

Santeri Vahos

TEST CASE GENERATION FOR EMBED-
DED CONTROL SYSTEM

Master of Science Thesis
Faculty of Engineering and Natural Sciences

Jose Luis Martinez Lastra
Luis Enrique Gonzalez Moctezuma

March 2024

i

ABSTRACT

Santeri Vahos: Test Case Generation for Embedded Control System

Master of Science Thesis

Tampere University

Master’s Degree Programme in Automation Technology

February 2024

Software is arguably one of the most important parts of any embedded control system, as
microcontrollers or computers function as the brain of the system. Therefore, ensuring correct
operation and quality of the software needs to be verified throughout the development process
with different kind of software testing methods. As embedded control systems grow evermore
complex to perform all kinds of tasks, creating tools that help developers to produce and maintain
good quality software tests are needed.

Creating test cases requires developers to spend valuable development time on tedious, but
important, task of figuring out how exactly they can exercise the software as much as possible.
Algorithmically creating some of these test cases would speed up development process by mov-
ing some of the work usually left for humans to be done during a CI-process. Expecting algorithms
to completely replace some human work is not realistic, so part of the software testing process
needs to be looked from a different angle to achieve satisfactory results.

 Usual way of regression software testing requires close introspection of implemented software
and requirements, based on which test cases are then produced by software developers or test
engineers. However, code coverage is a metric that can be used to evaluate quality of regression
test sets by measuring how much of the program is being executed. Using this insight, algorithmic
methods can be applied to produce regression tests that exhaustively exercise some program.

In this thesis, Genetic Algorithms are used in Model-Based software development environ-
ment, to generate regression test suites to be used in control systems of forest machines. Re-
quirements that guide some of the different design choices for the algorithm are explored. More
specific details are explored in a level that is required to produce the algorithm implemented in
this thesis. The proposed algorithm is implemented and evaluated in Model-Based software de-
velopment environment.

Algorithm was successfully implemented and significant convergence of code coverage was
shown to be possible with the proposed approach. Usage as a software development tool, as
initially intended, was shown to be possible, but most likely impractical. Biggest reasons for im-
practicality as a software development tool were long runtime and case-by-case parametrization,
without which convergence was slow or low in code coverage. Additional future work might be
able to transform the algorithm as tool from impractical to practical.

Keywords: CI-process, Genetic Algorithm, Model-Based Software Development, Test case
generation, regression test

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Santeri Vahos: Sulautettujen järjestelmien testitapausten tuottaminen algoritmisesti

Diplomityö

Tampereen yliopisto

Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma

Helmikuu 2024

Nykypäivänä yksi tärkeimmistä osista sulautetuissa järjestelmissä on niiden toimintaa ohjaa-

vat ja valvovat ohjelmistot. Näiden ohjelmistojen laatua pitää varmistaa erilaisia ohjelmistotestaus
metodeja hyödyntäen kehitysprosessin aikana. Sulautettujen järjestelmien kehittyessä monimut-
kaisemmiksi, on noussut tarve luoda ohjelmistokehittäjien työskentelyä helpottavia ja nopeuttavia
työkaluja.

Testitapausten luominen on aikaa vaativaa ja pikkutarkkaa työtä, jota ohjelmistokehittäjät tai
testi-insinöörit tekevät luodakseen tapauksia, jotka suorittavat testin alla olevaa ohjelmisto mah-
dollisimman kattavasti. Algoritmisesti uusien ohjelmistoa testaavien testitapausten luominen no-
peuttaisi ohjelmistokehitysprosessia siirtämällä osan ohjelmistokehittäjien manuaalisesta työ-
kuormasta CI-prosessille. Näiden algoritmisesti luotujen testitapausten ei kuitenkaan voida olet-
taa täysin korvaavan ihmisten työpanosta, joten osaa ohjelmistotestausprosessista pitää tutkia
eri kantilta, jotta testitapaukset tuovat lisä arvoa prosessiin.

Perinteinen tapa tehdä regressiotestausta jollekin ohjelmistolle vaatii kohteena olevan ohjel-
miston tarkkaa tutkimista ja sen vaatimusten ymmärtämistä, jotta ohjelmistokehittäjä tai testi-insi-
nööri pystyvät luomaan tarvittavat testitapaukset. Koodikattavuutta voidaan käyttää hyödyksi reg-
ressiotestejä luodessa algoritmisesti, sillä koodikattavuus indikoi kuinka suuri osa ohjelmasta on
suoritettu. Algoritmi, joka maksimoida koodikattavuuden manipuloimalla ohjelman syötettä itera-
tiivisesti, pystyy myös luomaan myös regressiotestisettejä.

Tässä opinnäytetyössä geneettisiä algoritmeja hyödynnettiin luomaan regressiotestisettejä
mallipohjaiseen ohjelmistokehitykseen. Luotuja regressiotestisettien käyttötarkoitus olisi hyödyn-
tää niitä metsäkoneiden ohjausjärjestelmien laadun varmistuksessa. Yleisen tason vaatimuksia
algoritmille ja siitä johtuvia suunnittelupäätöksiä on käsitelty. Tarkempia yksityiskohtia on käsi-
telty niiltä osin, kun on vaadittu tämän opinnäytetyön toteuttamiseen. Mallipohjaista ohjelmistoke-
hitysympäristöä käytettiin hyödyksi niin toteutuksessa kuin myös algoritmin suorituskyvyn arvioin-
nissa.

Opinnäytetyössä kuvattu algoritmi implementointiin onnistuneesti ja sillä saavutettiin huomat-
tavaa konvergenssia kohti korkeaa koodikattavuutta. Luodun algoritmin käyttö ohjelmistotyöka-
luna, joka oli opinnäytetyön lähtöajatus, todettiin olevan mahdollinen, mutta epäkäytännöllinen.
Suurimmat syyt tähän olivat algoritmin pitkä suoritusaika, sekä yksittäistapausten vaativa para-
metrisointi. Ilman parametrisoinnin tekemistä konvergenssi oli hidasta tai koodikattavuus jäi ma-
talaksi. Erinäisiä jatkokehitys mahdollisuuksia listattiin, joilla voisi lisätä algoritmin käytännölli-
syyttä ohjelmistokehitystyökaluna.

Avainsanat: CI-Prosessi, geneettinen algoritmi, mallipohjainen ohjelmistokehitys,

testitapausten luominen ohjelmallisesti, regressiotesti

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

I would like to thank my university instructors Professor Jose Martinez Lastra and Luis Moctezuma

Gonzalez for their patience on my long thesis writing process, which took about year longer than

planned. Similarly, I want to thank my current employer, John Deere Forestry Oy, for their pa-

tience on my longer than expected thesis process and giving me time to complete it at my own

pace.

Tampere, 1st of February 2024

Santeri Vahos

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 Background ... 1

1.2 Problem definition .. 1

1.3 Objectives .. 2

2. THEORETICAL BACKGROUND... 3

2.1 Embedded control systems .. 3

2.1.1 Real-time embedded systems ... 4
2.2 Model-Based System Development ... 6

2.2.1 CI/CD in Model-Based System Development 8
2.3 Software testing ... 9

2.3.1 Unit testing .. 10
2.3.2 Integration, system and acceptance testing 11
2.3.3 Regression testing .. 12
2.3.4 Black-box and White-box testing ... 12
2.3.5 Code coverage ... 13

2.4 Metaheuristic algorithms .. 15

2.4.1 Genetic algorithms .. 16
2.4.2 Crossover ... 19
2.4.3 Mutation .. 20

2.5 Literature review .. 21

3. DESIGN .. 22

3.1 Requirements .. 22

3.2 Algorithm proposal ... 23

3.2.1 Overview ... 23
3.2.2 Standard genetic algorithm implementation 24
3.2.3 Additions to standard genetic algorithm 25

4. IMPLEMENTATION .. 27

4.1 Environment .. 27

4.2 Genetic algorithm implementation .. 28

4.2.1 Signal Mappings ... 28
4.2.2 Parameters ... 30
4.2.3 Fitness evaluation ... 31
4.2.4 Selection Process ... 32
4.2.5 Crossover Process .. 34
4.2.6 Mutation Process .. 34

5. PERFORMANCE ANALYSIS AND DISCUSSION .. 36

5.1 Target models .. 36

5.2 Parameters .. 37

5.3 Performance as a software development tool 39

5.4 Case similarity and simplification algorithm evaluation 40

5.5 Discussion ... 41

v

5.5.1 Convergence .. 41
5.5.2 Case similarity and simplification algorithm 43

6. CONCLUSIONS .. 45

6.1 Future improvements ... 46

REFERENCES... 48

APPENDIX A: GENETIC ALGORITHM CODE ... 53

APPENDIX B: UTILITY FUNCTIONS FOR GENETIC ALGORITHM 59

APPENDIX C: INTERFACE CLASS BETWEEN MATLAB AND GENETIC

ALGORITHM .. 61

APPENDIX D: EXAMPLE CODE FOR CREATING A TEST CASE 64

APPENDIX E: SIMPLIFIED AND UNSIMPLIFIED TEST CASE COMPARISON 66

vi

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence
API Application Programming Interface
CAN Controller Area Network
CI/CD Continuous Integration/Continuous Delivery
ECU Electronic Control Unit
GA Genetic Algorithm
IC Integrated Circuit
LIN Local Interconnect Network
MBSD Model Based Software Development
MC/DC Modified Condition/Decision Coverage
HIL Hardware-in-the-Loop
MIL Model-in-the-Loop
OS Operating System
PC Personal Computer
PDF Probability Density Function
RTOS Real-Time Operating System
PIL Processor-in-the-Loop
SIL Software-in-the-Loop
UML Unified Modeling Language

1

1. INTRODUCTION

1.1 Background

Modern forest machines are complex pieces of engineering that need to operate in

harsh conditions reliably for years. As they handle heavy loads, such as felling, pro-

cessing, or transporting a tree, it is important to ensure safe and robust operation of a

such system. Verifying a proper operation of a forest machine is not an easy task as

new and ever more complex features are brought to market.

Embedded control system is in a heart of a modern forest machine, as it handles eve-

rything from complex hydraulically controlled movements to gathering, analysing, and

updating production data to the cloud. These systems have ECUs running real-time op-

erating systems to handle machine movements and basic operations. Additionally, they

also run PCs to handle tasks that are not so real-time dependent.

Developing software for embedded control system of a forest machine is a multi-stage

process all the way from defining requirements to doing full system test on an actual

machine.

1.2 Problem definition

Creating test cases is one of the most repetitive processes during any kind of software

development project. It usually requires meticulous inspection of the software to test all

possible scenarios. Especially when creating regression suites, which compare current

software to an older, already verified software version. There is a need to speed up the

creation of these regression test suites because their creation is time consuming and

repetitive.

Usually when creating useful test cases, it is needed to have at least some understand-

ing of the system under test, if some specific functionality of the software component is

being targeted with a test. With regression testing, main motivation is to have confi-

dence that systems behaviour is as it was before. So, it is not necessary, even though

it is desirable, to have cases that target specific predefined functionality of the software

component when creating regression test suites. This insight on regression testing is

2

something that could be utilized to algorithmically generate test cases that still bring

value to the development process.

When generating test cases algorithmically, it is important to keep in mind that they will

need to be as human readable as possible. That is why the resulting test suite should

have good separation between cases so that the test different parts of the software.

Also, they shouldn’t have too much noise in the signals if specific point of failure in re-

gression test case needs to be found and analysed by the developer.

1.3 Objectives

This thesis focuses on how to generate regression test suite to be used in model-based

system design with genetic algorithms, by trying to answer the following questions:

• How can genetic algorithms be used in test case generation with model-based

system development?

• How well do genetic algorithms perform when generating tests for embedded

control system software?

• What type of models work best with test case generation with genetic algo-

rithms?

3

2. THEORETICAL BACKGROUND

2.1 Embedded control systems

Systems, which are used to perform some dedicated functions using microprocessors

that interact directly with the real world, are called embedded systems. As the name

suggests, computation is embedded into a device and is integral part to achieve re-

quired functionality. General definition of embedded systems is considered to be that

they assist, control or monitor operation of a machine or device and their presence is

not necessarily obvious to a casual observer [1].

