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ABSTRACT

This dissertation investigates machine learning algorithms: LinearDiscriminant Anal-
ysis (LDA) and Generative Adversarial Networks (GANs) to address real-world
tasks suffering from imbalanced problems efficiently and robustly. The proposed
LDA variants and GANs variants in this dissertation are used for classification and
regions of interest analysis tasks with different severely imbalanced inputs.

This dissertation firstly contributes to addressing imbalance problems with LDA-
related methods for binary-label and multi-label classification tasks. The traditional
LDA has been widely used as a pre-processing step to enhance the efficiency and
performance of sequential classifiers on datasets satisfying the Gaussian distribution.
To extend the traditional LDA for uneven and diverse inputs, We initially introduce
weight factors into the definition of scatter matrices based on a novel probabilistic
saliency estimation method as saliency-based weighted LDA. Usually, the weight fac-
tors are exploited based on specific metrics with the label or feature correlation of
input data. The redefinition can balance the sample contribution to mitigate the in-
fluence of outlier samples for binary-label classification tasks. The experimental per-
formance of the proposed methods has been assessed over six publicly facial datasets,
which demonstrates a robust improvement compared to the competing methods.

To address more complicated imbalanced problems widely existing in multi-label
classification tasks, this dissertation introduces a saliency-basedmultilabel LDA frame-
work. The proposed framework extends the probabilistic saliency estimationmethod
for multi-label classification tasks based on multilabel LDA scatter matrices to alle-
viate the performance degradation caused by imbalanced problems. Six kinds of
weight factors are obtained by the probabilistic saliency estimation method and the
exploration of prior information with six metrics. The experimental results of the
proposed methods over 17 imbalanced datasets show remarkable performance im-
provements compared to competing methods with seven quantitative evaluation met-
rics.
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Alternative approaches to LDA include various deep learning models which have
been explored for various regions of interest analysis tasks which may include im-
balanced datasets in many applications. Especially, the GANs-related methods with
appropriate deep neural networks can be used to address various regions of interest
analysis tasks suffering from imbalance problems in computer vision areas efficiently
and effectively, due to its excellent functionality of restoring balance in the problem.
Another contribution of this dissertation is to explore GANs-based methods for two
regions of interest analysis tasks with severely imbalanced inputs.

This dissertation investigates optimized Deep Convolutional Generative Adver-
sarial Networks (DCGANs) to edit specific facial attributes, such as occlusions. The
proposed method utilized a pre-trained DCGANs and an optimization loss function
to detect the occluded facial regions and in-paint with corresponding facial attributes.
The pre-trained DCGANs is trained with occlusion-free facial images to distinguish
facial attributes and occlusions during the inference stage with the optimization func-
tion. The visual experimental results have shown that the proposed method can
detect the required facial occlusions and then successfully in-paint them with the
corresponding facial attributes.

Besides, a conditional Generative Adversarial Network (cGANs) based frame-
work is introduced to detect anomalous regions (e.g., cracks) on pavement images
efficiently and effectively in this dissertation. Such a task is also considered a binary
semantic segmentation problem with imbalanced data due to uneven distribution
between the number of the required anomalous region pixels and the background
pixels. The proposed cGANs-based method consists of a UNet-based generator part
for a multiscale feature representation, a discriminator part for real pairs and fake
pairs judgment, and a novel auxiliary network for a refined feature representation.
To increase performance while avoiding increasing network and computational com-
plexity, the proposed framework is trained alternatively in two stages. The proposed
methods have shown the effectiveness of GANs-based methods and their robustness
in tackling binary semantics segmentation with severely imbalanced inputs through
extensive experiments over six benchmark datasets.
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1 INTRODUCTION

1.1 General Context

Pattern recognition, machine learning, and artificial intelligence-related algorithms
have gained significant popularity from academic research areas to industrial appli-
cations during the past decades. When we develop pattern recognition or machine
learning algorithms for problems in real applications, the heterogeneity of real-life
datasets is an inevitable challenge. Hence researchers must investigate the features
of datasets and then specifically develop efficient and robust algorithms that are val-
idated and tested on real-world datasets without homogeneous distribution as as-
sumptions. Failure to do so may result in algorithms’ performance deterioration.
This dissertation aims to explore specific pattern recognition and machine learning
algorithms for classification and binary semantic segmentation tasks on imbalanced
datasets that widely exist in real applications.

Imbalanced datasets are widely existing in various real applications. Usually, the
number of instances from different classes may vary dramatically on imbalanced
datasets. In certain scenarios, the minor classes (class) contain prominent informa-
tion or contents as targets, such as object detection, fraud transaction detection,
and medical diagnosis. Instead of deploying general methods under even distribu-
tion assumption directly, specific methods considering the characteristics of imbal-
ance inputs are inevitable to reduce performance deterioration. Methods explored to
address imbalance problems can be categorized as data-driven methods, algorithm-
driven methods, and hybrid methods [1]. Data-driven methods [2] directly utilize
the uneven distribution of datasets to restore the balance of the datasets through
resampling and augmentation. Algorithm-driven methods [3], [P2] exploit specific
algorithms to highlight the contribution of minority classes according to their promi-
nence. Hybrid methods [4] utilize both data-driven and algorithm-driven methods.

Dimensionality reduction algorithms as traditional machine learning methods

1



have been widely explored to solve classification tasks as a pre-processing step. Usu-
ally, it is used to extract the prominent information from a high-dimension origi-
nal input to enhance the performance of classifiers ultimately. Linear discriminant
analysis (LDA) is a traditional dimensionality reduction algorithm often used to ef-
ficiently solve binary-label classification tasks in datasets that follow a Gaussian dis-
tribution. This dissertation explores LDA-based techniques with specific weight fac-
tors to extend traditional LDA techniques for solving imbalance problems existing
in both binary-label and multi-label classification tasks. LDA can be extended as an
algorithm-driven method to tackle imbalance problems using novel weight factors
to balance the contribution of prominent but minor instances. The weight factors
usually can be exploited according to the features of class labels or instances [5].
After the projection of the original imbalanced data into an optimal subspace with
LDA-related techniques, the subsequent classification performance can be enhanced.

Besides traditional machine learning methods, deep learning-related methods have
achieved significant outcomes in tackling various imbalance problems in computer
vision areas [1], [6], such as image segmentation and object detection. Regions of
interest analysis is a typical kind of computer vision task whose performance often
suffers, in part, due to imbalanced datasets wherein the regions of interest consti-
tute only a small portion of pixels in an image. Generative adversarial networks
(GANs) related techniques have been varied as effective methods for mitigating im-
balance problems existing in the region of interest segmentation tasks [1], [7], [8]. In
this dissertation, we introduce deep convolutional generative adversarial networks
(DCGANs) with an optimized novel loss function to edit facial occlusions with the
corresponding facial attributes. Moreover, inspired by the significant performance of
conditional GANs-based networks on style transferring and medical image segmen-
tation tasks, a framework based on the conditional GANs [9] is proposed to solve
anomalous crack pixels detection in pavement datasets, which can be considered as a
binary semantic segmentation task with imbalanced problems.

1.2 Objectives

The scope of the dissertation is limited to two areas: targeting imbalance problems ex-
isting in classification and regions of interest analysis. The overall schema of proposed
methods and the corresponding publications in this dissertation is demonstrated in
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Machine Learning Solutions for
Imbalanced Problems

Linear Discriminator Analysis based
methods

Generative Adversarial Networks based
methods

Binary-label classification [P1]

Multi-label classification [P2]

Facial attributes editting [P3]

Anamolous crack regions detection [P4] 

Classification
tasks

Regions of Interest
Analysis

Hybrid-driven

Algorithm-driven

Figure 1.1 The overview of the dissertation with indication of proposed methods and the correspond-
ing publications

Fig. 1.1.
The first research objective aims to enhance the performance of classifiers after

using dimensionality reduction algorithms LDA to balance the distribution of imbal-
anced datasets. To achieve this goal, we explore a probabilistic estimation approach
to investigate various weight factors for balancing the contribution of each instance
in the original imbalanced datasets.

LDA is usually used in classification tasks as a pre-processing step to enhance the
ultimate performance of classifiers on Gaussian distribution datasets. When tackling
binary-label classification tasks on imbalanced datasets, weighting factors are intro-
duced into the definition of scatter matrices as an extension for imbalanced datasets.
Moreover, multi-label classification tasks can be efficiently solved with LDA-based
techniques incorporating with prior information exploration. We therefore formu-
late the first research question as follows:

Research question 1: How to explore saliency information to properly highlight
prominent but minor instances in an imbalanced dataset with the LDA for an optimal
result of the subsequent classification tasks? To begin we wish to explore the saliency
information of instancea inside each class with a probabilistic estimation model. The
probabilistic estimation model was originally designed to segment salient objects in
images. We extend the original proposal to describe the importance of each instance
for its corresponding classes with a probability vector. Following that we investigate
several types of prior information to obtain various probability vectors based on the
label or feature relation. Finally, a probability matrix is obtained as the weight factors
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which is embedded into the definitions of scatter matrices. The ultimate objective is
to alleviate the data imbalance problem for binary-label and multi-label classification
tasks and possibly avoid the common over-counting problem generally existing in
multi-label classification tasks with algorithm-driven methods.

The second research task is related to regions of interest analysis tasks with im-
balanced image inputs. The objective of the second research task is to explore the
GANs-based networks to solve such tasks with effectiveness and robustness on severely
imbalanced datasets. The effectiveness of GANs-based techniques has been varied for
solving various regions of interest analysis tasks suffering from imbalance problems
through the massive, related works in computer vision areas recently. The diverse
network topologies of the GANs-based method can be explored and incorporated
with loss functions according to the requirements of a specific target. Our main
second research question is then formulated as follows:

Research question 2: Can we develop GANs-based techniques working with dif-
ferent losses to carry out regions of interest analysis tasks with severely imbalanced
inputs? The first application is to edit the specific facial attributes with occlusions us-
ing the DCGANs and a novel optimal loss function as an algorithm-driven method.
The DCGANs trained with occlusion-free facial images can distinguish the pixels
presenting occlusions and facial attributes under the support of the optimized loss
function. The second application explores a conditional GANs-based framework to
locate the pixels for anomalous cracks and generate a probability feature map indi-
cating them in pavement images. A novel auxiliary network is introduced to train
the model in two stages alternately and iteratively for a refined multiscale feature
map. Moreover, the conditional GANs-based network works with different atten-
tion mechanisms to further obtain an enhanced and robust performance on diverse
benchmark datasets. The second application is a hybrid-driven method with aug-
mented data.

1.3 Dissertation Outline

The dissertation is structured as follows. Chapter 2 presents the backgrounds of the
two main research topics investigated in the dissertation: linear discriminant analysis
and generative models. Moreover, the evaluation metrics used in the dissertation
are described in Chapter 2. Chapter 3 summarizes the main contributions of pub-
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lications [P1, P2], which are related to linear discriminant analysis for classification
tasks. The main results of publications [P3] and [P4] focusing on generative models
for the regions of interest or saliency segmentation tasks are summarized in Chap-
ter 4. Chapter 5 presents the conclusion of this dissertation and highlights possible
future work.

Author’s contribution

Publication I The proposed method is based on Linear Discriminant Anal-
ysis for enhancing the performance of classification tasks as a
pre-processing step. The novelty of this work is the weight fac-
tor calculated based on a probabilistic estimation approach for
the first time. The candidate developed the theory, performed
the experiments, and wrote the paper. The co-authors have su-
pervised, reviewed, and edited the publication.

Publication II In this work, a general framework based on weighted Linear
Discriminant Analysis was proposed to boost the performance
of classifiers on multi-label classification tasks. The framework
is based on a probabilistic estimation approach by which the im-
balance problem existing in multi-label datasets can be avoided.
The candidate developed the theory, performed the experiments,
and wrote the paper. The co-authors have supervised, reviewed,
and edited the publication.

Publication III In this work, a method based on theDeepConvolutional Gener-
ative Adversarial Networks was proposed to detect and segment
occluded facial attributes. The novelty of the proposed method
is that it can segment the occluded facial attributes and generate
the corresponding facial features simultaneously. The candidate
developed the theory, performed the experiments, and wrote the
paper. The co-authors have supervised, reviewed, and edited the
publication.

Publication IV In this work, we revisited the cGANs-based algorithms to ad-
dress anomalous crack detection in a pixel-to-pixel manner on
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severely imbalanced datasets. A cGANs-based autoencoder is
adopted as the backbone incorporating attention mechanisms
and entropy-based loss functions for a robust multiscale feature
representation. The candidate developed the theory, performed
the experiments, and wrote the paper. The co-authors have su-
pervised, reviewed, and edited the publication.
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2 RELATED WORKS AND BACKGROUND

This chapter presents an overview of the related works and background knowledge
related to this dissertation. Firstly, the works related to LDA for classification tasks
are described in detail in Section 2.1, to provide the theoretical foundation of our
publications in the following chapter. Then, we provide an introduction to between-
class imbalance problems in Section 2.2. The works related to regions of interest
analysis using generative models are depicted in Section 2.3. The evaluation metrics
used in the publications are described in Section 2.4.

2.1 Dimensionality Reduction for Classification Tasks

With the emergence of massive data in all walks of life, dimensionality reduction tech-
niques have been widely explored to extract distinctive information from data with
high dimensionality to decorrelate redundant raw data and enhance the performance
of subsequent tasks on large-scale datasets [10]. Usually, dimensionality reduction-
related algorithms can be categorized as supervised and unsupervised algorithms de-
pending on whether label information is involved. Dimensionality reduction tech-
niques have been widely used in multiple disciplines, such as image processing [11]
and data compressing [12].

In this dissertation, we focus on binary-label and multi-label classification tasks
solved with dimensionality reduction techniques. Binary-label classification tasks aim
to determine whether one instance belongs to a given class label or not. The differ-
ence is that each instance can be associated with one or several class labels for a multi-
label classification task. Another significant characteristic of multi-label datasets is
the class-imbalanced problem [13], wherein the number of instances for each class
varies dramatically. Therefore, the multi-label classification is more complicated. To
tackle multi-label classification tasks efficiently and effectively, it is better to exploit
the correlation and dependency of both data features and labels. Researchers have
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proposed various dimensionality reduction algorithms to tackle both binary-label
and multi-label classification tasks on various datasets [3], [5], [10], [14].

Principle Component Analysis (PCA) is an unsupervised dimensionality reduc-
tion algorithm deriving the orthogonal direction of maximal variance using the fea-
ture covariance matrix for eigen-decomposition [10]. Canonical Correlation Analy-
sis (CCA) is a supervised dimensionality reduction algorithm formulated as a least-
squares problem, which uses both label and data feature information for maximally
correlated projections [15]. CCA has been widely extended to improve classification
performance [15], [16]. Multi-label informed latent semantic indexing (MLSI) algo-
rithm [17] utilized the well-known unsupervised approach latent semantic indexing
(LSI) to preserve the information of inputs and capture the correlations between the
multiple outputs. Multi-label dimensionality reduction via dependence maximiza-
tion (MDDM) [18] is proposed to tackle multi-label classification tasks with two
kinds of projection strategies. The lower-dimensional space identified by MDDM is
projected by maximizing the dependence between the original feature and class labels
of each instance based on the Hilbert-Schmidt Independence Criterion (HSIC).

LDA is a typical supervised dimensionality reduction method using distinctive in-
formation on an optimal sub-space extracted from the high-dimensional input. The
original LDA is under the assumption of the Gaussian distribution of input data,
which cannot be used directly on imbalanced datasets. In the following subsection,
we present the theoretical basis of how LDA can be used to tackle both binary-
label and multi-label classification tasks with uneven distribution inputs. We present
the mathematical theories and notations used in LDA techniques for binary-label
classification tasks and multi-label classification tasks separately in the following sub-
sections.

2.1.1 Linear Discriminant Analysis on Binary-label Datasets Classification

Standard linear discriminant analysis (LDA) is a well-known statistical algorithm for
dimensionality reduction under the assumption of Gaussian distribution, which aims
to identify an optimal sub-space using Fisher criterion optimization [19]. Given a
binary-label dataset with 𝑁 instancesX = {x1, x2, ..., x𝑖 , ..., x𝑁 } and x𝑖 ∈ R𝐷, where
𝐷 is the original data dimensionality. The corresponding label vector is defined as
y = {𝑦1, 𝑦2, ..., 𝑦𝑖 , ..., 𝑦𝑁 } and 𝑦𝑖 ∈ {1, ..., 𝐶}, where 𝐶 is the number of classes.
The standard LDA learns an optimal projection matrixW ∈ R𝐷×𝑑 mapping original
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input into a discriminant subspace R𝑑.
To obtain the optimal projection matrix W, the standard LDA firstly defines

within-class scatter matrix S𝑊 , between-class scatter matrix S𝐵 , and total scatter
matrix S𝑇 as follows:

S𝑊 =

𝐶∑︁
𝑐=1

∑︁
x𝑖 ,𝛼𝑐𝑖=1

(x𝑖 − 𝝁
𝑐
) (x𝑖 − 𝝁

𝑐
)𝑇 , (2.1)

S𝐵 =

𝐶∑︁
𝑐=1
𝑁𝑐 (𝝁𝑐 − 𝝁) (𝝁

𝑐
− 𝝁)𝑇 , (2.2)

S𝑇 = S𝐵 + S𝑊 . (2.3)

Here, 𝝁
𝑐
denotes the mean vector of class 𝑐 as

𝝁
𝑐
=

1
𝑁𝑐

∑︁
x𝑖 ,𝛼𝑐𝑖=1

x𝑖 , (2.4)

where 𝑁𝑐 =
∑︁𝑁
𝑖=1 𝛼

𝑐
𝑖
is the cardinality of class 𝑐, 𝛼𝑐

𝑖
= 1 if 𝑦𝑖 = 𝑐, otherwise 𝛼𝑐𝑖 = 0.

The total mean vector 𝝁 is computed as

𝝁 =
1
𝑁

𝑁∑︁
𝑖=1

x𝑖 , (2.5)

Based on the above definitions, the optimal projection matrix W is learned by
maximizing the Fisher’s discriminant criterion [19] as

𝐽 (W) = argmax
W

tr(W𝑇S𝐵W)
tr(W𝑇S𝑊W)

, (2.6)

where tr(.) denotes the trace of a matrix. This allows obtaining the projection matrix
W by solving the generalized eigenvalue problem

S𝑏w = S𝑤𝜆w. (2.7)

Ultimately the projection matrix W contains 𝑑 ≤ 𝐶 − 1 eigenvectors as columns.
The resulting subspace’s maximal dimensionality equals the rank of S𝑏 as 𝐶 − 1.
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Besides, the trace ratio problem can be solved using different iterative methods [20],
[21].

The projection matrix W can be obtained with S𝑇 instead of S𝑊 using maximiz-
ing the Fisher’s discriminant criterion, as

𝐽 (W) = argmax
W

tr(W𝑇S𝐵W)
tr(W𝑇S𝑇W)

. (2.8)

Finally, the discriminative features on the optimal sub-space can be obtained as

Z = W𝑇X, (2.9)

where Z ∈ R𝑑×𝑁 .
The underlying assumption of the standard LDA is that the dataset classes are

equally distributed as a homoscedastic Gaussian model [22] with identical covariance
matrices [23]. Otherwise, the performance of LDA is affected severely due to the
imbalance of input datasets [24] originating from the excessive contribution of outlier
classes and leading to an inferior projection matrix.

To balance the contribution of imbalance input, weight factors have been intro-
duced into the definitions of scatter matrices in various related works [23]–[25] for
binary-label classification tasks. Weight factors are used to balance the contribution
of each class based on their real contribution by exploring appropriate prior infor-
mation of the original input. For instance, in [26], the between-class scatter matrix
is redefined for enhancing robustness in multi-class binary-label problems as

S𝑏 =
𝐶−1∑︁
𝑐=1

𝐶∑︁
𝑗=𝑐+1

𝐿𝑐𝑗 𝑝𝑐 𝑝𝑗 (𝝁𝑐 − 𝝁
𝑗
) (𝝁

𝑐
− 𝝁

𝑗
)𝑇 , (2.10)

where 𝑝𝑐 , 𝑝𝑗 denote the prior probability of class 𝑐, class 𝑗 , respectively. A distance
function based on the Euclidean (or a Mahalanobis) space is used as the dissimilarity
factor 𝐿𝑐𝑗 between class 𝑐 and class 𝑗 . Moreover, an outlier-class-resistant weighted
LDA method is proposed in this work [23] based on Loog’s work [26] for the in-
fluence reduction of outlier classes. The between-class scatter using Eq. (2.10). The
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within-class scatter is re-defined as follows:

S𝑤 =

𝐶∑︁
𝑐=1

𝑁𝑐∑︁
𝑘=1

𝑝𝑐𝑟𝑐 (x𝑘 − 𝝁
𝑐
) (x𝑘 − 𝝁

𝑐
)𝑇 , (2.11)

where 𝑟𝑐 =
∑︁
𝑖≠𝑐

1
𝐿𝑖𝑐

is a relevance-weight between class 𝑐 and class 𝑖, reducing atten-
tion to outlier classes.

Although various LDA variants have been proposed to conquer the drawbacks in
traditional LDA, current weighted LDA variants for binary-label classification tasks
merely have redefined the scatter matrices using weight factors based on the explo-
ration of class similarity information as in [23], [25], [26]. The contribution of each
instance to its class information has been neglected. To overcome the limitations,
an algorithm-driven method was proposed in [P1] to further explore the prior in-
formation based on the correlation of each instance to its associated class. In [P1],
the proposed method redefined class representation and scatter matrices to balance
the prominence of each instance based on a novel saliency probabilistic estimation
method.

2.1.2 Linear Discriminant Analysis on Multi-label Datasets Classification

As mentioned, tasks on multi-label datasets usually suffer from the occurrence of
imbalanced problems [1]. Because the number of instances of major classes is larger
than that of minor classes in an imbalanced dataset as shown in Fig. 2.1. Ignorance
of this characteristic of multi-label datasets can lead to the deterioration of algorithm
performance [1] while employing general algorithms directly. Various methods have
been proposed specifically for solving multi-label classification tasks, such as vari-
ants of Support Vector Machine (SVM) [27] and several feature extraction methods
[5], [28], [29]. As described in [30], multi-label classification methods are typically
derived following either an algorithm adaptation (AA) approach or a problem trans-
formation (PT) approach. Methods following the AA approach directly utilize the
information of class labels and data instances to explore their correlation. Meth-
ods following the PT approach utilize single-label classification algorithms to tackle
multi-label classification tasks using decomposition strategies.

LDA-related algorithms following the PT strategy have been proposed to tackle
the multi-label classification tasks [10]. In a multi-label dataset, there exist two char-
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Figure 2.1 The details of the Yeast database [P2]

acteristics compared to a binary-label dataset as correlations or dependencies [31] of
label information and imbalance problems. Hence, the scatter matrics definitions
of the traditional LDA and its variants as Eqs. (2.1) - (2.2) or Eqs. (2.10) - (2.11)
cannot be used directly for multi-label classification tasks [31].

To introduce LDA-related algorithms for solving multi-label classification tasks,
it is necessary to redefine the scatter matrices with the characteristics exploration of
datasets. Assuming amulti-label dataset with𝑁 data items asX = {x1, x2, ..., x𝑖 , ..., x𝑁 }
wherein x𝑖 ∈ R𝐷 and X ∈ R𝐷×𝑁 , where 𝐷 is the original data dimensionality.
Y = {y1, y2, ..., y𝑖 , ..., y𝑁 } is defined as the corresponding label matrix wherein
y𝑖 ∈ {0, 1}𝐶 and Y ∈ R𝐶×𝑁 , 𝐶 is the number of classes. Each row in Y depicts
as as y(𝑗 ) , where 𝑗 ∈ 1, . . . , 𝐶 . When a data item x𝑖 is associated with class 𝑐, an
element 𝑦𝑐𝑖 in the label matrix is 1, otherwise 0.

Multi-label linear discriminant analysis (MLDA) [28] is a typical LDA-related
approach proposed to tackle classification tasks on multi-label datasets. The MLDA
approach introduces weight factors based on label correlation information on multi-
label datasets. Therefore, a matrix M ∈ R𝐶×𝑁 containing non-negative values with
the same size as Y is introduced to present weight factors, which is defined as

M = [m1, ...,m𝑖 , ...,m𝑁 ] = [m(1) , ...,m(𝑗 ) , ...,m(𝐶 ) ]𝑇 , (2.12)

where each element 𝑚𝑐𝑖 presents weight factor for the 𝑖 𝑡ℎ instance from class 𝑐,
the weight vectors for 𝑖 𝑡ℎ instance and the 𝑗 𝑡ℎ class are depicted as m𝑖 and m(𝑗 )

separately. Then a correlation matrixR ∈ R𝐶×𝐶 is defined based on label correlations
of class pairs as
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𝑅𝑘𝑙 = cos(y(𝑘) , y(𝑙 ) ) =
y𝑇(𝑘)y(𝑙 )

∥y(𝑘) ∥∥y(𝑙 ) ∥
, (2.13)

where y(𝑘) , y(𝑙 ) are label vectors for a class pair 𝑘, 𝑙 ∈ 1, ..., 𝐶 . The weight matrix
M is obtained as M = RY. The weight factors are normalized with ℓ1-norm to avoid
the over-counting problem [28]:

m′
𝑖 =

m𝑖

∥y𝑖 ∥ℓ1
. (2.14)

The label correlation matrix can reveal the relation between classes, as the more
closely related the classes produce a higher label correlation value. However, the
definition of the weight matrix M may cause an overcounting problem.

Direct MLDA [32] is an extension of MLDA used for performance enhancement
in multi-label video classification tasks [28]. Due to the definition of between scatter
matrix in the original MLDA, the subspace dimensionality is limited by the rank
of between scatter matrix as 𝐶 − 1. The re-definition of between scatter matrix in
[32] can lead to a subspace with a higher dimensionality. There are many other
MLDA-related extensions. For instance, multi-label discriminant analysis with lo-
cality consistency (MLDA-LC) [33] is another excellent work further enhancing the
classification performance in multi-label data sets compared to MLDA and MLLS
algorithms. MLDA-LC incorporates the graph Laplacian matrix into the MLDA
method in the projection space to investigate the similarity among adjacent instances.

Although the current MLDA-related methods have been proven to tackle clas-
sification tasks on multi-label datasets [3], [28], [33] under various considerations,
the imbalance problems still need more attention to enhance the robustness of LDA-
related algorithms on multi-label classification tasks. Our method Saliency-Based
Multilabel Linear Discriminant Analysis (SMLDA) in [P2] was proposed to explore
either the correlation of data or the definition of scatter matrices as a novel variant
for multi-label classification. The proposed SMLDA exploits the prior information
of input data using the probabilistic saliency estimation method as weight factors to
highlight the contribution of minority classes, which is a typical algorithm-driven
method for imbalanced problems. In [P2], the weight factors are calculated within
each class for each instance, which can alleviate the influence of outlier classes to
avoid imbalance problems and conquer the overcounting problem. Additionally, six
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types of prior information are exploited to reveal the correlation of data features or
labels. Furthermore, a simpler definition of scatter matrices in [5] is incorporated
into the weight factors for the optimal projection matrix W.

