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Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A
combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy
discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is
the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find
effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is
based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite
network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using
community detection methods, each targeting different biological processes and pathways as revealed by enrichment and
pathway analysis of the drugs’ protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were
selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and
sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells.
These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug
combinations that can be used alongside standard first-line AML treatment.
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INTRODUCTION
Acute myeloid leukemia (AML) is an inter- and intra-tumor
heterogeneous disease [1, 2]. It is identified when the bone
marrow (BM) contains at least 20% of blast cells of the myeloid
lineage [3]. Traditional chemotherapeutics have limited efficacy
in patients over the age of 65, with a survival rate of less than
25% at 1 year follow-up and <9% after 5 years [4]. Despite recent
advances in genome sequencing, which enables researchers to
identify a large number of mutations, we are still hampered by
the absence of drugs that are specifically tailored to target these
mutated protein variants in cancer [5]. On the other hand, the
majority of AML patients do not have actionable mutations, and
the link between cancer genotype, phenotype and therapeutic
function of action is poorly understood [6]. Even if we overcome
the above difficulties and identify the exact mutations in
genotype, monotherapy drug resistance will remain a major
clinical complication [7]. Targeted anti-cancer compounds used
in combination therapy have the potential to overcome
resistance, improve patient response to current treatments,
reduce dose-limiting single-agent toxicity, and broaden the

spectrum of available therapies by targeting different proteins
within pathways [8].
Drug combination therapy offers the chance to suppress a

number of pathways synergistically, including patient-specific cancer
rescue pathways and phenotypic redundancy across heterogeneous
cancer sub-clones [9]. The phenotypic effects of thousands of drug
combinations can be evaluated in patient-derived cells and other
pre-clinical model systems using high-throughput screening. How-
ever, because there are so many possible drug and dose
combinations, large-scale multi-dose combinatorial screening is
not recommended, due to the limited number of cells available from
patient samples. Using the presented method in this study,
researchers would be able to categorize the most important AML
drugs into different clusters, each of which targets proteins
associated with various signaling pathways.
In our earlier research, we designed a systems pharmacology

approach based on network modeling to identify prospective
drug combinations in AML [10]. To gain a deeper understanding of
the factors that govern drug response in AML patients, we utilized
a unique and extensive dataset obtained through drug response
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screening of samples from both AML patients and healthy donors
in Finland as part of our study. Our model accounts for the efficacy
and toxicity of drug response, which are simultaneously evaluated
on patient and healthy samples, respectively [11]. A weighted
bipartite network composed of two parts, chemical components,
and patient samples was built to develop a drug combination
strategy using the screening outcomes of single drug responses
on AML patient samples. This enables researchers to directly
access the phenotype of the patients’ cancer cells through ex vivo
drug response data, and by using network modeling and
clustering analysis, demonstrate the drugs’ functionalities. Next,
top drug combinations can be predicted based on phenotypic
responses of samples in each cluster. In addition, we used two
different computational resources, i.e., molecular biology annota-
tions, and the chemical structure of drugs, to perform intra-cluster
homogeneity analysis. Subsequent to the design of effective drugs
with diverse characteristics for combination therapy, the next step
involves the evaluation of the toxicity of combinations.
Considering the importance of toxicity, in this study, we

investigated the drug response of AML patient and healthy donor
samples to calculate both efficacy and toxicity, respectively. Ex vivo
drug response screening was assessed on AML patient and healthy
samples using cell viability. Given that the clinical symptoms in
patients are caused by blast cell accumulation in bone marrow [12],
we suggested the most blast-specific combinations as promising
combinations for AML treatment, while having lowest effect on
lymphocytes as healthy cells. The comparable efficacy and
decreased toxicity observed in the proposed combinations,
ruxolitinib-ulixertinib and sapanisertib-LY3009120, prioritize them
over first-line combinations in AML, where the majority of blasts are
eradicated along with other cell types.

MATERIALS AND METHODS
Ex vivo drug-response data were generated at the Institute for Molecular
Medicine Finland (FIMM) for a prospective series of 252 samples from 186
patients with AML as part of the Functional Precision Medicine Tumor
Board-cohort study [11]. The dead cell readouts (CellTox Green, Promega)
were extracted from results of experiments that included the drug
response of 199 bone marrow samples from AML patients tested against
625 chemical compounds. To determine the inhibition efficacy of each
drug on each sample, the mean value of drug response across dosages
was extracted after processing. This dataset can be represented as a 199-
by-624 matrix, with rows representing samples and columns representing
drugs tested on the AML samples. Furthermore, the full submatrix (with no
missing entries) of 81 patient samples and 296 chemical compounds was
extracted using the NIMMA package [13]. The magnitudes of the dose
response levels vary across experimental protocols and techniques due to
the heterogeneity of the different platforms on which the high-throughput
assays were performed. We normalized the mean value of dose response
levels to provide coincident and comparable therapeutic efficacy across
different experiments to facilitate downstream use of our dataset. Given
that cell death was used in drug sensitivity assays, we calculated the
inhibition rate (Rinhibition) of cancer cells to drug treatments as a uniform
measure using the min–max normalization method:

Rinhibition ¼ celldeath�minðcelldeathÞ
max celldeathð Þ �minðcelldeathÞ

As a result, one represents the highest sensitivity, and zero represents
the lowest sensitivity, since the normalized inhibition rates range from 0 to
1. In matrix A each ij entry denoted by aij indicates the normalized
inhibition rate of drug response j on sample i.

