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Abstract. Software systems need to be maintained and frequently up-
dated to provide the best possible service to the end-users. However,
updates sometimes, cause the system or part of it to restart and discon-
nect, causing downtime and potentially reducing the quality of service.
In this work we studied and analyzed the case of a large Nordic company
running a service-oriented system running on edge nodes, and providing
services to 270K IoT devices. To update the system while minimizing
downtime, we develop a smart edge service update scheduler for a service-
oriented architecture, which suggests the best possible update schedule
that minimizes the loss of connections for IoT devices.
Our approach was validated by applying the scheduling algorithm to the
whole system counting 270k edge nodes distributed among 800 locations.
By taking into account the topology of the software system and its real-
time utilization, it is possible to optimize the updates in a way that
substantially minimizes downtime.

Keywords: Edge computing · provisioning · update scheduling · service-
oriented · IoT.

1 Introduction

Software systems constantly need to be updated. Modern agile methods allow the
continuous development and deployment of changes. However, the deployment
of updates can require the restart of the system or part of it.

When considering widely used software systems, and in particular critical
systems, downtime is usually unacceptable, and different strategies should be
considered to avoid or minimize downtime as much as possible.

In our case, a very large Nordic company3 is running a service-based system.
The system is running 24/7 and it is deployed on edge and cloud, in multiple
countries. Among different countries, the system has more than 800 locations,
with an average of 336 edge nodes for each location for a total of ∼ 270k edge
nodes. Each edge node provides a service to 100-1000 users connected simulta-
neously totaling 270 million connected Internet of Things (IoT) devices.

3 For reasons of NDA, we are not allowed to disclose the name of the company, nor
the low-level details of the use case.
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The company is continuously developing the system using an agile method-
ology and the continuous building of the system needs to deploy a new version
of the code every day. However, the deployment of the new version requires the
restart of each location, taking an average of 30 minutes, and impacting all the
edge nodes and related services provided to the connected IoT. During this time,
all the end users connected to the edge nodes in the location, need to be rerouted
to another edge node in a different location, to minimize the number of dropped
service calls. However, the IoT devices can access only adjacent locations, due
to the wireless technology adopted, increasing the complexity of the updates.

Given the daily upgrade time frame and the number of nodes, it would not
be feasible to have a sequential upgrade schedule, as it would require more than
405 hours (∼ 16 days).

Therefore, we intervened to support the company in identifying a smart up-
date algorithm to schedule the updates of each location while reducing the num-
ber of service call drops as much as possible, maximizing the quality of service.

For this purpose, we defined a smart scheduling algorithm, validated it, and
finally deployed it in production. The goal of the scheduling systems is to provide
the suggested timing at which each location should start the provisioning process.

As a result, the company is now able to continuously deploy new updates,
dropping only once a day, for 30 minutes, 20% of the calls to the service APIs.

The result of this work can be useful to researchers to validate the scheduling
algorithm and to further extend it. Moreover, companies can benefit from this
work by applying and extending it in production. It is important to remember
that this algorithm is currently deployed in production, on a very large-scale
system.

The remainder of this paper is structured as follows. In the next section, we
introduce the necessary background and related work. In section 3 we introduce
the smart edge service update scheduler, explaining its characteristics and its
rationale. In section 4 we describe how the performance of the scheduling algo-
rithm is measured. Section 5 includes the validation of the algorithm and the
smart edge provisioning scenario. Section 6 finally presents our conclusions and
draws future works.

2 Background and Related Works

2.1 Provisioning

The term provisioning is usually referred to as the process of preparing and
equipping a software system to provide the best possible services to its users.
However, since a system needs to be updated constantly, a vital part of the
provisioning process is related to the updates and eventual restart of the ap-
plications. In this work, we use the term provisioning exactly to describe the
update process of edge nodes (with consequent rebooting) to provide the best
QoS to the system’s users.
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Fig. 1. Example of a system with multiple locations (L1, L2, and L3), each with mul-
tiple edge nodes (E1, E2, ..), and a variety of IoT devices connected to the the edge
nodes of the closest location (squares with same colors as locations). Moreover, the
lines connecting edge nodes of different locations indicate the possibility to handover
the connections of the IoT devices.

2.2 Edge Computing

With the term Edge computing, we refer to a system where the computation is
brought closer to the end user and the source of the data [1]. By keeping the
majority of the data closer to the end users, there is a significant advantage in
terms of lower latency and improved bandwidth compared to centralized systems.
For this reason, whenever real-time processing is needed, edge computing allows
bringing computation and data storage closer to the client.

2.3 Related Works

The increase in usage of edge technology and computing, including the pro-
liferation of IoT devices, has increased the need for additional care needed to
guarantee a sufficient quality of service. This system decentralizes the use of
computational resources, bringing new issues in the management of the overall
network.