2.2 Overview of Between-Class Imbalance Problems

The datasets existing in real-world tasks can rarely satisfy the Gaussian distribution
perfectly [1], [34], [35], which leads to imbalance problems with the dramatic degra-
dation performance of generic machine learning algorithms. Therefore, it is nec-
essary to investigate specific algorithms for datasets with uneven distribution when
employing machine learning solutions for solving real-world applications. The im-
balanced datasets can be categorized as between-class imbalanced datasets and within-
class imbalance datasets [1]. The between-class imbalanced datasets contain a minor
class with a smaller number of instances and a major class with a larger number of
instances. The within-class imbalanced datasets are defined based on attributes im-
balance of the class. This dissertation focuses on solving the between-class imbalance
problems in [P3] and [P4].

The between-class imbalanced datasets widely exist in real-world applications,
such as medical image segmentation [35]–[37], anomalous region detection [38],
[39], and small objects detection [34]. Usually, the minor class in between-class
imbalanced datasets contains significantly important information as the regions of
interest to determine the effectiveness of the method. Intense efforts have been de-
voted to tackling the between-class imbalance problems. Data-driven techniques [40]
enhancing the performance of deep learning models on imbalanced datasets, mainly
constitute basic image manipulations, kernel filters, adversarial training, feature space
augmentation, etc. The basic image manipulations utilize image transformation such
as cropping, rotation, and flipping. In [P4], the basic image manipulations cropping
and rotation are used to augment the raw input datasets. Moreover, algorithm-driven
techniques are exploited to highlight the importance of the minor class by weights
trade-off in objective functions, such as focal loss function [41], and Tversky loss
function [42]. The proposed method is algorithm-driven in [P3] and a hybrid-driven
method in [P4].
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2.3 Generative Models for Regions of Interest Analysis

As mentioned earlier, regions of interest often represent a minor portion of data,
hence the risk of encountering imbalanced problems is high in related applications.
Usually, regions of interest can be defined differently according to the concrete tasks.
For instance, retinal vessels on fundoscopic images are the interested regions when
automatically detecting retinal diseases [36], abnormal wafer defect patterns need to
be identified to prevent loss excursion in the semiconductor manufacturing [39], and
various small objects exist on the road for autonomous driving [34]. The common
characteristic of such tasks is that precise analysis of the interested regions is cru-
cial to the success of subsequent tasks. The topic of anomalous regions of interest
analysis discussed in this dissertation focuses on binary pixel-level tasks, as the pix-
els representing the required anomalous parts are positive instances and the pixels
representing the background are negative instances [1].

Traditional methods for such applications explore different prior knowledge of
input images, for instance, the statistical model as a log spectrum [43], gradient
change between adjacent pixel values [44] and probabilistic estimation [45]. Nat-
urally, with the vigorous development of deep learning, research works using deep
learning frameworks to tackle regions of interest analysis have sprung up in the past
decade [46]–[53]. In particular, UNet has gained popularity and effectiveness for
regions of interest analysis. UNet was proposed by Ronneberger et. al initially in
2015 [46], and since then Unet related deep learning networks have been widely
used to solve various regions of interest tasks [54]–[56]. UNet [46] is a symmetric
architecture with a contracting path and an expanding path aiming to localize regions
of interest precisely.

Deep generative models such as generative adversarial networks (GANs), diffu-
sion models, and variational autoencoders (VAE), have been gaining popularity in
the artificial intelligence or machine learning area recently [57]–[59]. Deep genera-
tive models, as statistical models, usually can be used to estimate the joint distribution
of the target and original input data for new data generation [57]. With the pros-
perous development of deep learning in multiple disciplines, deep generative models
have been successfully explored combining the UNet structure in regions of interest
or anomaly detection applications [1], [48], [59]–[62]. Deep generative adversarial
networks (GANs) have a significant advantage in restoring the imbalanced data and
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preventing performance degradation in an unsupervised or self-supervised manner
when common computer vision algorithms are used [1].

In this section, we describe how deep GANs with the UNet structure can be used
to tackle pixel-level regions of interest or anomaly detection tasks in the relevant
literature.

2.3.1 Regions of Interest Detection Tasks on Facial images

Facial attributes editing is another imbalanced application in the computer vision
area, due to the common existence of attribute level imbalance in facial datasets [1].
It is a challenging task due to the distributions of different attributes vary between
local-wise and global-wise. The target of facial attribute editing is to manipulate
specific facial attributes (regions of interest) for a new facial image with the desired
attributes while persevering others.

Deep generative models [44], [63], [64] such as GANs, diffusion models and VAE
are suitable solutions for tackling facial attribute editing, not only because of imbal-
ance problems but also lack of ground truth images. Usually, facial attributes can
be depicted in latent spaces with GANs or VAE as face attributes latent representa-
tion. The target of facial attribute editing can be achieved by proper manipulation
of the face latent vectors. In [63], a GANs model with an encoder-decoder archi-
tecture was designed which manipulates facial attributes by modeling the relation
between the attributes and the facial image latent representation. To preserve a great
number of details, an attribute classification constraint was proposed to bridge the
reconstruction learning and the adversarial learning in [63]. In [65], a robust LSTM-
Autoencoders (RLA) containing two LSTM components was proposed to detect and
restore partially occluded faces in the wild. The RLA model aims to generate a la-
tent representation for occluded facial restoration. Moreover, GANs-based methods
[52] have been proven through extensive research works as effective unsupervised so-
lutions for anomaly detection or outlier detection tasks. Generally, GANs-related
architectures can estimate the ideal distribution of normal instances in the feature
latent space, therefore the anomaly samples can be distinguished through the latent
space.

Although the current state-of-art works have achieved significant outcomings on
facial attribute editing tasks, most of them either require constrained datasets for a
fixed type of target or multiple and complicated models for multiple attribute ma-
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nipulation [63]–[66]. To conquer these limitations, we proposed an unsupervised
method for specific facial attribute manipulation based on DCGAN and an opti-
mization method in our work [P3]. [P3] aims to detect and remove facial occlusion
parts (scarf and sunglass) and in-paint the corresponding desired occluded attributes
on general portrait datasets while preserving other attributes with a simple GANs-
based model. Considering limited inputs and lack of ground truths, the network
Deep Convolutional GANs (DCGANs) were used to train a normal facial feature
latent space first, then during the inference phase, an optimization method embed-
ded into the trained DCGANs was used to detect the anomalous parts (scarves or
sunglasses) and in-paint the anomalous parts with corresponding facial attributes.

2.3.2 Anomalous Regions of Interest Detection Tasks

Anomaly detection has greatly benefited from the recent advances in machine learn-
ing and computer vision. Anomaly conditions can be defined diversely according to
a specific task. In finance, typical anomalies can be defined as illegal activities beyond
normal financial services such as inside trading, fraud, and money laundering [67].
In industrial manufacturing, anomalies may consist of defective samples or patterns
with apparent discrepancies from the required samples or patterns [39], [68], whereas
in medical image analysis, anomalies usually refer to the deviation from normality
or normal state, such as lesions on brain images [69] and retinal vessels in fundus im-
ages [70]. A significant characteristic of such types of anomaly detection tasks is that
anomaly conditions are often unusual phenomena compared to the more common
conditions, which often leads to imbalanced problems. For example, the number
of pixels representing the retinal vessels is less than the number of pixels for the
other parts. Hence, a key challenge in such tasks is how to improve the accuracy of
anomalous region detection in the presence of imbalance problems. Considering the
large diversity of anomaly conditions in different areas, we only focus on anomaly
detection works related to pavement crack detection in this section.

Traditional image processing andmachine learning techniques have been intensely
employed in this field. For instance, traditional sensors can be used to detect anoma-
lous cracks and potholes on pavements. In [71], the authors designed a crack-detecting
robot equipped with infrared, ultrasonic, and vibration sensors based on ARM pro-
cessor to detect road cracks, which usually require a complex and expensive hardware
system. In [72], the authors proposed a threshold-based algorithm to generate a set
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of candidate regions with high-intensity values, which consist of pothole regions,
shadow regions, and other regions. Then a decision tree algorithm with four steps
was employed to eliminate the false positive cases as shadow regions or other regions
and retain the pothole regions. Edge information in an image can also be explored
to distinguish abnormal road surface conditions. In [73], the authors adopted two
stages of prepossessing and detection to detect various cracks. In the prepossessing
stage, they used contrasted algorithms to obtain the edge information of cracks. Af-
terward, a decision tree algorithm was applied to detect and classify the road surface
images with cracks automatically.

Besides the above traditional algorithms, various deep neural network (DNN)
structures have been proposed for such anomalous region detection tasks, driven
by the excellent performance of DNN on semantic segmentation. In [74], a feature
pyramid and hierarchical boosting network (FPHBN)was proposed to detect cracks.
The architecture of FPHBN used the feature pyramid network to integrate context
information from top to bottom and layer by layer. To balance the contribution
of easy samples and hard samples, hierarchical boosting was introduced following
the feature pyramid network. In [39], the anomalous states are basic defect patterns
and unseen defect patterns of wafer maps for semiconductor manufacturing. Then
the performance of deep convolutional encoder-decoder neural networks based on
Seg-Net, U-Net, and FCN were compared in the detection and segmentation of the
defect wafer map patterns.

In particular, the between-class imbalance problems widely exist in medical image
segmentation tasks. Attention UNet [75] is a variant of the original UNet archi-
tecture [46], which has embedded the outputs of attention gates into the expansive
path to retain salient features of organs for medical image segmentation. In [76], a vi-
sion transformer-based architecture with a gated axial-attention model is proposed to
explore the long-range dependencies of input images. Another vision transformer-
based architecture in [77] exploits fine-grained context and coarse-grained context
using local self-attention, global self-attention, and axial attention modules.

Moreover, generative models with deep neural network structures such as au-
toencoder (AE) or Generative Adversarial Networks (GANs) have been extensively
developed to address pixel-level imbalances in segmentation, due to the potential to
restore balance in imbalanced datasets [1]. In [78], auto-encoders and GANs were
used to obtain pixel-level anomaly scores, to support doctors’ diagnosing works from
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X-ray images. Nguyen et al. [79] introduced an extension of conditional GANs for
shadow detection tasks using a shadow detection generator with an additional sensi-
tivity parameter for different shadow maps. Due to the imbalanced distribution of
required shadow labels, weighted cross entropy was used in the loss function. Zhang
et al. investigated the performance of transformer-based UNet architectures in pave-
ment surface crack detection in [61]. As depicted in [61], the transformer-based
UNet architectures can thoroughly explore the low-level information and global
context information.

Although the current SOTA works have achieved significant detection results on
various datasets solving between-class imbalance problems. These works still have
limitations, such as a specific algorithm required to pre-process images, unstable per-
formance on different datasets, and complexity increasing for better performance.
Especially when the anomalous regions are related to the inhomogeneity of cracks
under complex environments, the existing SOTA works cannot achieve robust and
consistent results on various datasets. Inspired by the current state-of-art imbalance
semantic segmentation works [1], [36], [61], [79], [80], we explored the cGANs-
related architectures as a backbone to tackle the anomalous region detection tasks in
[P4] for robust and outperforming results without increasing computational com-
plexity. To achieve robust performance on six datasets, a novel and simple auxil-
iary network was proposed to assist the backbone for a refined probability feature
map. Moreover, we investigated various attention mechanisms and loss functions
to further explore the affecting factors of robustness on datasets with different char-
acteristics (images captured under low-intensity, small and imperceptible cracks, or
complex cracks).

2.4 Performance Metrics

This section presents the performance evaluation metrics used in the dissertation.
We describe the general notations used in the evaluation metrics first. 𝑇 𝑃 describes
the number of correctly predicted samples or pixels, 𝑇𝑁 is the number of correctly
predicted irrelevant samples or background pixels, 𝐹 𝑃 is the number of wrongly
predicted samples or pixels, and 𝐹 𝑁 is the number of wrongly predicted irrelevant
samples or background pixels.

In [P1], we used accuracy to evaluate the classification performance of the pro-
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posed methods. The accuracy calculated based on the confused matrix is commonly
used to evaluate the performance of binary classification tasks [81], due to its less
complexity and generalization. The definition of accuracy is shown as follows:

• Accuracy (↑) indicates the ratio of correct prediction [82] to all instances.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑃 +𝑇𝑁

𝑇 𝑃 +𝑇𝑁 + 𝐹 𝑃 + 𝐹 𝑁 . (2.15)

In [P2], we used seven evaluation metrics for multi-label classification tasks: rank-
ing loss, one error, normalized coverage, Macro-AUC, Micro-AUC, Macro-F1, and
Micro-F1. Moreover, we adopted the Friedman test and Wilcoxon signed-rank test
[83] to verify the effectiveness of the proposed method SMLDA in [P2]. The evalua-
tion metrics for multi-label classification can be divided as [84] label-wise effective and
instance-wise effective based on the optimization methods. The metrics optimized by
label-wise effective classifiers can distinguish the relevant classes from the irrelevant
classes for every sample [84]. On the other hand, the metrics optimized by instance-
wise effective classifiers can distinguish between relevant and irrelevant samples for
each class.

To illustrate the evaluation metrics for multi-label classification tasks clearly, first,
we describe the notations used in the evaluation metrics. Y = [y1, ... , y𝑖 , ... , y𝑀 ]
presents𝑀 ground truth label matrix and its corresponding predicted label matrix is
Ŷ = [ŷ1, ..., ŷ𝑖 , ..., ŷ𝑀 ] for the test sample. Each test sample x𝑖 has its corresponding
ground truth label vector as y𝑖 ∈ R𝐶 . p̂

𝑖
= 𝑓(x𝑖) denotes the output of classifiers,

wherein �̂�
𝑖,𝑐
indicates whether instance 𝑖 is from class 𝑐 with a probability. After

setting thresholds on p̂
𝑖
, the final ŷ

𝑖
is generated. L𝑖 = {sortc(p̂𝑖)} presents descend-

ing order of p̂
𝑖
. The relevant classes in y𝑖 are I(y𝑖) and the negative classes in y𝑖 are

¬I(y𝑖). (↓) denotes that the lower values with the metrics, the better performance,
and the (↑) presents the opposite case.

• Ranking loss (↓) evaluates the fraction of reversely ordered relevant versus
irrelevant pairs for each item 𝑖 as in [84], [85]. Ranking loss is optimized
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based on label-wise effectiveness in [P4].

ranking_loss
𝑖
=

| �̂�
𝑖,I(y𝑖 ) ≤ �̂�

𝑖,¬I(y𝑖 ) |
𝑚 ∗ 𝑛 , (2.16)

ranking_loss =
∑︁𝑀
𝑖=1 ranking_loss𝑖

𝑀
, (2.17)

where | �̂�
𝑖,I(y𝑖 ) ≤ �̂�

𝑖,¬I(y𝑖 ) | describes the number of reversely ranked pairs
for each item 𝑖.

• One error (↓) indicates the fraction of the top ranked class for item 𝑖 is not
among the positive ground truth labels as in [84], [85] based on label-wise
effectiveness.

one_error
𝑖
=


0, if L𝑖 [1] ∈ I(y𝑖),

1, otherwise,
(2.18)

where L𝑖 [1] denotes the first class in the sorted list L𝑖 .

one_error =
∑︁𝑀
𝑖=1 one_error𝑖

𝑀
. (2.19)

• Normalized coverage (↓) describes the number of labels on average that should
have been included in L𝑖 to cover all the ground-truth labels of an instance 𝑖
as in [84], [85] based on label-wise effectiveness.

coverage =
∑︁𝑀
𝑖=1max𝑗 {𝑗 |I(y𝑖) ∈𝑗 L𝑖} − 1

𝑀 ∗ (𝐶 − 1) , (2.20)

where {𝑗 |I(y𝑖) ∈𝑗 L𝑖} is the positions of relevant classes I(y𝑖) in the ordered
list L.

• Macro-AUC (↑) is the average area under ROC curves (AUC) for different
classes as in [84], [85] based on instance-wise effective classifiers. The ROC
curve uses a true positive rate and false positive rate, which may be unreliable
in the cases where rare classes are present [86].
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• Micro-AUC (↑) is the area under ROC curves (AUC) averaged over the full
predicted label matrix Ŷ defined in [84], [85] based on label-wise effectiveness.
The Micro-AUC is calculated based on the aggregation of the predicted labels
over all classes instead of for each class as in Macro-AUC.

• Macro-F1 (↑) shows the average F1 value on each class 𝑐 as in [84], [85] based
on instance-wise effectiveness.

macroF1 =
2
𝐶

𝐶∑︁
𝑐=1

precision𝑐 ∗ recall𝑐
precision𝑐 + recall𝑐

, (2.21)

where precision𝑐 presents precision for class 𝑐 defined as 𝑇 𝑃𝑐/(𝑇 𝑃𝑐 + 𝐹 𝑃𝑐).
recall𝑐 presents recall for class 𝑐 defined as 𝑇 𝑃𝑐/(𝑇 𝑃𝑐 + 𝐹 𝑁𝑐).

• Micro-F1 (↑) indicates the aggregation F1 score which is calculated as an aver-
age over the Ŷ with thresholds as defined in [84], [85].

microF1 = 2 ∗ precision ∗ recall
precision + recall , (2.22)

where precision = 𝑇 𝑃/(𝑇 𝑃+𝐹 𝑃 ) and recall = 𝑇 𝑃/(𝑇 𝑃+𝐹 𝑁 ) and𝑇 𝑃 , 𝐹 𝑃 ,
and 𝐹 𝑁 are the number of true positives, false positives, and false negatives
predictions in the predicted label matrix Ŷ. As shown in Eq. (2.22), the
Micro-F1 is calculated with the aggregation of precision and recall from all
classes, which is different from the Macro-F1 from each class.

• Friedman test depicts a rank-based non-parametric test to compare the per-
formance of more classifiers over multiple datasets [83]. We verified whether
the differences between our proposed SMLDAc methods and the competing
methods are overall significant or not in [P2].

• Wilcoxon Signed-Rank test depicts a rank-based non-parametric test as an
alternative to the paired t-test to rank the differences in performances of two
classifiers for each dataset [83]. In [P2], we adopted the Wilcoxon Signed-
Rank test to make a comparison between our proposed variants and all other
competing methods.

According to [38], [49], [87], we adopted five evaluation metrics for semantic
binary segmentation in [P4]: average precision (AP), F-measure based on Optimal
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Dataset Scale (ODS), F-measure based on Optimal Image Scale (OIS), global accu-
racy (GA), mean Intersection-Over-Union (mean IOU).

The evaluation metrics used in [P4] are described as follows:

• Average Precision (↑) indicates the area under the precision-recall curve [88].

AP =
∑︁
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛, (2.23)

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the 𝑛th threshold.

• ODS F1 (↑) indicates the optimal F1 score [38] with a fixed threshold for all
images in a dataset.

• OIS F1 (↑) indicates the F1 score is calculated as an aggregation based on each
image [38] with the optimal threshold in a dataset.

• Global Accuracy (↑) indicates the ratio of correctly predicted pixels from
cracks and backgrounds to the total number of pixels of all images.

GA =

∑︁
𝑛 (𝑇𝑁𝑛 +𝑇 𝑃𝑛)∑︁

𝑛(𝑇𝑁𝑛 +𝑇 𝑃𝑛 + 𝐹 𝑁𝑛 + 𝐹 𝑃𝑛)
, (2.24)

where 𝑛 is the number of test images.

• Mean IOU (↑) presents the mean ratio of true positive and the union of pre-
dicted crack pixels and ground truth crack pixels

Mean − IOU =
1
𝐶

𝐶∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑇 𝑃𝑖𝑗

𝑇 𝑃𝑖𝑗 + 𝐹 𝑃𝑖𝑗 + 𝐹 𝑁𝑖𝑗
, (2.25)

where 𝐶 is the number of class, 𝐶 equals to 2 in [P4].
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3 LINEAR DISCRIMINANT ANALYSIS ALGORITHMS

FOR CLASSIFICATION TASKS IN IMBALANCED

DATASETS

This chapter summarizes the LDA-related dimensionality reduction methods pro-
posed in [P1] and [P2]. Traditional LDA was originally proposed to address binary-
label classification tasks on datasets under the Gaussian class distribution assumption.
However, such an assumption does not hold in either imbalanced datasets with non-
Gaussian distributions or multi-label datasets. To extend traditional LDA-related
methods for non-Gaussian distribution datasets, we introduced a probabilistic class
saliency estimation approach [45] as weight factors into LDA scatter matrices. Such
an introduction can mitigate the influence of uneven distribution on the definition
of scatter matrices for single-label dataset classification [P1]. Furthermore, we ex-
tended this probabilistic class saliency estimation approach with six kinds of prior
information to multi-label classification tasks under a weighted linear discriminant
analysis framework [5].

This chapter is structured as follows. In section 3.1, the probabilistic saliency
estimation approach is generally described. The proposed method and experiments
for single-label dataset classification tasks are presented in section 3.2. Section 3.3
presents the proposed methods and summarizes the experiments for solving multi-
label imbalanced dataset classification tasks.

3.1 Probabilistic Saliency Estimation

The concept of saliency estimation in computer vision area utilizes the special percep-
tion of the human visual system in physiological science [89], [90]. The human visual
system can distinguish the perceived scenes as prominent parts and non-prominent
parts according to details e.g. colors and textures [91]. Based on the acknowledgment
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of saliency from the human visual system, the saliency information can be estimated
using probabilistic models with the exploitation of prior probability distribution
from images or videos [45], [92].

A novel probabilistic saliency estimation approach was proposed by Aytekin et
al. [45] for image segmentation. In [45], a distinct region x𝑖 (pixel, super-pixel, or
patch of pixels) in an image can be presented by a probability mass function 𝑃 (x𝑖).
The higher values of 𝑃 (x𝑖) for the region x𝑖 indicates for prominent the region is.
𝑃 (x𝑖) is obtained by optimizing the following objective function with two terms

argmin
𝑃 (𝑥 )

(︄∑︁
𝑖

𝑃 (x𝑖)2𝑣𝑖 +
∑︁
𝑖,𝑗

(︃
𝑃 (x𝑖) − 𝑃 (x𝑗 )

)︃2

𝑎𝑖𝑗

)︄
=

argmin
𝑃 (𝑥 )

(︄∑︁
𝑖

𝑃 (x𝑖)2𝑣𝑖 +
∑︁
𝑖,𝑗

(︃
𝑃 (x𝑖)2 − 𝑃 (x𝑖)𝑃 (x𝑗 )

)︃
𝑎𝑖𝑗

)︄
s.t.

∑︁
𝑖

𝑃 (x𝑖) = 1,

(3.1)

where 𝑣𝑖 ≥ 0 in the first term depicts the prior information of region x𝑖 , which
helps to suppress the influence of non-prominent regions with a higher value. 𝑎𝑖𝑗
describes the similarity between region x𝑖 and x𝑗 which forces the regions to have
similar probabilities under a higher similarity value 𝑎𝑖𝑗 . We assume that the similarity
values are symmetric, i.e., 𝑎𝑖𝑗 = 𝑎𝑗 𝑖 . Given this objective function, the contributions
of non-salient regions can be suppressed with lower probabilities and similar regions
can be found out with similar probabilities.

The vanilla objective function of the probabilistic saliency estimation approach
can be expressed in a matrix notation as

p∗ = argmin
p

(pTHp),

H = D − A + V,

s.t. p𝑇 1 = 1,

(3.2)

where p is the probability vector to indicate whether region x𝑖 to be salient or not,
i.e., 𝑝𝑖 = 𝑃 (x𝑖). An affinity matrix A presents the similarity of each pair of regions
x𝑖 and x𝑗 as [A] 𝑖𝑗 = 𝑎𝑖𝑗 . D is defined as a diagonal matrix with elements equal to
[D𝑖 𝑖] =

∑︁
𝑗 𝑎𝑖𝑗 . The diagonal prior information matrix V has elements [V] 𝑖 𝑖 = 𝑣𝑖 ,
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and 1 is a vector of ones. A final global optimum p∗ is obtained by the Lagrangian
multiplier method based on the following equation:

L(p, 𝛾) = (pTHp) − 𝛾 (pT1 − 1), (3.3)

where the partial derivative of this equation with respect p is zero.
The final optimized probability vector is depicted as

p∗
𝑝𝑠𝑒 =

1
1𝑇H−11

H−11, (3.4)

where 1𝑇H−11 satisfies the constraint p𝑇 1 = 1 and ensures that the result is
a normalized probability vector. Moreover, the p∗ always contains non-negative
values as shown in [45].

3.2 Single-label Datasets Classification

This section presents the weighted LDA with class saliency information for single-
label classification tasks which was proposed in [P1]. Inspired by [45], we first ex-
ploited the probabilistic saliency estimation model [45] to estimate the saliency of
each instance to its associated class from six image datasets. Then an LDA variant
method based on the probabilistic saliency estimation model was proposed to con-
quer the drawback of traditional LDA and its variants on imbalanced classes for
single-label classification.

3.2.1 Proposed Method

LDA technique defines an optimal projection by means of Fisher criterion optimiza-
tion from raw data to reduce the dimensions and extract discriminative features.
Traditional LDA assumes Gaussian distribution for its input. Hence, when there is
a large overlap of neighboring classes or there is a dominant outlier class [93], the
definitions of scatter matrices could lead to sub-optimal results. To tackle such draw-
backs of traditional LDA, weighting factors are introduced into the definitions of the
within-class and between-class scatters in [23], [25], [26], [94]. In [P1], we calculated
weighting factors using the proposed probabilistic method [45] to re-define the con-
tribution of each sample to its associated class based on its class saliency information.
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According to Section 3.1, we followed a similar path to define an affinity matrix
A𝑐 , a priori saliency information matrixV𝑐 and a diagonal matrixD𝑐 for each class 𝑐.
Firstly, the affinity matrix A𝑐 ∈ R𝑁𝑐×𝑁𝑐 is defined using fully connected and 𝑘-NN
graphs with RBF kernel function

[A𝑐] 𝑖𝑗 = exp

(︄
−
∥x𝑐
𝑖
− x𝑐

𝑗
∥2

2𝜎 2

)︄
, (3.5)

where we used x𝑐
𝑖
and x𝑐

𝑗
to represent the 𝑖 𝑡ℎ and 𝑗 𝑡ℎ instances in class 𝑐, re-

spectively. 𝜎 is the hyper-parameter and its value is set equal to the mean Euclidean
distance between the training samples. Then a graph G𝐶 = {X𝑐 ,A𝑐} is formed to rep-
resent the similarity of each instance in class 𝑐 with the affinity matrix A𝑐 ∈ R𝑁𝑐×𝑁𝑐 ,
where X𝑐 ∈ R𝐷×𝑁𝑐 is a matrix consisting of instances of class 𝑐. After obtaining A𝑐 ,
the diagonal matrix D𝑐 is written as [D𝑐] 𝑖 𝑖 =

∑︁
𝑗 [A𝑐] 𝑖𝑗 .