Embedded systems interact with the real world by reading some sensor inputs, compu-

ting some control logic based on the measured data and then producing a wanted

change in output. The output can be anything from radio waves to electronic solenoid

controlling hydraulic oil flow [2]. Embedded systems are used to perform specific con-

trol functions and tasks, rather than have general-computing capabilities. Usually, em-

bedded systems have lower computing power and can run with much more limited re-

sources as general-purpose computing capable devices [3].

Generally, operating systems (OS) used in embedded systems can be divided to the

three following categories:

• Bare-Metal Operating Environments, which consists of devices firmware di-

rectly running applications without any conventional operating system. This op-

erating environment requires deep integration from application software to run

on specific device as there are only few abstraction layers.

• Embedded Operating Systems enable the possibility to execute multiple ap-

plications simultaneously in a scalable way. Offers abstractions layers for inte-

grating different systems and devices. Are usually referred as real-time operat-

ing systems (RTOS).

• Fully Featured Operating Systems, have the capability to run anything a gen-

eral-purpose PC can run. Linux is commonly used OS in systems running Fully

Features Operating Systems. [4]

4

2.1.1 Real-time embedded systems

The term real-time can be defined to be either latency based or schedule based. La-

tency based systems need to provide output within some predefined time to achieve

satisfactory operation. Schedule based systems run control tasks in predefined inter-

vals and often have hard real-time requirement. The terms hard real-time and soft real-

time refer to the operation of the system if the real-time requirement is not met. [5]

Soft real-time systems retain their usefulness when operation time is exceeded, even

though the value of the operation might decrease. One example is a user interface ap-

plication. If action takes longer than specified, it is still better to display it than not. [6]

Hard real-time on the other hand does not allow the predefined execution time to be

exceeded. Missing the execution deadline can cause catastrophic and dangerous fail-

ures in the systems operation. Machine control and safety critical system use sched-

uled systems with hard real-time requirement to ensure that operation is safe and ro-

bust. [7]

To achieve hard real-time requirement, complex embedded systems usually run on mi-

crocontrollers with some type of RTOS, which handles the task scheduling for different

control loops. Each control loop is assigned to run in a RTOS task with a predefined

task-rate. This ensures that sensors signals are read and control logic is processed

without any variation in execution interval [8]. Using RTOS allows for multiple different

control loops to be run at the same time by providing APIs for software components to

interact with each other. This helps to create a layers of abstraction between the soft-

ware components and the underlying computation system, which in turn helps interop-

erability and reuse of software components [9].

Interaction with other parts of an embedded system from RTOS point of view is done

via devices drivers. Just as RTOS provides API for applications to communicate to

each other, drivers provide APIs for RTOS to communicate with hardware. Common

uses for device drivers are non-volatile memory management, communication between

different ICs, sensor readings, output actuator handling and communications stacks [4].

5

 System scheme of an RTOS system stack.

Often in large and complex embedded control systems, such as consumer vehicles or

heavy work machines, multiple Electronic Control Units (ECU) are needed to perform

all required functions. Having multiple ECUs in one system requires some sort of con-

nectivity between them to ensure synchronized and correct operation. This connectivity

in automotive solutions is often done via CAN or LIN-buses. They offer robust and cost-

efficient communication solutions and their data-transfer rates are in range of tens of

kilobits per second to few megabytes per second [10]. This data-transfer rate has gen-

erally been enough for sensors and actuators used in automotive solutions, but recent

advances is sensor technology and AI have brought a need for faster connectivity op-

tions, such as Automotive Ethernet. These newer solutions can offer data-transfer

speeds up to 10 Gbps [11].

In the past, embedded control algorithms were developed completely with some low-

level programming language, such as C [12]. This required developers and domain ex-

perts to have deep knowledge of the underlying computation system. It also posed

challenges for individual contributors to visualize and comprehend complex system in

its entirety. That is why new control algorithm design paradigm was developed: Model-

Based System Development [13]. Its use cases and development workflows are ex-

plored in more detail in the next subchapter.

6

2.2 Model-Based System Development

Models are regarded as a mathematical representation of some system, where unnec-

essary details are abstracted away. These layers of abstraction can be peeled to reveal

underlying building blocks of a model. Combining different models and adding models

inside other models is a powerful way to represent some complex system. [14]

In MBSD (also called Model-Based Development, MBD) models are used to represent

two sides of a dynamic system, a controller and a plant. Replicating the physical char-

acteristics of a dynamic system into a mathematical model that can be used to repre-

sent the actual physical system is called the plant model. Controller on the other hand

represents an embedded control system that runs algorithms and logic to control some

physical system. Running both controller and plant at early-stage of development in

simulation enables the discovery of defects and design problems way before any soft-

ware is run on real hardware. This way of developing complex algorithms for electro-

mechanical systems is considerably faster, as it enabled faster iterations on software

during development [15]. MBSD is widely used in various industries, including aero-

space, automotive, signal processing and motion control applications [16].

Engineering process used in MBSD is usually described by the so-called V-model, as

shown in figure 1. The V-model is used broadly in development of safety critical sys-

tems because it focuses on testing the software at multiple levels. It consists of the fol-

lowing steps:

• First step of the V-model process is defining the requirements that specify what

the system should do on a high level without describing any details about the

implementation. This step usually involves collaboration between managers,

software engineers, analysts, and domain experts.

• Architectural design consists of setting high-level design guidelines for the pro-

ject such that complexity is minimized, and component reuse is maximized.

• Software design needs to fulfil the requirements specified by the requirements,

by following the guidelines asserted in the architectural design. This step is

done by software developer with guidance from domain experts. With MBSD it

is also common for domain experts do early-stage software development and

the responsibility to shift towards the software engineer closer to production the

project gets.

• Code generation enables domain experts involved deep into the development

process, as it can generate executable code for real hardware straight from the

7

models. This removes need for a software developer to act as a middleman

when generating real-time running software from a model. [17]

 V-Model used to describe MBSD.

Software can be verified in many stages during of the development process when us-

ing MBSD to test for defects introduced in different stages of integration. The verifying

process can be divided into 4 different stages:

1. First stage is to use MIL (Model-in-the-Loop), which means that control software

is running still on the modelling software. Control software is developed and

tested against plant model, which is a modelled representation of the physical

system that control system is designed to control. Plant models can vary greatly

in fidelity in MIL, as execution time does not be real-time. MIL is used in early

stages of a development cycle as it enables fast development iterations. Control

software doesn’t need to be built or installed on real hardware but can be run

and tested instantly in simulation.

2. Second stage is to verify software in a SIL (Software-in-the-Loop) system. In

this development phase, the model-based representation is generated into a

code (usually C/C++ code) that can be compiled and executed in a virtual envi-

ronment. Having SIL in the development pipeline aids in integration of new fea-

tures. Source code can be debugged without the need of any external debug-

gers which also reduces time between iterations while integrating generated

code to the system.

3. Third stage is called PIL (Processor-in-the-Loop), where the same generated

code as in SIL is now cross compiled to run in a same processor as the final

8

production ECU will contain. This step is used to discover faults in code compi-

lation process and faults in processor architecture [3]. All software projects do

not necessarily need PIL testing as part of their testing process as there exists

a lot to third-party systems that enable tested systems straight out of the box.

4. Fourth and final stage is HIL (Hardware-in-the-Loop) simulation, which consists

of running the software on actual ECU hardware. In HIL-simulation, ECU is con-

nected to a real-time simulation, where all of the ECU’s functionalities can be

verified. HIL-testing cannot always contain same plant models used as in MIL

because the real-time requirement of HIL. [17][18]

 Chart describing MIL, SIL, PIL and HIL

2.2.1 CI/CD in Model-Based System Development

MBSD can utilize CI/CD (Continuous Integration/Continuous Delivery) pipelines in a

similar fashion that is often used in traditional software development processes. Contin-

uous integration of code changes throughout the process leads to faster time to mar-

ket, higher quality, lower risk, transparency of the software and reduced cost by reveal-

ing defects as soon as they are introduced. [19]

9

The MBSD CI process consists of the following 4 steps: Build, Test, Package and De-

ploy, which together form so called “CI pipeline”. Whole CI pipeline is usually fully auto-

mated and triggered by a version control change made by a software developer. Visu-

alisation of how CI pipeline in MBSD fits on to a local development cycle can be seen

in Figure 4.

 MBSD CI pipeline

Important steps of the CI process in MBSD are the testing stages. Local checks consist

of quality checks, test results and coverage metrics in simulation environment to verify

that quality of the software is adequate before committing to version control system.

Tests that are run on the CI pipeline usually include the tests created during develop-

ment but can also add more expansive tests to verify software more thoroughly. [20]

2.3 Software testing

The term software testing is used to describe the process of finding unintended pro-

gramming errors, evaluating performance, and validating the intended behaviour of

some program. All the complex paths that a program can take during execution can,

and most often will be, too complex for a human to handle in their entirety. This is the

reason why programs will usually contain at least some sort of unintended behaviour,

often called bugs [21]. Having unintended behaviour in a system containing software

can cause serious harm to a brands reputation and have large financial ramifications

[22]. Therefore, it is important to try to reduce the number of programming errors to a

minimum during a software development process.

10

Doing exhaustive testing, where every possible input is being tested, can be difficult

and in most cases practically impossible. If a program has large input domain, the num-

ber of possible inputs the system can have grows very quickly to an impractical num-

ber. Trying to obtain a relatively small subset of the input domain that gives a good cov-

erage of the program is key in software testing. Naik and Tripahty describe in their

book Software Testing and Quality Assurance, activities that an engineer must do to

perform test on a program with one test case:

• Identify test objective so that the test case has a clear purpose.

• Select inputs based on software requirements, source code, or with software

engineers own expectations.

• Compute the expected outcome in some high level, so that the outcome isn’t a

complete surprise.

• Set up program for execution in environment that the test case is defined to

work with.

• Execute program with selected inputs and store the outputs.

• Analyse results by comparing the executed output to the expected output by

giving a verdict if test case passes, fails or is inconclusive.

Systems are tested on different levels and different stages of a project to verify and val-

idate functionalities that may not be possible or cost-effective to do elsewhere in the

process.

Software is tested in multiple stages during the whole development process. Some

tests only make sense to execute at a certain phase of the development. Also, some

software projects do not always need all steps listed in the next subchapter. Commonly

used names for the different stages are Unit testing, Integration testing, System testing

and Acceptance testing [24].

2.3.1 Unit testing

Testing component of a program in a way that it isn’t dependent on other components

is called unit testing (also sometimes called component testing). For a test to be a unit

test, it is often considered to described by the following characteristics: verifies small

piece of code, verifies it quickly, and does it in isolation from other pieces of code [24].

Developer who implements some software functionality is usually the person responsi-

ble for constructing the unit tests for given functionality. This is because the developer

has a good understanding of the implemented component and thus is the best person

11

to write the unit tests. Creating unit tests also help developers gain better understand-

ing of the functionality and design of the component under test [25].

In fully functioning software, there can be dependencies between components and test-

ing in complete isolation might not be possible. These limitations are usually solved by

creating so called “dummies”. Meaning that some complex functionality is simplified in

a way that it is “good enough” for the unit test [26].

In traditional software development smallest piece of program that is being unit tested

is usually a function or a class. In MBSD, smallest testable unit is a model, which is

similar to a function in that it can contain constants, parameters, inputs and outputs.

Additionally, models can contain other models, just as functions can call other func-

tions. MBSD development tools also offer simulation capabilities that can be utilized

when running unit tests. [63]

2.3.2 Integration, system and acceptance testing

In integration testing phase, software components are not being run in isolation from

other components as in unit testing phase. Having components interact with each other

can bring forward defects that unit tests will not be able to reproduce. Integration test-

ing usually involves adding different components incrementally to the software and

testing their interfaces. This helps to prepare the software for full system test without

major catastrophic errors when everything is introduced incrementally. When every

component is integrated to the software and all major errors have been fixed, then inte-

gration testing is done.

