted to
increase. Self-production of electricity for self-consumption has become profitable mainly because of high-dis-
tribution costs and taxes imposed by the service providers on commercially produced electricity or because of
the subsidies which reduce installation costs. Electrical energy storage can be used to increase the self-con-
sumption potential of photovoltaic power. Additionally, electrical energy storage can lead to other benefits such
as demand response or avoiding high load peaks. In this study, the profitability and sizing of a photovoltaic
system with an associated electrical energy storage are analyzed from an economic perspective. The novel theory
of sizing for profitability is presented and demonstrated using case studies of an apartment building and de-
tached houses in Finland. To maximize the benefits, several alternative models for electricity metering and
pricing are used and compared. The results demonstrated that the optimal size of the photovoltaic system could
be increased by using electrical energy storage and suitable electricity pricing. This could lead to an increasing
amount of photovoltaic production in the residential sector. Additionally, it is possible that when all the in-
centives are taken into account, electrical energy storage in combination with photovoltaic power generation
would be more profitable than photovoltaic power generation alone. Photovoltaic power generation also in-
creased the profitability of electrical energy storage, which could mean that the implementation of electrical
energy storage in the residential sector could likewise increase.

1. Introduction

Electrical energy storage systems (EESS) could solve many problems
in future electricity generation and distribution [1]. The use of re-
newable energy resources must increase rapidly in the near future in
order to mitigate climate change. Renewable energy generation is often
weather dependent (e.g., solar and wind power), which leads to rising
needs for flexibility in the whole energy system. Flexibility in electrical
energy systems can be increased in many ways. The intelligent use of
electric devices as well as the implementation of EESS can introduce
some of the required flexibility. EESS are very adaptable because there

are various available solutions which possess different features. It is
possible to choose the most suitable EESS solution a particular purpose.

Residential buildings are an important factor in the development of
new flexible power systems. A significant part of annual electricity
consumption is residential. For example, in Finland, annual electricity
consumption was 85.2 TWh in 2016, and approximately 26.4%
(22.5 TWh) of this was in housing [2]. Household appliances were re-
sponsible for about 36.4% (8.2 TWh) of the annual domestic electricity
consumption, and the rest was consumed in heating spaces, domestic
water, and saunas [3]. High flexibility in the load profiles of residential
buildings makes them interesting targets for the application of demand
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1. Introduction

Electrical energy storage systems (EESS) could solve many problems
in future electricity generation and distribution [1]. The use of re-
newable energy resources must increase rapidly in the near future in
order to mitigate climate change. Renewable energy generation is often
weather dependent (e.g., solar and wind power), which leads to rising
needs for flexibility in the whole energy system. Flexibility in electrical
energy systems can be increased in many ways. The intelligent use of
electric devices as well as the implementation of EESS can introduce
some of the required flexibility. EESS are very adaptable because there

are various available solutions which possess different features. It is
possible to choose the most suitable EESS solution a particular purpose.

Residential buildings are an important factor in the development of
new flexible power systems. A significant part of annual electricity
consumption is residential. For example, in Finland, annual electricity
consumption was 85.2 TWh in 2016, and approximately 26.4%
(22.5 TWh) of this was in housing [2]. Household appliances were re-
sponsible for about 36.4% (8.2 TWh) of the annual domestic electricity
consumption, and the rest was consumed in heating spaces, domestic
water, and saunas [3]. High flexibility in the load profiles of residential
buildings makes them interesting targets for the application of demand
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response. The timing of load-use can easily be changed without sig-
nificant loss of comfort. There are, however, still a lot of loads for which
time of use cannot change. Customers’ load profiles change a lot, and in
the worst cases, load peaks accumulate at the same times for multiple
customers. By applying intelligent control, this accumulation can be
avoided. Using EESS, it is possible to implement demand response op-
erations so that customers do not sense any significant loss of comfort,
without instituting changes in the customer’s consumption.

Electricity generation will become more distributed in the future,
and to reduce the distribution losses and costs of distribution, it is a
reasonable approach to produce energy on-site, where the consumption
occurs. Small-scale electricity generation, for example, photovoltaic
(PV) power generation, plays an important role in nearly zero energy
buildings, where the consumed energy is compensated for by self-pro-
duction [4]. Renovations of old residential buildings are important in
reducing housing-related emissions. In Finland, there are many apart-
ment buildings that were built in the 60 s, 70 s, or 80 s, and their energy
efficiencies are poor [5]. It is possible to increase the building’s energy
efficiency by applying such measures as adding insulation and changing
space heating to heat pump–based systems. Old buildings consume a lot
of energy despite being renovated, so on-site energy production is also
needed. When the electrical energy is produced on-site, it incurs none of
the losses associated with electricity distribution. Additionally, the
decrease in the total amount of distributed energy could reduce the
need to reinforce the grid in future if the load profile can be controlled
intelligently, by EESS, for example.

Although EESS could be used to solve many of the problems asso-
ciated with power systems, they are not yet widely used because of the
high attendant cost and poor profitability. The battery energy storage
system (BESS) is an EESS in which the storage technology is based on
batteries. In the last decade, the price of lithium-ion batteries has fallen
rapidly, and this trend is expected to continue [6]. The falling cost of
batteries makes them a more interesting solution and increases the at-
tendant profitability. When lithium-ion (Li-ion) battery prices fall and
demand rises, mostly due to the increasing demand of the electric ve-
hicle industry, there is a concern that rising lithium prices could in turn
increase the costs of Li-ion batteries. The market price of lithium has
only a minimal impact on the consumer price of Li-ion batteries, so the
fall in the price of batteries could be expected to continue [7]. Another
way to increase profitability is to maximize the benefits of EESS, and
this is a very interesting research target. In this study, the term BESS is
used when referring to batteries. When the case is generalized to in-
clude other storage technologies, for example, supercapacitors or flow
batteries, the term EESS is used.

The current profitability of EESS both with and without PV in
Finnish households is slow, but with a good control system and suitable
development of electricity prices, it could become profitable in the
future [8]. Power-based distribution tariff structures will increase the
profitability of EESS if the pricing structures and the customer’s load
profiles are suitable [9]. Global study results all appear to be similar,
but each country possesses its own special features; the electricity pri-
cing structures and the production profiles of PV depend on geographic
location.

In Finland and other Nordic countries, PV production occurs mostly
in summer, when the production can be even higher than in Central
Europe, because of long days and colder weather [10]. Germany and
Italy are the main producers of PV energy in the European Union.
Germany is very similar to Finland; the benefits of EESS are associated
with Time-of-Use (ToU) tariffs, the increase in self-consumption, and
possible dynamic tariffs with load limits [11].

Previous research projects have presented various results for the
profitability of PV and EESS, which include some of the following
published findings. Surplus PV production can be used to power do-
mestic water heaters or air conditioning, which are more profitable
than BESS alone [12]. It could be profitable to use community energy
storage (CES) to store surplus energy from rooftop PV production

within the residential building group [13]. The results of paper [14]
showed that no significant differences could be detected in profitability
and benefits between household energy storage (HES) and CES system
architecture.

High PV penetration can cause an over-voltage problem [15]. This
can be solved using BESS, which is typically connected in parallel with
PV, and a control schedule which is locally administered by the HES.
Voltage control schemes do not address the primary needs of the BESS
owner. An economically-optimal control strategy may have been im-
plemented with a time-dependent grid supply limit, which can lead to
an over-voltage problem [16].

Increasing the site self-consumption of PV-generated power is the
most common control aim of a BESS installation. Study [17] shows that
although this control does decrease the total amount of power exported
to the grid from the PV system, the PV power production peaks stay
equally as high as without an installed BESS. This outcome is probable
if the BESS is not controlled using smart systems. Using a forecast of PV
production and household consumption in the control system, it be-
comes possible to decrease the impact on the grid caused by the PV
production supply peaks. Residential buildings are good candidates for
increasing self-consumption using BESS because the consumption
usually occurs in different time of the day than the high PV production.
For example, in commercial buildings, high consumption usually occurs
during the daytime, when the PV production also peaks. Thus, the
profitability of increasing self-consumption in commercial buildings
using BESS is not as attractive [18].

To maximize the techno-economic benefits of BESS, it is important
to correctly size the PV and BESS according to the customers’ load
profile [19]. Sizing a BESS with grid-connected PV is usually done by
choosing the PV size first and then optimizing the capacity of the BESS.
An example is presented in [20], where the sizing is done for a solar
power plant. The same kind of sizing is done in [21], utilizing the
Improved Harmony Search Algorithm, and in [22] for a rooftop solar
power plant. This often leads to poor profitability of the BESS, but the
results depend strongly on how the PV is sized. The sizing of PV systems
has been demonstrated in [23] for Northern European conditions, in
[24] by utilizing the mixed integer optimization model, and in [25] for
a commercial building. In some cases, it was found that using BESS
could increase the profitability of PV if the size of PV was increased
[26]. This paper evaluates the profitability of PV with associated EESS
and the process of sizing them accordingly. A different approach is used
in this case which was not used in previous studies, however, since the
EESS is sized first.

Residential buildings were chosen as the research target because the
PV production profiles and building consumption profiles typically
differ significantly. Apartment buildings form an energy community,
where the local PV and EESS system benefit all the customers in the
community. Local energy communities have been raised as an option in
the EU clean energy package as a means to improve efficient energy
management [27]. Previous papers have not commonly studied re-
sidential buildings while taking into account the differences between
apartment buildings and detached houses.

A comprehensive analysis of the electricity pricing scheme and its
effects on PV and EESS sizing has not previously been done. The aim of
this study is to research how electricity pricing affects the profitability
of PV and EESS. The research has been done from the perspective of the
Nordic electricity market environment, especially within the Finnish
context, but the results can be generalized for other global context by
taking environmental differences into account.

The remainder of this paper is divided into six sections. Section 2
presents a theoretical analysis of optimal PV and BESS sizing from a
techno-economic perspective considering different BESS control in-
centives. Section 3 introduces the simulation model, which is used in
various case studies. Section 4 includes the input data from the con-
sumption of residential customers, electricity price data, weather data,
and data for PV production. Section 5 presents the results of simulation
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cases, which demonstrate the theory in practice. The discussion is
presented in Section 6, and the conclusions of the paper in Section 7.

2. Sizing of PV and EESS in residential buildings

2.1. Introduction to the effects of electricity pricing and metering on the
sizing of PV and EESS

The electricity pricing structure affects the sizing of PV system and
EESS. Different countries, energy retailers and distribution system op-
erators (DSO) possess multiple structures for electricity pricing and for
accelerating the implementation of renewable energy generation. In
this paper, electricity pricing structures, as used in Finland, or as pre-
sented in various research papers, are used. Different kinds of possible
pricing structures, which affect the sizing of PV and EESS, are in-
troduced in this chapter. Direct prices and structures are presented
along with case studies later in the paper. However, the main pricing
guidelines which affect sizing, are presented here.

Commonly-used incentives for PV are feed-in tariffs, ToU pricing,
and net metering [28]. In many high PV–penetration countries, the
implementation of PV is sped up with feed-in tariffs, which means that
the customer receives a constant remuneration price for the total
amount of generated PV energy (c/kWh) fed back into the grid. The
problem with this approach is that feed-in tariffs encourage customers
to acquire large PV system which can lead to high levels of power fed
back into the grid supply. This can lead to problems in the distribution
system. The feed-in tariff also requires extra metering so that all pro-
duced energy can be measured before self-consumption. In many
countries, feed-in tariffs are slowly being abandoned; for example,
Finland has no feed-in tariff for PV. For these reasons, the feed-in tariffs
have been left outside of the scope of this study.

Net metering can be implemented on two different levels. A net
metering scheme usually requires the customer’s entire energy supply
to the grid and their consumption to be calculated together. The cus-
tomer benefits from all produced energy regardless of their consump-
tion level. This type of total net metering obviates the need for a local
EESS to increase self-consumption and thus removes the incentive and
makes the use of EESS unprofitable [29]. Total net metering can lead to
the same problems as those associated with the feed-in tariff because it
provides incentive to supply all surplus energy to the grid when cus-
tomer’s total amount of energy supply keep lower than total con-
sumption. Total net metering is not used in Finland and is therefore
excluded from this study. Net metering is also sometimes applied as a
summation of hourly consumption and energy supply to the grid. Tra-
ditionally, grid supply and consumption are measured separately using
separate meters. Using a bi-directional meter for hourly net metering,
the consumption per hour is measured and the customer is charged per
measurement. Hourly net metering removes the incentives for EESS
operations which take less than an hour but makes for easier evaluation
of PV profitability and sizing. Metering practices vary between coun-
tries and DSOs; in Finland, most DSOs use hourly net metering. In this
paper, all calculations are made using hourly net metering.

One easy way to influence a customers’ consumption is to use ToU
pricing, where the price of electricity varies with time. The price can
change once a day or even every hour. The price is typically higher
when the consumption of the whole power grid is higher. PV produc-
tion typically peaks at approximately midday, and the highest con-
sumption peaks usually occur in the evening. ToU pricing thus provides
an incentive for demand response operations. In Finland, customers
with access to self-production can make a contract with the energy
retailer in which the retailer will buy surplus energy. Market-price-
based real-time pricing is often used in this scenario. The hourly price is
determined using an hourly day-ahead spot-price for the region of
Finland within the Nordic electricity market [30]. Energy retailers, who
can be competitive, apply their own margin that they take off the grid
supply price and add to the purchase price. Additionally, value-added

tax (VAT) is added to the purchase price. This kind of pricing is used in
this study as a market-price-based tariff.

In countries like Finland, where energy retailers and DSOs are se-
parate entities, a distribution tariff provides the biggest incentive for
EESS with PV. Another incentive is the electricity tax, which does not
have to be paid by small-scale producers (under 100 kVA) in Finland.
The electricity tax and distribution price are included in the electricity
purchase price, but not in the grid supply price. Therefore, it represents
a significant difference between these prices. The electricity tax with a
strategic stockpile fee for typical residential customers is 2253 c/kWh
plus 24% VAT in Finland [31].

There are multiple structures available for pricing the distribution
fee. The basic model consists of the basic charge (€/month) and the
volumetric charge (c/kWh), which are commonly used in Finland.
Another model is the ToU, in which the volumetric charge varies be-
tween day and night. Larger customers command pricing structures. In
these, a part of the basic and volumetric charges are replaced by the
demand charge (€/kW). The demand charge could be implemented in
various ways, for example, power usage to be charged could be taken as
the highest average hourly power usage of a sliding year or the three
highest power usages of a sliding year. Recently, there has been dis-
cussion about how power tariffs could also be implemented for small-
scale residential customers. Because part of the profitability of re-
sidential PV comes from the volumetric charge, there is a concern that
the profitability of PV will decrease if power tariffs are introduced.
However, the demand charge provides a new incentive for EESS use
[9].

Customers in apartment buildings have separate electricity con-
tracts for each apartment. Their consumption is typically so low that the
opportunity to participate in demand response or any energy-saving
operation is very limited. These kinds of operations in apartment
buildings are typically implemented via their common electricity use,
for example, elevators, lighting, and heating. It is possible to change the
common metering when the customers of an apartment building form
an energy community. Along with this change, PV and EESS can be
utilized for the benefit of the entire building and its customers. This
change can cause some legislative problems. In countries like Finland,
however, it is still a possibility if every customer accepts the conditions.
Of course, customers have the option of leaving the community if it is
their desire [32]. This approach could lead to problems in the sharing of
benefits and costs among customers. Different types of solutions have
been developed for this scenario, such as presented in [33]. The energy
community model is presented later in this paper.

2.2. Sizing of PV panel array

The size of the PV panel array is limited by physical and economic
factors. Physical boundaries such as roof area can limit the PV array
size, but for the purposes of this study, the sizing is done only from an
economic perspective. The aim is to find the size of the PV which
maximizes the profit. To maximize the profit, first the annual cost
savings have to be determined. Fig. 1 shows the basic principle of de-
pendence between the annual cost savings and the PV nominal power.
The wide red1 curve C shows this dependence. It consists of two straight
lines and the curvature between them. Line A (y= ax+ f) was fitted
using linear regression: when all energy produced was self-consumed, it
compensated for the energy purchase. The annual cost savings came
from the purchase price of electricity, including distribution fees and
taxes. Line B (y= bx+ g) was fitted using linear regression when all
produced energy was fed back into the grid, and the annual cost savings
came from the sale of energy and thus from its selling price. The vari-
ables in Fig. 1 are presented in Table 1.

1 For interpretation of color in Figs. 1 and 2, the reader is referred to the web
version of this article.
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response. The timing of load-use can easily be changed without sig-
nificant loss of comfort. There are, however, still a lot of loads for which
time of use cannot change. Customers’ load profiles change a lot, and in
the worst cases, load peaks accumulate at the same times for multiple
customers. By applying intelligent control, this accumulation can be
avoided. Using EESS, it is possible to implement demand response op-
erations so that customers do not sense any significant loss of comfort,
without instituting changes in the customer’s consumption.

Electricity generation will become more distributed in the future,
and to reduce the distribution losses and costs of distribution, it is a
reasonable approach to produce energy on-site, where the consumption
occurs. Small-scale electricity generation, for example, photovoltaic
(PV) power generation, plays an important role in nearly zero energy
buildings, where the consumed energy is compensated for by self-pro-
duction [4]. Renovations of old residential buildings are important in
reducing housing-related emissions. In Finland, there are many apart-
ment buildings that were built in the 60 s, 70 s, or 80 s, and their energy
efficiencies are poor [5]. It is possible to increase the building’s energy
efficiency by applying such measures as adding insulation and changing
space heating to heat pump–based systems. Old buildings consume a lot
of energy despite being renovated, so on-site energy production is also
needed. When the electrical energy is produced on-site, it incurs none of
the losses associated with electricity distribution. Additionally, the
decrease in the total amount of distributed energy could reduce the
need to reinforce the grid in future if the load profile can be controlled
intelligently, by EESS, for example.

Although EESS could be used to solve many of the problems asso-
ciated with power systems, they are not yet widely used because of the
high attendant cost and poor profitability. The battery energy storage
system (BESS) is an EESS in which the storage technology is based on
batteries. In the last decade, the price of lithium-ion batteries has fallen
rapidly, and this trend is expected to continue [6]. The falling cost of
batteries makes them a more interesting solution and increases the at-
tendant profitability. When lithium-ion (Li-ion) battery prices fall and
demand rises, mostly due to the increasing demand of the electric ve-
hicle industry, there is a concern that rising lithium prices could in turn
increase the costs of Li-ion batteries. The market price of lithium has
only a minimal impact on the consumer price of Li-ion batteries, so the
fall in the price of batteries could be expected to continue [7]. Another
way to increase profitability is to maximize the benefits of EESS, and
this is a very interesting research target. In this study, the term BESS is
used when referring to batteries. When the case is generalized to in-
clude other storage technologies, for example, supercapacitors or flow
batteries, the term EESS is used.

The current profitability of EESS both with and without PV in
Finnish households is slow, but with a good control system and suitable
development of electricity prices, it could become profitable in the
future [8]. Power-based distribution tariff structures will increase the
profitability of EESS if the pricing structures and the customer’s load
profiles are suitable [9]. Global study results all appear to be similar,
but each country possesses its own special features; the electricity pri-
cing structures and the production profiles of PV depend on geographic
location.

In Finland and other Nordic countries, PV production occurs mostly
in summer, when the production can be even higher than in Central
Europe, because of long days and colder weather [10]. Germany and
Italy are the main producers of PV energy in the European Union.
Germany is very similar to Finland; the benefits of EESS are associated
with Time-of-Use (ToU) tariffs, the increase in self-consumption, and
possible dynamic tariffs with load limits [11].

Previous research projects have presented various results for the
profitability of PV and EESS, which include some of the following
published findings. Surplus PV production can be used to power do-
mestic water heaters or air conditioning, which are more profitable
than BESS alone [12]. It could be profitable to use community energy
storage (CES) to store surplus energy from rooftop PV production

within the residential building group [13]. The results of paper [14]
showed that no significant differences could be detected in profitability
and benefits between household energy storage (HES) and CES system
architecture.

High PV penetration can cause an over-voltage problem [15]. This
can be solved using BESS, which is typically connected in parallel with
PV, and a control schedule which is locally administered by the HES.
Voltage control schemes do not address the primary needs of the BESS
owner. An economically-optimal control strategy may have been im-
plemented with a time-dependent grid supply limit, which can lead to
an over-voltage problem [16].

Increasing the site self-consumption of PV-generated power is the
most common control aim of a BESS installation. Study [17] shows that
although this control does decrease the total amount of power exported
to the grid from the PV system, the PV power production peaks stay
equally as high as without an installed BESS. This outcome is probable
if the BESS is not controlled using smart systems. Using a forecast of PV
production and household consumption in the control system, it be-
comes possible to decrease the impact on the grid caused by the PV
production supply peaks. Residential buildings are good candidates for
increasing self-consumption using BESS because the consumption
usually occurs in different time of the day than the high PV production.
For example, in commercial buildings, high consumption usually occurs
during the daytime, when the PV production also peaks. Thus, the
profitability of increasing self-consumption in commercial buildings
using BESS is not as attractive [18].

To maximize the techno-economic benefits of BESS, it is important
to correctly size the PV and BESS according to the customers’ load
profile [19]. Sizing a BESS with grid-connected PV is usually done by
choosing the PV size first and then optimizing the capacity of the BESS.
An example is presented in [20], where the sizing is done for a solar
power plant. The same kind of sizing is done in [21], utilizing the
Improved Harmony Search Algorithm, and in [22] for a rooftop solar
power plant. This often leads to poor profitability of the BESS, but the
results depend strongly on how the PV is sized. The sizing of PV systems
has been demonstrated in [23] for Northern European conditions, in
[24] by utilizing the mixed integer optimization model, and in [25] for
a commercial building. In some cases, it was found that using BESS
could increase the profitability of PV if the size of PV was increased
[26]. This paper evaluates the profitability of PV with associated EESS
and the process of sizing them accordingly. A different approach is used
in this case which was not used in previous studies, however, since the
EESS is sized first.

Residential buildings were chosen as the research target because the
PV production profiles and building consumption profiles typically
differ significantly. Apartment buildings form an energy community,
where the local PV and EESS system benefit all the customers in the
community. Local energy communities have been raised as an option in
the EU clean energy package as a means to improve efficient energy
management [27]. Previous papers have not commonly studied re-
sidential buildings while taking into account the differences between
apartment buildings and detached houses.

A comprehensive analysis of the electricity pricing scheme and its
effects on PV and EESS sizing has not previously been done. The aim of
this study is to research how electricity pricing affects the profitability
of PV and EESS. The research has been done from the perspective of the
Nordic electricity market environment, especially within the Finnish
context, but the results can be generalized for other global context by
taking environmental differences into account.

The remainder of this paper is divided into six sections. Section 2
presents a theoretical analysis of optimal PV and BESS sizing from a
techno-economic perspective considering different BESS control in-
centives. Section 3 introduces the simulation model, which is used in
various case studies. Section 4 includes the input data from the con-
sumption of residential customers, electricity price data, weather data,
and data for PV production. Section 5 presents the results of simulation
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cases, which demonstrate the theory in practice. The discussion is
presented in Section 6, and the conclusions of the paper in Section 7.

2. Sizing of PV and EESS in residential buildings

2.1. Introduction to the effects of electricity pricing and metering on the
sizing of PV and EESS

The electricity pricing structure affects the sizing of PV system and
EESS. Different countries, energy retailers and distribution system op-
erators (DSO) possess multiple structures for electricity pricing and for
accelerating the implementation of renewable energy generation. In
this paper, electricity pricing structures, as used in Finland, or as pre-
sented in various research papers, are used. Different kinds of possible
pricing structures, which affect the sizing of PV and EESS, are in-
troduced in this chapter. Direct prices and structures are presented
along with case studies later in the paper. However, the main pricing
guidelines which affect sizing, are presented here.

Commonly-used incentives for PV are feed-in tariffs, ToU pricing,
and net metering [28]. In many high PV–penetration countries, the
implementation of PV is sped up with feed-in tariffs, which means that
the customer receives a constant remuneration price for the total
amount of generated PV energy (c/kWh) fed back into the grid. The
problem with this approach is that feed-in tariffs encourage customers
to acquire large PV system which can lead to high levels of power fed
back into the grid supply. This can lead to problems in the distribution
system. The feed-in tariff also requires extra metering so that all pro-
duced energy can be measured before self-consumption. In many
countries, feed-in tariffs are slowly being abandoned; for example,
Finland has no feed-in tariff for PV. For these reasons, the feed-in tariffs
have been left outside of the scope of this study.

Net metering can be implemented on two different levels. A net
metering scheme usually requires the customer’s entire energy supply
to the grid and their consumption to be calculated together. The cus-
tomer benefits from all produced energy regardless of their consump-
tion level. This type of total net metering obviates the need for a local
EESS to increase self-consumption and thus removes the incentive and
makes the use of EESS unprofitable [29]. Total net metering can lead to
the same problems as those associated with the feed-in tariff because it
provides incentive to supply all surplus energy to the grid when cus-
tomer’s total amount of energy supply keep lower than total con-
sumption. Total net metering is not used in Finland and is therefore
excluded from this study. Net metering is also sometimes applied as a
summation of hourly consumption and energy supply to the grid. Tra-
ditionally, grid supply and consumption are measured separately using
separate meters. Using a bi-directional meter for hourly net metering,
the consumption per hour is measured and the customer is charged per
measurement. Hourly net metering removes the incentives for EESS
operations which take less than an hour but makes for easier evaluation
of PV profitability and sizing. Metering practices vary between coun-
tries and DSOs; in Finland, most DSOs use hourly net metering. In this
paper, all calculations are made using hourly net metering.

One easy way to influence a customers’ consumption is to use ToU
pricing, where the price of electricity varies with time. The price can
change once a day or even every hour. The price is typically higher
when the consumption of the whole power grid is higher. PV produc-
tion typically peaks at approximately midday, and the highest con-
sumption peaks usually occur in the evening. ToU pricing thus provides
an incentive for demand response operations. In Finland, customers
with access to self-production can make a contract with the energy
retailer in which the retailer will buy surplus energy. Market-price-
based real-time pricing is often used in this scenario. The hourly price is
determined using an hourly day-ahead spot-price for the region of
Finland within the Nordic electricity market [30]. Energy retailers, who
can be competitive, apply their own margin that they take off the grid
supply price and add to the purchase price. Additionally, value-added

tax (VAT) is added to the purchase price. This kind of pricing is used in
this study as a market-price-based tariff.

In countries like Finland, where energy retailers and DSOs are se-
parate entities, a distribution tariff provides the biggest incentive for
EESS with PV. Another incentive is the electricity tax, which does not
have to be paid by small-scale producers (under 100 kVA) in Finland.
The electricity tax and distribution price are included in the electricity
purchase price, but not in the grid supply price. Therefore, it represents
a significant difference between these prices. The electricity tax with a
strategic stockpile fee for typical residential customers is 2253 c/kWh
plus 24% VAT in Finland [31].

There are multiple structures available for pricing the distribution
fee. The basic model consists of the basic charge (€/month) and the
volumetric charge (c/kWh), which are commonly used in Finland.
Another model is the ToU, in which the volumetric charge varies be-
tween day and night. Larger customers command pricing structures. In
these, a part of the basic and volumetric charges are replaced by the
demand charge (€/kW). The demand charge could be implemented in
various ways, for example, power usage to be charged could be taken as
the highest average hourly power usage of a sliding year or the three
highest power usages of a sliding year. Recently, there has been dis-
cussion about how power tariffs could also be implemented for small-
scale residential customers. Because part of the profitability of re-
sidential PV comes from the volumetric charge, there is a concern that
the profitability of PV will decrease if power tariffs are introduced.
However, the demand charge provides a new incentive for EESS use
[9].

Customers in apartment buildings have separate electricity con-
tracts for each apartment. Their consumption is typically so low that the
opportunity to participate in demand response or any energy-saving
operation is very limited. These kinds of operations in apartment
buildings are typically implemented via their common electricity use,
for example, elevators, lighting, and heating. It is possible to change the
common metering when the customers of an apartment building form
an energy community. Along with this change, PV and EESS can be
utilized for the benefit of the entire building and its customers. This
change can cause some legislative problems. In countries like Finland,
however, it is still a possibility if every customer accepts the conditions.
Of course, customers have the option of leaving the community if it is
their desire [32]. This approach could lead to problems in the sharing of
benefits and costs among customers. Different types of solutions have
been developed for this scenario, such as presented in [33]. The energy
community model is presented later in this paper.

2.2. Sizing of PV panel array

The size of the PV panel array is limited by physical and economic
factors. Physical boundaries such as roof area can limit the PV array
size, but for the purposes of this study, the sizing is done only from an
economic perspective. The aim is to find the size of the PV which
maximizes the profit. To maximize the profit, first the annual cost
savings have to be determined. Fig. 1 shows the basic principle of de-
pendence between the annual cost savings and the PV nominal power.
The wide red1 curve C shows this dependence. It consists of two straight
lines and the curvature between them. Line A (y= ax+ f) was fitted
using linear regression: when all energy produced was self-consumed, it
compensated for the energy purchase. The annual cost savings came
from the purchase price of electricity, including distribution fees and
taxes. Line B (y= bx+ g) was fitted using linear regression when all
produced energy was fed back into the grid, and the annual cost savings
came from the sale of energy and thus from its selling price. The vari-
ables in Fig. 1 are presented in Table 1.

1 For interpretation of color in Figs. 1 and 2, the reader is referred to the web
version of this article.
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At some point, as the PV size increases, the produced energy can no
longer all be self-consumed, and the production of surplus energy be-
gins (point c, h in Fig. 1). If the PV continues to increase in size from this
point, the production increase associated with the increased size of the
PV array becomes surplus energy (after point e, j in Fig. 1). Slope b
depends on the electricity grid supply price and slope a depends on the
electricity purchase price. Changes between points c, h and e, j are not
linear, and the customer’s load profile determines how the line curves.

Using real data from customers, a very large PV array size is typi-
cally needed to reach the real point e. However, this may actually be
impossible because only a small part of the increased production is
timed to coincide with periods of high consumption, e.g., in the eve-
ning. Yet it is reasonable to accept that thereafter, point e is the point at
which an increase in self-consumption becomes negligible. The width of
the gap between c and e also depends on the customer’s load profile. If
the shape of the curve of the customer’s load profile is similar to the PV
production profile curve, the gap between c and e becomes small and
the change between the lines becomes dramatic because an increase in
PV array size also has a similar effect during the day. If the customer’s
load profile curve differs from the shape of the PV production profile
curve, the gap between c and e becomes wider because the increasing
PV production can supply the load during the mornings and evenings,
even if the midday load is already supplied. Fig. 2 shows a sample
profile curve for a typical customer’s load and three PV production
profiles (PV 1, PV 2, and PV 3) for different sizes of PV array. All PV
production using profile PV 1 is used on-site to supply the customer’s
load (green area in Fig. 2). When the size of PV array increases (profiles
PV 2 and PV 3), the midday surplus production (red area in Fig. 2) must

be fed back onto the grid, but increases in morning and evening pro-
duction can still be used on-site.

Even the change from only on-site consumption (line A in Fig. 1) to
surplus power supply to the grid (line B in Fig. 1) is not dramatic; the
most dramatic change occurs when the nominal power of PV is d. The
annual cost saving i along with its associated PV size depends on the
magnitude of the change between lines A and B. The constant term f of
line A indicates the annual cost benefit without PV, which can come
from incentives other than increasing self-consumption. Examples of
these other incentives include decreasing peak power usage or the ap-
plication of market-price-based control.

The investment costs associated with PV depend mostly on its
nominal power (€/kWp), but there is also, for example, some of the
initial installation costs do not depend on the nominal power. For this
reason, the total investment price per kWp can decrease as the number
of installed panels increases. However, in reality, the PV investment
cost is not directly proportional to its size. In sizing PV, it is assumed
that the price per kWp is constant. This supposition is valid when the
size of any change is small, and the cost of the panels is large compared
with the installation costs. To evaluate the profitability of PV, the
benefits and the costs have to be compared. The benefits are calculated
using the annual cost savings (€/a) in Fig. 1, so the PV costs also have to
be estimated using yearly costs (€/a). The investment costs for PV can
be roughly estimated so that they are evenly distributed over the life-
time of the PV system.

Fig. 3 shows the basic principle of comparing the annual costs of PV
and the annual cost savings, which are lines A and B in Fig. 1. If the
slope of the PV cost line is lower than slope a (as in Fig. 1) but higher
than slope b (as in Fig. 1), the highest annual profit k comes with the
nominal power d of PV. This is the basic principle used for sizing PV
systems. If the slope of the PV cost line is lower than slope b, PV is
always profitable and only physical or legislative boundaries should
limit its size; if the slope of the PV cost line is higher than slope a, the
use of a PV system of any size is not profitable. In a real situation, the
annual profit is lower than k, caused by a non-ideal change between
lines A and B. For this reason, the ideal size of the PV system is slightly
lower than d. Available sizes of a commercial PV system is discrete, so
the customer can invest in a system which size is smaller than d. When
referring to PV in this paper, the size d is referred to as the optimal size.

2.3. EESS use for demand response operations

The use of EESS for demand response (DR) operations has been
unprofitable due to its high investment costs and low economic in-
centives [8]. Li-ion batteries are the main solution for residential EESS
because of their high efficiency, long lifetime, and small physical size in
relation to its capacity [8,19]. In previous years, the price of Li-ion
batteries has fallen rapidly [6]. At the same time, the volatility of the

Fig. 1. Annual cost savings dependence on nominal PV power.

Table 1
Variables in Figs. 1, 3 and 4.

Variable

a Slope of line A (y= ax+ f)
b Slope of line B (y= bx+ g)
c Nominal power of PV after which energy starts feeding back into the

grid
d Crossing point of lines A and B (Nominal power of PV) and optimal

size of PV
e Nominal power of PV after which all extra energy is fed back into the

grid
f Constant term of line A (y= ax+ f)
g Constant term of line B (y= bx+ g)
h Maximum annual cost saving when all produced energy is self-

consumed
i Crossing point of lines A and B (Annual cost saving)
j Maximum annual cost saving at maximum self-consumption
k Maximum profit of PV
m Optimal size of PV with EESS
n Maximum profit of EESS
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electricity price has increased, therefore increasing the attractiveness of
DR [34]. Additionally, the novel structures of distribution tariffs can
include new incentives for using EESS for DR [9], so it would be
meaningful to research the use of EESS for DR.

The timing of electricity use is modified in DR operations, for ex-
ample, using the washing machine at night or switching off the electric
heating during peak hours. These operations can cause a loss of comfort
for the customers, such as a decrease in room temperature or a delay in
household operations like washing clothes. Using EESS, it is possible to
implement DR without any loss of comfort. In DR operations, EESS
discharges when the aim is to decrease consumption, and charges when
it is possible to allow the level of consumption to increase. The use of
EESS for DR is an operation which is the reverse of the delayed use of
electric devices. Delayed use decreases consumption and can be im-
plemented immediately without prior planning, but the use of EESS to
decrease peak powers must be planned in advance because the neces-
sary energy should be available in the EESS.

The sizing of EESS for DR operations is based on the load profile of
the customer [8]. If the income from DR depends on the amount of
shifted load (c/kWh), the maximum income depends on the amount of
the load during response hours. These kinds of incentives include, for
example, market-price-based dynamic tariffs or ToU tariffs. A suitable
EESS size would approximately match the customer’s average load
during high-cost periods because the load can roughly be fully sup-
ported using this size EESS. Theoretically, if the EESS size increases any
further, the increase in annual cost saving, which is dependent on the
capacity of EESS, starts to drop off and the profit starts to decrease.

With power-based tariffs, the optimal size of the EESS depends on
the difference between peak power (hourly average maximum power)
and the level of normal daily peaks [9]. It is possible to lop off in-
dividual high peaks, which are not daily, repetitive occurrences, using

the EESS. Additionally, the structure of the power-based tariff affects
the sizing of the EESS. If the power charge is directly proportional to the
peak power (€/kW), the EESS can be sized for the full range of the peak
difference, but if the structure includes some step boundaries, they
could limit the size of EESS.

2.4. EESS with PV in residential buildings

The annual profit generated by PV also depends on the nominal
power of the PV system. This dependence can be shown when the PV
cost line from Fig. 3 is projected onto the horizontal axis, as shown in
Fig. 4. In the other words, the profit can be calculated by removing the
costs from the savings. The shape of the curve depends on many vari-
ables, but Fig. 4 shows the basic principle of the phenomenon. The
highest annual profit k comes with the nominal power d of the PV
system. Using EESS, it is possible to increase the on-site use of produced
energy. When the load is lower than the PV production (the red area in
Fig. 2), the storage is charged, and when the load is higher, the storage
is discharged. This increases the constant term g of line B and can also
increase the slope of B. These changes lead to an increase in the optimal
PV size (PV+EESS). The new optimal size of PV with EESS is m and the
increase in annual profit from PV with EESS is n.

The evaluation of PV and EESS profitability and sizing of these is
slightly complicated by the fact that it can be done based primarily on
PV or EESS. Either the PV or EESS sizing must be performed first. When
the size of PV increases as a result of using EESS, the investment cost
associated with PV also increases. However, the part of the increasing
annual profit that results from the increased size of the PV or from the
use of EESS is still unknown. If only the profitability of EESS was under
investigation, its annual profit can be seen to be nearly constant for any
PV size which is higher than m. In this case, the annual profit from the

Fig. 2. Typical load profile of customer and three PV production profiles from different sizes of PV.

Fig. 3. The basic principle of PV sizing with EESS.
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At some point, as the PV size increases, the produced energy can no
longer all be self-consumed, and the production of surplus energy be-
gins (point c, h in Fig. 1). If the PV continues to increase in size from this
point, the production increase associated with the increased size of the
PV array becomes surplus energy (after point e, j in Fig. 1). Slope b
depends on the electricity grid supply price and slope a depends on the
electricity purchase price. Changes between points c, h and e, j are not
linear, and the customer’s load profile determines how the line curves.

Using real data from customers, a very large PV array size is typi-
cally needed to reach the real point e. However, this may actually be
impossible because only a small part of the increased production is
timed to coincide with periods of high consumption, e.g., in the eve-
ning. Yet it is reasonable to accept that thereafter, point e is the point at
which an increase in self-consumption becomes negligible. The width of
the gap between c and e also depends on the customer’s load profile. If
the shape of the curve of the customer’s load profile is similar to the PV
production profile curve, the gap between c and e becomes small and
the change between the lines becomes dramatic because an increase in
PV array size also has a similar effect during the day. If the customer’s
load profile curve differs from the shape of the PV production profile
curve, the gap between c and e becomes wider because the increasing
PV production can supply the load during the mornings and evenings,
even if the midday load is already supplied. Fig. 2 shows a sample
profile curve for a typical customer’s load and three PV production
profiles (PV 1, PV 2, and PV 3) for different sizes of PV array. All PV
production using profile PV 1 is used on-site to supply the customer’s
load (green area in Fig. 2). When the size of PV array increases (profiles
PV 2 and PV 3), the midday surplus production (red area in Fig. 2) must

be fed back onto the grid, but increases in morning and evening pro-
duction can still be used on-site.

Even the change from only on-site consumption (line A in Fig. 1) to
surplus power supply to the grid (line B in Fig. 1) is not dramatic; the
most dramatic change occurs when the nominal power of PV is d. The
annual cost saving i along with its associated PV size depends on the
magnitude of the change between lines A and B. The constant term f of
line A indicates the annual cost benefit without PV, which can come
from incentives other than increasing self-consumption. Examples of
these other incentives include decreasing peak power usage or the ap-
plication of market-price-based control.

The investment costs associated with PV depend mostly on its
nominal power (€/kWp), but there is also, for example, some of the
initial installation costs do not depend on the nominal power. For this
reason, the total investment price per kWp can decrease as the number
of installed panels increases. However, in reality, the PV investment
cost is not directly proportional to its size. In sizing PV, it is assumed
that the price per kWp is constant. This supposition is valid when the
size of any change is small, and the cost of the panels is large compared
with the installation costs. To evaluate the profitability of PV, the
benefits and the costs have to be compared. The benefits are calculated
using the annual cost savings (€/a) in Fig. 1, so the PV costs also have to
be estimated using yearly costs (€/a). The investment costs for PV can
be roughly estimated so that they are evenly distributed over the life-
time of the PV system.

Fig. 3 shows the basic principle of comparing the annual costs of PV
and the annual cost savings, which are lines A and B in Fig. 1. If the
slope of the PV cost line is lower than slope a (as in Fig. 1) but higher
than slope b (as in Fig. 1), the highest annual profit k comes with the
nominal power d of PV. This is the basic principle used for sizing PV
systems. If the slope of the PV cost line is lower than slope b, PV is
always profitable and only physical or legislative boundaries should
limit its size; if the slope of the PV cost line is higher than slope a, the
use of a PV system of any size is not profitable. In a real situation, the
annual profit is lower than k, caused by a non-ideal change between
lines A and B. For this reason, the ideal size of the PV system is slightly
lower than d. Available sizes of a commercial PV system is discrete, so
the customer can invest in a system which size is smaller than d. When
referring to PV in this paper, the size d is referred to as the optimal size.

2.3. EESS use for demand response operations

The use of EESS for demand response (DR) operations has been
unprofitable due to its high investment costs and low economic in-
centives [8]. Li-ion batteries are the main solution for residential EESS
because of their high efficiency, long lifetime, and small physical size in
relation to its capacity [8,19]. In previous years, the price of Li-ion
batteries has fallen rapidly [6]. At the same time, the volatility of the

Fig. 1. Annual cost savings dependence on nominal PV power.

Table 1
Variables in Figs. 1, 3 and 4.

Variable

a Slope of line A (y= ax+ f)
b Slope of line B (y= bx+ g)
c Nominal power of PV after which energy starts feeding back into the

grid
d Crossing point of lines A and B (Nominal power of PV) and optimal

size of PV
e Nominal power of PV after which all extra energy is fed back into the

grid
f Constant term of line A (y= ax+ f)
g Constant term of line B (y= bx+ g)
h Maximum annual cost saving when all produced energy is self-

consumed
i Crossing point of lines A and B (Annual cost saving)
j Maximum annual cost saving at maximum self-consumption
k Maximum profit of PV
m Optimal size of PV with EESS
n Maximum profit of EESS

J. Koskela et al. Applied Energy 239 (2019) 1175–1189

1178

electricity price has increased, therefore increasing the attractiveness of
DR [34]. Additionally, the novel structures of distribution tariffs can
include new incentives for using EESS for DR [9], so it would be
meaningful to research the use of EESS for DR.

The timing of electricity use is modified in DR operations, for ex-
ample, using the washing machine at night or switching off the electric
heating during peak hours. These operations can cause a loss of comfort
for the customers, such as a decrease in room temperature or a delay in
household operations like washing clothes. Using EESS, it is possible to
implement DR without any loss of comfort. In DR operations, EESS
discharges when the aim is to decrease consumption, and charges when
it is possible to allow the level of consumption to increase. The use of
EESS for DR is an operation which is the reverse of the delayed use of
electric devices. Delayed use decreases consumption and can be im-
plemented immediately without prior planning, but the use of EESS to
decrease peak powers must be planned in advance because the neces-
sary energy should be available in the EESS.