In [P1], the priori information called misclassification-based probability is used
to calculate matrix V𝑐 under the assumption that if a sample is closer to another
class, it is less probable to be prominent to its associated class. The formula of the
misclassification-based probability is defined as

[V𝑐] 𝑖 𝑖 =


0, if 𝑑𝑐

𝑖𝑐
< min

𝑘≠𝑐
𝑑𝑘
𝑖𝑐
,

𝑑𝑐
𝑖𝑐

min
𝑘≠𝑐

𝑑𝑘
𝑖𝑐

, otherwise,
(3.6)

where x𝑖𝑐 is the 𝑖 𝑡ℎ instance of class 𝑐, and 𝝁
𝑘
is the mean vector of class 𝑘. 𝑑𝑘

𝑖𝑐

presents the Euclidean distance between x𝑖𝑐 and 𝝁
𝑘
as 𝑑𝑘

𝑖𝑐
= ∥x𝑖𝑐 − 𝝁

𝑘
∥2
2.

The probability of each sample x𝑐
𝑖
to its associated class 𝑐 is given by: p𝑐 = Hc−11,

where H𝑐 = D𝑐 − A𝑐 + V𝑐 . Once obtained p𝑐 ∈ R𝑁𝑐 , 𝑐 = 1, . . . , 𝐶 , we define a new
class representation as m𝑐 = X𝑐p𝑐 .

Then we re-define the within-class scatter matrix in two different ways for a com-
parison. The first one is to incorporate p𝑐 in S𝑤 as:

S(1)
𝑤 =

𝐶∑︁
𝑐=1

𝑁𝑐∑︁
𝑗=1

𝑝𝑐,𝑗 (x𝑐𝑖 − 𝝁
𝑐
) (x𝑐𝑗 − 𝝁

𝑐
)𝑇 , (3.7)

where x𝑐
𝑗
is 𝑗 -th sample in class 𝑐, 𝑝𝑐,𝑗 is saliency score for the 𝑗 -th sample in class

𝑐. The other within-class scatter matrix is defined as the relevance-weighted LDA in
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[23] as:

S(2)
𝑤 =

𝐶∑︁
𝑐=1

𝑁𝑐∑︁
𝑗=1

𝑝𝑐,𝑗 𝑟𝑐 (x𝑐𝑗 − 𝝁
𝑐
) (x𝑐𝑗 − 𝝁

𝑐
)𝑇 . (3.8)

Here 𝑟𝑐 =
∑︁
𝑖≠𝑐

1
𝐿𝑖𝑐

is called relevance-weight, where 𝐿𝑖𝑐 is the reverse of the Eu-
clidean distance between pairwise mean vectors of class 𝑖 and class 𝑐.

The four types of between-class scatter matrices in [P1] are depicted sequentially.
The first type follows the definition of traditional LDA as

S(1)
𝑏

=

𝐶∑︁
𝑐=1
𝑁𝑐 (𝝁𝑐 − 𝝁) (𝝁

𝑐
− 𝝁)𝑇 . (3.9)

The second type used saliency scores p𝑐 for new class representations, as follows:

�̂�
𝑐
= X𝑐p𝑐 , (3.10)

S(2)
𝑏

=

𝐶∑︁
𝑐=1

( �̂�
𝑐
− 𝝁) ( �̂�

𝑐
− 𝝁)𝑇 , (3.11)

where matrix X𝑐 contains all samples in class 𝑐, �̂�𝑐 is the new class representation or
weighted center of class 𝑐.

The third definition further exploits the relationships between pairs of new class
representations for each class, as follows:

S(3)
𝑏

=

𝐶∑︁
𝑐1=1

𝐶∑︁
𝑐2=1

( �̂�
𝑐1
− �̂�

𝑐2
) ( �̂�

𝑐1
− �̂�

𝑐2
)𝑇 . (3.12)

The last definition maximizes the discrimination between every sample in one
class with the other class representations, while considering each sample’s saliency
scores, as follows:

S(4)
𝑏

=

𝐶∑︁
𝑐1=1

𝐶∑︁
𝑐2=1,
𝑐2≠𝑐1

𝑁𝑐1∑︁
𝑗=1

𝑝𝑐1,𝑗 (x
𝑐1
𝑖
− �̂�

𝑐2
) (x𝑐1

𝑗
− �̂�

𝑐2
)𝑇 , (3.13)

where 𝑁𝑐1 is the cardinality of class 𝑐1.
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Table 3.1 Datasets used for the experiment [P1]

Database Contents Numbers # Subjects # Classes #

BU [95] facial expression images 2500 100 6
KANADE [96] facial expressions 500 100 6
JAFFE [97] facial expressions 213 10 7
ORL [98] facial expressions and details 400 40 6
YALE [99] facial expressions and details 165 15 11
AR [100] facial expressions and details 4000 126 13

The final optimization criteria can be formed as follows:

𝐽 (W) = argmax
W

𝑡𝑟 (W𝑇S(𝑖 )
𝑏

W)

𝑡𝑟 (W𝑇S(𝑖𝑗 )
𝑡 W)

, (3.14)

where S(𝑖𝑗 )
𝑡 = S(𝑗 )

𝑤 + S(𝑖 )
𝑏
, 𝑖 ∈ {1, 2, 3, 4} and 𝑗 ∈ {1, 2}. Then the projection matrix

W was obtained by eigenvalue decomposition as in Eq. (2.7). The nearest centroid
classifier is applied for classification after dimensionality reduction on test samples
using the matrix W. We added a small constant 𝜖 = 0.01 to S𝑤 in the diagonal
direction, as to avoid singularity problem as

S𝑏w = (S𝑤 + 𝜖I)𝜆w, (3.15)

3.2.2 Experimental Results

Six public facial image datasets are used in [P1] as shown in Table 3.1. Each image
from these datasets is resized to 40 × 30 pixels (gray-scale images) and vectorized to
obtain facial vectors x𝑖 ∈ R1200. We normalized each dataset to have zero mean and
unit standard derivation and split each dataset into 5 folds for cross-validation.

We evaluated the experimental results using an accuracy metric. The results of
traditional LDA, Tang et al. [23], Jarchi and Boostani’s work [25] are considered as
the competing methods. The comparison results are presented in Table 3.2 and Table
3.3. 𝑆𝑤𝐿𝐷𝐴𝑖𝑗 was obtained by using the matrices S(𝑖𝑗 )

𝑡 and S(𝑖 )
𝑏
, 𝑖 ∈ {1, 2, 3, 4}, 𝑗 ∈

{1, 2}.
As shown in Table 3.2, 𝑆𝑤𝐿𝐷𝐴42 is the most effective method over datasets
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BU and KANADE with fully connected graphs. 𝑆𝑤𝐿𝐷𝐴41 with fully connected
graphs achieves the best performance over dataset JAFFE. Our methods can achieve
the best performance over ORL, YALE, and AR compared to competing methods
shown in Table 3.3.

Table 3.2 Classification accuracy of proposed 𝑆𝑤𝐿𝐷𝐴 [P1]

Dataset BU KANADE JAFFE ORL YALE AR

𝐾 1 min(5, 0.1 ∗ 𝑁𝑐) 1 min(5, 0.1 ∗ 𝑁𝑐) 1 min(5, 0.1 ∗ 𝑁𝑐) 1 min(5, 0.1 ∗ 𝑁𝑐) 1 min(5, 0.1 ∗ 𝑁𝑐) 1 min(5, 0.1 ∗ 𝑁𝑐)
𝑆𝑤𝐿𝐷𝐴11 0.5714 0.5714 0.6816 0.6939 0.5619 0.5762 0.9700 0.9700 0.9597 0.9564 0.9696 0.9696

𝑆𝑤𝐿𝐷𝐴21 0.5714 0.5686 0.6816 0.6816 0.5619 0.5762 0.9700 0.9700 0.9597 0.9568 0.9696 0.9696

𝑆𝑤𝐿𝐷𝐴31 0.5886 0.5829 0.6776 0.6776 0.5524 0.5762 0.9850 0.9850 0.9597 0.9556 0.9696 0.9692

𝑆𝑤𝐿𝐷𝐴41 0.6500 0.6529 0.7020 0.6980 0.5905 0.5857 0.9850 0.9850 0.9597 0.9568 0.9696 0.9696

𝑆𝑤𝐿𝐷𝐴12 0.5800 0.5814 0.6816 0.6816 0.5667 0.5667 0.9850 0.9850 0.9589 0.9564 0.9692 0.9688

𝑆𝑤𝐿𝐷𝐴22 0.5800 0.5814 0.6816 0.6816 0.5667 0.5571 0.9850 0.9850 0.9589 0.9572 0.9684 0.9684

𝑆𝑤𝐿𝐷𝐴32 0.6243 0.6200 0.6776 0.6776 0.5286 0.5238 0.9600 0.9600 0.9589 0.9572 0.9684 0.9684

𝑆𝑤𝐿𝐷𝐴42 0.6786 0.6743 0.7224 0.7184 0.5476 0.5524 0.9450 0.9450 0.9593 0.9572 0.9696 0.9692

3.3 Multi-label Datasets Classification

Each data item can belong to either one or several classes in multi-label datasets. For
example, a scenic image can contain several classes, such as a beach, people, sunlight,
a boat, and so on. Another characteristic of multi-label datasets is imbalance [13].
Hence, it is imperative to specifically analyze multi-label datasets when applying
machine learning algorithms to avoid performance deterioration [1].

Dimensionality reduction is a typical technique for tackling multi-label classifi-
cation problems [10] as a pre-processing step. After the introduction of weighting
factors, traditional LDA can be extended to tackle multi-label problems as in [28]. In
work [P2], we have introduced weighting factors derived from probabilistic saliency
estimation [45] into a multi-label LDA framework. The proposed method is called
Saliency-based Multi-label Linear Discriminant Analysis (SMLDA).

Table 3.3 Classification accuracy comparison with competing methods [P1]

Dataset BU KANADE JAFFE ORL YALE AR

LDA 0.5729 0.6898 0.5571 0.9725 0.9593 0.9688

[23] 0.5743 0.6857 0.5714 0.9800 0.9564 0.9681

[25] 0.5957 0.6898 0.5381 0.9800 0.9597 0.9692

𝑆𝑤𝐿𝐷𝐴41 0.6500 0.7020 0.5905 0.9850 0.9597 0.9696

𝑆𝑤𝐿𝐷𝐴42 0.6786 0.7224 0.5476 0.9450 0.9593 0.9696
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3.3.1 Proposed Method

Our proposed method aims to obtain a final lower-dimension subspace R𝑑 retaining
the most distinguishable features from the original higher-dimension space R𝐷 with
a data projection matrix W ∈ R𝐷×𝑑. Moreover, our SMLDA approach exploited
various prior weighting factors to balance the contribution of each sample to its as-
sociated classes to mitigate problems related to imbalanced classes since we calculated
weighting factors within each class. Two main steps are carried out in the proposed
method for the target. Firstly, a probability matrix indicating the importance of each
sample for its associated classes was calculated based on the probabilistic saliency esti-
mation approach [5], [45]. Then, we embedded the probability matrix as weighting
factors in a multi-label LDA framework from work [5] for scatter matrices calcula-
tion.

For the first step, a probability matrix P ∈ R𝐶×𝑁 is defined as

P = [p1, ..., p𝑖 , ..., p𝑁 ] = [p(1) , ..., p(𝑗 ) , ..., p(𝐶 ) ]𝑇 , (3.16)

where p𝑖 ∈ R𝐶 is a vector with probabilities indicating whether instance 𝑖 to be
salient for class 𝑐 or not. p(𝑗 ) ∈ R𝑁 is the probability vector for the 𝑗 𝑡ℎ class, which
are normalized to sum up to one, i.e.

∑︁𝑁
𝑖=1 𝑝𝑐𝑖 = 1 ∀𝑐 ∈ 1, . . . 𝐶 . The probabil-

ity matrix P is calculated by the probabilistic multi-label class-saliency estimation
approach as mentioned in Section 3.1 based on each class.

Assume that X ∈ R𝐷×𝑁 and Y ∈ R𝐶×𝑁 are the arranged matrices separately.
x𝑖 ∈ R𝐷 , 𝑖 ∈ 1, ..., 𝑁 is an input data sample 𝑖 and y𝑖 ∈ {0, 1}𝐶 is its corresponding
binary label vector, where 𝐷 is the number of original high dimensionality and 𝐶
is the number of classes. 𝑦𝑐𝑖 = 1, when the sample x𝑖 is associated with class 𝑐. The
vector y(𝑗 ) presents the rows of Y contain 1s for all data samples that are associated
with the particular class, where 𝑗 ∈ 1, . . . , 𝐶 .

In [P2], we investigated the salient information of each sample inside each class.
Hence, if a data sample 𝑖 is salient to a class 𝑐, the element 𝑝𝑐𝑖 > 0 and 𝑦𝑐𝑖 ≠ 0,
otherwise, 𝑝𝑐𝑖 = 0 if 𝑦𝑐𝑖 = 0. For each class 𝑐, X𝑐 ∈ R𝐷×𝑁 𝑐 presents the data matrix
and a probability vector p𝑐 ∈ R𝑁 𝑐 presents 𝑁 𝑐 data samples from class 𝑐. The final
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optimization function for the multi-label class saliency estimation is defined as

argmin
p𝑐

(︄
𝑁 𝑐∑︁
𝑖

( 𝑝𝑐𝑖 )
2𝑣𝑐𝑖 +

1
2

𝑁 𝑐∑︁
𝑖

𝑁 𝑐∑︁
𝑗

(︃
𝑝𝑐𝑖 − 𝑝

𝑐
𝑗

)︃2

𝑎𝑐𝑖𝑗

)︄
=

argmin
p𝑐

(︄
𝑁 𝑐∑︁
𝑖

( 𝑝𝑐𝑖 )
2𝑣𝑐𝑖 +

1
2

𝑁 𝑐∑︁
𝑖

𝑁 𝑐∑︁
𝑗

(︃
( 𝑝𝑐𝑖 )

2𝑎𝑐𝑖𝑗 + ( 𝑝𝑐𝑗 )
2𝑎𝑐𝑖𝑗

)︃
−

𝑁 𝑐∑︁
𝑖

𝑁 𝑐∑︁
𝑗

(︃
𝑝𝑐𝑖 𝑝

𝑐
𝑗

)︃
𝑎𝑐𝑖𝑗

)︄
s.t.

𝑁 𝑐∑︁
𝑖

𝑝𝑐𝑖 = 1,

(3.17)

where 𝑝𝑐
𝑖
is the 𝑖 𝑡ℎ element in p𝑐 and 𝑣𝑐

𝑖
≥ 0 is the corresponding prior information to

suppress the probabilities of non-salient instances from class 𝑐. 𝑎𝑐
𝑖𝑗
is the similarity

value forcing the instances x𝑐
𝑖
and x𝑐

𝑗
have similar probabilities if they are similar.

Unlike the original probabilistic saliency estimation in Eq. (3.1), our definition of
similarity values can be asymmetric.

Eq. (3.17) can be re-written in matrix notation as

pc∗ = argmin
p𝑐

(p𝑐𝑇H𝑐p𝑐),

H𝑐 =
1
2
D1

𝑐 + 1
2
D2

𝑐 − A𝑐 + V𝑐 ,

s.t. p𝑐𝑇 1 = 1,

(3.18)

where V𝑐 ∈ R𝑁 𝑐×𝑁 𝑐 is the prior information matrix having elements [V𝑐] 𝑖 𝑖 = 𝑣𝑐𝑖
along diagonal. The affinity matrix of class 𝑐 is A𝑐 as [A𝑐] 𝑖𝑗 = 𝑎𝑐

𝑖𝑗
expressing the

similarity of 𝑖 𝑡ℎ and 𝑗 𝑡ℎ samples in class 𝑐. D1
𝑐 and D2

𝑐 are the diagonal matrices
which can be computed as [D1

𝑐] 𝑖 𝑖 =
∑︁
𝑗 [A𝑐] 𝑖𝑗 over rows and [D2

𝑐] 𝑖 𝑖 =
∑︁
𝑗 [A𝑐]𝑗 𝑖

over columns separately.
In [P2], we computed the affinity matrix A𝑐 ∈ R𝑁𝑐×𝑁𝑐 for each class 𝑐 with the

RBF kernel function as Eq. (3.5). The affinity matrix could also be formed either
by a fully connected one or sparse variants. For instance, an affinity matrix from
[101] or a k-NN graph, where the sensitive parameter 𝜎 is avoided.

We explored six different kinds of prior information to set the values of V𝑐 , as
follows.
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• Correlation-based prior information (SMLDAc) was introduced in the original
MLDA algorithm [28] to explore label information for weigh factors. A label
correlation matrixRwas calculated as Eq. (2.13) first and then the normalized
weight vector m′

𝑗 ∈ R𝐶 is calculated for all data items from class 𝑐 as Eq.
(2.14).

Finally, the prior information matrix values are depicted as

[V𝑐] 𝑖 𝑖 = 1 −𝑚′
𝑐𝑗 , (3.19)

The label correlation for classes 𝑘 and 𝑙 is high if the classes are closely related.

• Binary-based prior information (SMLDAb) utilizes the label information as the
label matrix in [102]. With this prior information, only instances belonging
to class 𝑐 are considered in V𝑐 with normalization for each class.

• Entropy-based prior information (SMLDAe) utilized the entropy-based prior in-
formation in [5], [103] to assume that data samples associated with more classes
are less salient for any class. The expression is as follows:

[V𝑐] 𝑖 𝑖 = 1 − 1
∥y𝑐
𝑖
∥ℓ1
, (3.20)

where y𝑐
𝑖
is the class 𝑐 label vector and ∥y𝑐

𝑖
∥ℓ1 is the total number of classes the

𝑖 𝑡ℎ item is associated with.

• Fuzzy-based prior information (SMLDAf) uses a fuzzy 𝐶 -means clustering algo-
rithm (SFCM) exploiting both label and features information as in [5], [104]
to learn the membership degree of each item in each class. We use the mem-
bership directly as our prior information as

[V𝑐] 𝑖 𝑖 = 1 − 𝑔 𝑐𝑗 , (3.21)

where 𝑔 𝑐
𝑗
is the membership degree of item 𝑗 and item 𝑗 is the 𝑖 𝑡ℎ item asso-

ciated with class 𝑐.

• Dependence-based prior information (SMLDAd) is from the Hilbert-Schmidt
independence criterion (HSIC) [105], by which the statistical dependence be-
tween features and labels is explored. A multi-label task can be divided into
several single-label tasks as described in [5]. Only the most prominent class
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for each item is labeled with 1 after the final iteration. Hence the prior infor-
mation by HSIC is described as

[V𝑐] 𝑖 𝑖 = 1 − ℎ𝑐𝑗 , (3.22)

where ℎ𝑐
𝑗
is 1 if 𝑗 is estimated as the most prominent one to class 𝑐 and zero

otherwise and item 𝑗 is the 𝑖 𝑡ℎ item associated with class 𝑐.

• Misclassification-based prior information (SMLDAm) is similar to the prior in-
formation used in [P1] for single-label data as Eq. (3.6). Using this prior in-
formation type, the samples around boundaries can be emphasized to avoid
the ambiguous status of outliers. Finally, we used the full data X to compute
the prior information matrix for the whole input dataset.

The probability vector pc∗ can be solved based on each class 𝑐 as

p𝑐∗ =
1

1𝑇H𝑐−11
Hc−11. (3.23)

The full probability matrix is P ∈ R𝐶×𝑁 shown in Eq. (3.16) with the collection
of each probability vector p𝑐∗. Hence, [P] 𝑐𝑗 = 𝑝𝑐

𝑖
for all items in class 𝑐, where the

𝑖 𝑡ℎ item in class c is the 𝑗 𝑡ℎ item in the whole dataset.
For the second step, the probability matrix is directly used as weights embedding

into a multi-label LDA [5]. The definitions of scatter matrices S𝑤 and S𝑏 are depicted
as

S𝑤 = X
(︃
diag(p̂) − P⊺P

)︃
X⊺, (3.24)

S𝑏 = X
(︃
P⊺ P − 1

𝑛
p̂⊺p̂

)︃
X⊺, (3.25)

where p̂ =
∑︁𝐶
𝑐=1 p(𝑐 ) and 𝑛 =

∑︁𝐶
𝑐=1

∑︁𝑁
𝑖=1 𝑝𝑐𝑖 . The summation of each probability

vector for each class is always 1.
Using Eq. (3.15), we calculated the optimal projection matrix W by solving the

regularized version of the generalized eigenproblem. 𝑑 largest eigenvalues containing
0.999 of the information were considered to keep the corresponding eigenvectors for
the projection matrix W. The optimal subspace features can be obtained as

Z = W𝑇X. (3.26)
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Table 3.4 Characteristics of datasets used for experiments [P2]

Database Contents Train # Test # Classes Features Cardinality Min # Max # meanIR meanCIR

Bibtex [106] Text 4880 2515 159 1836 2.4 28 691 12.8 89.3
Birds [107] Audio 179 172 19 260 1.9 4 64 6.1 16.1
Cal500 [108] Music 300 202 174/173 68 26.1 2 263 21.1 23.1
CHD_49 [109] Medicine 371 181 6 49 2.6 12 281 5.3 6.6
Corel16k(001) [5], [110] Scene 5188 1744 153 500 3.1 21 1124 23.8 108.8
Emotions [111] Music 398 195 6 72 1.9 96 181 1.5 2.4
Enron [112] Text 988 660 57/53 1001 27 0 535 74.8 137.1
Eukaryote [3] Biology 4658 3108 22 440 1.1 6 1387 45.1 150.5
Human [113] Biology 1862 1244 14 440 1.2 14 623 15.4 45.2
Image [114] Scene 1200 800 5 294 1.2 249 345 1.2 3.1
Medical [115] Text 645 333 45/34 1449 1.2 0 170 60.9 230.2
PlantPseAAC [113] Biology 588 390 12 440 1.1 12 172 6.7 21.8
Scene [116] Scene 1211 1196 6 294 1.1 165 277 1.3 4.8
Stackex_coffee [13] Text 151 74 123/63 1763 2.0 0 32 22.6 105.6
TMC2007-500 [117] Text 21519 7077 22 500 2.2 304 12876 17.1 27.6
Yeast [118] Biology 1500 917 14 103 4.2 21 1128 7.3 9.0
Yelp [119] Text 6724 3281 5 671 1.8 580 4263 2.8 3.7

3.3.2 Experimental Results

3.3.2.1 Databases and data preprocessing

We performed our experiments on 17 publicly available multi-label databases 1’2.
Table 3.4 shows the details of datasets used in [P2]. We pre-process the datasets with
the same techniques as in [5]. Moreover, some instances without labels or with NaN
values were deleted.

3.3.2.2 Experiments and Results

Two multi-label classifiers were applied to the projected test data for the final re-
sults: multi-label 𝑘-nearest neighbor classifier (ML-kNN) [114] and multi-output
linear ridge regressor (LRR) [120], [121]. The hyper-parameter 𝑘 of ML-kNN was
set to 15 as in [5]. A threshold (≥ 0.5) is required to generate the prediction labels
based on the predicted probabilities on a test dataset. The LRR classifier has two
hyperparameters: a threshold (≥ 0) for the predicted label and the regularization
constant 𝜇 = 0.1. The experiments of our proposed method and all other compar-
isons are carried out with the Matlab codes provided by [5]1. We adopted seven

1 http://ceai.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
2 http://www.uco.es/kdis/mllresources/#KatakisEtAl2008
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evaluation metrics for performance comparison. Besides, we applied the Friedman
test and Wilcoxon Signed-Rank test to evaluate the statistical significance of observed
differences.

LDA-based dimensionality reduction techniques: DMLDA [32], wMLDAc [5],
wMLDAb [5], wMLDAe [5], wMLDAf [5], and wMLDAd [5] were used for a
comparison with the proposed SMLDA in [P2]. All the other LDA-based methods
were solved using the regularized generalized eigenproblem as (3.15). Considering
the limitation of contents in this dissertation, only the results using the ranking loss
evaluation metric are shown in Tables 3.5 and 3.6, and the other results can be found
in the work [P2]. Moreover, five non-LDA-based techniques: PCA, CCA, MLSI,
MDDMp, and MVMD, along with DMLDA, wMLDAc, wMLDAd and SMLDAc
are compared in Tables 3.7 and 3.8 and Tables I-XII from the supplementary ma-
terial of work [P2]. Furthermore, we demonstrate the evaluation results on seven
of the most imbalanced datasets with macro-F1 to verify our method can mitigate
the imbalance problem. We collect from Tables XVII and XVIII the supplementary
material of [P2] for the classes having meanIR over 15 and provide them in Tables
3.9 and 3.10.