Reconstruction and analysis of the bipartite network model
A weighted network G= (V, E, ω) is a triple—a set of three elements—in
which V is a set of nodes, E is a set of edges between nodes in V, and ω is a
function that assigns a weight to each edge e 2 E. A network is said to be
bipartite if V can be divided into two sets, V1, V2, so that every edge e 2 E is
connected to a node in V1 and a node in V2. A bipartite weighted network
is shown as G= (V1, V2, E, ω). Suppose S ¼ s1; s2; ¼ ; smf g and D ¼

d1; d2; ¼ ; dmnf g are samples and the drugs sets in the dataset,
respectively. The data matrix A was used to construct a weighted bipartite
network where V1= S was set of 81 samples, and V2= D consisted of 296
drugs. The weight of the edge that joins node si (sample i) and node dj
(drug j) was the ij entry of the matrix A. A weighted bipartite network was
built, with two parts: samples and compounds, and weight representing
the inhibition rate (Rinhibition) as explained above.

Construction and analysis of the drug similarity network
A bipartite network can be projected into two different types of unipartite
networks containing nodes of only one type. The projection of the
bipartite network, A, onto the “drug” node set was considered here, and
the weight of edge between drug di and drug dj was as follows:

wij ¼
X81

k¼1

ðaik ´ ajkÞ

This weight was considered as the similarity score between two drugs, di
and drug dj, according to their efficacy on samples. Only edges with a
weight greater than the median of similarities were kept in order to
consider them strong enough edges in the projected network. In order to
identify functionally similar drugs in terms of drug response the Louvain
community detection method [14] was used.

Computational corroboration
To accomplish intra-cluster homogeneity analysis, we employed two
computational methods. The first method identified the significant
difference between biological pathways of drug targets’ protein targets
at each cluster, while the second evaluated drug chemical structure
similarity at each cluster. Using the drug-target common (DTC) database
[15], we built a drug-target network, which was a bipartite network in
which each link connects drugs to their protein targets.
To better understand the protein targets of drugs in each cluster, we

assigned a score to each protein based on the number of distinct drugs
targeting that protein in clusters 1 and 2. Let f1,P (f2,P) denote the number
of unique drugs in cluster C1 (C2) targeting a particular protein P. The score
of protein P, defined by

S Pð Þ ¼ log
f 1;P
f 2;p

Proteins with a score S greater than log (2) are considered to be
preferentially targeted by drugs in cluster 1, denoted by PPT1. Similarly,
PPT2 proteins have a score of less than log(0.50). The KEGG pathway
annotations and biological processes of each cluster’s protein targets were
also extracted using clusterprofiler R package [16] and ShinyGO [17]. The
KEGG pathway annotations and biological processes provided in the
package were used to map pathways and biological processes (GO) to our
protein sets PPT1 and PPT2. The settings used in the gseKEGG and gseGO
functions were 10,000 permutations, the minimum size of the gene set to
test was 10, and the maximum size of the gene set to test was 500. REVIGO
was used to summarize the enriched GO terms (http://revigo.irb.hr/). The
significantly enriched GO terms (Adj.P value < 0.05) were analyzed by
REVIGO [18]. This program removes redundant GO terms and the similarity
between terms is reflected by semantic space.
A simplified molecular input line entry system (SMILES) of the drug

molecules was retrieved to compare the chemical structures of the
compounds, and it was then converted into an extended connectivity
fingerprint (ECFP) in order to evaluate the dice similarity between the
molecules. The dice similarity between molecules A and B is one of the
standard metrics for molecular similarity calculations in which

SA;B ¼ 2c=ðaþ bÞ;

where a is the number of ON bits in molecule A, b is the number of ON bits in
molecule B, and c is the number of ON bits in both A and B molecules [19]. To
calculate the dice similarity of the compounds, a simplified molecular input line
entry system (SMILES) of the drug molecules was retrieved and transformed
into an extended connectivity fingerprint (ECFP). The rcdk package [20] was
used to calculate the similarity between chemical compounds [21–23].
We utilised four well-known scoring functions ZIP [24], HSA [21], Bliss

[22], and Loewe [23] to assess the potential synergy of drug combinations.
The observed drug combination responses in these models were
compared with the expected combination responses to quantify synergy
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of drug combination. The combination ratio (CR) was also defined as the
ratio of the response of combinations to the maximum for the two single
agents, respectively. By this metric, a CR value of higher than 1 indicates
the drug combination is more effective than either single agent [25]. The
effect of drug combinations on five dosages (1,10,100,1000,10000 nM) was
monitored in this study, and the DECREASE model was used to predict
drug combination dose-response at the full matrix. Synergy scores were
calculated using the SynergyFinder web application (version 3.0) [26].