The sizing of EESS for DR operations is based on the load profile of
the customer [8]. If the income from DR depends on the amount of
shifted load (c/kWh), the maximum income depends on the amount of
the load during response hours. These kinds of incentives include, for
example, market-price-based dynamic tariffs or ToU tariffs. A suitable
EESS size would approximately match the customer’s average load
during high-cost periods because the load can roughly be fully sup-
ported using this size EESS. Theoretically, if the EESS size increases any
further, the increase in annual cost saving, which is dependent on the
capacity of EESS, starts to drop off and the profit starts to decrease.

With power-based tariffs, the optimal size of the EESS depends on
the difference between peak power (hourly average maximum power)
and the level of normal daily peaks [9]. It is possible to lop off in-
dividual high peaks, which are not daily, repetitive occurrences, using

the EESS. Additionally, the structure of the power-based tariff affects
the sizing of the EESS. If the power charge is directly proportional to the
peak power (€/kW), the EESS can be sized for the full range of the peak
difference, but if the structure includes some step boundaries, they
could limit the size of EESS.

2.4. EESS with PV in residential buildings

The annual profit generated by PV also depends on the nominal
power of the PV system. This dependence can be shown when the PV
cost line from Fig. 3 is projected onto the horizontal axis, as shown in
Fig. 4. In the other words, the profit can be calculated by removing the
costs from the savings. The shape of the curve depends on many vari-
ables, but Fig. 4 shows the basic principle of the phenomenon. The
highest annual profit k comes with the nominal power d of the PV
system. Using EESS, it is possible to increase the on-site use of produced
energy. When the load is lower than the PV production (the red area in
Fig. 2), the storage is charged, and when the load is higher, the storage
is discharged. This increases the constant term g of line B and can also
increase the slope of B. These changes lead to an increase in the optimal
PV size (PV+EESS). The new optimal size of PV with EESS is m and the
increase in annual profit from PV with EESS is n.

The evaluation of PV and EESS profitability and sizing of these is
slightly complicated by the fact that it can be done based primarily on
PV or EESS. Either the PV or EESS sizing must be performed first. When
the size of PV increases as a result of using EESS, the investment cost
associated with PV also increases. However, the part of the increasing
annual profit that results from the increased size of the PV or from the
use of EESS is still unknown. If only the profitability of EESS was under
investigation, its annual profit can be seen to be nearly constant for any
PV size which is higher than m. In this case, the annual profit from the

Fig. 2. Typical load profile of customer and three PV production profiles from different sizes of PV.

Fig. 3. The basic principle of PV sizing with EESS.
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EESS is higher than n (i.e., the difference between the curves in Fig. 4).
When the optimal PV size is applied in this paper, the annual profit
from the PV is k with a nominal power for the PV system which is d or
higher. The annual profit from EESS is n for the optimal size of EESS.
When the EESS is involved in the building’s energy system along with
PV, the aim in sizing the PV system is to find the nominal power m, as in
Fig. 4. The problem with multi-objective optimization is that the opti-
mized variables affect each other. Often, the PV has been sized before
the EESS, and the sizing of the EESS is thus based on a constant PV size.
In this study, the aim is to size the PV and EESS together.

2.5. Evaluation of profitability

The annual profit and internal rate of return (IRR) is used to eval-
uate the profitability of PV and EESS in this study. The payback period
is usually used to evaluate the profitability of PV or EESS as in [35]. The
payback period confirms whether the investment was profitable and
how long it will take to begin generating profit. This period is not an
informative variable for identifying the total profit or for situations in
which different applications are being compared.

PV profitability is often evaluated using the levelized cost of elec-
tricity (LCOE), as in [36]. This is the price of generated electricity and
can be calculated by dividing the entire lifetime cost of the generation
system by the amount of electricity generated over its lifetime. Leve-
lized cost of electricity is a good measure to use when the aim is to
compare energy sources or to research whether PV production is more
profitable than purchasing energy from the grid. When EESS is com-
bined with PV, the use of LCOE is questionable, because there is a risk
that the uncertainty of the results will increase due to different lifetimes
associated with PV panels, power electronics, and the battery system.

An effective variable in the evaluation of profitability is the IRR
(see, e.g., [37]). It is a good variable to use when different solutions are
being compared, but it is also sensitive to changes in investment costs.
Investment costs are difficult to estimate in this kind of study, so critical
evaluation is required. However, all profitability evaluation methods
must first be evaluated for annual cost benefits: Figs. 1 and 3 show how
annual electricity savings are estimated. From this, it is also possible to
calculate annual profit when the annual investment costs are reduced
from the annual savings.

3. Simulation model

3.1. Basic structure of the simulation model

The simulation model consists of a control system and battery model
as described in previous studies, such as in [8]. The control works on
two levels: hourly and continuously. The hourly control determines the
most profitable move for the following hour. In reality, the control
decisions are based on load forecasting, PV production forecasting, and

the state of the EESS. In these simulations, the principle is the same, but
the load and production forecasts are based on the actual load and
production, which correspond to the ideal forecasts. The actual load
and production are used to avoid errors caused by forecasting errors.
The aim of the continuous control is to execute the objective provided
by the hourly control. When using ideal forecasts and the consumption
data of average hourly consumption, the importance of continuous
control is minimal. However, it becomes important in situations where
the EESS reaches full charge or is completely discharged at some point
within the hour. The type of EESS could be variable, but in the simu-
lations used in this study, the focus was on BESS because it is a com-
monly used solution in this scale of application.

3.2. BESS model

The type of BESS used in the model is a Li-ion battery with a lithium
iron phosphate (LFP, LiFePO4) cell-type and a graphite negative elec-
trode. This type of battery is suitable for residential use because of its
long cycle and calendar lifetime and good safety features [38]. The
BESS system and its connection to the building’s electricity network are
shown in Fig. 5. The BESS is controlled via an inverter, which requires
information from all other components of the system. The battery
converter includes a charge controller and the solar panel converter
includes the PV controller.

Modeling of the BESS state is based on the state of charge (SOC), as
shown in Eq. (1):

= = + −SOC E
E

B B
E

SOC100 100 ,t
t eff t

t
max max
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where Et is the amount of stored energy at time t and Emax is the
maximum capacity of the BESS. The SOC at time t is SOCt and SOCt-1 is
the SOC of the previous time step. Variable Bt is the energy transfer to
or from the energy storage and Beff is the efficiency of the transfer. The
positive and negative directions of current flow, if they are possible, are
shown in Fig. 5.

The modeling of losses in BESS is based on the efficiencies of its

Fig. 4. The basic principle of PV sizing.

Fig. 5. BESS components and connection to building’s electricity network [8].
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components. To simplify, the losses are assumed to be the same in both
directions, even though in reality, the charging and discharging losses
are not identical. When the average losses are estimated in both di-
rections, it gives a good approximation of overall losses because the use
of BESS is cyclic. In this study, the efficiency of the inverter ηinv was
98% and the DC-converter efficiency ηdc was 99%. Thus, the energy
transfer efficiency between the network and the storage was 97% and
the energy transfer efficiency between the PV and the battery is 98%.
BESS losses occur mainly in the converters and in the battery itself [38].
Battery losses increase when the SOC is low or very high [39]. For this
reason, the SOC limits of the battery were set at 25–95%. When the
battery was not completely charged or discharged, charging losses de-
pended almost linearly on the charging current Ic, assuming that the
internal serial resistance Rb was constant. [40]. In this case, the char-
ging efficiency ηc can be calculated using Eq. (2):

= −η V I R
V

100 ,c
b c b

b (2)

where Vb is the nominal voltage of the battery. The efficiency Beff in (1)
can be obtained by multiplying the efficiencies ηdc, ηinv, and ηc. The
energy transfer of storage Bt is calculated by multiplying the charging
current Ic with the charging voltage Vc, which can be calculated using
Eq. (3):

= −V V I R· .c b c b (3)

The battery consists of cells, which are series or parallel connected
(as required), so that a suitable capacity and voltage are produced. In
simulations, the internal serial resistance value of one modelled cell was
0.026Ω, the cell voltage was 3.3 V, and the capacity of one cell was
2.5 Ah [26]. The maximum output power of the battery could be ex-
pressed using C-rate, which is the battery’s ratio of maximum power
and capacity. In this study, the C-rate 0.7 C was used because it was the
most profitable C-rate employed for this type of use [9]. The effect of
BESS and PV on the customer’s electricity cost was modelled using
equations from the grid perspective. The energy taken from the grid or
the supply fed back into the grid (G) was determined using a model
based on the energy transfer between the BESS, the building’s demand
D and production. This was determined by the three options. When the
battery was charged, the energy transfer between the building’s net-
work and the grid could be represented using Eq. (4):

=
⎧
⎨
⎩

<

− − + <

−

G
P B

η P B D P B

, ||

·( ) , ||

B P
η dc t

inv dc t dc t

t dc

inv

(4)

where Pdc is self-produced PV energy after the converter stage but be-
fore the inverter. The equation depends on whether the charged energy
comes from the PV, or if it also needs to be supplied by the grid. The
third option is to discharge the BESS. This can be calculated using Eq.
(5):

= − − +G η B P D·( )inv t dc (5)

3.3. Control of BESS

To minimize the costs of electricity, control of the BESS based on
economic incentives is introduced in [8]. The main incentive comes
from the difference between the purchase price and the grid supply
price. For this reason, the main task of the control system is to avoid
supplying electricity to the grid if possible. The level of the BESS SOC
must be low before the instances when production is higher than con-
sumption. At the beginning of every hour, the control system calculates
the optimal BESS-use profile for the next 18 h based on the forecasted
loads and production. If there are times when production is higher than
the consumption, the control discharges the BESS before these times so
that there is space left to accommodate the surplus energy. The control
strategy for increasing energy self-consumption is very simple and the

frequency of use of the BESS depends on the size of the PV system.
Another incentive for the use of BESS is the power-based price

component of the distribution tariff, if one is involved. A control
strategy used to decrease the maximum hourly average power has been
presented in [9]. This type of BESS use is the reverse of the approach
which increases self-consumption because the SOC must be high before
the hour in which the BESS is required to decrease the load. Ad-
ditionally, the highest load and production peaks do not usually happen
in the same day, nor even in the same season. Therefore, these two
control tasks are not mutually exclusive.

Because the load profiles of customers vary, there are many situa-
tions where the BESS is not needed to increase self-consumption or
decrease maximum peak power. During these downtimes, BESS can be
utilized for other purposes. The third incentive is the ToU pricing,
which is less effective in term of profitability than the previous two
incentives [9]. In this study, the ToU tariff of the energy retailer was
similar to real-time pricing, where the price changes hourly based on
day-ahead market prices. Customers may also have another ToU
structure in the DSO’s tariff, with two constant prices per day: daytime
price (7–22) and nighttime price (22–7). These tariffs present an in-
centive for customers to shift loads out of the high-price hours to low-
price hours. For this reason, the control system uses market-price-based
controls, which have been introduced in [8]. An effective control al-
gorithm can be based on hour-pairs, such as the lowest price hour and
the highest price hour of the optimization period (18 h). The control
aims to charge and discharge BESS during these hours if the price dif-
ference is so high that the benefit outweighs the losses caused by using
BESS or if the other incentives do not prevent it. Few rules are added for
improving the control algorithm presented in [8] and the peak power
decrease algorithm presented in [9]. If a possible power peak was im-
minent, the control system fully charged the BESS during the three
previous hours, and if it was forecast that surplus energy would be
produced, the control system discharged at least the forecasted amount
of surplus energy from the BESS before surplus energy was produced.

3.4. Simulation of PV production

The PV production model used to model the performance of a tilted
solar panel is based on the global solar irradiance components. These
are namely the direct beam Gb,i, the diffuse component Gd,i and the
reflected component Gr,i. The model of global solar irradiance based on
geographic location is introduced in [41]. In this study, the PV power
plant is assumed to be in Tampere; its azimuth angle is 0° and it is tilted
at a 45° angle. Global irradiance is the sum of irradiance components
Gi=Gb,i + Gd,i +Gr,i. Beam irradiance can be modelled accurately if
the conditions of the sun are assumed to be constant. Beam irradiance
can be calculated using Gb,i = Gb cos θi/sin αs, where Gb is the hor-
izontal beam irradiance, θi is the angle of incidence onto the surface
based on the azimuth angle of the sun, and αs is the solar elevation [42].
For an isotropic sky, the diffuse irradiance on a tilted surface can be
calculated using Gd,i =Gd (1+ cos β)/2, where Gd is the horizontal
diffuse irradiance and β is the angle of inclination of the panel. The
reflected irradiance can be calculated using Gr,i= ρg G (1− cos β)/2,
where ρg is the average reflectance of the ground and G is the horizontal
global irradiance, which is used because both the beam and the diffuse
irradiance are assumed to reflect isotropically.

Several models have been developed to model diffuse solar irra-
diance. The Perez All-Weather Sky Model is the best model to use with
the conditions associated with Finland, but if the solar panels are tilted
toward the south, the Reindl model is superior [42]. The panels used in
this study are tilted to south, hence the Reindl model is used. The Perez
model is introduced in [43] and the Reindl model in [44]. Additionally,
the Reindl model is considered one of the best diffuse solar irradiance
models as noted in [45]. The ratio of the horizontal diffuse irradiance
and the horizontal global irradiance in the Reindl model is based on the
brightening factor kT. In practice, the brightening factor depends on the
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EESS is higher than n (i.e., the difference between the curves in Fig. 4).
When the optimal PV size is applied in this paper, the annual profit
from the PV is k with a nominal power for the PV system which is d or
higher. The annual profit from EESS is n for the optimal size of EESS.
When the EESS is involved in the building’s energy system along with
PV, the aim in sizing the PV system is to find the nominal power m, as in
Fig. 4. The problem with multi-objective optimization is that the opti-
mized variables affect each other. Often, the PV has been sized before
the EESS, and the sizing of the EESS is thus based on a constant PV size.
In this study, the aim is to size the PV and EESS together.

2.5. Evaluation of profitability

The annual profit and internal rate of return (IRR) is used to eval-
uate the profitability of PV and EESS in this study. The payback period
is usually used to evaluate the profitability of PV or EESS as in [35]. The
payback period confirms whether the investment was profitable and
how long it will take to begin generating profit. This period is not an
informative variable for identifying the total profit or for situations in
which different applications are being compared.

PV profitability is often evaluated using the levelized cost of elec-
tricity (LCOE), as in [36]. This is the price of generated electricity and
can be calculated by dividing the entire lifetime cost of the generation
system by the amount of electricity generated over its lifetime. Leve-
lized cost of electricity is a good measure to use when the aim is to
compare energy sources or to research whether PV production is more
profitable than purchasing energy from the grid. When EESS is com-
bined with PV, the use of LCOE is questionable, because there is a risk
that the uncertainty of the results will increase due to different lifetimes
associated with PV panels, power electronics, and the battery system.

An effective variable in the evaluation of profitability is the IRR
(see, e.g., [37]). It is a good variable to use when different solutions are
being compared, but it is also sensitive to changes in investment costs.
Investment costs are difficult to estimate in this kind of study, so critical
evaluation is required. However, all profitability evaluation methods
must first be evaluated for annual cost benefits: Figs. 1 and 3 show how
annual electricity savings are estimated. From this, it is also possible to
calculate annual profit when the annual investment costs are reduced
from the annual savings.

3. Simulation model

3.1. Basic structure of the simulation model

The simulation model consists of a control system and battery model
as described in previous studies, such as in [8]. The control works on
two levels: hourly and continuously. The hourly control determines the
most profitable move for the following hour. In reality, the control
decisions are based on load forecasting, PV production forecasting, and

the state of the EESS. In these simulations, the principle is the same, but
the load and production forecasts are based on the actual load and
production, which correspond to the ideal forecasts. The actual load
and production are used to avoid errors caused by forecasting errors.
The aim of the continuous control is to execute the objective provided
by the hourly control. When using ideal forecasts and the consumption
data of average hourly consumption, the importance of continuous
control is minimal. However, it becomes important in situations where
the EESS reaches full charge or is completely discharged at some point
within the hour. The type of EESS could be variable, but in the simu-
lations used in this study, the focus was on BESS because it is a com-
monly used solution in this scale of application.

3.2. BESS model

The type of BESS used in the model is a Li-ion battery with a lithium
iron phosphate (LFP, LiFePO4) cell-type and a graphite negative elec-
trode. This type of battery is suitable for residential use because of its
long cycle and calendar lifetime and good safety features [38]. The
BESS system and its connection to the building’s electricity network are
shown in Fig. 5. The BESS is controlled via an inverter, which requires
information from all other components of the system. The battery
converter includes a charge controller and the solar panel converter
includes the PV controller.

Modeling of the BESS state is based on the state of charge (SOC), as
shown in Eq. (1):

= = + −SOC E
E

B B
E

SOC100 100 ,t
t eff t

t
max max

1 (1)

where Et is the amount of stored energy at time t and Emax is the
maximum capacity of the BESS. The SOC at time t is SOCt and SOCt-1 is
the SOC of the previous time step. Variable Bt is the energy transfer to
or from the energy storage and Beff is the efficiency of the transfer. The
positive and negative directions of current flow, if they are possible, are
shown in Fig. 5.

The modeling of losses in BESS is based on the efficiencies of its

Fig. 4. The basic principle of PV sizing.

Fig. 5. BESS components and connection to building’s electricity network [8].
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components. To simplify, the losses are assumed to be the same in both
directions, even though in reality, the charging and discharging losses
are not identical. When the average losses are estimated in both di-
rections, it gives a good approximation of overall losses because the use
of BESS is cyclic. In this study, the efficiency of the inverter ηinv was
98% and the DC-converter efficiency ηdc was 99%. Thus, the energy
transfer efficiency between the network and the storage was 97% and
the energy transfer efficiency between the PV and the battery is 98%.
BESS losses occur mainly in the converters and in the battery itself [38].
Battery losses increase when the SOC is low or very high [39]. For this
reason, the SOC limits of the battery were set at 25–95%. When the
battery was not completely charged or discharged, charging losses de-
pended almost linearly on the charging current Ic, assuming that the
internal serial resistance Rb was constant. [40]. In this case, the char-
ging efficiency ηc can be calculated using Eq. (2):

= −η V I R
V

100 ,c
b c b

b (2)

where Vb is the nominal voltage of the battery. The efficiency Beff in (1)
can be obtained by multiplying the efficiencies ηdc, ηinv, and ηc. The
energy transfer of storage Bt is calculated by multiplying the charging
current Ic with the charging voltage Vc, which can be calculated using
Eq. (3):

= −V V I R· .c b c b (3)

The battery consists of cells, which are series or parallel connected
(as required), so that a suitable capacity and voltage are produced. In
simulations, the internal serial resistance value of one modelled cell was
0.026Ω, the cell voltage was 3.3 V, and the capacity of one cell was
2.5 Ah [26]. The maximum output power of the battery could be ex-
pressed using C-rate, which is the battery’s ratio of maximum power
and capacity. In this study, the C-rate 0.7 C was used because it was the
most profitable C-rate employed for this type of use [9]. The effect of
BESS and PV on the customer’s electricity cost was modelled using
equations from the grid perspective. The energy taken from the grid or
the supply fed back into the grid (G) was determined using a model
based on the energy transfer between the BESS, the building’s demand
D and production. This was determined by the three options. When the
battery was charged, the energy transfer between the building’s net-
work and the grid could be represented using Eq. (4):
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where Pdc is self-produced PV energy after the converter stage but be-
fore the inverter. The equation depends on whether the charged energy
comes from the PV, or if it also needs to be supplied by the grid. The
third option is to discharge the BESS. This can be calculated using Eq.
(5):

= − − +G η B P D·( )inv t dc (5)

3.3. Control of BESS

To minimize the costs of electricity, control of the BESS based on
economic incentives is introduced in [8]. The main incentive comes
from the difference between the purchase price and the grid supply
price. For this reason, the main task of the control system is to avoid
supplying electricity to the grid if possible. The level of the BESS SOC
must be low before the instances when production is higher than con-
sumption. At the beginning of every hour, the control system calculates
the optimal BESS-use profile for the next 18 h based on the forecasted
loads and production. If there are times when production is higher than
the consumption, the control discharges the BESS before these times so
that there is space left to accommodate the surplus energy. The control
strategy for increasing energy self-consumption is very simple and the

frequency of use of the BESS depends on the size of the PV system.
Another incentive for the use of BESS is the power-based price

component of the distribution tariff, if one is involved. A control
strategy used to decrease the maximum hourly average power has been
presented in [9]. This type of BESS use is the reverse of the approach
which increases self-consumption because the SOC must be high before
the hour in which the BESS is required to decrease the load. Ad-
ditionally, the highest load and production peaks do not usually happen
in the same day, nor even in the same season. Therefore, these two
control tasks are not mutually exclusive.

Because the load profiles of customers vary, there are many situa-
tions where the BESS is not needed to increase self-consumption or
decrease maximum peak power. During these downtimes, BESS can be
utilized for other purposes. The third incentive is the ToU pricing,
which is less effective in term of profitability than the previous two
incentives [9]. In this study, the ToU tariff of the energy retailer was
similar to real-time pricing, where the price changes hourly based on
day-ahead market prices. Customers may also have another ToU
structure in the DSO’s tariff, with two constant prices per day: daytime
price (7–22) and nighttime price (22–7). These tariffs present an in-
centive for customers to shift loads out of the high-price hours to low-
price hours. For this reason, the control system uses market-price-based
controls, which have been introduced in [8]. An effective control al-
gorithm can be based on hour-pairs, such as the lowest price hour and
the highest price hour of the optimization period (18 h). The control
aims to charge and discharge BESS during these hours if the price dif-
ference is so high that the benefit outweighs the losses caused by using
BESS or if the other incentives do not prevent it. Few rules are added for
improving the control algorithm presented in [8] and the peak power
decrease algorithm presented in [9]. If a possible power peak was im-
minent, the control system fully charged the BESS during the three
previous hours, and if it was forecast that surplus energy would be
produced, the control system discharged at least the forecasted amount
of surplus energy from the BESS before surplus energy was produced.

3.4. Simulation of PV production

The PV production model used to model the performance of a tilted
solar panel is based on the global solar irradiance components. These
are namely the direct beam Gb,i, the diffuse component Gd,i and the
reflected component Gr,i. The model of global solar irradiance based on
geographic location is introduced in [41]. In this study, the PV power
plant is assumed to be in Tampere; its azimuth angle is 0° and it is tilted
at a 45° angle. Global irradiance is the sum of irradiance components
Gi=Gb,i + Gd,i +Gr,i. Beam irradiance can be modelled accurately if
the conditions of the sun are assumed to be constant. Beam irradiance
can be calculated using Gb,i = Gb cos θi/sin αs, where Gb is the hor-
izontal beam irradiance, θi is the angle of incidence onto the surface
based on the azimuth angle of the sun, and αs is the solar elevation [42].
For an isotropic sky, the diffuse irradiance on a tilted surface can be
calculated using Gd,i =Gd (1+ cos β)/2, where Gd is the horizontal
diffuse irradiance and β is the angle of inclination of the panel. The
reflected irradiance can be calculated using Gr,i= ρg G (1− cos β)/2,
where ρg is the average reflectance of the ground and G is the horizontal
global irradiance, which is used because both the beam and the diffuse
irradiance are assumed to reflect isotropically.

Several models have been developed to model diffuse solar irra-
diance. The Perez All-Weather Sky Model is the best model to use with
the conditions associated with Finland, but if the solar panels are tilted
toward the south, the Reindl model is superior [42]. The panels used in
this study are tilted to south, hence the Reindl model is used. The Perez
model is introduced in [43] and the Reindl model in [44]. Additionally,
the Reindl model is considered one of the best diffuse solar irradiance
models as noted in [45]. The ratio of the horizontal diffuse irradiance
and the horizontal global irradiance in the Reindl model is based on the
brightening factor kT. In practice, the brightening factor depends on the
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cloudiness of the sky. Given that the actual cloudiness varies, cloudiness
probabilities are used instead. The model for cloudiness probability in
Finland is presented in [46] and is utilized in this study. The simulation
model is stochastic because of the use of probabilities to model the
variability of cloud cover in every simulation.

The average reflectance has two constant values in simulations for
the year. During the winter season (December–April), the average re-
flectance is taken to be ρg=0.58, which corresponds to the reflectance
of snow. At other times of the year, it is taken to be ρg=0.24, which
corresponds to the reflectance of dark roof materials and deciduous
trees, which are the assumed materials directly adjacent to the solar
panels.

The PV production (PPV) can be calculated using Eq. (6), where PSTC
is the nominal power in standard test conditions (STC), βP is solar cell
power temperature coefficient (0.006), Tc is the solar cell temperature
and TSTC is the standard solar cell test temperature (25 °C) [42]. The
verification coefficient Cv is added to the equation so that the simula-
tion model for PV production can be verified with real measurements
from PV systems.

= − −P C P G β T T(1 ( ))PV v STC i P c STC (6)

The same PV production simulation model was used in [8], where it
was verified by comparing model values to real values as measured
from polycrystalline silicon PV cells. The result was that the model
systematically generated values that were too high, leading to the ne-
cessity of setting Cv to 0.85. The reason for this could be that the
temperature of the solar cell was too low in the model or that the
physical solar panels’ efficiency was decreased, caused by the aging of
the cells, soiling of the panels, or not accounting for shade in the model.
Additionally, this is affected by the type of solar cell used for verifica-
tion. The verified simulation model generated realistic data for PV
production.

4. Initial data and energy community model

4.1. Consumption data

Two case studies were used in this study. Case study 1 was an
apartment building for which the consumption data covered four years
(2013–2016), including hourly energy consumption measured using an
AMR meter. The load data for individual apartments and for the
building were separate; the load data for the building consisted of such
items as common space lighting, the elevator, and the electrical heating
load. Case study 2 consists of a total of 12 detached houses located near
the Tampere area. The data was also measured using modern AMR
meters. The measurements spanned two years (2014–2015). In simu-
lations, the first year of data represented the comparison year, and the
EESS and PV were assumed to be installed at the beginning of the
second year. In the apartment building for instance, the simulation was
performed over three years and for one year in the detached houses.

In case study 1, the study object, “Tammela” (see e.g., [5]), is the
apartment building in central Tampere. The building was constructed in
1980 and has been widely renovated to increase energy efficiency.
There are 56 electrical network connection points: the building’s elec-
tricity, 54 apartments, and a business premises. This kind of large
apartment building consumes a lot of energy for warming. Before the
renovation, all warming energy had been purchased from the city’s
district heating network. An exhaust air heat pump (60 kW) was in-
stalled in 2014 to increase energy efficiency. The total amount of
purchased energy decreased by 41% per year after this installation. The
amount of purchased district heating energy has decreased by 66%
overall, significantly decreasing energy costs. However, electricity
usage has simultaneously increased by 26% (from 170MWh to
215MWh per year), even though there was an extensive electricity-
saving renovation which included changing old lighting over to LED
lighting. The highest annual electricity load peak for the building has

also increased significantly. The hourly average maximum power was
approximately 50 kW in 2013 and 70 kW in 2016 (40% increase). These
kinds of energy-saving renovations will become more common as ef-
forts to decrease energy consumption and to prevent climate change
become more popular, but this actually caused an increase in electricity
demand and highlighted the need to strengthen the electricity grid.

In case study 2, the study subjects were selected from a group of
1525 customers so that the electricity usage behavior varied widely, but
they were all still typical detached house customers. More accurate data
from selected customers is presented in Table 2, which shows the an-
nual consumption and average hourly maximum power. Additionally,
the percentage of winter consumption from December to February and
the hour of day when consumption was most likely to be highest are
shown.

4.2. Energy community model

For legislative reasons, in apartment buildings in Finland, the pro-
duction of PV can be utilized practically only for the building’s own
load, not for individual apartment loads. Each apartment has its own
electricity contracts with the energy retailer and the DSO. Energy
produced by a PV system owned by the housing company is not prof-
itable in apartments because small-scale energy producers can sell
surplus energy only to the grid. If this surplus energy is sold to the grid
and some apartments purchase it from the grid at the same time, the
apartment owner has to pay a distribution fee to the DSO, as with all
other electricity vendors. Using EESS makes it even more complicated
because apartments cannot use stored energy from a PV system owned
by the housing company, for example, unless the housing company has
purchased it from the grid. So, in practice, the EESS and PV can be
utilized only to supply the loads of individual apartment buildings if the
metering is implemented in a typical way. It is also possible that the
individual apartment owner could install PV and EESS for their own
use, but they can utilize them only to supply their particular apart-
ment’s load. The basic principle of the energy community model and
the present model are shown in Fig. 6.

EESS and PV could be utilized for the whole building’s load only if
the energy community model is used. In this case the building forms an
energy community and makes only common contracts with the energy
retailer and the DSO. All combined electricity (from the building and
the apartments) purchased from the grid or supplied to the grid is
measured using one meter. Legally, every customer must retain the
option to select their own energy retailer, however, this can lead to
problems. The energy community model is possible only if all apart-
ment owners accept this model and retain the option of resigning from
the community. The apartment building’s energy community forms
such a large unit that it is possible to choose a low-voltage power

Table 2
Study group of detached house customers.

Customer Annual
consumption
(MWh)

Hourly
average
maximum
power (kW)

Winter
consumption
(Dec – Feb) (%)

Average of
highest
consumption
hour

1 26.9 11.4 40.2 23
2 20.9 8.9 35.0 23
3 9.7 8.3 39.4 22
4 6.7 4.6 40.0 23
5 23.6 16.5 36.6 20
6 7.8 11.0 28.5 17
7 14.1 9.4 35.1 23
8 14.7 8.9 31.3 20
9 21.2 11.5 33.7 22
10 15.6 8.4 35.9 6
11 10.4 6.0 37.0 23
12 14.5 7.2 38.6 9
Average 15.5 9.3 35.9 19
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distribution tariff, which is typically only provided to small industrial
customers. It includes a power-based charge component, which could
increase the profitability of the EESS [9].

4.3. Electricity price data

In all calculations presented in this paper, the energy retailer tariff
has been used, which is a dynamic market-price-based tariff based on
day-ahead area prices for Finland in the Nordic electricity market [30].
The energy retailer margin used in the model is 0.25 c/kWh, which is
typical in Finland.

The distribution tariff depends on the case type. For case study 1,
the low-voltage power tariff was used. To study the benefits of the
energy community model, the general tariff was also used. It is the
simplest of distribution tariffs and includes only a basic charge and a
constant volumetric charge. The low-voltage power tariff includes the
basic charge and volumetric charge along with a two-time ToU struc-
ture and a power charge. To define the monthly power charge, the
highest power peak in the previous 12months was used, calculated as
an average of the two highest monthly hourly power peaks. The charge
components are introduced in Table 3.

Different tariff structures and prices were used in the detached
houses case study (case study 2) because the houses were located in
different DSO areas and power-based tariffs were not commonly used
for domestic customers. Study prices were used here, as presented in
[47] and [48], which were calculated for the same DSO area as the area
in which the detached houses were located. Tariff components are
shown in Table 4, including taxes. In the power-based tariff (simply
termed “Power” hereafter), the power-based component is charged
based on the highest hourly average power usage for the month.
Weightings of the power charge component were calculated theoreti-
cally, and charge components of the power-based tariff represented
total corresponding costs. If the DSO were to shift to power-based tariffs
for small customers, in practice the power charge component might be
lower and the other components higher.

4.4. Investment cost of BESS and PV

The actual investment cost of BESS depends on many things, such as
the type of system, BESS manufacturer, and power retailers. Installation
and maintenance also contribute to the costs, so accurate investment
costs are difficult to estimate. The investment costs for Li-ion-based
BESS were studied; the results in [22] state that in 2015, the LFP cell
prices were in the 200–350 €/kWh range, and the projected price for
2020 ranged from 100 to 200 €/kWh. The cost of the required power
electronics was in the 100–150 €/kW range in 2015, and it is assumed
that it will reach approximately 80–110 €/kW in 2020 [49]. Power
electronics can be partly combined with the PV system, so these costs
could be divided between the PV and BESS. The total costs of the BESS
can be roughly estimated, including investment and maintenance costs,
ranging from 200 to 400 €/kWh. The calendrical lifetime of the LFP-
based BESS is approximately 15 years, as presented in [50].

The investment costs for the PV system (€/kWp) strongly depend on
its size. The relative costs of small-scale PV power plants are high in
relation to larger systems. A PV system under 10 kWp can cost over
2000 €/kWp [4]. Over 40 kWp, the PV systems can cost approximately
1300 €/kWp in Finland [51]. The PV system costs used in this study
included the costs of power electronics and some installation and
maintenance costs and ranged from 1500 to 2100 €/kWp. The lifetime
of a PV system is approximately 30 years (see [51]), and it is re-
commended that the power electronics be replaced or upgraded once in
a PV system’s lifetime.

Fig. 6. Apartment building using the energy community model (right) and a typical model (left).

Table 3
Alternatives for the distribution tariff in a case study of an apartment house (Case 1) [47].

Tariff Basic charge €/month Volumetric charge c/kWh (7–22) Volumetric charge c/kWh (22–7) Power charge €/kW/month

General 3× (25A–63A) 3.98 5.98 5.98
General 3× (>63A) 25.73 5.98 5.98
Low-voltage power 213.18 4.52 3.97 2.58

Table 4
Alternatives for the distribution tariff in the detached houses case study (Case
study 2) [47].

Tariff Basic charge
€/Month

Volumetric charge c/
kWh

Power charge
€/kW/Month

General 3× 25A 13.66 6.09
Power 4.74 3.51 7.23
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cloudiness of the sky. Given that the actual cloudiness varies, cloudiness
probabilities are used instead. The model for cloudiness probability in
Finland is presented in [46] and is utilized in this study. The simulation
model is stochastic because of the use of probabilities to model the
variability of cloud cover in every simulation.

The average reflectance has two constant values in simulations for
the year. During the winter season (December–April), the average re-
flectance is taken to be ρg=0.58, which corresponds to the reflectance
of snow. At other times of the year, it is taken to be ρg=0.24, which
corresponds to the reflectance of dark roof materials and deciduous
trees, which are the assumed materials directly adjacent to the solar
panels.

The PV production (PPV) can be calculated using Eq. (6), where PSTC
is the nominal power in standard test conditions (STC), βP is solar cell
power temperature coefficient (0.006), Tc is the solar cell temperature
and TSTC is the standard solar cell test temperature (25 °C) [42]. The
verification coefficient Cv is added to the equation so that the simula-
tion model for PV production can be verified with real measurements
from PV systems.

= − −P C P G β T T(1 ( ))PV v STC i P c STC (6)

The same PV production simulation model was used in [8], where it
was verified by comparing model values to real values as measured
from polycrystalline silicon PV cells. The result was that the model
systematically generated values that were too high, leading to the ne-
cessity of setting Cv to 0.85. The reason for this could be that the
temperature of the solar cell was too low in the model or that the
physical solar panels’ efficiency was decreased, caused by the aging of
the cells, soiling of the panels, or not accounting for shade in the model.
Additionally, this is affected by the type of solar cell used for verifica-
tion. The verified simulation model generated realistic data for PV
production.

4. Initial data and energy community model

4.1. Consumption data

Two case studies were used in this study. Case study 1 was an
apartment building for which the consumption data covered four years
(2013–2016), including hourly energy consumption measured using an
AMR meter. The load data for individual apartments and for the
building were separate; the load data for the building consisted of such
items as common space lighting, the elevator, and the electrical heating
load. Case study 2 consists of a total of 12 detached houses located near
the Tampere area. The data was also measured using modern AMR
meters. The measurements spanned two years (2014–2015). In simu-
lations, the first year of data represented the comparison year, and the
EESS and PV were assumed to be installed at the beginning of the
second year. In the apartment building for instance, the simulation was
performed over three years and for one year in the detached houses.

In case study 1, the study object, “Tammela” (see e.g., [5]), is the
apartment building in central Tampere. The building was constructed in
1980 and has been widely renovated to increase energy efficiency.
There are 56 electrical network connection points: the building’s elec-
tricity, 54 apartments, and a business premises. This kind of large
apartment building consumes a lot of energy for warming. Before the
renovation, all warming energy had been purchased from the city’s
district heating network. An exhaust air heat pump (60 kW) was in-
stalled in 2014 to increase energy efficiency. The total amount of
purchased energy decreased by 41% per year after this installation. The
amount of purchased district heating energy has decreased by 66%
overall, significantly decreasing energy costs. However, electricity
usage has simultaneously increased by 26% (from 170MWh to
215MWh per year), even though there was an extensive electricity-
saving renovation which included changing old lighting over to LED
lighting. The highest annual electricity load peak for the building has

also increased significantly. The hourly average maximum power was
approximately 50 kW in 2013 and 70 kW in 2016 (40% increase). These
kinds of energy-saving renovations will become more common as ef-
forts to decrease energy consumption and to prevent climate change
become more popular, but this actually caused an increase in electricity
demand and highlighted the need to strengthen the electricity grid.

In case study 2, the study subjects were selected from a group of
1525 customers so that the electricity usage behavior varied widely, but
they were all still typical detached house customers. More accurate data
from selected customers is presented in Table 2, which shows the an-
nual consumption and average hourly maximum power. Additionally,
the percentage of winter consumption from December to February and
the hour of day when consumption was most likely to be highest are
shown.

4.2. Energy community model

For legislative reasons, in apartment buildings in Finland, the pro-
duction of PV can be utilized practically only for the building’s own
load, not for individual apartment loads. Each apartment has its own
electricity contracts with the energy retailer and the DSO. Energy
produced by a PV system owned by the housing company is not prof-
itable in apartments because small-scale energy producers can sell
surplus energy only to the grid. If this surplus energy is sold to the grid
and some apartments purchase it from the grid at the same time, the
apartment owner has to pay a distribution fee to the DSO, as with all
other electricity vendors. Using EESS makes it even more complicated
because apartments cannot use stored energy from a PV system owned
by the housing company, for example, unless the housing company has
purchased it from the grid. So, in practice, the EESS and PV can be
utilized only to supply the loads of individual apartment buildings if the
metering is implemented in a typical way. It is also possible that the
individual apartment owner could install PV and EESS for their own
use, but they can utilize them only to supply their particular apart-
ment’s load. The basic principle of the energy community model and
the present model are shown in Fig. 6.

EESS and PV could be utilized for the whole building’s load only if
the energy community model is used. In this case the building forms an
energy community and makes only common contracts with the energy
retailer and the DSO. All combined electricity (from the building and
the apartments) purchased from the grid or supplied to the grid is
measured using one meter. Legally, every customer must retain the
option to select their own energy retailer, however, this can lead to
problems. The energy community model is possible only if all apart-
ment owners accept this model and retain the option of resigning from
the community. The apartment building’s energy community forms
such a large unit that it is possible to choose a low-voltage power

Table 2
Study group of detached house customers.

Customer Annual
consumption
(MWh)

Hourly
average
maximum
power (kW)

Winter
consumption
(Dec – Feb) (%)

Average of
highest
consumption
hour

1 26.9 11.4 40.2 23
2 20.9 8.9 35.0 23
3 9.7 8.3 39.4 22
4 6.7 4.6 40.0 23
5 23.6 16.5 36.6 20
6 7.8 11.0 28.5 17
7 14.1 9.4 35.1 23
8 14.7 8.9 31.3 20
9 21.2 11.5 33.7 22
10 15.6 8.4 35.9 6
11 10.4 6.0 37.0 23
12 14.5 7.2 38.6 9
Average 15.5 9.3 35.9 19
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distribution tariff, which is typically only provided to small industrial
customers. It includes a power-based charge component, which could
increase the profitability of the EESS [9].

4.3. Electricity price data

In all calculations presented in this paper, the energy retailer tariff
has been used, which is a dynamic market-price-based tariff based on
day-ahead area prices for Finland in the Nordic electricity market [30].
The energy retailer margin used in the model is 0.25 c/kWh, which is
typical in Finland.

The distribution tariff depends on the case type. For case study 1,
the low-voltage power tariff was used. To study the benefits of the
energy community model, the general tariff was also used. It is the
simplest of distribution tariffs and includes only a basic charge and a
constant volumetric charge. The low-voltage power tariff includes the
basic charge and volumetric charge along with a two-time ToU struc-
ture and a power charge. To define the monthly power charge, the
highest power peak in the previous 12months was used, calculated as
an average of the two highest monthly hourly power peaks. The charge
components are introduced in Table 3.

Different tariff structures and prices were used in the detached
houses case study (case study 2) because the houses were located in
different DSO areas and power-based tariffs were not commonly used
for domestic customers. Study prices were used here, as presented in
[47] and [48], which were calculated for the same DSO area as the area
in which the detached houses were located. Tariff components are
shown in Table 4, including taxes. In the power-based tariff (simply
termed “Power” hereafter), the power-based component is charged
based on the highest hourly average power usage for the month.
Weightings of the power charge component were calculated theoreti-
cally, and charge components of the power-based tariff represented
total corresponding costs. If the DSO were to shift to power-based tariffs
for small customers, in practice the power charge component might be
lower and the other components higher.

4.4. Investment cost of BESS and PV

The actual investment cost of BESS depends on many things, such as
the type of system, BESS manufacturer, and power retailers. Installation
and maintenance also contribute to the costs, so accurate investment
costs are difficult to estimate. The investment costs for Li-ion-based
BESS were studied; the results in [22] state that in 2015, the LFP cell
prices were in the 200–350 €/kWh range, and the projected price for
2020 ranged from 100 to 200 €/kWh. The cost of the required power
electronics was in the 100–150 €/kW range in 2015, and it is assumed
that it will reach approximately 80–110 €/kW in 2020 [49]. Power
electronics can be partly combined with the PV system, so these costs
could be divided between the PV and BESS. The total costs of the BESS
can be roughly estimated, including investment and maintenance costs,
ranging from 200 to 400 €/kWh. The calendrical lifetime of the LFP-
based BESS is approximately 15 years, as presented in [50].

The investment costs for the PV system (€/kWp) strongly depend on
its size. The relative costs of small-scale PV power plants are high in
relation to larger systems. A PV system under 10 kWp can cost over
2000 €/kWp [4]. Over 40 kWp, the PV systems can cost approximately
1300 €/kWp in Finland [51]. The PV system costs used in this study
included the costs of power electronics and some installation and
maintenance costs and ranged from 1500 to 2100 €/kWp. The lifetime
of a PV system is approximately 30 years (see [51]), and it is re-
commended that the power electronics be replaced or upgraded once in
a PV system’s lifetime.

Fig. 6. Apartment building using the energy community model (right) and a typical model (left).

Table 3
Alternatives for the distribution tariff in a case study of an apartment house (Case 1) [47].

Tariff Basic charge €/month Volumetric charge c/kWh (7–22) Volumetric charge c/kWh (22–7) Power charge €/kW/month

General 3× (25A–63A) 3.98 5.98 5.98
General 3× (>63A) 25.73 5.98 5.98
Low-voltage power 213.18 4.52 3.97 2.58

Table 4
Alternatives for the distribution tariff in the detached houses case study (Case
study 2) [47].