Table 3.5 Comparison of different variants of the proposed method results with ML-kNN using ranking
loss (↓) [P2]

wMLDAc SMLDAc wMLDAb SMLDAb wMLDAe SMLDAe wMLDAf SMLDAf wMLDAd SMLDAd SMLDAm

Bibtex 0.164 0.149 0.151 0.152 0.153 0.149 0.151 0.150 0.147 0.146 0.147
Birds 0.217 0.200 0.206 0.197 0.193 0.197 0.201 0.196 0.232 0.204 0.204

CHD_49 0.212 0.195 0.200 0.206 0.198 0.194 0.195 0.200 0.226 0.206 0.205
Cal500 0.190 0.187 0.187 0.187 0.188 0.187 0.187 0.187 0.186 0.188 0.186

Corel16k(001) 0.190 0.187 0.186 0.186 0.187 0.187 0.187 0.187 0.186 0.184 0.182
Emotions 0.173 0.190 0.162 0.187 0.164 0.177 0.182 0.177 0.205 0.184 0.182
Enron 0.218 0.142 0.188 0.145 0.177 0.142 0.178 0.142 0.161 0.139 0.142

Eukaryote 0.122 0.121 0.122 0.121 0.121 0.121 0.120 0.121 0.119 0.121 0.120
Human 0.173 0.160 0.172 0.162 0.171 0.162 0.172 0.159 0.171 0.162 0.157
Image 0.193 0.173 0.199 0.160 0.195 0.167 0.199 0.166 0.203 0.162 0.172
Medical 0.071 0.060 0.066 0.059 0.065 0.060 0.064 0.059 0.071 0.058 0.057

PlantPseAAC 0.280 0.228 0.260 0.230 0.284 0.225 0.291 0.229 0.271 0.234 0.224
Scene 0.135 0.088 0.137 0.087 0.135 0.089 0.135 0.088 0.132 0.089 0.092

Stackex_coffee 0.241 0.273 0.268 0.272 0.269 0.272 0.271 0.272 0.284 0.270 0.275
TMC2007 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.028 0.026 0.027
Yeast 0.183 0.178 0.185 0.177 0.183 0.178 0.185 0.178 0.185 0.177 0.178
Yelp 0.126 0.124 0.130 0.123 0.126 0.125 0.125 0.126 0.139 0.131 0.139

Average 0.171 0.158 0.167 0.158 0.167 0.156 0.169 0.157 0.173 0.158 0.158

Statistical analysis: Friedman: 𝑝 = 4.6e-05, Wilcoxon Signed-Ranks test wrt. SMLDAc:
25.0 X 25.0 -66.0 36.0 -53.0 30.0 -57.0 10.0 -73.0 -67.0
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Table 3.6 Comparison of different variants of the proposed method results with LRR using ranking
loss (↓) [P2]

wMLDAc SMLDAc wMLDAb SMLDAb wMLDAe SMLDAe wMLDAf SMLDAf wMLDAd SMLDAd SMLDAm

Bibtex 0.120 0.115 0.120 0.115 0.120 0.115 0.119 0.115 0.124 0.114 0.112
Birds 0.332 0.268 0.321 0.265 0.321 0.270 0.318 0.270 0.321 0.263 0.258

CHD_49 0.209 0.207 0.208 0.203 0.208 0.204 0.208 0.204 0.213 0.196 0.189
Cal500 0.242 0.267 0.250 0.267 0.266 0.266 0.265 0.267 0.194 0.267 0.266

Corel16k(001) 0.201 0.202 0.206 0.202 0.204 0.202 0.204 0.202 0.190 0.199 0.197
Emotions 0.172 0.163 0.166 0.161 0.170 0.168 0.168 0.168 0.171 0.162 0.159
Enron 0.360 0.198 0.344 0.195 0.327 0.196 0.326 0.196 0.306 0.195 0.189

Eukaryote 0.129 0.125 0.130 0.126 0.129 0.125 0.129 0.125 0.128 0.125 0.123
Human 0.199 0.179 0.203 0.181 0.200 0.178 0.199 0.178 0.194 0.174 0.171
Image 0.208 0.174 0.203 0.174 0.205 0.172 0.203 0.172 0.203 0.175 0.188
Medical 0.044 0.027 0.036 0.027 0.035 0.027 0.033 0.027 0.044 0.026 0.028

PlantPseAAC 0.356 0.339 0.352 0.336 0.352 0.339 0.351 0.339 0.352 0.338 0.329
Scene 0.137 0.091 0.136 0.092 0.137 0.092 0.136 0.091 0.133 0.092 0.092

Stackex_coffee 0.199 0.157 0.158 0.160 0.159 0.160 0.188 0.162 0.188 0.156 0.157
TMC2007 0.040 0.040 0.038 0.040 0.039 0.040 0.039 0.040 0.047 0.040 0.042
Yeast 0.184 0.178 0.182 0.178 0.184 0.178 0.185 0.178 0.188 0.178 0.177
Yelp 0.137 0.136 0.137 0.136 0.137 0.135 0.137 0.135 0.148 0.142 0.147

Average 0.192 0.169 0.188 0.168 0.188 0.169 0.189 0.169 0.185 0.167 0.166

Statistical analysis: Friedman: 𝑝 = 1.8e-10, Wilcoxon Signed-Ranks test wrt. SMLDAc:
14.0 X 16.0 -53.0 5.0 -69.5 3.0 -56.0 23.0 -31.0 -44.0

Table 3.7 Comparative results with ML-kNN using ranking loss (↓) [P2]

Competing methods Proposed
PCA CCA MLSI MDDMp MVMD DMLDA wMLDAc wMLDAd SMLDAc

Bibtex 0.204 0.197 0.199 0.116 0.186 0.271 0.164 0.147 0.149
Birds 0.323 0.203 0.323 0.322 0.322 0.248 0.217 0.232 0.200

CHD_49 0.224 0.212 0.214 0.209 0.225 0.224 0.212 0.226 0.195
Cal500 0.183 0.187 0.184 0.182 0.183 0.187 0.190 0.186 0.187

Corel16k(001) 0.198 0.188 0.196 0.185 0.198 0.197 0.190 0.186 0.187
Emotions 0.299 0.178 0.299 0.301 0.295 0.245 0.173 0.205 0.190
Enron 0.133 0.170 0.135 0.124 0.136 0.191 0.218 0.161 0.142

Eukaryote 0.113 0.126 0.113 0.106 0.111 0.141 0.122 0.119 0.121
Human 0.159 0.178 0.159 0.149 0.158 0.191 0.173 0.171 0.160
Image 0.167 0.201 0.170 0.186 0.166 0.284 0.193 0.203 0.173
Medical 0.057 0.076 0.039 0.051 0.058 0.072 0.071 0.071 0.060

PlantPseAAC 0.197 0.277 0.198 0.180 0.198 0.258 0.280 0.271 0.228
Scene 0.084 0.141 0.083 0.102 0.077 0.234 0.135 0.132 0.088

Stackex_coffee 0.279 0.304 0.259 0.257 0.276 0.298 0.241 0.284 0.273
TMC2007 0.035 0.026 0.035 0.030 0.030 0.038 0.027 0.028 0.026
Yeast 0.174 0.184 0.173 0.179 0.174 0.188 0.183 0.185 0.178
Yelp 0.178 0.117 0.171 0.148 0.176 0.139 0.126 0.139 0.124

Average 0.177 0.174 0.174 0.166 0.175 0.200 0.171 0.173 0.158

Statistical analysis: Friedman: 𝑝 = 1.8e-04, Wilcoxon Signed-Ranks test wrt. SMLDAc:
52.0 16.0 63.0 -74.0 61.0 0.0 25.0 10.0 X
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Table 3.8 Comparative results with LRR using ranking loss (↓) [P2]

Competing methods Proposed
PCA CCA MLSI MDDMp MVMD DMLDA wMLDAc wMLDAd SMLDAc

Bibtex 0.117 0.120 0.117 0.079 0.091 0.120 0.120 0.124 0.115
Birds 0.236 0.301 0.288 0.171 0.199 0.318 0.332 0.321 0.268

CHD_49 0.208 0.210 0.208 0.196 0.205 0.210 0.209 0.213 0.207
Cal500 0.258 0.269 0.265 0.248 0.250 0.245 0.242 0.194 0.267

Corel16k(001) 0.208 0.208 0.208 0.195 0.208 0.206 0.201 0.190 0.202
Emotions 0.163 0.167 0.163 0.174 0.177 0.166 0.172 0.171 0.163
Enron 0.250 0.324 0.332 0.121 0.138 0.400 0.360 0.306 0.198

Eukaryote 0.134 0.130 0.134 0.111 0.120 0.131 0.129 0.128 0.125
Human 0.211 0.209 0.210 0.157 0.185 0.210 0.199 0.194 0.179
Image 0.206 0.207 0.217 0.198 0.177 0.223 0.208 0.203 0.174
Medical 0.031 0.039 0.057 0.025 0.024 0.063 0.044 0.044 0.027

PlantPseAAC 0.340 0.351 0.343 0.194 0.315 0.362 0.356 0.352 0.339
Scene 0.136 0.136 0.138 0.097 0.088 0.141 0.137 0.133 0.091

Stackex_coffee 0.170 0.168 0.169 0.157 0.171 0.163 0.199 0.188 0.157
TMC2007 0.038 0.037 0.038 0.049 0.048 0.037 0.040 0.047 0.040
Yeast 0.184 0.183 0.184 0.180 0.179 0.182 0.184 0.188 0.178
Yelp 0.130 0.129 0.130 0.165 0.135 0.129 0.137 0.148 0.136

Average 0.178 0.188 0.188 0.148 0.159 0.195 0.192 0.185 0.169

Statistical analysis: Friedman: 𝑝 = 6.6e-05, Wilcoxon Signed-Ranks test wrt. SMLDAc:
37.0 11.0 16.0 -44.0 -55.0 20.0 14.0 23.0 X

Table 3.9 Comparative results with ML-kNN using macro-F1 (↑) [P2]

Competing methods Proposed
PCA CCA MLSI MDDMp MVMD DMLDA wMLDAc wMLDAd SMLDAc

Cal500 0.056 0.050 0.055 0.062 0.055 0.051 0.051 0.056 0.051
Corel16k(001) 0.013 0.030 0.017 0.036 0.018 0.018 0.037 0.034 0.036

Enron 0.046 0.073 0.042 0.095 0.054 0.012 0.039 0.036 0.062
Eukaryote 0.053 0.074 0.053 0.060 0.065 0.002 0.090 0.092 0.072
Human 0.043 0.146 0.041 0.095 0.071 0.001 0.145 0.133 0.159
Medical 0.219 0.294 0.307 0.280 0.226 0.186 0.259 0.263 0.302

Stackex_coffee 0.000 0.023 0.017 0.013 0.000 0.010 0.036 0.040 0.048

Average 0.061 0.099 0.076 0.092 0.070 0.040 0.094 0.093 0.104

Statistical analysis: Friedman: 𝑝 = 2.7e-03, Wilcoxon Signed-Ranks test wrt. SMLDAc:
1.0 7.0 3.0 7.0 1.0 0.0 8.0 6.0 X

3.4 Summary and Discussion

In this chapter, we aim to explore saliency information to reallocate the prominence
of minor instances in imbalanced datasets with the LDA-related methods for per-
formance enhancement of the subsequent classifiers with two main contributions
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Table 3.10 Comparative results with LRR using macro-F1 (↑) [P2]

Competing methods Proposed
PCA CCA MLSI MDDMp MVMD DMLDA wMLDAc wMLDAd SMLDAc

Cal500 0.122 0.125 0.126 0.120 0.120 0.104 0.103 0.070 0.127
Corel16k(001) 0.043 0.044 0.043 0.035 0.041 0.044 0.042 0.037 0.044

Enron 0.123 0.117 0.121 0.086 0.101 0.097 0.101 0.095 0.113
Eukaryote 0.113 0.119 0.113 0.097 0.111 0.117 0.119 0.117 0.111
Human 0.143 0.149 0.145 0.136 0.151 0.148 0.147 0.150 0.156
Medical 0.531 0.551 0.489 0.444 0.487 0.488 0.440 0.443 0.536

Stackex_coffee 0.171 0.179 0.186 0.124 0.165 0.190 0.144 0.159 0.196

Average 0.178 0.184 0.175 0.149 0.168 0.170 0.156 0.153 0.183

Statistical analysis: Friedman: 𝑝 = 1.2e-03, Wilcoxon Signed-Ranks test wrt. SMLDAc:
7.0 -14.0 7.0 0.0 1.0 4.0 2.0 1.0 X

Table 3.11 Summary of Wilcoxon Signed-Ranks test results:
the number of times when SMLDAc was better in a statistically significant way [P2]

PCA CCA MLSI MDDMp MVMD DMLDA wMLDAc wMLDAb wMLDAe wMLDAf wMLDAd

ML-kNN 4/7 5/7 2/7 1/7 2/7 7/7 4/7 4/7 1/7 4/7 7/7
LRR 1/7 4/7 5/7 1/7 0/7 4/7 7/7 5/7 7/7 5/7 7/7

Total 5/14 9/14 7/14 2/14 2/14 11/14 11/14 9/14 8/14 9/14 14/14

published in [P1] and [P2]. In the first contribution [P1], we initially addressed the
research question using the saliency-based weighted linear discriminant analysis un-
der a probabilistic estimation approach. The proposed method explores the prior
saliency information of each sample as weight factors. Our proposed method can
further describe the contribution of each instance and redefine the class saliency in-
formation to balance the input dataset using the weight factors, which benefits the
subsequent binary-label classification. In [P1], we adapted misclassification-based
prior saliency information to highlight the outliers around boundaries.

According to the experimental results, our proposed method can enhance the
classification results compared to the competing methods. For instance, the proposed
method has achieved the best classification accuracy of 0.6786 and 0.7224 on the BU
dataset and the KANADE dataset, which are 13.92% and 4.73% higher than the
competing SOTA method [25] separately. However, the input datasets are limited
to facial expressions-related topics, and the work [P1] lacks generality for imbalance
problems.

To further explore the research question, we have extended the method in [P1]
for multi-label classification tasks in [P2] with diverse datasets. The objective of work
[P2] is to build up a general framework based on weighted linear discriminant analy-
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sis (WLDA) algorithms and the probabilistic estimation approach in [P1] to support
classifiers for multi-label classification tasks. In [P2], the weight factors are calcu-
lated using six kinds of prior information to highlight the importance of prominent
instances as six variants. Because our proposed framework has explored the promi-
nence of each sample within each class, the method in the work [P2] can mitigate
the influence of imbalanced problems existing widely in multi-label datasets. Fur-
thermore, due to the generality of our framework, it can work on diverse datasets,
such as audio, video, and text, with the exploration of various prior information.

We have validated our proposed framework on 17 datasets with seven evalua-
tion metrics and two statistical tests. The experimental results have shown that our
proposed framework based on the dimensionality reduction technique can not only
enhance the performance of sequential multi-label classifiers but also outperform
other LDA-related or no-LDA-related algorithms after comparisons. For instance,
our proposed method achieves better average performance on 17 datasets with ML-
kNN classifier using ranking loss metric, where the improvement rate is 7.6% com-
pared to the competing SOTA method wMLDA [5]. Besides, the proposed method
has achieved a significant improvement on the seven most imbalanced datasets with
ML-kNN classifier using the Macro-F1 metric as the enhancement rate is 10.64%
compared to the SOTA method wMLDA [5]. Moreover, the Friedman test and
Wilcoxon signed-ranks test verify the excellent performance of our proposed method
in most cases. Although the effectiveness of the proposed method for the research
question has been verified, the inherent limitation still exists, which is caused by the
computational complexity of the kernel matrix.
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4 GENERATIVE MODELS FOR REGIONS OF

INTEREST ANALYSIS

Generative models have gained more popularity currently to enrich the machine
learning and artificial intelligence community. Especially, the cGANs architecture
has been widely used for various topics with imbalanced inputs, such as anomaly de-
tection, semantic binary segmentation, and facial attribute editing [1], [50], [52], due
to the ability of distribution estimation. This chapter studies GANs-based methods
for two topics: regions of interest and anomaly detection. The first one [P3] partic-
ularly focuses on locating and in-painting special facial attributes as the interest re-
gions with a deep convolutional cGANs architecture. The second one [P4] presents
a cGANs-related architecture to address a semantic binary segmentation task with
extremely imbalanced inputs.

This chapter is structured as follows. In section 4.1, the topology of GANs is
described. The proposed method and experiments targeting facial attribute detection
and in-painting are depicted in section 4.2. Section 4.3 presents the proposed meth-
ods and experiments for solving anomaly detection on road surface images. Section
4.4 summarizes our contributions.

4.1 General Description of GANs

GANs was originally proposed by Goodfellow et al. [122] with the employment
of the zero-sum game strategy to achieve a Nash equilibrium result. The original
topology of GANs consists of a generator (G) and a discriminator (D). The real
distribution 𝑝𝑑𝑎𝑡𝑎 of real target data x can be estimated with a random data vector
z ∼ 𝑝𝑧 (z). Then the generated fake data x̂ is used to deceive the judgment of the
discriminator. The discriminator aims to distinguish two kinds of inputs fake data
from the generator and real data.
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The general objective function of GANs is formulated as

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷
𝑉 (𝐷,𝐺) = Ex∼𝑝𝑑𝑎𝑡𝑎 (x) [𝑙𝑜 𝑔 (𝐷(x))]+

Ez∼𝑝𝑧 (z) [𝑙𝑜 𝑔 (1 − 𝐷(𝐺 (z)))] . (4.1)

Here 𝐷(.) indicates the probability output of the discriminator whether the input
fits the distribution of real data 𝑝𝑑𝑎𝑡𝑎 (x) or the generated fake data 𝑝 𝑔 (z) from 𝐺 (.).

In [9], Mirza et al. proposed a conditional version of GANs with data y to
condition both the generator and discriminator. The data used to condition the
model could be based on class labels, some part of data, or data from other modalities.
The objective function of cGANs is written as in [123]

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷
𝑉 (𝐷,𝐺) = Ex,y [𝑙𝑜 𝑔 (𝐷(x, y))]+

Ex,z [𝑙𝑜 𝑔 (1 − 𝐷(𝑥, 𝐺 (x, z)))]
]︂
. (4.2)

The architecture of cGANs can be based on an encoder-decoder generator or UNet-
based generator [123]. Some variants of cGANs have been successful on various
computer vision tasks such as [124]–[126].

Radford et al. proposed a novel topology of GANs based on deep convolutional
networks in [127] called DCGANs. The generator of DCGANs consists of trans-
posed convolutional layers and the discriminator has strived convolutional layers
as shown in the following figure The architecture of DCGANs uses convolutional

Figure 4.1 The topology of DCGANs [127]

neural networks (CNN) for stable training across a range of datasets [127]. This
modification has brought three main advantages compared to the original GANs
architecture. The first advantage is the generator of DCGANs can learn its spa-
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tial up-sampling with fractional-strided convolutions. The second advantage is the
deeper architectures after removing fully connected hidden layers. The third advan-
tage is the stability of the generator from batch normalization with zero mean and
unit variance.

4.2 Regions of Interest Detection and Editing on Facial Images

This section presents the second contribution [P3] which utilized GANs to de-
tect and in-paint regions of interest on facial images unsupervised with DCGANs.
The regions of interest in this work are defined as occluded facial parts covered
by sunglasses and scarves. Generally, in-painting tasks require manual blocks with
zero-value pixels as the occluded parts for the subsequent in-painting or constrained
datasets [63]. In [P3], we proposed an unsupervised learning method to infer a mask
with 0 values covering the regions of occlusions from an occluded facial image in the
wild using a loss function for the subsequent in-painting.

4.2.1 Proposed Method

Our proposed method in [P3] introduces DCGANs for facial attributes detection
and in-painting. Here, we aim to locate and remove facial occlusions with corre-
sponding masks and then semantically in-paint the occluded pixels with appropriate
contents. To achieve our goal, we adopted three steps in [P3]: 1) training DC-
GANs using occlusion-free facial images, 2) learning binary occlusion masks and
corresponding facial images for completing, and 3) obtaining de-occluded facial im-
ages by merging. According to the survey in [1], facial attribute editing-related tasks
can be considered as intra-class imbalance problems, due to lack of detailed data with
annotated labels. Considering the advantage of balancing input with a GANs-related
model, we used DCGANs to tackle the specific facial attribute editing tasks in [P3].
The workflow is demonstrated in Fig. 4.2.

• Architecture: We adopted the standard DCGANs architecture [127] for train-
ing, as shown in Fig. 4.2. The DCGANs contains a generator G and a discrim-
inator D with a reverse network to G. We used occlusion-free facial images to
train the DCGANs to learn a stable model representing the diverse features of
normal facial images. Then the learned generator works with an optimization
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8x8x256	 8x8x256	
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Image	completion	stage:		 (1− M̂ ) ! IG ( ẑ ) + M̂ ! IO

M̂

Figure 4.2 Architecture of the proposed method [P3]

method to distinguish occlusion pixels and facial attribute pixels for a binary
occlusion mask.

• Training: The mask𝑀 was initially set with a constant and the input vector z
with 100 dimensions was randomly sampled based on the uniform distribution
U[−1, 1] at the beginning. The optimization process aims to find an optimal ẑ
and a binary mask𝑀 with the proposed loss function, by which the mask and
in-painted occluded parts were generated at the same time. The final binary
mask 𝑀 contains zero-valued pixels denoting occluded areas and one-valued
pixels for the occlusion-free areas. The optimal ẑ can generate an image with
the corresponding facial attributes to the occluded inputs.

Two optimization algorithms: Adam gradient descent [128] and stochastic
gradient descent (SGD) [129] were used to learn ẑ and 𝑀 separately. The
z and 𝑀 were updated alternatively during each iteration. Moreover, two
kinds of morphological filters were used to remove noises: a closing filter and
an erosion filter for learning the normalized 𝑀 in each iteration. The final
binary 𝑀 was obtained using a threshold 𝑇 , as pixel values larger than T to
1, otherwise to 0.
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• Loss Function

We adopted four terms in our loss function as contextual loss function L𝑑𝑖𝑓𝑓,
prior loss function L𝐷 (z) , smoothness loss function L𝑠𝑚𝑜𝑜𝑡ℎ, and occlusion
loss function L𝑝𝑒𝑛𝑎𝑙𝑡𝑦.

– Contextual Loss Function L𝑑𝑖𝑓𝑓 indicates the difference of the areas
without occlusion in an occluded image 𝐼𝑂 and its corresponding gen-
erated one 𝐼𝐺z , so that the generated image 𝐼𝐺 (ẑ) can be closer to the
occluded image 𝐼𝑂 . It is defined as

L𝑑𝑖𝑓𝑓 = ∥𝑊 ⊙ (𝐼𝐺 (z) − 𝐼𝑂)∥1, (4.3)

Here, ⊙ means element-wise multiplication. 𝑊 is the weighting term
based on 𝑀 to highlight the importance of surrounding pixels of the
missing parts, as in [130]

𝑊𝑖 =


∑︁

𝑗 ∈𝑁 (𝑖 )

(1−𝑀𝑗 )
|𝑁 (𝑖 ) | , 𝑖 𝑓 𝑀𝑖 ≠ 0

0, 𝑖 𝑓 𝑀𝑖 = 0
, (4.4)

where𝑊𝑖 denotes the importance weight of pixel 𝑖, 𝑁 (𝑖) represents a
window around pixel 𝑖, and |𝑁 (𝑖) | is the cardinality of the window.

– Prior Loss Function L𝐷 (z) is the loss of the trained discriminator D,
acting as a penalty, defined as follows:

L𝐷 (z) = 𝑙𝑜 𝑔 (1 − 𝐷(𝐺 (z))), (4.5)

which leads the generated image to be as realistic as possible, satisfying
the human visual experience.

– Smoothness Loss Function L𝑠𝑚𝑜𝑜𝑡ℎ is designed to learn a smooth mask
with the same size as the occluded image. It forces the occluded part in
the mask toward a uniform value.

L𝑠𝑚𝑜𝑜𝑡ℎ =

𝑁1∑︁
𝑖

𝑁2∑︁
𝑗

−1,1∑︁
𝑘

∥𝑥𝑖,𝑗 − 𝑥𝑖+𝑘,𝑗+𝑘 ∥2, (4.6)

where 𝑥𝑖,𝑗 refers to each pixel value of mask 𝑀 . 𝑁1 and 𝑁2 are width
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and height, respectively. This smoothness loss function measures the sim-
ilarity of each pixel with its four neighbors horizontally and vertically.

– Occlusion Loss Function L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 uses ℓ1-norm as a penalty for large
occlusion areas in the mask as:

L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
𝑁1∑︁
𝑖

𝑁2∑︁
𝑗

∥𝑥𝑖,𝑗 ∥1. (4.7)

This term is needed to avoid assigning all the pixels as occlusion. Oth-
erwise, setting all M values to zero would be an easy way to minimize
L𝑑𝑖𝑓𝑓.

The entire loss function is formed as:

L = L𝑑𝑖𝑓𝑓 + 𝛼1L𝑠𝑚𝑜𝑜𝑡ℎ + 𝛼2L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝛼3L𝐷 (z) (4.8)

The ẑ can be obtained by minimizing Eq. 4.8 as

ẑ = 𝑎𝑟 𝑔 𝑚𝑖𝑛
z

L. (4.9)

The M̂ can be obtained by minimizing L:

M̂ = 𝑎𝑟 𝑔 𝑚𝑖𝑛
M

L. (4.10)

• Image Completion In the completion stage, we adopted the general strategy
used in in-painting works [130], [131] as 𝐼𝐺 (ẑ) and 𝐼𝑂 are merged using �̂�

𝐼𝑟𝑒𝑐 = (1 −𝑀 ) ⊙ 𝐼𝐺 (ẑ) +𝑀 ⊙ 𝐼𝑂 . (4.11)

4.2.2 Experimental Results

4.2.2.1 Databases and Data Preprocessing

In work [P3], we used two public datasets CelebFaces Attributes Datasets (CelebA)
[132] and AR face database [100] in our experiments. The CelebA dataset contains
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Figure 4.3 Visual results from AR dataset [P3]

202, 599 number of face images, and each image is with 40 attribute annotations. The
AR face dataset consists of 4,000 face images and each face image has 13 attributes.

Each input image in [P3] was aligned and cropped using OpenFace [133] for the
size of 64 × 64 pixels. We used the dataset CelebA [132] to train DCGANs model
for the first step. Any image with occlusions (sunglasses and scarves) in CelebA has
been removed before training. AR Face Dataset [100] was used as the test dataset
for de-occlusion and in-painting with the trained model. Furthermore, we randomly
selected several facial images with occlusions from CelebA to validate the algorithm
for de-occlusion and in-painting with the trained model.
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4.2.2.2 Experimental Setup

In [P3], we set the hyperparameters of the loss functions as 𝛼1 = 1, 𝛼2 = 5, and
𝛼3 = 0.1. Because the importance of occlusion size loss function L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 needs to be
highlighted during training in case the values of the learned mask could be very close
to being 0, we set 𝛼2 = 5. We have set different values for 𝛼1 ∈ [1, 5] and 𝛼3 ∈ [0, 1]
to obtain the optimal hyper-parameters. When 𝛼1 = 1 and 𝛼3 = 0.1, the convergence
process was steady. Threshold 𝑇 is set to be 0.7 finally for the best performance
after setting 𝑇 ∈ [0.5, 0.8] for several times experiments. The hyperparameters for
both morphological filters [134] are set to be 1 pixel [135]. The hyperparameters
of training the model are set as follows: 25 epochs to train the DCGANs and 1000
iterations in the generation (testing) stage for each occluded image.

4.2.2.3 Experimental Result

The proposed method in [P3] is a typical unsupervised solution without the corre-
sponding ground truth. Hence, the experimental results are evaluated based on visual
inspection instead of quantitative metrics. The experimental results are demonstrated
using three figures Fig. 4.3, Fig. 4.4, and Fig. 4.5. Fig. 4.3 presents the results from
the AR dataset. The process of mask generation is demonstrated in Fig. 4.4. One
failure case is shown in Fig. 4.5.

Figure 4.4 Examples of mask optimization process [P3]

4.3 Anomalous Regions of Interest Detection on Pavement Images

This section presents the fourth contribution in [P4] which utilized a cGANs-related
variant to detect and segment anomalous cracks on pavement images. A key challenge
of such tasks is to improve the deteriorating performance caused by the existence of
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Figure 4.5 Failure examples [P3]

pixel level imbalances [1] using algorithms. GANs-related algorithms have shown
good potential in solving various computer vision tasks in imbalanced datasets [1],
such as shadow detection with cGANs [79], small object detection with perceptual
GANs [136]. We proposed a GANs-related variant incorporating with attention
mechanism and entropy-based loss functions to tackle anomalous crack detection on
road surface images in [P4].

4.3.1 Proposed Method

In [P4], our proposed cGANs-related method is based on an encoder-decoder gen-
erator as the backbone, which has achieved a certain success on style transferring
tasks [123]. The architecture of the generator part is shown in Fig. 4.7 [P4] and the
discriminator is in Fig. 4.8 [P4]. We present the details of the work [P4] as follows

• Network Architectures

The overall architecture of the network consists of two pipelines in the training
phase as shown in Fig. 4.6. The first pipeline contains a generator and a
discriminator working together based on the zero-sum game mechanism [P4].
The input of this generator is a raw pavement image X and its output is a
generated feature probability map Ŷ with values from 0 to 1. The generator
aims to deceive the judgment of the discriminator with its produced image
Ŷ. The inputs of the discriminator are a real image pair as {X, Y} and a fake
image pair {X, Ŷ}. The probability map indicates whether each pixel belongs
to cracks or not. We adopted two kinds of discriminator architectures in [P4]:
pixel-level discriminator in Fig. 4.8(a) or image-level discriminator Fig. 4.8(b)
to investigate which one has more effect on the severely imbalanced dataset as
shown in Fig. 4.8. The image-level discriminator aims to distinguish the image
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Figure 4.6 The general scheme of our proposed method [P4]

pairs with a probability. The pixel-level discriminator is to distinguish the
image pairs with a probability matrix to indicate whether each pixel belongs
to a real or fake.