Patient sample processing
Freshly frozen bone marrow mononuclear cells (BM-MNCs) from 16 AML
patients were obtained from the Helsinki University Hospital Comprehensive
Cancer Center after informed consent (permit numbers 303/13/03/01/2011,
Helsinki University Hospital Ethics Committee). Freshly frozen BM-MNCs from
healthy donors (n= 5) were obtained under approval of the Tampere
University Hospital Ethics Committee, Tampere, Finland (R15174). The samples
were numbered from 1 to 16 in Supplementary Table S4, from which samples
one to five have been used for both CellTiter-Glo (CTG) (Promega) and flow
cytometry (FC) analysis. The samples were selected based on clinical blast cell
percentage higher than 49%. Following thawing, the cells were cultured in
RPMI supplemented with 12.5% HS-5 stromal cell-derived conditioned
medium (CM), 10% fetal bovine serum, 2mM L-glutamine and penicillin/
streptomycin and DNAse, then incubated at 37 °C and 5% CO2 for 2-3 hours.
After the incubation time the cells were counted and adjusted to a final
number of 200,000 cells for each CTG test and 1106 cells/ml for FC analysis.
The patient characteristics are presented in Supplementary Table S1.

Preparation of drug plates
The compounds (Supplementary Table S2) were dissolved in dimethyl
sulfoxide (DMSO) and dispensed on 384-well plates (Corning, Corning, NY,
USA) using an acoustic liquid handling device Echo 550 (Labcyte,
Sunnyvale, CA). DMSO was used as a negative control and 100 µM
benzethonium chloride (BzCl) as a positive control (Table S2).

Cell viability analysis using CTG
The AML cells were seeded on pre-drugged 384-well plates (Corning)
containing chemical compounds at five different concentrations in two
replicates. The final number of cells in each well was adjusted to 5000 cells
in 25 µl per well and incubated for 72 h at 37 °C and 5% CO2. Cell viabilities
were assessed using the CTG assay (Promega), and the luminescence
signal was measured using a PHERAstar FS plate reader (BMG LABTECH). As
quality control, viability screening was used to check how the cells survive
in 384-well plates during the 72 h incubation. Viability of the cells was
monitored at 0 h and at 72 h using the CTG assay.

High throughput flow cytometry
For phenotype-based drug sensitivity profiling, a high throughput flow
cytometry (HTFC) assay was performed. Following thawing, BMMNCs were
seeded using MultiFlow FX RAD (BioTek) to 384-well compound plates
(Greiner), 20,000 live cells in 20 µl CM in each well, and incubated for 72 h at
37 °C and 5% CO2 (Figure S1). Monoclonal antibodies for CD45, CD38, CD34,
CD117, CD11b, CD14 and CD15, apoptosis dye Annexin-V and dead cell
exclusion dye DRAQ7 (Table S7) were added with the Echo 525 acoustic
dispenser (Labcyte Inc.) and stained for 30min at room temperature (Table
S3). Cells were analyzed with the iQue3 screener (Sartorius, Germany).
ForeCyt software (Sartorius) was used to analyze the remaining viable cells
and data normalized to the number of viable cells in the DMSO control wells.
Drug sensitivity scores (DSS) and SynergyFinder 3.0 were used to analyze the
results [26]. The gating strategy is presented in Supplementary Figure S2.

Statistical analysis
T-test was used to show that the mean of inter-cluster dice similarities is
less than the mean of intra-cluster similarities. We also used a statistical
proportion test to show that the proportion of inter-cluster drug
combinations with efficacy greater than the third quantile (Q3 or 75th
percentile) of efficacy values and toxicity less than the first quantile (Q1 or
25th percentile) of toxicity values is significantly higher than the random
choices (probability= 0.33). This demonstrates that inter-cluster drug
combinations have the highest efficacy and the lowest toxicity. A similar
approach was utilized for calculating CR values as well as synergy scores. In
KEGG, a biological pathway enrichment analysis was calculated based on
hypergeometric test followed by false discovery rate (FDR) correction. Fold

Enrichment was calculated by dividing the percentage of genes in the list
that belong to a pathway by the corresponding percentage in the
background. Fold Enrichment indicates how significantly genes from a
specific pathway are over-represented [17].

RESULTS
The entire workflow of this study is depicted in Fig. 1. The drug
responses of 625 chemical compounds tested on 199 bone
marrow samples from patients with AML were obtained from the
FIMM AML data set [11]. The bipartite network was constructed
using this data set, as explained in the materials and methods
section. A bipartite network can be projected onto two different
types of unipartite networks containing nodes of only one type.
The projection of the bipartite network, onto the “drug” node set
is considered here, called the drug similarity network. The Louvain
community detection approach was used to find drugs that
behaved similarly in terms of drug response [14]. The results gave
us two communities (clusters) of drugs denoted by C1 and C2 with
network sizes of 155 and 141, respectively (Table S1).

Comparing AML drug clusters: evaluating protein target
pathways and chemical structure similarity
We used two independent computational methods to determine
how distinct the two clusters are: the first identifies the significant
difference between biological pathways of drug protein targets in
each cluster, and the second evaluates the chemical structure
similarity of drugs in each cluster. We constructed a drug-target
network using the drug target commons (DTC) database [15],
which is also a bipartite network in which each link connects
drugs to their protein targets. Let T1 and T2 represent the set of
protein targets of drugs in the cluster C1 and C2, respectively, and
T represents the union of T1and T2. In this study |T1|
¼ 921; jT2j ¼ 842; andjT j ¼ 1055:
Proteins with a score S (explained in the methods) greater than log