Tariff Basic charge
€/Month

Volumetric charge c/
kWh

Power charge
€/kW/Month

General 3× 25A 13.66 6.09
Power 4.74 3.51 7.23
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5. Simulation results for case studies

5.1. Case 1: apartment building

Table 5 shows a comparison of the annual electricity costs of an
apartment building based on the distribution tariff using the energy
community model with a low-voltage power tariff and with a general
tariff. The comparison was made over four years (2013–2016). The
building’s electricity supply main fuse was 3×125A and each apart-
ment’s main fuse was 3× 25A. In Table 4, general signifies general
tariffs with typical contracts, where every apartment pays its own basic
charges. The energy community model was used along with a low-
voltage power tariff. The average annual saving in distribution fees was
1 419 €, and this together with the savings derived from not having to
pay the energy retailer’s basic charge, compensated for the extra costs
associated with using the energy community model, e.g., billing.

Simulations using various sizes of PV system as show in Fig. 1 were
performed for three years (2014–2016), with 50 different sizes of PV
system modelled for each year. Based on these data points (results of
simulations), lines A and B were fitted using linear regression. The re-
sults of the simulations and fitted lines are shown in Fig. 7. The optimal
size d of the PV system (see Fig. 1) was approximately 31 kWp. This is a
practical upper limit for the size of PV without incorporating BESS. The
actual optimal size of the PV system was lower, caused by the curving
cost line of the PV before the intersection point.

The same kind of simulation as shown in Fig. 7 was performed using
various sizes of BESS, resulting in “optimal” PV system sizes (d in Fig. 1)
for various sizes of BESS, and annual cost savings for the “optimal” PV
system size (i in Fig. 1) using various sizes of BESS. These result points
were fitted using linear regression, as presented in Fig. 8. The annual
cost savings associated with the use of PV and the “optimal” size of the
PV both increased when the capacity of the BESS increased. With the
studied BESS sizes (0–99 kWh), the increase could be assumed to be
linear, meaning that the PV system size could increase without limita-
tions imposed by the increasing BESS capacity. When a customer pur-
chases PV along with BESS, the BESS can be sized first, based on the
available investment resources, and the PV can then be sized based on
the size of the BESS.

In the following comparison, the BESS was assumed to be 25 kWh.
When the energy community model was not used and the general tariff
was applied, the annual profits from PV and BESS were low, as pre-
sented in Fig. 9. In all cases, the profit was higher without BESS than
with it. The optimal PV size (d in Fig. 4) was between 13 and 27 kWp if
BESS was not used. These values were slightly lower than the “optimal”
sizes shown in Fig. 8, as theoretically predicted. Accurate optimal PV
size depends on the investment prices for PV and BESS. Using BESS
increased the optimal size of the PV system (m in Fig. 4) to a range of
20–41 kWp, but the annual profit dropped lower than without the BESS
(n in Fig. 4 is lower than the cost of the BESS). However, the shapes of
the profit curves agree with the theory discussed in Section 2, and the
required characteristics can be found from the curves.

Fig. 10 shows the results from the energy community model when
the low-voltage power tariff was applied. The profits generated using
the energy community model in Fig. 10 were higher than without using
it as shown in Fig. 9. Another notable difference was that the profits
were higher with BESS than without it when the size of the PV system
increased. However, the theory of PV sizing as presented in Section 2
remained valid when applying the energy community model and low-
voltage power tariff. When the price of PV was 1500 €/kWp, the annual
profit decreased very slowly as the size of the PV system rose above the
optimal value. This indicated that this price was near the lower limit of
the validity area of the theory. Further decreases to the PV price lead to
increases to the annual profit together with increasing PV size. This is
not the desired type of optimization.

The results from Figs. 9 and 10 are summarized in Table 6, which
shows the optimal sizes of PV systems and the annual profits generated
using these optimal sizes. From Table 6, it can be seen that PV was more
profitable with the energy community model than without, and the
profit increased when BESS was used, as long as the price of BESS was
low. The price limit of BESS, in terms of its profitability, was
300–400 €/kWh depending on the price of PV. Additionally, the op-
timal PV size increased by 7–18 kWp while using BESS with the energy
community model. The optimal size of PV increased by 21–39 kWp over
the optimal PV size for the basic case.

The calculated values for the IRR are shown in Fig. 11. The very
high values of IRR, noted in cases without a BESS and with only a small
PV system, were caused by an assumed constant price component for
PV. In real cases, a very small PV system size would be more expensive
in terms of relative cost when compared with a larger PV system size. In
this study, the price per kWp was assumed to be constant, which in-
creased IRR for small PV system sizes. However, if the PV system sizing
was performed using IRR, the optimal PV system size was slightly lower
than in the profit study. In sizing PV and BESS, the customer must
decide which of the following characteristics are more important:
higher profits or higher IRR.

Table 5
Distribution fees of the apartment building with different tariff structures.

2013 2014 2015 2016 Average

General 10 431 11 373 13 121 13 984 12 227
Low voltage power 9206 10 097 11 569 12 360 10 808
Annual savings 1225 1275 1552 1623 1419

Fig. 7. Cost simulation for apartment building using various sizes of PV system (Fig. 1). Line A is the result of a linear regression performed on data points between 1
and 24 kWp nominal power of PV system and line B that of between 40 and 65 kWp.
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5.2. Case 2: detached houses

PV size optimization using various sizes of BESS was performed for
detached house customers, as presented in Section 2. Evaluation was
performed using two different tariff structures: power and general

tariff. The results of the optimization are shown in Fig. 12, where the
results were averaged over the study group of 12 customers. With a
small BESS size (0–2 kWh), the “optimal” size of the PV system behaved
contrary to the theory. The “optimal” size of the PV system decreased
when the capacity of BESS increased. This was caused by chosen

Fig. 8. Effect of BESS on annual cost savings from PV and “optimal” size of PV.

Fig. 9. Annual profit from various sizes of PV system both with and without 25 kWh BESS when the general tariff was applied. Three alternatives for PV investment
prices (1500, 1800, and 2100 €/kWp) and two alternatives for BESS investment price (200 and 400 €/kWh) are presented.

Fig. 10. Annual profit from various sizes of
PV system both with and without 25 kWh
BESS, when the energy community model
with the low-voltage power tariff is applied.
Three alternatives for the PV investment
price (1500, 1800, and 2100 €/kWp) and
two alternatives for the BESS investment
price (200 and 400 €/kWh) are presented.
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5. Simulation results for case studies

5.1. Case 1: apartment building

Table 5 shows a comparison of the annual electricity costs of an
apartment building based on the distribution tariff using the energy
community model with a low-voltage power tariff and with a general
tariff. The comparison was made over four years (2013–2016). The
building’s electricity supply main fuse was 3×125A and each apart-
ment’s main fuse was 3× 25A. In Table 4, general signifies general
tariffs with typical contracts, where every apartment pays its own basic
charges. The energy community model was used along with a low-
voltage power tariff. The average annual saving in distribution fees was
1 419 €, and this together with the savings derived from not having to
pay the energy retailer’s basic charge, compensated for the extra costs
associated with using the energy community model, e.g., billing.

Simulations using various sizes of PV system as show in Fig. 1 were
performed for three years (2014–2016), with 50 different sizes of PV
system modelled for each year. Based on these data points (results of
simulations), lines A and B were fitted using linear regression. The re-
sults of the simulations and fitted lines are shown in Fig. 7. The optimal
size d of the PV system (see Fig. 1) was approximately 31 kWp. This is a
practical upper limit for the size of PV without incorporating BESS. The
actual optimal size of the PV system was lower, caused by the curving
cost line of the PV before the intersection point.

The same kind of simulation as shown in Fig. 7 was performed using
various sizes of BESS, resulting in “optimal” PV system sizes (d in Fig. 1)
for various sizes of BESS, and annual cost savings for the “optimal” PV
system size (i in Fig. 1) using various sizes of BESS. These result points
were fitted using linear regression, as presented in Fig. 8. The annual
cost savings associated with the use of PV and the “optimal” size of the
PV both increased when the capacity of the BESS increased. With the
studied BESS sizes (0–99 kWh), the increase could be assumed to be
linear, meaning that the PV system size could increase without limita-
tions imposed by the increasing BESS capacity. When a customer pur-
chases PV along with BESS, the BESS can be sized first, based on the
available investment resources, and the PV can then be sized based on
the size of the BESS.

In the following comparison, the BESS was assumed to be 25 kWh.
When the energy community model was not used and the general tariff
was applied, the annual profits from PV and BESS were low, as pre-
sented in Fig. 9. In all cases, the profit was higher without BESS than
with it. The optimal PV size (d in Fig. 4) was between 13 and 27 kWp if
BESS was not used. These values were slightly lower than the “optimal”
sizes shown in Fig. 8, as theoretically predicted. Accurate optimal PV
size depends on the investment prices for PV and BESS. Using BESS
increased the optimal size of the PV system (m in Fig. 4) to a range of
20–41 kWp, but the annual profit dropped lower than without the BESS
(n in Fig. 4 is lower than the cost of the BESS). However, the shapes of
the profit curves agree with the theory discussed in Section 2, and the
required characteristics can be found from the curves.

Fig. 10 shows the results from the energy community model when
the low-voltage power tariff was applied. The profits generated using
the energy community model in Fig. 10 were higher than without using
it as shown in Fig. 9. Another notable difference was that the profits
were higher with BESS than without it when the size of the PV system
increased. However, the theory of PV sizing as presented in Section 2
remained valid when applying the energy community model and low-
voltage power tariff. When the price of PV was 1500 €/kWp, the annual
profit decreased very slowly as the size of the PV system rose above the
optimal value. This indicated that this price was near the lower limit of
the validity area of the theory. Further decreases to the PV price lead to
increases to the annual profit together with increasing PV size. This is
not the desired type of optimization.

The results from Figs. 9 and 10 are summarized in Table 6, which
shows the optimal sizes of PV systems and the annual profits generated
using these optimal sizes. From Table 6, it can be seen that PV was more
profitable with the energy community model than without, and the
profit increased when BESS was used, as long as the price of BESS was
low. The price limit of BESS, in terms of its profitability, was
300–400 €/kWh depending on the price of PV. Additionally, the op-
timal PV size increased by 7–18 kWp while using BESS with the energy
community model. The optimal size of PV increased by 21–39 kWp over
the optimal PV size for the basic case.

The calculated values for the IRR are shown in Fig. 11. The very
high values of IRR, noted in cases without a BESS and with only a small
PV system, were caused by an assumed constant price component for
PV. In real cases, a very small PV system size would be more expensive
in terms of relative cost when compared with a larger PV system size. In
this study, the price per kWp was assumed to be constant, which in-
creased IRR for small PV system sizes. However, if the PV system sizing
was performed using IRR, the optimal PV system size was slightly lower
than in the profit study. In sizing PV and BESS, the customer must
decide which of the following characteristics are more important:
higher profits or higher IRR.

Table 5
Distribution fees of the apartment building with different tariff structures.

2013 2014 2015 2016 Average

General 10 431 11 373 13 121 13 984 12 227
Low voltage power 9206 10 097 11 569 12 360 10 808
Annual savings 1225 1275 1552 1623 1419

Fig. 7. Cost simulation for apartment building using various sizes of PV system (Fig. 1). Line A is the result of a linear regression performed on data points between 1
and 24 kWp nominal power of PV system and line B that of between 40 and 65 kWp.
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5.2. Case 2: detached houses

PV size optimization using various sizes of BESS was performed for
detached house customers, as presented in Section 2. Evaluation was
performed using two different tariff structures: power and general

tariff. The results of the optimization are shown in Fig. 12, where the
results were averaged over the study group of 12 customers. With a
small BESS size (0–2 kWh), the “optimal” size of the PV system behaved
contrary to the theory. The “optimal” size of the PV system decreased
when the capacity of BESS increased. This was caused by chosen

Fig. 8. Effect of BESS on annual cost savings from PV and “optimal” size of PV.

Fig. 9. Annual profit from various sizes of PV system both with and without 25 kWh BESS when the general tariff was applied. Three alternatives for PV investment
prices (1500, 1800, and 2100 €/kWp) and two alternatives for BESS investment price (200 and 400 €/kWh) are presented.

Fig. 10. Annual profit from various sizes of
PV system both with and without 25 kWh
BESS, when the energy community model
with the low-voltage power tariff is applied.
Three alternatives for the PV investment
price (1500, 1800, and 2100 €/kWp) and
two alternatives for the BESS investment
price (200 and 400 €/kWh) are presented.
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simulation step size, which in this case was the PV step size of 3 kWp.
When the “optimal” PV size was very low, as in this case, the fitting of
line A was performed using only two or three points, which could cause
this kind of error. However, after the BESS capacity reached 4 kWh, the
behavior of the PV system size began to agree with the theory. While
applying the power tariff, the “optimal” size of the PV system was
1–2 kWp higher than while applying the general tariff. When the BESS
capacity increased over 6 kWh, the increase in annual cost savings
began to demonstrate a decreasing trend. Thus, after this was identi­
fied, BESS sizes of only 4 and 6 kWh were used. Previously, the optimal
size of a BESS for a detached house customer either with or without PV
was optimized at approximately 4–6 kWh [8,9].

Annual profits were calculated using a 1500 €/kWp PV system
price, because it was the highest price while still retaining a positive
annual profit without using BESS. The price of BESS was chosen as
300 €/kWh in calculations because it was the median of the range, and
the comparison was easier using a constant price. Calculated annual
profits are shown in Fig. 13. The profitability while applying a power
tariff and BESS was much higher than while applying the general tariff,
even if the profitability of the PV alone was lower with the power tariff
than with the general tariff.

The IRR while applying various investment prices for PV
(1500–2100 €/kWh) and BESS (200–400 €/kWh), with the power tariff
and a 6 kWh BESS, is shown in Fig. 14. Also shown are the IRR of a PV
investment, with 1300 €/kWp of PV while applying a power and a
general tariff for comparison. The results were averaged over the study
group. The investment price of 1300 €/kWp was used because it was
the highest investment price corresponding to a positive IRR. This

indicated that the price of PV must decrease in the future so that PV
without BESS becomes profitable for average customers without any
subsidies, if the pricing remains the same in the future. Using power
tariffs decreased the profitability compared with a general tariff if the
BESS was not used, but with BESS, the profitability increased sig­
nificantly. The IRR was highest with a small PV system (e.g., 3 kWp)
and it decreased when the PV system size increased. The price of BESS
had a more significant effect on IRR than that of PV.

6. Discussion

During the last few years, PV systems have been installed more often
in apartment buildings. The pricing model and sizing, nowadays, leads
to a very limited PV system size. Currently, with typical contracts and
general distribution tariffs in the studied apartment building, the op­
timal PV size was found to be 20–27 kWp depending on the investment
price for PV. This nominal power corresponded to about 30–40% of the
building’s annual maximum power usage. In practice, actual PV system
size is lower because it was best to avoid generating surplus energy.
Using EESS did not increase the profits using the present model. If the
apartment building began to apply the energy community model and
the low­voltage power tariff was selected, the optimal size of the PV
system could increase by 21–39 kWp. This expansion of PV system
would produce roughly an additional 19–35MWh per year in Finland,
which is all emission­free solar power. This amounts to approximately
8–21% of the annual consumption of the apartment building.

For detached house customers, PV profitability is very limited. A
very small PV system size could be profitable if the investment price of
PV is low. When the general distribution tariff is changed to the power­
based tariff, the profitability of PV decreases. Photovoltaic production
used for self­consumption becomes less profitable when the volumetric
price of the tariff decreases. The power­based tariff incentivizes the use
of BESS, increasing its profitability significantly. A decrease in power
taken from the grid and stored surplus production are mutually ex­
clusive operations for the BESS, so the same BESS can be used for both
incentives. It is also possible to apply Market­price­based control to
earn extra savings. This makes the combination of PV and BESS very
profitable if they are sized correctly. Optimal PV size could be increased
by using BESS, but in detached houses, the potential for this is much
lower than in apartment buildings. This is caused by a higher basic
consumption and different distribution tariff structures. In detached
houses, the weight of the power­based component is higher and volu­
metric charges do not include a two­time ToU structure. However, the

Table 6
Optimal sizes of PV with various PV prices and annual profits.

Basic Energy community model

Optimal size
of PV (kWp)

Annual
profit (€/a)

Optimal size
of PV (kWp)

Annual
profit (€/a)

PV 1500 27 803.40 55 1240.69
PV 1800 20 536.62 41 782.40
PV 2100 20 336.62 27 474.16
PV 1500+BESS 200 27 473.40 62 1563.85
PV 1800+BESS 200 20 206.62 59 962.93
PV 2100+BESS 200 20 6.62 41 538.08
PV 1500+BESS 400 27 143.40 62 1233.85
PV 1800+BESS 400 20 −190.04 59 632.93
PV 2100+BESS 400 20 −323.38 41 208.08

Fig. 11. IRR of PV and BESS investments. Three alternatives for the PV investment price (1500, 1800 and 2100 €/kWp) and two alternatives for the BESS investment
price (200 and 400 €/kWh) are presented.
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potential for increasing the amount of BESS installed along with PV is
very high, which could open new business opportunities for service
providers.

In reality, the load and PV production forecasts for EESS control are
not as ideal as shown in the simulations performed in this study.
Forecasting errors can affect a decrease in annual savings. It is possible
that the EESS is fully discharged when discharging is required to offset
load increases that have not been forecasted, for instance. These pro-
blems could be avoided with accurate forecasts. Ideal forecasts were
used in this study because the varying forecasting errors, the amount by
which they could affect the results, and the effect itself were different
for different customers. With ideal forecasts, the upper boundary of the
results can be calculated. The effects of forecasting errors have been
studied in [9], for example. In future, verification of the model and the
results will be performed using a real battery system.

7. Conclusions

This paper introduces sizing methods for photovoltaic system and
electrical energy storage system from an economic perspective. The
most important result suggested that the sizing of the storage is prof-
itable if performed first so that the photovoltaic sizing can be based on
the chosen storage size. The electrical energy storage size depends
mainly on variables other than the size of photovoltaic system (e.g.,
load profile and pricing structure), and the sizing of the photovoltaic
system depends mainly on the size of the storage and the load profile.
Verification of the sizing model was performed in Finland, but the same
model can be utilized in other environments as long as the details of the
local electricity pricing structures are accounted for. The main study

object was an apartment building which has made several changes to
improve its energy-efficiency. As a result, the maximum electrical load
increased significantly even though the total amount of consumed en-
ergy decreased. Through the use of electrical energy storage, this could
have been avoided.

A commonly-used photovoltaic sizing method which does not take
into account the energy community model leads to a very limited sizing
of the photovoltaic system. If the internal rate of return is used in the
sizing, the size of the chosen photovoltaic panel array could be very
small. In this paper, increasing the profitable size of the photovoltaic
system has been investigated. The energy community model and low-
voltage power tariff could increase the profitable size of the photo-
voltaic system. Using this model, the use of electrical energy storage
along with a photovoltaic system also became profitable when the
benefit from photovoltaic system and the storage system could be uti-
lized simultaneously. Using electrical energy storage with a photo-
voltaic system can overcome the problematic effects on the power grid
caused by increasing the number of grid-connected photovoltaic plants.
In the long term, this could decrease the costs incurred by the dis-
tribution system operator and could lead to lower customer electricity
prices.

A change to the power-based distribution tariff decreases the prof-
itability of photovoltaic systems because the volumetric charge de-
creases. If a new incentive, which accounts for electrical energy storage
control, is rolled out, the profitability of storage in conjunction with a
photovoltaic system could increase significantly. This could increase
the implementation of electrical EESS in detached houses.

Fig. 12. Sizing of the PV system using various sizes of BESS.

Fig. 13. Annual profit from PV and BESS with power or general tariff, with an investment cost of PV of 1500 €/kWp and an investment cost of BESS of 300 €/kWh.
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simulation step size, which in this case was the PV step size of 3 kWp.
When the “optimal” PV size was very low, as in this case, the fitting of
line A was performed using only two or three points, which could cause
this kind of error. However, after the BESS capacity reached 4 kWh, the
behavior of the PV system size began to agree with the theory. While
applying the power tariff, the “optimal” size of the PV system was
1–2 kWp higher than while applying the general tariff. When the BESS
capacity increased over 6 kWh, the increase in annual cost savings
began to demonstrate a decreasing trend. Thus, after this was identi­
fied, BESS sizes of only 4 and 6 kWh were used. Previously, the optimal
size of a BESS for a detached house customer either with or without PV
was optimized at approximately 4–6 kWh [8,9].

Annual profits were calculated using a 1500 €/kWp PV system
price, because it was the highest price while still retaining a positive
annual profit without using BESS. The price of BESS was chosen as
300 €/kWh in calculations because it was the median of the range, and
the comparison was easier using a constant price. Calculated annual
profits are shown in Fig. 13. The profitability while applying a power
tariff and BESS was much higher than while applying the general tariff,
even if the profitability of the PV alone was lower with the power tariff
than with the general tariff.

The IRR while applying various investment prices for PV
(1500–2100 €/kWh) and BESS (200–400 €/kWh), with the power tariff
and a 6 kWh BESS, is shown in Fig. 14. Also shown are the IRR of a PV
investment, with 1300 €/kWp of PV while applying a power and a
general tariff for comparison. The results were averaged over the study
group. The investment price of 1300 €/kWp was used because it was
the highest investment price corresponding to a positive IRR. This

indicated that the price of PV must decrease in the future so that PV
without BESS becomes profitable for average customers without any
subsidies, if the pricing remains the same in the future. Using power
tariffs decreased the profitability compared with a general tariff if the
BESS was not used, but with BESS, the profitability increased sig­
nificantly. The IRR was highest with a small PV system (e.g., 3 kWp)
and it decreased when the PV system size increased. The price of BESS
had a more significant effect on IRR than that of PV.

6. Discussion

During the last few years, PV systems have been installed more often
in apartment buildings. The pricing model and sizing, nowadays, leads
to a very limited PV system size. Currently, with typical contracts and
general distribution tariffs in the studied apartment building, the op­
timal PV size was found to be 20–27 kWp depending on the investment
price for PV. This nominal power corresponded to about 30–40% of the
building’s annual maximum power usage. In practice, actual PV system
size is lower because it was best to avoid generating surplus energy.
Using EESS did not increase the profits using the present model. If the
apartment building began to apply the energy community model and
the low­voltage power tariff was selected, the optimal size of the PV
system could increase by 21–39 kWp. This expansion of PV system
would produce roughly an additional 19–35MWh per year in Finland,
which is all emission­free solar power. This amounts to approximately
8–21% of the annual consumption of the apartment building.

For detached house customers, PV profitability is very limited. A
very small PV system size could be profitable if the investment price of
PV is low. When the general distribution tariff is changed to the power­
based tariff, the profitability of PV decreases. Photovoltaic production
used for self­consumption becomes less profitable when the volumetric
price of the tariff decreases. The power­based tariff incentivizes the use
of BESS, increasing its profitability significantly. A decrease in power
taken from the grid and stored surplus production are mutually ex­
clusive operations for the BESS, so the same BESS can be used for both
incentives. It is also possible to apply Market­price­based control to
earn extra savings. This makes the combination of PV and BESS very
profitable if they are sized correctly. Optimal PV size could be increased
by using BESS, but in detached houses, the potential for this is much
lower than in apartment buildings. This is caused by a higher basic
consumption and different distribution tariff structures. In detached
houses, the weight of the power­based component is higher and volu­
metric charges do not include a two­time ToU structure. However, the

Table 6
Optimal sizes of PV with various PV prices and annual profits.

Basic Energy community model

Optimal size
of PV (kWp)

Annual
profit (€/a)

Optimal size
of PV (kWp)

Annual
profit (€/a)

PV 1500 27 803.40 55 1240.69
PV 1800 20 536.62 41 782.40
PV 2100 20 336.62 27 474.16
PV 1500+BESS 200 27 473.40 62 1563.85
PV 1800+BESS 200 20 206.62 59 962.93
PV 2100+BESS 200 20 6.62 41 538.08
PV 1500+BESS 400 27 143.40 62 1233.85
PV 1800+BESS 400 20 −190.04 59 632.93
PV 2100+BESS 400 20 −323.38 41 208.08

Fig. 11. IRR of PV and BESS investments. Three alternatives for the PV investment price (1500, 1800 and 2100 €/kWp) and two alternatives for the BESS investment
price (200 and 400 €/kWh) are presented.
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potential for increasing the amount of BESS installed along with PV is
very high, which could open new business opportunities for service
providers.

In reality, the load and PV production forecasts for EESS control are
not as ideal as shown in the simulations performed in this study.
Forecasting errors can affect a decrease in annual savings. It is possible
that the EESS is fully discharged when discharging is required to offset
load increases that have not been forecasted, for instance. These pro-
blems could be avoided with accurate forecasts. Ideal forecasts were
used in this study because the varying forecasting errors, the amount by
which they could affect the results, and the effect itself were different
for different customers. With ideal forecasts, the upper boundary of the
results can be calculated. The effects of forecasting errors have been
studied in [9], for example. In future, verification of the model and the
results will be performed using a real battery system.

7. Conclusions

This paper introduces sizing methods for photovoltaic system and
electrical energy storage system from an economic perspective. The
most important result suggested that the sizing of the storage is prof-
itable if performed first so that the photovoltaic sizing can be based on
the chosen storage size. The electrical energy storage size depends
mainly on variables other than the size of photovoltaic system (e.g.,
load profile and pricing structure), and the sizing of the photovoltaic
system depends mainly on the size of the storage and the load profile.
Verification of the sizing model was performed in Finland, but the same
model can be utilized in other environments as long as the details of the
local electricity pricing structures are accounted for. The main study

object was an apartment building which has made several changes to
improve its energy-efficiency. As a result, the maximum electrical load
increased significantly even though the total amount of consumed en-
ergy decreased. Through the use of electrical energy storage, this could
have been avoided.

A commonly-used photovoltaic sizing method which does not take
into account the energy community model leads to a very limited sizing
of the photovoltaic system. If the internal rate of return is used in the
sizing, the size of the chosen photovoltaic panel array could be very
small. In this paper, increasing the profitable size of the photovoltaic
system has been investigated. The energy community model and low-
voltage power tariff could increase the profitable size of the photo-
voltaic system. Using this model, the use of electrical energy storage
along with a photovoltaic system also became profitable when the
benefit from photovoltaic system and the storage system could be uti-
lized simultaneously. Using electrical energy storage with a photo-
voltaic system can overcome the problematic effects on the power grid
caused by increasing the number of grid-connected photovoltaic plants.
In the long term, this could decrease the costs incurred by the dis-
tribution system operator and could lead to lower customer electricity
prices.

A change to the power-based distribution tariff decreases the prof-
itability of photovoltaic systems because the volumetric charge de-
creases. If a new incentive, which accounts for electrical energy storage
control, is rolled out, the profitability of storage in conjunction with a
photovoltaic system could increase significantly. This could increase
the implementation of electrical EESS in detached houses.

Fig. 12. Sizing of the PV system using various sizes of BESS.

Fig. 13. Annual profit from PV and BESS with power or general tariff, with an investment cost of PV of 1500 €/kWp and an investment cost of BESS of 300 €/kWh.
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Abstract – Installations of photovoltaic (PV) systems on residential buildings have increased 

over the last few years, and this trend will continue. PV systems can increase the production of 

sustainable energy. Many homeowners want to do something to decrease their emissions or 

increase their energy self-sufficiency. The most important issue in the decision to invest in a PV 

system is profitability. In the EU, electricity metering practices will be harmonized, and this will 

affect the profitability of PV systems and battery energy storage systems (BESSs). In many 

countries, electricity is metered by hourly intervals, but metering will be changed to 15-minute 

intervals. In this study, the effect of the metering interval on the profitability of PV systems and 

BESSs was studied has been studied in Tampere area in Finland. A shorter metering interval will 

decrease the profitability of photovoltaic systems, while the profitability of BESS will increase. 

However, the change is so minimal that the attractiveness of PV systems will only decrease 

slightly. Investment in BESSs in addition to PV systems will become more attractive and will 

benefit the evolution of smart grids, because batteries enable flexibility in the grid. Copyright © 

2020 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 

βP    Temperature coefficient of the solar cell power 
ηc    Battery charging efficiency 
ηdc   DC-converters efficiency 
ηinv   Inverter efficiency 
Bt    Storage energy transmission during an hour t 
Beff   Efficiency of the storage energy transfer 
Cv    Verification coefficient 
D    Electricity consumption of building 

Emax   Maximum capacity of storage 
Et    Amount of stored energy at time t 
G    Demand to power grid 
Gb,i   Beam component of solar irradiance 
Gd,i   Diffuse component of solar irradiance 
Gi    Global irradiance 
Gr,i   Reflected component of solar irradiance 
i    Discount rate 
Ic    Battery charging current 
n    Length of lifetime 
NPV   Net Present Value 
Pdc   Production after DC-converter 
PPV   Production of photovoltaic system 
PSTC   Nominal power in standard test conditions 
Rb    Battery internal serial resistance 
Ry    Cost saving at the year y 
SOCt  State of charge at time t 
Tc    Solar cell temperature 
TSTC   Standard solar cell test temperature 
Vb    Battery nominal voltage 
 

I. Introduction 

Electricity metering practices vary across the EU. The 
market time unit in balancing markets will be 
harmonized. In the Nordic electricity market, the 
balancing and metering period is one hour. Based on EU 
regulations (2017/2195) that establish guidelines for 
electricity balancing, all the Transmission System 
Operators (TSO) shall apply an Imbalance Settlement 
Period (ISP) of 15 minutes [1]. This change will happen 
gradually, and in Nordic countries, it will be 
implemented first in the intraday markets and then in the 
balancing settlement and balancing markets [2]. After 
some time, the 15-minute ISP will be implemented in 
day-ahead markets. ISP changes will set new 
requirements for electricity metering. Advanced metering 
infrastructure requires updating so that 15-minute 
measurements can be registered. The measurements are 
currently registered on an hourly basis (i.e., hourly 
energy). 

When the time unit of electricity billing changes, this 
could affect the profitability of self-production and the 
Demand Response (DR) operations of customers. Self-
production refers to electricity production by a customer 
(i.e., a prosumer), e.g., using solar energy and a 
photovoltaic (PV) system. Self-production can be used 
by an individual, but, in many cases, self-production 
exceeds an individual’s consumption. Prosumers can sell 
surplus electricity to the grid, but the feed-in price of 
electricity is much lower than the purchase price [3]. It 
consists of the energy price, distribution price, and taxes, 
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but the feed-in price consists only of the energy price.  
The profitability of a PV system depends on the 

difference between the feed-in and purchase prices, the 
share of self-consumption and the investment price of the 
PV system [4]. Common sense says that probability for 
the same timing of consumption and production is higher 
when the time unit is an hour, opposed to 15 minutes. 
This hypothesis is under study in this paper. The share of 
self-consumption can be increased with a Battery Energy 
Storage System (BESS), so the change of market time 
unit can affect also the profitability of BESSs. The effect 
of changes to the market time unit on the profitability of 
PV systems and BESSs is the main research question of 
this study. 

The profitability of a BESS can increase when 
different incentives from electricity billing structures are 
combined in the control of BESSs, as in [5] and [6].  

These incentives of market-price-based control and 
peak cutting depend on the pricing structure, so the 
market time unit also affects these cost benefits. At the 
beginning, the time unit in day-ahead electricity markets 
remains an hour, and the 15-minute price for customers is 
the same during an hour. In this study, the market price is 
kept the same during an hour regardless of the metering 
interval. If the electricity distribution tariff from a 
Distribution System Operator (DSO) includes power-
based fees, customers can get cost savings by peak 
cutting. The metering interval can affect the power-based 
charge because peak power can be very different in 15-
minute increments compared to hourly increments.  

Therefore, peak cutting with BESSs can also lead to 
very different results with different metering intervals. In 
this study, BESSs are used only to increase the self-
consumption of PV production. 

Although the general profitability of PV systems and 
BESSs has been studied thoroughly, the effect of the 
metering interval on the profitability of PV systems and 
BESSs has not been considered. Studies have used data 
from places such as Nordic countries where the hour 
metering interval is used. PV system and BESS 
profitability in Finland has been studied in [5]. In 
Germany, 15-minute data has been used in [7]. The 
profitability of grid-connected PV storage systems with 
five-minute data has been studied in [8]. Additionally, 
the profitability of battery energy storage alongside PV 
production has been studied in Greece in [9] and in 
Switzerland in [10]. 

Energy storages and effects of different control 
systems have been studied widely in many previous 
papers. The profitability of battery energy storage system 
connected to low voltage distribution network in case of 
Finland has been studied in [11]. Minimizing monthly 
peak powers in domestic real estate by using the control 
of BESS and charging of electric vehicle has been 
studied in [12]. Off-grid PV system in residential home 
with energy storage has been designed in [13]. Energy 
storage peak saving has been used for the optimization of 
a PV and energy storage system in [14]. 

This novel study is the first on where the effects of 

different metering intervals are compared. The results of 
this study are very important for the attractiveness of 
customers to participate smart grid via small scale PV 
production and DR with BESS. Previous studies do not 
compare different metering intervals and their effect on 
the profitability of PV and energy storage systems. In 
this study, three different metering intervals are 
compared: a one-hour interval, which is used in Nordic 
countries; a quarter-hour interval, which will be a 
common metering interval in the near future in the EU; 
and a one minute-interval because in the future the 
metering interval could be even shorter than a quarter-
hour. In this study, the billing of electricity is based on 
metering when the interphase and time unit net metering 
are used. During every metering interval, only one 
measured value is used, and billing based on 
consumption differences between phases is not taken into 
account. 

The paper is organized as follows. A simulation model 
that includes PV production and battery modeling is 
described in Section II. Section III presents the input data 
used in the simulations. The PV system and BESS are 
sized in Section IV. The simulations and their results are 
discussed in Section V. Section VI presents the 
conclusions of the study. 

II. Simulation Model 

II.1. PV Production 

The PV production model is based on the global solar 
irradiance components of beam Gb,i, diffuse Gd,i and 
reflected Gr,i. The model of the global solar irradiance 
based on the location on Earth has been introduced in 
[15]. Used panels are tilted and this is accounted in the 
model. In this study, the PV panels are tilted at a 45º 
angle facing south. Different irradiance components can 
be measured separately and global irradiance is the sum 
of these components Gi = Gb,i + Gd,i + Gr,i. 

The production of a PV system (PPV) can be 
calculated by equation (1), where PSTC is the nominal 
power in Standard Test Conditions (STC), βP is the solar 
cell power temperature coefficient (0.006), Tc is the solar 
cell temperature and TSTC is the standard solar cell test 
temperature (25ºC) [16]. Theoretical PV production in 
real PV production is not same. For this reason, the 
verification coefficient Cv is added to the equation: 
 

𝑃�� = 𝐶�𝑃���𝐺��1− 𝛽�(𝑇� − 𝑇���)� (1)
 

The simulation model of PV production has been 
verified with real measurements of PV systems in [5]. 
The result has been that the verification coefficient Cv is 
0.85. In modeling, the actual temperature of panel cannot 
know, so the outdoor temperature is used. In real 
situation, panel temperature rises higher than outdoor 
temperature because the panel absorbs solar radiation.  

Wind speed affects also the panel temperature.  
Additionally, the efficiency of the solar panels is 
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but the feed-in price consists only of the energy price.  
The profitability of a PV system depends on the 

difference between the feed-in and purchase prices, the 
share of self-consumption and the investment price of the 
PV system [4]. Common sense says that probability for 
the same timing of consumption and production is higher 
when the time unit is an hour, opposed to 15 minutes. 
This hypothesis is under study in this paper. The share of 
self-consumption can be increased with a Battery Energy 
Storage System (BESS), so the change of market time 
unit can affect also the profitability of BESSs. The effect 
of changes to the market time unit on the profitability of 
PV systems and BESSs is the main research question of 
this study. 

The profitability of a BESS can increase when 
different incentives from electricity billing structures are 
combined in the control of BESSs, as in [5] and [6].  

These incentives of market-price-based control and 
peak cutting depend on the pricing structure, so the 
market time unit also affects these cost benefits. At the 
beginning, the time unit in day-ahead electricity markets 
remains an hour, and the 15-minute price for customers is 
the same during an hour. In this study, the market price is 
kept the same during an hour regardless of the metering 
interval. If the electricity distribution tariff from a 
Distribution System Operator (DSO) includes power-
based fees, customers can get cost savings by peak 
cutting. The metering interval can affect the power-based 
charge because peak power can be very different in 15-
minute increments compared to hourly increments.  

Therefore, peak cutting with BESSs can also lead to 
very different results with different metering intervals. In 
this study, BESSs are used only to increase the self-
consumption of PV production. 

Although the general profitability of PV systems and 
BESSs has been studied thoroughly, the effect of the 
metering interval on the profitability of PV systems and 
BESSs has not been considered. Studies have used data 
from places such as Nordic countries where the hour 
metering interval is used. PV system and BESS 
profitability in Finland has been studied in [5]. In 
Germany, 15-minute data has been used in [7]. The 
profitability of grid-connected PV storage systems with 
five-minute data has been studied in [8]. Additionally, 
the profitability of battery energy storage alongside PV 
production has been studied in Greece in [9] and in 
Switzerland in [10]. 

Energy storages and effects of different control 
systems have been studied widely in many previous 
papers. The profitability of battery energy storage system 
connected to low voltage distribution network in case of 
Finland has been studied in [11]. Minimizing monthly 
peak powers in domestic real estate by using the control 
of BESS and charging of electric vehicle has been 
studied in [12]. Off-grid PV system in residential home 
with energy storage has been designed in [13]. Energy 
storage peak saving has been used for the optimization of 
a PV and energy storage system in [14]. 

This novel study is the first on where the effects of 

different metering intervals are compared. The results of 
this study are very important for the attractiveness of 
customers to participate smart grid via small scale PV 
production and DR with BESS. Previous studies do not 
compare different metering intervals and their effect on 
the profitability of PV and energy storage systems. In 
this study, three different metering intervals are 
compared: a one-hour interval, which is used in Nordic 
countries; a quarter-hour interval, which will be a 
common metering interval in the near future in the EU; 
and a one minute-interval because in the future the 
metering interval could be even shorter than a quarter-
hour. In this study, the billing of electricity is based on 
metering when the interphase and time unit net metering 
are used. During every metering interval, only one 
measured value is used, and billing based on 
consumption differences between phases is not taken into 
account. 

The paper is organized as follows. A simulation model 
that includes PV production and battery modeling is 
described in Section II. Section III presents the input data 
used in the simulations. The PV system and BESS are 
sized in Section IV. The simulations and their results are 
discussed in Section V. Section VI presents the 
conclusions of the study. 

II. Simulation Model 

II.1. PV Production 

The PV production model is based on the global solar 
irradiance components of beam Gb,i, diffuse Gd,i and 
reflected Gr,i. The model of the global solar irradiance 
based on the location on Earth has been introduced in 
[15]. Used panels are tilted and this is accounted in the 
model. In this study, the PV panels are tilted at a 45º 
angle facing south. Different irradiance components can 
be measured separately and global irradiance is the sum 
of these components Gi = Gb,i + Gd,i + Gr,i. 

The production of a PV system (PPV) can be 
calculated by equation (1), where PSTC is the nominal 
power in Standard Test Conditions (STC), βP is the solar 
cell power temperature coefficient (0.006), Tc is the solar 
cell temperature and TSTC is the standard solar cell test 
temperature (25ºC) [16]. Theoretical PV production in 
real PV production is not same. For this reason, the 
verification coefficient Cv is added to the equation: 
 

𝑃�� = 𝐶�𝑃���𝐺��1− 𝛽�(𝑇� − 𝑇���)� (1)
 

The simulation model of PV production has been 
verified with real measurements of PV systems in [5]. 
The result has been that the verification coefficient Cv is 
0.85. In modeling, the actual temperature of panel cannot 
know, so the outdoor temperature is used. In real 
situation, panel temperature rises higher than outdoor 
temperature because the panel absorbs solar radiation.  

Wind speed affects also the panel temperature.  
Additionally, the efficiency of the solar panels is 
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TABLE I 
STUDY GROUP 

House H1 H2 H3 
Construction year 2012 2011 1988 

Area (m2) 152.5 190 220 

Warming (primary) Water boiler 
Ground heat 

pump 
Underfloor 

heating resistors 

Warming 
(secondary) 

Electric heaters in 
garage + 
fireplace 

Heat recovery + 
fireplace 

Heat recovery + 
fireplaces 

Yearly electricity 
consumption 

18.7 MWh 13,2 MWh 24,2 MWh 

Heating power 
13 kW + (4.5kW 

water top up 
heater) 

13.5 kW 
14 kW + (4.5 

kW water 
heater) 

 
These gaps in total consumption have been replaced 

by the sum of the measurements from the other sensors, 
which nearly corresponds to the total consumption. If 
there has been a gap in the other sensors, then it has been 
replaced by the value of the previous minute. However, 
the total number of gaps is so low that there is not a 
notable effect on the results of the study. 

III.2. Solar Radiation Data and Weather Data 

The input data of PV production are based on a 
mathematical model of PV panel output, which is 
calculated from real one-minute solar radiation data.  

Measurements of solar radiation were taken from the 
open data of the Finnish Meteorological Institute. The 
data have been measured at the weather station of 
Jokioinen, which is the nearest one to the studied houses.  

The beam, the diffuse, and the reflected solar 
radiations for the entire year of 2018 have been measured 
in Jokioinen [22]. 

Fig. 3 shows an example of one day of household 
consumption and PV production metered by an hour 
interval and a 15-minute interval.  

It can be seen that the variation of consumption is 
much higher for the 15-minute interval than the hour 
interval.  

The variation of PV production is not so high in this 
example because this specific day was mostly sunny. 
During a day when cloudiness changes rapidly, the 
variation of PV production could be much higher. 

III.3. Electricity Price Data 

In Finland, end-use electricity bills consist of the costs 
of electrical energy, distribution fees and taxes. A 
customer can sell surplus energy to the same energy 
retailer who is the seller of electrical energy. The price of 
energy is typically based on the market price of 
electricity in Nordic electricity markets [23]. Customers 
can tender out of retailers, and retailers can compete via 
margins, which are the amounts retailers add to the 
market price. When a retailer buys a customer’s surplus 
energy, this margin is taken off from the market price. 
Energy selling contracts have typically been based on a 
constant price, but the average price is more inexpensive 
in market-price-based contracts than in constant-price 

contracts because the risks of retailers are lower. In this 
study, the margin of energy retailers is 0.25 c/kWh, 
which is typical in Finland. Market price changes for 
each hour, and if the metering interval is shorter than an 
hour, the price is constant during the entire hour. 

Distribution System Operators (DSOs) have local 
monopolies, and they set the distribution prices under the 
control of public authority.  

Customers have to pay electricity taxes based on the 
amount of used energy, which is charged with the 
distribution bill.  

The value of the electricity tax is 2.79 c/kWh for 
household customers. In addition, there is a value tax 
(i.e., 24%), which is paid on all the cost components. In 
this study, the general distribution tariff of the local DSO 
has been used, and the volumetric charge is a constant 
3.93 c/kWh [24].  

The level of the volumetric charge affects the 
profitability of PV self-consumption because this price 
determines the difference between electricity purchase 
and feed-in prices, but it does not affect the differences 
between metering intervals because the costs increases in 
proportion with the price component. 

IV. Sizing of PV Systems and BESSs 

IV.1. Sizing of BESSs 

In [4], it has been states that when PV systems and 
BESSs are sized based on electricity cost optimization, 
the suitable size of a BESS relative to the load profile of 
a customer has to be chosen first. After this, the PV 
system is sized relative to the size of the BESS. In this 
study, the sizing model from [4] is used. The same BESS 
can be used for several control targets. In this study, the 
increase of self-consumption is the only control target, so 
the size of the PV system affects the size of the BESS 
more than when other targets are involved. 