System testing is done when every implemented component is running in actual real-

world environment at the same time. Exhaustive test suite is usually impractical for a

full system test and is instead used by test engineers to test specific functionalities

against requirements. This also enables the possibility to execute stress tests when

system is loaded with real world operation instead of just simulated load.

Final testing stage is acceptance testing, where software requirements can be com-

pared against the output of the system. Acceptance criteria must be defined before-

hand and must be met before software is deemed to be adequately tested for full re-

lease. [24]

12

2.3.3 Regression testing

During software development process components under work are usually being devel-

oped throughout the whole process. There can be additions on functionality, require-

ment changes or bug fixes. If a component is adequately tested and verified at some

point of development, these new additions to the software shouldn’t introduce any new

unwanted behaviour. This is where regression testing is used. Regression tests com-

pare the output of a newly modified software to some older version, which behaviour

has been verified to satisfy the requirements. If a test passes, it indicates that the out-

puts fit the acceptance criteria, and that the new software version behaves just as the

old. If the test fails, there is too large variation in the output and the root cause will need

to be checked by a developer or test engineer. [27]

Implementing new or modifying old functionality can, and most likely will, cause some

of the regression tests to fail. This means that the regression test suites need to be up-

dated frequently, so that they retain their usefulness. It is also good practice to always

run regression suites when new software version is released, or even during daily soft-

ware builds. Automating regression suites by integrating them to the CI process is

highly recommended because running same tests manually can be tedious and time

consuming. [28]

2.3.4 Black-box and White-box testing

Testing a system and having no knowledge in the inner workings of a system is called

black-box testing. Only the systems inputs and outputs are available to the tester in this

testing methodology. This kind of testing is usually used when verifying some require-

ment as only inputs and outputs are defined. Black-box testing is also called functional

testing. Integration, system, and acceptance tests are usually considered to be black-

box tests. Benefits for doing black-box testing are the following: testing the software

from end users’ perspective and the person doing the test activities doesn’t need to

have any knowledge of the specifics of the implementation.

White-box testing requires access to the source code of the system under test. This is

because white-box testing activities require structural knowledge of the system [29] .

With white-box testing there can be more confidence in correct operation of a system

because different routes that the code execution can take can be monitored. Unit tests

are white-box tests as they are usually written by the same developer who writes the

software under test. Doing code coverage analysis is considered white-box testing.

13

2.3.5 Code coverage

Code coverage analysis is a way to measure how much test cases exercise a system

under test. Higher code coverage percentage gives higher confidence that the system

does not have some unwanted behaviour. Doing this kind of analysis requires a way to

instrument the software during program execution. Meaning that it is possible to meas-

ure what points of execution the software reaches [30].

Conceptualizing the extraction of code coverage can be described the following way: If

execution of a program is considered so that every decision is an edge on a graph and

every vertex is a state of a program on the same graph. Then it is possible to extract

Branch Coverage by measuring how many of all possible edges have been traversed

during code execution. Every edge is only counted once, even though it can be trav-

ersed multiple times during execution of test cases. In figure 4 green arrows represent

traversed vertices and black vertices decisions that execution didn’t take. Opposed to

branch coverage, Statement Coverage measures percentage of states that the execu-

tion has traversed [29]. Figure 4 also represents reached states in blue and states not

reached in yellow.

14

 Branch and Statement coverage visualized.

Decision/Condition coverage measures the execution of every Boolean sub-expression

along a branch. Every output in a sub-expression must be true and false at least once,

for it to be counted towards Decision/Condition Coverage [29]. Modified Condition/De-

cision (MC/DC) coverage differs from normal Decision/Condition coverage by showing

that every condition changes independently the decisions outcome. MC/DC requires

the largest number of cases from all mentioned coverages to achieve 100% code cov-

erage [31]. It is also sensitive to the implementation of the software structure so

achieving 100% MC/DC coverage is not always possible. [32]

Simulink can also perform all the performance analyses mentioned above, but with cer-

tain differences. Statement coverage is called Execution Coverage in Simulink and it

only measures that a Simulink block has been executed. No change in block inputs is

needed to achieve good Execution Coverage. Decision Coverage in Simulink is similar

to Branch Coverage mentioned above. Condition Coverage is similar to Decision/Con-

dition Coverage mentioned above.

15

MC/DC Coverage in Simulink has certain limitations on its capabilities. It cannot ana-

lyse the MC/DC Coverage for expression that has more than 12 conditions or different

types of logical operators. Some blocks also don’t support MC/DC and might support

Condition Coverage or Decision Coverage, so it is possible to achieve 100% MC/DC

Coverage to some models that might have less than 100% Decision and Condition

Coverage [33]. Visualisation of how MC/DC on Simulink’s stateflow-charts can be seen

in figure 5. It shows decisions with 100% MC/DC coverage in green and decisions with

less than 100% MC/DC coverage in red.

 Visualization of MC/DC coverage in a Simulink’s stateflow chart.

2.4 Metaheuristic algorithms

Metaheuristics are frameworks for algorithms used to solve complex optimization prob-

lems that are generally non-linear, stochastic, non-differentiable and discontinuous.

They are often inspired by some sort of natural process [34]. The Greek term “meta” is

a prefix used to describes subject in a way that transcends its original limits [35]. Heu-

ristics means a way of finding a solution by learning, discovering, using trial-and-error

methods. In other words what metaheuristics means, is to have create some heuristic

concept and to create a higher-level framework for algorithms to be based on it [36].

Metaheuristic algorithms provide solution to this by being “good enough” and providing

this solution in a reasonable execution time. [34]

Two key functions of metaheuristic algorithms are exploration and exploitation. These

terms are also referred as diversification and intensification [36]. Exploration is consid-

ered as the functionality of the algorithm that explores surrounding areas adjacent to

16

already explored areas. Exploitation refers to the functionality of “breaking through” into

new, yet undiscovered areas of the search space. [37]

Different types of metaheuristics algorithms have been classified as local search-

based, construction-based and population-based. Local search-based metaheuristics

algorithms only search the space within the vicinity of current solution. This type of

search is also called Classical Neighbourhood search [38]. Construction-based algo-

rithms build structure from sequences where one move leads to another, which then is

able to traverse the search space. They are often used in problems where solution re-

quires traversing a graph, for example optimizing network routing [39]. Population

based algorithms are generally called genetic algorithms, which are covered in more

detail in the next subchapter. Other classifications also exist, such as trajectory-based,

nature-based and non-nature-based metaheuristic algorithms. But algorithms in these

classifications also generally fall under the previously listed three classifications

[40][38].

2.4.1 Genetic algorithms

One of the first instances of using evolutionary algorithms was described in research

article written by R. M. Friedberg in 1958 titled “A Learning Machine: Part 1”. The algo-

rithm was used to find a program to match given inputs and outputs [43]. However, key

ideas for the standard generic algorithms were introduced in only in 1962 by John H.

Holland in his paper “Outline for a logical Theory of Adaptive Systems”. This paper in-

troduced the concepts of mutation, population generations and “good enough” solu-

tions in one framework [44].

Genetic algorithms are population-based metaheuristic algorithms that work on the

Darwinian principle of survival of the fittest. Meaning that, higher the performance of an

individual, higher the chance of survival and thus higher change to spread its genes for

future generations. Genetic algorithms also pull one other key inspiration from nature,

mutation process. This mutation process brings variation to the population and thus

helps genetic algorithms to escape local minimum [41].

Genetic algorithms differ from classical search algorithms in the following way:

• Classical search algorithms create only one point per iteration and sequence of

points then approaches optimal solution. In genetic algorithms, a population of

solutions is created each iteration and best point in population approaches a so-

lution.

17

• Classical algorithms use deterministic computation in the selection of a new

point. Genetic algorithms use random values in computation, so they are non-

deterministic [42]

Having a population of solutions, enables creating of a new set of solutions based on

old ones where good traits are kept. Terms usually used to describe genetic algorithms

are named after to their counterparts in nature:

• Individual – possible solution to the problem. Also often called Chromosome.

• Population – A set of individuals.

• Generation – New population. Iteration of the genetic algorithm.

• Gene – A characteristic of an individual that can be altered.

• Fitness – Performance of an individual as a solution to the problem.

• Crossover – Gene selections from two parents to offspring.

• Mutation – Random variation of gene.

• Offspring – Individual created from two individuals from the previous generation.

• Selection – Parents selected for crossover process. [45]

Standard Genetic Algorithm can be seen described in figure 6.

18

 Flowchart of a standard Genetic Algorithm.

Genetic algorithms require that there is a way to rank solutions in a population based

on their performance on a given problem. This performance score is called fitness and

is calculated by fitness function for every individual. Every application has a different

fitness function, as the fitness function sets constraints to the problem and enables the

algorithm to converge at some optimum result. Convergence of a genetic algorithm re-

quires it to be run for multiple generations. When generation count increases, so does

the fitness score of a top performing individual. Therefore, fast as possible execution

time is desirable when designing genetic algorithms and their fitness functions.

Fitness threshold is a value that can defined before the execution of the genetic algo-

rithm to indicate that optimal or good enough solution is found. The plateauing of fit-

ness scores of the top performing individuals can be defined to be end condition as

well, if no good estimate range can be defined for the fitness score before execution.

[46]

19

2.4.2 Crossover

Creating new individual from two parents is called crossover process. Genes from two

parent individuals are selected by some crossover operations in such way that a new

individual can be created from those genes. This way the genes that help the individual

to score higher fitness scores are passed on to new generations and thus help the al-

gorithm to converge.

Selecting the proper type of crossover operation for every solution is critical to avoid

getting premature or slow convergence. Simplest type of crossover operation is 1-point

crossover, where all the genes before a point are selected from one parent and all

genes after the point are from the second parent. This point can be selected randomly

or be predefined. Example of 1-point crossover where point is between genes 3 and 4

can be seen below:

 Example of 1-point crossover operation

K-point crossover bring more complexity compared to 1-point crossover by adding K-

number of points to parents where genes are split [47]. Example of K-point crossover

can be seen below, where points are after genes 3, 4 and 6:

20

 Example of K-point crossover operation, with K = 3

Uniform crossover combines genes from two parents by sampling from a uniform distri-

bution and defining bit mask based on result of the sampling. This bit mask then de-

scribes which parent the corresponding gene of an offspring should be used from. An-

other offspring can be formed when the values of the bit mask are inverted. [48]

 Example of uniform crossover operation

2.4.3 Mutation

Just the combination of two parents most likely cannot cover the whole input space and

thus significant convergence is very unlikely. Some other operation is need for the al-

gorithm to potentially reach every point in the input space. This operation is called mu-

tation operation, which is brings variety to the population and thus helps drive the algo-

rithm towards optimal solution. For standard genetic algorithms, in practice mutation

means that some percentage of genes in the offspring are changed to some random

values. Altered genes are selected randomly. [49]

In some problems there isn’t just one optimal solution. There might be many solutions

that are in practice equally good and in some cases getting multiple solutions might be

preferable. Mutation operation enables the possibility to reach to solutions by bringing

21

stochasticity to the algorithm, by changing random genes to random values. In other

words, mutation operation makes genetic algorithms non-deterministic. [34]

2.5 Literature review

There have been numerous studies on using genetic algorithms on test case genera-

tion. It has been shown that they can successfully bring added value to a software de-

velopment process by creating useful test cases [50][51][56][53]. They often have

some sort of variation based on the standard genetic algorithm to help faster conver-

gence of solution on given problem. Some of the test case generation research is

based purely on output domain analysis [52].

Using genetic algorithms poses the challenge of needing large number of executions

on the fitness function to achieve satisfactory results. Attempts to alleviate the strain

that compute heavy fitness function poses on a genetic algorithm’s performance have

been researched. One of the ways that this could be achieved is by using some ap-

proximation of a fitness function, instead of doing the full calculation. Frameworks for

injecting approximate fitness calculations into genetic algorithms to speed up conver-

gence have been proposed and implemented. These implementations have used neu-

ral networks for the approximation [53]. Fitness function approximation has been

shown to prevent information loss over generations, but it is not capable of producing

new information that aids convergence [54][55].