(2) are considered to be preferentially targeted by drugs in cluster 1,
denoted by PPT1. Similarly, PPT2 proteins have a score of less than
logð0:50Þ. We performed GSEA (gene set enrichment analysis) on
PPT1 and PPT2 proteins based on their associated scoring functions.
As expected, the biological processes and signaling pathways
affected by drugs in Clusters 1 and 2 are distinct. This difference
enables us to inhibit two different signaling pathways using one
combination. Drugs in cluster 1 (PPT1), such as LY3009120 (a pan-
RAF inhibitor), predominantly target proteins associated with the
RAF-MEK-ERK signaling pathway. This pathway plays a crucial role in
cell proliferation and growth, indirectly influencing processes like cell-
substrate adhesion and ion trans-membrane transport, which are
enriched in our analysis [27]. In contrast, JAK1/2 inhibitors like
ruxolitinib target JAK proteins, involved in cytokine signaling and
immune responses, impacting pathways related to neuroactive
ligand-receptor interactions and the regulation of actin cytoskeleton
[28]. Drugs like birabresib, which target proteins in the bromodomain
and extra-terminal (BET) family, have a role in gene regulation
through chromatin binding, affecting gene expression and pathways
related to chemical reactions and collagen metabolism [29].
Plicamycin, which binds to guanine-cytosine-rich regions of DNA,
may influence gene expression and regulation, impacting pathways
related to collagen metabolism and other DNA-dependent processes
(Fig. 2A) [30]. On the other hand, proteins targeted by drugs in
cluster 2 (PPT2) (silmitasertib, ulixertinib, sapanisertib, and teniposide)
are in the p53 signaling pathway, cell cycle, apoptosis, and
pancreatic, colorectal and chronic myeloid leukemia cancers and
related to tumorigenesis and progression pathways, including
human immunodeficiency virus 1 infection [31–34].
We also performed ShinyGO [17] Gene Ontology and KEGG

pathway enrichment analysis on proteins that are merely targeted
by drugs in one cluster. For this purpose, two protein sets G1 and G2
were selected such that G1 includes proteins targeted by at least
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three drugs in cluster 1 and at most two drugs in cluster 2, and
similarly, G2, consist of proteins that are mostly targeted by drugs in
cluster 2 (at least three drugs in cluster 2 and at most two drugs in
cluster 1). REVIGO was also used to summarize the enriched GO
terms, and the results are shown in Fig. 2 and Tables S2 and S3. The
cAMP signaling pathway, lipids and atherosclerosis, steroid hormone
biosynthesis, and rhythmic processes and circadian rhythm are
biological processes related to G1 proteins, which are mostly
targeted by LY3009120, birabresib, plicamycin, and ruxolitinib. Cell
cycle, cellular senescence, T-cell leukemia virus 1 infection and cell
division, mitotic cell cycle, and protein phosphorylation processes
are related to G2 proteins, mostly targeted by silmitasertib,
ulixertinib, sapanisertib, and teniposide. Therefore, we demonstrate
that the protein targets of drugs in each cluster are involved in
distinct pathways and biological processes.
To do homogeneity analysis of chemical structure of drugs, the

dice similarity test was used to show how structurally similar the
drugs are in each cluster. This measurement compares the
number of chemical features shared by a pair of compounds to
the average size of the total number of features present. Pairwise
similarities were calculated for chemical compounds chosen from
two drug clusters for inter-cluster comparison. Drugs from
different clusters are less similar than drugs from the same
cluster, as shown in Fig. 3A. According to the box plot, the inter-
cluster similarities are less than the intra-cluster similarities in both
clusters. The results of the t-test imply that the mean of inter-
cluster similarities is less than the mean of intra-cluster similarities
in clusters 1 and 2 (p-value < 2.2e-16 for both t-test).

Combination selection: balancing toxicity and efficacy across
clusters
As a result, we demonstrated that clusters are well-separated and
that the protein targets of drugs in each cluster are involved in
distinct pathways. In this novel combination strategy, we aim to
select two drugs from distinct clusters while taking both toxicity
and efficacy into account. The optimal combinations are those

that have lower toxicity than the average toxicity and higher
efficacy values than the average efficacy value for all drugs. For
each drug, the average drug response of healthy and AML patient
samples in the data set are considered as toxicity and efficacy,
respectively. We assume that the ideal drugs have no inhibitory
effect on healthy samples but significantly influence blast cells in
AML patient samples. We chose the top 5% of drugs whose
toxicity is less than the average of all drug toxicity and efficacy is
greater than the average of all drug efficacy. Figure 3B depicts the
link between toxicity and efficacy values of 296 drugs on 81
samples. The top four selected small molecules in each cluster are
summarized in Table 1 and Table S4. Four chemical compounds
from cluster 1 including birabresib, LY3009120, plicamycin, and
ruxolitinib as well as four drugs from cluster 2 including
sapanisertib, silmitasertib, teniposide, and ulixertinib were chosen
for drug combination testing. According to our experimental
design, the combination of drugs within a single cluster is known
as negative group or intra-cluster, and the combination of drugs
between clusters is considered as positive group or inter-cluster.