In the sizing of the BESS, few potential sizes are 
selected at first, from 0 to 12 kWh, with an increment of 
2 kWh. Then, we simulated the cost savings for each size 
have been when the size of the PV system varies between 
0 and 6 kWp. After this, linear regression has been used 
to fit the lines for the first and last two result points. The 
intersection of the fitted lines indicates the optimal size 
for a PV system, as discussed in [4]. This has been done 
for all the three customers with all the three metering 
intervals. 

Fig. 4 shows the average cost savings per 1 kWp of 
PV panels in the intersection of the fitted lines. At the 
beginning, the cost savings increase when the size of the 
BESS increases, but the growth slows down very 
quickly. The highest growth can be noticed for a 2-kWh 
BESS. For systems larger than 6 kWh, there is no 
increase in cost savings. The changes are similar with 
different metering intervals, but the differences are 
higher for small BESSs than for larger BESSs. For these 
three customers, 2 kWh is the best BESS size if the 
system is used only for increasing the self-consumption 
of PV energy.  
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TABLE I 
STUDY GROUP 

House H1 H2 H3 
Construction year 2012 2011 1988 

Area (m2) 152.5 190 220 

Warming (primary) Water boiler 
Ground heat 

pump 
Underfloor 

heating resistors 

Warming 
(secondary) 

Electric heaters in 
garage + 
fireplace 

Heat recovery + 
fireplace 

Heat recovery + 
fireplaces 

Yearly electricity 
consumption 

18.7 MWh 13,2 MWh 24,2 MWh 

Heating power 
13 kW + (4.5kW 

water top up 
heater) 

13.5 kW 
14 kW + (4.5 

kW water 
heater) 

 
These gaps in total consumption have been replaced 

by the sum of the measurements from the other sensors, 
which nearly corresponds to the total consumption. If 
there has been a gap in the other sensors, then it has been 
replaced by the value of the previous minute. However, 
the total number of gaps is so low that there is not a 
notable effect on the results of the study. 

III.2. Solar Radiation Data and Weather Data 

The input data of PV production are based on a 
mathematical model of PV panel output, which is 
calculated from real one-minute solar radiation data.  

Measurements of solar radiation were taken from the 
open data of the Finnish Meteorological Institute. The 
data have been measured at the weather station of 
Jokioinen, which is the nearest one to the studied houses.  

The beam, the diffuse, and the reflected solar 
radiations for the entire year of 2018 have been measured 
in Jokioinen [22]. 

Fig. 3 shows an example of one day of household 
consumption and PV production metered by an hour 
interval and a 15-minute interval.  

It can be seen that the variation of consumption is 
much higher for the 15-minute interval than the hour 
interval.  

The variation of PV production is not so high in this 
example because this specific day was mostly sunny. 
During a day when cloudiness changes rapidly, the 
variation of PV production could be much higher. 

III.3. Electricity Price Data 

In Finland, end-use electricity bills consist of the costs 
of electrical energy, distribution fees and taxes. A 
customer can sell surplus energy to the same energy 
retailer who is the seller of electrical energy. The price of 
energy is typically based on the market price of 
electricity in Nordic electricity markets [23]. Customers 
can tender out of retailers, and retailers can compete via 
margins, which are the amounts retailers add to the 
market price. When a retailer buys a customer’s surplus 
energy, this margin is taken off from the market price. 
Energy selling contracts have typically been based on a 
constant price, but the average price is more inexpensive 
in market-price-based contracts than in constant-price 

contracts because the risks of retailers are lower. In this 
study, the margin of energy retailers is 0.25 c/kWh, 
which is typical in Finland. Market price changes for 
each hour, and if the metering interval is shorter than an 
hour, the price is constant during the entire hour. 

Distribution System Operators (DSOs) have local 
monopolies, and they set the distribution prices under the 
control of public authority.  

Customers have to pay electricity taxes based on the 
amount of used energy, which is charged with the 
distribution bill.  

The value of the electricity tax is 2.79 c/kWh for 
household customers. In addition, there is a value tax 
(i.e., 24%), which is paid on all the cost components. In 
this study, the general distribution tariff of the local DSO 
has been used, and the volumetric charge is a constant 
3.93 c/kWh [24].  

The level of the volumetric charge affects the 
profitability of PV self-consumption because this price 
determines the difference between electricity purchase 
and feed-in prices, but it does not affect the differences 
between metering intervals because the costs increases in 
proportion with the price component. 

IV. Sizing of PV Systems and BESSs 

IV.1. Sizing of BESSs 

In [4], it has been states that when PV systems and 
BESSs are sized based on electricity cost optimization, 
the suitable size of a BESS relative to the load profile of 
a customer has to be chosen first. After this, the PV 
system is sized relative to the size of the BESS. In this 
study, the sizing model from [4] is used. The same BESS 
can be used for several control targets. In this study, the 
increase of self-consumption is the only control target, so 
the size of the PV system affects the size of the BESS 
more than when other targets are involved. 

In the sizing of the BESS, few potential sizes are 
selected at first, from 0 to 12 kWh, with an increment of 
2 kWh. Then, we simulated the cost savings for each size 
have been when the size of the PV system varies between 
0 and 6 kWp. After this, linear regression has been used 
to fit the lines for the first and last two result points. The 
intersection of the fitted lines indicates the optimal size 
for a PV system, as discussed in [4]. This has been done 
for all the three customers with all the three metering 
intervals. 

Fig. 4 shows the average cost savings per 1 kWp of 
PV panels in the intersection of the fitted lines. At the 
beginning, the cost savings increase when the size of the 
BESS increases, but the growth slows down very 
quickly. The highest growth can be noticed for a 2-kWh 
BESS. For systems larger than 6 kWh, there is no 
increase in cost savings. The changes are similar with 
different metering intervals, but the differences are 
higher for small BESSs than for larger BESSs. For these 
three customers, 2 kWh is the best BESS size if the 
system is used only for increasing the self-consumption 
of PV energy.  



Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 

kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 
simulations.

the 2
intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp 
BESSs, respectively.

simulations have been
with the chosen PV system and BESS sizes and with the 
minute, quarter
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3
and a 6
yearly cost savings that customers can expect. The 
investment is

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

Henceforth, a 2
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 
simulations.

Fig. 5 shows the optimal size of the PV system with 
the 2
intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp 
BESSs, respectively.

In order to
simulations have been
with the chosen PV system and BESS sizes and with the 
minute, quarter
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3
and a 6
yearly cost savings that customers can expect. The 
investment is

 

Fig. 5. Optimal size of PV with two different BESS size for three 

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

Henceforth, a 2
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 
simulations.

Fig. 5 shows the optimal size of the PV system with 
the 2- and 6
intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp 
BESSs, respectively.

In order to
simulations have been
with the chosen PV system and BESS sizes and with the 
minute, quarter
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3
and a 6-kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 
investment is

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

Henceforth, a 2
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 
simulations. 

Fig. 5 shows the optimal size of the PV system with 
and 6

intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp 
BESSs, respectively.

In order to
simulations have been
with the chosen PV system and BESS sizes and with the 
minute, quarter
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 
investment is

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

Henceforth, a 2
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

 

IV.2.

Fig. 5 shows the optimal size of the PV system with 
and 6-

intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp 
BESSs, respectively.

In order to 
simulations have been
with the chosen PV system and BESS sizes and with the 
minute, quarter-
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 
investment is not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

Henceforth, a 2-
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

IV.2.

Fig. 5 shows the optimal size of the PV system with 
-kWh BESSs. 

intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp 
BESSs, respectively.

 compare different mete
simulations have been
with the chosen PV system and BESS sizes and with the 

-hour and hour metering intervals. Fig. 6 
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

-kWh BESS is 
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

IV.2. Sizing of PV 

Fig. 5 shows the optimal size of the PV system with 
kWh BESSs. 

intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 
kWp and 3 kWp are chosen for 2
BESSs, respectively.  

V.

compare different mete
simulations have been
with the chosen PV system and BESS sizes and with the 

hour and hour metering intervals. Fig. 6 
shows the benefits of a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

kWh BESS is 
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Sizing of PV 

Fig. 5 shows the optimal size of the PV system with 
kWh BESSs. 

intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

are chosen for 2

V. 

compare different mete
simulations have been completed for all the customers 
with the chosen PV system and BESS sizes and with the 

hour and hour metering intervals. Fig. 6 
shows the benefits of a 2-
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

Copyright © 2020 Praise Worthy Prize S.r.l. 

 
Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 

PV for different BESS sizes and variable metering interval
 

kWh BESS is 
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Sizing of PV 

Fig. 5 shows the optimal size of the PV system with 
kWh BESSs. 

intersection of fitted lines as in [
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 
2.7 and 3.0 kWp. With a 2-kWh BESS, suitable PV array 
sizes for customers H1, H2 an
kWp and 2.1 kWp, respectively
PV sizes are divided into 1
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

are chosen for 2

 Results

compare different mete
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

-kWp PV system and a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

 
Fig. 5. Optimal size of PV with two different BESS size for three 

customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

Copyright © 2020 Praise Worthy Prize S.r.l. 

 
Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 

PV for different BESS sizes and variable metering interval
 

kWh BESS is 
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Sizing of PV 

Fig. 5 shows the optimal size of the PV system with 
kWh BESSs. 

intersection of fitted lines as in [4
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
sizes for customers H1, H2 and H3 are 2.1 kWp, 2.4
kWp and 2.1 kWp, respectively
PV sizes are divided into 1-
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

are chosen for 2

Results

compare different mete
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

 
Fig. 5. Optimal size of PV with two different BESS size for three 

customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

Copyright © 2020 Praise Worthy Prize S.r.l. 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

kWh BESS is considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Sizing of PV System

Fig. 5 shows the optimal size of the PV system with 
kWh BESSs. They

4]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
sizes for customers H1, H2 and H3 are 2.1 kWp, 2.4
kWp and 2.1 kWp, respectively. In the simulations, the 

-kWp intervals, and to 
maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

are chosen for 2

Results

compare different mete
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

Copyright © 2020 Praise Worthy Prize S.r.l. - All rights reserved

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

System

Fig. 5 shows the optimal size of the PV system with 
They 
]. The PV array consists 

of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

are chosen for 2-kWh and 6

Results 

compare different mete
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2
BESS. Fig. 7 shows the benefits of a 3

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

All rights reserved

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

System 

Fig. 5 shows the optimal size of the PV system with 
 come from the 

]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

kWh and 6

compare different metering intervals, 
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2
BESS. Fig. 7 shows the benefits of a 3-kWp PV system 

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits. 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

All rights reserved

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

 

Fig. 5 shows the optimal size of the PV system with 
come from the 

]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

kWh and 6

ring intervals, 
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2
kWp PV system 

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

not accounted for the benefits.  

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

All rights reserved

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval

considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Fig. 5 shows the optimal size of the PV system with 
come from the 

]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

kWh and 6

ring intervals, 
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2
kWp PV system 

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used

J. Koskela, A. Rautiainen, K. 

All rights reserved 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
PV for different BESS sizes and variable metering interval 

considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Fig. 5 shows the optimal size of the PV system with 
come from the 

]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

kWh and 6-kWh 

ring intervals, 
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWp PV system and a 2-kWh 
kWp PV system 

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

Fig. 5. Optimal size of PV with two different BESS size for three 
customers, when different metering intervals are used 

J. Koskela, A. Rautiainen, K. Kallioharju, P. Harsia, P. Järventausta

 

 

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 
 

considered, and a 6
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Fig. 5 shows the optimal size of the PV system with 
come from the 

]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

kWh 

ring intervals, 
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWh 
kWp PV system 

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

 

Fig. 5. Optimal size of PV with two different BESS size for three 

Kallioharju, P. Harsia, P. Järventausta

  

169

Fig. 4. Average annual cost saving per 1 kWp PV, with optimal sized 

considered, and a 6-
kWh system is used for comparison because it is largest 
size when cost savings still increase in the sizing 

Fig. 5 shows the optimal size of the PV system with 
come from the 

]. The PV array consists 
of panels with nominal powers of approximately 300 
Wp. Thus, the potential sizes of the PV array are 2.1, 2.4, 

kWh BESS, suitable PV array 
d H3 are 2.1 kWp, 2.4 

In the simulations, the 
kWp intervals, and to 

maintain comparability for both BESS sizes, one PV size 
is chosen for all the customers. Thus, PV array sizes of 2 

kWh 

ring intervals, 
completed for all the customers 

with the chosen PV system and BESS sizes and with the 
hour and hour metering intervals. Fig. 6 

kWh 
kWp PV system 

kWh BESS. These benefits refer to the amount of 
yearly cost savings that customers can expect. The 

 

Kallioharju, P. Harsia, P. Järventausta

 

169 

without a BESS, and the benefit of a BESS means the 
increas
total cost savings of a customer is the sum of these 
benefits. 
systems are much greater than the benefit of BESSs. For 
comparability, the axis of benefits of a PV 
from 200 
different y
conditions
intervals can be considered.
interval changes 
profile. 
addition to the mean values, are shown in Table 
customers separately. 
the benefits of a PV system than the benefits of a B
but the percentage changes are much higher for BESSs. 
In Table 
and the highest values are shown by red. 
quarter
the benefits of PV systems but increa
BESSs. 
from BESSs nearly replace the losses from the 
decreasing benefits of PV systems.
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TABLE II 
EFFECT OF METERING PERIOD CHANGE IN MONEY 

AND PERCENTAGE CHANGES 

 

PV: 2 kWp 
BESS: 2 kWh 

PV: 3 kWp 
BESS: 6 kWh 

PV BESS PV BESS 

Hour to 
Quarter-

hour 

H1 
-16.25 € 7.57 € -16.71 € 11.64 € 
-5.98 % 58.46 % -4.46 % 29.16 % 

H2 
-14.73 € 2.71 € -19.25 € 11.85 € 
-5.57 % 13.20 % -5.22 % 23.05 % 

H3 
-5.85 € 1.18 € -8.09 € 4.54 € 
-2.32 % 6.29 % -2.32 % 8.70 % 

Mean 
-12.28 € 3.82 € -14.68 € 9.34 € 

-4.67 % 21.93 % -4.03 % 19.53 % 

Quarter-
hour to 
Minute 

H1 
-13.72 € 7.09 € -19.27 € 15.03 € 
-5.37 % 34.56 % -5.38 % 29.17 % 

H2 
-9.70 € 9.34 € -11.33 € 9.91 € 
-3.88 % 40.12 % -3.24 % 15.66 % 

H3 
-3.95 € 3.66 € -5.08 € 4.12 € 
-1.61 % 18.37 % -1.49 % 7.26 % 

Mean 
-9.12 € 6.70 € -11.89 € 9.69 € 

-3.64 % 31.53 % -3.40 % 16.95 % 

 

The change is slightly lower if the metering interval 
changes from a quarter-hour to one minute. The lifetime 
of a PV system can be 30 years [3]. If it is assume that 
the electricity prices, taxes, customer load profiles and 
the production of a PV system are similar over the entire 
lifetime of a PV system, the total effect of metering 
interval changes on the profitability of a PV system can 
be evaluated. Net present value (NPV) is a good tool to 
evaluate the profitability of an investment and it can be 
calculated using equation (6): 
 

𝑁𝑃𝑉 = 	�
𝑅�

(1 + 𝑖)�

�

���

 (6)

 
where Ry is the cost savings at the year y, n is the length 
of lifetime and i is the discount rate. Fig. 8 shows NPV 
calculations of cost savings over the lifetime of 2-kWp 
and 3-kWp PV systems with possible system lifetimes of 
15 and 30 years and discount rates of 1% and 3%.  

Calculations are made for hour, quarter-hour and one 
minute metering intervals. 

V.1. Effect of Metering Interval on the Profitability 

of PV Systems 

Additionally, three possible investment prices for a PV 
system are shown by dashed lines. If the NPV is higher 
than the investment price, the investment is profitable 
and the part of the block that is over the investment price 
indicates the total profit of the investment, which comes 
over the required return. The results of Fig. 8 show that 
the change from an hour metering interval to a quarter-
hour interval or the change from a quarter-hour interval 
to a minute interval affects the profitability of PV 
systems in approximately the same way as an increase of 
100 €/kWp in the investment price of a PV system.  

The profitability of the PV systems depends mainly on 
the lifetime of the system, the sizing of the system, the 
electricity prices, and the discount rate, but the 
investment costs and the metering interval are also 
significant. Additionally, how soon a prosumer wants the 
money back from the investment is important. 
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Fig. 8. Net present value of PV lifetime benefits with different metering intervals and three possible investment prices for 2 and 3 kWp PV systems. 
Two possible lifetimes (15 and 30 years) and two possible discount rates (1% and 3%) are used 
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TABLE II 
EFFECT OF METERING PERIOD CHANGE IN MONEY 

AND PERCENTAGE CHANGES 

 

PV: 2 kWp 
BESS: 2 kWh 

PV: 3 kWp 
BESS: 6 kWh 

PV BESS PV BESS 

Hour to 
Quarter-

hour 

H1 
-16.25 € 7.57 € -16.71 € 11.64 € 
-5.98 % 58.46 % -4.46 % 29.16 % 

H2 
-14.73 € 2.71 € -19.25 € 11.85 € 
-5.57 % 13.20 % -5.22 % 23.05 % 

H3 
-5.85 € 1.18 € -8.09 € 4.54 € 
-2.32 % 6.29 % -2.32 % 8.70 % 

Mean 
-12.28 € 3.82 € -14.68 € 9.34 € 

-4.67 % 21.93 % -4.03 % 19.53 % 

Quarter-
hour to 
Minute 

H1 
-13.72 € 7.09 € -19.27 € 15.03 € 
-5.37 % 34.56 % -5.38 % 29.17 % 

H2 
-9.70 € 9.34 € -11.33 € 9.91 € 
-3.88 % 40.12 % -3.24 % 15.66 % 

H3 
-3.95 € 3.66 € -5.08 € 4.12 € 
-1.61 % 18.37 % -1.49 % 7.26 % 

Mean 
-9.12 € 6.70 € -11.89 € 9.69 € 

-3.64 % 31.53 % -3.40 % 16.95 % 

 

The change is slightly lower if the metering interval 
changes from a quarter-hour to one minute. The lifetime 
of a PV system can be 30 years [3]. If it is assume that 
the electricity prices, taxes, customer load profiles and 
the production of a PV system are similar over the entire 
lifetime of a PV system, the total effect of metering 
interval changes on the profitability of a PV system can 
be evaluated. Net present value (NPV) is a good tool to 
evaluate the profitability of an investment and it can be 
calculated using equation (6): 
 

𝑁𝑃𝑉 = 	�
𝑅�

(1 + 𝑖)�

�

���

 (6)

 
where Ry is the cost savings at the year y, n is the length 
of lifetime and i is the discount rate. Fig. 8 shows NPV 
calculations of cost savings over the lifetime of 2-kWp 
and 3-kWp PV systems with possible system lifetimes of 
15 and 30 years and discount rates of 1% and 3%.  

Calculations are made for hour, quarter-hour and one 
minute metering intervals. 

V.1. Effect of Metering Interval on the Profitability 

of PV Systems 

Additionally, three possible investment prices for a PV 
system are shown by dashed lines. If the NPV is higher 
than the investment price, the investment is profitable 
and the part of the block that is over the investment price 
indicates the total profit of the investment, which comes 
over the required return. The results of Fig. 8 show that 
the change from an hour metering interval to a quarter-
hour interval or the change from a quarter-hour interval 
to a minute interval affects the profitability of PV 
systems in approximately the same way as an increase of 
100 €/kWp in the investment price of a PV system.  

The profitability of the PV systems depends mainly on 
the lifetime of the system, the sizing of the system, the 
electricity prices, and the discount rate, but the 
investment costs and the metering interval are also 
significant. Additionally, how soon a prosumer wants the 
money back from the investment is important. 
 

V.2. Effect of Metering Interval on the Profitability 

of BESSs 

In contrast to the profitability of PV systems, the one 
of BESSs increases when the metering interval becomes 
shorter. In Fig. 9, the calculated NPVs for the lifetime 
cost savings with a BESS are shown. The lifetime of an 
LFP Li-ion battery with good battery management is 
approximately 15 years [25]. Thus, a 15-year lifetime and 
a cautious estimate of an 8-year lifetime are used in the 
calculations. The discount rates are the same as those 
used in the PV calculations: 1% and 3%. Additionally, 
two investment costs for a BESS system are shown.  

 
 

 
 

Fig. 8. Net present value of PV lifetime benefits with different metering intervals and three possible investment prices for 2 and 3 kWp PV systems. 
Two possible lifetimes (15 and 30 years) and two possible discount rates (1% and 3%) are used 
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Fig. 9. Net present value of BESS lifetime benefits with different metering intervals and three possible investment prices for 2 and 6 kWh BESS. 
Two possible lifetimes (8 and 15 years) and two possible discount rates (1% and 3%) are used 

 

The current investment price for Li-ion batteries is 
200-400 €, as evaluated in [4] and based on [26] and 
[27]. 

 Prices have decreased rapidly over the last decade, 
and development is expected to continue [28]. Power 
electronics increase the price of BESSs, but when a 
BESS is used together with a PV system, a portion of the 
costs are included in the price of the components of the 
PV system, e.g., a grid inverter. The presented 
investment prices are 200 €/kWh, which is the lowest 
possible price today, and 100 €/kWh, which is the 
expected price in the future as the volume of 
manufacturing grows. These optimistic prices are used 
because they are almost at the same level as the NPVs of 
the cost savings. This strengthens the perception that the 
use of BESSs with PV systems to increase self-
consumption is not currently profitable.  

The results of Fig. 9 show that the change from an 
hour metering interval to a minute metering interval 
results in the highest effect on the profitability of a 2-
kWh BESS with a 15-year lifetime and a 1% discount 
rate. This change corresponds to a change of 
approximately 73 €/kWh in the BESS investment price.  

A metering interval change from an hour to a quarter-
hour corresponds to a change from 11 €/kWh to 26 
€/kWh in the BESS investment price. Another 
observation is that the effect of a metering interval 
change on the profitability of a BESS is higher for an 
optimally sized BESS with 2 kWh as opposed to a 
slightly oversized 6-kWh BESS. 

VI. Discussion 

In this study, data from three different households in 
area around of Tampere in Finland have been used. Even 
though the sample size of the study group is small, these 
houses represent current domestic houses in Finland, and 
the size of the houses is slightly larger than average. In 
all the houses, the primary heating system is different, 
and the systems are commonly used today and in the 
future. Two of the houses are quite new, while the other 

one is older. This leads to the variations in the total 
consumption of the houses. The results show that the 
benefits of PV systems and BESSs do not depend on the 
amount of total consumption. The differences between 
the houses are not large even though the load profiles 
vary substantially, confirming that the results are 
representative. 

The benefits of BESSs are calculated when a BESS is 
used only for increasing the self-consumption of PV 
production. The same BESS can also be used for other 
control targets, but these ones are not studied in this 
paper because the metering interval does not directly 
affect them if the electricity prices remain constant in 
relation to the load profile. For this reason, the results of 
this study do not directly indicate the profitability of 
using BESSs in houses. A change in the metering 
interval will affect other control targets due to the 
changing price components or the changing peak power 
values. If power-based distribution tariffs are used, the 
peak power consumption values are higher with a shorter 
metering interval because when the metered load is 
averaged for a longer period, e.g., an hour, short high 
peaks are smoothed. When DSOs keep their revenue the 
same through a metering period change, the power-based 
price component will decrease. This means that the 
savings from peak-cutting will be almost at the same 
level. The differences between customers will increase, 
but the effects require additional research. 

The savings from market-price-based control will also 
change when the time unit in the electricity market 
changes. The price change between quarter-hours could 
be higher than that between hours [29]. This will increase 
the profitability of market-price-based control. Second, 
when the time unit is shorter, BESSs will be used more 
frequently. This will affect the sizing of BESSs and their 
actual lifetime. 

VII.   Conclusion 

In a case of Tampere area in Finland, a shorter 
electricity metering interval decreases the profitability of 
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grid-connected domestic PV systems but increases the 
profitability of BESSs associated with PV systems.  

Currently, PV investment is profitable in the long term 
in Finland, and transitioning from an hour metering 
interval to a quarter-hour metering interval does not 
radically affect the situation. However, this shift 
increases payback time and notably decreases profits. If 
the metering interval is shortened to one minute from 15 
minutes in the future, the effect of this change will be 
approximately similar to the change from an hour 
interval to a quarter-hour interval. 

Using a BESS to increase the self-consumption of PV 
production is not yet profitable. A shorter metering 
interval will increase the cost savings notably but will not 
make BESSs profitable. Economically profitable use of 
BESSs requires other control targets, such as market-
price-based control or peak cutting, when power-based 
distribution tariffs are used. In the long term, a shorter 
metering interval is a good thing for the future of smart 
grids because it has many positive effects. Increased 
profitability makes investments in BESSs, along with 
investments in PV systems, more attractive. Using 
BESSs can decrease the surplus energy feeding into the 
grid and smooth the demand from the grid to restrain the 
increasing distribution costs when the need to strengthen 
the grid decreases. Additionally, BESSs use larger PV 
systems profitable and can increase the total amount of 
PV production. Without BESSs, the attractiveness of PV 
investment will decrease when the metering interval 
becomes shorter. 
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Fig. 9. Net present value of BESS lifetime benefits with different metering intervals and three possible investment prices for 2 and 6 kWh BESS. 
Two possible lifetimes (8 and 15 years) and two possible discount rates (1% and 3%) are used 
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the size of the houses is slightly larger than average. In 
all the houses, the primary heating system is different, 
and the systems are commonly used today and in the 
future. Two of the houses are quite new, while the other 

one is older. This leads to the variations in the total 
consumption of the houses. The results show that the 
benefits of PV systems and BESSs do not depend on the 
amount of total consumption. The differences between 
the houses are not large even though the load profiles 
vary substantially, confirming that the results are 
representative. 

The benefits of BESSs are calculated when a BESS is 
used only for increasing the self-consumption of PV 
production. The same BESS can also be used for other 
control targets, but these ones are not studied in this 
paper because the metering interval does not directly 
affect them if the electricity prices remain constant in 
relation to the load profile. For this reason, the results of 
this study do not directly indicate the profitability of 
using BESSs in houses. A change in the metering 
interval will affect other control targets due to the 
changing price components or the changing peak power 
values. If power-based distribution tariffs are used, the 
peak power consumption values are higher with a shorter 
metering interval because when the metered load is 
averaged for a longer period, e.g., an hour, short high 
peaks are smoothed. When DSOs keep their revenue the 
same through a metering period change, the power-based 
price component will decrease. This means that the 
savings from peak-cutting will be almost at the same 
level. The differences between customers will increase, 
but the effects require additional research. 

The savings from market-price-based control will also 
change when the time unit in the electricity market 
changes. The price change between quarter-hours could 
be higher than that between hours [29]. This will increase 
the profitability of market-price-based control. Second, 
when the time unit is shorter, BESSs will be used more 
frequently. This will affect the sizing of BESSs and their 
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grid-connected domestic PV systems but increases the 
profitability of BESSs associated with PV systems.  

Currently, PV investment is profitable in the long term 
in Finland, and transitioning from an hour metering 
interval to a quarter-hour metering interval does not 
radically affect the situation. However, this shift 
increases payback time and notably decreases profits. If 
the metering interval is shortened to one minute from 15 
minutes in the future, the effect of this change will be 
approximately similar to the change from an hour 
interval to a quarter-hour interval. 

Using a BESS to increase the self-consumption of PV 
production is not yet profitable. A shorter metering 
interval will increase the cost savings notably but will not 
make BESSs profitable. Economically profitable use of 
BESSs requires other control targets, such as market-
price-based control or peak cutting, when power-based 
distribution tariffs are used. In the long term, a shorter 
metering interval is a good thing for the future of smart 
grids because it has many positive effects. Increased 
profitability makes investments in BESSs, along with 
investments in PV systems, more attractive. Using 
BESSs can decrease the surplus energy feeding into the 
grid and smooth the demand from the grid to restrain the 
increasing distribution costs when the need to strengthen 
the grid decreases. Additionally, BESSs use larger PV 
systems profitable and can increase the total amount of 
PV production. Without BESSs, the attractiveness of PV 
investment will decrease when the metering interval 
becomes shorter. 
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Abstract: The profitability of domestic battery energy storage systems has been poor and this is the 
main barrier to their general use. It is possible to increase profitability by using multiple control 
targets. Market price-based electricity contracts and power-based distribution tariffs alongside 
storage of surplus photovoltaic energy make it possible to have multiple control targets in domestic 
use. The battery control system needs accurate load forecasting so that its capacity can be utilized 
in an optimally economical way. This study shows how the accuracy of short-term load forecasting 
affects cost savings by using batteries. The study was conducted by simulating actual customers’ 
load profiles with batteries utilized for different control targets. The results of the study show that 
knowledge of customers’ load profiles (i.e., when high and low peaks happen) is more important 
that actual forecast accuracy, as measured by error criteria. In many cases, the load forecast based 
on customers’ historical load data and the outdoor temperature is sufficient to be used in the control 
system, but in some cases a more accurate forecast can give better cost savings. 

Keywords: battery energy storage system; load forecast; control system 
 

1. Introduction 

Decentralized electricity generation and self-production is increasing very fast, because it allows 
local production of much emission-free electricity and decreases the need to transfer high amounts 
of electric energy over long distances. This will decrease the amount of electricity customers’ 
purchase, lowering the cost of electricity from energy retailers (ERs) and distribution system 
operators (DSOs). Customers can sell over-produced electricity to the grid and obtain some revenue. 
Nevertheless, in the market environment of Finland, electricity self-production is profitable only for 
self-consumption [1]. Self-production by using photovoltaic (PV) panels is becoming very popular, 
because the equipment for PV production is easy to purchase, the profit is sufficient in many cases, 
and it has been studied in much research (e.g., [2–4]). Optimal sizing of PV panels is based on 
maximizing the savings on the electricity bill [2]. With the optimal panel size, some production can 
be sold to the grid, but the production is mostly used for self-consumption. The rate of self-
consumption can be increased by using a battery energy storage system (BESS). Using a BESS 
increases the capacity of self-consumption, which means that the optimal size of PV panels also 
increases. 

In residential buildings, BESSs can also be utilized for functions other than storing over-
produced electricity. An uninterrupted power source is one application, but a BESS could also be 
used to minimize the cost of electricity with different pricing structures. Customers can have a 
contract with an ER, and the retail price will be based on the market price of electricity. With this 
kind of contract, the BESS could be charged when the price is low and discharged when the price is 
high [5]. During the last few years in Finland, there has been a lot of discussion around power-based 
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1. Introduction 

Decentralized electricity generation and self-production is increasing very fast, because it allows 
local production of much emission-free electricity and decreases the need to transfer high amounts 
of electric energy over long distances. This will decrease the amount of electricity customers’ 
purchase, lowering the cost of electricity from energy retailers (ERs) and distribution system 
operators (DSOs). Customers can sell over-produced electricity to the grid and obtain some revenue. 
Nevertheless, in the market environment of Finland, electricity self-production is profitable only for 
self-consumption [1]. Self-production by using photovoltaic (PV) panels is becoming very popular, 
because the equipment for PV production is easy to purchase, the profit is sufficient in many cases, 
and it has been studied in much research (e.g., [2–4]). Optimal sizing of PV panels is based on 
maximizing the savings on the electricity bill [2]. With the optimal panel size, some production can 
be sold to the grid, but the production is mostly used for self-consumption. The rate of self-
consumption can be increased by using a battery energy storage system (BESS). Using a BESS 
increases the capacity of self-consumption, which means that the optimal size of PV panels also 
increases. 

In residential buildings, BESSs can also be utilized for functions other than storing over-
produced electricity. An uninterrupted power source is one application, but a BESS could also be 
used to minimize the cost of electricity with different pricing structures. Customers can have a 
contract with an ER, and the retail price will be based on the market price of electricity. With this 
kind of contract, the BESS could be charged when the price is low and discharged when the price is 
high [5]. During the last few years in Finland, there has been a lot of discussion around power-based 
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distribution tariffs (e.g., [6,7]). With a power-based distribution tariff, some of the cost depends on 
the customer’s highest power. The highest power can be decreased by discharging the BESS during 
the peak, when the cost from the distribution tariff decreases and the customer can obtain cost savings 
[8]. 

The effects of load forecasting for the profitability of household level BESS have not been widely 
studied before. However, many studies focusing on energy storage at the household level have been 
published. The effects of load forecast errors were studied in [9] by Koponen et al., where different 
error criteria were compared. The profitability of BESSs in residential use with PV has been studied 
(e.g., [10–12]). Sizing of the BESS is very important when aiming for the highest possible profit and 
high profitability; sizing from an economic perspective has been studied (e.g., [2,13–16]). To increase 
the benefits of BESSs, multiple control targets can be used, as in [17] by Litjens et al. Predictive control 
strategies for BESSs have been studied previously (e.g., [18,19]). The lifetime of a BESS affects total 
profitability, so it is important to take care of the health of the battery during control operations. The 
lifetime expectation of batteries in residential use is studied in [20] by Beltran et al. 

Control of BESSs can be very simple when it is used for only one control target. When it is used 
to store surplus PV production, BESS can be discharged empty before the high production of midday. 
Alternatively, if the BESS is used to decrease maximum peak power, it is fully charged to await 
possible high peaks. These simple controls can work well if the customer’s load profile is suitable and 
the BESS is sized well. If the BESS is used for market price-based control or the same BESS is used for 
multiple control targets and its utilization is optimized, the control system must be based on load 
forecast. Optimal control of BESSs is based on the predicted state-of-charge (SOC) behavior. Changes 
in SOC during the optimization period can be calculated based on the load and PV production 
forecast. Predicted SOC levels make it possible to control SOC at the right level for different control 
targets all the time. Errors in these forecasts cause situations where the SOC levels are not optimal, 
e.g., the battery is full when a lot of surplus energy is available for storage. For this reason, high 
accuracy of forecasts is important in the control of BESSs. The main objective of this paper is to study 
how much forecast errors affect the use of BESSs. This study researches the current level of forecast 
errors sufficient for use in the control of domestic BESS and how it is affected if BESS is used for 
different control targets, which make possible to cost savings for the customers. The level of cost 
savings and profitability of BESS depends on many factors other than error level of load forecast e.g., 
prices of electricity and BESS system, customer’s load profile and technical details of system, but this 
study focuses on the effect of load forecast, so the results do not present the actual profitability of 
system. 

The results of this study will help to improve the control of BESSs, which leads to an increase in 
their profitability. Profitability has been the basic reason why residential BESSs did not become more 
common earlier, and is the main problem with BESSs nowadays. Increasing the profitability could 
make BESSs more common in the future, and then all of their benefits can be implemented for the 
system, such as flexibility and higher electricity self-production. This kind of study has not been 
conducted, so its novelty is very high. 

The remainder of this paper is divided into four sections. Section 2 introduces the simulation 
model and used data. Section 3 presents the results of simulations, and the discussion is presented in 
Section 4. 

2. Materials and Methods 

2.1. Battery Energy Storage System (BESS) Control Targets 

In this study, several control targets of BESS were studied. BESS can be used for different control 
targets individually or in combination. In this subsection, the different control targets and their 
requirements are introduced. Electricity pricing structures are based on the market environment of 
Finland. 
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2.1.1. Storing Surplus Photovoltaic (PV) Production 

 In Finland, prosumers can sell surplus electricity to ERs, but the selling price is approximately 
only a third of the purchase price, because customers have to pay distribution prices and 
electricity taxes on purchased energy. It is profitable to avoid buying electricity from the grid by 
using PV self-production. If production is higher than consumption at some times, surplus 
energy has to be sold to the grid. Self-consumption of PV production can be increased by using 
BESS. The cost benefit of using BESS to increase PV self-consumption EBBESS,pv comes from the 
price difference between total selling price Ct,s and total purchase price Ct,p of electricity, which 
can be described by Equation (1): 

EBBESS,pv = Ct,p Beff2 Es,pv – Ct,s Es,pv (1) 

where Es,pv is the amount of stored surplus energy and Beff is the battery efficiency during charging or 
discharging. Actually, the efficiency is not the same during charging and discharging, and calculating 
accurate values depends on many factors, such as charging and discharging power, but in these 
calculations efficiency is assumed to be the same. This assumption is valid when the efficiency 
represents the estimated average efficiency during a cycle. Because the utilization of stored surplus 
energy needs two actions (charging and discharging), the efficiency is square, which corresponds to 
the round-trip efficiency of the battery. 

 Using BESS to store surplus PV production is a simple process, but control could be challenging. 
Before midday, when the surplus PV production is usually the highest, the battery should be 
empty enough and ready to receive energy. Control can be implemented very simply; e.g., the 
battery is discharged empty during the evening for consumption and charged during daytime, 
when surplus energy is available. This kind of simple control does not utilize BESS optimally. 
Production and consumption vary from day to day, and BESS is sized using some kind of 
average values. With accurate load and production forecasts, BESS can be utilized optimally. 

 The northern location of Finland means that PV production is high in summer and very low in 
winter. Long days in summer means that PV production is widely available during the day. In 
winter, days are very short and PV production is negligible. Usually electricity consumption is 
higher in winter than summer. As a result, available surplus energy varies a lot throughout the 
year. BESS is needed mostly in summer and very little at other times. Using BESS to increase 
self-consumption of PV production allows BESS to also be used for other control targets. 

2.1.2. Decrease Maximum Peak Power 

 Distribution tariffs can include a power-based component. This means that customers can obtain 
cost savings by discharging BESSs during peak power. Control of BESS can be implemented so 
that the battery is fully charged the whole time to await peak power. When the power increases 
above the selected level, the BESS is discharged to decrease consumption. This could work if 
customers have only a few individual peaks in consumption and power levels are very stable. 
Optimal utilization of BESS requires accurate load forecasts so that power levels can be 
optimized and the BESS can prepare for situations when the power peak lasts longer than an 
hour. One hour is the commercial unit for determining the peak power in power-based tariffs 
(i.e., highest average hourly power calculated by measured hourly energy). Cost savings from 
using BESS to decrease maximum peak power EBBESS,p can be calculated with Equation (2): 

EBBESS,p = Cp,p PBESS (2) 

where Cp,p is the price of the power-based component in distribution tariffs and PBESS is decreased 
maximum power by BESS. In this equation it is assumed that the cost from charging the BESS is 
negligible compared with the benefits, so it is assumed to be zero. This assumption is valid, because 
usually only a few cycles can save up to tens of euros, but charging in these cycles costs only few 
cents [8]. Decreasing power peaks by BESS includes a high risk that control failure will affect cost 
savings. If several high peaks are close together and the control system is not prepared for this, during 
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distribution tariffs (e.g., [6,7]). With a power-based distribution tariff, some of the cost depends on 
the customer’s highest power. The highest power can be decreased by discharging the BESS during 
the peak, when the cost from the distribution tariff decreases and the customer can obtain cost savings 
[8]. 

The effects of load forecasting for the profitability of household level BESS have not been widely 
studied before. However, many studies focusing on energy storage at the household level have been 
published. The effects of load forecast errors were studied in [9] by Koponen et al., where different 
error criteria were compared. The profitability of BESSs in residential use with PV has been studied 
(e.g., [10–12]). Sizing of the BESS is very important when aiming for the highest possible profit and 
high profitability; sizing from an economic perspective has been studied (e.g., [2,13–16]). To increase 
the benefits of BESSs, multiple control targets can be used, as in [17] by Litjens et al. Predictive control 
strategies for BESSs have been studied previously (e.g., [18,19]). The lifetime of a BESS affects total 
profitability, so it is important to take care of the health of the battery during control operations. The 
lifetime expectation of batteries in residential use is studied in [20] by Beltran et al. 

Control of BESSs can be very simple when it is used for only one control target. When it is used 
to store surplus PV production, BESS can be discharged empty before the high production of midday. 
Alternatively, if the BESS is used to decrease maximum peak power, it is fully charged to await 
possible high peaks. These simple controls can work well if the customer’s load profile is suitable and 
the BESS is sized well. If the BESS is used for market price-based control or the same BESS is used for 
multiple control targets and its utilization is optimized, the control system must be based on load 
forecast. Optimal control of BESSs is based on the predicted state-of-charge (SOC) behavior. Changes 
in SOC during the optimization period can be calculated based on the load and PV production 
forecast. Predicted SOC levels make it possible to control SOC at the right level for different control 
targets all the time. Errors in these forecasts cause situations where the SOC levels are not optimal, 
e.g., the battery is full when a lot of surplus energy is available for storage. For this reason, high 
accuracy of forecasts is important in the control of BESSs. The main objective of this paper is to study 
how much forecast errors affect the use of BESSs. This study researches the current level of forecast 
errors sufficient for use in the control of domestic BESS and how it is affected if BESS is used for 
different control targets, which make possible to cost savings for the customers. The level of cost 
savings and profitability of BESS depends on many factors other than error level of load forecast e.g., 
prices of electricity and BESS system, customer’s load profile and technical details of system, but this 
study focuses on the effect of load forecast, so the results do not present the actual profitability of 
system. 

The results of this study will help to improve the control of BESSs, which leads to an increase in 
their profitability. Profitability has been the basic reason why residential BESSs did not become more 
common earlier, and is the main problem with BESSs nowadays. Increasing the profitability could 
make BESSs more common in the future, and then all of their benefits can be implemented for the 
system, such as flexibility and higher electricity self-production. This kind of study has not been 
conducted, so its novelty is very high. 

The remainder of this paper is divided into four sections. Section 2 introduces the simulation 
model and used data. Section 3 presents the results of simulations, and the discussion is presented in 
Section 4. 

2. Materials and Methods 

2.1. Battery Energy Storage System (BESS) Control Targets 

In this study, several control targets of BESS were studied. BESS can be used for different control 
targets individually or in combination. In this subsection, the different control targets and their 
requirements are introduced. Electricity pricing structures are based on the market environment of 
Finland. 
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2.1.1. Storing Surplus Photovoltaic (PV) Production 

 In Finland, prosumers can sell surplus electricity to ERs, but the selling price is approximately 
only a third of the purchase price, because customers have to pay distribution prices and 
electricity taxes on purchased energy. It is profitable to avoid buying electricity from the grid by 
using PV self-production. If production is higher than consumption at some times, surplus 
energy has to be sold to the grid. Self-consumption of PV production can be increased by using 
BESS. The cost benefit of using BESS to increase PV self-consumption EBBESS,pv comes from the 
price difference between total selling price Ct,s and total purchase price Ct,p of electricity, which 
can be described by Equation (1): 

EBBESS,pv = Ct,p Beff2 Es,pv – Ct,s Es,pv (1) 

where Es,pv is the amount of stored surplus energy and Beff is the battery efficiency during charging or 
discharging. Actually, the efficiency is not the same during charging and discharging, and calculating 
accurate values depends on many factors, such as charging and discharging power, but in these 
calculations efficiency is assumed to be the same. This assumption is valid when the efficiency 
represents the estimated average efficiency during a cycle. Because the utilization of stored surplus 
energy needs two actions (charging and discharging), the efficiency is square, which corresponds to 
the round-trip efficiency of the battery. 