This generator contains 22 convolutional blocks, where each contains a 2D
convolutional layer, a batch normalization layer, and RELU activation se-
quentially. The last convolutional layer for output uses sigmoid activation.
The four AGs are used to take four skipping layers in the contracting path as
the gating signals. Each convolutional layer uses a 3 × 3 filter and 1 × 1 stride.
The architecture of AGs is referred from [137]–[139]. The pixel-level discrim-
inator consists of four convolutional layers, except the last layer with a sigmoid
activation, others followed with RELU activation. The image-level discrimi-
nator contains five convolutional blocks, and each block has two convolutional
layers followed by batch normalization, RELU activation, and max-pooling.
The auxiliary network consists of four convolutional layers, except the last
layer with a sigmoid activation, and others followed with a leaky RELU acti-
vation.

A significant characteristic of the pavement dataset is the imbalanced propor-
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Figure 4.7 The architecture of attention UNet generator [P4].

tion of the number of pixels between cracks and backgrounds. Moreover, the
texture and intensity of the regions of interest vary dramatically according to
diverse capturing conditions. To address the pixel-level imbalance tasks ro-
bustly, we introduced an auxiliary network to refine the regions of interest in
a pixel-by-pixel manner as the second branch to audit the generator further.
The auxiliary network is a pixel-by-pixel convolutional network with three
convolutional layers as shown in Figure 4.8(a). The input of the auxiliary net-
work is the output Ŷ from the generator and its corresponding ground truth
Y.

• Loss Functions

The conditional GAN loss function L𝑐𝐺𝐴𝑁 [123] is used for the first branch.
The input of the discriminator is image pairs {X,Y} or {X, Ŷ}, the discrim-
inator determines whether the input pair is from the real pair {X,Y} or the
fake pair {X, Ŷ}. Hence the conditional GANs loss function is formulated as
[36]

L𝑐𝐺𝐴𝑁 𝑠 (𝐺, 𝐷) = EX∼𝑝𝑑𝑎𝑡𝑎 (X,Y) [𝑙𝑜 𝑔 (𝐷(X,Y))]+

EX∼𝑝𝑑𝑎𝑡𝑎 (X) [𝑙𝑜 𝑔 (1 − 𝐷(X, 𝐺 (X)))] . (4.12)
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Figure 4.8 The architectures of two discriminators [P4].

Here X is a raw pavement image containing cracks. Y depicts ground truth
cracks image with 0 (normal road surface) or 1 (cracks) pixel values, and Ŷ is
for the corresponding probability feature map from the generator 𝐺.

Then we utilized the definition of entropy to regularize the results from the
generator in the second pipeline. Here the target of the auxiliary network is
to minimize the distribution difference between the ground truth Y and the
probability feature map Ŷ by cross-entropy and KL-divergence [140].

The auxiliary network works as a mapping function 𝜙(.). A perceptual loss
function derived from KL-divergence is defined as

L𝐾𝐿 =
∑︁

𝜙(Y)𝑙𝑜 𝑔
𝜙(Y)
𝜙(Ŷ)

. (4.13)

The perceptual loss function is used to train the auxiliary network while the
generator training is fixed. It aims to learn an optimal model to minimize the
discrepancy between 𝜙(Y) and 𝜙(Ŷ). Besides, the auxiliary network is used
to audit the generator with a reconstruction loss function. The reconstruction
loss function can penalize the output discrepancy of the auxiliary network
which is defined according to the sigmoid cross-entropy as

54



L𝐶𝐸 = −𝑙𝑜 𝑔 (1 − sigmoid( |𝜙(Y) − 𝜙(Ŷ) |)). (4.14)

Here |𝜙(Y) − 𝜙(Ŷ) | presents the difference between the auxiliary network
outputs. Furthermore, side network loss function [141] is a famous strategy
for line detection initially, which is effective for crack detection [74], [88],
[138]. In [P4], the side network loss function has affected the effectiveness
of crack detection, especially for severely imbalanced and complex pavement
datasets. The side network loss function contains losses from four side layers
and the final fused layer, which are defined based on binary cross entropy as

L𝑏𝑐𝑒 = − 1
𝑁

𝑁∑︁
𝑛=1
𝑦𝑛𝑙𝑜 𝑔 ( 𝑝𝑛) + (1 − 𝑦𝑛)𝑙𝑜 𝑔 (1 − 𝑝𝑛), (4.15)

where 𝑝𝑛 is the predicted pixel 𝑛 in an output probability map and 𝑦𝑛 is the
corresponding ground truth pixel 𝑛. Then the loss function from the side
network is denoted as

L𝑆 𝑖𝑑𝑒 =

4∑︁
𝑖=1

(L𝑏𝑐𝑒) 𝑖𝑠𝑖𝑑𝑒 + (L𝑏𝑐𝑒)𝑓𝑢𝑠𝑒 . (4.16)

The last term of the loss function is Tversky loss function L𝑇 𝐿 defined based
on the Tversky index (TI) [42] The Tversky loss function is then defined

L𝑇 𝐿 = 1 −𝑇 𝐼 . (4.17)

We wish the side networks, and the auxiliary networks could have an equal
influence on the network parameters updating. Hence, the entire loss func-
tion consists of the above four terms with a hyperparameter 𝛾 to control the
contribution of cGANs loss function as

L = 𝛾L𝑐𝐺𝐴𝑁 𝑠 + L𝐾𝐿 + L𝐶𝐸 + L𝑆 𝑖𝑑𝑒 + L𝑇 𝐿 . (4.18)
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4.3.2 Experimental Results

4.3.2.1 Databases and Data Preprocesing

We trained and tested the proposed framework on six datasets: CRACK500[74],
CFD[38], CrackTree260[38], CrackLS315[38], CRKWH100 [38], andDeepCrack-
DB[142]. To increase the number of images, we cropped the original images with
overlap and retained the cropped images containing more than 1000 crack pixels
on each dataset. Then the data augmentation was carried out by rotation with 90°,
180°, and 270°. Finally, we randomly selected 10% for testing and 90% for training
and validation on each dataset.

4.3.2.2 Experimental Setup

The hyperparameters for the training process are set as follows: the learning rate
for the Adam optimizer is 0.0001, the momentum term is 0.2 [36], and the number
of iterations is 50000. Besides, we used validation to select the best model during
training according to the average value of dice, accuracy, sensitivity, and specificity
calculated between the predicted feature maps binarizing with the Otsu filter [143]
and the corresponding ground truth every 2000 iterations.

The work [P4] has several hyperparameters for the LSA model and the loss func-
tion, which are set as follows. The window size of an LSA module is set to 8 em-
phasizing the correlation of a neighbor area. Moreover, the 𝛼 = 0.3 and 𝛽 = 0.7 of
the Tversky loss function emphasize recall (false negative pixels) more than preci-
sion. Furthermore, we set 𝛾 = 0.25 for the total loss function 4.18 to highlight the
influence from the side networks and the auxiliary network more.

As mentioned above, the training process has two stages. The first stage follows
a common training process of the cGANs [9]. The second stage is based on the aux-
iliary network to update the parameters of the generator and the auxiliary network
simultaneously.

4.3.2.3 Experimental Result Analysis

We compared the performance of seven competing methods: UNet [46], HED
[141], FPHB [74], V-GANwith pixel-level discriminator [36], V-GANwith image-
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Table 4.1 Complexity Comparison with a 512x512 Input [P4]

Model FLOPs Params Time/image (s)

UNet [46] 60.91G 5.76M 0.0090
HED [141] 0.27G 2.8K 0.0114
FPHB [74] 273.91G 44.70M 0.0457

V-GAN (pixel) [36] 160.98G 8.04M 0.0178
V-GAN (image) [36] 115.02G 12.67M 0.0180
DeepCrack [142] 160.65G 14.72M 0.0468

Crackformer II [138] 176.60G 4.96M 0.1060

cGAN_LSA (pixel) 207.15G 25.26M 0.0630
cGAN_CBAM (pixel) 179.95G 8.85M 0.0194

cGAN_CBAM_Ig (pixel) 179.95G 8.85M 0.0203
cGAN_LSA (image) 163.08G 29.88M 0.0626
cGAN_CBAM (image) 131.46G 13.47M 0.0188

cGAN_CBAM_Ig (image) 131.46G 13.47M 0.0188

Table 4.2 Result on DeepCrack-DB [P4]

Model ODS OIS AP Global Accuracy Mean IOU

UNet [46] 0.7645 0.7706 0.8011 0.9851 0.8017
HED [141] 0.7907 0.7770 0.8429 0.9860 0.8194
FPHB [74] 0.8089 0.7595 0.8882 0.9867 0.8326

V-GAN (pixel) [36] 0.7007 0.7301 0.6063 0.9801 0.7592
V-GAN (image) [36] 0.7053 0.7063 0.5237 0.9818 0.7630
DeepCrack [142] 0.8212 0.8110 0.8928 0.9873 0.8416

Crackformer II [138] 0.8751 0.8537 0.9195 0.9911 0.8844

cGAN_LSA (pixel) 0.8662 0.8481 0.8360 0.9905 0.8771
cGAN_CBAM (pixel) 0.8926 0.8759 0.8662 0.9924 0.8991

cGAN_CBAM_Ig (pixel) 0.8921 0.8765 0.8833 0.9924 0.8986
cGAN_LSA (image) 0.8505 0.8251 0.8000 0.9894 0.8644
cGAN_CBAM (image) 0.8760 0.8556 0.8316 0.9912 0.8851

cGAN_CBAM_Ig (image) 0.8014 0.7917 0.7457 0.9864 0.8273
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Table 4.3 Result on CrackLS315 [P4]

Model ODS OIS AP Global Accuracy Mean IOU

UNet [46] 0.2452 0.2324 0.0908 0.9939 0.5650
HED [141] 0.0009 0.0008 0.0025 0.9977 0.4991
FPHB [74] 0.0119 0.0089 0.0025 0.9977 0.4989

V-GAN (pixel) [36] 0.1849 0.1449 0.0404 0.9977 0.5495
V-GAN (image) [36] 0.2411 0.2232 0.0982 0.9973 0.5669
DeepCrack [142] 0.3668 0.3534 0.2707 0.9977 0.6104

Crackformer II [138] 0.3156 0.2853 0.1971 0.9959 0.5916

cGAN_LSA (pixel) 0.4553 0.4225 0.2300 0.9976 0.6461
cGAN_CBAM (pixel) 0.5418 0.5006 0.3520 0.9980 0.6846

cGAN_CBAM_Ig (pixel) 0.5322 0.4889 0.3196 0.9980 0.6802
cGAN_LSA (image) 0.4024 0.3815 0.1934 0.9974 0.6245
cGAN_CBAM (image) 0.4366 0.4085 0.2240 0.9976 0.6382

cGAN_CBAM_Ig (image) 0.5044 0.4658 0.2944 0.9979 0.6675

Table 4.4 Alation study of loss function on CrackLS315 [P4]

Model ODS OIS AP Global Accuracy Mean IOU

cGAN_CBAM_Ig (pixel) 0.5322 0.4889 0.3196 0.9980 0.6802
cGAN_CBAM_Ig (w/o Side loss) 0.5251 0.4823 0.3172 0.9980 0.6769

cGAN_CBAM_Ig (w/o Side loss + Tversky loss) 0.5116 0.4734 0.2941 0.9977 0.6703

Table 4.5 Alation study of loss function on DeepCrack-DB [P4]

Model ODS OIS AP Global Accuracy Mean IOU

cGAN_CBAM_Ig (pixel) 0.8921 0.8765 0.8833 0.9924 0.8986
cGAN_CBAM_Ig (w/o Side loss) 0.8420 0.8066 0.7110 0.9881 0.8575

cGAN_CBAM_Ig (w/o Side loss + Tversky loss) 0.8161 0.7772 0.7361 0.9865 0.8377
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Figure 4.9 Precision and Recall Curves [P4]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.10 Visual results on DeepCrack-DB (a) Input image. (b) Ground truth. (c) UNet. (d) CrackformerII.
(e) DeepCrack. (f) cGAN_CBAM (pixel). (g) cGAN_CBAM_Ig (pixel). (h)cGAN_LSA (pixel). [P4]
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Figure 4.11 Visual results on CrackLS315 (a) Input image. (b) Ground truth. (c) UNet. (d)
CrackformerII. (e) DeepCrack. (f) cGAN_CBAM (pixel). (g) cGAN_CBAM_Ig (pixel).
(h)cGAN_LSA (pixel). [P4]
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level discriminator [36], DeepCrack [142], and CrackformerII [138] to our proposed
framework with five quantitative evaluation metrics, precision-and-recall curves, and
visual results. The quantitative evaluation metrics are shown in Section 2.4.

• Complexity Analysis: We evaluate the model complexity, computational com-
plexity, and inference efficiency between our proposed framework and com-
peting methods in Table. 4.1. As shown, the computational complexity of
our proposed framework with an image-level discriminator is lower than with
a pixel-level discriminator, whereas the proposed framework has fewer pa-
rameters with an image-level discriminator. In addition, the computational
complexity of the LSA is higher than other attention mechanisms.

• Ablation Study We conducted an alation study of attention mechanisms and
discriminator structures for our proposed framework. We only show re-
sults on DeepCrack-DB and CrackLS315 in this dissertation as shown in Ta-
ble. 4.2 and Table. 4.3. The results from others are demonstrated in [P4].
From these quantitative results, we can conclude that pixel-level discrimina-
tor works better than image-level discriminator in most cases. Moreover, the
common CBAM attention mechanism achieves the best performance in most
cases and the CBAM ignoring attention mechanism reaches up to similar re-
sults compared to the common CBAM. The alation study was carried out
on DeepCrack-DB and CrackLS315 to verify the effectiveness of the side loss
function and Tversky loss function to our proposed framework in Table. 4.4
and Table. 4.5.

• Comparison with Competing Methods From the precision-and-recall curves in
Fig. 4.9, our proposed framework has achieved the best performance on the
other four benchmark datasets: CFD, CrackLS315, CRKWH100, and Crack-
Tree260 with the pixel-level discriminator, compared to the competing meth-
ods. As shown in Table. 4.2, when the backbone with the pixel-level dis-
criminator and the common CBAM, the cGAN_CBAM (pixel) variant has
achieved the best performance with ODS, Global Accuracy, and Mean IOU.
Furthermore, it can be observed from Table.4.3 that our framework achieves
the best performance compared to the competing methods. The other results
are demonstrated in [P4].
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4.4 Summary and Discussion

In this chapter, we aim to explore GANs-based techniques for two kinds of regions of
interest analysis tasks with imbalanced inputs in [P3] and [P4]. In [P3], we addressed
the research question of developing a GANs-based architecture with a novel optimal
loss function to edit specific facial attributes with occlusions. The proposed method
is based on the DCGANs trained with facial images without occlusions. During the
inference stage, the trained DCGANs working with the loss function can locate and
in-paint the occluded facial attribute regions in an unsupervised manner.

The experimental results under subjective visual inspection have shown that our
algorithm can successfully detect and complete the occluded facial attributes on spe-
cific facial images containing occlusions as imbalanced inputs in the absence of ground
truth. The final results are evaluated with subjective visual inspection to assess the
performance as shown in Fig. 4.3. Besides, the generation process of two occluded
masks is demonstrated in Fig. 4.4. Although this method has achieved the expected
results with proper inputs, it contains some inherent limitations. First, the visual
effects of the results are influenced by illumination situations and texture contrast
conditions. In particular, it is difficult to evaluate the results with quantitative met-
rics and make a comparison with other methods due to lacking ground truth.

The fourth contribution [P4] presents another solution to research question 2 by
exploring a GANs-based architecture with entropy-based loss functions to segment
the anomalous crack pixels on pavement images. The proposed method adopts a
cGANs-based architecture as a backbone with severely imbalanced image inputs.
The cGANs-based architecture consists of two training stages for a refined multiscale
feature probability map to indicate crack pixels. Besides, we further investigated the
effectiveness of attention mechanisms for the imbalanced problems in the proposed
framework.

We have carried out extensive experiments on six benchmark datasets with five
quantitative evaluation metrics, precision-and-recall curves, and visual results. The
experimental results have shown that our proposed method can achieve a stable per-
formance on diverse benchmark datasets compared to competing methods. For in-
stance, the proposed method cGAN_CBAM (pixel) can enhance the OSD, OIS, and
Mean IOU on the DeepCrack-DB by 2.0%, 2.6%, and 1.7% respectively, compared
to the SOTA competing method Crackformer II [138]. Our proposed method can
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improve the performance in severely imbalanced datasets according to the experi-
mental result on CrackLS315. The proposed method cGAN_CBAM (pixel) has
achieved the best ODS: 0.5418, OIS: 0.5006, and Mean IOU: 0.6846 compared
to the SOTA method DeepCrack [142]. Besides, our proposed methods can ob-
tain probability feature maps closer to the ground truth with hard inputs such as
CrackLS315 according to the visual results. The alation study has shown the effec-
tiveness of side networks and Tversky loss function with a variant of our proposed
method cGAN_CBAM_Ig (pixel). The side network and Tversky loss function can
increase the ODS, OIS, and Mean IOU by 9.3%, 12.8%, and 7.3% separately on
DeepCrack-DB. Although extensive experiments have verified the effectiveness and
robustness of the proposed method, it still presents inherent limitations. In par-
ticular, the network complexity is high since it uses an attention mechanism with
skip-connection.
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5 CONCLUSIONS

This dissertation presents machine-learning solutions for the classification and re-
gions of interest analysis on imbalanced datasets. The proposed solutions aim to
address two research questions: explore saliency information with LDA for an opti-
mal result of the subsequent classification tasks and develop GANs-based techniques
working with different losses to carry out regions of interest analysis tasks with
severely imbalanced inputs.

Considering the shortcomings of existing LDA-related variants used for classi-
fication tasks, we first proposed saliency-based weighted linear discriminant analy-
sis (LDA) variants to solve binary-label classification tasks in [P1]. Our proposed
method used the probabilistic saliency estimation to explore the prior information
hidden behind the raw input data to reveal the real prominence of each sample to
its class so that we can incorporate this prior information into the scatter matrices
to balance the contribution of each sample for more authentic information on the
optimal sub-space. Our proposed method has achieved a promising performance on
facial image datasets BU and KANADE with 13.92% and 4.73% improvement sep-
arately compared to the SOTA method. We further proposed a general framework
based on the probabilistic saliency estimation approach with a multi-label linear dis-
criminant analysis (MLDA) framework for multi-label classification tasks in [P3].
Our proposed framework not only provides a general way to utilize different kinds
of prior information of input data but also mitigates the imbalanced problem widely
existing in multi-label datasets because the weight factor is analyzed within each class.
We implemented our proposed framework on 17 diverse datasets covering audio,
video, and text with a varied number of instances for each dataset. Compared to the
SOTA method wMLDA, our proposed method has achieved the best average over
all datasets working with different prior information with ML-kNN and LRR classi-
fiers using the ranking loss metric. Moreover, our proposed method outperforms all
other non-LDA-based methods with ML-kNN classifier and most other non-LDA-
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based methods with LRR using the ranking loss metric. Furthermore, our proposed
method has achieved the best performance in the seven most imbalanced datasets
compared to other non-LDA-based methods with ML-kNN using macro-F1. This
contribution further verifies the effectiveness of the probabilistic saliency estimation
approach with the LDA technique addressing multi-label classification tasks.

Recall the first research question, how to explore saliency information to properly
highlight prominent but minor instances in an imbalanced dataset with the LDA for
an optimal result of the subsequent classification tasks, we can conclude that the first
contribution [P1] in this dissertation initially explores saliency information based
on the misclassification prior information with LDA for an optimal result of the
subsequent binary classification tasks. Furthermore, the second contribution [P2]
explores saliency information based on six kinds of prior information with LDA for
optimal results of the subsequent multilabel classification tasks. These two contri-
butions and the respective results summarized above fully address the first research
question.

Although the experimental results from contributions [P1] and [P2] have shown
significant improvements in the subsequent classification tasks, the limitation of the
proposed methods stems from the complex kernel matrix computation with prior
information. For future work, other similarity measurements can be investigated,
such as the use of sparse matrices to explore the saliency information in the input.
Furthermore, kernel LDA can also be explored as a framework for nonlinear sub-
space for classification tasks in future work.

The second research question asks if we can develop GANs-based techniques
working with different losses to carry regions of interest analysis tasks with severely
imbalanced inputs. We addressed this question in publications [P3] and [P4]. In [P3],
we have investigated the potential of GAN-based methods for editing specific facial
attributes in an unsupervised learning manner. Our proposed method is based on
the DCGANs architecture with a novel optimal loss function. The loss function is
used to detect the occluded facial parts and then the trained DCGANs generate the
corresponding occluded facial features to complete a facial image without any occlu-
sion. Our proposed method does not require large-scale datasets with annotations
for recovering the ground truth images but only for facial image completion, hence
it is impossible to be evaluated with metrics. In work [P4], we further explored the
potential of GAN-based methods for solving a binary semantic segmentation task

66



with pavement images with anomalous crack pixels, which is a typical imbalanced
problem. We have proposed a cGANs-based method with a novel auxiliary network
working in two stages iteratively for a refined probability feature map for crack de-
tection. Moreover, we further investigated the effectiveness of attention mechanisms
and losses for robust results on diverse datasets. We have implemented the method on
six benchmark datasets and evaluated the experimental results with five quantitative
metrics, precision-and-recall curves, and visual results.

These contributions fully address the second research question as follows. From
the visual results in [P3], we can conclude that the proposed method successfully
provides specific facial attributes editing tasks in an unsupervised manner based on
the DCGANs architecture and an optimal loss function. While a cGANS-based
framework solution proposed in [P4] can segment anomalous crack pixels effectively
based on attention mechanisms and entropy-based losses.

The extensive experimental results have verified the proposals in the contributions
[P3] and [P4]. However, there are still several inherent limitations existing in [P3]
and [P4]. In particular, the third contribution does not contain any quantitative eval-
uation due to a lack of ground truth. Besides, the proposed method in [P3] works
well on specific images captured under a proper condition which lacks generality.
Moreover, the computation complexity is still high, especially with the LSA atten-
tion module. Therefore, it is worthy to further extend the contribution [P3] with
a semi-supervised learning manner and evaluate the final results using quantitative
metrics. Additional potential aspects for further study could include investigating
the compact or lightweight networks instead of the current ones in the contribution
[P4]. Furthermore, further studies can target carrying out the proposed framework
in [P4] as a solution for binary semantics segmentation on medical images.
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ABSTRACT

In this paper, we propose a new variant of Linear Discrim-
inant Analysis to overcome underlying drawbacks of tradi-
tional LDA and other LDA variants targeting problems in-
volving imbalanced classes. Traditional LDA sets assump-
tions related to Gaussian class distribution and neglects influ-
ence of outlier classes, that might hurt in performance. We
exploit intuitions coming from a probabilistic interpretation
of visual saliency estimation in order to define saliency of a
class in multi-class setting. Such information is then used
to redefine the between-class and within-class scatters in a
more robust manner. Compared to traditional LDA and other
weight-based LDA variants, the proposed method has shown
certain improvements on facial image classification problems
in publicly available datasets.

Index Terms— Visual saliency estimation, Fisher’s dis-
criminant criterion, Linear Discriminant Analysis(LDA)

1. INTRODUCTION

Linear Discriminant Analysis (LDA), as a traditional sta-
tistical machine learning technique, has been employed for
several classification tasks, such as human action recognition
[1], face recognition [2], [3], and person identification [4],
due to its effectiveness in reducing dimensions and extract-
ing discriminative features. In a classification task, LDA
is used to define an optimal projection by means of Fisher
criterion optimization. Despite the widespread application
of traditional LDA, its performance is affected by several
issues related to its underlying assumptions. Traditional LDA
represents each class with the corresponding class mean and
discriminates between classes based on the scatters of these
class representations with respect to the total data mean. Such
a class discrimination definition may cause large overlaps of
neighboring classes [5], and receive a sub-optimal result,
since an outlier class being far from the others dominates
the solution [5]. Furthermore, in traditional LDA all classes
equally contribute to the within-class scatter definition [6]
based on the assumption of the same Gaussian distribution for
all classes. This assumption overemphasizes well-separated
outlier classes, which should have lower contribution in the

overall within-class scatter definition. A method that au-
tomatically determines optimized class representations for
LDA-based projections was proposed in [7], [8]; however,
it also suffers from the class imbalance problems discussed
above. In order to overcome aforementioned drawbacks of
traditional LDA, extensions imposing weighting strategies for
the definition of the within-class and between-class scatters
have been proposed in [9], [10], [11], [12], [13]. In these
methods, the weighting factors incorporated to the scatter
matrices definitions are based on class statistics, e.g. class
cardinality, and class representation is still assumed to be the
class mean.

A novel extension of LDA that exploits intuitions from
saliency [14] is proposed in this paper. A probabilistic cri-
terion is formulated in order to express the samples around
boundary within its original class following a probabilistic
saliency estimation framework [15]. Such a definition is nat-
urally expressed by graph notation, in which several types
of graphs can be exploited. Both fully connected and k-NN
graphs are considered. After defining the probability of each
sample belonging to its corresponding class, this information
is used to define new class representations, as well as new
within-class and between-class scatters. Compared to tradi-
tional LDA and its weighted variants, the proposed Saliency-
based weighted LDA (SwLDA) has shown enhanced perfor-
mance on facial image classification problems.

The remainder of this paper is structured as follows. In
Section 2, we briefly present related works. In Section 3, we
rigorously derive the proposed SwLDA method on the ba-
sis of various weighted LDA methods and saliency estima-
tion. Experimental results on publicly available facial image
datasets are provided in Section 4, and Section 5 concludes
this work.

2. RELATED WORK

In this section, first we briefly describe original LDA and two
of its weighted variants, which have been proposed in order
to overcome shortcomings of LDA related to class imbalance
problems. Later, visual saliency estimation based on the re-
cently proposed probabilistic interpretation [15] is presented.



In the following, we assume that each training sample is
represented by a vector xi ∈ RD and is followed by a class
label yi ∈ {1, . . . , C}. A set of training vectors xi, i =
1, . . . , N are used in order to define a linear projection from
the input space RD to a discriminant subspace Rd such that
the representation of the i-th sample is given by zi = WTxi,
where W ∈ RD×d is the projection matrix to be learned by
optimizing class discrimination criteria.

2.1. Linear Discriminant Analysis

LDA defines the optimal data projection matrix W by maxi-
mizing the following criterion

J(W) = max
W

tr(WTSBW)
tr(WTSWW)

, (1)

where SW , SB are within-class and between-class scatter ma-
trices respectively, and defined as follows:

SW =
∑C
c=1

∑
xi,αc

i
(xi − µc)(xi − µc)T , (2)

SB =
∑C
c=1Nc(µc − µ)(µc − µ)T . (3)

In the above, αci is an index denoting whether sample i be-
longs to class c, i.e. αci = 1 if yi = c and αci = 0 oth-
erwise. Nc denotes the cardinality of class c, i.e. Nc =∑N
i=1 α

c
i and µc denotes the mean vector of class c, i.e. µc =

1
Nc

∑
xi,αc

i=1 xi. µ is the total mean vector µ = 1
N

∑N
i=1 xi.