Enhanced efficacy and reduced toxicity in inter-cluster drug
combinations on AML patient samples revealed by cell
viability drug screening
In the testing of all 16 inter-cluster and 12 intra-cluster
combinations at five different concentrations, the cell viability of
16 samples from AML patients and 5 samples from healthy donors
were monitored. Patient samples with blast percentage more than
49% were chosen for testing with the CTG assay (Table S5). The
average inhibition across dosages on 16 patient samples is
regarded as efficacy, whereas the average inhibition across
dosages on healthy samples is regarded as toxicity. The drug
combinations with rectangular labels have higher efficacy and
lower toxicity than the median. The proportion test (p-value=
0.006) revealed that the percentages of inter-cluster drug
combinations with high efficacy (efficacy higher than the third
quantile of efficacy values) and low toxicity (toxicities lower than

Fig. 1 Schematic outline of the study. Data pre-processing began after data collection, which was followed by full matrix extraction,
weighted bipartite network reconstruction, and computational validation. After the selection of the best combinations, bone marrow and
peripheral blood samples from both healthy individuals (n= 5) and AML patients (n= 16) were subjected to drug sensitivity assessment. For
ATP-based viability assay the study design contains 8 drugs and 28 combinations in 384-well plates, each drug with 5 different concentrations
and two replicates. The single cell sensitivity assay using the iQue® Screener PLUS flow cytometer was performed in 384-well plates to monitor
drug effects on cell sub-types. The study design contains 5 drugs and 3 combinations, all with two replicates and five concentrations. For
sapanisertib, the drug concentrations are 0.1, 1, 10, 100, and 1000 nM, and for all other drugs are 1, 10, 100, 1000, and 10,000 nM.
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the first quantile of toxicities) are significantly more than random
choices.
The synergy and combination ratio (CR) of drug combinations on

AML and healthy samples was then calculated using synergy scoring
functions HSA [21], Bliss [22], Loewe [23], and ZIP [24] (Figs. 4 and S3).
The same analysis was done on synergy scoring values, and it was
discovered that inter-cluster drug combinations differ significantly
from random choices (P-values shown in Fig. 4A-F). The drug
combinations shown with rectangular labels have the highest synergy
on AML patient samples, and the lowest synergy on healthy samples.

Table 2 summarizes all six plots and the significant drug combinations
according to different measures are highlighted by green (inter-
cluster), yellow and purple (intra-clusters). Following CTG analysis,
consensus across synergy scoring functions led to the selection of the
five best drug combinations out of 28 to quantify blast-specific drug
responses with flow cytometry. Additionally, we used one of the most
extensive databases, the Probes & medications portal (PDP) dataset
[35], to extract the protein targets of these selected drugs. Table S6
provides a summary of the hypergeometric test findings, which show
that there is no discernible overlap between the protein targets of

Fig. 2 Gene Enrichment Analysis for Proteins in Clusters 1 and 2. Sankey plot of enriched (A) KEGG signalling pathways and (B) GO
biological processes related to target protein clusters PPT1 and PPT2. Each rectangle on the right side represents a pathway or biological
process, and the size of each rectangle illustrates the degree of connectivity of each pathway. Each biological process or pathway is
represented by a unique color. GO and KEGG pathway enrichment analysis on proteins that are merely targets by drugs in one cluster. G1 (G2)
includes proteins that are targeted by at least three drugs in cluster 1 (cluster 2) (155 and 141 drugs). C Biological processes (BPs) of G1, (D)
Biological processes (BPs) of G2, (E) KEGG pathway related to G1 proteins, and (F) KEGG pathway related to G2 proteins. The size of the node
corresponds to number of genes, the x-axis is Fold Enrichment and the color of bars indicates the negative logarithm of Fold Enrichment.
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these drugs whether taken separately or in combination. The need for
future work arises to assess relevant biomarkers of on-target activity
for each single and combination approach.

Cell subtype viability analysis highlights low toxicity of
selected combinations
Using the CTG assay, we measure the general BM-MNC sensitivity,
whereas with flow cytometry analysis we measure the number of live
cells among different cell populations. Following 72-hour treatment
with the 5 selected combinations on 3 different samples, viability of
different cell subtypes of interest was measured by flow cytometry.
Sample selection was based on the inclusion of three biological
replicates for each combination, considering available cell numbers to
enhance statistical power and result reliability. For each sample, there
is a specific plate layout which can be found in Supplementary Fig. S1.
We used six cell surface markers (CD14, CD15, CD45, CD38, CD117,
and CD34; Table S7) to identify the major leukocyte populations
present in the AML BM-MNCs: monoblasts, myelocytes, leukemic
blasts, leukemic stem cells, and myeloid progenitor cells (Fig. S2).
In the studied samples, the average of blasts out of CD45 positive

leukocytes, was 70% in DMSO, while on average 36% ± 16% of the
blasts were killed by the combinations (Table S8). Based on the
results, the percentage of dead cells for all five combinations in
lymphocytes is considerably lower than 25% (Fig. 5). More

importantly selected combinations have lower synergistic effect
on lymphocytes compared to the blast population, demonstrating
the lower toxicity of combinations (Figs. 6 and S3). The combination
of JAK1/2 inhibitor (ruxolitinib) with either ERK or CSNK2A1
inhibitor had the highest efficacy and lowest toxicity, demonstrat-
ing the important role of these targets in AML. Numerous studies
show the significance of the JAK/STAT signaling system in
determining how hematopoietic cells react to various cytokines
and growth factors [36, 37]. Recently there has been increased
interest in different drug combinations with ruxolitinib [38–41] and
as our results show the combinations of this drug, by having the
lowest toxicity, seem to be promising for AML treatment.