 Using BESS to store surplus PV production is a simple process, but control could be challenging. 
Before midday, when the surplus PV production is usually the highest, the battery should be 
empty enough and ready to receive energy. Control can be implemented very simply; e.g., the 
battery is discharged empty during the evening for consumption and charged during daytime, 
when surplus energy is available. This kind of simple control does not utilize BESS optimally. 
Production and consumption vary from day to day, and BESS is sized using some kind of 
average values. With accurate load and production forecasts, BESS can be utilized optimally. 

 The northern location of Finland means that PV production is high in summer and very low in 
winter. Long days in summer means that PV production is widely available during the day. In 
winter, days are very short and PV production is negligible. Usually electricity consumption is 
higher in winter than summer. As a result, available surplus energy varies a lot throughout the 
year. BESS is needed mostly in summer and very little at other times. Using BESS to increase 
self-consumption of PV production allows BESS to also be used for other control targets. 

2.1.2. Decrease Maximum Peak Power 

 Distribution tariffs can include a power-based component. This means that customers can obtain 
cost savings by discharging BESSs during peak power. Control of BESS can be implemented so 
that the battery is fully charged the whole time to await peak power. When the power increases 
above the selected level, the BESS is discharged to decrease consumption. This could work if 
customers have only a few individual peaks in consumption and power levels are very stable. 
Optimal utilization of BESS requires accurate load forecasts so that power levels can be 
optimized and the BESS can prepare for situations when the power peak lasts longer than an 
hour. One hour is the commercial unit for determining the peak power in power-based tariffs 
(i.e., highest average hourly power calculated by measured hourly energy). Cost savings from 
using BESS to decrease maximum peak power EBBESS,p can be calculated with Equation (2): 

EBBESS,p = Cp,p PBESS (2) 

where Cp,p is the price of the power-based component in distribution tariffs and PBESS is decreased 
maximum power by BESS. In this equation it is assumed that the cost from charging the BESS is 
negligible compared with the benefits, so it is assumed to be zero. This assumption is valid, because 
usually only a few cycles can save up to tens of euros, but charging in these cycles costs only few 
cents [8]. Decreasing power peaks by BESS includes a high risk that control failure will affect cost 
savings. If several high peaks are close together and the control system is not prepared for this, during 
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the highest peak the BESS can already be empty. Therefore, very accurate load forecasting, especially 
forecasting of high peaks, is very important in this kind of utilization of BESS. 

 In Finland, a lot of electricity is used to heat buildings. The highest power peaks usually occur 
in the coldest time of winter. Electric saunas usually cause the highest peaks among individual 
electric devices in buildings. Without any special devices, cold weather and electric saunas 
require BESSs to decrease power in typical Finnish residential buildings. Weather-dependent 
loads can be forecast using weather forecasts, but the load of heating a sauna depends on the 
customer’s choice, so it can be difficult to forecast. 

2.1.3. Market Price-Based Control 

 The third control target of BESS is market price-based control. The basic idea is to charge the 
BESS at hours when the electricity price is low and discharge when the price is high for one’s 
own electricity demand. In Finland, a customer’s contract with an ER can be based on the 
electricity market prices in Nord Pool day-ahead spot markets [21]. Nord Pool publish the prices 
for the next day between 13:00 and 14:00 CET, so in Finland the prices for next day will be 
available at 15:00 local time at the latest. Electricity prices are known for the next 10 to 33 h. The 
control system can optimize the utilization of the BESS for the period when prices are known, or 
an optimization period can be chosen. Unknown hourly prices in the optimization period can 
be forecasted. The cost savings from market price-based control EBBESS,mc can be calculated by 
Equation (3): 

EBBESS,p = ∑ Cspot,t1 Beff Esc,t1 - ∑ Cspot,t2 (Esc,t2/Beff) (3) 

where Cspot,t1 is the electricity price when the price is high, Cspot,t2 is the price when it is low, Esc,t1 is 
discharged energy, and Esc,t2 is charged energy. Summations are in Equation (3) because the BESS can 
be charged or discharged over several hours and the prices and amounts of charged and discharged 
energy can be different. 

 Both charging and discharging cause energy loss, as Equation (3) shows. Using BESS for market 
price-based control can be profitable only if the difference between low and high price is so large 
the benefits outweigh the losses. Additionally, using the BESS decreases the lifetime of the 
battery, so the benefits must also compensate for this. The benefit from market price-based 
control is the least of the control targets in this study, relative to the used BESS cycles. Therefore, 
the control system must be careful that the BESS is used for market-price control only when it is 
profitable. 

2.1.4. Combination of Control Targets 

 Different control targets can be utilized by the BESS. When optimizing its utilization with 
different control targets, the control system must know which target is most profitable at any 
given moment. Usually this is not difficult, because the BESS is needed to store surplus PV 
production at midday in the summer and to decrease maximum peak power in coldest winter. 
Additionally, the profitability of market price-based control is usually much lower than that of 
other control targets [2,5]. If there is a situation where the BESS is needed to both decrease peak 
power and store surplus PV production, it is better to first decrease peak power, because even 
at only one hour the power decrease could fail. These situations are still very rare, so the basic 
rules for combining different control targets can be formed easily. 

 With ideal load forecasting, it is easy to optimize the utilization of BESS, but errors in load 
forecasting can cause failure in optimal control, e.g., BESS is empty when energy is needed to 
decrease peak power. This kind of situation is possible when the power peak cannot be predicted 
in the load forecast and just before the peak the price of electricity was high and the BESS was 
discharged empty. Accuracy of load forecasting is very important when control targets are 
combined. 
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2.2. Simulation Model 

 This study is based on simulations using ordinary household customers’ demand data, with 
BESS added to the households’ electricity system. The simulation model is presented in Figure 
1, which shows the directions of power flow and information data flow with red and green 
arrows, respectively. In the basic situation, PV power flows through the metering to the inverter, 
where it can go straight to the household to meet demand or to the BESS, and if the amount of 
produced energy is higher than the demand and the storage capacity is full, it can be fed to the 
grid and measured by automatic meter reading (AMR). If PV production cannot meet the energy 
need, it can be taken from the grid to meet the demand or to the BESS. 

 Decision-making for battery charging and discharging occurs in the BESS control system. It 
controls the inverter/charger, which gives feedback on the battery conditions. Additionally, the 
control system includes a battery management system (BMS), which takes care of battery health. 
In the decision-making process, the control system uses the information from load and 
production forecast, upcoming electricity prices, and feedback from the charge controller and 
AMR. Load and production forecasts are based on weather forecasts and mathematical models, 
but these can be corrected based on PV production metering and data from AMR. 

 
Figure 1. Structure of household power system in simulation. Power flow is indicated by red arrows 
and information data flow by green arrows. 

2.2.1. Household Electric System Model 

In simulations, calculations are based on the initial household demand D, which is taken from 
measured data of actual electricity customers. The efficiency of inverter/charger ηinv affects the 
amount of energy, which is converted from direct current (DC) to alternating current (AC) or from 
AC to DC in an inverter/charger. In this study, the inverter efficiency and charger efficiency are 
assumed to be equal, and were both 98%. Additionally, battery charging and discharging causes 
losses on the DC side, but this is taken into account in the BESS model. PV production before the 
inverter/charger Pdc can go straight to the BESS, when inverter or charger efficiency does not affect it. 
Charger efficiency affects when the BESS is charged from the grid. The customer’s electricity bill is 
based on the measurements of AMR. Therefore, it is important to calculate the total demand 
measured by AMR, i.e., the demand from the grid perspective Dg, which is shown in Equation (4) [5]: 

𝐷𝐷� =  
⎩
⎨
⎧ 𝐵𝐵� − 𝑃𝑃��

𝜂𝜂���
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 (4) 
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the highest peak the BESS can already be empty. Therefore, very accurate load forecasting, especially 
forecasting of high peaks, is very important in this kind of utilization of BESS. 

 In Finland, a lot of electricity is used to heat buildings. The highest power peaks usually occur 
in the coldest time of winter. Electric saunas usually cause the highest peaks among individual 
electric devices in buildings. Without any special devices, cold weather and electric saunas 
require BESSs to decrease power in typical Finnish residential buildings. Weather-dependent 
loads can be forecast using weather forecasts, but the load of heating a sauna depends on the 
customer’s choice, so it can be difficult to forecast. 

2.1.3. Market Price-Based Control 

 The third control target of BESS is market price-based control. The basic idea is to charge the 
BESS at hours when the electricity price is low and discharge when the price is high for one’s 
own electricity demand. In Finland, a customer’s contract with an ER can be based on the 
electricity market prices in Nord Pool day-ahead spot markets [21]. Nord Pool publish the prices 
for the next day between 13:00 and 14:00 CET, so in Finland the prices for next day will be 
available at 15:00 local time at the latest. Electricity prices are known for the next 10 to 33 h. The 
control system can optimize the utilization of the BESS for the period when prices are known, or 
an optimization period can be chosen. Unknown hourly prices in the optimization period can 
be forecasted. The cost savings from market price-based control EBBESS,mc can be calculated by 
Equation (3): 

EBBESS,p = ∑ Cspot,t1 Beff Esc,t1 - ∑ Cspot,t2 (Esc,t2/Beff) (3) 

where Cspot,t1 is the electricity price when the price is high, Cspot,t2 is the price when it is low, Esc,t1 is 
discharged energy, and Esc,t2 is charged energy. Summations are in Equation (3) because the BESS can 
be charged or discharged over several hours and the prices and amounts of charged and discharged 
energy can be different. 

 Both charging and discharging cause energy loss, as Equation (3) shows. Using BESS for market 
price-based control can be profitable only if the difference between low and high price is so large 
the benefits outweigh the losses. Additionally, using the BESS decreases the lifetime of the 
battery, so the benefits must also compensate for this. The benefit from market price-based 
control is the least of the control targets in this study, relative to the used BESS cycles. Therefore, 
the control system must be careful that the BESS is used for market-price control only when it is 
profitable. 

2.1.4. Combination of Control Targets 

 Different control targets can be utilized by the BESS. When optimizing its utilization with 
different control targets, the control system must know which target is most profitable at any 
given moment. Usually this is not difficult, because the BESS is needed to store surplus PV 
production at midday in the summer and to decrease maximum peak power in coldest winter. 
Additionally, the profitability of market price-based control is usually much lower than that of 
other control targets [2,5]. If there is a situation where the BESS is needed to both decrease peak 
power and store surplus PV production, it is better to first decrease peak power, because even 
at only one hour the power decrease could fail. These situations are still very rare, so the basic 
rules for combining different control targets can be formed easily. 

 With ideal load forecasting, it is easy to optimize the utilization of BESS, but errors in load 
forecasting can cause failure in optimal control, e.g., BESS is empty when energy is needed to 
decrease peak power. This kind of situation is possible when the power peak cannot be predicted 
in the load forecast and just before the peak the price of electricity was high and the BESS was 
discharged empty. Accuracy of load forecasting is very important when control targets are 
combined. 
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BESS added to the households’ electricity system. The simulation model is presented in Figure 
1, which shows the directions of power flow and information data flow with red and green 
arrows, respectively. In the basic situation, PV power flows through the metering to the inverter, 
where it can go straight to the household to meet demand or to the BESS, and if the amount of 
produced energy is higher than the demand and the storage capacity is full, it can be fed to the 
grid and measured by automatic meter reading (AMR). If PV production cannot meet the energy 
need, it can be taken from the grid to meet the demand or to the BESS. 

 Decision-making for battery charging and discharging occurs in the BESS control system. It 
controls the inverter/charger, which gives feedback on the battery conditions. Additionally, the 
control system includes a battery management system (BMS), which takes care of battery health. 
In the decision-making process, the control system uses the information from load and 
production forecast, upcoming electricity prices, and feedback from the charge controller and 
AMR. Load and production forecasts are based on weather forecasts and mathematical models, 
but these can be corrected based on PV production metering and data from AMR. 

 
Figure 1. Structure of household power system in simulation. Power flow is indicated by red arrows 
and information data flow by green arrows. 

2.2.1. Household Electric System Model 

In simulations, calculations are based on the initial household demand D, which is taken from 
measured data of actual electricity customers. The efficiency of inverter/charger ηinv affects the 
amount of energy, which is converted from direct current (DC) to alternating current (AC) or from 
AC to DC in an inverter/charger. In this study, the inverter efficiency and charger efficiency are 
assumed to be equal, and were both 98%. Additionally, battery charging and discharging causes 
losses on the DC side, but this is taken into account in the BESS model. PV production before the 
inverter/charger Pdc can go straight to the BESS, when inverter or charger efficiency does not affect it. 
Charger efficiency affects when the BESS is charged from the grid. The customer’s electricity bill is 
based on the measurements of AMR. Therefore, it is important to calculate the total demand 
measured by AMR, i.e., the demand from the grid perspective Dg, which is shown in Equation (4) [5]: 

𝐷𝐷� =  
⎩
⎨
⎧ 𝐵𝐵� − 𝑃𝑃��

𝜂𝜂���
+ 𝐷𝐷 ‖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� > 𝑃𝑃�� & 𝐵𝐵� ≥ 0

−𝜂𝜂����𝑃𝑃�� − 𝐵𝐵�� + 𝐷𝐷 ‖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 𝑃𝑃�� & 𝐵𝐵� ≥ 0
𝜂𝜂����−𝐵𝐵� − 𝑃𝑃��� + 𝐷𝐷 ‖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� < 0

 (4) 
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where Bt is power flow to or from the BESS at time t. There are three equations for Dg because the 
equation is different if the battery is charged or discharged; additionally, if the battery is charged, the 
equation is different when charged energy is from PV or from the grid. 

2.2.2. PV Model and Production Forecast 

PV production Ppv is simulated by using a solar panel model, which is based on the nominal 
power of panels in standard test conditions PSTC and modeled global solar irradiance Gi. Differences 
in solar panel conditions are taken into account in Equation (5), which can be utilized in PV 
calculations [22]: 

𝑃𝑃�� =  𝐶𝐶�𝑃𝑃���𝐺𝐺��1 − ���𝑇𝑇� − 𝑇𝑇����� (5) 

where Tc is the solar cell temperature, TSTC is the standard test temperature (25 °C) and βP is the solar 
cell power temperature coefficient (0.006). This model was verified in [5] with actual data from solar 
panels and the verification coefficient Cv was added (0.85). In the verification, polycrystalline silicon 
PV cells were used. This because the temperature of the solar panel cannot be known in simulations 
and outdoor temperature has to be used instead. Lower temperatures in Equation (5) increase 
production, so a coefficient is needed. 

 Solar irradiance modeling is based on the Reindl model [23], which is a suitable model for diffuse 
irradiance with south-tilted solar panels in the conditions of Finland [22]. In the model, global 
irradiance Gi is the sum of beam irradiance Gb,i, diffuse irradiance Gd,i and reflected irradiance 
Gr,i. In modeling, it is most important to find out the time series of solar irradiation. How strong 
is the solar irradiation on solar panels at different times? Solar irradiance depends on the location 
on the Earth and the angles of tilted PV panels. In this study, modeled solar panels are tilted at 
a 45° angle to face south. 

 The amount of PV production depends on the cloudiness. In the Reindl model, cloudiness is 
modeled by a brightening factor. In [24], a model for cloudiness probability in Finland is 
presented, and it is based on cloudiness changing randomly, but based on probability. The same 
time series of solar radiation was utilized in all simulations so that the circumstances are stable. 

 In actual systems, production forecasting has been utilized in control systems. In this paper, 
where load forecast is under study, the production forecast is assumed as ideal so that this does 
not affect the results of load-forecasting effects.  

2.2.3. BESS Model and Control System 

In simulations, modeling of BESS is based on controlling the battery’s state of charge (SOC), 
which is the percentage of full battery Emax. In every moment when the battery is charged or 
discharged, the SOC changes, and it depends on the SOC at the previous moment. This can be formed 
with Equation (6) [5]: 

𝑆𝑆𝑆𝑆𝑆𝑆� =  100 𝐵𝐵���𝐵𝐵�
𝐸𝐸���

+ 𝑆𝑆𝑆𝑆𝑆𝑆��� (6) 

where SOCt is the SOC at time t and SOCt−1 is the SOC of the previous time step. 

 Modeling of the battery type is undertaken via the efficiency of BESS Beff, which is a combination 
of battery efficiency and power electronics efficiency, i.e., inverter/charger DC side in Figure 1. 
In this study, the efficiency of power electronics on the inverter/charger DC side ηdc was 99%. 
The battery type was a lithium iron phosphate (LFP, LiFePO4) cathode with a graphite anode. A 
lithium-ion (Li-ion) battery was chosen because it is currently the best commercial solution for 
residential use, with high efficiency, developed technology, and long lifetime. The LFP cell type 
was chosen because it has good safety features and a very long lifetime, and the specific energy 
is not as high as other Li-ion batteries. It is a good choice for use in stationary home systems [25]. 

 Battery loss modeling was presented previously (e.g., in [8] by Koskela et al.). Loss depends on 
SOC and charging or discharging current. Very high or low SOC increases the loss and decreases 
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the lifetime of the battery [26]. For this reason, the SOC limits of the battery were set at 25–95%. 
In Li-ion batteries, the internal serial resistance Rb is approximately constant between these SOC 
limits [27]. Therefore, the modeling of battery loss can be implemented with constant serial 
resistance of 0.026 Ω, which was studied for LFP cell type in [28] by Weniger et al. Charging and 
discharging losses are not equal, but when the battery use is cyclic, we can use average values 
for both processes. Charging and discharging efficiency ηc can be calculated with Equation (7): 

𝜂𝜂� =  100 𝑉𝑉� − 𝐼𝐼�𝑅𝑅�
𝑉𝑉�

 (7) 

where Vb is the nominal voltage of the battery and Ic is the charging or discharging current. The value 
of Bt can be calculated by multiplying charging or discharging current by charging or discharging 
voltage Vb, which can be calculated by using Equation (8): 

𝑉𝑉� =  𝑉𝑉� − 𝐼𝐼�𝑅𝑅� (8) 

 The control system in this paper makes it possible to combine multiple control targets, and it is 
a novel structure. The basic operation of the control system is that it tells the inverter/charger 
when to charge the battery and when to discharge. Optimization of the BESS for control targets 
based on minimizing customers’ electricity cost and its rules are described in Section 2.1. Firstly, 
if customers’ electricity cost depends on peak power, BESS is used to decrease maximum peak 
power. This is implemented via an algorithm which is presented in [8]. Based on the load 
forecasting, the control system calculates the power level that is possible to keep below by using 
BESS. If average power during a pricing period goes over this limit, the battery is discharged. 
Errors in load forecast can cause failure. Based on the amount of failure, a new target power 
level is determined. 

 Secondly, if customers have their own PV production, maximizing self-consumption is the next 
target. If the battery is not used to decrease maximum peak power, it is discharged empty before 
the high production hours of midday. When it is necessary to do this depends on the production 
forecast and load forecast. Control systems estimate the potential needs of SOC levels in the 
battery based on the forecasts. The BESS stores the surplus energy from PV, which is used later 
when it is needed. Stored energy can be used immediately when consumption increases higher 
than production, but this can be delayed for other control targets. 

Thirdly, if customers’ electricity cost depends on the market price of electricity, the control 
system charges the battery during low prices and discharges during high prices. Controlling is based 
on pairs of hours when electricity prices are different, as in [5]. Charging and discharging operations 
must follow one another, because the capacity of the BESS is limited, so with a reasonably sized BESS, 
typically charging and discharging cycles will be once a day. If other control targets are involved, 
other operations can be done, e.g., the BESS is charged from surplus PV production and discharging 
is timed for high price, or the BESS is discharged to decrease peak power and charged during low 
price. For these reasons, the control system uses some rules for market price control: the BESS is 
charged full at least during the three hours before the forecast power peak and is not charged during 
three hours before forecast surplus production. These rules are valid only if these control targets are 
involved. If there are any other restrictions, the control system finds the lowest and highest prices of 
the day and calculates whether it is profitable to use the BESS. The price difference must be so large 
that loss of storage will be exceeded. 

2.3. Load Forecast 

Load forecasting is used in the BESS control system. Because the use of load forecasting is the 
main study object in this paper, it is described in its own subsection. To compare the benefits of BESS 
caused by forecast-based control and errors in forecasts, forecast errors between 0% and 200% are 
studied. Ideal load forecasting corresponds to a forecast error level of 0%. When the load is forecast 
by using a load forecasting algorithm, the error level is 100% (i.e., the 100% error level corresponds 
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where Bt is power flow to or from the BESS at time t. There are three equations for Dg because the 
equation is different if the battery is charged or discharged; additionally, if the battery is charged, the 
equation is different when charged energy is from PV or from the grid. 

2.2.2. PV Model and Production Forecast 

PV production Ppv is simulated by using a solar panel model, which is based on the nominal 
power of panels in standard test conditions PSTC and modeled global solar irradiance Gi. Differences 
in solar panel conditions are taken into account in Equation (5), which can be utilized in PV 
calculations [22]: 

𝑃𝑃�� =  𝐶𝐶�𝑃𝑃���𝐺𝐺��1 − ���𝑇𝑇� − 𝑇𝑇����� (5) 

where Tc is the solar cell temperature, TSTC is the standard test temperature (25 °C) and βP is the solar 
cell power temperature coefficient (0.006). This model was verified in [5] with actual data from solar 
panels and the verification coefficient Cv was added (0.85). In the verification, polycrystalline silicon 
PV cells were used. This because the temperature of the solar panel cannot be known in simulations 
and outdoor temperature has to be used instead. Lower temperatures in Equation (5) increase 
production, so a coefficient is needed. 

 Solar irradiance modeling is based on the Reindl model [23], which is a suitable model for diffuse 
irradiance with south-tilted solar panels in the conditions of Finland [22]. In the model, global 
irradiance Gi is the sum of beam irradiance Gb,i, diffuse irradiance Gd,i and reflected irradiance 
Gr,i. In modeling, it is most important to find out the time series of solar irradiation. How strong 
is the solar irradiation on solar panels at different times? Solar irradiance depends on the location 
on the Earth and the angles of tilted PV panels. In this study, modeled solar panels are tilted at 
a 45° angle to face south. 

 The amount of PV production depends on the cloudiness. In the Reindl model, cloudiness is 
modeled by a brightening factor. In [24], a model for cloudiness probability in Finland is 
presented, and it is based on cloudiness changing randomly, but based on probability. The same 
time series of solar radiation was utilized in all simulations so that the circumstances are stable. 

 In actual systems, production forecasting has been utilized in control systems. In this paper, 
where load forecast is under study, the production forecast is assumed as ideal so that this does 
not affect the results of load-forecasting effects.  

2.2.3. BESS Model and Control System 

In simulations, modeling of BESS is based on controlling the battery’s state of charge (SOC), 
which is the percentage of full battery Emax. In every moment when the battery is charged or 
discharged, the SOC changes, and it depends on the SOC at the previous moment. This can be formed 
with Equation (6) [5]: 

𝑆𝑆𝑆𝑆𝑆𝑆� =  100 𝐵𝐵���𝐵𝐵�
𝐸𝐸���

+ 𝑆𝑆𝑆𝑆𝑆𝑆��� (6) 

where SOCt is the SOC at time t and SOCt−1 is the SOC of the previous time step. 

 Modeling of the battery type is undertaken via the efficiency of BESS Beff, which is a combination 
of battery efficiency and power electronics efficiency, i.e., inverter/charger DC side in Figure 1. 
In this study, the efficiency of power electronics on the inverter/charger DC side ηdc was 99%. 
The battery type was a lithium iron phosphate (LFP, LiFePO4) cathode with a graphite anode. A 
lithium-ion (Li-ion) battery was chosen because it is currently the best commercial solution for 
residential use, with high efficiency, developed technology, and long lifetime. The LFP cell type 
was chosen because it has good safety features and a very long lifetime, and the specific energy 
is not as high as other Li-ion batteries. It is a good choice for use in stationary home systems [25]. 

 Battery loss modeling was presented previously (e.g., in [8] by Koskela et al.). Loss depends on 
SOC and charging or discharging current. Very high or low SOC increases the loss and decreases 
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the lifetime of the battery [26]. For this reason, the SOC limits of the battery were set at 25–95%. 
In Li-ion batteries, the internal serial resistance Rb is approximately constant between these SOC 
limits [27]. Therefore, the modeling of battery loss can be implemented with constant serial 
resistance of 0.026 Ω, which was studied for LFP cell type in [28] by Weniger et al. Charging and 
discharging losses are not equal, but when the battery use is cyclic, we can use average values 
for both processes. Charging and discharging efficiency ηc can be calculated with Equation (7): 

𝜂𝜂� =  100 𝑉𝑉� − 𝐼𝐼�𝑅𝑅�
𝑉𝑉�

 (7) 

where Vb is the nominal voltage of the battery and Ic is the charging or discharging current. The value 
of Bt can be calculated by multiplying charging or discharging current by charging or discharging 
voltage Vb, which can be calculated by using Equation (8): 

𝑉𝑉� =  𝑉𝑉� − 𝐼𝐼�𝑅𝑅� (8) 

 The control system in this paper makes it possible to combine multiple control targets, and it is 
a novel structure. The basic operation of the control system is that it tells the inverter/charger 
when to charge the battery and when to discharge. Optimization of the BESS for control targets 
based on minimizing customers’ electricity cost and its rules are described in Section 2.1. Firstly, 
if customers’ electricity cost depends on peak power, BESS is used to decrease maximum peak 
power. This is implemented via an algorithm which is presented in [8]. Based on the load 
forecasting, the control system calculates the power level that is possible to keep below by using 
BESS. If average power during a pricing period goes over this limit, the battery is discharged. 
Errors in load forecast can cause failure. Based on the amount of failure, a new target power 
level is determined. 

 Secondly, if customers have their own PV production, maximizing self-consumption is the next 
target. If the battery is not used to decrease maximum peak power, it is discharged empty before 
the high production hours of midday. When it is necessary to do this depends on the production 
forecast and load forecast. Control systems estimate the potential needs of SOC levels in the 
battery based on the forecasts. The BESS stores the surplus energy from PV, which is used later 
when it is needed. Stored energy can be used immediately when consumption increases higher 
than production, but this can be delayed for other control targets. 

Thirdly, if customers’ electricity cost depends on the market price of electricity, the control 
system charges the battery during low prices and discharges during high prices. Controlling is based 
on pairs of hours when electricity prices are different, as in [5]. Charging and discharging operations 
must follow one another, because the capacity of the BESS is limited, so with a reasonably sized BESS, 
typically charging and discharging cycles will be once a day. If other control targets are involved, 
other operations can be done, e.g., the BESS is charged from surplus PV production and discharging 
is timed for high price, or the BESS is discharged to decrease peak power and charged during low 
price. For these reasons, the control system uses some rules for market price control: the BESS is 
charged full at least during the three hours before the forecast power peak and is not charged during 
three hours before forecast surplus production. These rules are valid only if these control targets are 
involved. If there are any other restrictions, the control system finds the lowest and highest prices of 
the day and calculates whether it is profitable to use the BESS. The price difference must be so large 
that loss of storage will be exceeded. 

2.3. Load Forecast 

Load forecasting is used in the BESS control system. Because the use of load forecasting is the 
main study object in this paper, it is described in its own subsection. To compare the benefits of BESS 
caused by forecast-based control and errors in forecasts, forecast errors between 0% and 200% are 
studied. Ideal load forecasting corresponds to a forecast error level of 0%. When the load is forecast 
by using a load forecasting algorithm, the error level is 100% (i.e., the 100% error level corresponds 
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to the actual load forecast). The range 0–200% is divided into 20% steps, and the absolute value of 
forecast error in every hour increases linearly from 0% to 200%. 

In this study, forecasting error is modelled with two different methods: the basic method, where 
100% forecast error is formed by using the load forecast algorithm, and the random method, where 
forecast error is formed randomly. For comparability, we try to keep the effectiveness at the same 
level as much as possible. 

The basic load forecast is formed separately for every customer. The load forecast algorithm is 
based on the customer’s historical consumption data and the effect of outdoor temperature variation. 
The method was initially presented in [29] and was utilized in [8]. In load forecasting, the load profile 
of the day is formed from the average consumption of historical data from similar days, and the data 
are corrected with outdoor temperatures. Different types of days are weekdays, Saturday, Sunday 
and weekdays with public holidays. Additionally, days are divided for the four seasons throughout 
the year. 

Mean absolute error (MAE) and root mean squared error (RMSE) are the best criteria for 
comparing the validity of the load forecast, and are used in the control of residential BESS [9]. In the 
random method, forecast errors are made by the random function in MATLAB® R2018a by Matworks, 
so MAE and RMSE increase linearly, similar to the basic method. For ideal forecasting, normally 
distributed random errors are added, whose mean is zero and standard deviation increases 0.25 kW 
per 20%. With these parameters, RMSE is the same as in the basic method and MAE is also very close, 
as we can see from Figure 2. 

 
Figure 2. Error criteria with basic and random load forecast error models. 

2.4. Initial Data 

This study used large datasets from different sources. The simulations need consumption data 
from customers and many kinds of electricity price data. Additionally, forecasting and PV production 
models need measured weather data. This subsection presents the data used in this study. 

2.4.1. Consumption Data 

 Customers’ consumption data were collected from actual customers between January 2014 and 
August 2016. The data were measured using customers’ AMR measurements from the area of 
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one DSO in Finland. The total number of customers is 1525, but for the simulations 100 customers 
were selected randomly. These are basic household customers who live in detached houses, 
which mainly use electric heating, but the heating method can vary. The study group also 
included a few larger customers, such as farms. Data from 2015 were used for simulating the 
effects and the other data were used in load forecasting. 

2.4.2. Electricity Prices 

 A customer’s electricity bill in Finland consists of three parts: the ER part, the DSO part and 
taxes. Both the ER and DSO parts typically include basic charges (€/month), but customers 
cannot affect this by using the BESS, and for this reason basic charges are not included in the 
calculations in this study. The ER pricing used here is typical market prices based on tariffs in 
Finland, where hourly price is based on the day-ahead spot prices of the Nord Pool (Finland 
area prices) [21]. ERs add a 0.25 c/kWh margin to the market price, and if surplus energy from 
PV production is fed into the grid, ERs buy this energy for the same market price, but the margin 
is taken off. The margin forms the income of ERs. 

 In this study, two distribution tariffs of a DSO are used. One is the power-based tariff, which is 
calculated for the same area where the group under study lives [7]. The power-based tariff 
includes an energy charge (0.72 c/kWh) and a power charge (7.23 €/kW/month). The power 
charge is based on the highest hourly average power of the month. The power-based tariff is 
used so that all possible BESS control targets are available. Because the power-based tariff is not 
yet widespread, the general distribution tariff in the same area is also used. The general tariff is 
widely used in Finland; it includes only an energy charge (5.21 c/kWh) [30]. All prices in this 
study include a 24% value added tax. In Finland, customers have to pay an electricity tax (2.79 
€/kWh) on purchased energy. In this study, customers do not need to pay the DSO for surplus 
energy that is fed into the grid, and this is the typical situation in Finland. 

2.4.3. Weather Data 

 Load forecasting is based on outside temperature. Additionally, temperature and solar radiation 
data are used in the PV model. All weather data were taken from the open data of the Finnish 
Meteorological Institute [31]. Temperature data are measured hourly, and were measured at the 
Juupajoki weather station, which is the closest station to customers in the study group. 

2.5. Study Cases 

The effect of load forecasting was studied with different cases. There are three control targets, 
and all combinations of them were studied. The study cases are presented in Figure 3. The three basic 
control targets form study cases 1–3. These three basic targets are introduced earlier in Section 2.1., 
and in more detail: the case 1 in subsection 2.1.1., the case 2 in subsection 2.1.2., and the case 3 in 
subsection 2.1.3. Cases 4–6 are the combinations of two of the basic targets and study case 7 is the 
combination of all targets. Combining of cases are introduces in Section 2.1.4. These seven cases are 
selected, because cases include all combinations, which make it possible to obtain cost savings for 
customers. 
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to the actual load forecast). The range 0–200% is divided into 20% steps, and the absolute value of 
forecast error in every hour increases linearly from 0% to 200%. 

In this study, forecasting error is modelled with two different methods: the basic method, where 
100% forecast error is formed by using the load forecast algorithm, and the random method, where 
forecast error is formed randomly. For comparability, we try to keep the effectiveness at the same 
level as much as possible. 

The basic load forecast is formed separately for every customer. The load forecast algorithm is 
based on the customer’s historical consumption data and the effect of outdoor temperature variation. 
The method was initially presented in [29] and was utilized in [8]. In load forecasting, the load profile 
of the day is formed from the average consumption of historical data from similar days, and the data 
are corrected with outdoor temperatures. Different types of days are weekdays, Saturday, Sunday 
and weekdays with public holidays. Additionally, days are divided for the four seasons throughout 
the year. 

Mean absolute error (MAE) and root mean squared error (RMSE) are the best criteria for 
comparing the validity of the load forecast, and are used in the control of residential BESS [9]. In the 
random method, forecast errors are made by the random function in MATLAB® R2018a by Matworks, 
so MAE and RMSE increase linearly, similar to the basic method. For ideal forecasting, normally 
distributed random errors are added, whose mean is zero and standard deviation increases 0.25 kW 
per 20%. With these parameters, RMSE is the same as in the basic method and MAE is also very close, 
as we can see from Figure 2. 

 
Figure 2. Error criteria with basic and random load forecast error models. 

2.4. Initial Data 

This study used large datasets from different sources. The simulations need consumption data 
from customers and many kinds of electricity price data. Additionally, forecasting and PV production 
models need measured weather data. This subsection presents the data used in this study. 

2.4.1. Consumption Data 

 Customers’ consumption data were collected from actual customers between January 2014 and 
August 2016. The data were measured using customers’ AMR measurements from the area of 
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one DSO in Finland. The total number of customers is 1525, but for the simulations 100 customers 
were selected randomly. These are basic household customers who live in detached houses, 
which mainly use electric heating, but the heating method can vary. The study group also 
included a few larger customers, such as farms. Data from 2015 were used for simulating the 
effects and the other data were used in load forecasting. 

2.4.2. Electricity Prices 

 A customer’s electricity bill in Finland consists of three parts: the ER part, the DSO part and 
taxes. Both the ER and DSO parts typically include basic charges (€/month), but customers 
cannot affect this by using the BESS, and for this reason basic charges are not included in the 
calculations in this study. The ER pricing used here is typical market prices based on tariffs in 
Finland, where hourly price is based on the day-ahead spot prices of the Nord Pool (Finland 
area prices) [21]. ERs add a 0.25 c/kWh margin to the market price, and if surplus energy from 
PV production is fed into the grid, ERs buy this energy for the same market price, but the margin 
is taken off. The margin forms the income of ERs. 

 In this study, two distribution tariffs of a DSO are used. One is the power-based tariff, which is 
calculated for the same area where the group under study lives [7]. The power-based tariff 
includes an energy charge (0.72 c/kWh) and a power charge (7.23 €/kW/month). The power 
charge is based on the highest hourly average power of the month. The power-based tariff is 
used so that all possible BESS control targets are available. Because the power-based tariff is not 
yet widespread, the general distribution tariff in the same area is also used. The general tariff is 
widely used in Finland; it includes only an energy charge (5.21 c/kWh) [30]. All prices in this 
study include a 24% value added tax. In Finland, customers have to pay an electricity tax (2.79 
€/kWh) on purchased energy. In this study, customers do not need to pay the DSO for surplus 
energy that is fed into the grid, and this is the typical situation in Finland. 

2.4.3. Weather Data 

 Load forecasting is based on outside temperature. Additionally, temperature and solar radiation 
data are used in the PV model. All weather data were taken from the open data of the Finnish 
Meteorological Institute [31]. Temperature data are measured hourly, and were measured at the 
Juupajoki weather station, which is the closest station to customers in the study group. 

2.5. Study Cases 

The effect of load forecasting was studied with different cases. There are three control targets, 
and all combinations of them were studied. The study cases are presented in Figure 3. The three basic 
control targets form study cases 1–3. These three basic targets are introduced earlier in Section 2.1., 
and in more detail: the case 1 in subsection 2.1.1., the case 2 in subsection 2.1.2., and the case 3 in 
subsection 2.1.3. Cases 4–6 are the combinations of two of the basic targets and study case 7 is the 
combination of all targets. Combining of cases are introduces in Section 2.1.4. These seven cases are 
selected, because cases include all combinations, which make it possible to obtain cost savings for 
customers. 
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Figure 3. Study cases. 

In every case, load forecast error varies between 0% and 200%. The ideal forecast corresponds to 
an error of 0%, and calculated forecast (i.e., load forecast, which is calculated as described in 
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 In case 1, the total cost savings increase marginally around the 100% forecast error, when the 
forecast error increases. This effect is caused by control inaccuracy. In the basic method of load 
forecasting, the direction of the error is the same at all error levels. Therefore, when the error 
increases, the control system increases its preparedness to store surplus energy. The same effect 
can be seen in case 5, which combines market price-based control (case 3) with case 1. In case 2, 
improved load forecasting strongly increases the cost savings when the forecast is very accurate. 
When the forecast error is over 80%, cost savings are almost constant. In case 3, the curve is flat. 
The negative number is leading from the increasing maximum peak power in market price-
based control. Additionally, forecast errors do not notably affect the cost savings from market 
price-based control if decreased maximum peak power is not involved. The control system 
knows the whole time when high and low prices occur, so it uses BESS capacity maximally to 
shift the load from high price to low price, and it does not care about the load forecast. 

When cases 1 and 2 were combined in case 4, the accuracy of the load forecast had a strong effect 
on the cost savings. Improving the load forecast increases cost savings significantly. In case 6, the 
load forecast must be very accurate after the improvement increases the cost savings. When all control 
targets are involved in case 7, the accuracy of the load forecast is very important around the 100% 
forecast error, but below 60% or over 140% the cost savings are stable. It is an important observation 
that with the current load forecast (100% forecast error), case 7, using all control targets, gives the 
highest cost savings. 
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in cases where market price-based control is involved are lower than total cost savings. 
Additionally, in cases where decreased maximum peak power is involved, cost savings are 
higher. 

The cost savings from ER contracts (Figure 6) shows that when the load forecast accuracy is 
increased from the current level, cost savings increase only marginally. Instead of a decreased load 
forecast, accurate cost savings are decreased dramatically in cases 5 and 7. These two cases give even 
higher cost savings from ER contracts than the clean market price control in case 3. The reason is that 
in case 3, control does not care when electricity is purchased and fed into the grid. In cases 5 and 7, 
feeding into the grid is limited when it is possible, because surplus energy is stored and grid feeding 
is not profitable. This makes it possible to obtain even higher cost savings when total electricity 
consumption is lower. Nevertheless, this needs very accurate load forecasting, and with bad load 
forecasts, cost savings drop lower. 
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3.1.2. Random Method 

The results of the simulations with the random method of modeling forecast error are presented 
in Figures 7–9. In the random method, the knowledge of high and low peaks in the load profile 
disappears when the forecast error increases. This can be seen when comparing the results in Figures 
4–9. With the random method the decrease of cost savings is smoother and continues almost the same 
throughout the whole forecast error range. 

There are differences in how the forecast error modeling method affects the control targets. In 
case 2 with 100% error level, the random method gives higher cost saving than the basic method, and 
the same effect can be seen in case 4. This is because in the basic method, the same control errors 
repeat, because the forecast is based on historical data and temperature. In the random method, 
control errors also happen randomly, so the errors do not have as significant an effect. In case 7, which 
uses all control targets, almost all cost savings are lost with the random method at the 100% error 
level, and with the basic method, the cost savings are almost the same at the 0% error level.  
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forecast error modeling methods. The decrease of cost savings is smoother with the random method, 
but with the basic method higher cost savings can be reached at the 100% error level. 
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of modeling forecast error. 

3.2. Simulations with General Distribution Tariff 

In this subsection, the general distribution tariff is used. The power-based component of the 
tariff is not involved in the general distribution tariff, so it is meaningful to study only cases 1, 3 and 
5, where decreased maximum peak power is not the target for control. 

3.2.1. Basic Method 

 When the basic method for modeling the error of load forecast is used, case 5 gives the highest 
cost savings before the error level of 120%. The results of this is shown in Figure 10. After that, 
as with the power-based tariff, the cost savings in case 1 increase and rise higher than in case 5. 
This is caused by the inaccuracy of the control system and the knowledge of the load profile in 
the basic method. The total cost savings in case 3 is not as negative as it is with the power-based 
tariff, but is still negative. This is because the control in case 3 does not care about the grid 
feeding from storage during high prices. This feature is involved in case 5, when the rise in cost 
savings is strongly positive. The main finding is that the effect of forecast error is not significant 
with the general distribution tariff and the differences between error levels are only marginal. 



Energies 2020, 13, 3946 14 of 20 

 

 
Figure 7. Total cost savings in function of forecast error in cases with random method for modeling 
forecast error. 

 
Figure 8. Cost savings from distribution tariff in function of forecast error in cases with random 
method for modeling forecast error. 

Energies 2020, 13, 3946 15 of 20 

 

For cost savings from ER contracts (Figures 6 and 9) clear differences can be seen between 
forecast error modeling methods. The decrease of cost savings is smoother with the random method, 
but with the basic method higher cost savings can be reached at the 100% error level. 

  
Figure 9. Cost savings from ER contracts in function of forecast error in cases with random method 
of modeling forecast error. 
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In this subsection, the general distribution tariff is used. The power-based component of the 
tariff is not involved in the general distribution tariff, so it is meaningful to study only cases 1, 3 and 
5, where decreased maximum peak power is not the target for control. 

3.2.1. Basic Method 

 When the basic method for modeling the error of load forecast is used, case 5 gives the highest 
cost savings before the error level of 120%. The results of this is shown in Figure 10. After that, 
as with the power-based tariff, the cost savings in case 1 increase and rise higher than in case 5. 
This is caused by the inaccuracy of the control system and the knowledge of the load profile in 
the basic method. The total cost savings in case 3 is not as negative as it is with the power-based 
tariff, but is still negative. This is because the control in case 3 does not care about the grid 
feeding from storage during high prices. This feature is involved in case 5, when the rise in cost 
savings is strongly positive. The main finding is that the effect of forecast error is not significant 
with the general distribution tariff and the differences between error levels are only marginal. 
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Figure 10. Cost savings in function of forecast error with general distribution tariff using basic method 
of load forecast error modeling in cases 1, 3 and 5. 

3.2.2. Random Method 

 When the random method is used, the levels of cost savings are very similar to the basic method 
and the differences between error levels are only marginal. The results with the random method 
is shown in Figure 11. The biggest difference between basic and random methods is that the 
changes that happen after the 100% error level with basic the method happen before the 60% 
error level with the random method. When the random method is used, it seems that with 
current load forecast accuracy (100%), it is not profitable to use the combination of control targets 
(case 5) instead of case 1. However, when the basic method is used, the combination of control 
targets is the most profitable. 
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4. Discussion 

The results of this study correspond with the expectations. Load forecasting is an important part 
of BESS control in domestic use when multiple control targets are used. Power-based distribution 
tariffs and market price-based ER contracts make it possible to use BESS for multiple control targets. 
When a general distribution tariff is used, the load forecast is not necessary. In simulations, it can be 
difficult to model the effect of load forecast errors. The modeling of forecast errors can be 
implemented by adding random errors to actual data. Forecast validity can be evaluated with error 
criteria such as MAE, RMSE or mean absolute percentage error (MAPE). However, this method does 
not correspond with real cases of load forecasting, which is done before BESS control. As the results 
of this study show, real load forecasts include information from the load profile, even if the error 
criteria are high. Therefore, the error criteria do not directly show the validity of the load forecast 
when it is used in the BESS control system. 