The optimal projection matrix W is obtained through ap-
plying eigenvalue decomposition of the matrix S = S−1

W SB
and keeping the eigenvectors corresponding to the largest (up
to C − 1 in total) eigenvalues.

2.2. Weighted LDA Variants

Weighted versions of LDA aim at scaling the contribution of
each class based on their influences on projection, by defining
appropriate weights. In [12], between-class scatter matrix is
redefined for enhancing robustness in multi-class problems,
as follows:

Sb =
∑C−1
c=1

∑C
j=c+1 Lcjpcpj(µc − µj)(µc − µj)T , (4)

where pc, pj denote the prior probability of class c, class j,
respectively. Lcj expresses the dissimilarity between class c
and class j, using a distance function in the Euclidean (or a
Mahalanobis) space. In order to reduce the influence of out-
lier classes, an outlier-class-resistant weighted LDA method
is proposed in this work [10] based on Loog’s work [12].
They express the between-class scatter using (4) and a new
within-class scatter definition is proposed as follows:

Sw =
∑C
c=1

∑Nc

k=1 pcrc(xk − µc)(xk − µc)T , (5)

where rc =
∑
i6=c

1
Lic

is a relevance-weight between class c
and class i, reducing attention to outlier classes.

Another version of weighted LDA aiming at alleviating
the influence of outlier class is proposed in [11]. They define
the between-class scatter and within-class scatter as follows:

Sb =
∑C−1
c=1

∑C
j=c+1 ncnjw1(∆cj)(µc − µj)(µc − µj)T , (6)

Sw =
∑C
c=1

∑Nc

k=1 pcw2(∆c:)(xk − µc)(xk − µc)T , (7)

where nc, nj are the number of samples for class c and class
j, in addition, w1(∆cj) and w2(∆c:) are defined as 1

∆cj
and

1∑
j 6=c ∆cj

, respectively. ∆cj is the Fisher’s discriminant cri-
terion in the discriminant space determined through applying
LDA using the between-class scatter matrix SB and the total
scatter matrix ST = SB + SW , i.e.:

w∗ = argmax
w

{w
TSBw

wTSTw
} = S−1

T (µc − µj), (8)

∆cj = w∗TSBw∗

w∗TSTw∗ . (9)

Using the above definition of ∆cj , in the case where a
class is well separated from all others, a smaller value of
w(∆cj) will be used, reducing the influence of that class on
the result. Once the new Sw and St (St = Sw + Sb) are ob-
tained, the final projection matrix W can be determined by
optimizing the following Fisher’s discriminant criterion:

J(W) = argmax
W

tr(WTSbW)
tr(WTStW)

. (10)

2.3. Visual Saliency Estimation

Visual saliency estimation has gained attention during the last
decade, since it can be applied as a pre-processing step for
higher level Computer Vision tasks. Recently, Aytekin et
al.[15] formulated the salient object segmentation problem
based on probabilistic interpretation. Specifically, they de-
fined a probability mass function P (x) encoding the proba-
bility that an image region (in the sense of pixel, super-pixel
or patch) to depict a salient region. Estimation of P (x) is for-
mulated as an optimization problem enforcing similar regions
to have similar probabilities, while any prior information re-
garding saliency (defined based on the location of each region
in the image lattice) can be exploited. This joint optimization
is expressed as:

argmin
r(x)

(∑
i(P (x = xi))

2vi + 1
2

(∑
i,j

((
P (x = xi)

)2 − P (x = xi)P (x = xj)
)
wi,j

))
(11)

s.t.
∑
i P (x = xi) = 1,

where vi ≥ 0 denotes prior information for region i by non-
negative values and wij expresses the similarity of regions i
and j. The optimization problem in (11) can be expressed
using a matrix notation as follows:

p∗ = argmin
p

(pTHp), (12)

H = D−W + V, (13)
s.t. pT1 = 1,



where p is a vector having elements pi = P (x = xi) corre-
sponding to the probability of each region to be salient. W is
the affinity matrix of a graph having as vertices for the region
representations and D is the corresponding diagonal matrix
having elements equal to Dii =

∑
jWij . V is a diagonal

matrix having elements [V]ii = vi. In visual saliency, the
element Vii expresses the a priori knowledge that an image
location belongs to background, that is introduced by the user.

As has been shown in [15], the optimization problem in
(12) has a global optimum given by: p∗pse = H−11. Inter-
estingly, the above solution is equivalent to an one-class clas-
sification model, making a connection between salient object
segmentation and one-class classification problems. In the
following, we will use this connection in order to derive a new
definition for class-representation and scatter matrices calcu-
lation in LDA.

3. SALIENCY-BASED WEIGHTED LINEAR
DISCRIMINANT ANALYSIS

This section describes in detail the proposed weighted ver-
sions of LDA. We define the contribution of each sample to
the corresponding class, and then new class representations
and scatter matrices are proposed accordingly. We start by
describing the proposed sample weights.

3.1. Sample Weights and Class Representation

Weighted LDA variants represent each class with the corre-
sponding mean vector and define weights based on pair-wise
class distances to address the outlier class problem. Such
mutation yields a certain improvement over traditional LDA.
Nevertheless, it neglects the influences of outlier samples
within each class [13], which may affect the classification
result greatly. This is due to the fact that all class samples
equally contribute to the definition of the class representation
and scatter matrix calculation.

In our work, we determine the contribution of each sample
based on its class saliency information. We define the class
saliency information of a sample xi based on its probability to
belong to its true class yi. In order to do so, we calculate the
probability mass function Pc(x) of each class c independently
following the probabilistic saliency estimation (PSE) in [15].
That is, for each class c, we form the corresponding graph
GC = {Xc,Wc}, where Xc ∈ RD×Nc is a matrix formed
by the samples belonging to class c and Wc ∈ RNc×Nc is
the graph weight matrix expressing the similarity between the
class samples. Any type of graph can be used to this end. In
our experiments we have used fully connected and the k-NN
graphs, using the heat kernel function:

Wij = exp

(
−‖xi − xj‖

2σ2

)
, (14)

where the value of σ is set equal to the mean Euclidean

distance between the class samples, which is the natural scal-
ing factor for each class.

We define a priori saliency information as misclassification-
based probability for the class data to be set in the diagonal
elements of the matrix Vc. Misclassification-based proba-
bility assumes that a sample is less probable to have high
saliency information if it is closer to another class, when
compared to its true class. In this case, the elements of Vc

are set equal to:

Vc,ii =


0, if dcc,i < min

k 6=c
dkc,i,

dcc,i
min
k 6=c

dkc,i
, otherwise,

(15)

where dkc,i = ‖xc,i − µk‖22. In this case, a sample which is
close to another class is assigned to low saliency information,
even if it may be close to the center of its class.

After having defined the matrices Wc and Vc, the prob-
ability of each sample xc,i to belong to class c is given by:
pc = H−1

c 1, where Hc = Dc −Wc + Vc and Dc,ii =∑
jWc,ij . Having obtained pc ∈ RNc , c = 1, . . . , C, we

define a new class representation as mc = Xcpc.

3.2. Scatter Matrices Definition

By exploiting class-specific saliency information described
above, we can define within-class scatter matrix in two dif-
ferent ways. The first one is to incorporate pc in Sw as:

S
(1)
w =

∑C
c=1

∑Nc

j=1 pc,j(xc,j − µc)(xc,j − µc)T , (16)

where xc,j denotes j-th sample in class c, pc,j is saliency
score for j-th sample in class c. The other one is inspired
by relevance weighted LDA mentioned in section 2, as:

S
(2)
w =

∑C
c=1

∑Nc

j=1 pc,jrc(xc,j − µc)(xc,j − µc)T . (17)

Here rc =
∑
i6=c

1
Lic

is a relevance-weight, where Lic is de-
fined based on the Euclidean distance between pairwise mean
vectors of class i and class c, as (18):

Lic =
√

(µi − µc)T (µi − µc). (18)

Definitions of between-class scatter matrix in aforemen-
tioned LDA methods simply maximize either the variations
between each class mean vector and the total mean vector,
or the variations between class pairs. Here, we propose four
types of between-class scatter matrices, which are not only
based on the aforementioned definition of Sb, but also cap-
ture the structure inside each class. The first definition is the
same as (3):

S
(1)
b =

∑C
c=1Nc(µc − µ)(µc − µ)T . (19)

The second one uses saliency scores pc, when generating
new class representations, as follows:

µ̂c = Xcpc, (20)

S
(2)
b =

∑C
c=1(µ̂c − µ)(µ̂c − µ)T , (21)



Table 1. Classification accuracy of proposed SwLDA
Dataset BU KANADE JAFFE ORL YALE AR
K 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc) 1 min(5, 0.1 ∗Nc)

SwLDA11 0.5714 0.5714 0.6816 0.6939 0.5619 0.5762 0.9700 0.9700 0.9597 0.9564 0.9696 0.9696
SwLDA21 0.5714 0.5686 0.6816 0.6816 0.5619 0.5762 0.9700 0.9700 0.9597 0.9568 0.9696 0.9696
SwLDA31 0.5886 0.5829 0.6776 0.6776 0.5524 0.5762 0.9850 0.9850 0.9597 0.9556 0.9696 0.9692
SwLDA41 0.6500 0.6529 0.7020 0.6980 0.5905 0.5857 0.9850 0.9850 0.9597 0.9568 0.9696 0.9696
SwLDA12 0.5800 0.5814 0.6816 0.6816 0.5667 0.5667 0.9850 0.9850 0.9589 0.9564 0.9692 0.9688
SwLDA22 0.5800 0.5814 0.6816 0.6816 0.5667 0.5571 0.9850 0.9850 0.9589 0.9572 0.9684 0.9684
SwLDA32 0.6243 0.6200 0.6776 0.6776 0.5286 0.5238 0.9600 0.9600 0.9589 0.9572 0.9684 0.9684
SwLDA42 0.6786 0.6743 0.7224 0.7184 0.5476 0.5524 0.9450 0.9450 0.9593 0.9572 0.9696 0.9692

Table 2. Classification accuracy comparison
Dataset BU KANADE JAFFE ORL YALE AR
LDA 0.5729 0.6898 0.5571 0.9725 0.9593 0.9688
[10] 0.5743 0.6857 0.5714 0.9800 0.9564 0.9681
[11] 0.5957 0.6898 0.5381 0.9800 0.9597 0.9692

SwLDA41 0.6500 0.7020 0.5905 0.9850 0.9597 0.9696
SwLDA42 0.6786 0.7224 0.5476 0.9450 0.9593 0.9696

where Xc contains all samples in class c, µ̂c is the new class
representation or weighted center of class c. The third defini-
tion extends (21) to exploit the relationships between pairs of
new class representation for each class, as follows:

S
(3)
b =

∑C
c1=1

∑C
c2=1(µ̂c1 − µ̂c2)(µ̂c1 − µ̂c2)T . (22)

The last definition, S(4)
b , intends to maximize discrimina-

tion between every sample in one class with other new class
representations, meanwhile takes into account of each sam-
ple’s saliency scores, as follows:

S
(4)
b =

∑C
c1=1

∑C
c2=1,
c2 6=c1

∑Nc1
j=1 pc1,j(xc1,j − µ̂c2)(xc1,j − µ̂c2)T ,

(23)
where Nc1 is the cardinality of class c1.

3.3. Discriminant Criterion

Using the above described scatter matrices, several optimiza-
tion criteria can be formed as follows:

J(W) = argmax
W

tr(WTS
(i)
b W)

tr(WTS
(ij)
t W)

, (24)

where S
(ij)
t = S

(j)
w + S

(i)
b , i ∈ {1, 2, 3, 4} and j ∈ {1, 2}.

After obtaining projection matrix W by eigenvalue decom-
position, we map corresponding class representations and test
samples by the optimal W, and then nearest centroid classi-
fier is applied for classification. It should be noted that when
H or St are singular, a regularized version is used.

4. EXPERIMENT RESULTS

In our experiments, we evaluate the performance of pro-
posed SwLDA, traditional LDA and two weighted LDA

approaches mentioned in section 2 on six public facial im-
age datasets: BU, KANADE, JAFFE, ORL, YALE and AR.
We evaluate the performance of the proposed SwLDA ap-
proaches, as illustrated in Table 1. The results of SwLDAij
illustrate classification accuracy obtained by using the ma-
trices S

(ij)
t and S

(i)
b , i ∈ {1, 2, 3, 4}, j ∈ {1, 2}. The result

of traditional LDA is considered as baseline. The results
comparison of baseline, Tang et al. [10], Jarchi and Boostani
work [11] and our work are presented in Table 2. The best
result in each dataset is presented in bold font. We imple-
ment standardization on all datasets before training and split
each dataset into 5 folds for cross-validation. When obtain-
ing Wc, we select k-NN graphs with k ∈ min(5, 0.1 ∗ Nc)
or fully connected graphs to evaluate its impact on the re-
sults. As shown, the best performances over datasets BU
and KANADE are both achieved by using SwLDA42 with
fully connected graphs. SwLDA41 is the most effective
over dataset JAFFE. The maximal improvement is 10.57%
on dataset BU using SwLDA42 with fully connected graphs,
compared to the result of traditional LDA. That over Tang’s
work [10] is 0.14% and over Jarchi’s work [11] is 2.28%.
SwLDA12 and SwLDA22 work better than SwLDA32 and
SwLDA42 apparently on datasets JAFFE and ORL. Fully
connected graphs works better than k-NN graphs does over
YALE dataset for all cases. Graph connection does not affect
the classification accuracy using SwLDA11, SwLDA21,
SwLDA41, SwLDA22 and SwLDA32 over dataset AR.

5. CONCLUSION

In this paper, we propose weighted LDA variants based on
a probabilistic definition of visual saliency estimation. We
follow a class-specific saliency estimation process in order to
determine the contribution of each sample in the optimization
problems solved for discriminant subspace learning. Then,
we employ our new approaches to six public datasets for eval-
uation and comparison with related LDA methods. Our new
definitions target to reveal connections between each sample
in every class, and further solve shortcomings in weighted
LDA variants. Experimental results sufficiently demonstrate
that the highest classification accuracy is always with one of
our proposed approaches over these six facial image datasets.
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Saliency-Based Multilabel Linear
Discriminant Analysis

Lei Xu , Student Member, IEEE, Jenni Raitoharju , Member, IEEE,
Alexandros Iosifidis , Senior Member, IEEE, and Moncef Gabbouj , Fellow, IEEE

Abstract—Linear discriminant analysis (LDA) is a classical sta-
tistical machine-learning method, which aims to find a linear data
transformation increasing class discrimination in an optimal dis-
criminant subspace. Traditional LDA sets assumptions related
to the Gaussian class distributions and single-label data anno-
tations. In this article, we propose a new variant of LDA to be
used in multilabel classification tasks for dimensionality reduc-
tion on original data to enhance the subsequent performance of
any multilabel classifier. A probabilistic class saliency estimation
approach is introduced for computing saliency-based weights for
all instances. We use the weights to redefine the between-class and
within-class scatter matrices needed for calculating the projec-
tion matrix. We formulate six different variants of the proposed
saliency-based multilabel LDA (SMLDA) based on different prior
information on the importance of each instance for their class(es)
extracted from labels and features. Our experiments show that
the proposed SMLDA leads to performance improvements in
various multilabel classification problems compared to several
competing dimensionality reduction methods.

Index Terms—Class saliency, dimensionality reduction, linear
discriminant analysis (LDA), multilabel classification.

I. INTRODUCTION

MULTILABEL classification tasks have become more
and more common in the machine-learning field

recently, for example, in text information categorization [1],
image and video annotation [2], sequential data prediction [3],
or music information retrieval [4]. Compared to single-label
problems, the characteristics of multilabel problems are more
complicated and unpredictable. In a single label problem, each
instance merely belongs to a single class. In a multilabel
dataset, data items can be associated with either one or several
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classes. For example, an image can represent both a beach and
a sunset and, thus, be associated with both of these classes.
Moreover, different classes typically contain a varying num-
ber of data items, leading to class-imbalanced problems [5].
Hence, in order to solve a multilabel classification problem
efficiently and effectively, we need not only to consider the
correlation of class labels and features of each data item but
also to take into account the different cardinalities of the
classes. The problem of multilabel learning (MLL) has been
widely studied and various multilabel classifiers have been
suggested [6]–[8].

In this article, we focus on dimensionality reduction for
multilabel classification. Dimensionality reduction techniques
in general aim at transforming the data to a lower dimensional
form that is easier to process by the learning techniques with-
out losing relevant information. The dimensionality reduction
techniques for multilabel classification aim at optimizing the
data transformation for subsequent multilabel classification. At
least 50 such methods have been proposed [9].

A well-known supervised dimensionality reduction tech-
nique linear discriminant analysis (LDA) and its variants have
been widely used to extract discriminant data representa-
tions for solving various problems, for example, in human
action recognition [10] or biological data classification [11].
However, they are not optimal for multilabel problems due
to the characteristics of multilabel data. This is due to two
factors: 1) the contribution of each data item in the calcu-
lation of the scatter matrices involved in the optimization
problem of single-label LDA and its variants cannot be appro-
priately determined and 2) the cardinality of the various classes
forming the multilabel problem can be quite imbalanced. In
multilabel LDA (MLDA) [12] and its variants, these problems
have been tackled by introducing different weights to take
into account the label and/or feature correlation of different
items.

In this article, we propose a novel dimensionality reduction
method for multilabel classification based on a probabilistic
approach that is able to estimate the contribution of each data
item to the classes it is associated with by taking into account
prior information encoded using various types of metrics. The
proposed calculation of the contribution of each data item to
the classes it belongs to can not only weigh its importance
but can also avoid problems related to imbalanced classes. To
this end, we exploit the concept of class saliency introduced
in [13]. Hence, the proposed method is called saliency-based
MLDA (SMLDA). Our proposed SMLDA approach exploits

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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both label and feature information with various prior weight-
ing factors. The proposed method yields features optimized
for multilabel classification that can be subsequently classified
using any multilabel classifier.

We have made the following contributions on dimensional-
ity reduction for multilabel classification tasks with our novel
SMLDA approach.

1) We propose a general framework for using the proba-
bilistic saliency estimation to weigh the importance of
each data item for the classes it is associated with for
the first time in MLL.

2) We formulate a novel SMLDA method that uses the
saliency-based weights in the scatter matrices and can
alleviate the problems related to imbalanced datasets.

3) We integrate different label and feature information
previously used as weights in dimensionality reduction
to SMLDA by using them as prior information for proba-
bilistic saliency estimation and show experimentally that
our approach leads to a better performance.

4) We compare our proposed approach to 11 compet-
ing dimensionality reduction methods on 17 diverse
multilabel datasets using seven evaluation metrics and
applying two different multilabel classifiers on the
produced features, and the results show considerable
improvements in multilabel classification tasks using our
approach.

The remainder of this article is structured as follows. In
Section II, we briefly review the related works. We include
a precise explanation of the LDA and weighted MLDA with
adequate mathematical notations to support the derivations of
the proposed method. In Section III, we describe our proposed
methods in detail. Section IV presents the experimental setup
and results. In Section V, we conclude this article and discuss
the potential future studies.

II. RELATED WORKS

In this section, we first briefly present several dimensionality
reduction techniques previously used in multilabel classifica-
tion tasks in Section II-A. In Section II-B, we give a detailed
description of the standard LDA, weighted LDA, and MLDA,
since they form the theoretical foundation for the proposed
work. Subsequently, we introduce the general concepts of
saliency estimation and the probabilistic saliency estimation
approach needed to develop the proposed method.

A. Dimensionality Reduction Methods for Multilabel
Classification

Dimensionality reduction techniques are commonly used as
a preprocessing step for multilabel classification to map the
raw high-dimensional data into an optimal lower-dimensional
subspace preserving the distinguishing features [9]. The tech-
niques can be categorized as unsupervised or supervised
approaches depending on whether class label information is
used or not [14]. Furthermore, the techniques can be divided
into methods that are independent of the classifiers or depen-
dent of the classifiers [9]. In this article, we consider only
dimensionality reduction techniques that are all independent
of the classifiers.

Principal component analysis (PCA) [15] is the most well-
known unsupervised dimensionality reduction algorithm that
minimizes the information lost by preserving as much of
the data’s variations as possible. Canonical correlation anal-
ysis (CCA) [16] is a widely known supervised dimensionality
reduction algorithm, projecting the raw data into a subspace
exploiting the correlations between the features and labels.

Dimensionality reduction techniques specifically designed
for multilabel data include the multilabel-informed latent
semantic indexing (MLSI) algorithm [17] that preserves the
discriminate feature information by considering the correla-
tions between the multiple labels and multilabel dimensional-
ity reduction via the dependence maximization (MDDM) algo-
rithm [18] that maximizes the dependence between the original
features and class labels using the Hilbert–Schmidt indepen-
dence criterion (HSIC) for measuring dependence. MDDM
has two variants with different constraints: 1) MDDMp
with an uncorrelated projection constraint and 2) MDDMf
with an uncorrelated feature constraint. MDDMp variant was
observed to perform better in [18]. Xu et al. [19] proposed
a multilabel feature extraction method that integrates least-
squares formulations of PCA and MDDM linearly, which
both maximizes feature variance and maximizes feature-label
dependence (MVMD) at the same time.

B. Linear Discrimination Analysis-Based Algorithms for
Multilabel Classification

Standard LDA and its variants have been applied to tackle
various multilabel classification problems [9], [12], [20]–[23].
These methods operate on N data items xi ∈ RD and their
corresponding binary label vectors yi ∈ {0, 1}C, where D is the
original data dimensionality and C is the number of classes.
These are arranged into matrices X ∈ RD×N and Y ∈ RC×N .
An element yci of Y is 1 only if the corresponding data item xi
is associated with class c. Thus, in single-label classification
tasks, there is a single 1 on each column, but in multilabel
classification, the number of 1s is not constrained. The rows
of Y contain 1s for all data items that are associated with
the particular class and we denote them as y(j), where j ∈
1, . . . ,C. The objective of LDA-based methods is to find a
data projection matrix W ∈ RD×d that maps the data from the
original feature space RD to a subspace Rd, where D > d, in
a manner that maximizes the class discrimination.
1) Linear Discrimination Analysis: LDA is an effective

technique to reduce the dimensionality of original data as
a prepossessing step for single-label classification problems.
LDA operates on within-class, between-class, and total scatter
matrices Sw, Sb, and St defined as follows:

Sw =
C∑

c=1

N∑

i=1

yci
(
xi − µc

)(
xi − µc

)T (1)

Sb =
C∑

c=1

(
N∑

i=1

yci

)
(
µc − µ

)(
µc − µ

)T (2)

St =
C∑

c=1

N∑

i=1

yci(xi − µ)(xi − µ)T . (3)
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Here, µc denotes the mean vector of class c as

µc = 1

Nc

N∑

i=1

ycixi (4)

where Nc = ∑N
i=1 yci is the cardinality of class c. The total

mean vector µ is computed as

µ = 1

N

N∑

i=1

xi. (5)

The optimal projection matrix W is learned by maximizing
Fisher’s discriminant criterion [24] that minimizes the within-
class scatter while maximizing the between-class scatter

J(W) = argmax
W

tr
(
WTSbW

)

tr
(
WTSwW

) (6)

where tr(.) denotes the trace of a matrix. Typically, the solution
to this trace ratio optimization is approximated by solving the
corresponding ratio trace optimization. This allows obtaining
the projection matrix W by solving the generalized eigenvalue
problem

Sbw = Swλw (7)

and taking the eigenvectors corresponding to the d ≤ C − 1
largest eigenvalues as columns of the projection matrix W. The
rank of Sb is equal to C − 1, which is the maximal dimen-
sionality of the resulting subspace. Also, different iterative
methods for solving directly the trace ratio problem have been
proposed [25], [26].

Since St = Sw + Sb, an alternative approach is to use St

instead of Sw and maximize Fisher’s discriminant criterion as

J(W) = argmax
W

tr
(
WTSbW

)

tr
(
WTStW

) . (8)

Finally, the optimized features can be obtained as

Z = WTX. (9)

The datasets used in most traditional LDA classification tasks
are assumed to have equal class distribution as a homoscedas-
tic Gaussian model [27], in which the covariance matrices
of each class should be identical [28]. The performance is
affected severely due to the imbalance of input datasets [29].
2) Weighted Linear Discrimination Analysis: In order to

enhance the robustness of traditional LDA on different kinds of
datasets, various weight factors based on class statistics [26],
[28], [30], for example, class cardinality, a prior probability,
have been introduced into the definitions of the scatter matri-
ces to balance the contribution of each class. Weighted LDA
approaches have diminished the influence of outlier classes
on the scatter matrices of imbalanced datasets to some extent;
however, they still neglect the varying importance of individual
samples in the class description. Saliency-based weighted LDA
(SwLDA) [13] was proposed to explore the contribution of
each instance based on probabilistic saliency estimation [31].
Our work uses a similar idea for multilabel classification.

Fig. 1. Number of instances for each class in the Yeast database.

3) Multilabel Linear Discrimination Analysis: Although
weighted LDA algorithms enhance the performance in single-
label classification tasks [32] compared to traditional LDA,
such variants are still not directly applicable for multilabel
classification tasks [12]. In a multilabel dataset, label
information contains certain correlations or dependencies [33],
for example, an image instance labeled as “car” highly cor-
relates to label “road” [12]. Besides, it is quite common that
the number of samples in each class in a multiclass dataset is
imbalanced. For example, the largest class size is 1128 and the
smallest is 21 in the widely used Yeast database [34], as shown
in Fig. 1. Due to the specific characteristics of multilabel
databases, it is imperative to take into account the correla-
tion of class labels and/or discriminative feature information
of each instance to tackle the suboptimal classification result
on imbalanced datasets.

If traditional LDA and its variants are applied to multilabel
classification tasks by simply using (1) and (2) with the
multilabel label matrix Y, an overcounting problem is encoun-
tered, that is, the contribution of one instance can be repeat-
edly counted in computing the scatter matrices. Hence, an
MLDA [12] and its variants use weight factors to express
redundancy or/and correlation information so that the scatter
matrices can be calculated without redundancy on multilabel
databases. These weight factors can be organized to a non-
negative weight matrix M ∈ RC×N with the same size as the
label matrix Y

M = [m1, . . . , mi, . . . , mN] = [
m(1), . . . , m(j), . . . , m(C)

]T

(10)

where mi represents a weight vector for the ith instance, m(j)

is a weight vector for the jth class, and mci is the weight factor
of the ith instance for class c.

We denote by ni, n(c), and n the summations of the weights
for the ith instance, weights for class c, and all weights,
respectively

ni =
C∑

c=1

mci (11)

n(c) =
N∑

i=1

mci (12)
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n =
C∑

c=1

N∑

i=1

mci =
C∑

c=1

n(c). (13)

We also define row vectors n̂ and m̂ and matrix M̂ for
simplifying notations as

n̂ =
[

1

n(1)

, . . . ,
1

n(C)

]
. (14)

m̂ = [n1, . . . , ni, . . . , nN] =
C∑

c=1

m(c) (15)

M̂ = Mdiag
(

n̂
1
2

)
(16)

where M̂ has row vectors ([m(c)]/[
√
n(c)]) for c = 1, . . . ,C.