Most of the research has therefore focused on how to optimize the provision-
ing of the resources for edge systems. Kherraf et al. [2], for example, proposed an
approach that decomposes the resource provisioning and workload assignment
into subtasks, allowing for higher performance trends in the overall system. Sim-
ilarly, Cai et al [3] proposed a provisioning model called edge federation, which
allows to schedule of resources among multiple edge infrastructure providers by
characterizing the provisioning as a linear programming problem. Their method
resulted in significantly reduced costs. Xu et al. [4] also tried to optimize the pro-
visioning of resources in edge computing, by proposing a dynamic provisioning
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method which, besides optimizing the resource scheduling, also tries to optimize
energy consumption and the completion time. Another issue in resource provi-
sioning is that sometimes it doesn’t take into account edge-specific characteris-
tics. Ogbuachi et al. [5] tackled this problem by integrating real-time information
regarding physical, operational, and network parameters in the scheduling of 5G
edge computing, showing that this approach improves the scheduling process
compared to the default Kubernetes scheduler.

Among the works that tackled the resource provisioning process, some of
them exploited machine learning models for optimizing it. Guo et al. [6], for
instance, used a combination of Auto-Regressive Integrated Moving Average
(ARIMA) and Back-Propagation Neural Network (BPNN), to predict the load
and optimize the resource provisioning of an edge system. Similarly, Li et al. [7]
used the same ARIMA and BPNN models to forecast the load and proposed a
location for new requests to be filled, reducing the cost of provisioning.

3 The Scheduling Algorithm

The proposed smart scheduling algorithm is based on three different contribution
factors, as described below.

– Static Weight: a factor relates to the information which is not going to
change in the near future and, therefore, static in time. It is computed taking
into account the topology of the system.

– Dynamic Weight: this factor, in contrast, includes all of the information
which is not static in time and therefore related to throughput among differ-
ent nodes. Specifically, in this model, the Dynamic weight is related to the
number of active connections each location has at different time slots.

– Cluster ID: this factor assigns a value to each location showing which are
similar and can be considered in the same cluster.

3.1 Static Weight

The topology of the network is presented as a structured file including the Edge
Source and the Destination Edge for each different possible service. This means
that between different couple of locations it is possible to have multiple edge-
based connections. Moreover, we also know that different locations have a differ-
ent number of edge nodes. As we believe that different information has different
importance when impacting the topology of the network we computed the static
weight sw of each location as a weighted sum of this different information so
that :

sw = α ∗WE + β ∗WL, (1)

where α and β are two factors assigned to the different weights, WE is the weight
computed based on the number of edges within a single location and WL is the
weight computed based on how many connections there are between two different
locations.
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Fig. 2. Seasonality of the active traffic for a specific location.

More in particular we compute WE as:

WE(xE) =

n∑
i=1

[li = xE ], (2)

where li is the list of the unique edges, having the location as the prefix.
We compute WL as:

WL(xE) =

n∑
i=1

[lSi = xE |lDi = xE ], (3)

where lSi is the list of all source locations and lDi is the list of all destination
locations.

3.2 Dynamic Weight

The information related to the temporal evolution of the traffic for each location
is especially useful in understanding which location to update (and therefore
disconnect) first. The information is presented as a structured file that includes
time series for each edge.

From an exploratory analysis of the aforementioned, the time series present
an intra-day seasonality as well as a weekly seasonality (Figure 2). The objective
of the algorithm used for this data is therefore to find the perfect time for each
location that impacts the traffic the least.

In the specific, given a window of operation within the time series provided,
for each location, we assign a weight based on how much provisioning would
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affect the location. In our work, we divide the weights as optimal, suboptimal,
acceptable, and irrelevant (i.e. 3, 2, 1, 0). This means that once we find the
minima we assign to that specific time frame the value 3. Following, we compute
the minima again, but this time within the time series having the previously
time-frame dropped; we assign the value 2 to the newly found minima(s). We
repeat the same procedure and we assign the value 1 to those that are found as
3rd minima. We assign 0 to the remaining time frames.

3.3 Cluster ID

A fundamental part of the algorithm is related to the process of clustering the
different locations. To compute the clustering we rely on the python package
NetworkX [8], used for the analysis of complex networks. NetworkX is mostly
known in the literature for its ability to create a visual representation of a net-
work, however, one of its less known but powerful strengths is the ability to
compute cluster coefficients. In short, the cluster ID is the ID assigned to a lo-
cation and used for grouping the locations sharing the highest number of edge
connections between them.

The cluster coefficients have therefore been computed through the NetworkX
Clustering function giving as an inputWL and the maximum number of allowable
clusters. Once the coefficients are computed we created the clusters by computing
evenly spaced areas and assigning each area based on the coefficients computed
in the previous step.