For model base software development, there are studies on test case generation

based on generating the cases from UML-charts that describe the system [57]. Also,

genetic algorithms have been used to create test cases on Simulink models and state-

flow charts [58]. Via mutation testing, genetic algorithms have also been used on Sim-

ulink models to perform evaluation of regression test suites. Mutation testing in this

case means that models are modified in such a way that they bring out missing cover-

age of test suites [59]. All of the previously mentioned test case generation research

has focused on generating test cases on synthetic benchmarks, not real-world produc-

tion software.

22

3. DESIGN

This chapter goes through a proposal on how to apply genetic algorithms in such way

that can be used to create regression test suites from scratch or expand already exist-

ing suites, with certain limitations in mind. Also, motivations behind certain design deci-

sions are explored. The focus is on creating regression tests suites directly from pro-

duction Simulink models used in forest machines, but same concepts could be applied

in other MIL environments as well, given that there is a possibility to instrument the

code in similar way that there is in Simulink.

3.1 Requirements

One of the key concepts in model-based system development is the usage of plant

model to test the software against. This approach gives realistic feedback to the soft-

ware under development; but brings forward also one big hurdle that limits the possible

performance of genetic algorithms, large computation time. Minimizing execution time

is critical in achieving good results within a reasonable computation time. Methods

used in this thesis rely heavily on large number of simulations, so the genetic algorithm

was developed to work on models that don’t need plant response.

Expecting an algorithm to create exactly something like a human can do with deep un-

derstanding of some system is not realistic. That’s why it is needed to reframe the us-

age of regression tests from a different angle: The regression test cases can exercise

any part of the system without any correlation to actual machine behaviour, if they give

good coverage. This way it is possible to achieve satisfactory results with genetic algo-

rithms.

Basic principle of the proposed algorithm is to find a set of input vectors for a software

component with genetic algorithms that fulfil the following conditions as well as possi-

ble:

1. Achieve high code coverage.

2. Minimized the complexity of each input vector.

3. Minimized overlap coverage of each input vector with other input vectors.

The motivation behind of the above mentioned 3 characteristics are the following: hav-

ing high code coverage gives confidence in that the software is being exercised ade-

quately. So, if the given input vector set is used in regression test purposes, the

23

chances of unwanted behaviour slipping through unnoticed is smaller. Complexity of

each vector should be small as possible as even though they don’t necessarily corre-

spond to any specific part of the software, they still need to be human readable if a re-

gression test fails. Minimizing coverage overlap as much as possible is needed to have

wide set so that all of the test suite doesn’t trigger all at once if a deviation from base-

line is detected. Additionally, it is possible that state-machine based logic might end in

such states that achieving 100% will not be possible with only on case.

Genetic algorithms are non-deterministic and so by using this attribute it is possible to

augment already existing input vectors in such way that their coverage increases. Even

when giving the same input twice, the output can be different. This enables the usage

of same algorithm with same parameters even when starting from scratch or when

starting from an existing set of test cases.

For code coverage metric, any of the different ones mentioned in chapter 2.3.5 can be

used as a basis for defining the fitness function. Reaching high coverage in some types

of coverages might be harder than others, so termination condition for the genetic algo-

rithm should be the plateauing of the fitness score rather than some desired code cov-

erage value. Having other metrics for individuals’ fitness is also necessary to avoid

generation of similar cases. This can be achieved by penalizing each individual by be-

ing too similar to other, already generated cases.

3.2 Algorithm proposal

3.2.1 Overview

Base for the whole algorithm proposal is the standard type of genetic algorithm de-

scribed in Figure 7, but with more functionality added on around it to make it suitable

for the problem of generating test cases. The whole algorithm can be seen visualized in

Figure 11. Main additions to the standard genetic algorithm are case similarity penalty

evaluation, simplifying a generated test case and multiple iterations of the whole algo-

rithm.

24

 The proposed algorithm.

3.2.2 Standard genetic algorithm implementation

Generating one test case starts with by choosing some starting state for the input vec-

tor. This state can be vector of zeros, ones, or random values. It can also be some hu-

man-defined or previously generated test case. This is possible because the input vec-

tor is copied to every individual in the starting population. Gradually the mutation opera-

tion will bring variation to population and so homogeneity of the population isn’t a con-

cern at the start.

25

In practice, the input vector is an array with size of 𝑚 𝑥 𝑛. Number of input signals to

the model being 𝑚, and number of time steps of the simulation being 𝑛. So, each col-

umn of the array represents a time series signal. All the values in the array are always

between the closed interval [0,1]. A gene in this implementation is a row of values in

the array. Before the generated input vector is inputted to the target model, each col-

umn is first scaled to match expected signal range. This is done achieve interoperability

of the same genetic algorithm architecture between different target models, even when

the number of signals and their ranges vary.

The extraction of coverage from simulated model isn’t exactly white-box or black-box

testing, because the full path what the execution takes isn’t known, but metrics other

than inputs and outputs are extracted. So, it is utilising so-called “grey-box” testing

Virhe. Viitteen lähdettä ei löytynyt.. Code coverage metrics indicate the fitness

scores of test cases in a given model.

Selection process is done in a probabilistic way, by ranking the top performing individu-

als and assigning a selection score for all of them. Selection score is defined in such

way that higher ranking individuals have higher selection score than lower ranking. This

score is then used as probabilities for random sampling process, which always picks 2

individuals for mating. In practice this means that higher fitness individuals get selected

for mating more often than lower fitness individuals.

Crossover is done by applying generated crossover mask over two individuals and re-

trieving parts indicated by the mask. The crossover mask is a binary array that gets in-

verted for the second individual. This is done to ensure that resulting child is the same

size array as the parents. Another unique child can be extracted from same by swap-

ping the crossover masks between parents. Because a gene is a step consisting of all

the signals, this type of crossover process carries over logical sequences from parents

to child, given that the crossover mask contains same value consecutively.

3.2.3 Additions to standard genetic algorithm

When generating the first test case in the whole test set, individuals’ fitness score in

each generation is calculated only from the code coverage it achieves. All the other test

cases will have additional penalty applied to their fitness scores, based on their similar-

ity with already existing suite. This is done to reduce overlap coverage between cases.

After the algorithm has plateaued or reached an end condition for one test case, it is

being fed through a simplifying algorithm. This algorithm determines one dominating

value for each column of the array. This dominating value is selected by choosing the

26

value that occurs the most in any given signal. After a suitable dominating value is se-

lected, the algorithm fits the dominating value to every sample that doesn’t have a

dominating value in it. Fitting process is done one-by-one to every sample, then simu-

lated and code coverage is calculated. If the coverage decreases, sample is important,

and it cannot be altered. On the other hand, if the code coverage doesn’t decrease,

that particular sample doesn’t bring any value to the solution so it can be set to domi-

nating value. Simplifying process reduces noise on the final output test case, without

decreasing its code coverage. This is a brute force algorithm, that can have worst case

performance 𝑡 of 𝑡 =
𝑚∗𝑛

2
. Simplifying algorithm is only run on each test case after the

genetic algorithm has completed so it is only scaled by the size of the whole result test

suite and not by the generation count of the genetic algorithm. After simplifying algo-

rithm has passed, it is added to the pool of generated cases. All the cases in this pool

are used as penalty for similarity for all subsequent cases.

The proposed algorithm is run iteratively until predefined amount of test cases have

been generated. Resulting test suite should then have test cases which all have signifi-

cant coverage individually and as a collective, they should have even higher coverage

than any one individual.

27

4. IMPLEMENTATION

This chapter goes through detailed implementation of the algorithm described in chap-

ter 3. Programming language used for the implementation is Python. Source code for

the whole algorithm, utility functions and interface class can be found in appendixes A

through D.

4.1 Environment

Environment where target models were implemented and simulated was Simulink as it

was the environment where all evaluation models were implemented. All of the target

models were modified in such ways that their input could be read from MATLAB work-

space as timeseries objects instead of input ports. Example of modifications done to

models can be seen in Figure 12. These modifications enabled genetic algorithm exe-

cution to be implemented using Python and didn’t require implementation to be imple-

mented in MATLAB. Simulink models were setup to simulate with Fast Restart ena-

bled, which reduced the time between each simulation run as model weren’t rebuilt be-

tween runs.

 Production model and modified model.

Simulink has built-in tool which can used to extract different coverage metrics from sim-

ulated models. Having this functionality built-in to the environment removed the need

for the genetic algorithm implementation to do analysis on the simulated model. The

Simulink coverage tool was set to report MC/DC, Decision Coverage and Execution

Coverage from all target models after each run.

An interface class was implemented with python, which handled naming, scaling, and

populating the simulation input bus to the model. It also extracted coverage metrics

from the target model. The interface class acted as an intermediary between Python

28

and MATLAB. Additionally for every target model a signal map data structure was cre-

ated, which defined signal ranges and types. Interaction between the model and the

genetic algorithm is described in Figure 13.

 Interface with target model and genetic algorithm

4.2 Genetic algorithm implementation

4.2.1 Signal Mappings

Every target model had mostly different signals from each other, so a signal mapping

data structure was made for all models. It consists of an index, signal name and data

type. Example can be seen on Figure 14. This signal mapping structure could then be

referenced in python implementation to map the array outputted by the genetic algo-

rithm to the Simulink signal bus.

29

 Example of signal mapping type data structure

Based on the name of each signal, another data structure was made which contained

the valid signal limits. These limits were used to create rules to scale the floating-point

values between the closed interval [0,1] so that the genetic algorithm outputted to a

range that was valid for the model. Example of the limit definitions can be seen in Fig-

ure 15.

 Example of signal mapping data structure

Both arrays in Figure 16 show signals as columns of the array and rows as timesteps.

Each sample has luminance based on its amplitude. Left side shows array with only

floating-point values between 0 and 1, which the genetic algorithm is using to perform

mutation and crossover. On the right-hand side, the same array is shown but with sig-

nal scaled to match the rules defined in Figure 15. This right-hand side array is inputted

to the model and then simulated.

In summary, signal mappings enable the genetic algorithm to operate completely with

signal values between 0 and 1. Per-model mappings enable interoperability of the algo-

rithm for different models.

30

 Unscaled and scaled input array

4.2.2 Parameters

During development there arose a need for the algorithm to function differently for dif-

ferent target models. So many aspects of the algorithm were made tuneable with para-

metrisation. Defining these parameters required some introspection to the target model

and its functionality. For example, if there was some decision with a timer functionality,

the simulation time must be longer than the timer so that the decision would ever be

able change states. Parameters which could be defined for all models separately were:

• Model sample rate

• Initial population type

• Signal sample count

• Signal sample size

• Crossover type

• Population size

• Mating pool size

• Finished test case suite size.

Addition to the parameters above, there are also numerous other parameters that could

be tuned to reach better performance for every target model, but it was decided to

leave them as fixed values. Reasoning behind limiting tuneable parameters, was to

keep usage of the algorithm simpler.

31

4.2.3 Fitness evaluation

Fitness scores consist of code coverage (MC/DC) and penalty score based on similar-

ity to existing cases. To retrieve coverage score, a test vector is inputted to the inter-

face class, which then transforms it to a timeseries signal in MATLAB workspace. This

timeseries signal is then mapped to the input block and the model is simulated. After

simulation, code coverage is retrieved from the model using the interface class.

Overwhelming majority of the execution time taken in fitness evaluation for each indi-

vidual is spent on simulation time and calculating coverage. Only a small fraction is

spent on penalty calculations, setting inputs and reading outputs. Therefore, the execu-

tion speed of the penalty function is not greatly affecting the time to convergence.

There exists one problem for ranking individuals based on their fitness scores, discrete

code coverage. MC/DC coverage indicates percentage of executed decision in a way

described in 2.3.5. Thus, complexity of a model is inversely proportional to the size of

discrete value in MC/DC coverage. Penalty score on the other hand can have continu-

ous values. Total fitness score is calculated by subtracting penalty score from the code

coverage. Code coverage values are also logged independently from penalty scores to

monitor performance over time.