The scatter matrices for MLDA can now be given as

Sw =
C∑

c=1

N∑

i=1

mci
(
xi − µc

)(
xi − µc

)T

= X
(

diag
(
m̂

) − M̂ᵀM̂
)

Xᵀ (17)

Sb =
C∑

c=1

(
N∑

i=1

mci

)
(
µ − µc

)(
µ − µc

)T

= X
(

M̂ᵀM̂ − 1

n
m̂ᵀm̂

)
Xᵀ (18)

St = Sw + Sb

= X
(

diag
(
m̂

) − 1

n
m̂ᵀm̂

)
Xᵀ (19)

where µ is the total mean vector of all training instances and
µc is the mean vector of class c

µ =
∑C

c=1
∑N

i=1 mcixi∑C
c=1

∑N
i=1 mci

, µc =
∑N

i=1 mcixi∑N
i=1 mci

. (20)

A detailed derivation of the matrix forms in (17)–(19) can be
found in [14]. The optimal projection matrix W can still be
obtained by solving the generalized eigenproblem in (7) as
discussed in Section II.

In the original MLDA [12], the weight factors are solved
using label correlations for different classes. First, a correlation
matrix R ∈ RC×C is computed using the class labels of each
pair of classes

Rkl = cos
(
y(k), y(l)

) = yT(k)y(l)

‖y(k)‖‖y(l)‖ (21)

where y(k), y(l) are label vectors for classes k, l ∈ 1, . . . ,C.
The label correlation for classes k and l is high if the classes
are closely related. The correlation matrix R can be used to
compute the weight matrix M as M = RY. However, also this
approach may lead to the overcounting problem. To tackle the
overcounting problem [12], the weight factors are normalized
with the �1-norm

m′
i = mi

‖yi‖�1

. (22)

Other metrics for evaluating the relationships among
instances from the labels and/or features were used for deter-
mining the weights in [14] under the name weighted multilabel
LDA (wMLDA). In addition to the label correlation-based
weight factors used in MLDA [12], Xu [14] considered

entropy-based [35], binary-based [20], fuzzy-based [36], and
dependence-based weight factors [14]. Similar metrics can be
used as prior information within our probabilistic saliency
estimation framework. Therefore, the detailed explanations of
these metrics are left to Section III-A1.

In [21], MLDA was extended to Direct MLDA by changing
the definition of Sb in a way that allows obtaining a higher
dimensional subspace than the original MLDA, where the sub-
space dimensionality is limited by the rank of Sb to C−1. This
extension work further enhanced the results in multilabel video
classification tasks. Another extension, multilabel discriminant
analysis with locality consistency (MLDA-LC) [22] not only
preserves the global class label information as MLDA does
but also incorporates a graph regularized term to utilize the
local geometric information. MLDA-LC reveals the similarity
among nearby instances with transformation in the projection
space using incorporation of the graph Laplacian matrix into
the MLDA approach, which further enhances the classifica-
tion performance in multilabel datasets compared to MLDA
and MLLS algorithms.

C. Saliency Estimation

Saliency estimation, as a standard computer vision task, is
inspired by neurobiological studies [37] and cognition psy-
chology [38]. Generally, saliency estimation is a preprocessing
step for various high-level computer vision tasks, such as
object detection [31], [39] and omni directional images [40].
Saliency in physiological science is defined as a special kind of
perception of the human visual system, by which humans can
perceive particular parts in a scene in details due to colors,
textures, or other prominent information contained in these
parts [41]. These particular parts can be distinguished as a
foreground from nonsalient background parts.

Computational saliency estimation approaches can be cate-
gorized as local approaches and global approaches based on
the way they process saliency information [41]. Local saliency
estimation approaches explore the prominent information
around the neighborhood of specific pixels/regions whilst
global approaches exploit the rarity of a pixel/patch/region in
the entire scene. Since the emergence of the computational
saliency estimation field [42], various probabilistic approaches
have been explored in this topic.

Aytekin et al. [31] proposed a probabilistic saliency esti-
mation approach for segmenting salient objects in an image,
where a probability mass function P(x) depicts whether a
region xi (pixel, super-pixel, or patch) in an image is con-
sidered as a distinct region. The higher the values of P(xi) for
a region, the more prominent the region is. P(x) is solved by
simultaneously optimizing two terms to allocate not only lower
probabilities to nonsalient regions but also similar probabilities
to similar regions

argmin
P(x)

⎛

⎝
∑

i

P(xi)2vi +
∑

i,j

(
P(xi) − P

(
xj

))2
aij

⎞

⎠

= argmin
P(x)

⎛

⎝
∑

i

P(xi)2vi +
∑

i,j

(
P(xi)2 − P(xi)P(xj)

)
aij

⎞

⎠

s.t.
∑

i

P(xi) = 1 (23)
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where the first term suppresses the probability of a non-
prominent region xi using its prior information vi ≥ 0. In
the second term, a high similarity of regions xi and xj,
given as a high similarity value aij, forces the regions to
have similar probabilities. To go from the first form to the
second form, the similarity values are assumed symmetric,
that is, aij = aji.

The optimization task in (23) can be expressed using matrix
notations as

p∗ = argmin
p

(
pTHp

)

H = D − A + V

s.t. pT1 = 1 (24)

where p is a probability vector that contains the probabilities
of each element or region xi to be salient, that is, pi = P(xi),
A is an affinity matrix, which denotes the similarity of each
pair of regions xi and xj as [A]ij = aij. D is a diagonal matrix
having elements equal to [Dii] = ∑

j aij, V is a diagonal prior
information matrix having elements [V]ii = vi, and 1 is a
vector of ones. Then, the Lagrangian multiplier method is
employed

L(p, γ ) =
(

pTHp
)

− γ
(

pT1 − 1
)
. (25)

A global optimum p∗ is obtained by setting the partial deriva-
tive of (25) with the respect p to 0. The final optimized
probability vector is

p∗
pse = 1

1TH−11
H−11 (26)

where the normalization constant 1TH−11 follows from the
constraint pT1 = 1 and ensures that the resulting values are
actual probabilities. Due to the properties of matrix H−1, the
elements of p∗ are always non-negative as shown in [31]. A
more detailed derivation of (26) can be also found in [31].

III. PROPOSED METHOD

We propose a novel SwLDA method for multilabel clas-
sification tasks. The proposed method has two main steps.
For the first step, we propose a probabilistic saliency estima-
tion approach to evaluate the importance of each sample for
each class in a multilabel dataset. This is a general frame-
work for multilabel class-saliency and, as future work, can
be easily integrated also with other dimensionality reduction
techniques or directly with multilabel classifiers that weigh
the samples based on their importance. In the second step,
we use the class-saliency analysis as weights in an MLDA
technique.

In our prior work [13], we used the idea of probabilistic
class-saliency estimation for single-label datasets to tackle the
suboptimal results of LDA-based algorithms caused by imbal-
anced datasets or/and outliers. In this article, we formulate
multilabel extensions of both the probabilistic class-saliency
estimation and the subsequent LDA-based dimensionality
reduction technique. Furthermore, we show how to use as
prior information in the probabilistic multilabel class-saliency
estimation framework different types of information extracted

from the data and/or labels that have been previously used
directly as sample weights in MLL and we propose a
new misclassification-based multilabel information extraction
approach, which is based on the prior information type used
for single-label data in [13].

A. Probabilistic Multilabel Class-Saliency Estimation

The goal of probabilistic multilabel class-saliency estima-
tion is to define the probability of each data item to be salient
for each class. In other words, we want to find a probability
matrix P ∈ RC×N

P = [
p1, . . . , pi, . . . , pN

] = [
p(1), . . . , p(j), . . . , p(C)

]T (27)

where pi ∈ RC is a vector containing the probabilities for
instance i to be salient for class c and p(j) ∈ RN is the proba-
bility vector for the jth class. The probabilities for each class
are normalized to sum up to one, that is,

∑N
i=1 pci = 1 ∀c ∈

1, . . .C.
First, we make an assumption that only data items associated

with a class can be salient, that is, pci = 0 if yci = 0. As we
need to solve the probabilities pci only for data items associ-
ated with class c, we form a reduced data matrix Xc ∈ RD×Nc

and reduced probability vector pc ∈ RNc
corresponding to

Nc data items associated with class c. Now, we can write the
optimization problem of probabilistic multilabel class-saliency
estimation as

argmin
pc

⎛

⎝
Nc∑

i

(
pci

)2
vci + 1

2

Nc∑

i

Nc∑

j

(
pci − pcj

)2
acij

⎞

⎠

= argmin
pc

⎛

⎝
Nc∑

i

(pci )
2vci + 1

2

Nc∑

i

Nc∑

j

(
(pci )

2acij + (pcj )
2acij

)

−
Nc∑

i

Nc∑

j

(
pci p

c
j

)
acij

⎞

⎠

s.t.
Nc∑

i

pci = 1 (28)

where pci is the ith element in pc and vci ≥ 0 is the corre-
sponding prior information to suppress the probabilities of
nonsalient instances from class c. The similarity value acij
forces the instances xci and xcj have similar probabilities, if
they are similar. Unlike the original probabilistic saliency esti-
mation in (23), we do not require the similarity values to be
symmetric.

Equation (28) can be expressed in matrix notation as

pc∗ = argmin
pc

(
pcT Hcpc

)

Hc = 1

2
D1

c + 1

2
D2

c − Ac + Vc

s.t. pcT1 = 1 (29)

where Ac is an affinity matrix of the items associated with
class c with [Ac]ij = acij expressing the similarity of the ith
and jth class items, the diagonal matrix D1

c can be then com-
puted as [D1

c]ii = ∑
j [Ac]ij and D2

c can be then computed
as [D2

c]ii = ∑
j [Ac]ji, that is, D1

c has summations over rows
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while D2
c has summations over columns. Vc is a diagonal

prior information matrix having elements [Vc]ii = vci .
In this work, the compute the affinity matrix Ac ∈ RNc×Nc

with the RBF kernel function as

[
Ac]

ij = exp

⎛

⎜⎝−
∥∥∥xci − xcj

∥∥∥
2

2σ 2

⎞

⎟⎠ (30)

where xci and xcj are the ith and jth instance in class c and
σ is a hyper parameter. While (30) is sensitive to the param-
eter σ , we follow a common approach of setting its values
to the mean distance value between the training samples. The
affinity matrix could be also replaced by sparse variants, for
example, by forming a kNN graph and keeping only the values
for k nearest neighbors or by using an affinity matrix proposed
in [43], where the sensitive parameter σ is avoided.

Vc ∈ RNc×Nc
is a diagonal matrix, which carries the prior

information on whether each instance in class c is salient for
the class. The values of Vc are higher for samples, which are
expected to not be salient, that is, the lower a value [Vc]ii,
the more prominent the corresponding ith instance is expected
to be. Values for [Vc]ii = vci ∀i ∈ 1, . . .Nc can be estimated
from different prior information. For example, a data item that
belongs to all the classes it is unlikely to be salient for any par-
ticular class or if an item is very different from other samples
in a class it is unlikely to be salient for that class. It should be
noted that while we set prior information values vci only for
items associated with class c, we can exploit the information
extracted from other data items while setting the values of Vc.
For example, items having a high similarity with many items
not associated with the class could be considered less likely
to be prominent. We introduce six different approaches to set
the values of Vc in Section III-A1.

After computing the matrices Ac and Vc, the probability
vector pc∗ can be solved as

pc∗ = 1

1THc−11
Hc−11. (31)

In order to avoid singularity during this process, a regularized
version of Hc with a small value ε added to the diagonal
elements if Hc is rank-deficient.

As the probability vector pc∗ obtained by solving (31) has
only Nc elements, but we want to form a probability matrix
P ∈ RC×N shown in (27), we need to put the values pc∗ to the
correct places in P. If the ith item in class c is the jth item in
the entire dataset, this can be done by setting [P]cj = pci for all
items in class c. To obtain full matrix P, the above-described
process is repeated for each class c ∈ {1, . . . ,C}. The sum
of the values for each row in P is one, which is expected to
alleviate the overcounting problem.
1) Prior Information Types: Probabilistic saliency estima-

tion [31] was originally proposed for segmenting salient parts
from images. In this setup, the prior information used was that
the pixel at the image borders is typically nonsalient. The prior
information value vi was set to 1 for any border pixels and
to 0 for all the others. In multilabel class-saliency estimation,
we similarly want to use vci to integrate our prior knowledge
on which data items are likely to be salient for class c. To

this end, we propose a novel information type for MLL con-
text: misclassification-based prior information. Furthermore,
we introduce five prior information types based on weight
factors proposed for MLDA and wMLDA. Our experimen-
tal results show that using these information types as prior
information for our proposed saliency estimation framework
instead of using them directly as weight factors consistently
leads to better results.

Correlation-based prior information (SMLDAc) was used
as weight factors in the original MLDA algorithm [12]. As
in [12], we first compute the label correlation matrix R defined
in (21). We then compute the normalized weight vector m′

j ∈
RC using (22) for all data items and set our prior information
matrix values as

[
Vc]

ii = 1 − m′
cj (32)

where item j of the full dataset is the ith item associated
with class c. Label correlation information is widely exploited
to tackle the redundancy of label information in multilabel
tasks [12], [44], but it can lead to a suboptimal result due to
nonzero values in the correlation weight factor matrix for irrel-
evant labels [14]. As we pick only the values for data items
associated with class c, the problem of unwanted nonzero
values can be avoided.

Binary-based prior information (SMLDAb) utilizes the label
information as in [20]. In our formulation, this approach
reduces to having an equal value in Vc for all instances as
only instances belonging to class c are considered in Vc. For
wMLDA, such direct use of class labels leads to an overcount-
ing problem in the scatter matrices. In our formulation, this
problem is avoided because Vc merely represents the prior
information for class saliency estimation and the final weight
matrix P is normalized for each class.

Entropy-based prior information (SMLDAe) assumes that
data items, which are associated with more classes are less
salient for any class as in [14] and [35]. We use this assumption
as our prior information as

[
Vc]

ii = 1 − 1∥∥yci
∥∥

�1

(33)

where yci is the label vector of the ith sample associated with
class c and, thus, ‖yci ‖�1 is the total number of classes the item
is associated with.

Fuzzy-based prior information (SMLDAf) uses a supervised
version of fuzzy C-means clustering algorithm (SFCM) as
in [14] and [36] to learn the membership degree of each item
in each class. We use the membership directly as our prior
information as

[
Vc]

ii = 1 − gcj (34)

where gcj is the membership degree of item j in class j and
item j is the ith item associated with class c.

Dependence-based prior information (SMLDAd) uses
HSIC [45], which is used to describe statistical dependence
between features and labels based on the estimation of the
Hilbert–Schmidt norms. To maximize HSIC, we follow an
iterative algorithm described in [14].
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This approach transforms a multilabel task to several single-
label tasks. It allocates 1 to only one prominent class for each
item after the final iteration. In our probabilistic formulation,
we set

[
Vc]

ii = 1 − hcj (35)

where hcj is 1 if item j has been assigned to class c and 0
otherwise and item j is the ith item associated with class c.

Misclassification-based prior information (SMLDAm) is
similar to the prior information used in [13] for single-label
data to alleviate the suboptimal result in LDA arising from
outlier items on imbalanced datasets

[Vc]ii =

⎧
⎪⎨

⎪⎩

0, if dcic < min
k 
=c

dkic
dcic

min
k 
=c

dkic
, otherwise

(36)

where dkic = ‖xic −µk‖2
2, xic is the ith instance of class c, and

µk is the mean vector of class k. Using this prior information
type, a sample that is closer to another class is considered less
salient for class c even if it is relatively close to the center
of class c. Note that when computing this prior information
matrix, we consider the full data X and not only the data items
in Xc for which we are defining the prior information values.

B. Saliency-Based Multilabel Linear Discriminant Analysis

After forming the probability matrix P using the proposed
probabilistic multilabel class-saliency estimation, we use the
probabilities directly as weights for our MLDA. We compute
the scatter matrices Sw and Sb as

Sw = X
(
diag

(
p̂
) − PᵀP

)
Xᵀ (37)

Sb = X
(

Pᵀ P − 1

n
p̂ᵀp̂

)
Xᵀ (38)

where p̂ = ∑C
c=1 p(c) and n = ∑C

c=1
∑N

i=1 pci. Note that the
probability values for each class are always normalized to sum
to one. By setting mci = pci, we get n(c) = 1 from (12) for all
classes and, thus, n̂ in (14) is a vector of ones and diag(n̂[1/2])

in (16) is an identity matrix. This gives us simpler formulas
for Sw and Sb than the ones used in MLDA.

The optimal projection matrix W can be obtained by solving
the regularized version of the generalized eigenproblem in (7)

Sbw = (Sw + εI)λw (39)

where ε is a small constant added to the diagonal values of
Sw to avoid problems caused by singularity. We select the
eigenvectors corresponding to d largest eigenvalues containing
0.999 of the information to form the projection matrix W and,
finally, the features optimized for multilabel classification can
be obtained as

Z = WTX. (40)

The pseudocode for the overall SMLDA algorithm is provided
in Algorithm 1. In the pseudocode, we give the correlation-
based prior information type as our default type, but other prior
information types can be used by simply replacing (32) on the
pseudocode line 4 with a formula of another prior information
type.

Algorithm 1: The Pseudocode of SMLDA

/* Training procedure for obtaining
optimal projection matrix W */

Input: Xtrain ∈ RD×N , Ytrain ∈ RC×N

Output: Projection matrix W ∈ RD×d

1 Create the probability matrix P ∈ RC×N and fill it with
zeros;

2 for each class c ∈ {1, . . . ,C} do
3 Calculate the affinity matrix Ac ∈ RNc×Nc

using (30);
4 Calculate the prior information matrix Vc ∈ RNc×Nc

using (32);
5 Calculate diagonal matrices D1

c, D2
c ∈ RNc×Nc

as
[D1

c]ii = ∑
j [Ac]ij and [D2

c]ii = ∑
j [Ac]ji;

6 Calculate Hc = 1
2 D1

c + 1
2 D2

c − Ac + Vc;
7 Using Eq. (31), solve the probability matrix pc∗;
8 Put the values of pc∗ to correct places in P;
9 end

10 Calculate the scatter matrices Sw and Sb using Eqs. (37)
and (38);

11 Solve the projection matrix W using Eq. (39);

C. Computational Complexity Analysis

The computational complexity of the proposed SMLDA
algorithm is formed as follows: for a class with Nc asso-
ciated data items, the computational complexity of com-
puting the kernel matrix is ([Nc2 − Nc]/2), that is, the
complexity of computing the affinity matrix is O(Nc2).
The complexity of computing the prior information matrix
using (32) is O(C2N) as it requires computing the corre-
lation between each pair of classes using (21) and multi-
plying C × C and C × N matrices in (22). The compu-
tational complexity of solving (31) is O(Nc3) due to the
required matrix inversion. The overall complexity of apply-
ing the probabilistic multilabel class-saliency estimation for
all the classes becomes O(maxc Nc3). The complexity of
the LDA operation for D-dimensional data items is O(D3).
The overall complexity of SMLDA is O(maxc Nc3 + D3).
Thus, if maxc Nc < D, the proposed method does not sig-
nificantly affect the complexity compared to the standard
LDA operation, but for maxNc > D the complexity is
higher.

IV. EXPERIMENTS

A. Databases and Data Preprocessing

We performed our experiments on 17 publicly available
multilabel databases1,2. The datasets and their characteristics
are given in Table I, where “Cardinality” means the mean num-
bers of class labels per instance for the training set and “Min
#/Max #” shows the smallest/largest class size in the train-
ing set. The mean imbalance ratio (“MeanIR”) measures the
dataset imbalance following [59], where the imbalance for a
class is computed by dividing the largest class size by the

1http://ceai.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
2http://www.uco.es/kdis/mllresources/#KatakisEtAl2008
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TABLE I
CHARACTERISTICS OF DATASETS USED FOR EXPERIMENTS

size of the class (i.e., this value is 1 for the largest class
and larger for other classes). MeanIR is the mean over all
the classes. Mean class imbalance ratio (“MeanCIR”) denotes
mean imbalance as in [60], where the imbalance of a class is
computed by dividing the number of negative samples by the
number of positive samples if the number of negative sam-
ples is larger and vice versa if the number of positive samples
is larger. MeanCIR is the mean over all the classes. Thus,
meanIR measures the imbalance between classes, which is our
main interest. MeanCIR, on the other hand, focuses on the
imbalance between positive and negative samples and maybe
high even if all the classes have equal size.

We centralized the datasets and, for non-LDA-based tech-
niques, we centralized also the label matrix used for training.
We deleted some instances without labels or with NaN values.
Some of the datasets have empty classes with no samples in
either train or test set. For such datasets, we used all the sam-
ples and the full label matrix for training, but for computing
the evaluation metrics we considered only classes with at least
one test sample. If the number of test classes for a dataset is
lower than the overall class number, we show also the number
of test classes in the “Classes” column of Table I.

B. Evaluation Metrics

We adopt seven different evaluation metrics [61] to evaluate
the performance of our proposed algorithm. Here, we denote
the ground-truth label matrix for the M test samples as Y =
[y1, . . . , yM], where the ith column yi ∈ RC represents the
label vector of test sample xi. The multilabel classifiers give
as their outputs for each input vector xi, a vector p̂i = f (xi),
where p̂i,c denotes the membership of instance i in class c.
This is then converted to a binary predicted label vector ŷi
by thresholding. Li = {sortc(p̂i)} denotes an ordered list of
classes ranked in the order of descending probability in p̂i.
I(yi) is used to denote the indices of relevant classes in yi
and ¬I(yi) denotes the indices of negative classes in yi. We
use (↓) to denote metrics, where lower values indicate better
results and (↑) in the opposite case.

1) Ranking loss (↓) evaluates for each item i relevant ver-
sus irrelevant class pair and gives the fraction of pairs,

where the irrelevant class if ranked above the relevant
one. Here, we use m to denote the number of relevant
classes in yi and n = C − m

ranking_lossi = |p̂i,I(yi) ≤ p̂i,¬I(yi)|
m ∗ n

(41)

ranking_loss =
∑M

i=1 ranking_lossi
M

(42)

where |p̂i,I(yi) ≤ p̂i,¬I(yi)| is used to denote the count
of wrong rankings for item i.

2) One error (↓) shows how often the top-ranked class for
an item is not among the positive ground-truth labels

one_errori =
{

0, if Li[1] ∈ I(yi)
1, otherwise

(43)

where Li[1] denotes the first class in the sorted list Li

one_error =
∑M

i=1 one_errori
M

. (44)

3) Normalized coverage (↓) demonstrates how far on aver-
age in the predicted label ranking Li one needs to go to
cover all the ground-truth labels of an instance

coverage =
∑M

i=1 maxj
{
j|I(yi) ∈j Li

} − 1

M ∗ (C − 1)
(45)

where {j|I(yi) ∈j Li} gives the positions of relevant
classes I(yi) in the ordered list L.

4) Macro-AUC (↑) is the average area under ROC curves
(AUC) for different classes [61]. The ROC curve uses
the true-positive rate and false-positive rate, which may
be unreliable in the cases, where very rare classes are
present (high meanCIR) [62].

5) Micro-AUC (↑) is the area under ROC curves (AUC)
averaged over the full predicted label matrix Ŷ [61].

6) Macro-F1 (↑) shows the average F1 value on each class

macroF1 = 2

C

C∑

c=1

precisionc ∗ recallc
precisionc + recallc

(46)

where precisionc = TPc/(TPc + FPc) and recallc =
TPc/(TPc + FNc) are precision and recall for class c,
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TABLE II
SUMMARY OF THE EVALUATION METRIC PROPERTIES

and TPc, FPc, and FNc are the number of true positives,
false positives, and false negatives for class c.

7) Micro-F1 (↑) indicates the overall F1 score averaged
over the full predicted label matrix Ŷ

microF1 = 2 ∗ precision ∗ recall

precision + recall
(47)

where precision = TP/(TP+FP) and recall = TP/(TP+
FN) and TP, FP, and FN are the number of true posi-
tives, false positives, and false negatives predictions in
the predicted label matrix Ŷ.

Some characteristics of the used metrics are summarized
in Table II following the analysis provided in [61]. Most of
the metrics are based on the predicted membership vectors p̂i,
while the last two use the predicted class labels that can be
obtained from the predicted memberships by setting a thresh-
old. It is possible to get different predicted labels from the
same p̂i with different thresholds, but this does not depend
on the input features, that is, the quality of the dimension-
ality reduction techniques. Therefore, the metrics based on
the predicted memberships are well suited for evaluating the
differences of the dimensionality reduction techniques.

Most of the metrics can be optimized by labelwise effective
classifiers, which roughly means that the classifier can give
higher membership values for the relevant classes than for
the irrelevant classes for every sample. Instancewise effective
classifiers, on the other hand, can distinguish between relevant
and irrelevant samples for each class. Some classifiers, such
as Micro-FI, are optimized only by double effective classifiers
that are both labelwise and instancewise effective. The metrics
that optimize instancewise effectiveness give more weight to
the samples in smaller classes and, thus, are suitable for eval-
uating the performance in imbalanced (high meanIR) datasets,
when it is not desired to obtain an overall high performance by
predicting the majority classes correctly and failing in the rare
classes. Due to the aforementioned unreliability of ROC curves
in the presence of a very small class (high meanCIR), we use
macro-F1 as the main metric for imbalance-aware evaluation.

C. Experimental Setup

We carried out all the experiments using two multilabel clas-
sifiers applied to the projected data: 1) multilabel k-nearest
neighbor classifier (ML-kNN) [54] and 2) multioutput linear
ridge regressor (LRR) [2], [63]. ML-kNN utilizes the k-nearest
neighbor algorithm and maximum a posterior (MAP) principle
to tackle the multilabel categorization task. ML-kNN first esti-
mates prior and posterior probabilities of each instance i for

each class c from a training dataset based on frequency count-
ing [54]. Then, the predicted probabilities on a test dataset are
calculated using the Bayesian rule. In our work, the predicted
labels were obtained by setting a threshold (≥ 0.5) for the
predicted probabilities.The hyperparameter k of ML-kNN was
set to 15 as in [14]. As multilabel classification is a specific
case of multitarget regression [64], the multioutput LRR can be
trained to solve the multilabel classification tasks. In our work,
we used the LRR classifier with a hyperparameter μ = 0.1.
The predicted labels were obtained by setting a threshold (≥ 0)
for the predicted values from the LRR classifiers.

For comparisons, we used the following LDA-based dimen-
sionality reduction techniques: DMLDA [21], wMLDAc,
wMLDAb, wMLDAe, wMLDAf, and wMLDAd [14], where
the subscripts denote the types of prior information used as
weight factors following Section III-A1. Note that wMLDAc is
equivalent to the original MLDA [12]. For all the LDA-based
methods, we solved the regularized generalized eigenprob-
lem (39) with ε = 0.1. After solving the eigenproblem, we
kept the eigenvectors corresponding to the top 0.999 infor-
mative eigenvalues to form the projection matrix W. Besides
the LDA-based methods, we conducted experiments with five
other dimensionality reduction techniques: PCA, CCA [16],
MLSI [17], MDDMd [18], and MVMD [19]. We used the
MATLAB codes provided for [14]1 in the comparative exper-
iments and exploit the relevant parts also in the implementation
of our proposed method.