3.4 Smart Edge Scheduling Algorithm

Given two files related to Topology (TN) and to the temporal evolution of the
traffic (TS) we develop our algorithm as shown in Algorithm 1.

More in detail, for each of the possible i locations (li) in TN, we compute both
the Edge-Based weight (WE) and the location-based weight (WL) as previously
described in Equation 2 and 3 respectively. Once both of those are computed,
we retrieve the static weight sw for each possible location.

Then, by making use of WL, we compute the cluster numbers using Net-
workX.

Following, for each specific location, we assigned the dynamic weights DW
by finding the minima (first, second and third) in TS. This means that the time
frame with the minimum amount of data sent will have the highest dynamic
weight assigned (3), the second minimum will have the second highest dynamic
weight assigned (2), and so on until the weights are assigned.

Once the dynamic weights are assigned, we sort sw from the lowest to the
highest value. The reason behind this choice is that we want to prioritize loca-
tions that have the less amount of edges and connections as we will have fewer
chances to redirect the connections to adjacent edges and therefore, impact more
users.

Then for each location xE in sw we search for the maxima in DW , and most
importantly, the time-frame (TF (xE)) when the maxima in DW is found. Once
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Algorithm 1: Smart Edge Provisioning Algorithm

for li in TN do
WE(xE) =

∑n
i=1[li = xE ];

WL(xE) =
∑n

i=1[lSi = xE |lDi = xE ];
sw(xE) = α+WE(xE) + β ∗WL(xE);

end
C = NetworkX(WL)
DW = AssignDynamicWeights(TS)
SW = sort(sw) ▷ From lowest to highest value of xE

for xE in SW do
TF (xE)← max(DW (xE))
if SC(C(TF )) is empty then

SC(C(TF )) = TF (xE)
else

TF2(xE)← max(DW (xE), 2)
if SC(C(TF2)) is empty then

SC(C(TF2)) = TF2(xE)
else

TF3(xE)← max(DW (xE), 3)
if SC(C(TF3)) is empty then

SC(C(TF )) = TF (xE)
end

end

end

end

the TF (xE) has been detected we search if that specific TF has been assigned
to any location within the same cluster C. If the TF for the specific cluster is
vacant, then it is assigned to xE , if not we repeat the same procedure for the
second and third maxima. If all the possible detected TF have been already
reserved, we move to the next location.

The reason for using TF is to maximize the degree of parallelism. We want
to schedule inter-cluster parallel updates so that we have one update per node
for each cluster, which means that the degree of parallelism depends the number
of clusters created in the previous step.

Once all the locations have been served we have a clear schedule of which
location should perform provisioning at each TF . On the other side, we will also
have a list that reports which one is the correct TF to perform provisioning for
each location. Inevitably, there are locations for which no suggested TF can be
detected. This means that these locations (usually less than 5%), can be assigned
to empty TF for their C without varying the impact.

4 Measuring the Scheduling Performance

To properly validate our algorithm it was fundamental for us to understand
the performance of the model proposed. Moreover, it was important for us to
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take into account some key factors such as the number of intra-edge connections
broken while provisioning, and the amount of data lost in the same phase. For
this reason, we created two metrics based on such factors: the intra-edge impact
and the traffic impact.

4.1 Intra-edge impact

The first factor to take into account when measuring the performance of the
network is the number of multiple connections between different locations. A
fundamental part of the algorithm relies on the creation of clusters composed of
locations that are strictly related to each other. The reason behind the choice
is to reduce the number of parallel unavailable locations which share multiple
connections. We know that different countries are composed of a different num-
ber of locations, therefore, countries with a higher necessity of connection are
less demanding. For this reason, we need a factor that shows the ability of the
proposed algorithm to keep dense active connections alive when the throughput
is high and heavily penalize situations where suggested scheduling cannot be
proposed.

The intra-edge impact takes as input the proposed scheduling and the topol-
ogy of the network: the first provides information related to when a specific
location is shut down, while the second about which connections are going to be
impacted by the provisioning. To penalize a situation where scheduling was not
possible, all the locations without a suggested schedule are grouped in the same
time frame.

4.2 Traffic impact

The second factor to take into account when measuring the performance of the
network is the amount of data lost during the provisioning. The goal of the
algorithm is to minimize such an amount through optimal scheduling so that
precise handovers can be performed and the chance of failure is reduced to the
minimum.

In our environment, the information related to the traffic is provided in time
frames of 15 minutes each. The provisioning time is set so that out of 30 minutes
required, for the first 10 minutes (i.e. 1/3 of the time) the system runs at lower
capability and tries to perform handovers, during the following 5 minutes the
system is inaccessible, and for the last 15 minutes the location runs again at
lower capability.