Error metric for the case similarity penalty score is Euclidean distance of the two arrays

begin compared. To enable Euclidean distance-based comparison on test vectors, they

first need to be compressed to remove all time steps that don’t have any state

changes. This is done to both existing test cases and the current test vector under

training. If test arrays are different sizes, the shorter one gets resampled to match the

longer one. Example of compressing logic of a test case can be seen in figure 16.

32

 Individual before and after logic compress

4.2.4 Selection Process

Mating pool size is a parameter that defines how many of the top performing individuals

in each generation get selected for the crossover process. Once the individuals have

been selected, they are ranked based on their fitness scores. This is done so that all

individuals can be assigned a selection probability. Directly using the fitness scores as

selection probabilities would not be useful because fitness scores can be very close to

each other or even same as code coverage increases in discrete steps. Selection prob-

ability is determined by fitting a gaussian probability density function (PDF) over the or-

dered individuals. This process is illustrated for six individuals in figure 17.

33

 Selection probability score for six individuals

After obtaining probability scores for all individuals, scores are normalized. Selection

for cross-over process is done by sampling from an array with individuals probability

scores being the probabilities of individuals being picked.

When two individuals are selected for cross-over they can be either removed from mat-

ing pool, so all individuals get to be selected for cross-over, or they can be left into the

pool for another round of selection. Also, there can be done multiple passes on the

same mating pool to obtain more individuals for given mating pool. Mating pool size,

mating rounds and exclusive mating are all tuneable parameters in the algorithm.

Predefined number of the top performing individuals are passed over from one genera-

tion to another after they have been selected for mating. This helps the algorithm to al-

ways keep the best performers in the mating pool so that there is no regression is per-

formance of the top performers. Individuals whose performance is good enough to be

selected for mating pool but not good enough to be passed on to the next generation

are discarded after mating.

34

4.2.5 Crossover Process

An offspring is produced from two individuals that got selected from selections process.

Crossover starts by creation of a bit mask that is based on the methods described in

chapter 2.4.2. This bit mask is created as a one-dimensional array even though the in-

dividual is two-dimensional. This is done because a gene in this genetic algorithm im-

plementation isn’t one value in the 2-D array that the individuals consist of, but one

time step consisting of all the signals. Once the one-dimensional crossover mask is

created, it is expanded to two dimensions along the signal count axis to match the size

of the test case. Usage of K-fold or Uniform crossover can be selected with a parame-

ter. Example of how the crossover process works for two example cases with 5-fold

crossover can be seen on Figure 19.

 Example of 5-fold crossover

4.2.6 Mutation Process

Offspring creation described in previous chapter only has features from both parents

and this process does not alter any of the existing genes (which are timesteps consist-

ing of all signals). So, alterations to the gene pool is needed to achieve convergence

past certain point.

35

A mutation percent parameter defines how much of the samples in the individual are

changed to a new random value. These random samples are sampled from a uniform

distribution. This value might not always change the state of a sample after the map-

ping process in the simulation, because the random value is sampled from the closed

interval [0,1] and might lay between the same interval as the previous value. For exam-

ple, if a signal is a Boolean signal, its threshold for a true state is 0.5 and if a sample is

changed from 0.2 to 0.3, no state change occurs. Example of a mutation process per-

formed by the algorithm can be seen in Figure 20.

 Individual before and after mutation process

36

5. PERFORMANCE ANALYSIS AND DISCUSSION

5.1 Target models

Performance of the created algorithm was evaluated on Simulink models that are in

production, used in forest machines. Only a subset of models used in the control sys-

tem of a forest machine was used. The different models under test were categorized to

be the following types:

• Control logic with timers and only Boolean operator as inputs. (Model #1)

• Control logic with state machines, Boolean variables, timers, Enumerations, and

sensor signals as inputs. (Model #2)

• Control logic with state machines containing timers, Boolean variables as in-

puts. (Model #3)

• Control logic with state machines, Boolean variables, and enumerations as in-

puts. (Model #4)

Selections criteria for the models to be used in performance evaluation, was to have

control logic that had the possibility to calculate MC/DC coverage in Simulink. Omitted

models consisted mostly of complex control algorithms that required some plant model

response to be able to achieve satisfactory results or had such a long simulation time

that it was not practical to use them for evaluation. Also because of the long runtime

needed for the algorithm to converge, it was not feasible to test all available production

models.

Maximum number of outcomes for MC/DC, decision and condition coverage are seen

in Table 1. The number of decision coverage outcomes is higher for condition and deci-

sion than MC/DC for all models under test. This is because Simulink doesn’t have

MC/DC defined for all blocks. Performance analysis is done on MC/DC coverage. Ta-

ble 1 gives some context to the complexity of the models outside of the blocks that

have MC/DC coverage defined.

37

Table 1. Model complexity descriptions.

 Model

1

Model

2

Model

3

Model

4

Maximum number of MC/DC–coverage outcomes 23 30 29 15

Maximum number of Decision-coverage outcomes 48 145 42 42

Maximum number of Condition-coverage outcomes 50 120 58 48

5.2 Parameters

As described in chapter 4, the algorithm has multiple tuneable parameters that can af-

fect the convergence speed and quality. Most of these were set to fixed values be-

tween different models and simulation runs to give some idea how the algorithm would

perform in actual production environment. Some parameters require case by case tun-

ing to even get the algorithm to simulate the evaluation models. The following parame-

ters were needed to be adjusted for each model separately:

• Signal sample size

• Signal sample count

• Maximum generations

• Maximum number of plateauing generations

Parameter sweeps were run for mutation percentage and crossover type, to find suita-

ble values that would perform well in all test models. Selection of these two parameters

for closer introspection was the fact that modifying them doesn’t affect the per genera-

tion simulation time. These parameter sweeps were done by generating only one test

case and logging the coverage percentage throughout the process. By generating only

one case, similarity penalty between the cases was not a factor and thus had no effect

on convergence. Each parameter was run 10 times for each model to remove reduce

38

the stochastic effect of the algorithm on the results. Average fitness score of each gen-

eration for every given parameter value in the sweep can be seen in Figure 21 and Fig-

ure 22.

Values used to perfrom the mutation parameter sweep were selected so that smallest

was the smallest possible value that could be used for the mutation calculation. Largest

value was selected to be 40%. Model #2 had less parameters because it was

considerably more time consuming to simulate and would take unreasonable time to do

same type of sweep as for other models.

 Mutation sweep for all 4 test models

Best performing mutation percent was deemed to be 8% for the models under test. It

converged almost as quickly as higher percentages but was always equal or best in

coverage performance.

Similar sweep was done for the crossover parameter, k-values for k-fold crossover

were selected to be 2,4 and 8. Also uniform crossover was used, with the p-value of

0.5. Algorithm was run on all evaluation models with the same parameters. Fitness

scores per generation can be seen in Figure 22. Based on the values shown Figure 22

K-value for k-fold-crossover was selected to be 2 for further evaluation.

39

 Crossover sweep for all 4 evaluated models.

5.3 Performance as a software development tool

Tests to evaluate the algorithms performance were done in such a way that it would re-

flect its usage as a software development tool. Size of the resulting test suite was set to

5 and consideration was used to limit the generation count so that the whole suite set

would be generated in under 3 hours.

By using the optimal parameters found in chapter 5.2 for all 4 models, test suites were

created and MC/DC coverage for each case for each generation was logged. This is

visualized in graphs shown in figure 22.

40

 Test suite coverage scores over generations

5.4 Case similarity and simplification algorithm evaluation

The difference in logical paths that the cases in resulting test suite had, was evaluated

by getting the cumulative coverage of the whole test suite. Meaning that if coverage of

the test suite was higher than any individuals coverage by themselves, then as a col-

lective, the test suite was better than any single individual. Cumulative coverage was

evaluated on same generated test cases that were used to create Figure 23. This was

done using feature in Simulink which would record cumulative coverage over multiple

test cases. Minimum, maximum, and cumulative coverage for all test suites for all

tested models is shown in table 2.

Table 2. Minimum, maximum and cumulative MC/DC coverages for tested models.

 Model #1 Model #2 Model #3 Model #4

Minimum case coverage 52.2% 50.0% 75.8% 100%

Maximum case coverage 65.2% 53.3% 75.8% 100%

Cumulative coverage 69.6% 56.6% 75.8% 100%

41

To evaluate how well the simplifying part of the algorithm performed, a test case for

each model was generated. Output from the algorithm was stored before and after the

simplifying was applied. Results from this operation can be seen in appendix E.

To quantify the data seen in appendix E, state changes in each signal was calculated

for all generated cases before and after the simplification algorithm. All signal changes

in one test case were summed up to calculate one value that represents complexity of

the test case. Results can be seen in table 3.

Table 3. Test case state changes before and after applying the simplification algorithm.

 Model

#1

Model

#2

Model

#3

Model

#4

Original test case state changes 49 819 238 141

Simplified test case state changes 12 31 60 26

5.5 Discussion

5.5.1 Convergence

Results of parameter sweeps shown in Figure 21 and Figure 22, show that the algo-

rithm could converge with all tested parameter values. This shows that mutation rates

and crossover types could be used as fine-tuning parameters to improve the algorithms

performance on a given model.

Main differentiation between results with mutation parameter sweep shown in Figure 21

was the convergence speed. Generally, higher mutation rates converged faster, which

indicates that there are actually quite many “routes” to good convergence and the algo-

rithm didn’t necessarily need to find one of the few good ones to progress. Interest-

ingly, lower mutation percentages also stopped converging after a certain point, even

though there was still much room for improvement. This most likely is caused by the

need to introduce a lot of changes in one generation to “break through” the barrier of

one discrete code coverage step listed in Table 1. Having lower mutation rates could

not introduce these changes via mutation in one generation but also needed crossover

process to introduce new patterns to the solution. This is an issue that genetic algo-

rithms should overcome given enough generations to iterate over the solution space,

42

but in this case, generation count became limiting factor in some tests runs with low

mutation rate. Too high mutation rate on the other hand most likely introduced too

much variation to a given solution per generation. This way, most of the good “features”

inherited from previous generations were lost to the mutation process, which then lim-

ited the quality of the final result. Therefore, it can be said that good balance in muta-

tion rate needs to be found for optimal convergence.

Based on the data in Figure 22, three of the four evaluated models had almost identical

convergence when comparing the different crossover types. Only exception begin

model #1, that had some divergence between the graphs. This could be explained by

the fact that model #1 had only 10 samples of all signals, so higher crossover values

would be more significant percentage of the samples and thus “brake up” too much of

the logical paths that form a high performing test case. Models which had higher num-

ber of samples defined per test case would not suffer from this effect in similar fashion.

For example, 8-fold crossover would mix up 80% of the states in model #1 and only 8%

in model #2. Uniform crossover should introduce lot of stochasticity in models that re-

quired inputs with more time samples and thus negatively affect the performance. This

was not the case given the results shown in Figure 22. One reason for this was

deemed be the fact that evaluation models were relatively simple and added stochas-

ticity originating from crossover didn’t hinder the performance too much.

Evaluating performance as software development tool had case similarity penalty ena-

bled and algorithm produced multiple cases as seen in Figure 23. Even with case simi-

larity penalty applied, convergence speed and quality were mostly consistent with most

models. Exception to this is model #1, which had some deviation from within the test

suite. Having all cases mostly converge within roughly the same speed and quality

hints that the case similarity penalty is not able to penalize the algorithm so that it

would create different logical paths for different cases within the same test suite. An-

other explanation could also be that the algorithm could achieve the measured cover-

age with diverse set of solutions in evaluations models.

In chapter 2.4 metaheuristic algorithms were deemed to improve solution in two ways:

exploration and exploitation. Based on the conclusions above, the implemented algo-

rithm was utilizing more the exploitation rather than exploration. This is because the im-

plemented algorithm’s function can be thought to be exploration when trying to optimize

the case similarity penalty as the value is continuous and even tiny gains are possible.

So “exploring” these nearby values were not shown to affect the result in any meaning-

ful way. On the other hand, exploitation could be thought of “breaking through” to the

43

next discrete step of code coverage and this was shown to work well in Figure 21 and

Figure 22.