Using BESS for only one control target can give some cost benefits, but using it for multiple 
targets can give even higher cost savings. In some cases, this also needs accurate load forecasting. 
This study shows that load forecasting is important, especially in cases 2, 4 and 7. In these cases, 
decreasing maximum peak power is involved. When both decreasing maximum peak power and 
storing surplus PV production are used, accurate load forecasting is very important. The profitability 
of BESS has been a barrier to its generalized domestic use. Higher cost savings from smart control 
systems makes it possible to increase profitability. 

The results of this study are presented as average values of the study group. There are 
differences in cost savings between different customers, but average values show how this 
phenomenon behaves. When designing the control system of BESS for commercial application, this 
is expected to work with average customers. Even the load forecast is reasonable to individualize for 
different customers; it can be done by using the same principles. The results of this study show that 
it is more important for the load forecast to predict the load profile (i.e., when high and low peaks 
happen) than the actual accuracy of the forecast measured by error criteria. 



Energies 2020, 13, 3946 16 of 20 

 

 
Figure 10. Cost savings in function of forecast error with general distribution tariff using basic method 
of load forecast error modeling in cases 1, 3 and 5. 

3.2.2. Random Method 

 When the random method is used, the levels of cost savings are very similar to the basic method 
and the differences between error levels are only marginal. The results with the random method 
is shown in Figure 11. The biggest difference between basic and random methods is that the 
changes that happen after the 100% error level with basic the method happen before the 60% 
error level with the random method. When the random method is used, it seems that with 
current load forecast accuracy (100%), it is not profitable to use the combination of control targets 
(case 5) instead of case 1. However, when the basic method is used, the combination of control 
targets is the most profitable. 

Energies 2020, 13, 3946 17 of 20 

 

 
Figure 11. Cost savings in function of forecast error with general distribution tariff using random 
method of load forecast error modeling in cases 1, 3 and 5. 

4. Discussion 

The results of this study correspond with the expectations. Load forecasting is an important part 
of BESS control in domestic use when multiple control targets are used. Power-based distribution 
tariffs and market price-based ER contracts make it possible to use BESS for multiple control targets. 
When a general distribution tariff is used, the load forecast is not necessary. In simulations, it can be 
difficult to model the effect of load forecast errors. The modeling of forecast errors can be 
implemented by adding random errors to actual data. Forecast validity can be evaluated with error 
criteria such as MAE, RMSE or mean absolute percentage error (MAPE). However, this method does 
not correspond with real cases of load forecasting, which is done before BESS control. As the results 
of this study show, real load forecasts include information from the load profile, even if the error 
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decreasing maximum peak power is involved. When both decreasing maximum peak power and 
storing surplus PV production are used, accurate load forecasting is very important. The profitability 
of BESS has been a barrier to its generalized domestic use. Higher cost savings from smart control 
systems makes it possible to increase profitability. 

The results of this study are presented as average values of the study group. There are 
differences in cost savings between different customers, but average values show how this 
phenomenon behaves. When designing the control system of BESS for commercial application, this 
is expected to work with average customers. Even the load forecast is reasonable to individualize for 
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Energies 2020, 13, 3946 18 of 20 

 

The used optimization method was used partly before in [2,5,8], but all combinations are not 
used before. The benefits of this method are e.g., good functionality with different control targets, 
fast response with decent computation time and sensitivity for accuracy of load forecast. The used 
battery model corresponds to the modern Li-ion battery, which are available nowadays. Results of 
simulations are simulated in the Finnish electricity market environment, so the specifics of markets 
could cause the restrictions for the results. In other market environment, the cases and price levels 
could be different. There could be also other benefits from using BESS, e.g., the quality of electricity 
could improve, if BESS is also used for avoid black outs or stabilize the voltage level.  

Simulations are made by using selected values in variables of modeling equations. The results 
of the study depends on the selected values. These values have been selected to correspond to the 
typical situation in a chosen environment. A small variation in these values causes only minimal 
effects on the results, when comparing these with the effect of load forecast error level. The results 
are not very sensitive for individual changes in these variables. 

In the future, it will be worthwhile repeating the study with multiple ways of doing load 
forecasting. This study was conducted in the market environment of Finland, so future studies may 
be needed in different market environments. The results show that in many cases, the actual level of 
load forecasting is sufficient, but more accurate load forecasting could give even better cost savings 
and increase the profitability of BESS. More accurate load forecast is needed, when multiple control 
targets is used. In the future, there could be even more control targets which are studied in this paper 
and then the even more accurate load forecast could be useful. These are the focus of future studies. 
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The used optimization method was used partly before in [2,5,8], but all combinations are not 
used before. The benefits of this method are e.g., good functionality with different control targets, 
fast response with decent computation time and sensitivity for accuracy of load forecast. The used 
battery model corresponds to the modern Li-ion battery, which are available nowadays. Results of 
simulations are simulated in the Finnish electricity market environment, so the specifics of markets 
could cause the restrictions for the results. In other market environment, the cases and price levels 
could be different. There could be also other benefits from using BESS, e.g., the quality of electricity 
could improve, if BESS is also used for avoid black outs or stabilize the voltage level.  

Simulations are made by using selected values in variables of modeling equations. The results 
of the study depends on the selected values. These values have been selected to correspond to the 
typical situation in a chosen environment. A small variation in these values causes only minimal 
effects on the results, when comparing these with the effect of load forecast error level. The results 
are not very sensitive for individual changes in these variables. 

In the future, it will be worthwhile repeating the study with multiple ways of doing load 
forecasting. This study was conducted in the market environment of Finland, so future studies may 
be needed in different market environments. The results show that in many cases, the actual level of 
load forecasting is sufficient, but more accurate load forecasting could give even better cost savings 
and increase the profitability of BESS. More accurate load forecast is needed, when multiple control 
targets is used. In the future, there could be even more control targets which are studied in this paper 
and then the even more accurate load forecast could be useful. These are the focus of future studies. 
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Abstract: Distributed electric power production by small-scale customers is increasing continuously.
Photovoltaic production is a popular method of producing self-energy for customers. Additionally,
power systems require more flexibility when weather-dependent renewable energy production
increases. Small-scale customers can increase the self-consumption of self-produced energy by using
batteries or a demand response operation. However, batteries require high investment, and demand
response operations induce a loss of comfort. Customers who heat their buildings using electric
heaters are a good target for demand response operations because their heating can be controlled
with limited changes in the indoor temperature. The demand response potential of a building can be
defined by simply using customer load profiles and knowledge of the outdoor temperature. Any other
information is not required in the proposed novel method. A tolerable variation in indoor temperature
corresponds to considerably smaller battery capacity, though it is still a significant amount. With an
optimally sized photovoltaic system, it is possible to use both methods simultaneously to increase
self-consumption. Maximal benefits can be attained from both methods if the battery system is used
as a primary control and the demand response is used as a secondary control. The defined novel
method for determining the demand response potential of small-scale customers can also be used
when estimating the flexibility of a large customer group. Small-scale customers together can provide
significant flexible capacity when their electrical heating is centrally controlled.

Keywords: demand response; battery; buildings; photovoltaic

1. Introduction

Flexibility will have a key role in future power systems as electrification and 100%
renewable energy production are being pursued [1]. In power systems, flexibility can
be implemented through many applications and at various scales. One method is to use
demand response (DR) operations in which the consumption flexes when production
changes. Flexible loads can be of various sizes, and a large number of small loads can form
a larger group of flexible loads. Flexible loads can be controlled for the direct benefit of
customers using their own control system, or they can be centrally controlled to benefit
the system such that all customers benefit [2]. A customer self-control system can be
called a price-based DR program, in which customers make load changes by responding
to economic signals. A centrally controlled system can be called an incentive-based DR
program, in which customers are offered payments for reducing their specific loads over
a given period. The grid contains many detached houses, which are considerably small
loads from the power system perspective but together create a significant flexible load.
This paper focuses on DR with electric heaters in a Nordic area where there are a lot of
electrically heated detached houses. A high number of small-scale customers from Finland
were studied.

In the future, small-scale energy production will increase when it becomes economi-
cally more attractive to domestic customers [3]. Household-level customers typically use a
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Abstract: Distributed electric power production by small-scale customers is increasing continuously.
Photovoltaic production is a popular method of producing self-energy for customers. Additionally,
power systems require more flexibility when weather-dependent renewable energy production
increases. Small-scale customers can increase the self-consumption of self-produced energy by using
batteries or a demand response operation. However, batteries require high investment, and demand
response operations induce a loss of comfort. Customers who heat their buildings using electric
heaters are a good target for demand response operations because their heating can be controlled
with limited changes in the indoor temperature. The demand response potential of a building can be
defined by simply using customer load profiles and knowledge of the outdoor temperature. Any other
information is not required in the proposed novel method. A tolerable variation in indoor temperature
corresponds to considerably smaller battery capacity, though it is still a significant amount. With an
optimally sized photovoltaic system, it is possible to use both methods simultaneously to increase
self-consumption. Maximal benefits can be attained from both methods if the battery system is used
as a primary control and the demand response is used as a secondary control. The defined novel
method for determining the demand response potential of small-scale customers can also be used
when estimating the flexibility of a large customer group. Small-scale customers together can provide
significant flexible capacity when their electrical heating is centrally controlled.
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1. Introduction

Flexibility will have a key role in future power systems as electrification and 100%
renewable energy production are being pursued [1]. In power systems, flexibility can
be implemented through many applications and at various scales. One method is to use
demand response (DR) operations in which the consumption flexes when production
changes. Flexible loads can be of various sizes, and a large number of small loads can form
a larger group of flexible loads. Flexible loads can be controlled for the direct benefit of
customers using their own control system, or they can be centrally controlled to benefit
the system such that all customers benefit [2]. A customer self-control system can be
called a price-based DR program, in which customers make load changes by responding
to economic signals. A centrally controlled system can be called an incentive-based DR
program, in which customers are offered payments for reducing their specific loads over
a given period. The grid contains many detached houses, which are considerably small
loads from the power system perspective but together create a significant flexible load.
This paper focuses on DR with electric heaters in a Nordic area where there are a lot of
electrically heated detached houses. A high number of small-scale customers from Finland
were studied.

In the future, small-scale energy production will increase when it becomes economi-
cally more attractive to domestic customers [3]. Household-level customers typically use a
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small photovoltaic (PV) system; thus, the production is mostly used in self-consumption,
because the economic value of the produced energy for self-consumption is significantly
higher than the value of produced energy for selling to the market [4]. Flexibility, for
example through the use of battery systems, enables fixed-sized PV panels to better react
and adjust to self-consumption increases [5]. Historically, power transfer in the power
lines is conveyed from power plants to customers. Multiple small-scale power plants (e.g.,
household small-scale PV systems) around the grid can reform the grid and energy flows
bidirectionally. Increasing weather-dependent energy production and distributed energy
resources (DER) set new requirements for power systems [1]. The grid must be redesigned
toward bidirectional function, and the power system requires more flexibility for efficient
operation in the future. High flexibility will decrease the negative effects of increasing
DER, e.g., the requirement to reinforce the grid. Child et al. demonstrated that customers
who have PV production systems with battery storage can reduce the requirement for
transmission interconnections by 6% [1].

The benefits of using flexibility to increase self-consumption have been examined in
many papers. Merei et al. presented a techno-economic analysis of a PV–battery system,
and the results indicated that increasing self-consumption through the use of batteries
has cost problems associated because of high battery investment costs [6]. The results
of Ref. [7] show that low discount rates and debt financing may significantly increase
the profitability of battery investment. The potential of battery use with PV systems also
increases if the lifetime of the battery increases. Angenendt et al. presented a forecast-based
operation strategy for this [8]. Puranen et al. focused on a case study from Finland for a
techno-economic analysis of energy storage concepts with residential PV systems [9]. The
profitability of battery systems with PV production under different retail tariffs was studied
in Ref. [10]. A comparative study of different control strategies for PV–battery systems is
presented in Ref. [11] for an office building environment.

DR operations are effective for increasing distributed PV penetration [12]. The effec-
tiveness of DR operations depends on the operation algorithms, and Sivaneasan et al. [13]
presented one option for using such algorithms. Nyholm et al. [14] presented an eco-
nomic assessment of PV production in Sweden with a special focus on the impacts of DR.
Additionally, in many papers, batteries and DR have been combined [15,16].

However, earlier studies did not publish a wide comparison of battery storage and
heating power DR with long-period simulations and did not explore the effects the battery
and DR operation have on each other. In this novel research, we studied the possibility of
using batteries and DR in parallel and the potential of using both. Earlier studies, such as
the study conducted by Lorenzi et al., compared battery storage and water boiler DR from
an economic perspective, and the results demonstrated the high potential of DR operations
compared to batteries [17].

Heating power DR has rarely been studied even though it has high potential. One
reason for this is that every building is different, and the features of buildings are difficult
to approximate. Generally, studies require a building model that considers the insulation
and ventilation of the building. Bashir et al. formed a building model based on Finnish
construction requirements, and it was used to evaluate the storing of PV production as
heat for the building [18]. This method aids in evaluating the possible power of DR
operations and the changes in indoor temperature that occur in a building during operation.
This paper presents a novel method of evaluating the DR potentials of buildings from
electricity load profiles without any other knowledge of the building. In previous studies,
values from typical buildings and calculations based on theoretical features were used,
though real building data were used in Ref. [19]. For evaluating the DR potential of space
heating, Nyholm et al. used constant effective heat capacity, which was taken from previous
studies [20]. The model presented in this paper calculates accurate thermal storage features
for every customer. Additionally, as an improvement on previous studies, the number of
customers in the study group was large and the study period was long. For example, while
this paper uses a year-long study period, Zhang and Guéquen used a 24 h period [21].

Energies 2023, 16, 497 3 of 25

In earlier papers, the number of studied buildings was low and buildings features were
usually from some form of test house [22] or were based on the average features used in
the studied area [23].

Naturally, the potential of DR is limited and depends on the customers’ load profile.
Possible DR devices should be high­load devices whose time of use can be flexible. Electrical
heating is appropriate for DR because houses include thermal storage capacities. Short
breaks in heating do not dramatically decrease the indoor temperature, and in controlled
systems, breaks can be prepared by overheating the house before the breaks. If heating
is used for DR, the DR capacity depends on the outdoor temperature and limits set for
indoor temperature. DR should cause only a minimal loss of comfort for the customer,
but it always causes some effects. With the use of a battery, a customer’s load profile can
be modified without any loss of comfort. The capacity of the battery and charging and
discharging power are the only limits of its use. Even if the DR and battery are used for the
same purpose, their basic principles in how benefits are formed are different. Therefore,
comparison between DR and batteries is very difficult.

Indoor temperature limits varied significantly in earlier research [24]. Many people
do not notice an indoor temperature change of ±0.5 ◦C over the course of an hour, but a
±2 ◦C change can affect the comfort of most people [25]. Additionally, the law sets limits.
In Finland, the terms of electricity supply define that an electrical heater can be switched
off for a maximum of 1.5 h when continuously controlled by an aggregator, and the total
switch­off time should be 5 h in a day [26]. This paper compares the use of DR and a
battery by comparing 1 and 2 ◦C flexibility in indoor temperature to the corresponding size
of the battery. This novel information provides knowledge about the possibilities of DR
and battery use. The most significant problem relating to battery use has often been high
investment costs and how those costs compare to the potential benefits. The comparison
method used in this paper is very extensive because it enables systems to be compared
even if the investment costs or electricity prices change over time.

The objective of the developed novel method for evaluating the flexibility of building
heating is to determine a simple method of comparing heating demand usage for DR with
a battery. Additionally, the method provides the possibility of evaluating DR potential in
larger groups. The results of this study can be utilized in many applications. Small­scale
customers can use the results when making future investment decisions on whether it
is better to invest in a DR control system or energy storage system and whether there
may be problems if both are used. Service providers can develop their products to sell to
customers. Additionally, aggregators who sell incentive­based DR programs to customers
can estimate potential DR capacity. The method also provides the possibility of estimating
the DR potential of all local electric heating customers within the grid.

For small­scale customers, the possibility of storing surplus PV energy is most impor­
tant; therefore, the research focus was on this control target. The same flexible capacity can
be used for other control targets, e.g., market price­based control or decreasing maximum
power with power­based distribution tariffs. The results of this paper can be used to
estimate the potential of decreasing the maximum power. Market price­based control is
a potential topic for future research because its economic potential is currently very low,
particularly with a battery system [27].

Storing surplus PV energy in a building’s heat means that the indoor temperature
increases temporarily. The thermal features of buildings operate similarly in both directions;
therefore, DR operation can be upshifting (e.g., surplus PV energy storing) or downshifting
(e.g., decrease in maximum power). Downshifting operations can be effective in scenarios
in which consumption is very high owing to very cold outdoor temperatures, and also
when maximum power should be limited to avoid local grid reinforcements. This paper
also investigates the DR potential of a large local customer group.

This study utilizes simulations. New load profiles for customers were modeled in
a simulator and PV production and flexibility options added. Simulations are a good
way to study phenomena involving a large number of customers with minimal time and
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small photovoltaic (PV) system; thus, the production is mostly used in self-consumption,
because the economic value of the produced energy for self-consumption is significantly
higher than the value of produced energy for selling to the market [4]. Flexibility, for
example through the use of battery systems, enables fixed-sized PV panels to better react
and adjust to self-consumption increases [5]. Historically, power transfer in the power
lines is conveyed from power plants to customers. Multiple small-scale power plants (e.g.,
household small-scale PV systems) around the grid can reform the grid and energy flows
bidirectionally. Increasing weather-dependent energy production and distributed energy
resources (DER) set new requirements for power systems [1]. The grid must be redesigned
toward bidirectional function, and the power system requires more flexibility for efficient
operation in the future. High flexibility will decrease the negative effects of increasing
DER, e.g., the requirement to reinforce the grid. Child et al. demonstrated that customers
who have PV production systems with battery storage can reduce the requirement for
transmission interconnections by 6% [1].

The benefits of using flexibility to increase self-consumption have been examined in
many papers. Merei et al. presented a techno-economic analysis of a PV–battery system,
and the results indicated that increasing self-consumption through the use of batteries
has cost problems associated because of high battery investment costs [6]. The results
of Ref. [7] show that low discount rates and debt financing may significantly increase
the profitability of battery investment. The potential of battery use with PV systems also
increases if the lifetime of the battery increases. Angenendt et al. presented a forecast-based
operation strategy for this [8]. Puranen et al. focused on a case study from Finland for a
techno-economic analysis of energy storage concepts with residential PV systems [9]. The
profitability of battery systems with PV production under different retail tariffs was studied
in Ref. [10]. A comparative study of different control strategies for PV–battery systems is
presented in Ref. [11] for an office building environment.

DR operations are effective for increasing distributed PV penetration [12]. The effec-
tiveness of DR operations depends on the operation algorithms, and Sivaneasan et al. [13]
presented one option for using such algorithms. Nyholm et al. [14] presented an eco-
nomic assessment of PV production in Sweden with a special focus on the impacts of DR.
Additionally, in many papers, batteries and DR have been combined [15,16].

However, earlier studies did not publish a wide comparison of battery storage and
heating power DR with long-period simulations and did not explore the effects the battery
and DR operation have on each other. In this novel research, we studied the possibility of
using batteries and DR in parallel and the potential of using both. Earlier studies, such as
the study conducted by Lorenzi et al., compared battery storage and water boiler DR from
an economic perspective, and the results demonstrated the high potential of DR operations
compared to batteries [17].

Heating power DR has rarely been studied even though it has high potential. One
reason for this is that every building is different, and the features of buildings are difficult
to approximate. Generally, studies require a building model that considers the insulation
and ventilation of the building. Bashir et al. formed a building model based on Finnish
construction requirements, and it was used to evaluate the storing of PV production as
heat for the building [18]. This method aids in evaluating the possible power of DR
operations and the changes in indoor temperature that occur in a building during operation.
This paper presents a novel method of evaluating the DR potentials of buildings from
electricity load profiles without any other knowledge of the building. In previous studies,
values from typical buildings and calculations based on theoretical features were used,
though real building data were used in Ref. [19]. For evaluating the DR potential of space
heating, Nyholm et al. used constant effective heat capacity, which was taken from previous
studies [20]. The model presented in this paper calculates accurate thermal storage features
for every customer. Additionally, as an improvement on previous studies, the number of
customers in the study group was large and the study period was long. For example, while
this paper uses a year-long study period, Zhang and Guéquen used a 24 h period [21].
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In earlier papers, the number of studied buildings was low and buildings features were
usually from some form of test house [22] or were based on the average features used in
the studied area [23].

Naturally, the potential of DR is limited and depends on the customers’ load profile.
Possible DR devices should be high­load devices whose time of use can be flexible. Electrical
heating is appropriate for DR because houses include thermal storage capacities. Short
breaks in heating do not dramatically decrease the indoor temperature, and in controlled
systems, breaks can be prepared by overheating the house before the breaks. If heating
is used for DR, the DR capacity depends on the outdoor temperature and limits set for
indoor temperature. DR should cause only a minimal loss of comfort for the customer,
but it always causes some effects. With the use of a battery, a customer’s load profile can
be modified without any loss of comfort. The capacity of the battery and charging and
discharging power are the only limits of its use. Even if the DR and battery are used for the
same purpose, their basic principles in how benefits are formed are different. Therefore,
comparison between DR and batteries is very difficult.

Indoor temperature limits varied significantly in earlier research [24]. Many people
do not notice an indoor temperature change of ±0.5 ◦C over the course of an hour, but a
±2 ◦C change can affect the comfort of most people [25]. Additionally, the law sets limits.
In Finland, the terms of electricity supply define that an electrical heater can be switched
off for a maximum of 1.5 h when continuously controlled by an aggregator, and the total
switch­off time should be 5 h in a day [26]. This paper compares the use of DR and a
battery by comparing 1 and 2 ◦C flexibility in indoor temperature to the corresponding size
of the battery. This novel information provides knowledge about the possibilities of DR
and battery use. The most significant problem relating to battery use has often been high
investment costs and how those costs compare to the potential benefits. The comparison
method used in this paper is very extensive because it enables systems to be compared
even if the investment costs or electricity prices change over time.

The objective of the developed novel method for evaluating the flexibility of building
heating is to determine a simple method of comparing heating demand usage for DR with
a battery. Additionally, the method provides the possibility of evaluating DR potential in
larger groups. The results of this study can be utilized in many applications. Small­scale
customers can use the results when making future investment decisions on whether it
is better to invest in a DR control system or energy storage system and whether there
may be problems if both are used. Service providers can develop their products to sell to
customers. Additionally, aggregators who sell incentive­based DR programs to customers
can estimate potential DR capacity. The method also provides the possibility of estimating
the DR potential of all local electric heating customers within the grid.

For small­scale customers, the possibility of storing surplus PV energy is most impor­
tant; therefore, the research focus was on this control target. The same flexible capacity can
be used for other control targets, e.g., market price­based control or decreasing maximum
power with power­based distribution tariffs. The results of this paper can be used to
estimate the potential of decreasing the maximum power. Market price­based control is
a potential topic for future research because its economic potential is currently very low,
particularly with a battery system [27].

Storing surplus PV energy in a building’s heat means that the indoor temperature
increases temporarily. The thermal features of buildings operate similarly in both directions;
therefore, DR operation can be upshifting (e.g., surplus PV energy storing) or downshifting
(e.g., decrease in maximum power). Downshifting operations can be effective in scenarios
in which consumption is very high owing to very cold outdoor temperatures, and also
when maximum power should be limited to avoid local grid reinforcements. This paper
also investigates the DR potential of a large local customer group.

This study utilizes simulations. New load profiles for customers were modeled in
a simulator and PV production and flexibility options added. Simulations are a good
way to study phenomena involving a large number of customers with minimal time and
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cost. Self-coded simulators provide the possibility of studying novel methods of evaluat-
ing DR potential with the minimum amount of information from customers. Modeling
simulators for commercial buildings need much more specific information in terms of
buildings features.

The remainder of this paper is divided into six sections. Section 2 presents the theoret-
ical background of simulation models and calculations. Section 3 includes the initial input
data and introduces the study on customers’ DR capacity, and examples are presented for
how the coefficients are solved and their effect on DR capacity. Section 4 presents the results
of simulations and a comparison between a DR operation and battery system in regard
to storing surplus PV energy. Section 5 presents the results of a DR capacity study with a
large local customer group. A discussion is presented in Section 6, and the conclusions of
the paper are shared in Section 7.

2. Components of the Simulation Model
2.1. Small-Scale Electrical Energy Self-Production with Solar Panels

In the simulations in this study, we assumed that detached house customers had small-
scale PV energy production systems. PV production depends on geographical location,
weather conditions, and time of day and year. Owing to many variables, the momentary
power of PV production varies significantly. In this study, PV production was modeled with
a mathematical model for the same area in which the studied detached house customers
were located and included realistic weather data. A similar PV model was presented earlier
in Ref. [4].

2.1.1. Solar Irradiance Model for Tilted Panels

Themodel of PV production is based on the solar irradiance of a tilted panel in a known
location on Earth. Global solar irradiance can be mathematically modeled and it can be
divided into three components: the direct beam (Gb,i), the diffuse component (Gd,i), and the
reflected component (Gr,i) [28]. Global irradiance is the sum of the irradiance components,
i.e., Gi = Gb,i + Gd,i + Gr,i. In this paper, the azimuth angle of modeled solar panels is
assumed to be 0◦, i.e., panels are tilted straight to the south and the angle of inclination β is
45◦. Beam irradiance can be modeled accurately if the conditions of the sun are assumed to
be constant, and it can be calculated using Gb,i = Gb (cos θi / sin αs), where Gb is horizontal
beam irradiance, θi is the angle of incidence onto the surface based on the azimuth angle
of the sun, and αs is solar elevation [29]. Diffuse irradiance on a tilted surface can be
calculated using Gd,i = Gd (1 + cos β)/2, where Gd is the horizontal diffuse irradiance.
The reflected irradiance can be calculated using Gr,i = ρg G (1 − cos β)/2, where ρg is the
average reflectance of the reflecting surface and G is horizontal global irradiance, which is
used because both the beam and diffuse irradiance are assumed to reflect isotropically.

Different irradiance components are modeled with mathematical methods and several
competing decent models are available. The Perez All-Weather Sky model was observed
to be the overall best model for modeling diffuse irradiance involving Finnish conditions;
however, when solar panels were tilted to the south, the Reindl model was better [29]. The
Reindl model was used in this paper. The Perez model is introduced in [30] and the Reindl
model in [31]. Additionally, in Ref. [32], the Reindl model is considered one of the best
diffuse solar irradiance models. The brightening factor (kT) models the cloudiness of the
sky, and in the Reindl model, it is modeled using the ratio of horizontal diffuse irradiance
to horizontal global irradiance. In this paper, a brightening factor based on cloudiness
probability in Finland was used [33].

Reflectance values are used to model reflecting irradiance. Average reflectance has
two constant values in year-long simulations. During the winter season (December–April),
the average reflectance is set to ρg = 0.58, which corresponds to the reflectance of snow,
because snow is typically on the ground during this period in Finland. At other times of the
year, it is set to ρg = 0.24, which corresponds to the reflectance of dark roofing materials and
deciduous trees, which are the materials assumed to be directly adjacent to the solar panels.
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2.1.2. PV Production Model

The power of PV production (PPV) can be calculated using Equation (1), where PSTC is
the nominal power in standard test conditions (STC), βP is the solar cell power temperature
coefficient (0.006), Tc is solar cell temperature, and TSTC is the standard solar cell test
temperature (25 ◦C) [29]. Different types of solar panels provide slightly different power
with the same solar irradiation; therefore, the verification coefficient (Cv) is included in
the equation.

PPV = CvPSTCGi(1− βP(Tc − TSTC)). (1)

This PV production simulation model was used previously in [27], where it was
verified by comparing model values to actual values obtained from polycrystalline silicon
PV cells. Modeled PV power was systematically slightly higher than measured power;
therefore, Cv is set to 0.85.

2.1.3. Economic Benefits of PV Production

In Finland, the price of electricity includes the price of electrical energy, the cost of
distribution, and taxes. When a prosumer sells electricity to the grid, the total price of
selling electricity (Cs,t) is based only on the price of electrical energy. Frequently, the selling
price of an energy retailer is slightly lower than the purchase price because the margin of
the energy retailer is included in the purchase price, and it is thus removed from the selling
price. The total purchase price of electricity (Cp,t) includes the selling price of the energy
retailer, distribution fees, and taxes. The main benefits of PV self-consumption result from
differences in the selling and purchase prices, because the selling price is significantly lower
than the price that would be paid for electricity if the self-consumed electricity (EPV,sc) were
to be purchased from the grid. The economic benefits of PV production (EBPV) can be
formed using Equation (2), where EPV,fg is the PV production fed to the grid:

EBPV = Cp,tEPV,sc + Cs,tEPV, f g. (2)

The aim of using flexibility to increase self-consumption is to enhance the economic
benefits of PV production. The sum of PV production (EPV,sc + EPV,fg) remains the same,
but moving the maximal amount of grid feeding (EPV,fg) toward self-consumption (EPV,sc)
increases total benefits. The economic benefits depend strongly on electricity prices and
pricing structures. These benefits are not calculated in this paper, but Equation (2) explains
the motivation to increase self-consumption.

2.2. Energy Storage

A battery energy storage system (BESS) is a suitable energy storage solution for
residential buildings. A BESS is the most flexible method of shifting loads because it can
be controlled without depending on any other variable. Only the features and size of the
battery affect charging and discharging power and the amount of energy. A high investment
cost and poor profitability are the main problems that have hindered the implementation of
residential BESSs [27]. The price of lithium-ion (Li-ion) batteries has decreased rapidly, and
this trend is expected to continue [34]. The trend of increasing variability in electricity prices
will increase the profitability of BESSs in the future [27]. Because the prices of batteries
are still high, the other method of shifting loads (DR) will be a good option, whether used
alone or with a BESS.

2.2.1. Battery Model

The modeled battery is a Li-ion battery with a lithium iron phosphate (LFP, LiFePO4)
positive electron and a graphite negative electrode. This type of battery is excellent for
domestic use because of its good safety features, and it has a long cycle and calendar
lifetime [35]. The BESS includes a control system, which is implemented via an inverter
that requires information from all other components of the system. The battery converter
includes a charge controller.
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cost. Self-coded simulators provide the possibility of studying novel methods of evaluat-
ing DR potential with the minimum amount of information from customers. Modeling
simulators for commercial buildings need much more specific information in terms of
buildings features.

The remainder of this paper is divided into six sections. Section 2 presents the theoret-
ical background of simulation models and calculations. Section 3 includes the initial input
data and introduces the study on customers’ DR capacity, and examples are presented for
how the coefficients are solved and their effect on DR capacity. Section 4 presents the results
of simulations and a comparison between a DR operation and battery system in regard
to storing surplus PV energy. Section 5 presents the results of a DR capacity study with a
large local customer group. A discussion is presented in Section 6, and the conclusions of
the paper are shared in Section 7.

2. Components of the Simulation Model
2.1. Small-Scale Electrical Energy Self-Production with Solar Panels

In the simulations in this study, we assumed that detached house customers had small-
scale PV energy production systems. PV production depends on geographical location,
weather conditions, and time of day and year. Owing to many variables, the momentary
power of PV production varies significantly. In this study, PV production was modeled with
a mathematical model for the same area in which the studied detached house customers
were located and included realistic weather data. A similar PV model was presented earlier
in Ref. [4].

2.1.1. Solar Irradiance Model for Tilted Panels

Themodel of PV production is based on the solar irradiance of a tilted panel in a known
location on Earth. Global solar irradiance can be mathematically modeled and it can be
divided into three components: the direct beam (Gb,i), the diffuse component (Gd,i), and the
reflected component (Gr,i) [28]. Global irradiance is the sum of the irradiance components,
i.e., Gi = Gb,i + Gd,i + Gr,i. In this paper, the azimuth angle of modeled solar panels is
assumed to be 0◦, i.e., panels are tilted straight to the south and the angle of inclination β is
45◦. Beam irradiance can be modeled accurately if the conditions of the sun are assumed to
be constant, and it can be calculated using Gb,i = Gb (cos θi / sin αs), where Gb is horizontal
beam irradiance, θi is the angle of incidence onto the surface based on the azimuth angle
of the sun, and αs is solar elevation [29]. Diffuse irradiance on a tilted surface can be
calculated using Gd,i = Gd (1 + cos β)/2, where Gd is the horizontal diffuse irradiance.
The reflected irradiance can be calculated using Gr,i = ρg G (1 − cos β)/2, where ρg is the
average reflectance of the reflecting surface and G is horizontal global irradiance, which is
used because both the beam and diffuse irradiance are assumed to reflect isotropically.

Different irradiance components are modeled with mathematical methods and several
competing decent models are available. The Perez All-Weather Sky model was observed
to be the overall best model for modeling diffuse irradiance involving Finnish conditions;
however, when solar panels were tilted to the south, the Reindl model was better [29]. The
Reindl model was used in this paper. The Perez model is introduced in [30] and the Reindl
model in [31]. Additionally, in Ref. [32], the Reindl model is considered one of the best
diffuse solar irradiance models. The brightening factor (kT) models the cloudiness of the
sky, and in the Reindl model, it is modeled using the ratio of horizontal diffuse irradiance
to horizontal global irradiance. In this paper, a brightening factor based on cloudiness
probability in Finland was used [33].

Reflectance values are used to model reflecting irradiance. Average reflectance has
two constant values in year-long simulations. During the winter season (December–April),
the average reflectance is set to ρg = 0.58, which corresponds to the reflectance of snow,
because snow is typically on the ground during this period in Finland. At other times of the
year, it is set to ρg = 0.24, which corresponds to the reflectance of dark roofing materials and
deciduous trees, which are the materials assumed to be directly adjacent to the solar panels.
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2.1.2. PV Production Model

The power of PV production (PPV) can be calculated using Equation (1), where PSTC is
the nominal power in standard test conditions (STC), βP is the solar cell power temperature
coefficient (0.006), Tc is solar cell temperature, and TSTC is the standard solar cell test
temperature (25 ◦C) [29]. Different types of solar panels provide slightly different power
with the same solar irradiation; therefore, the verification coefficient (Cv) is included in
the equation.

PPV = CvPSTCGi(1− βP(Tc − TSTC)). (1)

This PV production simulation model was used previously in [27], where it was
verified by comparing model values to actual values obtained from polycrystalline silicon
PV cells. Modeled PV power was systematically slightly higher than measured power;
therefore, Cv is set to 0.85.

2.1.3. Economic Benefits of PV Production

In Finland, the price of electricity includes the price of electrical energy, the cost of
distribution, and taxes. When a prosumer sells electricity to the grid, the total price of
selling electricity (Cs,t) is based only on the price of electrical energy. Frequently, the selling
price of an energy retailer is slightly lower than the purchase price because the margin of
the energy retailer is included in the purchase price, and it is thus removed from the selling
price. The total purchase price of electricity (Cp,t) includes the selling price of the energy
retailer, distribution fees, and taxes. The main benefits of PV self-consumption result from
differences in the selling and purchase prices, because the selling price is significantly lower
than the price that would be paid for electricity if the self-consumed electricity (EPV,sc) were
to be purchased from the grid. The economic benefits of PV production (EBPV) can be
formed using Equation (2), where EPV,fg is the PV production fed to the grid:

EBPV = Cp,tEPV,sc + Cs,tEPV, f g. (2)

The aim of using flexibility to increase self-consumption is to enhance the economic
benefits of PV production. The sum of PV production (EPV,sc + EPV,fg) remains the same,
but moving the maximal amount of grid feeding (EPV,fg) toward self-consumption (EPV,sc)
increases total benefits. The economic benefits depend strongly on electricity prices and
pricing structures. These benefits are not calculated in this paper, but Equation (2) explains
the motivation to increase self-consumption.

2.2. Energy Storage

A battery energy storage system (BESS) is a suitable energy storage solution for
residential buildings. A BESS is the most flexible method of shifting loads because it can
be controlled without depending on any other variable. Only the features and size of the
battery affect charging and discharging power and the amount of energy. A high investment
cost and poor profitability are the main problems that have hindered the implementation of
residential BESSs [27]. The price of lithium-ion (Li-ion) batteries has decreased rapidly, and
this trend is expected to continue [34]. The trend of increasing variability in electricity prices
will increase the profitability of BESSs in the future [27]. Because the prices of batteries
are still high, the other method of shifting loads (DR) will be a good option, whether used
alone or with a BESS.

2.2.1. Battery Model

The modeled battery is a Li-ion battery with a lithium iron phosphate (LFP, LiFePO4)
positive electron and a graphite negative electrode. This type of battery is excellent for
domestic use because of its good safety features, and it has a long cycle and calendar
lifetime [35]. The BESS includes a control system, which is implemented via an inverter
that requires information from all other components of the system. The battery converter
includes a charge controller.
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The state of charge (SOC) of the BESS is modeled in Equation (3):

SOCt = 100
Et

Emax
= 100

Be f f Bt

Emax
+ SOCt−1, (3)

where Et is the amount of stored energy at time t and Emax is the maximum capacity of
the BESS. The variable SOCt is the SOC at time t, and SOCt−1 is the SOC for the previous
time step. Additionally, Bt is the energy transfer to or from energy storage, and Beff is the
efficiency of the transfer.

The modeling of BESS losses is a very important aspect in simulations. The efficiency
of components affects the losses of the BESS. In this study, the efficiency of the inverter
(ηinv) was 98%, and DC converter efficiency (ηdc) was 99%. The losses of the BESS primarily
occur in the converters and the chemical reactions of the battery [35]. In this study, the SOC
limits of the battery were set at 25%–95%, because losses increase when the SOC is near
extreme values [36]. The behavior of battery losses is nearly linear with a limited charge
range; therefore, in battery loss modeling, the losses can be assumed to linearly depend on
the charging current (Ic), assuming that the internal serial resistance (Rb) is constant [36]. In
this case, charging efficiency (ηc) can be calculated using Equation (4):

ηc = 100
Vb − IcRb

Vb
, (4)

where Vb is the nominal voltage of the battery. The efficiency Beff in (3) can be obtained by
multiplying the efficiencies ηdc, ηinv, and ηc. The energy transfer to or from storage (Bt) is
calculated by multiplying the charging current (Ic) by the charging voltage (Vc), which can
be calculated using Equation (5):

Vc = Vb − Ic·Rb (5)

The battery used in the simulations consisted of cells. A suitable battery capacity and
voltage level can be attained by connecting cells in series or parallel. The values used in
the simulations of this study were an internal serial resistance of 0.026 Ω, a cell voltage of
3.3 V, and capacity for one cell of 2.5 Ah [37]. The C-rate of a battery describes the ratio of
maximum power to capacity. The C-rate in this study was 0.7 C. The effect of the BESS and
PV production on the customer’s electricity load was modeled using equations from the
grid perspective. The energy transition between the grid and customer (G) was determined
using a model based on the energy transfer to and from the BESS, the building’s demand
(D), and the amount of self-produced PV energy (Pdc). When the battery was charged, the
energy transfer between the customer and the grid could be represented using Equation (6):

G = −ηinv(Pdc − Bt) + D, (6)

where the value of self-produced PV energy is defined before the inverter. BESS discharge
can be calculated using Equation (7):

G = ηinv(−Bt − Pdc) + D (7)

2.2.2. Control of the Battery

When the BESS is used only to increase self-consumption of PV energy, controlling
it is very simple. When surplus energy is available and the SOC is under the upper limit,
the BESS is charging until either the SOC is at the maximum level or surplus energy is no
longer available. It is better to discharge the BESS instantaneously so that the BESS can
be ready to receive possible surplus energy in the future. Therefore, if the SOC is higher
than the minimum limit and the demand of the customer is higher than PV production, the
BESS discharges until either it is empty or PV production becomes higher than the demand.
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2.3. Demand Response Operation

In this study, DR was implemented via a building’s electric heating. The heat of
electrical heaters can be stored in the mass of buildings and the air in rooms. Modern
houses are better insulated, and they include heat storage, e.g., in concrete floors. If
surplus PV production is available, the indoor temperature can be temporarily increased.
Alternatively, if total consumption is required to be cut down, the indoor temperature can
be temporarily decreased by interrupting the heating load. There are set values for the
maximum changes in indoor temperature. Actual exact indoor temperatures cannot be
known; therefore, they are modeled. Although this paper’s focus is on electrical heating,
the same method can be used when studying cooling systems or heating provided by heat
pumps, but the efficiency of these other systems must be studied separately.

2.3.1. Electrical Heating Systems and Theoretical Indoor Temperature

The load of electrical heaters depends on the outdoor temperature (Tout), the value
set for the indoor temperature (Tset), and the stored thermal energy of the building. The
building itself is similar to a form of energy storage, where the energy is stored as thermal
energy. When Tout is lower than the indoor temperature (Tin), the insulation of the building
resists the self-discharge of the storage. Better insulation means lower self-discharge. The
quality of insulation is represented by the total heat loss coefficient (cf, W/K) of the building,
which is the sum of the heat loss coefficients of different components of the building (roof,
floor, etc.). The heat loss coefficient of the building’s components can be calculated by
multiplying the area (m2) of the components by the thermal transmittance (also known as
U-value) of the material (W/m2K). The total heat loss coefficient of the building is defined
by how much heating power is required to maintain a stable indoor temperature. A low
heat loss coefficient is a valuable feature when pursuing low energy consumption. From
the perspective of DR, a low heat loss coefficient means that the necessary flexibility must
be obtained elsewhere because the ability to respond to demand is also low.

Buildings have a large mass that can store thermal energy. Heat can be stored in
components such as concrete floors; however, all mass in insulations can store thermal
energy. When the indoor temperature is constant, the energy stored in the mass does not
change and it does not affect heating demand; however, when the indoor temperature
changes, this stored energy strongly affects how fast heating demand changes. Every
material has its own specific heat capacity (J/kg·K or Wh/kg·K), and when we multiply it
by the mass of the material, we obtain the heat capacity of the material. The sum of all heat
capacities in a building is the total heat capacity (cp, Wh/K) of the building. A large total
heat capacity means that the indoor temperature changes gradually, e.g., after Tset changes
or during heating power breaks, which are basic operations in DR. Total heat capacity is
defined as the capacity to store thermal energy.

Changes in the theoretical indoor temperature can be calculated as follows using a
building’s total heat loss coefficient and total heat capacity [38]:

cp
dTin
dt

= Eh − c f (Tin − Tout), (8)

where Eh is heating power. This equation is derived from Newton’s law of cooling. From
Equation (8), we can solve the indoor temperature after the DR operation as

Tin(t) = Tin(t− 1) +
∆t
Cp

[Eh(t− 1)− c f (Tin(t− 1)− Tout(t− 1))]. (9)

Equation (9) can be used when modeling indoor temperature in scenarios in which
heating power changes. Additionally, Equation (8) can be used when solving total heat
capacity (cp) and the total heat loss coefficient (cf). When we have data regarding customer
consumption and outdoor temperature, we can calculate cf when we assume that indoor
temperature is constant. Heating temperature (Th) is calculated using Th = Tin − Tout
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The state of charge (SOC) of the BESS is modeled in Equation (3):

SOCt = 100
Et

Emax
= 100

Be f f Bt

Emax
+ SOCt−1, (3)

where Et is the amount of stored energy at time t and Emax is the maximum capacity of
the BESS. The variable SOCt is the SOC at time t, and SOCt−1 is the SOC for the previous
time step. Additionally, Bt is the energy transfer to or from energy storage, and Beff is the
efficiency of the transfer.