Blast-specific drug responses in AML: Efficacy profiles of
selected combinations
We were able to assess blast-specific drug combination responses
and compare them to the other combinations within different
samples. Among the five tested combinations, two combinations
with ruxolitinib which targets JAK1/2 were among the most
efficient combinations. The combination of ruxolitinib with
ulixertinib, an ERK inhibitor, exhibits the strongest efficacy against
blasts, according to the results. After treatment, the combination
induced 47% ± 13% cell death in blasts (Fig. 5 and Table S8) with a
more synergistic effect on the blast population compared to the
lymphocyte population (Fig. 6A). We depicted the gating of
1000 nM concentration of each drug on sample AML_3 to better
understand the impact of combination therapy vs. DMSO control
and single drug treated samples in Fig. 7. The number of blast cells
in the ruxolitinib and ulixertinib treated well was reduced to 37%,
showing the largest reduction compared to all other treatments,
as shown in Fig. 7A. The second combination of ruxolitinib and
silmitasertib, a CSNK2A1 inhibitor, showed high efficacy on blasts.
On average, this combination induced death to almost half ± 14%
of the blast population but had less effect on lymphocytes (Fig. 5
and Table S8). Additionally, this combination had a substantially
higher inhibition rate compared to each single drug and acted
synergistically toward the blast population (Fig. 6A).
Given the importance of pan-RAF inhibition, we next examined

LY3009120 in combination with three other drugs. The samples
used for the combination of LY3009120 and sapanisertib (mTOR1/
2 inhibitor), consist of 56% blast and the response for them is 40%
± 12% inhibition. To confirm that this combination is efficient, we
analyzed the effect of LY3009120 and sapanisertib combination
with single treated and DMSO-treated cells in AML_3. In the
combination-treated sample, the blast cells were significantly
reduced to 13% while in the individual drugs LY3009120 and
sapanisertib reduced the blasts to 38% and 75%, respectively (Fig.
6B). These results indicate that this combination has substantially
higher inhibition rate compared to each single drug and a greater
synergistic effect on blasts than on lymphocytes (Fig. 6A).
Ulixertinib (ERK inhibitor) is the second drug that was used in
combination with pan-RAF inhibitor. Patient samples treated with
this combination, on average, contained 60% blast cells and after
treatment they are reduced to 28% ± 14%. Finally, we tested the
combination of LY3009120 with silmitasertib, a CSNK2A1 inhibitor
on three different samples. The average blast population for these
three samples is 62% and the response was 21% ± 5%. Overall, as

Table 1. The selected chemical compounds from two clusters of
drugs in the drug similarity network.

Cluster 1 Cluster 2

LY3009120 (LY30) Teniposide (Teni)

Ruxolitinib (Ruxo) Silmitasertib (Silm)

Birabresib (Bira) Ulixertinib (Ulix)

Plicamycin (Plic) Sapanisertib (Sapa)

Cluster 1 Cluster 2 Intercluster
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Fig. 3 Comparative analysis of dice similarity and drug efficacy-
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test, shown in red color. B The toxicity and efficacy of 296 drugs. Inset
plot shows the relationship between toxicity and efficacy. Top five
percent of drugs whose toxicity is less than the average of all drug
toxicity and whose efficacy is greater than the average of all drug
efficacy are in blue, and their name is shown in rectangle labels.
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shown in Figs. 5 and 6A, all combinations have very little impact
on the lymphocyte populations, demonstrating low toxicity, and
significantly more impact on less differentiated malignant cells,
demonstrating the efficacy of the combinations.

Increased sensitivity of AML samples to combination
therapies over single drugs, regardless of genetic mutations
and prognosis categories
There is a significant correlation between CTG assay and blast
specific results, indicating that reduction in cell number measured
by CTG, is related to the malignant cell populations (Figs. 6B and
6C). The cell viability readout for a single drug is converted to a
drug sensitivity score (DSS) which is a drug sensitivity metric
based on area under the dose-response curve. A greater DSS
indicates higher sensitivity [42]. Strikingly, by combining selected
inter-cluster drugs, the blasts were targeted, and combinations
showed a synergistic effect on this population (Fig. 6A).
Considering the most prevalent mutations among AML patients
[43, 44], we examined the existing mutations in selected samples
to monitor the drug responses based on genetic changes (Fig. 6A).
To evaluate the impact of the combinations on samples bearing
genetic alterations, some mutations that are frequently found in
AML patients were considered (Fig. 6A). Mutation to FLT3, a well-
known driver gene in AML was represented in two samples. Other
prevalent mutations occurred in NPM1, GATA2, DNMT3A, TET2,
KMT2A, NRAS, SMC3, and SRSF2. The combinations induced a
synergistic effect on the blast population, regardless of the genetic
alterations. The European Leukemia Network (ELN) classifies
patients into three prognosis categories: “favorable”, “intermedi-
ate”, or “adverse” [45]. AML patients are also classified using the
French-American-British (FAB) classification [46], which is based on
morphological features. Regardless of sample type, we observed a
synergistic effect following treatment. Importantly, after therapy,
we noticed a synergistic effect in all samples, indicating that these
combinations are effective at combating the heterogeneity of
AML. It has been demonstrated that drugs should target the less
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Fig. 4 Drug combinations’ synergy scores on 16 AML samples and 5 healthy samples. The X-axis depicts the synergy in AML samples and
the Y-axis represents the synergy in healthy samples. The median inhibition on AML and healthy samples is shown by dashed lines in red and
blue, respectively. There are three groupings: clusters 1, 2, and intercluster, and the color of each dot indicates each of these groups. The p values
presented in each panel are associated with the proportion test, comparing the inter-cluster combination with the random selection of drugs.
The average of inhibition of drug combinations on dosages (A) and several synergy scores were depicted in separate panels using synergy
scoring functions ZIP (B), HSA (C), Bliss (D), Loewe (E), and combination ratio (CR) of drug combinations on AML and healthy samples (F).