Utilizing genetic algorithms in such way that could carry good features in test cases

over generations can be determined to be achieved. This is most likely because of the

design choices of defining a gene to be a timestep of all signals and mutation to only

alter part of a gene. This meant that good logical sequences in an individual get carried

over generations, but they can be still improved further by mutation.

5.5.2 Case similarity and simplification algorithm
Algorithm should penalize too much similarity between the test cases in a generated

suite, to broaden the search space that cases together can cover. This was largely not

achieved as only 2 of the 4 generated test suites produced cumulative coverage higher

than the maximum coverage of any one case in that test suite. For models #1 and #2,

gain in cumulative coverage was only 4.34% and 3.33% respectively. The maximum

MC/DC outcomes from model #1 is 23, so the cumulative coverage of the test suite

achieved only one more MC/DC outcome that any single test case. Same is true with

model #2 with the number of MC/CD outcomes of 30 and increase of 3.33%.

For model #4, 100% MC/DC coverage was achieved even for the worst performing

case, so cumulative coverage couldn’t increase coverage further. This means that test

suite generation is not even necessary as only one test case could achieve 100% cov-

erage. Model #3 achieved same coverage with minimum, maximum and cumulative

coverages. This result implies that the model under test most likely had some amount

of “dead logic” that could not be exercised with the inputs provided to the model or con-

dition statements with timers contained in the model could not be satisfied in any case.

Maximum performance of the algorithm in model #2 was actually lower than what was

achieved when doing parameter sweeps, shown in Figure 21 and Figure 22. Reason

for this is that as seen from Figure 23, coverage score on model #2 was still converging

before the algorithm was stopped for every case. Reason for premature stoppage of

the algorithm on model #2 was predefined 3-hour time limit on execution, which was

reached during evaluation. Extending the allowed simulation time would most likely

would have resulted in better performing test cases for model #4 but it would lose its

utility as software development because the runtime would grow to be too long for

many practical use cases.

44

Main culprit for bad performance in case similarity penalty was most like the usage of

Euclidean distance as the metric. It couldn’t create pressure for the algorithm to gener-

ate different logical paths in the evaluation model set for different test cases. It would

penalize cases for having signal activation at the exact sample, this however does not

consider that same features can still exist, just shifted in time.

As seen in Table 3 and in appendix E, simplifying algorithm can reduce complexity of

the generated test case greatly. The amount of simplification that could be applied to a

generated test case is shown to be most effective cases where there are large number

of samples. For example, in model #4, all of the relevant changes were able to be

achieved within the first 6 samples and rest of the samples were able to be simplified,

thus making the test case more human readable.

45

6. CONCLUSIONS

To answer the research question on “How genetic algorithms can be used in test case

generation with model-based system development?”, the following conclusions can be

made: A way to generate regression test suite to be used in CI-pipeline of model-based

software development process with genetic algorithms, was successfully implemented

in this thesis. Implemented algorithm showed significant convergence towards high

code coverage and could theoretically be implemented to a CI-pipeline.

More specific requirements for the algorithm described in chapter 3.1 were achieved in

for most parts, as seen in performance evaluation in chapter 5. Simplification part of

the algorithm was deemed to increase readability of generated cases significantly.

Higher collective coverage for a generated suite compared to one case was not

deemed to be achieved, as the collective coverage was only marginally higher than

one single case. This could be only due to the stochastic nature of the algorithm.

Usage as tool, part of the CI-process, was deemed to be possible but impractical. Big-

gest reason for this was the parametrisation needed to be done for every single model

and the effect of these parameters on convergence speed and quality. Having this level

of insight for a software development tool for every software engineer, who would use

the CI-pipeline, would most likely not be cost-efficient. Big downside is also the long

run time of the algorithm, which was already measured in hours in the limited evalua-

tion model set. For more complex models, runtime could be measured in days rather

than hours. Also interfacing with the models would require more large amounts of mod-

ifications to an existing MATLAB-based CI-pipeline or complete reimplementation of

the algorithm directly in MATLAB instead of python.

Research question about “How well do genetic algorithms perform when generating

tests for embedded control system software?”, can be answered with the following con-

clusions: It was shown that the proposed and implemented algorithm could, in best

case scenario, fully exercise a production model used in forest machines and achieve

100% code coverage, given that the metric was MC/DC-coverage. Even at worst case,

50% MC/DC coverage was achieved. However, extrapolating that the performance of

the algorithm would be the same for the whole code base of a forest machine was

deemed to be impossible, given the small set of evaluation models. Also, it is important

to keep in mind that all of the control software of a modern forest machine cannot be

done with only state-machine based control logic.

46

The final research question was the following “What type of models work best with test

case generation with genetic algorithms?”. To answer this question, the following con-

clusions can be made: Performance of the algorithm on different types of models was

analysed it was shown that in every case, there was significant convergence towards

high code coverage. Best performance was achieved on a model which had no timers

or sensor signals as input and was overall the least complex from the evaluation set.

Model where the algorithm achieved worst performance was the most complex and it

contained state machines, Boolean variables, and enumerations as inputs. Overall, it

can be said that models which have some temporal dependency and overall higher

complexity, have negative effect on the convergence of the algorithm implemented in

this thesis.

6.1 Future improvements

Algorithm implemented in this thesis still leaves a lot of room for possible improve-

ments. By addressing previously mentioned major shortcomings, a functioning tool for

a Model-Based software development CI-process could be implemented and integrated

to produce higher quality software. In this sub-chapter some of the possible future de-

velopments are explored.

To improve performance in generating a wider coverage test suite, better case similar-

ity penalty would need to be implemented. This penalty metric would need to take into

consideration changes of inputs, in addition to their states. Intuitively, some kind sliding

window type of implementation might be a good candidate, as it would be time agnos-

tic. In other words, it doesn’t often matter “where” the features in the test cases are, as

long as they are present, they could be compared to each other.

Going one step further in the MBSD code generation pipeline shown in Figure 3, from

MIL to SIL and executing the algorithm with generated code, would most likely result in

significant decrease in per generation runtime. This would enable much larger popula-

tion sizes and more generations for the same total runtime as the implementation done

in this thesis. Having significantly faster simulation time would open the possibility to

test wider range of parameters and their effect, which could bring further improvements

in convergence speed and quality.

Further testing could be done to see how much the implemented algorithm could in-

crease code coverage of already existing test suites. Mutation testing [59], could be

one additional way of assessing generated test case quality. Additionally, to fully as-

47

sess the usage of the work done in this thesis, data from complete model-based soft-

ware development project would need to be gathered, where a tool made with the im-

plemented algorithm is in use. From this data, it could be measured how much the gen-

erated regression test suites catch errors more than human defined test suites and fur-

ther cost-benefit analysis could be done.

48

REFERENCES

[1] S. Abitha, Embedded System Paper Document, International Journal of Engineer-
ing Research & Technology (IJERT), Special Issue, 2018

[2] A. Forrari, Embedded Control System Design, A Model Based Approach, 2013

[3] P. Chang, Industrial control systems, Advanced Industrial Control Technology,
2010

[4] J. Shepard, How does embedded software work?, MicrocontrollerTips, Accessed:
Jan-15 2023, Available: https://www.microcontrollertips.com/how-does-embedded-
software-work/

[5] A. Kejariwal, F. Orsini, On the Definition of Real-Time: Applications and Systems,
IEEE Trustcom/BigDataSE/ISPA, 2016

[6] D. Fontanelli, L. Greco, L. Palopoli. Soft real-time scheduling for embedded control
systems. Automatica, 49(8), 2330–2338, 2013

[7] Z. Jiang, T. G. Lewis, W. Jackson, R. L Wilson, Scheduling in hard real-time appli-
cations. IEEE Software, 12(3), 54–63, 1995

[8] O. Olodeye, A. Akinwole, N. A. Yekini, A. O Akinade, Overview of Embedded Sys-
tems & Its Applications, 3RD INTERNATIONAL ACADEMIC CONFERENCE, 2022,
Available: https://www.researchgate.net/publication/361562662_OVER-
VIEW_OF_EMBEDDED_SYSTEM_ITS_APPLICATION

[9] J. Wang, Real-Time Embedded Systems, John Wiley & Sons, Inc, 2017

[10] Z. H. Khan, A. Khan, Perspectives in Automotive Embedded Systems, Interna-
tional Symposium on Automotive and Manufacturing Engineering (SAME), SMME,
NUST, Islamabad, Pakistan, Nov 2015

[11] L. B. Lucia, G. Patti, L. Leonardi, A Perspective on Ethernet in AutomotiveCom-
munications — Current Status and Future Trends, Appl. Sci. 2023,13,1278.

[12] J. Eker, Flexible Embedded Control Systems: Design and Implementation, De-
partment of Automatic Control, Doctoral Thesis, Lund Institute of Technology, 1999

[13] C. Haskins, A historical perspective of MBSE with a view to the future, INCOSE
International Symposium, 21(1), 493–509, 2011

[14] C. E Dickerson, D. Marvis - A Brief History of Models and Model Based Systems
Engineering and the Case for Relational Orientation, in IEEE Systems Journal 7,
pp. 58 1-592, April 2013

[15] What is Model Based Software Development? [Online], Available:

https://www.lifecycleinsights.com/tech-guide/model-based-development/, [Ac-

cessed: 10-May-2022]

https://www.microcontrollertips.com/how-does-embedded-software-work/
https://www.microcontrollertips.com/how-does-embedded-software-work/
https://www.lifecycleinsights.com/tech-guide/model-based-development/

49

[16] Why Adopt Model-Based Design?, MathWorks, White paper, Available:

https://www.mathworks.com/content/dam/mathworks/white-paper/why-adopt-

model-based-design-white-paper.pdf

[17] M. Bialy, Handbook of System Safety and Security || Software Engineering for

Model-Based Development by Domain Experts, 2017, pp. 39-46.

[18] N. Srinivas, N. Panditi, S. Schmidt, R. Graffels, MIL/SIL/PIL Approach A new par-

adigm in Model Based Development, Continetal Corporation, Engine Systems,

Available: https://www.mathworks.com/content/dam/mathworks/mathworks-dot-

com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-

based-development.pdf, [Accessed: 31-May-2022]

[19] How to Implement a Continuous Integration Workflow with Model-Based Devel-

opment (MBD), dSPACE, Educational Material, Available:

https://www.dspace.com/en/pub/home/learning-center/recordings/how-to-imple-

ment-a-continuous-.cfm. [Accessed: 16-Jan-2023]

[20] Continuous Integration for Verification of Simulink Models, MathWorks, Technical

Articles and Newsletters, Available: https://se.mathworks.com/company/newslet-

ters/articles/continuous-integration-for-verification-of-simulink-models.html, [Ac-

cessed: 16-Jan-2023]

[21] T. Kelemenová, M. Kelemen, L. Mikova, V. Maxim, E. Prada, T. Lipták, F. Menda,

Model Based Design and HIL Simulations, American Journal of Mechanical Engi-

neering, Vol. 1, No. 7, pp. 276-28, 2013

[22] P. Jianto, Software Testing, 18-849b Dependable Embedded Systems, Carnegie

Mellon University, 1999, Available: http://us-

ers.ece.cmu.edu/~koopman/des_s99/sw_testing/

[23] IBM, What is software testing?, Availabe: https://www.ibm.com/topics/software-

testing, [Accessed: 12-May-2022]

[24] K. Naik, P. Tripahty, Software Testing and Quality Assurance, Theory and Prac-

tice, 2008, Available: http://www.softwaretestinggenius.com/download/staq-

tpsn.pdf

[25] L. Gren, V. Antiyan, On the Relation Between Unit Testing and Code Quality,

43rd Euromicro Conference on Software Engineering and Advanced Applica-

tions, 2017

[26] J. Shcmitt, CircleCI, Unit testing vs integration testing, [Online], https://cir-

cleci.com/blog/unit-testing-vs-integration-testing/ [Accessed: August-8-2022]

[27] D. Graham, E. Veenendaal, I. Evans, R. Black, Foundations of Software Testing,