Knowing this, we try to schedule handovers during the whole provisioning
time, however, we know from the literature [9] that usually 20% of handovers
fail. When creating the traffic impact factor, we grouped all of this information
and created a factor that takes as input the proposed scheduling and the tem-
poral evolution of the traffic. This means that for each specifically scheduled
provisioning in the first input we search a correspondence for the TF , once the
traffic information is found we store it as v1 and the following TF as v2. Then,
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Fig. 3. Seasonality of the active traffic for all the locations considered.

we compute the traffic impact for the specific location as:

TI =
1
3 ∗ v1 + ( 23 ∗ v1 + v2)/5

5
(4)

This means that we try to perform handovers all the time. However, statistically,
1 out of 5 times the handover fails and we need to compute the value we would
lose in such an event. The traffic impact is composed of two parts, in the first
we compute the complete outage which is taking one-third of the time of v1, in
the second we compute the partial outage, which is taking two third of the time
of v1, and the full v2. In our environment, during a partial outage the system
can run at 80%, which means that during that period we lose 1/5 of the traffic.

5 Validation

To validate our scheduling algorithm, we used a system composed of 800 loca-
tions, with 270,000 edge nodes in total, averaging around 336 edge nodes for
each location.

First of all, we calculated the static weights as described in 3.1. We obtained
a value for each location; such value is only depending on the locations and the
Edge devices, therefore, it is not changing, unless the architecture of the network
itself would change.

Following, we calculated the dynamic weights described in 3.2. As it can be
seen from Figure 3, there is a clear seasonality in the data, which allowed us
and consider the temporal evolution of the system and therefore calculate the
dynamic weights, for each of the locations.
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Once the static and dynamic weights have been calculated, we calculated the
cluster number using NetworkX as described in 3.3. This allowed us to have a
modeled representation of the edge nodes and their location.

Our smart edge update scheduler produced therefore a proposed update
scheduling. In Table 1 it is possible to see an example of the scheduling for
some of the locations. As it can be seen, for each of the locations we have a time
that represents the moment in which the update is scheduled.

Table 1. Update scheduling example.

Location Update Schedule

235 2022-03-30 02:15:00 UTC
268 2022-03-30 02:30:00 UTC
224 2022-03-30 02:30:00 UTC
318 2022-03-30 02:45:00 UTC
362 2022-03-30 02:45:00 UTC
388 2022-03-30 02:45:00 UTC
402 2022-03-30 03:00:00 UTC
455 2022-03-30 03:00:00 UTC
469 2022-03-30 03:00:00 UTC

6 Conclusion

In this work, we provide a smart edge provisioning algorithm to minimize the
number of dropped services and maximize the quality of service in a service-
oriented architecture. We developed this algorithm to tweak at its best the envi-
ronment provided resulting in a reduced amount of time necessary to perform a
full upgrade of the elements composing the network and, therefore, not impacting
availability of service in the hours with the highest demand. Such an environ-
ment is composed of a worldwide network divided into multiple locations, each
one composed of multiple EDGE devices providing instruction to multiple IoT
devices.

Ideally, the best possible outcome would be to update all the available loca-
tions without dropping any information provided to the IoT devices. This would
mean that when performing the provisioning (update and restart), the amount
of IoT devices connected to the location would be 0.

A possible way to achieve this condition would be by performing handovers
to different locations. When performing handover we need to take into account
two conditions:

– Network availability: when performing handover we need to make sure that
the neighbor locations which are going to provide the service to the IoT de-
vices will not be overpopulated by those. This would risk the malfunctioning
of two locations.
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– Failed handover: as described in Section 4.2, we know for sure that an average
of 20% of handovers fail.

Therefore, it is very important to search for the time frame where each location
has the minimum amount of throughput.

Given the latter as an input, we developed an algorithm tailored to this
environment and impact values to validate it.

As the singular location-based provisioning would be impractical due to a
large number of locations, our first goal has been to understand how to cluster
different locations so that those could be updated in parallel. For this reason, we
calculated weights based on the topology of the locations (and the edge nested
in those) and the throughput of each location at each specific time frame.

By jointly analyzing the calculated weights we were able to understand which
of these locations have more importance (some locations have fewer connections
to other locations and therefore need to be carefully provisioned), and at what
time there is less stream of information in the whole environment.

Our algorithm suggests schedules for most of the locations in the network.
For some of them, it was not possible to provide an optimal schedule for two
reasons:

– impact: the amount of information that they transmit is lower compared to
other locations.

– overconnected: they have a high amount of connections to other locations
and therefore the handover is easier

For these locations, the overall impact on the network between upgrading in
different time frames can be neglected.
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