Table 2. Selected drug combinations sorted by synergy scoring
functions.

Drug Combinations Inh 

ZIP
 

hsa 

bliss 

loew
e

C
R

 

LY3009120 , Silmitasertib 

Ulixertinib , Ruxolitinib 

Silmitasertib , Ruxolitinib 

Sapanisertib , LY3009120 

Ulixertinib , LY3009120 

Ulixertinib , Plicamycin 

Birabresib , Ulixertinib 

Birabresib , Teniposide 

LY3009120 , Ruxolitinib 

Sapanisertib , Ulixertinib 

Ulixertinib , Silmitasertib 

Highlighted in green (inter-cluster), yellow (intra-cluster 1), and purple
(intra-cluster 2). Inh stands for the average of inhibition of drug
combinations on dosages, ZIP, hsa, bliss, and loewe are synergy scorings
and CR is the combination ratio.

M. Mirzaie et al.

7

Oncogenesis           (2024) 13:11 



differentiated leukemic blasts to achieve the best response in
patients [6]. Given these two observations—the presence of the
most relevant mutations and the prevalence of blast cells in the
samples— the combinations seem to be promising for treatment.

Efficacy and toxicity of the novel combinations compared to
first-line treatment in AML
In the following analysis, we compared the proposed combina-
tions in this study (ruxolitinib-ulixertinib and LY3009120-
sapanisertib) with two FDA-approved combinations for AML
(venetoclax-azacitidine and venetoclax-cytarabine), as well as
the investigational combination of venetoclax-ruxolitinib. As
illustrated in Fig. 8, venetoclax-ruxolitinib demonstrates the
highest efficacy on both blast cells and lymphocytes compared
to the other combinations. This dual efficacy profile is a

noteworthy advantage; however, it comes at the cost of
heightened toxicity, as indicated by our results.
Conversely, the novel combinations, ruxolitinib-ulixertinib and

LY3009120-sapanisertib, showed comparable efficacy in targeting
blast populations as the established combinations. Notably, there
was no significant difference in terms of efficacy (p-values are
shown in Fig. 8). However, these two combinations have a
significant advantage in demonstrating lower toxicity compared
to first-line combinations, particularly for lymphocytes. The effects
of ruxolitinib-ulixertinib and LY3009120-sapanisertib on blast
lymphocyte population were significantly lower than all other
combinations except for venetoclax-cytarabine (p-value= 0.25)
which is not significant but still lower. This reduction in toxicity
suggests these combinations can offer effective treatment while
minimizing side effects associated with current therapies.
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Fig. 5 The cell viability assay (CTG) and response of different cell populations to 5 selected combinations using flow cytometry assay.
Response signifies the percentage of dead cells following a 72 h treatment. The number of cells in each well was counted and normalized by
the min–max normalization method. For each combination, three different samples, distinguished by the color of points, were treated with
three different doses (10, 100, and 1000 nM), which are illustrated by the different point shapes. The colors in each cell group facet
corresponds to a specific drug combination.
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DISCUSSION
In this study, we employed a nominal data mining approach to
construct a weighted bipartite network for the selection of the
most effective, as well as the least toxic drugs. We analyzed a
substantial dataset consisting of 625 chemicals and 252 patient
samples from a large AML-cohort project in Finland [11] spanning
the years 2011 to 2019 (the final size of the matrix after
preprocessing is 296×81). Importantly, following evaluation on
well-annotated samples, we tested the combinations of
ruxolitinib-ulixertinib and sapanisertib-LY3009120 and found that
these are equivalently effective but less toxic in comparison to
established therapies on samples.
Understanding the reaction of both healthy and cancer cells to

drugs is a multifaceted subject, encompassing many different
variables crucial for assessing the effectiveness and safety of single
drugs and drug combinations [47]. The inherent variability in the
response of healthy and cancer cells to combination treatment adds a
layer of complexity, potentially impacting overall efficacy [48]. The
challenges in drug response within AML patients arise from the
impact of patient genotype heterogeneity, and germline variation,
along with common factors such as age and sex, leading to certain
subpopulations exhibiting resistance to identified combination
therapies. Microenvironmental influences on cell response, coupled
with potential complex drug interactions, contribute to variations in
toxicity and efficacy [49]. Additionally, comparisons between single-
agent and combination therapies are inherently complex due to dose
equivalency [50, 51]. These limitations draw attention to the complex
processes that underlies drug responses in cancer and underscore the
necessity of using complex techniques in treatment efforts.
To address concerns related to response variations and genetic

heterogeneity, our study includes experimental data, providing a

comprehensive view of a drug candidate’s performance. The selection
method was driven by criteria developed from studies on drug
synergy, which allowed us to rank combinations according to
cumulative evaluation of efficiency and toxicity [50, 52]. As illustrated
in Fig. S3, it is evident that even at lower concentrations, like higher
dosages, a synergistic effect is observed. This implies that fine-tuning
the dosage could preserve efficacy while potentially mitigating
toxicity on normal cells. By cell population-specific drug response
shown in Fig. 5 we introduce two combinations having high efficacy
on the blast population (malignant cells) and low efficacy on
lymphocytes (healthy cells). However, variations in drug response
between different samples remain. Due to different factors influen-
cing drug response in patients with AML such as age, genetic
variation, and mutations, employing this approach still presents
limitations in addressing this challenge. It is imperative to acknowl-
edge that addressing the limitations of this study requires additional
and more profound analyses at both the dose level and with more
patient-specific focus.
The selected combinations inhibit important signaling pathways