ISTQB Certification, pp. 52-53, 2012

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.dspace.com/en/pub/home/learning-center/recordings/how-to-implement-a-continuous-.cfm
https://www.dspace.com/en/pub/home/learning-center/recordings/how-to-implement-a-continuous-.cfm
https://se.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://se.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
http://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
https://www.ibm.com/topics/software-testing
https://www.ibm.com/topics/software-testing
http://www.softwaretestinggenius.com/download/staqtpsn.pdf
http://www.softwaretestinggenius.com/download/staqtpsn.pdf
https://circleci.com/blog/unit-testing-vs-integration-testing/
https://circleci.com/blog/unit-testing-vs-integration-testing/

50

[28] What Is Regression Testing? Definition, Tools, Method, And Example, [Online]

https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/ [Ac-

cessed: 30-June-2022]

[29] S. Nidhra, J. Dondeti, Black Box and White Box Testing Techniques – a Litera-

ture Review, International Journal of Embedded Systems and Applications

(IJESA) Vol.2, No.2, June 2012, Available: https://asset-

pdf.scinapse.io/prod/2334860424/2334860424.pdf

[30] What is Code Coverage Analysis, Linode LLC., Development Guide, [Online],

https://www.linode.com/docs/guides/what-is-code-coverage-analysis/ [Accessed:

6-August-2022]

[31] A Practical Tutorial on Modified Condition/Decision Coverage, Nasa, TM-2001-

210876, May 2011

[32] A. Rajan, M.P.E. Heimdahl, M.W. Whalen, The Effect of Program and Model

Structure on MC/DC Test Adequacy Coverage, ICSE '08: Proceedings of the

30th international conference on Software engineering, 2009, Available:

http://se.inf.ethz.ch/old/teaching/2009-S/0276/slides/fiva.pdf

[33] Types of Model Coverage, Mathworks, Accessed: 3. Jan. 2023, Available:

https://se.mathworks.com/help/slcoverage/ug/types-of-model-coverage.html

[34] L. Bianchi, M. Dorigem L. M. Gambardella, W. J. Gutjahr, A survey on metaheu-

ristics for stochastic combinatorial optimization, Nat Comput (2009) 8:239–287,

Available: http://doc.rero.ch/record/319945/files/11047_2008_Article_9098.pdf

[35] That's So Meta, Meriam-Webster, Available: https://www.merriam-web-

ster.com/words-at-play/meta-adjective-self-referential [Accessed: 9-August-2022]

[36] C. Blum, A. Roli, Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison, ACM Computing Surveys, Vol. 35, No. 3, September

2003, pp. 268–308

[37] M. Abdel-Basset, , L. Abdel-Fatah, & A. K. Sangaiah, Metaheuristic Algorithms:

A Comprehensive Review. Computational Intelligence for Multimedia Big Data on

the Cloud with Engineering Applications, 185–231, 2018.

[38] I. H. Osman, Meta-heuristics. Metaheuristics: Theory and Applications. 1-21.

1996.

[39] E. Pesch, F. Glover, TSP Ejection Chains, Discrete Applied Mathematics 76,

165-181, 1995.

[40] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, D. Fister, A brief review of nature-in-

spired algorithms for optimization, Elektrotehniski Vestnik, 80(3): 1–7, 2013

https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
https://www.linode.com/docs/guides/what-is-code-coverage-analysis/
http://se.inf.ethz.ch/old/teaching/2009-S/0276/slides/fiva.pdf
http://doc.rero.ch/record/319945/files/11047_2008_Article_9098.pdf
https://www.merriam-webster.com/words-at-play/meta-adjective-self-referential
https://www.merriam-webster.com/words-at-play/meta-adjective-self-referential

51

[41] H. A. Loáiciga, M. Solgi, O. Bozorg-Haddad, Meta-heuristic and Evolutionary Al-

gorithms for Engineering Optimization, pp. 54, 2017

[42] Genetic Algorithms, MathWorks, Available: https://se.mathworks.com/discov-

ery/genetic-algorithm.html [Accessed: 1.8.2022]

[43] R. M. Firedberg, A Learning Machine: Part 1, IBM Journal of Research and De-

velopment, 2, 2-13, 1958.

[44] J. H. Holland, Outline for a Logical Theory of Adaptive Systems, Journal of the

ACM, Volume 9, Issue 3, pp. 297–314, 1962.

[45] T. Alam, S, Qamar, A. Dixit, M. Benaida, " Genetic Algorithm: Reviews, Imple-

mentations, and Applications.", International Journal of Engineering Pedagogy

(iJEP), 2020

[46] H. Kour, P. Sharma, P. Abrol, “Analysis of fitness function in genetic algorithms”,

Journal of Scientific and Technical Advancements, Volume 1, Issue 3, pp. 87-89,

2015.

[47] A. J. Umbarkar, P. D Sheth, Crossover Operations in Genetic Algorithms: A Re-

view, ICTACT Journal on Soft Computing, October 2015, Vol: 06, Issue: 01

[48] A. P. Engelbrecht, Computational Intelligence, An Introduction, Second edition,

2007, Available: https://papers.harvie.cz/unsorted/computational-intelligence-an-

introduction.pdf

[49] F. Saglietti, N. Oster, F. Pinte, White and grey-box verification and validation ap-

proaches for safety- and security-critical software systems, information security

tec hnical report 13 (2008) 10–16

[50] A. Sharma, R. Patani, A. Aggarwal, Software Testing Using Genetic Algorithms,

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.7,

No.2, April 2016, Available: https://aircconline.com/ijcses/V7N2/7216ijcses03.pdf

[51] D. Kumar, M, Phogat, Genetic Algorithm Approach For Test Case Generation

Randomly: A Review, International Journal of Computer Trends and Technology

(IJCTT), Vol 49, No. 4, July 2017, Available: https://ijcttjournal.org/2017/Vol-

ume49/number-4/IJCTT-V49P134.pdf

[52] R. P. K. Bhatia, Test case Optimization using Genetic Algorithm, IJRAR Decem-

ber 2018, Volume 5, Issue 4, 2018

[53] R. Zhao, S. Lv, Neural-Network Based Test Cases Generation Using Genetic Al-

gorithm, 13th IEEE International Symposium on Pacific Rim Dependable Compu-

ting, 2007

https://se.mathworks.com/discovery/genetic-algorithm.html
https://se.mathworks.com/discovery/genetic-algorithm.html
https://papers.harvie.cz/unsorted/computational-intelligence-an-introduction.pdf
https://papers.harvie.cz/unsorted/computational-intelligence-an-introduction.pdf
https://aircconline.com/ijcses/V7N2/7216ijcses03.pdf

52

[54] Y. Jin, A comprehensive survey of fitness approximation in evolutionary computa-

tion. Soft Computing, 9(1), 3–12, 2003.

[55] A. Ratle, Optimal sampling strategies for learning a fitness model. Proceedings of

the 1999 Congress on Evolutionary Computation-CEC, 1999

[56] A. Tamizharasi, P. Ezhumalai, Genetic-based Crow Search Algorithm for Test

Case Generation, International Transaction Journal of Engineering, Management,

& Applied Sciences & Technologies, 2022, 13(4), 13A4K, 1-11, Available:

https://tuengr.com/V13/13A4KM.pdf

[57] R. Hametner, D. Winkler, T. Östricher, S. Biffl, A. Zoitl, The Adaptation of Test-

Driven Software Processes to Industrial Automation Engineering, 8th IEEE Inter-

national Conference on Industrial Informatics, 2010

[58] J. Oh, M. Harman, S. Yoo, Transition coverage testing for simulink/stateflow

models using messy genetic algorithms, Proceedings of the 13th Annual Confer-

ence on Genetic and Evolutionary Computation – GECCO, 2011

[59] L. T. M. Hanh, B. T. Nguyen, T. T. Khuat, Survey on Mutation-based Test Data

Generation, International Journal of Electrical and Computer Engineering

(IJECE), Vol. 5, No. 5, October 2015, pp. 1164~1173

[60] L. Halduraim, T. Madhubala, R. Rajalakshmi, A Study on Genetic Algorithm and

its Applications, International Journal of Computer Sciences and Engineering,

Vol.-4(10), Oct 2016,

[61] M. Ivanković, G. Petrović, R. Just, G. Fraser, Code Coverage at Google, 27th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’19), 2019

[62] V. Khorikov, Unit Testing, Principle, Practices and Patterns, Manning Publications

Co, 2020, Availabe: https://sd.blackball.lv/library/unit_testing_(2020).pdf

[63] D. Kamma, P. Maruthi, Effective Unit-Testing in Model-Based Software Develop-

ment, AST 2014: Proceedings of the 9th International Workshop on Automation

of Software Test, 2014

https://tuengr.com/V13/13A4KM.pdf
https://sd.blackball.lv/library/unit_testing_(2020).pdf

53

 APPENDIX A: GENETIC ALGORITHM CODE

import numpy as np
from utility_functions import Penalty
from scipy import signal
import time

class GA:
 def __init__(self,
 plant,coverage_type="MCDC",
 time_step=0.01,
 sample_time=60,
 mutation_percent=0.02,
 inclusive_mating=False,
 crossover_type=1,
 mating_population_size = 6):
 self.mutation_percent = mutation_percent
 self.existing_cases = []
 self.score_graph = []
 self.time_step = time_step
 self.sample_time = sample_time
 self.coverage_type = coverage_type
 self.plant = plant
 self.inclusive_mating = inclusive_mating
 self.k_fold = crossover_type
 self.mating_population_size = mating_population_size

 def get_coverage_function(self):
 if self.coverage_type == "MCDC":
 return self.plant.get_MCDC
 elif self.coverage_type == "decision":
 return self.plant.get_decision
 elif self.coverage_type == "execution":
 return self.plant.get_execution

 def get_init_scores(self, current_pop, formatter, plant, disp):
 """
 Get fitness score on initial population
 """
 return np.array(self.runSingleTestCasePopulation(current_pop, for-

matter, plant, disp))

 def gaussian(self, x, mu, sigma, scale):
 return scale*np.exp(-(x-mu)**2/(2*sigma**2))

 def create_mating_pool_probs(self, pool):
 x = np.linspace(0,1,pool.shape[0])
 y = self.gaussian(x,0,1,1)
 return y / np.sum(y)

 def mating_pool(self, pool):
 """
 Select from mating pool
 """
 probs = self.create_mating_pool_probs(pool)
 same = True
 if(self.inclusive_mating):
 pool = pool.copy()

54

 while same:
 choices = np.random.choice(pool, 2, p=probs)
 if choices[0] != choices[1]:
 same = False
 pool = pool[pool != choices[0]]
 pool = pool[pool != choices[1]]
 else:
 while same:
 choices = np.random.choice(pool, 2, p=probs)
 if choices[0] != choices[1]:
 same = False
 return pool, choices

 def get_k_point_crossover_mask(self, points, shape):
 """
 Returns a binary mask for crossover, given number of points and size

of the array
 """
 #1-Point mask
 co_mask = np.ones(shape)
 if points == 1:
 fold_point = np.random.randint(0, shape, size=points)
 np.put(co_mask, np.arange(fold_point, shape, 1), np.ze-

ros(fold_point))
 # K-point mask
 else:
 fold_points = np.sort(np.random.randint(0, shape, size=points))
 #np.put(co_mask, np.arange(point, ind_2.shape[0], 1), np.ze-

ros(ind_2.shape[0]-point))
 for count, point in enumerate(fold_points):
 if count%2 == 0:
 if count == 0:
 np.put(co_mask, np.arange(0, point, 1), np.ze-

ros(point))
 else:
 np.put(co_mask, np.arange(fold_points[count-

1],point,1), np.zeros(point - fold_points[count-1]))
 return co_mask

 def get_uniform_mask(self, threshold, shape):
 """
 Returns uniformly sampled and thresholded boolean array
 """
 uniform_array = np.random.uniform(size=shape)
 return (uniform_array > threshold)

 def train_generation(self, current_pop, scores, formatter, plant, disp):
 """
 Trains one generation of solutions with k-point crossover. Returns

population with best performing individual at
 index 0.
 """
 k_fold = self.k_fold
 # Parameters for mating pop and direct transferred individuals
 mating_pop_size = self.mating_population_size
 direct_pass_size = 2