D. Classification Results and Analysis

1) Comparisons of Different Variants of SMLDA and
wMLDA: We first compare the different variants of our
proposed SMLDA approach. Furthermore, we compare our
methods against the variants of wMLDA that use the
same prior information types directly as weights. We show
the results using the ranking loss evaluation metric in
Tables III and IV of the main paper and the results using
the six other evaluation metrics in Tables I–XII of the supple-
mentary material. In each table, we place next to each other
the variants of SMLDA and wMLDA with the same prior
information type and highlight the better approach for each
dataset. The prior information for SMLDAm was proposed by
us and has not been previously used with wMLDA. Therefore,
we do not show such a comparison for it.

We first observe that our proposed SMLDA variants clearly
outperform the corresponding wMLDA variants. In all test
cases by both classifiers and any evaluation metric, the average
performance of the proposed approach is better. This clearly
confirms the value of using the probabilistic saliency esti-
mation instead of just using the same prior information type
directly as a weight as in wMLDA.

Next, we observe that there are no major differences
among the variants of SMLDA. Therefore, we do not rec-
ommend using SMLDAd or SMLDAf because the fuzzy and
dependence-based prior information types are computation-
ally much more expensive than the other prior information
types. Among the remaining variants, we select SMLDAc as
our default variant.
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TABLE III
COMPARISON OF DIFFERENT VARIANTS OF THE PROPOSED METHOD RESULTS WITH ML-KNN USING RANKING LOSS (↓)

TABLE IV
COMPARISON OF DIFFERENT VARIANTS OF THE PROPOSED METHOD RESULTS WITH LRR USING RANKING LOSS (↓)

2) Comparisons Against Competing Dimensionality
Reduction Techniques: We then compare wMLDAc, which
we recommend using as our default variant, against other
competing dimensionality reduction techniques. Here, we
consider five non-LDA-based techniques: 1) PCA; 2) CCA;
3) MLSI; 4) MDDMp; and 5) MVMD, along with DMLDA,
MLDA, which is equivalent to wMLDAc and uses the same
prior information as our proposed variant wMLDAc, and
wMLDAd, which was the proposed wLMDA variant in [14].
We provide the results in Tables V and VI of the main paper
and Tables XIII–XXIV of the supplementary material.

The results show that our proposed method has the best
average performance with ML-kNN evaluated by all the
performance metrics and with LRR evaluated by macro-
F1. MDDMp is the best performing competing method.
However, in all cases, our proposed approach achieves a sim-
ilar performance, while our method is clearly better when
evaluated with macro-F1. Our proposed method also clearly
outperforms other LDA-based techniques.

We then focus on the most imbalanced datasets evaluated
by our main metric for imbalanced classification, macro-F1.

We collect from Tables XVII and XVIII of the supplementary
material the results for the classes having meanIR over 15 and
provide them in Tables VII and VIII. Our proposed method has
the best average performance with ML-kNN and the second
best with LRR, which shows that the proposed method indeed
can help to deal with class imbalance.
3) Statistical Analysis of the Results: To evaluate whether

the observed differences are statistically significant, we fol-
lowed the recommendations of [65]. We first applied to each
table the Friedman test, which is a rank-based nonparametric
test showing whether the differences are overall significant. At
the bottom of each table, we report the Friedman p value. We
have highlighted the value if it shows that the null hypoth-
esis can be rejected at the 0.05 significance level. Next, we
perform the Wilcoxon sign-ranks test to evaluate the pairwise
differences between the methods. This test ranks the differ-
ences between two classifiers ignoring the signs and uses
the ranks to determine value T as described, for example,
in [65]. Finally, the T value is compared to a critical value
that depends on the number of datasets. In our experiments,
we used 17 datasets, which means that the null hypothesis
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TABLE V
COMPARATIVE RESULTS WITH ML-KNN USING RANKING LOSS (↓)

TABLE VI
COMPARATIVE RESULTS WITH LRR USING RANKING LOSS (↓)

TABLE VII
COMPARATIVE RESULTS WITH ML-KNN USING MACRO-F1 (↑)

can be rejected at 0.01 significance level if T1 ≤ 23 and
at 0.05 significance level if T2 ≤ 34. For seven datasets, as
in Tables VII and VIII, T2 ≤ 2. We applied the Wilcoxon
sign-ranks test between our proposed SMLDAc method and

every other method dimensionality reduction technique. We
give these values at the bottom of every table and bold the
values if they show that the difference between the methods
is statistically significant at a 0.05 significance level. Negative
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TABLE VIII
COMPARATIVE RESULTS WITH LRR USING MACRO-F1 (↑)

TABLE IX
SUMMARY OF THE WILCOXON SIGNED-RANKS TEST RESULTS: THE NUMBER OF TIMES

WHEN SMLDAC WAS BETTER IN A STATISTICALLY SIGNIFICANT WAY

values indicate that the other method was performing better
than SMLDAc.

The results of the Friedman test show that the overall dif-
ferences are statistically significant in most cases. The only
exceptions among 28 result tables are Tables I, II, XI, and XIV
in the supplementary material. Tables I and II in the supplemen-
tary material, compare the variants of the proposed method
using ML-kNN and LRR with one error evaluation metric.
Table XI in the supplementary material, compares the variants
of the proposed method using ML-kNN with the Micro-F1
evaluation metric. Table XIV in the supplementary material,
compares SMLDAc against competing methods using LRR
and one error evaluation metric.

The results of the Wilcoxon signed-ranks test confirm the
good performance of our proposed SMLDAc. There is no such
case, where a competing method would outperform SMLDAc
in a statistically significant manner (only another variant of our
proposed method, SMLDAd, can do this in two cases). On the
other hand, SMLDAc can outperform every competing method
in a statistically significant manner at least twice. The results
of the conducted Wilcoxon signed-ranks test are summarized
in Table IX showing the number of times when a statistically
significant difference was detected between SMLDAc and all
competing methods.

V. CONCLUSION

In this article, we proposed a novel probabilistic framework
for the LDA-related dimensionality reduction algorithm aim-
ing to improve the performance of multilabel classifiers on
various multilabel datasets. The probabilistic approach uses an
affinity matrix to ensure similar results for similar instances
and a prior information matrix to integrate prior information
on the prominence of each instance for each class. Our solution
can alleviate the data imbalance problem, which is commonly
encountered in multilabel datasets, as the weight factor vec-
tors are calculated separately for each class. Our method can
also alleviate the common overcounting problem. We proposed

variants of our methods using different prior information
matrices based on both labels and features.

We used seven metrics to evaluate the performance of our
method with competing methods on 17 multilabel datasets. The
experimental results showed that our method enhanced the clas-
sification performance compared to the competing algorithms
and handles imbalanced classification well. Our algorithm is
still based on the linear subspace learning technique. In the
future, we will make a nonlinear extension using the kernel
trick.
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Abstract— In recent years, Generative Adversarial Networks
(GANs) or various types of Auto-Encoders (AEs) have gained
attention on facial image de-occlusion and/or in-painting tasks. In
this paper, we propose a novel unsupervised technique to remove
occlusion from facial images and complete the occluded parts
simultaneously with optimized Deep Convolutional Generative
Adversarial Networks (DCGANs) in an iterative way. Generally,
GANs, as generative models, can estimate the distribution of
images using a generator and a discriminator. DCGANs, as its
variant, are proposed to conquer its instability during training.
Existing facial image in-painting methods manually define a block
of pixels as the missing part and the potential content of this block
is semantically generated using generative models, such as GANs
or AEs. In our method, a mask is inferred from an occluded
facial image using a novel loss function, and then this mask is
utilized to in-paint the occlusions automatically by pre-trained
DCGANs. We evaluate the performance of our method on facial
images with various occlusions, such as sunglasses and scarves.
The experiments demonstrate that our method can effectively
detect certain kinds of occlusions and complete the occluded
parts in an unsupervised manner.

Keywords— Generative Adversarial Networks, Deep Convo-
lutional Generative Adversarial Networks, Facial Image De-
occlusion, Facial Image Completion

I. INTRODUCTION

Facial image de-occlusion refers to removing unnecessary
occluded parts (e.g. scarf, glasses, cover) from a facial im-
age, and then reconstructing its corresponding contents to
a complete and realistic facial image conditioning on pre-
defined image sets [1], [2], [3] and [6]. Such tasks are quite
challenging, due to the diversity of occlusions and complexity
of reconstructing the details of facial images. Over decades,
various approaches have been proposed to deal with the
facial image de-occlusion tasks, such as Principle Component
Analysis (PCA) or its variants, sparse coding, and Auto-
Encoders (AEs).

Image in-painting proposed by Bertalmio et al. firstly [13],
also known as image completion, familiarly means to synthe-
size the missing pixels or remove unwanted pixels through
learning context features from their surrounding regions,
the whole image content, or external databases. Recently,
Generative Adversarial Networks (GANs) [20] have received
considerable results on various machine learning tasks. GANs
or its variants are extensively applied to tackle facial image
in-painting tasks, as in [10], [19]. Compared to facial image
de-occlusion, one challenging problem of facial images in-
painting is to locate missing regions beforehand. Compared to

facial image de-occlusion, facial image in-painting does not
implicitly locate the occlusion.

Although above methods have achieved significant results in
tackling facial image de-occlusion or in-painting tasks, there
still exist various limitations. For example, the linearity of
PCA and sparse coding restricts the further improvement of the
results; moreover, the result quality of both methods heavily
depends on the consistency of training and testing dataset
subjects. Generally, AE techniques with deep neural networks
produce blurry results, unless they are combined with other
strategies to preserve the details, as in [7]. Another point is that
these mentioned methods require occlusion free image datasets
as ground truth. Especially for AE related approaches, a large
number of occlusion free images and corresponding occluded
images are crucial in training a decent model.

Inspired by the above works, we propose an unsupervised
approach on the basis of Deep Convolutional Generative Ad-
versarial Networks (DCGANs), which does not require a large
dataset with occlusion free images and their corresponding
occluded images. Our approach not only aims to detect and
segment the occlusion part automatically, but also in-paint the
occluded part with the pre-trained DCGANs. The approach
finds an optimized result in an iterative way.

This paper is organized as follows: in Section 2, we present
related works, which inspired us to propose this novel idea.
In the next section, we describe the theory related to this
work and how it is exploited in our work. In Section 4,
the neural networks structure, loss function, and algorithm
are provided to meticulously explain the work-flow of the
proposed work. Experimental results and the corresponding
analysis are depicted in Section 5. Finally, in Section 6, we
make conclusions about this work and discuss how to further
improve it.

II. RELATED WORK

PCA or PCA variants can restore occluded images through
manipulating eigenspaces of the training images as in [1] and
[2]. A Robust-PCA framework [3] is used to detect occlusion
masks of input images taking advantage of a non-occluded
facial image set, and then inpaint the occluded parts based
on prior information. Sparse coding techniques have been
widely used in the field of image restoration [4], [5] to restore
occluded images using sparse coefficients of a learned low-
rank dictionary.



As depicted in [6], [7], and [8], AE and its variants are
explicitly powerful enough to remove noise and reconstruct
relatively clean images in various schemes. Besides, more
efforts have been devoted to establish AE-related models for
facial image de-occlusion tasks, as shown in [7], [8], and [11].
Zhao et al. [7] proposed a long short-term memory AE with
two decoding channels to detect occlusions and to reconstruct
faces simultaneously. Their method obtains a decent result
without constraints (e.g. consistent occlusions in train and
test sets) on the training and testing datasets. AEs usually
produce blurry images, which can be explained by the `2-
norm loss function used in AEs to calculate the similarity
between the generated images and corresponding ground-truth
images [12]. Due to this fact, Zhao et al. [11] introduced
a supervised Convolutional Neural Network (CNN) and an
adversarial CNN to lessen the blurring of the results. Zhang
et al. [8] introduced a multi-AE structure to detect occlusion
and restore partitioned parts of face on the basis of 68 facial
landmarks. All the methods mentioned require facial images
without any kind of occlusion and the corresponding occluded
images of the same persons as the ground-truth dataset. It is
difficult to collect such a dataset with a large number of images
and various occlusions. So to train such methods, it is common
to use artificially generated occluded images with different
occlusions (e.g. scarves, glasses, sunglasses) from commonly
used facial databases.

Bertalmio et al. [13] proposed an in-painting algorithm on
the basis of professional restorators. Sun et al. [14] introduced
an image in-painting algorithm with a global optimization
method, which pays more emphasis on highlighting the struc-
tural integrity of the salient object than on the surrounding
pixel values of the regions desired to be completed. After
GANs [20] have been proposed in 2014, there has been an
increasing number of works involving in GANs and its variants
for facial image in-painting tasks. Unlike AEs and its variants,
GANs and its variants can retain sharp details of the facial
images.

GANs/AE-related models have significant effects in gen-
eral image in-painting tasks, especially for completing large
missing regions. Demir et al. [15] proposed a novel GANs
structure consisting of a global GAN (G-GAN) and a patch
GAN (P-GAN) to improve the quality of the completed images
with artificial masks denoting the occlusions. A conditional
AE is used by Pathak et al [16]. In this work, the latent
space between the encoder and decoder is channel-wise fully
connected, which can describe image more precisely. Inspired
by [17] and [19], Lahiri et al. [12] constrained DCGANs
with facial expression features as conditional information to
improve the consistency and correctness of in-painted images.
Yeh et al. [17] proposed a DCGANs structure to in-paint the
missing part of a facial image semantically. In this work, the
missing part of each image is given beforehand. Our work
follows a similar approach for image in-painting, but, instead
of using a pre-defined mask denoting missing pixels, we detect
the occlusion as a mask automatically in an unsupervised way.

III. PRELIMINARIES

Our proposed approach involves both facial image de-
occlusion and facial image in-painting techniques. It targets
to locate and remove the occlusions in facial images automat-
ically, and then semantically complete the detected regions
with appropriate contents. Hence, pre-trained DCGANs are it-
eratively used to locate occlusions and to generate the missing
facial parts. In this section we introduce the key elements of
the framework proposed in [17], which are also exploited in
the proposed method.

A. Deep Convolutional Generative Adversarial Networks

Generative models aim to discover the statistical laws within
the observed data and then to generate new data similar to
the observed data on the basis of the obtained probability
distribution model.

The GANs [20] are designed to include a generative model
G and a discriminative model D. The main task of the
discriminator D is to evaluate whether the data come from
the real data distribution pdata or from a data distribution pG
generated by the generator G. During the training process, it
aims to maximize the accuracy of discriminating the real data
and the generated data, assigning 1 for the real data and 0 for
the generated data. On the contrary, the generator G generates
fraud data using a random vector z ∼ U [−1, 1] as input. Its
objective is to generate data that appears so authentic that the
discriminator D is not able to discriminate it from the real data.
These models acting against each other with the opposite goals
bring GANs its name. In the training process of GANs, D and
G are optimized alternately. When G is optimized, D is fixed
and vice versa.

The objective function of the GANs is a zero-sum game
between the generator G and the discriminator D, which can
be considered also as a minimax two-player game. GANs is
trained by optimizing the following loss function [20]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))]. (1)

Here G(z) means the output from G, i.e., the generated fraud
data, with random data as input, D(x) is the output of D,
which denotes the probability of the input x being real data.
Due to instability of the training stage and randomness of the
generated images, the original GANs topology is not suitable
for image in-painting tasks [17]. Radford et al. improved the
network structure of GANs in [19] to enhance the stability
of the original GANs during training and the quality of the
results. Compared to the original GANs, the improvements in
DCGANs are mainly:

• Using a transposed convolutional layer in G instead of
the up-sampling layer.

• Removing all the pooling layers. In the D network, the
pooling is replaced by strided convolution.

• Using batch normalization in both G and D.



• Removing the fully-connected layer to turn the network
into a fully convolutional network.

• Using mostly ReLU as the activation function in G and
tanh as the activation function of the last layer.

• Using LeakyReLU as the activation function in D.

B. Semantic Image In-painting with DCGANs

Inspired by the strategy of back-propagation to the input
data from [21], [22], and [23], Yeh et al. [17] proposed a
specific loss function for the DCGANs topology for facial
image completion. Yeh et al. assumed that an efficient G can
generate images analogous to the occluded input, even if they
are not from pdata. They try to find an encoding ẑ that can
produce an image closest to the occluded image, while ẑ is
constrained to the encoding manifold z learned by G [17].
Hence, in their work, G and D are trained using occlusion-
free images before utilizing them to discover ẑ with a novel
loss function for in-paining.

1) Loss Function: In [17], the emphasis is on how loss
terms work during the completion stage. The loss functions
require knowledge about the missing part location. This is
defined by a mask M, where the missing areas (occlusions)
are denoted by the pixel value zero and other (non-occluded)
areas by the pixel value one. In the following, we use IO to
represent the occlude image, Irec to be the result image, IG(z)

to denote an image generated by G from any input z, IG(ẑ)

to denote the final image generated by G using the encoding
manifold ẑ.

The loss function consists of two terms: contextual loss and
prior loss.

• Contextual Loss Ldiff indicates the difference of a
generated image and an occluded images in the occlusion-
free areas. In order to highlight the importance of pixels
surrounding the missing part, a weighting term W is
introduced on the basis of M in [17], given as:

Wi =


∑

j∈N(i)

(1−Mj)
|N(i)| , if Mi 6= 0

0, if Mi = 0
, (2)

where Wi denotes the importance weight of pixel i, N(i)
represents a window around pixel i, and |N(i)| is the
cardinality of the window. Then, the contextual loss is
defined as:

Ldiff = ‖W � (IG(z) − IO)‖1, (3)

which aims to force the difference of occlusion-free areas
in IGz and IO to be zero, so that the occlusion-free final
image IG(ẑ) can mimic the occluded image IO. � means
element-wise multiplication.

• Prior Loss LD(z) is the loss of the trained discriminator
D, acting as penalty, defined as follows:

LD(z) = log(1−D(G(z))), (4)

which leads the generated image to be as realistic as
possible, until satisfying human visual experience.

Using the above two loss terms, the entire loss function is
formulated as:

L = Ldiff + αLD(z). (5)

Here, a scaling factor α is used to balance the contribution of
the two loss terms. The target of optimizing this loss function
is to discover ẑ, which can minimize L:

ẑ = arg min
z
L. (6)

2) Facial Image Completion: Given the pre-trained DC-
GANs, an initial random input vector z is fed to G and the
loss is iteratively back-propagated to z using Adam gradient
descent algorithm [25], until obtaining an optimal ẑ. At this
point, the final in-painted image is obtained by combining
IG(ẑ) and IO as follows:

Irec = (1−M) � IG(ẑ) +M � IO. (7)

Here, Irec refers to a stacked image, which contains the
occlusion-free pixels from the occluded input image and
generated pixels segmented by M from IG(ẑ). To reduce the
graininess at the edges of stacking, in [17], Irec is finally
processed by Poisson blending [24] to preserve image details,
as in [16].

IV. PROPOSED APPROACH

Our approach has three main stages: training of DCGANs
using occlusion-free images, generating the occlusion mask
and the image used in completion, and merging the input and
the generated image by exploiting the generated mask. Our
main contribution lies in the generation stage. Instead of taking
the (artificial) missing part mask as an input as in [17], our
approach automatically generates the occlusion mask from an
occluded image. This is achieved by introducing novel loss
terms. No training samples with occlusion are needed. The
overall approach is illustrated in Fig. 1 and the details of each
stage are discussed in the following sub-sections.

A. DCGANs Architecture and Training Process

The DCGANs architecture and training process are adopted
from [19] (as in [17]) with the exception of the layer depths.
The structures of D and G follow the reverse order strategy.
In total, there are eight convolutional layers. The filter sizes
and layers depths are shown in Fig. 1. The loss function used
in the training is the basic GANs loss given in Eq. (1).

B. Generation of Mask and Occlusion-free Image

When the DCGANs model have been trained, the generator
G is used to generate an occlusion-free image that can be
used in the in-painting process. As in [17], the main idea is to
find an optimal input ẑ that produces an image similar to the
occluded image, while keeping ẑ constrained to the encoding
manifold learned by G, so that the discriminator D will find
the generated image to have a natural appearance.
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Image	completion	stage:		 (1− M̂ ) ! IG ( ẑ ) + M̂ ! IO
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Fig. 1. Work-flow of the proposed approach

In our work, we propose a novel loss function so that we
can generate and optimize the mask at the same time. Our
mask is a binary image M , where pixels with value zero
denote occluded areas and pixels with value one denote the
occlusion-free areas. With the occluded image as a reference,
we iteratively update z and M through minimizing the loss
function to discover ẑ generating an image similar to the
occlusion-free areas of the occluded image and mask M̂
matching with the occlusion in the occluded image.

We start the optimization process with a constant mask
M and an input vector z with 100 dimensions randomly
sampled from a uniform distribution in the range of [−1, 1].
We adopt Adam gradient descent algorithm [25] to discover
ẑ and stochastic gradient descent (SGD) [26] to update the
binary mask M . We iteratively update z and M , while the
other is kept fixed. For each iteration, the updated z is
limited to [−1, 1] to ensure stability [17]. For M , we apply
Morphological Filtering to eliminate edge noise caused by
occlusion edge or similarity of pixels on the occluded area
and far from it. We use two kinds of morphological filters: a
closing filter to remove “pepper” noise and an erosion filter
to eliminate occlusion edge noise. After filtering, we use a
threshold value T to set pixel values larger than T to 1,
otherwise to 0. The loss function optimized to update z and
M is presented in Section IV-B-1.

The overall procedure in the generation phase is shown in
Algorithm 1.

Inputs: trained DCGANs, IO, initial M , z, and T .
Outputs: M̂ and IG(ẑ)

for the number of iteration do:
Feed the DCGANs with z to generate IG(z) and LD;
Calculate the entire loss L with IO, IG(z), and M ;
Update z using Adam optimizer on Eq. (10);
Restrict values of z to [-1,1];
Update M using SGD on Eq. (10);
Normalize M to [0, 1];
Apply morphological filtering to M ;
Use threshold T to obtain a binary M ;

Set ẑ = z and M̂ =M ;
Feed ẑ to G to generate IG(ẑ);

Algorithm 1: Generation of an occlusion-free image IG(ẑ) and a M̂

1) Loss Function: Besides the contextual loss and prior loss
mentioned in Section III, we utilize a smoothness term and an
occlusion size penalty to generate a binary mask instead of
using a pre-defined mask in [17]. In addition, we set W =M
directly.

• Smoothness loss Lsmooth is designed to learn a smooth
mask with the same size as the occluded image. It forces
the occluded part in the mask toward a uniform value.

Lsmooth =

N1∑
i

N2∑
j

−1,1∑
k

‖xi,j − xi+k,j+k‖2, (8)

where xi,j refers to each pixel value of mask M . N1 and



N2 mean the number of pixels in rows/columns. This
term measures the similarity of each pixel with its four
neighbors.

• Occlusion size loss Lpenalty penalizes large occlusion
areas in the mask using `1-norm

Lpenalty =

N1∑
i

N2∑
j

‖xi,j‖1, (9)

This term is needed to avoid assigning all the pixels as
occlusion. Otherwise, setting all M values to zero would
be an easy way to minimize Ldiff .

The entire loss function is formed as:

L = Ldiff + α1Lsmooth + α2Lpenalty + α3LD(z) (10)

The optimal input ẑ is solved as shown in Eq. (6) and,
similarly, M̂ as follows:

M̂ = arg min
M
L. (11)

C. Image Completion

After finding the optimized ẑ and M̂ , we generate the
occlusion-free image IG(ẑ), which should be similar to the
occluded image IO. In the final stage, IG(ẑ) and IO are merged
using M̂ according to Eq. (7). In this work, we do not use the
Poisson blending applied in [17] to clearly observe the ability
of the proposed method for facial image completion.

V. EXPERIMENTS

A. Datasets

In the DCGANs training stage, we use the dataset Celeb-
Faces Attributes Datasets (CelebA) [27]. Before training, each
image is aligned using OpenFace [28] to ensure the size
of 64 × 64 pixels. When training DCGANs, we removed
any images with sunglasses in CelebA, because we consider
sunglasses as occlusion and do not want our G to generate
images with sunglasses.

We apply the in-painting algorithm on AR Face Database
[29], because it contains an adequate number of occluded
images. Furthermore, we randomly select several frontal facial
images with sunglasses/covers from CelebA or e-commerce
web-page as eBay. All occluded images for in-painting are
aligned using OpenFace [28] and resized to 64 × 64 pixels,
also.

B. Parameters

In the generation stage, we set the loss terms’ scaling to
α1 = 1, α2 = 5, and α3 = 0.1. Threshold T is set to
be 0.7. The parameters of creating a circular structure for
both morphological filters are set to be 1 pixel [30]. We use
25 epochs to train the DCGANs and 1000 iterations in the
generation stage for each occluded image.

(a) (b) (c) (d) (e) (f)

Fig. 2. In-painting results from AR dataset. Columns (a), (d) represent
occluded images, columns (b), (e) show learned mask, and columns (c), (f)
are result images.

(a) (b) (c) (d) (e) (f)

Fig. 3. In-paining results from web images

C. Experimental Results

We demonstrate the results of this work using four figures:
results from facial images are shown in Fig. 2 and 3. Fig. 4
illustrates the process of mask generation from different itera-
tions sequentially. Fig. 4(a) - (c) and Fig. 4(d) - (f) demonstrate
the mask generation of two input images separately. Fig. 5
shows a few cases, where the proposed method was not able
to predict the real occluded area.

Our method is an unsupervised approach, so it attempts to
reconstruct realistic faces semantically, instead of restoring
the ground-truth images from its occluded version. In fact,
there is no ground-truth, but the quality of the results depends
on the observer’s subjective opinion on the image credibility.
Therefore, we do not provide any numerical results here.

As shown in Fig. 2, 3, and 5, the results are influenced by
illumination. Strong illumination either leads to a blurry result
or a mask not corresponding with the real occlusion. The noise
around the fringe of a mask also influences the final result. As
shown in Fig. 3(c), the final image obviously contains a purple
hue on the lower half due to the remaining occlusion pixels



on the upper half. Moreover, the light spots on the sunglasses
also seriously affect the correctness of mask as in Fig. 2(b)
and Fig. 5(b).

(a) (b) (c) (d) (e) (f)

Fig. 4. Examples of mask optimization process

(a) (b) (c) (d) (e) (f)

Fig. 5. Failure examples

VI. CONCLUSIONS AND DISCUSSION

In this work, we proposed a novel approach to learn a
mask depicting occlusion and reconstruct an occlusion-free
image semantically using trained DCGANs in an unsupervised
manner. Our proposed method relates to both facial image
de-occlusion and image in-painting. We apply this work on
diverse occluded images and obtain proper results. In future,
we wish to further improve the loss function to obtain more
precise occlusion mask, in addition to enhancing the quality
of the final image. The extension could detect more dynamic
occlusions in wild, reduce the impact of illumination, and
produce high-resolution results. Furthermore, we will consider
how to evaluate the result quality in a more systematic manner.
Possibly a separate DCGANs structure can be used to evaluate
the credibility of the resulting images.
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