The modeling of BESS losses is a very important aspect in simulations. The efficiency
of components affects the losses of the BESS. In this study, the efficiency of the inverter
(ηinv) was 98%, and DC converter efficiency (ηdc) was 99%. The losses of the BESS primarily
occur in the converters and the chemical reactions of the battery [35]. In this study, the SOC
limits of the battery were set at 25%–95%, because losses increase when the SOC is near
extreme values [36]. The behavior of battery losses is nearly linear with a limited charge
range; therefore, in battery loss modeling, the losses can be assumed to linearly depend on
the charging current (Ic), assuming that the internal serial resistance (Rb) is constant [36]. In
this case, charging efficiency (ηc) can be calculated using Equation (4):

ηc = 100
Vb − IcRb

Vb
, (4)

where Vb is the nominal voltage of the battery. The efficiency Beff in (3) can be obtained by
multiplying the efficiencies ηdc, ηinv, and ηc. The energy transfer to or from storage (Bt) is
calculated by multiplying the charging current (Ic) by the charging voltage (Vc), which can
be calculated using Equation (5):

Vc = Vb − Ic·Rb (5)

The battery used in the simulations consisted of cells. A suitable battery capacity and
voltage level can be attained by connecting cells in series or parallel. The values used in
the simulations of this study were an internal serial resistance of 0.026 Ω, a cell voltage of
3.3 V, and capacity for one cell of 2.5 Ah [37]. The C-rate of a battery describes the ratio of
maximum power to capacity. The C-rate in this study was 0.7 C. The effect of the BESS and
PV production on the customer’s electricity load was modeled using equations from the
grid perspective. The energy transition between the grid and customer (G) was determined
using a model based on the energy transfer to and from the BESS, the building’s demand
(D), and the amount of self-produced PV energy (Pdc). When the battery was charged, the
energy transfer between the customer and the grid could be represented using Equation (6):

G = −ηinv(Pdc − Bt) + D, (6)

where the value of self-produced PV energy is defined before the inverter. BESS discharge
can be calculated using Equation (7):

G = ηinv(−Bt − Pdc) + D (7)

2.2.2. Control of the Battery

When the BESS is used only to increase self-consumption of PV energy, controlling
it is very simple. When surplus energy is available and the SOC is under the upper limit,
the BESS is charging until either the SOC is at the maximum level or surplus energy is no
longer available. It is better to discharge the BESS instantaneously so that the BESS can
be ready to receive possible surplus energy in the future. Therefore, if the SOC is higher
than the minimum limit and the demand of the customer is higher than PV production, the
BESS discharges until either it is empty or PV production becomes higher than the demand.
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2.3. Demand Response Operation

In this study, DR was implemented via a building’s electric heating. The heat of
electrical heaters can be stored in the mass of buildings and the air in rooms. Modern
houses are better insulated, and they include heat storage, e.g., in concrete floors. If
surplus PV production is available, the indoor temperature can be temporarily increased.
Alternatively, if total consumption is required to be cut down, the indoor temperature can
be temporarily decreased by interrupting the heating load. There are set values for the
maximum changes in indoor temperature. Actual exact indoor temperatures cannot be
known; therefore, they are modeled. Although this paper’s focus is on electrical heating,
the same method can be used when studying cooling systems or heating provided by heat
pumps, but the efficiency of these other systems must be studied separately.

2.3.1. Electrical Heating Systems and Theoretical Indoor Temperature

The load of electrical heaters depends on the outdoor temperature (Tout), the value
set for the indoor temperature (Tset), and the stored thermal energy of the building. The
building itself is similar to a form of energy storage, where the energy is stored as thermal
energy. When Tout is lower than the indoor temperature (Tin), the insulation of the building
resists the self-discharge of the storage. Better insulation means lower self-discharge. The
quality of insulation is represented by the total heat loss coefficient (cf, W/K) of the building,
which is the sum of the heat loss coefficients of different components of the building (roof,
floor, etc.). The heat loss coefficient of the building’s components can be calculated by
multiplying the area (m2) of the components by the thermal transmittance (also known as
U-value) of the material (W/m2K). The total heat loss coefficient of the building is defined
by how much heating power is required to maintain a stable indoor temperature. A low
heat loss coefficient is a valuable feature when pursuing low energy consumption. From
the perspective of DR, a low heat loss coefficient means that the necessary flexibility must
be obtained elsewhere because the ability to respond to demand is also low.

Buildings have a large mass that can store thermal energy. Heat can be stored in
components such as concrete floors; however, all mass in insulations can store thermal
energy. When the indoor temperature is constant, the energy stored in the mass does not
change and it does not affect heating demand; however, when the indoor temperature
changes, this stored energy strongly affects how fast heating demand changes. Every
material has its own specific heat capacity (J/kg·K or Wh/kg·K), and when we multiply it
by the mass of the material, we obtain the heat capacity of the material. The sum of all heat
capacities in a building is the total heat capacity (cp, Wh/K) of the building. A large total
heat capacity means that the indoor temperature changes gradually, e.g., after Tset changes
or during heating power breaks, which are basic operations in DR. Total heat capacity is
defined as the capacity to store thermal energy.

Changes in the theoretical indoor temperature can be calculated as follows using a
building’s total heat loss coefficient and total heat capacity [38]:

cp
dTin
dt

= Eh − c f (Tin − Tout), (8)

where Eh is heating power. This equation is derived from Newton’s law of cooling. From
Equation (8), we can solve the indoor temperature after the DR operation as

Tin(t) = Tin(t− 1) +
∆t
Cp

[Eh(t− 1)− c f (Tin(t− 1)− Tout(t− 1))]. (9)

Equation (9) can be used when modeling indoor temperature in scenarios in which
heating power changes. Additionally, Equation (8) can be used when solving total heat
capacity (cp) and the total heat loss coefficient (cf). When we have data regarding customer
consumption and outdoor temperature, we can calculate cf when we assume that indoor
temperature is constant. Heating temperature (Th) is calculated using Th = Tin − Tout
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− Tself, where Tself is the endogenous temperature from inside the building. It is typical
that Tset = Tin = 21 ◦C, but the building is required to be heated only when Tout < 16 ◦C,
which can be observed when comparing outdoor temperatures and heating demands. This
difference results from small heat sources in the building. All electric devices incur heat
losses when used, and people inside the building produce heat. cf is defined using the
measurement points Eh and Th, where Th > 0. cf can be solved using the average value
of heating power, which is divided by the heating temperature (cf = Σ(Eh/Th)/N), where
N is the number of measurement points. When we do not have exact measurements for
heating power (Eh), we use measurements of customers’ total electricity consumption,
though consumption which is in addition to that incurred from heating demand must be
considered.

The other coefficient, cp, can be solved similarly to cf, but the difference is that now
the change in temperature and heating power is studied over time. In DR operations, it
is important to know how fast the indoor temperature changes when we modify heating
power. Total heat capacity defines how fast this change is. If we do not have measurements
for changes in indoor temperature, we can obtain total heat capacity when we know
when and by how much the outdoor temperature changes. The same is applicable for
changes in Th if the changing component is Tin or Tout. cp can be solved using the equation
cp = Σ(∆Eh/∆Th)/N. The change in temperature and heating power can be increasing or
decreasing. For the calculation, we selected hours when ∆Th > 0.5 ◦C. Hours where the
change was very small were ignored because this causes more errors than the amount of
extra value gained for approximations. Other consumption causes random errors, but the
error is minimal when using average values obtained with a high N value. Another reason
is that the hysteresis curve for a thermostat, which controls the electric heaters, suffers from
a higher amount of error with low temperature changes.

2.3.2. Simulation Model for Demand Response in a Heating System

In a DR operation, the indoor temperature is under control. In the simulations, the
Tset of the building was 21 ◦C, and the approximation for Tself was 5 ◦C. This was an
approximation based on consumption data, in which we noticed that heating demand
frequently started to increase when the outdoor temperature decreased to under 16 ◦C.
Additionally, we observed that average daily temperature (TDave) affects heating demand.
Even cold nights did not affect heating demand if TDave was over approximately 10 ◦C. In
the simulations, heating began when TDave decreased below the building’s daily average
temperature limit for heating (TDself). This TDself value varied significantly between cus-
tomers; thus, it was calculated separately for every customer. The value of TDself can be
determined by adjusting the value such that the amount of decreasing surplus energy is
approximately the same as that in increasing self-consumption. With the wrong value, the
simulation model does not work, and the simulated heating demand does not follow actual
consumption data.

Stored heat is used and thus promptly restores the indoor temperature to the set value
for two reasons. First, the system is again ready to receive surplus energy, and second,
a higher indoor temperature causes slightly higher heat losses. In simulations, when a
customer had a heating demand that was higher than the amount of PV production, the
indoor temperature was promptly returned to the set value. Naturally, the total demand
must not decrease below zero; therefore, heating demand can only decrease the amount
of total load. In some cases, it will require several hours to reach the set value for indoor
temperature after the DR operation.

The simulation model calculated the building’s Tin every hour based on Equation (9)
and coefficients cp and cf. The indoor temperature is assumed to be constant when either
DR operations are not used or the outdoor temperature does not increase significantly. In
summer, the outdoor temperature can become high even for long periods, which increases
the indoor temperature. This is problematic for DR operations when they are used for
storing surplus energy. High solar power production and high outdoor temperatures are
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timed similarly, and there is naturally no heating demand where the surplus energy can be
stored. When outdoor temperature increases to such a high value that Th is negative, the
indoor temperature increases based on Equation (9), and it can increase to very high values
in simulations. In practice, customers may have cooling systems that decrease indoor
temperatures and thus use some of the surplus energy in the process. These considerations
are not involved in DR simulations because this demand can already be observed from
the load profile and using the surplus energy to heat the building at the same time it is
being cooled by the cooling system is pointless. Thus, the indoor temperature during
the hot season demonstrates the building’s potential to store heat more than it does the
actual indoor temperature that customers can experience. Without the cooling system, the
simulated indoor temperature corresponds to the actual indoor temperature, and when it
is high, there is the potential to increase PV self-consumption with a cooling system.

2.4. Combination of Demand Response and Battery Energy Storage Systems

In simulations, DR operation and a BESS can be combined. These systems compete
for the same surplus PV energy; therefore, it is assumed that these decrease each other’s
benefits. The combination is performed in two ways. First, DR is the primary operation,
and if surplus energy remains, the BESS functions as a secondary operation. The other
version is the opposite, where the BESS is the primary operation and DR is the secondary
operation. In combined control simulations, the secondary operation does not affect the
primary operation.

2.5. Calculations with the Simulation Model

The simulation model was formed by using MATLAB® code. Simulations utilized real
hourly consumption data from customers and simulated new consumption profiles with
the used components. The simulation period was an entire year. For the DRmodel, the total
heat loss coefficient and total heat capacity were calculated separately for each customer.
These coefficients were utilized in DR simulations where new customer consumption
profiles were simulated with limited indoor temperature changes by using Equation (9). In
BESS simulations, the new customer consumption profile was simulated by utilizing SOC
changes in the BESS via Equation (3). Modeled PV production in simulations was calculated
in hourly resolution from the results of Equation (1). The simulation model consists of
many components which are modeled by using several references. Used methodologies
are verified in the references. The code used for the simulator was carefully checked and
tested before simulations.

3. Initial Data and Heating Coefficients
3.1. Electricity Consumption Data

The study group consisted of 1525 customers in Finland. Customers were selected
from a larger group (8078 customers) of one distribution system operator (DSO)’s customer
base who had temperature-dependent loads, which means that they used electric heating
systems. Temperature dependency is an important component that ensures these customers
are suitable for studies involving the simulation of DR operation with electric heating. K-
means clustering was used to select customers for this study group [39].

Consumption data were measured using the DSO’s smart meters, and the same data
were used when invoicing customer consumption. The data were measured in 2015, and
consumption was metered hourly. We obtained 8760 data points from every customer,
which were values for energy consumption per hour (kWh). Measurement accuracy was
0.01 kWh. The customers were located in rural areas or small towns in inner Finland. To
protect the privacy of customers, the data are not being made public.

Additionally, data from one Finnish electrical heated detached house includes mea-
surements for model validation that were made in 2022. Hourly measurements from the
DSO’s smart meters were used. For validation, indoor temperature was measured for a
short time period.



Energies 2023, 16, 497 8 of 25

− Tself, where Tself is the endogenous temperature from inside the building. It is typical
that Tset = Tin = 21 ◦C, but the building is required to be heated only when Tout < 16 ◦C,
which can be observed when comparing outdoor temperatures and heating demands. This
difference results from small heat sources in the building. All electric devices incur heat
losses when used, and people inside the building produce heat. cf is defined using the
measurement points Eh and Th, where Th > 0. cf can be solved using the average value
of heating power, which is divided by the heating temperature (cf = Σ(Eh/Th)/N), where
N is the number of measurement points. When we do not have exact measurements for
heating power (Eh), we use measurements of customers’ total electricity consumption,
though consumption which is in addition to that incurred from heating demand must be
considered.

The other coefficient, cp, can be solved similarly to cf, but the difference is that now
the change in temperature and heating power is studied over time. In DR operations, it
is important to know how fast the indoor temperature changes when we modify heating
power. Total heat capacity defines how fast this change is. If we do not have measurements
for changes in indoor temperature, we can obtain total heat capacity when we know
when and by how much the outdoor temperature changes. The same is applicable for
changes in Th if the changing component is Tin or Tout. cp can be solved using the equation
cp = Σ(∆Eh/∆Th)/N. The change in temperature and heating power can be increasing or
decreasing. For the calculation, we selected hours when ∆Th > 0.5 ◦C. Hours where the
change was very small were ignored because this causes more errors than the amount of
extra value gained for approximations. Other consumption causes random errors, but the
error is minimal when using average values obtained with a high N value. Another reason
is that the hysteresis curve for a thermostat, which controls the electric heaters, suffers from
a higher amount of error with low temperature changes.

2.3.2. Simulation Model for Demand Response in a Heating System

In a DR operation, the indoor temperature is under control. In the simulations, the
Tset of the building was 21 ◦C, and the approximation for Tself was 5 ◦C. This was an
approximation based on consumption data, in which we noticed that heating demand
frequently started to increase when the outdoor temperature decreased to under 16 ◦C.
Additionally, we observed that average daily temperature (TDave) affects heating demand.
Even cold nights did not affect heating demand if TDave was over approximately 10 ◦C. In
the simulations, heating began when TDave decreased below the building’s daily average
temperature limit for heating (TDself). This TDself value varied significantly between cus-
tomers; thus, it was calculated separately for every customer. The value of TDself can be
determined by adjusting the value such that the amount of decreasing surplus energy is
approximately the same as that in increasing self-consumption. With the wrong value, the
simulation model does not work, and the simulated heating demand does not follow actual
consumption data.

Stored heat is used and thus promptly restores the indoor temperature to the set value
for two reasons. First, the system is again ready to receive surplus energy, and second,
a higher indoor temperature causes slightly higher heat losses. In simulations, when a
customer had a heating demand that was higher than the amount of PV production, the
indoor temperature was promptly returned to the set value. Naturally, the total demand
must not decrease below zero; therefore, heating demand can only decrease the amount
of total load. In some cases, it will require several hours to reach the set value for indoor
temperature after the DR operation.

The simulation model calculated the building’s Tin every hour based on Equation (9)
and coefficients cp and cf. The indoor temperature is assumed to be constant when either
DR operations are not used or the outdoor temperature does not increase significantly. In
summer, the outdoor temperature can become high even for long periods, which increases
the indoor temperature. This is problematic for DR operations when they are used for
storing surplus energy. High solar power production and high outdoor temperatures are
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timed similarly, and there is naturally no heating demand where the surplus energy can be
stored. When outdoor temperature increases to such a high value that Th is negative, the
indoor temperature increases based on Equation (9), and it can increase to very high values
in simulations. In practice, customers may have cooling systems that decrease indoor
temperatures and thus use some of the surplus energy in the process. These considerations
are not involved in DR simulations because this demand can already be observed from
the load profile and using the surplus energy to heat the building at the same time it is
being cooled by the cooling system is pointless. Thus, the indoor temperature during
the hot season demonstrates the building’s potential to store heat more than it does the
actual indoor temperature that customers can experience. Without the cooling system, the
simulated indoor temperature corresponds to the actual indoor temperature, and when it
is high, there is the potential to increase PV self-consumption with a cooling system.

2.4. Combination of Demand Response and Battery Energy Storage Systems

In simulations, DR operation and a BESS can be combined. These systems compete
for the same surplus PV energy; therefore, it is assumed that these decrease each other’s
benefits. The combination is performed in two ways. First, DR is the primary operation,
and if surplus energy remains, the BESS functions as a secondary operation. The other
version is the opposite, where the BESS is the primary operation and DR is the secondary
operation. In combined control simulations, the secondary operation does not affect the
primary operation.

2.5. Calculations with the Simulation Model

The simulation model was formed by using MATLAB® code. Simulations utilized real
hourly consumption data from customers and simulated new consumption profiles with
the used components. The simulation period was an entire year. For the DRmodel, the total
heat loss coefficient and total heat capacity were calculated separately for each customer.
These coefficients were utilized in DR simulations where new customer consumption
profiles were simulated with limited indoor temperature changes by using Equation (9). In
BESS simulations, the new customer consumption profile was simulated by utilizing SOC
changes in the BESS via Equation (3). Modeled PV production in simulations was calculated
in hourly resolution from the results of Equation (1). The simulation model consists of
many components which are modeled by using several references. Used methodologies
are verified in the references. The code used for the simulator was carefully checked and
tested before simulations.

3. Initial Data and Heating Coefficients
3.1. Electricity Consumption Data

The study group consisted of 1525 customers in Finland. Customers were selected
from a larger group (8078 customers) of one distribution system operator (DSO)’s customer
base who had temperature-dependent loads, which means that they used electric heating
systems. Temperature dependency is an important component that ensures these customers
are suitable for studies involving the simulation of DR operation with electric heating. K-
means clustering was used to select customers for this study group [39].

Consumption data were measured using the DSO’s smart meters, and the same data
were used when invoicing customer consumption. The data were measured in 2015, and
consumption was metered hourly. We obtained 8760 data points from every customer,
which were values for energy consumption per hour (kWh). Measurement accuracy was
0.01 kWh. The customers were located in rural areas or small towns in inner Finland. To
protect the privacy of customers, the data are not being made public.

Additionally, data from one Finnish electrical heated detached house includes mea-
surements for model validation that were made in 2022. Hourly measurements from the
DSO’s smart meters were used. For validation, indoor temperature was measured for a
short time period.
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3.2. Weather Data

Openly available data from the Finnish Meteorological Institute (FMI) were used for
outdoor temperature data [40]. Temperature measurements were obtained for the area
where the study group customers resided. Measurement accuracy was 0.1 ◦C. When the
temperature is not measured immediately around the building, this causes an error in the
results as there could be differences in temperature between locations even when they are
very near to others. Nevertheless, the very accurate measurements of the FMI provided
useful information about the temperature in the studied area.

3.3. Total Heat Loss Coefficient

Coefficients (total heat loss coefficient and total heat capacity) were defined sepa-
rately for every customer. Figure 1 shows energy consumption per heating temperature
throughout a year for one random customer. We can observe that the value was within a
very narrow range in the heating season. There was no heating demand in the summer;
therefore, the value decreased to zero. In spring and autumn, when the heating tempera-
ture was low, the range was higher because the weight of other consumptions increased.
Consumption other than heating and daily changes in the load profile explain variations
in the heating season. Consumption other than heating led to systematically higher total
heat loss coefficient values. In Figure 1, the green line indicates the average value of the
entire year, and the red line indicates the average of the heating season. The average
value of the entire year was used in simulations because it better represents a base level of
heating consumption. The load profiles of customers included all forms of consumption;
therefore, other demands can be considered in addition to basic heating load, and from the
perspective of this study, they are positive errors. For example, the total heat loss coefficient
of 0.1 kW/Kmeans that a 10 ◦C heating temperature causes an approximately 1 kW heating
demand on average.
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Figure 1. Total heat loss coefficient of a random customer. Heating time (winter) is outside of the
June–August period (hours 3624–5808).

Figure 2 shows the calculated total heat loss coefficients for all customers. A few
customers had a total heat loss coefficient that was very high or very low, but the value
was approximately 0.1 kW/K for most customers. The average value of the total heat loss
coefficient was 0.0937 kW/K for the entire group. Frequently, the heat loss of a building is
calculated separately for each component. The size and materials of a building affect total
heat loss. A very high total heat loss coefficient can be the result of a very large building
or poor insulation. Some households in the study group could have had large sheds with
poor insulation that were heated electrically. A very low total heat loss coefficient can
mean that a building is very small with very good insulation and can also be the result
of some buildings having their basic heating implemented in a manner that does not rely
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on electrical heating (though they may have some extra electrical heating). Extremes are
rare and approximately 91.5% of customers’ total heat loss coefficients were in the range of
0.03–0.16 kW/K.
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Figure 2. Total heat loss coefficients of customers in the study group.

3.4. Total Heat Capacity

Figure 3 shows the distribution of total heat capacity for a random customer. Every
data point represents the change in consumption divided by the change in temperature
over the same hour. Blue marks indicate a negative change, when consumption increased
owing to decreasing outdoor temperature, and red marks indicate a positive change when
consumption decreased due to increased outdoor temperature. Additionally, Figure 3
shows the average values of negative and positive changes and the average value of all
changes, which were used as the total heat capacity of a customer in simulations. The
variation was observed to be high. In summer, many low values caused high temperature
changes with low heating demand. High values for the entire year were the result of
changes in other forms of consumption with low outdoor temperature changes. The
average value of the positive changes was slightly higher than the average value of negative
changes because the increasing heating load caused higher heat loss. The average value of
both changes provided a good estimate of the customer’s total heat capacity. A total heat
capacity of 1 kWh/K meant that the building could store as much heat as approximately
4800 kg of concrete.
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3.2. Weather Data

Openly available data from the Finnish Meteorological Institute (FMI) were used for
outdoor temperature data [40]. Temperature measurements were obtained for the area
where the study group customers resided. Measurement accuracy was 0.1 ◦C. When the
temperature is not measured immediately around the building, this causes an error in the
results as there could be differences in temperature between locations even when they are
very near to others. Nevertheless, the very accurate measurements of the FMI provided
useful information about the temperature in the studied area.

3.3. Total Heat Loss Coefficient

Coefficients (total heat loss coefficient and total heat capacity) were defined sepa-
rately for every customer. Figure 1 shows energy consumption per heating temperature
throughout a year for one random customer. We can observe that the value was within a
very narrow range in the heating season. There was no heating demand in the summer;
therefore, the value decreased to zero. In spring and autumn, when the heating tempera-
ture was low, the range was higher because the weight of other consumptions increased.
Consumption other than heating and daily changes in the load profile explain variations
in the heating season. Consumption other than heating led to systematically higher total
heat loss coefficient values. In Figure 1, the green line indicates the average value of the
entire year, and the red line indicates the average of the heating season. The average
value of the entire year was used in simulations because it better represents a base level of
heating consumption. The load profiles of customers included all forms of consumption;
therefore, other demands can be considered in addition to basic heating load, and from the
perspective of this study, they are positive errors. For example, the total heat loss coefficient
of 0.1 kW/Kmeans that a 10 ◦C heating temperature causes an approximately 1 kW heating
demand on average.
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Figure 1. Total heat loss coefficient of a random customer. Heating time (winter) is outside of the
June–August period (hours 3624–5808).

Figure 2 shows the calculated total heat loss coefficients for all customers. A few
customers had a total heat loss coefficient that was very high or very low, but the value
was approximately 0.1 kW/K for most customers. The average value of the total heat loss
coefficient was 0.0937 kW/K for the entire group. Frequently, the heat loss of a building is
calculated separately for each component. The size and materials of a building affect total
heat loss. A very high total heat loss coefficient can be the result of a very large building
or poor insulation. Some households in the study group could have had large sheds with
poor insulation that were heated electrically. A very low total heat loss coefficient can
mean that a building is very small with very good insulation and can also be the result
of some buildings having their basic heating implemented in a manner that does not rely
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on electrical heating (though they may have some extra electrical heating). Extremes are
rare and approximately 91.5% of customers’ total heat loss coefficients were in the range of
0.03–0.16 kW/K.
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3.4. Total Heat Capacity

Figure 3 shows the distribution of total heat capacity for a random customer. Every
data point represents the change in consumption divided by the change in temperature
over the same hour. Blue marks indicate a negative change, when consumption increased
owing to decreasing outdoor temperature, and red marks indicate a positive change when
consumption decreased due to increased outdoor temperature. Additionally, Figure 3
shows the average values of negative and positive changes and the average value of all
changes, which were used as the total heat capacity of a customer in simulations. The
variation was observed to be high. In summer, many low values caused high temperature
changes with low heating demand. High values for the entire year were the result of
changes in other forms of consumption with low outdoor temperature changes. The
average value of the positive changes was slightly higher than the average value of negative
changes because the increasing heating load caused higher heat loss. The average value of
both changes provided a good estimate of the customer’s total heat capacity. A total heat
capacity of 1 kWh/K meant that the building could store as much heat as approximately
4800 kg of concrete.

Energies 2023, 16, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 3. Distribution of total heat capacity for a random customer. 

The total heat capacities of all customers in the study group are shown in Figure 4. 
The average total heat capacity of all customers was 1.7184 kWh/K. A few customers had 
very high total heat capacity and a few customers had very low total heat capacity. The 
majority, approximately 91.5% of customers, had a total heat capacity between 0.6 and 3.0 
kWh/K. Total heat capacity values primarily depended on the size of the building and the 
construction materials used. 

 
Figure 4. Total heat capacity for customers in the study group. 

A building’s total heat capacity depends strongly on its total heat loss coefficient, as 
shown in Figure 5. In most cases, both coefficients changed by the same proportion. In 
Figure 5, the linear regression line is indicated, which intersects the average total heat 
capacity line and average total heat loss coefficient line at the same point. Customers 
whose points are above the regression line had higher heat capacity in proportion to heat 
loss than average, e.g., modern well-insulated buildings have very low heat losses as they 
have a large mass that can store heat. A couple of surprising observation were that the 
calculated points were near the linear regression line and variation was very low, alt-
hough the study group included buildings of different ages. The calculations indicate that 
all buildings with electrical heating have DR potential despite age or building type. 

Figure 3. Distribution of total heat capacity for a random customer.



Energies 2023, 16, 497 12 of 25

The total heat capacities of all customers in the study group are shown in Figure 4.
The average total heat capacity of all customers was 1.7184 kWh/K. A few customers had
very high total heat capacity and a few customers had very low total heat capacity. The
majority, approximately 91.5% of customers, had a total heat capacity between 0.6 and
3.0 kWh/K. Total heat capacity values primarily depended on the size of the building and
the construction materials used.
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Figure 4. Total heat capacity for customers in the study group.

A building’s total heat capacity depends strongly on its total heat loss coefficient, as
shown in Figure 5. In most cases, both coefficients changed by the same proportion. In
Figure 5, the linear regression line is indicated, which intersects the average total heat
capacity line and average total heat loss coefficient line at the same point. Customers whose
points are above the regression line had higher heat capacity in proportion to heat loss than
average, e.g., modern well-insulated buildings have very low heat losses as they have a
large mass that can store heat. A couple of surprising observation were that the calculated
points were near the linear regression line and variation was very low, although the study
group included buildings of different ages. The calculations indicate that all buildings with
electrical heating have DR potential despite age or building type.
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3.5. Example Case for Storing Surplus Energy in a Building

To demonstrate DR operation, we simulated a week’s data (2–8 March) for a random
customer with a 3 kWp PV system, and the results are shown in Figure 6. The blue line
shows the customer’s electricity consumption, and the red line shows PV production,
which was negative because it has a decreasing effect in terms of total load from the grid’s
perspective. The yellow line is the total load, taken from the sum of consumption and
production. We observed that the grid was fed for six days of the week, and this should be
avoided for economic reasons. The outdoor temperature varied between −1.2 and 6 ◦C
during the week. The random customer’s total heat loss coefficient was 0.1 kW/K and total
heat capacity was 1.7859 kWh/K, i.e., very close to average values. The green line shows
total load after the DR operation when all surplus energy was stored in the building’s
indoor heat. During this period, the indoor temperature varied between 21.00 and 21.76 ◦C,
i.e., all surplus energy could be stored with a maximum increase in indoor temperature of
only 0.76 ◦C. During this week, 6.59 kWh of surplus energy moved from grid feeding to
self-consumption.
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a week.

3.6. Validation of the DR Model

Indoor temperature changes in DR operations were calculated as presented above. For
validation, the changes in indoor temperature were measured in one typical electrically
heated detached house in Finland. From the electricity consumption of this customer, the
total heat loss coefficient was defined as 0.1273 kW/K and total heat capacity was defined
as 2.4559 kWh/K. These values are slightly higher than in average buildings but are still
close to the values of the main group of customers, as seen in Figure 5. The validation
test was performed two times. In day 1, the test was timed so that electric heating was
interrupted between 18:00 and 19:00, and in day 2 the period was 14:00–15:00. Indoor
temperature was measured an hour before the interruption and two hours afterwards
in 10 min intervals. Figure 7 presents the modeled and measured indoor and outdoor
temperatures during the test period, so the interruption is timed between 1:00 and 2:00.
In day 1, the outdoor temperature was about −6 ◦C, and in day 2 it was around 0.5 ◦C.
During these periods, there was a lot of other electric consumption that may have led
to errors in modeling, and there were also other possible error sources such as outdoor
openings which could thus affect indoor temperatures. Considering these error sources, the
measured indoor temperatures follow the modeled indoor temperatures very well. This
validation proves that the introduced simulation model also works in practice.
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The total heat capacities of all customers in the study group are shown in Figure 4.
The average total heat capacity of all customers was 1.7184 kWh/K. A few customers had
very high total heat capacity and a few customers had very low total heat capacity. The
majority, approximately 91.5% of customers, had a total heat capacity between 0.6 and
3.0 kWh/K. Total heat capacity values primarily depended on the size of the building and
the construction materials used.
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Figure 4. Total heat capacity for customers in the study group.

A building’s total heat capacity depends strongly on its total heat loss coefficient, as
shown in Figure 5. In most cases, both coefficients changed by the same proportion. In
Figure 5, the linear regression line is indicated, which intersects the average total heat
capacity line and average total heat loss coefficient line at the same point. Customers whose
points are above the regression line had higher heat capacity in proportion to heat loss than
average, e.g., modern well-insulated buildings have very low heat losses as they have a
large mass that can store heat. A couple of surprising observation were that the calculated
points were near the linear regression line and variation was very low, although the study
group included buildings of different ages. The calculations indicate that all buildings with
electrical heating have DR potential despite age or building type.

Energies 2023, 16, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 5. Customer heat storage features for demand response operations. 

3.5. Example Case for Storing Surplus Energy in a Building 
To demonstrate DR operation, we simulated a week’s data (2–8 March) for a random 

customer with a 3 kWp PV system, and the results are shown in Figure 6. The blue line 
shows the customer’s electricity consumption, and the red line shows PV production, 
which was negative because it has a decreasing effect in terms of total load from the grid’s 
perspective. The yellow line is the total load, taken from the sum of consumption and 
production. We observed that the grid was fed for six days of the week, and this should 
be avoided for economic reasons. The outdoor temperature varied between −1.2 and 6 °C 
during the week. The random customer’s total heat loss coefficient was 0.1 kW/K and total 
heat capacity was 1.7859 kWh/K, i.e., very close to average values. The green line shows 
total load after the DR operation when all surplus energy was stored in the building’s 
indoor heat. During this period, the indoor temperature varied between 21.00 and 21.76 
°C, i.e., all surplus energy could be stored with a maximum increase in indoor tempera-
ture of only 0.76 °C. During this week, 6.59 kWh of surplus energy moved from grid feed-
ing to self-consumption. 

 
Figure 6. Storage of a random customer’s surplus energy within the building over the course of a 
week. 

3.6. Validation of the DR Model 
 Indoor temperature changes in DR operations were calculated as presented above. 

For validation, the changes in indoor temperature were measured in one typical electri-
cally heated detached house in Finland. From the electricity consumption of this customer, 

Figure 5. Customer heat storage features for demand response operations.

Energies 2023, 16, 497 13 of 25

3.5. Example Case for Storing Surplus Energy in a Building

To demonstrate DR operation, we simulated a week’s data (2–8 March) for a random
customer with a 3 kWp PV system, and the results are shown in Figure 6. The blue line
shows the customer’s electricity consumption, and the red line shows PV production,
which was negative because it has a decreasing effect in terms of total load from the grid’s
perspective. The yellow line is the total load, taken from the sum of consumption and
production. We observed that the grid was fed for six days of the week, and this should be
avoided for economic reasons. The outdoor temperature varied between −1.2 and 6 ◦C
during the week. The random customer’s total heat loss coefficient was 0.1 kW/K and total
heat capacity was 1.7859 kWh/K, i.e., very close to average values. The green line shows
total load after the DR operation when all surplus energy was stored in the building’s
indoor heat. During this period, the indoor temperature varied between 21.00 and 21.76 ◦C,
i.e., all surplus energy could be stored with a maximum increase in indoor temperature of
only 0.76 ◦C. During this week, 6.59 kWh of surplus energy moved from grid feeding to
self-consumption.
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a week.

3.6. Validation of the DR Model

Indoor temperature changes in DR operations were calculated as presented above. For
validation, the changes in indoor temperature were measured in one typical electrically
heated detached house in Finland. From the electricity consumption of this customer, the
total heat loss coefficient was defined as 0.1273 kW/K and total heat capacity was defined
as 2.4559 kWh/K. These values are slightly higher than in average buildings but are still
close to the values of the main group of customers, as seen in Figure 5. The validation
test was performed two times. In day 1, the test was timed so that electric heating was
interrupted between 18:00 and 19:00, and in day 2 the period was 14:00–15:00. Indoor
temperature was measured an hour before the interruption and two hours afterwards
in 10 min intervals. Figure 7 presents the modeled and measured indoor and outdoor
temperatures during the test period, so the interruption is timed between 1:00 and 2:00.
In day 1, the outdoor temperature was about −6 ◦C, and in day 2 it was around 0.5 ◦C.
During these periods, there was a lot of other electric consumption that may have led
to errors in modeling, and there were also other possible error sources such as outdoor
openings which could thus affect indoor temperatures. Considering these error sources, the
measured indoor temperatures follow the modeled indoor temperatures very well. This
validation proves that the introduced simulation model also works in practice.
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4. Simulations of Increasing PV Self-Consumption
4.1. Variable: Increase in Self-Consumption

With simulations, we studied the benefits that could be obtained with DR operations
and the size of the BESS required for the same level of benefits. Additionally, we studied
the possibility of using DR and a BESS together in the same building. The important
question is whether the two technologies are competing against each other. To compare
these technologies and their benefits, the increase in self-consumption (kWh) per year was
a key variable. This was calculated as the average value of the decreased energy sold to the
markets and the decreased energy purchased from the markets. Not all decreased energy
sold to markets decreases the energy purchased from markets, as some of the energy is lost
in heat losses in the DR operation. Therefore, the average value was the studied variable.

The increase in self-production is also a useful variable for studying BESS operations.
The use of a BESS results in losses; therefore, the average value must be used, similar to DR.
Because this variable is similar for both technologies, it can be used for comparison. We
can first calculate the increase in self-consumption for DR operation and then determine
the size of the BESS when the increase in self-consumption is similar.

4.2. Demand Response for Increasing Solar Power Self-Consumption

DR operations were studied with two different sizes of PV systems, which were 3 and
6 kWp. These sizes correspond to the typical sizes of PV systems in detached houses [4].
The smaller 3 kWp system is a traditional size in which grid feeding is avoided, and the
larger 6 kWp system is an economically optimal size for PV systems. The exact optimal
size must be determined separately for every customer using an electricity pricing model,
but a constant size was used to make the results comparable. Two different levels of DR
operations were studied: the indoor temperature could increase by a maximum of either 1
or 2 ◦C from a basic level of 21 ◦C. The results are presented in Figure 8, where customers
are arranged in order of size according to the increase in the self-consumption. A few
customers had a much higher increase in self-consumption than others, but the majority of
the study group had very similar results.
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The average yearly increase in self-consumption with 3 kWp PV panels was 187.5 kWh
with a maximum DR of 1 ◦C and 252.5 kWh with a maximum DR of 2 ◦C. When a 6 kWp
PV system was used, the average values were 217.6 kWh with a maximum DR of 1 ◦C and
273.4 kWh with a maximum DR of 2 ◦C. The shapes of the curves in Figure 8 show that a
group of customers (approximately 600 customers) received higher benefits from the DR
operation with the 6 kWp PV system than with the 3 kWp PV system. These customers’
load profiles facilitated the storage of surplus energy from the larger PV system as heat
in the building. Other customers could not receive higher benefits from DR with a larger
PV system. The increase in self-consumption for these customers was lower with the
6 kWp PV system than with the 3 kWp PV system because the larger PV system resulted in
lower consumption in the load profile, which could thus be fulfilled from the stored heat.
For clarification, Figure 9 shows annual PV production with 3 kWp and 6 kWp systems
and customers’ total consumption when they are ordered similarly to how they are in
Figure 8. Total consumption affects the increase in self-consumption, but there is also a lot
of variation because the customers’ thermal coefficients and load profile affect the results.
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When the DR limit increased from 1 to 2 ◦C, all customers gained more benefits with
both PV sizes, but the increase due to a 2 ◦C increase was much lower than that of a 1 ◦C
increase. The increase in self-consumption from the 2 ◦C increase was only 0.35% with the
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4. Simulations of Increasing PV Self-Consumption
4.1. Variable: Increase in Self-Consumption

With simulations, we studied the benefits that could be obtained with DR operations
and the size of the BESS required for the same level of benefits. Additionally, we studied
the possibility of using DR and a BESS together in the same building. The important
question is whether the two technologies are competing against each other. To compare
these technologies and their benefits, the increase in self-consumption (kWh) per year was
a key variable. This was calculated as the average value of the decreased energy sold to the
markets and the decreased energy purchased from the markets. Not all decreased energy
sold to markets decreases the energy purchased from markets, as some of the energy is lost
in heat losses in the DR operation. Therefore, the average value was the studied variable.

The increase in self-production is also a useful variable for studying BESS operations.
The use of a BESS results in losses; therefore, the average value must be used, similar to DR.
Because this variable is similar for both technologies, it can be used for comparison. We
can first calculate the increase in self-consumption for DR operation and then determine
the size of the BESS when the increase in self-consumption is similar.

4.2. Demand Response for Increasing Solar Power Self-Consumption

DR operations were studied with two different sizes of PV systems, which were 3 and
6 kWp. These sizes correspond to the typical sizes of PV systems in detached houses [4].
The smaller 3 kWp system is a traditional size in which grid feeding is avoided, and the
larger 6 kWp system is an economically optimal size for PV systems. The exact optimal
size must be determined separately for every customer using an electricity pricing model,
but a constant size was used to make the results comparable. Two different levels of DR
operations were studied: the indoor temperature could increase by a maximum of either 1
or 2 ◦C from a basic level of 21 ◦C. The results are presented in Figure 8, where customers
are arranged in order of size according to the increase in the self-consumption. A few
customers had a much higher increase in self-consumption than others, but the majority of
the study group had very similar results.
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The average yearly increase in self-consumption with 3 kWp PV panels was 187.5 kWh
with a maximum DR of 1 ◦C and 252.5 kWh with a maximum DR of 2 ◦C. When a 6 kWp
PV system was used, the average values were 217.6 kWh with a maximum DR of 1 ◦C and
273.4 kWh with a maximum DR of 2 ◦C. The shapes of the curves in Figure 8 show that a
group of customers (approximately 600 customers) received higher benefits from the DR
operation with the 6 kWp PV system than with the 3 kWp PV system. These customers’
load profiles facilitated the storage of surplus energy from the larger PV system as heat
in the building. Other customers could not receive higher benefits from DR with a larger
PV system. The increase in self-consumption for these customers was lower with the
6 kWp PV system than with the 3 kWp PV system because the larger PV system resulted in
lower consumption in the load profile, which could thus be fulfilled from the stored heat.
For clarification, Figure 9 shows annual PV production with 3 kWp and 6 kWp systems
and customers’ total consumption when they are ordered similarly to how they are in
Figure 8. Total consumption affects the increase in self-consumption, but there is also a lot
of variation because the customers’ thermal coefficients and load profile affect the results.
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When the DR limit increased from 1 to 2 ◦C, all customers gained more benefits with
both PV sizes, but the increase due to a 2 ◦C increase was much lower than that of a 1 ◦C
increase. The increase in self-consumption from the 2 ◦C increase was only 0.35% with the
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3 kWp PV system and 0.26% with the 6 kWp PV system when compared to the increase in
self-consumption that resulted from a 1 ◦C increase. When indoor temperature variation
increased, it caused more discomfort for customers and the increase in benefits decreased;
therefore, the limits for indoor temperature variation must be selected wisely.

We studied the effects of the features of customers’ buildings on the increase in self-
consumption. Figures 10 and 11 show the same results, but the x-axis shows the customer’s
total heat loss coefficient in Figure 10 and the customer’s total heat capacity in Figure 11.
Both features affected increases in self-consumption in a similar manner. An approximately
0.1 kW/K total heat loss coefficient and 2 kWh/K total heat capacity were the limit values
that divided customers into those who received higher benefits from DR operation with the
larger PV system and those who did not. The results indicated that the higher total heat loss
coefficient and higher total heat capacity provided customers with higher benefits from the
DR operation, though limits existed at which benefits no longer increased. A small group
of customers obtained clearly higher benefits from the DR operation with a low total heat
loss coefficient and low total heat capacity. These customers had low base consumption but
repeated high load peaks, which caused systematic errors in the simulation results.
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4.3. Comparison of Demand Response and Battery Energy Storage

The results of the DR operations indicated the value of the increase in self-consumption,
and the aim of the BESS simulations was to determine the size of the battery when the
increase in self-consumption was similar to that of the DR operation. The initial battery
size was set to 100 Wh and if the increase in self-consumption was lower than that of the
DR operation, the size of the battery was increased in 10 Wh increments until the increase
in self-consumption was a maximum distance of 5 kWh away from the value of the DR
operation. The results for all four cases are shown in Figure 12. A few customers required
a higher storage capacity to reach a similar increase in self-consumption to that of the
DR operation, but the main research group required only a very small storage capacity in
this regard. The average values for battery sizes corresponding to DR operations were a
maximum of 1 ◦C DR and 0.83 kWh when the PV system size was 3 kWp and 0.65 kWh
when the PV system size was 6 kWp. Under DR operations, the indoor temperature could
increase by a maximum of 2 ◦C, and the average values were 1.67 kWh with the 3 kWp
PV system and 0.91 kWh with the 6 kWp PV system. The smaller PV system required a
higher BESS capacity on average to reach a similar increase in self-consumption to that
achieved with DR. The reason for this is that the BESS must use a large amount of energy
with the 3 kWp PV system to reach the set increase in self-consumption because the amount
of surplus energy isa low. With the 6 kWp PV system, the amount of surplus energy is
large, and the BESS could thus be used efficiently.
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The curves of these cases appear to be very similar, except in the case of a maximum
of 2 ◦C DR with the 3 kWp PV system, which is quite different to the others. This inconsis-
tency required further close study. Therefore, Figure 13 shows the results for battery size
(x-axis) and increases in self-consumption (y-axis), which was used to define the battery
size. We can observe that with a maximum of 2 ◦C DR and a 3 kWp PV system, a large
group of customers required high battery capacity (3–6 kWh) to reach an approximately
300–400 kWh increase in self-consumption. These values representing increases in self-
consumption were the maximum values for these customers that could be reached with the
BESS or DR, and this value was more difficult to attain with BESSs because BESSs cause
more losses than DR. In simulations, DR caused only negligible losses with a maximum
1 ◦C and maximum 2 ◦C indoor temperature change, while BESSs caused significant losses.
These customers were not valid for the comparison study between DR and BESSs with the
3 kWp PV system, but this result indicated the importance of sizing the PV system and the
BESS correctly for the load profiles of customers. Additionally, Figure 13 shows that the
increase in self-consumption increased rapidly when the size of the battery increased, but
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3 kWp PV system and 0.26% with the 6 kWp PV system when compared to the increase in
self-consumption that resulted from a 1 ◦C increase. When indoor temperature variation
increased, it caused more discomfort for customers and the increase in benefits decreased;
therefore, the limits for indoor temperature variation must be selected wisely.