and include drugs targeting pan-RAF, JAK1/2, Bromodomain and
Extra-Terminal (BET) motif protein family, topoisomerase II, CSNK2A1,
ERK, mTOR1/2, and DNA binding. The MAPK (RAS/RAF/MEK/ERK)
signaling pathway is hyperactivated in AML patients, leading to
leukemogenesis, leukemia progression, and chemo resistance [53–56].
Targeting RAS and ERK poses challenges, making pan-RAF inhibitors a
novel and intriguing pharmacological class [57, 58]. Recent studies
demonstrated that the pan-RAF inhibitor LY3009120 induces growth
inhibition and apoptosis in RAS-mutated AML cell lines [59, 60]. The
ERK inhibitor ulixertinib shows early efficacy in treating tumors with
MAPK pathway alterations, prevalent in 30% of all human cancers due
to activating mutations in RAS, BRAF, or MAP2K1 (MEK1) [61, 62].

Fig. 6 Characteristics of drug responses and correlation analysis in AML treatment: Comprehensive flow cytometry and CTG assessment.
A A heat map showing characteristics of single agent and combination responses measured by flow cytometry readout. Blast-specific
response of single drugs is highlighted according to drug sensitivity score (DSS) values with dark blue corresponding to high DSS value and
white to low DSS value. Blast-specific and lymphocyte-specific response combinations at 1000 nM are highlighted according to percentage of
apoptotic/dead cells, with dark blue in blast and red for lymphocyte corresponding to high percentage and white to a low percentage of
apoptotic/dead cells. The synergistic effect of the drug combination was assessed based on the HSA synergistic score in 1000 nM on blast cells
shown in blue and lymphocytes shown in red. B The correlation between responses measured by CTG and flow cytometry on five single drugs
ruxolitinib, silmitasertib, ulixertinib, LY3009120, and sapanisertib, and (C) five drug combinations sapanisertib-LY3009120, ulixertinib-
ruxolitinib, silmitasertib-ruxolitinib, silmitasertib-LY3009120, and ulixertinib-LY300912.
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LY3214996 proves effective in delaying or reversing resistance to
BRAF and MEK inhibitors, and a synergistic effect was observed when
combined with pan-RAF inhibitor LY3001920 in a KRAS-mutant
colorectal cancer model [63]. Moreover, here we identified ulixertinib

and LY3009120 as an inter-cluster combination with high efficacy and
low toxicity. Upon further analysis, we found two combinations of
ulixertinib and three combinations of LY3009120 among the five
most efficient and synergistic combinations.
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JAK signaling plays critical roles in several intracellular signaling
pathways, and is implicated in leukemias with described aberra-
tions in the JAK/STAT pathway and constitutive STAT activation
[64–66]. Ruxolitinib, a non-selective JAK1/2 inhibitor approved for
the treatment of myelofibrosis, reduces JAK-signal transducer
activation and lowers STAT transcription signaling [67, 68]. Based
on computational analysis, CTG-based viability results, and flow
cytometry analysis, we revealed that the combinations of
ruxolitinib with ulixertinib and silmitasertib are the most blast-
specific compounds, while having minor effect on lymphocytes in
AML by ex vivo screening.
Lastly, we thoroughly compared the two FDA-approved

combinations (venetoclax-azacitidine and venetoclax-cytarabine)
and one investigational combination (venetoclax-ruxolitinib) with
the novel combinations suggested in this study, namely
ruxolitinib-ulixertinib and LY3009120-sapanisertib. Notably, the
outcomes validated the comparability of the suggested combina-
tions’ efficacy with first-line combinations in this investigation.
There is no significant difference in efficacy on blast cells, between
proposed combinations and first-line AML combinations. Signifi-
cantly, the toxicity of selected combinations is lower than others,
except for venetoclax-cytarabine, which indicates that proposed
combinations might offer both effective treatment and a reduced
side effect compared to standard AML combinations.
In summary, we proposed effective drug combinations for AML

patients with the highest efficacy and lowest toxicity based on
nominal data mining method and ex vivo drug sensitivity assay. Our
results indicate that ruxolitinib-ulixertinib and sapanisertib-LY3009120
could be effective combinations for AML, having the highest
synergistic effect, the highest efficacy on blasts, and the lowest
toxicity. Although the approach of combining targeted agents suffers
from cumulative toxicity effects [69], we demonstrated that our
approach overcomes this limitation in designing a drug combination
in AML. Nevertheless, our choice of drug candidates for combination
therapy prioritized minimizing toxicity; but this serves as a starting
point to explore the acceptable toxicity levels associated with various
combination approaches among different patient profiles. Consider-
ing the importance of toxicity, in all steps we regarded toxicity as an
important factor for the selection of combinations with the lowest
effect on healthy cells. Standard chemotherapy kills most of the blasts
as well as other cell types and has a high value of toxicity [6], while
recommended combinations in this study are effective on blasts, but
have lower toxicity on other cell populations.

DATA AVAILABILITY
The data that support the findings of this study and all code for data analysis are
openly available at https://github.com/jafarilab/DrugComb_AML.
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