We studied the effects of the features of customers’ buildings on the increase in self-
consumption. Figures 10 and 11 show the same results, but the x-axis shows the customer’s
total heat loss coefficient in Figure 10 and the customer’s total heat capacity in Figure 11.
Both features affected increases in self-consumption in a similar manner. An approximately
0.1 kW/K total heat loss coefficient and 2 kWh/K total heat capacity were the limit values
that divided customers into those who received higher benefits from DR operation with the
larger PV system and those who did not. The results indicated that the higher total heat loss
coefficient and higher total heat capacity provided customers with higher benefits from the
DR operation, though limits existed at which benefits no longer increased. A small group
of customers obtained clearly higher benefits from the DR operation with a low total heat
loss coefficient and low total heat capacity. These customers had low base consumption but
repeated high load peaks, which caused systematic errors in the simulation results.
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4.3. Comparison of Demand Response and Battery Energy Storage

The results of the DR operations indicated the value of the increase in self-consumption,
and the aim of the BESS simulations was to determine the size of the battery when the
increase in self-consumption was similar to that of the DR operation. The initial battery
size was set to 100 Wh and if the increase in self-consumption was lower than that of the
DR operation, the size of the battery was increased in 10 Wh increments until the increase
in self-consumption was a maximum distance of 5 kWh away from the value of the DR
operation. The results for all four cases are shown in Figure 12. A few customers required
a higher storage capacity to reach a similar increase in self-consumption to that of the
DR operation, but the main research group required only a very small storage capacity in
this regard. The average values for battery sizes corresponding to DR operations were a
maximum of 1 ◦C DR and 0.83 kWh when the PV system size was 3 kWp and 0.65 kWh
when the PV system size was 6 kWp. Under DR operations, the indoor temperature could
increase by a maximum of 2 ◦C, and the average values were 1.67 kWh with the 3 kWp
PV system and 0.91 kWh with the 6 kWp PV system. The smaller PV system required a
higher BESS capacity on average to reach a similar increase in self-consumption to that
achieved with DR. The reason for this is that the BESS must use a large amount of energy
with the 3 kWp PV system to reach the set increase in self-consumption because the amount
of surplus energy isa low. With the 6 kWp PV system, the amount of surplus energy is
large, and the BESS could thus be used efficiently.
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The curves of these cases appear to be very similar, except in the case of a maximum
of 2 ◦C DR with the 3 kWp PV system, which is quite different to the others. This inconsis-
tency required further close study. Therefore, Figure 13 shows the results for battery size
(x-axis) and increases in self-consumption (y-axis), which was used to define the battery
size. We can observe that with a maximum of 2 ◦C DR and a 3 kWp PV system, a large
group of customers required high battery capacity (3–6 kWh) to reach an approximately
300–400 kWh increase in self-consumption. These values representing increases in self-
consumption were the maximum values for these customers that could be reached with the
BESS or DR, and this value was more difficult to attain with BESSs because BESSs cause
more losses than DR. In simulations, DR caused only negligible losses with a maximum
1 ◦C and maximum 2 ◦C indoor temperature change, while BESSs caused significant losses.
These customers were not valid for the comparison study between DR and BESSs with the
3 kWp PV system, but this result indicated the importance of sizing the PV system and the
BESS correctly for the load profiles of customers. Additionally, Figure 13 shows that the
increase in self-consumption increased rapidly when the size of the battery increased, but
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there was a clear limit at which the increase stopped. With the 3 kWp PV system, this limit
was approximately 200–400 kWh, and with the 6 kWp PV system, it was approximately
500–700 kWh. Most customers could reach this limit with a very small BESS size. With
the 3 and 6 kWp PV systems, the BESS size was approximately 1 and 2 kWh, respectively.
These results show that, for sizing the BESS, the 2 kWh capacity is suitable in most cases.
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4.4. Using Demand Response and Battery Energy Storage Together

One of the main research questions in this study was whether the DR and BESS
operations compete against each other. Is it possible to use both controls simultaneously
such that one does not impair the other’s potential? The use of DR and BESS together was
studied with a 2 kWh BESS and a DR operation in which the indoor temperature could
change by a maximum of 1 or 2 ◦C. This combination can be implemented by using the
DR operation as the primary control and then using the BESS under surplus energy as the
secondary control, or vice versa. The potential of DR depends on the demand for heating
power; therefore, the DR is only rarely available. If the BESS is the primary control, the
amount of time slots where DR can be used can decrease, and if the DR operation is primary,
the possibilities for using the BESS can decrease. It is very interesting to compare which
primary control is more disadvantageous than the other. The results of these combination
simulations can be compared to the sum of results from separate simulations of DR and
BESS operations.

The results of the comparison are presented in Figures 14 and 15, which show the
results for a maximum 1 and 2 ◦C DR, respectively. Two different PV system sizes (3 and
6 kWp) were used; therefore, the initial settings formed four different variations (two DR
levels and two PV sizes). With every variation in settings, we simulated four different cases:
primary controls with DR and a BESS and the secondary controls of both. The secondary
controls were simulated using the results of primary controls as the initial load profile.
Thus, in the results, the combination controls were the sums of the results from the primary
and secondary controls. The case in which DR was primary and the BESS secondary is
denoted as DR&BESS, and the case in which the BESS was primary and DR secondary is
denoted as BESS&DR. For comparison, the sum of both primary controls DR+BESS, which
represents the theoretical maximum, is also shown.
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Figure 14. Comparison boxplot of customers’ increase in self-consumption with a maximum 1 ◦C DR
and a 3 or 6 kWp PV system. The results from both (BESS and DR) separate controls are summarized
as DR+BESS, combined controls where the DR is the primary control and the BESS is the secondary
control are summarized as DR&BESS, and combined controls where the BESS is the primary control
and DR is the secondary control are summarized as BESS&DR. The boxplot shows the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
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Figure 15. Comparison boxplot of customers’ increase in self-consumption with a maximum 2 ◦C
DR and a 3 kWp or 6 kWp PV system. The results from both (BESS and DR) separate controls
are summarized as DR+BESS, combined controls where the DR is the primary control and the
BESS is the secondary control are summarized as DR&BESS, and combined controls where the
BESS is the primary control and the DR is the secondary control are summarized as BESS&DR. The
boxplot shows the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.

The results from all cases and variations in settings clearly show that DR and BESS
operations can be used together. When the PV system size was 3 kWp, the combination
controls produced a lower increase in self-consumption than the sum of separate controls,
but the difference was very low. When the size of the PV system doubled to 6 kWh, the
differences were even lower because more surplus energy was then available. A surprising
result was that with a maximum 2 ◦C DR level and 6 kWp PV system size, the combination
BESS&DR had an even higher median value than the sum of separate controls. The reason
for this was the limitations placed upon the DR operation. The capacity and requirement for
DR operation was constantly changing when the outdoor temperature and PV production
changed continually. The same fluctuation in indoor temperature resulted in different



Energies 2023, 16, 497 18 of 25

there was a clear limit at which the increase stopped. With the 3 kWp PV system, this limit
was approximately 200–400 kWh, and with the 6 kWp PV system, it was approximately
500–700 kWh. Most customers could reach this limit with a very small BESS size. With
the 3 and 6 kWp PV systems, the BESS size was approximately 1 and 2 kWh, respectively.
These results show that, for sizing the BESS, the 2 kWh capacity is suitable in most cases.
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4.4. Using Demand Response and Battery Energy Storage Together

One of the main research questions in this study was whether the DR and BESS
operations compete against each other. Is it possible to use both controls simultaneously
such that one does not impair the other’s potential? The use of DR and BESS together was
studied with a 2 kWh BESS and a DR operation in which the indoor temperature could
change by a maximum of 1 or 2 ◦C. This combination can be implemented by using the
DR operation as the primary control and then using the BESS under surplus energy as the
secondary control, or vice versa. The potential of DR depends on the demand for heating
power; therefore, the DR is only rarely available. If the BESS is the primary control, the
amount of time slots where DR can be used can decrease, and if the DR operation is primary,
the possibilities for using the BESS can decrease. It is very interesting to compare which
primary control is more disadvantageous than the other. The results of these combination
simulations can be compared to the sum of results from separate simulations of DR and
BESS operations.

The results of the comparison are presented in Figures 14 and 15, which show the
results for a maximum 1 and 2 ◦C DR, respectively. Two different PV system sizes (3 and
6 kWp) were used; therefore, the initial settings formed four different variations (two DR
levels and two PV sizes). With every variation in settings, we simulated four different cases:
primary controls with DR and a BESS and the secondary controls of both. The secondary
controls were simulated using the results of primary controls as the initial load profile.
Thus, in the results, the combination controls were the sums of the results from the primary
and secondary controls. The case in which DR was primary and the BESS secondary is
denoted as DR&BESS, and the case in which the BESS was primary and DR secondary is
denoted as BESS&DR. For comparison, the sum of both primary controls DR+BESS, which
represents the theoretical maximum, is also shown.

Energies 2023, 16, 497 19 of 25Energies 2023, 16, x FOR PEER REVIEW 20 of 27 
 

 

 
Figure 14. Comparison boxplot of customers’ increase in self-consumption with a maximum 1 °C 
DR and a 3 or 6 kWp PV system. The results from both (BESS and DR) separate controls are sum-
marized as DR+BESS, combined controls where the DR is the primary control and the BESS is the 
secondary control are summarized as DR&BESS, and combined controls where the BESS is the pri-
mary control and DR is the secondary control are summarized as BESS&DR. The boxplot shows the 
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. 

 
Figure 15. Comparison boxplot of customers’ increase in self-consumption with a maximum 2 °C 
DR and a 3 kWp or 6 kWp PV system. The results from both (BESS and DR) separate controls are 
summarized as DR+BESS, combined controls where the DR is the primary control and the BESS is 
the secondary control are summarized as DR&BESS, and combined controls where the BESS is the 
primary control and the DR is the secondary control are summarized as BESS&DR. The boxplot 
shows the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. 

The results from all cases and variations in settings clearly show that DR and BESS 
operations can be used together. When the PV system size was 3 kWp, the combination 
controls produced a lower increase in self-consumption than the sum of separate controls, 
but the difference was very low. When the size of the PV system doubled to 6 kWh, the 
differences were even lower because more surplus energy was then available. A surpris-
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in different increases in self-consumption when the BESS operation was performed first 
and a large amount of surplus energy remained, and the required DR operations may be 

Figure 14. Comparison boxplot of customers’ increase in self-consumption with a maximum 1 ◦C DR
and a 3 or 6 kWp PV system. The results from both (BESS and DR) separate controls are summarized
as DR+BESS, combined controls where the DR is the primary control and the BESS is the secondary
control are summarized as DR&BESS, and combined controls where the BESS is the primary control
and DR is the secondary control are summarized as BESS&DR. The boxplot shows the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
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Figure 15. Comparison boxplot of customers’ increase in self-consumption with a maximum 2 ◦C
DR and a 3 kWp or 6 kWp PV system. The results from both (BESS and DR) separate controls
are summarized as DR+BESS, combined controls where the DR is the primary control and the
BESS is the secondary control are summarized as DR&BESS, and combined controls where the
BESS is the primary control and the DR is the secondary control are summarized as BESS&DR. The
boxplot shows the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.

The results from all cases and variations in settings clearly show that DR and BESS
operations can be used together. When the PV system size was 3 kWp, the combination
controls produced a lower increase in self-consumption than the sum of separate controls,
but the difference was very low. When the size of the PV system doubled to 6 kWh, the
differences were even lower because more surplus energy was then available. A surprising
result was that with a maximum 2 ◦C DR level and 6 kWp PV system size, the combination
BESS&DR had an even higher median value than the sum of separate controls. The reason
for this was the limitations placed upon the DR operation. The capacity and requirement for
DR operation was constantly changing when the outdoor temperature and PV production
changed continually. The same fluctuation in indoor temperature resulted in different
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increases in self-consumption when the BESS operation was performed first and a large
amount of surplus energy remained, and the required DR operations may be more suitable
from the perspective of increasing self-consumption than cases without the BESS. This
enables some cases of the BESS&DR combination to produce a higher increase in self-
consumption than the theoretical summation of both controls (DR+BESS). Even the exact
increase in self-consumption depends on the load profile of the customer; these results
show clearly that if DR and BESS operation are used simultaneously, it is better to use the
BESS as the primary control and DR as the secondary control.

5. Analysis of Demand Response Potential in the Grid

In the simulations, we studied individual customers’ potential to store surplus PV
production through DR or BESS operations. Additionally, the presented method enables us
to evaluate DR possibilities in large groups of customers. If customers’ DR potential were
centrally controlled, it could be utilized for everyone’s benefit, e.g., a DSO could avoid high
peaks or an energy retailer could shift load to cheaper hours. There are two main questions
for the DR potential of the customer group. First, how much flexible power is available?
Second, how long can the load flex? The heating power of flexible buildings depends on the
outdoor temperature; thus, it varies significantly. Figure 16 shows the total hourly heating
power of the entire 1525 customer group, which is the flexible power that can be cut in a
centrally controlled DR operation if required. This depends on the outdoor temperature;
therefore, the temperature limits are presented in Figure 16. In the geographical area where
the studied customers lived in 2015, there were 1960 h where the outdoor temperature was
below 0 ◦C, and the heating power of the study group was at least 2.3 MW. This is the
power that can be cut by interrupting electric heating in these buildings. For the coldest
hour of the year, heating power was 5.7 MW, which was the maximum DR capacity.

Energies 2023, 16, x FOR PEER REVIEW 21 of 27 
 

 

more suitable from the perspective of increasing self-consumption than cases without the 
BESS. This enables some cases of the BESS&DR combination to produce a higher increase 
in self-consumption than the theoretical summation of both controls (DR+BESS). Even the 
exact increase in self-consumption depends on the load profile of the customer; these re-
sults show clearly that if DR and BESS operation are used simultaneously, it is better to 
use the BESS as the primary control and DR as the secondary control. 

5. Analysis of Demand Response Potential in the Grid 
In the simulations, we studied individual customers’ potential to store surplus PV 

production through DR or BESS operations. Additionally, the presented method enables 
us to evaluate DR possibilities in large groups of customers. If customers’ DR potential 
were centrally controlled, it could be utilized for everyone’s benefit, e.g., a DSO could 
avoid high peaks or an energy retailer could shift load to cheaper hours. There are two 
main questions for the DR potential of the customer group. First, how much flexible power 
is available? Second, how long can the load flex? The heating power of flexible buildings 
depends on the outdoor temperature; thus, it varies significantly. Figure 16 shows the 
total hourly heating power of the entire 1525 customer group, which is the flexible power 
that can be cut in a centrally controlled DR operation if required. This depends on the 
outdoor temperature; therefore, the temperature limits are presented in Figure 16. In the 
geographical area where the studied customers lived in 2015, there were 1960 h where the 
outdoor temperature was below 0 °C, and the heating power of the study group was at 
least 2.3 MW. This is the power that can be cut by interrupting electric heating in these 
buildings. For the coldest hour of the year, heating power was 5.7 MW, which was the 
maximum DR capacity. 

 
Figure 16. Total heating power of all 1525 customers in the study group for every hour of the year 
in descending order with six dashed lines corresponding to different outdoor temperatures. 

The question of how long the heating load could be interrupted also needed to be 
answered. This question was answered by studying the decreasing indoor temperatures 
in the studied buildings. The initial temperature was set to 21 °C in all buildings, and the 
heating was then interrupted for an hour. Figure 17 shows the percentage of customers 
that could allow their heating power to be interrupted without the indoor temperature 
decreasing by more than the DR limit at any hour of the year. There were four DR limits, 
which were 2, 1.5, 1, and 0.5 °C. If indoor temperature decreased by a maximum of 2 °C, 
there were 8535 h of the year where 100% of customers could tolerate a maximum of an 
hour of heating power interruption. This also means that only 225 h in 2015 were very 
cold (under −15 °C), and that only some customers’ indoor temperature decreased by 
more than 2 °C during the hour-long heating power interruption. If the DR limit is tighter, 

Figure 16. Total heating power of all 1525 customers in the study group for every hour of the year in
descending order with six dashed lines corresponding to different outdoor temperatures.

The question of how long the heating load could be interrupted also needed to be
answered. This question was answered by studying the decreasing indoor temperatures
in the studied buildings. The initial temperature was set to 21 ◦C in all buildings, and the
heating was then interrupted for an hour. Figure 17 shows the percentage of customers
that could allow their heating power to be interrupted without the indoor temperature
decreasing by more than the DR limit at any hour of the year. There were four DR limits,
which were 2, 1.5, 1, and 0.5 ◦C. If indoor temperature decreased by a maximum of 2 ◦C,
there were 8535 h of the year where 100% of customers could tolerate a maximum of an
hour of heating power interruption. This also means that only 225 h in 2015 were very cold
(under−15 ◦C), and that only some customers’ indoor temperature decreased by more than
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2 ◦C during the hour-long heating power interruption. If the DR limit is tighter, the amount
of hours where all customers can tolerate heating power interruption is much lower.

Energies 2023, 16, x FOR PEER REVIEW 22 of 27 
 

 

the amount of hours where all customers can tolerate heating power interruption is much 
lower. 

 
Figure 17. Percentage of customers whose indoor temperatures do not decrease by more than the 
DR limit (2, 1.5, 1, and 0.5 °C) during an hour-long heating power interruption. The hours of the 
year are sorted in ascending order by outdoor temperature and the six vertical lines correspond to 
different outdoor temperatures. 

Figure 17 shows that when the outdoor temperature is very cold, a customer’s indoor 
temperature can decrease rapidly. However, approximately 7% of customers were able to 
tolerate an hour-long heating power interruption (less than a 2 °C decrease in indoor tem-
perature) during the coldest hour of the year. When the results in Figures 16 and 17 are 
examined together, we can observe when flexibility is available with different DR limits. 
If the DR limit is a maximum of 1 °C for an outdoor temperature of 0 °C, approximately 
2.3 MW of flexibility is available; however, when the outdoor temperature decreases, the 
amount of flexibility decreases rapidly (even when heating load increases), as customers 
do not tolerate any more interruption to heating power. 

6. Discussion 
The motivation for this study was a comparison between DR operations and battery 

operations. The approach toward studying DR operations implies that studies with few 
modeled buildings are insufficient in terms of sample size. In battery operations, the load 
profile of the customer is strongly affected; therefore, variations in load profiles must be 
widened in research. This approach provides a novel method for studying the DR poten-
tial of a large study group. This method requires only weather and consumption data, 
which makes it very useful. Knowledge of customers’ heating systems or building sizes 
or types is not required. Aggregators who offer DR operation services can approximate 
the DR potential of customers using this method. This method is also very useful for re-
searchers because it facilitates many future studies, e.g., coefficients of customers’ heating 
features could be used to form load forecasting models or approximations of the DR po-
tential of all buildings in a studied area. Coefficients defined from historical data can be 
used for forecasting customers’ heating load with forecasted temperatures. 

In this study, the comparison of DR and battery operations focused only on increas-
ing PV self-consumption, and only heating demand was used in the DR operation. These 
two selections were made for multiple reasons. Increasing PV consumption is the most 
used control target for batteries and is available to most customers, while also being more 
profitable in most cases [41]. Additionally, the combination of different control targets 
causes a loss of benefits due to inaccurate load forecasts. The use of different control tar-
gets is a topic that could be explored in future research. 

Figure 17. Percentage of customers whose indoor temperatures do not decrease by more than the DR
limit (2, 1.5, 1, and 0.5 ◦C) during an hour-long heating power interruption. The hours of the year are
sorted in ascending order by outdoor temperature and the six vertical lines correspond to different
outdoor temperatures.

Figure 17 shows that when the outdoor temperature is very cold, a customer’s indoor
temperature can decrease rapidly. However, approximately 7% of customers were able
to tolerate an hour-long heating power interruption (less than a 2 ◦C decrease in indoor
temperature) during the coldest hour of the year. When the results in Figures 16 and 17 are
examined together, we can observe when flexibility is available with different DR limits.
If the DR limit is a maximum of 1 ◦C for an outdoor temperature of 0 ◦C, approximately
2.3 MW of flexibility is available; however, when the outdoor temperature decreases, the
amount of flexibility decreases rapidly (even when heating load increases), as customers
do not tolerate any more interruption to heating power.

6. Discussion

The motivation for this study was a comparison between DR operations and battery
operations. The approach toward studying DR operations implies that studies with few
modeled buildings are insufficient in terms of sample size. In battery operations, the load
profile of the customer is strongly affected; therefore, variations in load profiles must be
widened in research. This approach provides a novel method for studying the DR potential
of a large study group. This method requires only weather and consumption data, which
makes it very useful. Knowledge of customers’ heating systems or building sizes or types
is not required. Aggregators who offer DR operation services can approximate the DR
potential of customers using this method. This method is also very useful for researchers
because it facilitates many future studies, e.g., coefficients of customers’ heating features
could be used to form load forecasting models or approximations of the DR potential of
all buildings in a studied area. Coefficients defined from historical data can be used for
forecasting customers’ heating load with forecasted temperatures.

In this study, the comparison of DR and battery operations focused only on increasing
PV self-consumption, and only heating demand was used in the DR operation. These
two selections were made for multiple reasons. Increasing PV consumption is the most
used control target for batteries and is available to most customers, while also being more
profitable in most cases [41]. Additionally, the combination of different control targets
causes a loss of benefits due to inaccurate load forecasts. The use of different control targets
is a topic that could be explored in future research.
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increases in self-consumption when the BESS operation was performed first and a large
amount of surplus energy remained, and the required DR operations may be more suitable
from the perspective of increasing self-consumption than cases without the BESS. This
enables some cases of the BESS&DR combination to produce a higher increase in self-
consumption than the theoretical summation of both controls (DR+BESS). Even the exact
increase in self-consumption depends on the load profile of the customer; these results
show clearly that if DR and BESS operation are used simultaneously, it is better to use the
BESS as the primary control and DR as the secondary control.

5. Analysis of Demand Response Potential in the Grid

In the simulations, we studied individual customers’ potential to store surplus PV
production through DR or BESS operations. Additionally, the presented method enables us
to evaluate DR possibilities in large groups of customers. If customers’ DR potential were
centrally controlled, it could be utilized for everyone’s benefit, e.g., a DSO could avoid high
peaks or an energy retailer could shift load to cheaper hours. There are two main questions
for the DR potential of the customer group. First, how much flexible power is available?
Second, how long can the load flex? The heating power of flexible buildings depends on the
outdoor temperature; thus, it varies significantly. Figure 16 shows the total hourly heating
power of the entire 1525 customer group, which is the flexible power that can be cut in a
centrally controlled DR operation if required. This depends on the outdoor temperature;
therefore, the temperature limits are presented in Figure 16. In the geographical area where
the studied customers lived in 2015, there were 1960 h where the outdoor temperature was
below 0 ◦C, and the heating power of the study group was at least 2.3 MW. This is the
power that can be cut by interrupting electric heating in these buildings. For the coldest
hour of the year, heating power was 5.7 MW, which was the maximum DR capacity.
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The question of how long the heating load could be interrupted also needed to be
answered. This question was answered by studying the decreasing indoor temperatures
in the studied buildings. The initial temperature was set to 21 ◦C in all buildings, and the
heating was then interrupted for an hour. Figure 17 shows the percentage of customers
that could allow their heating power to be interrupted without the indoor temperature
decreasing by more than the DR limit at any hour of the year. There were four DR limits,
which were 2, 1.5, 1, and 0.5 ◦C. If indoor temperature decreased by a maximum of 2 ◦C,
there were 8535 h of the year where 100% of customers could tolerate a maximum of an
hour of heating power interruption. This also means that only 225 h in 2015 were very cold
(under−15 ◦C), and that only some customers’ indoor temperature decreased by more than
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2 ◦C during the hour-long heating power interruption. If the DR limit is tighter, the amount
of hours where all customers can tolerate heating power interruption is much lower.

Energies 2023, 16, x FOR PEER REVIEW 22 of 27 
 

 

the amount of hours where all customers can tolerate heating power interruption is much 
lower. 

 
Figure 17. Percentage of customers whose indoor temperatures do not decrease by more than the 
DR limit (2, 1.5, 1, and 0.5 °C) during an hour-long heating power interruption. The hours of the 
year are sorted in ascending order by outdoor temperature and the six vertical lines correspond to 
different outdoor temperatures. 

Figure 17 shows that when the outdoor temperature is very cold, a customer’s indoor 
temperature can decrease rapidly. However, approximately 7% of customers were able to 
tolerate an hour-long heating power interruption (less than a 2 °C decrease in indoor tem-
perature) during the coldest hour of the year. When the results in Figures 16 and 17 are 
examined together, we can observe when flexibility is available with different DR limits. 
If the DR limit is a maximum of 1 °C for an outdoor temperature of 0 °C, approximately 
2.3 MW of flexibility is available; however, when the outdoor temperature decreases, the 
amount of flexibility decreases rapidly (even when heating load increases), as customers 
do not tolerate any more interruption to heating power. 

6. Discussion 
The motivation for this study was a comparison between DR operations and battery 

operations. The approach toward studying DR operations implies that studies with few 
modeled buildings are insufficient in terms of sample size. In battery operations, the load 
profile of the customer is strongly affected; therefore, variations in load profiles must be 
widened in research. This approach provides a novel method for studying the DR poten-
tial of a large study group. This method requires only weather and consumption data, 
which makes it very useful. Knowledge of customers’ heating systems or building sizes 
or types is not required. Aggregators who offer DR operation services can approximate 
the DR potential of customers using this method. This method is also very useful for re-
searchers because it facilitates many future studies, e.g., coefficients of customers’ heating 
features could be used to form load forecasting models or approximations of the DR po-
tential of all buildings in a studied area. Coefficients defined from historical data can be 
used for forecasting customers’ heating load with forecasted temperatures. 

In this study, the comparison of DR and battery operations focused only on increas-
ing PV self-consumption, and only heating demand was used in the DR operation. These 
two selections were made for multiple reasons. Increasing PV consumption is the most 
used control target for batteries and is available to most customers, while also being more 
profitable in most cases [41]. Additionally, the combination of different control targets 
causes a loss of benefits due to inaccurate load forecasts. The use of different control tar-
gets is a topic that could be explored in future research. 

Figure 17. Percentage of customers whose indoor temperatures do not decrease by more than the DR
limit (2, 1.5, 1, and 0.5 ◦C) during an hour-long heating power interruption. The hours of the year are
sorted in ascending order by outdoor temperature and the six vertical lines correspond to different
outdoor temperatures.

Figure 17 shows that when the outdoor temperature is very cold, a customer’s indoor
temperature can decrease rapidly. However, approximately 7% of customers were able
to tolerate an hour-long heating power interruption (less than a 2 ◦C decrease in indoor
temperature) during the coldest hour of the year. When the results in Figures 16 and 17 are
examined together, we can observe when flexibility is available with different DR limits.
If the DR limit is a maximum of 1 ◦C for an outdoor temperature of 0 ◦C, approximately
2.3 MW of flexibility is available; however, when the outdoor temperature decreases, the
amount of flexibility decreases rapidly (even when heating load increases), as customers
do not tolerate any more interruption to heating power.

6. Discussion

The motivation for this study was a comparison between DR operations and battery
operations. The approach toward studying DR operations implies that studies with few
modeled buildings are insufficient in terms of sample size. In battery operations, the load
profile of the customer is strongly affected; therefore, variations in load profiles must be
widened in research. This approach provides a novel method for studying the DR potential
of a large study group. This method requires only weather and consumption data, which
makes it very useful. Knowledge of customers’ heating systems or building sizes or types
is not required. Aggregators who offer DR operation services can approximate the DR
potential of customers using this method. This method is also very useful for researchers
because it facilitates many future studies, e.g., coefficients of customers’ heating features
could be used to form load forecasting models or approximations of the DR potential of
all buildings in a studied area. Coefficients defined from historical data can be used for
forecasting customers’ heating load with forecasted temperatures.

In this study, the comparison of DR and battery operations focused only on increasing
PV self-consumption, and only heating demand was used in the DR operation. These
two selections were made for multiple reasons. Increasing PV consumption is the most
used control target for batteries and is available to most customers, while also being more
profitable in most cases [41]. Additionally, the combination of different control targets
causes a loss of benefits due to inaccurate load forecasts. The use of different control targets
is a topic that could be explored in future research.
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DR operations have multiple load types that can be used. In many studies, domestic
hot water boilers have been controlled by DR operations, e.g., in [17]. It is a natural target
for DR operations because it includes thermal storage with a known capacity, and heating
requirements can therefore be modeled. It is widely studied, and this possible DR capacity
must be remembered when analyzing the results of this study. However, only the total
consumption of customers is widely metered, and the load of a hot water boiler is one
part of these measurements. These loads do not follow the outdoor temperature and
depend on the customer’s behavior, such as the use of other devices, washing machines,
or electric saunas, which are also good objects for a DR operation. Therefore, the electric
heating of a building is the only target for a DR operation that can be directly detected
from total consumption measurements, which is achieved by comparing consumption and
temperature measurements.

Only customers whose consumption followed the outdoor temperature were selected
in the study group because these customers were known to use electric heaters. No exact
knowledge was derived regarding customers’ heating systems; therefore, this group could
also include customers with electric heaters that are used as secondary heating systems,
e.g., heated floors in wet rooms. This could result in a scenario where, if secondary heating
is under DR operation, the primary heating system compensates for it. Additionally,
customers with electric heaters as their primary system could have a secondary system, e.g.,
a fireplace. These can cause errors in results, but because the proposed method examines
the load profile of an entire year, the effect of these errors is minimal. If a customer
systematically uses another heating source when the outdoor temperature is very low, the
method observes this, and the coefficient of heat loss decreases; thus, it is indicated in DR
capacity approximations.

The indoor temperature of buildings is modeled and does not correspond exactly to
the actual indoor temperature. Many behaviors by customers affect indoor temperatures
(e.g., door openings), and not every customer sets their indoor temperature to 21 ◦C.
Therefore, these factors cause errors in the results. In DR simulations, the changes in
customers’ heating loads are adjusted such that their measured load profile follows the
changes in indoor and outdoor temperature. Hence, the modeled indoor temperature is
only a variable in simulations, and it does not correspond exactly with the actual indoor
temperature level. Only the changes in indoor temperature are relevant. When the number
of measurement points is high (8760 per year) and errors occur in both directions, the errors
can be minimized in the long term by using mean values.

The proposed method is based on direct electric heaters where heating load depends
linearly on the outdoor temperature. Direct electric heaters are controlled by a thermostat.
The hysteresis curve of thermostats causes lag for heaters reacting to changing temperature.
This lag causes errors when defining the total heat capacity of a building because the
response of electric heaters is slow. This error is minimized by using only hours where
temperature change is high, because then the effect of lag is negligible with a simulation
time step of one hour. If customers have heat pumps, dependency between outdoor
temperature and heating load is no longer linear because of heat pumps’ temperature-
dependent efficiency. If this method is used with heat pump customers, the heating load
indicates the direct thermal heat energy demand of the customer, and the efficiency of the
heat pump must be considered as a correlation coefficient.

On a large scale, DR capacity is an interesting aspect when high flexibility is required,
e.g., when large power plants rapidly disconnect from the power grid. The use of reserve
power plants can be avoided if customers can be flexible in these scenarios and decrease
their consumption. The present study demonstrates how long 1525 customers were able to
be flexible in these scenarios and the degree of flexibility they had. These customers were
grouped in an area containing a total of 8078 customers. This means that approximately 19%
of the customers in this area were able to implement this flexibility. In the heating period,
DR potential varies hourly from 15% to 30% of the total consumption of all customers
(average of approximately 20%), i.e., the DR potential of electric heaters can rapidly cut
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approximately 20% of the total consumption of all customers. The percentage varies hourly
owing to changes in the outdoor temperature and total consumption. The statistics from
2020 show that Finland has 589,106 electrically heated buildings, which means approxi-
mately 38% of all buildings [42]. Therefore, small-scale customers can develop high DR
potential in Finland.

Although this study was conducted with Finnish data, the results are applicable
anywhere electric heaters are used to heat buildings. Additionally, the method for obtaining
the heating coefficients of buildings can be used with cooling systems. If electricity load
follows the outdoor temperature, this method can be used to approximate a building’s
capacity for storing energy in cold as well as hot conditions.

7. Conclusions

The DR features of electrical heating systems in small-scale residential buildings can
be determined from electricity consumption data. The total heat loss coefficient and total
heat capacity are the key coefficients when studying the effect of heating load DR on a
building’s indoor temperature. These coefficients can be estimated by comparing outdoor
temperature and a building’s consumption data. Without knowledge of a building’s actual
indoor temperature, the coefficients can be estimated by comparing changes in outdoor
temperature and customers’ load profiles. This novel method uses changes in loads and
outdoor temperatures over time as they are the same for mathematical models of thermal
features with changing variables for indoor or outdoor temperatures (the effective variable
is the difference between them).

The presented novel method for evaluating the DR possibility of electric heating fulfils
the outlined objectives. The advantages of the method are that it is simple and requires
only minimal information. It is suitable for quickly evaluating the DR potential of large
customer groups. Earlier methods need specific information about the thermal features of
a building’s materials, and these methods provide a rough estimate which should verified
afterwards. These methods are well suited to new buildings. The presented novel method
is not suitable for new buildings because history consumption data are needed. This novel
method is very effective with old buildings and makes it possible to evaluate the existing
building stock.

The DR operation of an electrical heating load or a battery can be used to increase PV
self-consumption. The capacity of a DR operation is quite low for individual small-scale
customers, and its effectiveness corresponds to battery capacity. Most of the benefits can
be obtained from the flexibility acquired with one degree temperature changes, and when
the indoor temperature fluctuates by more than one degree, the benefits do not increase as
rapidly as comfort is lost. Thus, for increasing PV self-consumption, it is effective to use
low flexibility limits.

With an effectively sized DR operation and battery system, both can be used simul-
taneously without much of the benefit being lost. Both methods compete to utilize the
same surplus PV energy; however, with an optimally sized PV system, surplus energy
remains for both methods. When combining both methods, it is more profitable to use
battery systems as the primary control and DR operation as a secondary control.

Customers’ heating loads can be used in centrally controlled DR operations when it is
possible to temporarily decrease the total consumption of customers by a significant amount.
This type of operation can aid the power system in scenarios in which production rapidly
decreases or high consumption peaks in the grid need to be avoided locally. The problem
is that during very cold outdoor temperatures when consumption is typically highest,
the indoor temperature of residences decreases rapidly during heating load interruptions,
which limits the amount of time that customers can be flexible.

The results of this study will benefit many future studies. The method of defining the
DR potential of small-scale customers can be used when studying the DR potential of larger
areas involving higher numbers of customers. Future research should investigate different
control targets for comparison to the proposed DR and battery system. Electricity market
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DR operations have multiple load types that can be used. In many studies, domestic
hot water boilers have been controlled by DR operations, e.g., in [17]. It is a natural target
for DR operations because it includes thermal storage with a known capacity, and heating
requirements can therefore be modeled. It is widely studied, and this possible DR capacity
must be remembered when analyzing the results of this study. However, only the total
consumption of customers is widely metered, and the load of a hot water boiler is one
part of these measurements. These loads do not follow the outdoor temperature and
depend on the customer’s behavior, such as the use of other devices, washing machines,
or electric saunas, which are also good objects for a DR operation. Therefore, the electric
heating of a building is the only target for a DR operation that can be directly detected
from total consumption measurements, which is achieved by comparing consumption and
temperature measurements.

Only customers whose consumption followed the outdoor temperature were selected
in the study group because these customers were known to use electric heaters. No exact
knowledge was derived regarding customers’ heating systems; therefore, this group could
also include customers with electric heaters that are used as secondary heating systems,
e.g., heated floors in wet rooms. This could result in a scenario where, if secondary heating
is under DR operation, the primary heating system compensates for it. Additionally,
customers with electric heaters as their primary system could have a secondary system, e.g.,
a fireplace. These can cause errors in results, but because the proposed method examines
the load profile of an entire year, the effect of these errors is minimal. If a customer
systematically uses another heating source when the outdoor temperature is very low, the
method observes this, and the coefficient of heat loss decreases; thus, it is indicated in DR
capacity approximations.

The indoor temperature of buildings is modeled and does not correspond exactly to
the actual indoor temperature. Many behaviors by customers affect indoor temperatures
(e.g., door openings), and not every customer sets their indoor temperature to 21 ◦C.
Therefore, these factors cause errors in the results. In DR simulations, the changes in
customers’ heating loads are adjusted such that their measured load profile follows the
changes in indoor and outdoor temperature. Hence, the modeled indoor temperature is
only a variable in simulations, and it does not correspond exactly with the actual indoor
temperature level. Only the changes in indoor temperature are relevant. When the number
of measurement points is high (8760 per year) and errors occur in both directions, the errors
can be minimized in the long term by using mean values.

The proposed method is based on direct electric heaters where heating load depends
linearly on the outdoor temperature. Direct electric heaters are controlled by a thermostat.
The hysteresis curve of thermostats causes lag for heaters reacting to changing temperature.
This lag causes errors when defining the total heat capacity of a building because the
response of electric heaters is slow. This error is minimized by using only hours where
temperature change is high, because then the effect of lag is negligible with a simulation
time step of one hour. If customers have heat pumps, dependency between outdoor
temperature and heating load is no longer linear because of heat pumps’ temperature-
dependent efficiency. If this method is used with heat pump customers, the heating load
indicates the direct thermal heat energy demand of the customer, and the efficiency of the
heat pump must be considered as a correlation coefficient.

On a large scale, DR capacity is an interesting aspect when high flexibility is required,
e.g., when large power plants rapidly disconnect from the power grid. The use of reserve
power plants can be avoided if customers can be flexible in these scenarios and decrease
their consumption. The present study demonstrates how long 1525 customers were able to
be flexible in these scenarios and the degree of flexibility they had. These customers were
grouped in an area containing a total of 8078 customers. This means that approximately 19%
of the customers in this area were able to implement this flexibility. In the heating period,
DR potential varies hourly from 15% to 30% of the total consumption of all customers
(average of approximately 20%), i.e., the DR potential of electric heaters can rapidly cut
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approximately 20% of the total consumption of all customers. The percentage varies hourly
owing to changes in the outdoor temperature and total consumption. The statistics from
2020 show that Finland has 589,106 electrically heated buildings, which means approxi-
mately 38% of all buildings [42]. Therefore, small-scale customers can develop high DR
potential in Finland.

Although this study was conducted with Finnish data, the results are applicable
anywhere electric heaters are used to heat buildings. Additionally, the method for obtaining
the heating coefficients of buildings can be used with cooling systems. If electricity load
follows the outdoor temperature, this method can be used to approximate a building’s
capacity for storing energy in cold as well as hot conditions.

7. Conclusions

The DR features of electrical heating systems in small-scale residential buildings can
be determined from electricity consumption data. The total heat loss coefficient and total
heat capacity are the key coefficients when studying the effect of heating load DR on a
building’s indoor temperature. These coefficients can be estimated by comparing outdoor
temperature and a building’s consumption data. Without knowledge of a building’s actual
indoor temperature, the coefficients can be estimated by comparing changes in outdoor
temperature and customers’ load profiles. This novel method uses changes in loads and
outdoor temperatures over time as they are the same for mathematical models of thermal
features with changing variables for indoor or outdoor temperatures (the effective variable
is the difference between them).

The presented novel method for evaluating the DR possibility of electric heating fulfils
the outlined objectives. The advantages of the method are that it is simple and requires
only minimal information. It is suitable for quickly evaluating the DR potential of large
customer groups. Earlier methods need specific information about the thermal features of
a building’s materials, and these methods provide a rough estimate which should verified
afterwards. These methods are well suited to new buildings. The presented novel method
is not suitable for new buildings because history consumption data are needed. This novel
method is very effective with old buildings and makes it possible to evaluate the existing
building stock.

The DR operation of an electrical heating load or a battery can be used to increase PV
self-consumption. The capacity of a DR operation is quite low for individual small-scale
customers, and its effectiveness corresponds to battery capacity. Most of the benefits can
be obtained from the flexibility acquired with one degree temperature changes, and when
the indoor temperature fluctuates by more than one degree, the benefits do not increase as
rapidly as comfort is lost. Thus, for increasing PV self-consumption, it is effective to use
low flexibility limits.

With an effectively sized DR operation and battery system, both can be used simul-
taneously without much of the benefit being lost. Both methods compete to utilize the
same surplus PV energy; however, with an optimally sized PV system, surplus energy
remains for both methods. When combining both methods, it is more profitable to use
battery systems as the primary control and DR operation as a secondary control.

Customers’ heating loads can be used in centrally controlled DR operations when it is
possible to temporarily decrease the total consumption of customers by a significant amount.
This type of operation can aid the power system in scenarios in which production rapidly
decreases or high consumption peaks in the grid need to be avoided locally. The problem
is that during very cold outdoor temperatures when consumption is typically highest,
the indoor temperature of residences decreases rapidly during heating load interruptions,
which limits the amount of time that customers can be flexible.

The results of this study will benefit many future studies. The method of defining the
DR potential of small-scale customers can be used when studying the DR potential of larger
areas involving higher numbers of customers. Future research should investigate different
control targets for comparison to the proposed DR and battery system. Electricity market



Energies 2023, 16, 497 24 of 25

price levels and variation have been increasing significantly since autumn 2021 because
of difficulties in energy markets. There could therefore be significant potential in market
price-based control, which should be researched more in future. Additionally, different
loads as the target of DR operation will be the object of future research.
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price levels and variation have been increasing significantly since autumn 2021 because
of difficulties in energy markets. There could therefore be significant potential in market
price-based control, which should be researched more in future. Additionally, different
loads as the target of DR operation will be the object of future research.
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