 # Initialize lists for populations, need to do copy
 current_pop_tmp = []

55

 current_pop_tmp = current_pop.copy()
 current_pop = []

 # Order population based on individuals fitness score
 idx = np.flip(np.argsort(scores))
 current_pop_tmp = np.array(current_pop_tmp)[idx]
 scores = np.array(scores)[idx]

 # Get top X for moving it unchanged to next generation
 direct_pass = np.linspace(0,direct_pass_size-1,di-

rect_pass_size,dtype="int")
 top_results = []
 for i in direct_pass:
 top_results.append(current_pop_tmp[i])

 # Get top X to get crossover and mutation for nex generation.
 top_x = np.linspace(0,mating_pop_size-1,mat-

ing_pop_size,dtype="int")
 repeat_matings = 2
 for j in range(repeat_matings):
 pool = top_x.copy()
 for i in range(0, top_x.shape[0],2):

 # Choose from mating pool
 pool, choices = self.mating_pool(pool)

 ind_1 = current_pop_tmp[choices[0]].copy()
 ind_2 = current_pop_tmp[choices[1]].copy()

 if k_fold > 0:
 # Use k-point mask
 co_mask = self.get_k_point_crossover_mask(k_fold,

ind_2.shape[0])
 else:
 # Use unifrom mask
 co_mask = self.get_uniform_mask(0.5, ind_2.shape[0])

 # Do crossover
 co_mask = np.repeat(co_mask[:, np.newaxis],

ind_2.shape[1],axis=1)
 offspring_1 = np.select([co_mask == True, co_mask == False],

[ind_1, ind_2])
 offspring_2 = np.select([co_mask == False, co_mask == True],

[ind_1, ind_2])
 #print(co_mask)
 #time.sleep(10)

 # Calculate mutation parameters
 total_elements = offspring_1.shape[0] * off-

spring_1.shape[1]
 mutation_count = int(total_elements * self.mutation_per-

cent)

 # Create mutation bit mask
 mask_1 = np.invert(np.random.randint(0,total_elements/muta-

tion_count,size=ind_1.shape).astype(bool))
 mask_2 = np.invert(np.random.randint(0,total_elements/muta-

tion_count,size=ind_2.shape).astype(bool))

56

 r_1 = np.random.random_sample(off-
spring_1.shape)#*np.max(ind_1)

 r_2 = np.random.random_sample(off-
spring_2.shape)#*np.max(ind_2)

 offspring_1[mask_1] = r_1[mask_1]
 offspring_2[mask_2] = r_2[mask_2]

 #Add offsprings to new population
 current_pop.append(offspring_1)
 current_pop.append(offspring_2)

 for res in reversed(top_results):
 current_pop.insert(0, res)

 scores, model_scores = np.array(self.runSingleTestCasePopula-

tion(current_pop.copy(), formatter, plant, disp))
 self.score_graph.append(np.max(model_scores))
 return current_pop, scores

 def runSingleTestCasePopulation(self, pop, formatter, plant, disp):

 """
 Does all the neccssary stuff for getting the fitness score
 """
 pop_c = []
 pop_c = pop.copy()
 fitness_scores = [0] * len(pop_c)
 model_scores = [0] * len(pop_c)

 for index, individual in enumerate(pop_c):
 # Scale signals to a right output scale
 ind = individual.copy()
 ind = formatter.quantize_data(ind.copy())

 lst = []
 lst.append(ind)
 plant.populate_bus(lst[0], self.sample_time, self.time_step)
 model_score = self.runFitnessScore(plant)
 penalty = self.get_existing_case_penalty(ind)
 combined_score = model_score - penalty
 fitness_scores[index] = combined_score
 model_scores[index] = model_score

 return fitness_scores, model_scores

 def get_existing_case_penalty(self, arr):
 """
 Returns the maximum penalty when compared to all already generated

cases
 """
 smoothed_new_case = self.compress_logic(self.fast_smooth(arr))
 penalty_max = 0
 for case in self.existing_cases:
 compressed_case = self.compress_logic(case)
 pen = self.get_similarity_penalty(smoothed_new_case, com-

pressed_case)
 if penalty_max < pen:

57

 penalty_max = pen
 return penalty_max

 def get_similarity_penalty(self, new, old):
 """
 Expand input of smaller array to match larger one and calculate

eucaledian distance
 between them.
 """
 if old.shape[0] == new.shape[0]:
 pass
 elif old.shape[0] > new.shape[0]:
 rep_new_fill = np.repeat(new[-1:,:], repeats=(old.shape[0] -

new.shape[0]), axis=0)
 new = np.concatenate([new, rep_new_fill],axis=0)
 else:
 rep_old_fill = np.repeat(old[-1:,:], repeats=(new.shape[0] -

old.shape[0]), axis=0)
 old = np.concatenate([old, rep_old_fill],axis=0)

 # Eucaledian dist
 dist = np.linalg.norm(old - new)
 return 1/max((dist)/old.shape[0]*old.shape[1],0.001)

 def compress_logic(self, input):
 """
 Compresses input so that duplicate logical states are removed
 """
 arr = input.copy()
 compressable = True
 while compressable:
 length = arr.shape[0]
 compressable = False
 del_indcies = []
 for i in range(length-1):
 if np.array_equal(arr[i,:], arr[i+1,:]):
 del_indcies.append(i)
 compressable = True
 arr = np.delete(arr, del_indcies, axis=0)
 return arr

 def fast_smooth(self, arr):
 arr_to_smooth = arr.copy()
 signal_most_frequent = []
 for i in range(arr_to_smooth.shape[1]):
 signal_most_frequent.ap-

pend(np.bincount(arr_to_smooth[:,i].astype("int")).argmax())
 for i in range(arr_to_smooth.shape[0]):
 for j in range(arr_to_smooth.shape[1]):
 arr_to_smooth_copy = arr_to_smooth.copy()
 if arr_to_smooth[i][j] != signal_most_frequent[j]:
 arr_to_smooth_copy[i][j] = signal_most_frequent[j]
 return arr_to_smooth

 def runFitnessScore(self, plant):
 """
 Runs the fitness score
 """

58

 cov_function = self.get_coverage_function()

 cov = cov_function() #plant.get_MCDC()
 return cov

 def reduce_noise_all(self, plant, final_cases, disp):
 """
 Reduces noise from all solutions. Uses the most common value of a

signal to try to minimize state change
 to that, without losing coverage.
 """
 noisy_case = final_cases.copy()
 smoothed_cases = []
 for case in noisy_case:
 case = self.reduce_noise(plant, case)
 #disp(np.clip(case, 0, 4))
 smoothed_cases.append(case)
 return smoothed_cases

 def reduce_noise(self, plant, case):
 """
 Reduces noise from one solution. Uses the most common value of a

signal to try to minimize state change
 to that, without losing coverage.
 """
 cov_function = self.get_coverage_function()

 plant.populate_bus(case, self.sample_time, self.time_step)
 score = cov_function() #plant.get_MCDC()
 signal_most_frequent = []
 for i in range(case.shape[1]):
 signal_most_frequent.ap-

pend(np.bincount(case[:,i].astype("int")).argmax())

 for i in range(case.shape[0]):
 for j in range(case.shape[1]):
 case_copy = case.copy()
 if case[i][j] != signal_most_frequent[j]:
 case_copy[i][j] = signal_most_frequent[j]
 plant.populate_bus(case_copy, self.sample_time,

self.time_step)
 mod_score = cov_function() #plant.get_MCDC()
 if mod_score >= score:
 case = case_copy
 return case

59

APPENDIX B: UTILITY FUNCTIONS FOR
GENETIC ALGORITHM

import numpy as np

class Penalty:
 def __init__(self):
 self.final_cases = []

 def detect_ups_downs(self, y):
 """
 Returns all the state changes of one 1d array. Output size is input

- 1
 """

 s0 = np.flatnonzero(y[1:] > y[:-1])+1
 s1 = np.flatnonzero(y[1:] < y[:-1])+1

 idx0 = np.searchsorted(s1,s0,'right')
 if len(idx0) == 0:
 return [0 for x in range(len(y))]
 s0c = s0[np.r_[True,idx0[1:] > idx0[:-1]]]

 idx1 = np.searchsorted(s0c,s1,'right')
 if len(idx1) == 0:
 return [1 for x in range(len(y))]
 s1c = s1[np.r_[True,idx1[1:] > idx1[:-1]]]

 out = np.zeros(len(y),dtype=int)
 out[s0c] = 1
 out[s1c] = -1
 return out

 def get_state_change_array(self, input):
 """
 Returns array with state changes -1, 0 or 1. One less rows than

input
 """
 change_array = np.empty((0, input.shape[0]), int)
 for i in range(arr.shape[1]):
 # Do derivative penalty
 col = input[:,i].astype(int)
 der_col = np.asarray(self.detect_ups_downs(col.copy()))
 der_col = np.expand_dims(der_col, axis=0)
 change_array = np.append(change_array, der_col, axis=0)
 return change_array

 def get_penalty(self, case):
 """
 Calculates the penalties for state changes and similarities to pre-

viously generated cases
 """
 case_q = quantize_data(case)

 signal_wise_penalty = 0
 for i in range(case_q.shape[1]):
 # Do derivative penalty

60

 col = case_q[:,i].astype(int)
 der_col = self.detect_ups_downs(col.copy())
 der_changes = der_col[:-1] != der_col[1:]
 x = np.sum(der_changes)

 signal_wise_penalty += x
 return signal_wise_penalty/(case.shape[1]*case.shape[0])

class Formatter:
 """ Formats 0 to 1 inputs to match defined axis limits """
 def __init__(self, axis_limits):
 self.axis_limits = axis_limits

 def quantize_data(self, individual):
 ind = individual.copy()
 for i in range(0, ind.shape[1]):
 # Boolean signal
 if max(self.axis_limits[i]) == 1:
 # Threshold to 0.5, maybe change this to a parameter later
 ind[:,i] = np.where(ind[:,i] > 0.5, 1, 0)

 elif max(self.axis_limits[i]) == min(self.axis_limits[i]):
 ind[:,i] = max(self.axis_limits[i])

 # Signal is not booelan, so scale based on axis limits
 else:
 ax_max = max(self.axis_limits[i])
 ind[:,i] = np.rint(ind[:,i]*ax_max)
 return ind

61

APPENDIX C: INTERFACE CLASS BETWEEN
MATLAB AND GENETIC ALGORITHM

import matlab.engine
import matplotlib.pyplot as plt
import numpy as np
import time
#matlab.engine.shareEngine

class SimulinkPlant:
 def __init__(self,signals, modelName, busName):

 self.modelName = modelName
 self.signal_dict = signals
 self.signal_bus_name = busName
 self.ref_models = []

 def connectToMatlab(self):
 """ Connects to a running matlab instance """
 print("Starting matlab")
 self.eng = matlab.engine.connect_matlab()

 print("Connected to Matlab")

 #Load the model
 self.eng.eval("model = '{}'".format(self.modelName),nargout=0)
 self.eng.eval("load_system(model)",nargout=0)

 print("Initialized Model")

 def createBus(self):
 """ Create a bus where to input GAs results for simulation"""
 bus_str = ""

 for k,v in self.signal_dict.items():
 temp_str = "elems({0}) = Simulink.BusElement;\nelems({0}).Name

= '{1}';\nelems({0}).DataType = '{2}';\n".format(k,v[0],v[1])
 bus_str = bus_str + temp_str

 bus_str = bus_str + "{0} = Simulink.Bus;\n{0}.Elements = el-

ems;\n".format(self.signal_bus_name)
 self.eng.eval(bus_str,nargout=0)

 def populate_bus_random(self):
 """ Populate bus with random data for testing """
 time_str = """sampleTime = 0.01;
 numSteps = 1001;
 time = sampleTime*(0:numSteps-1);
 time = time';
 """
 self.eng.eval(time_str,nargout=0)
 self.eng.eval("clear busin;",nargout=0)

 populate_str = ""
 for k,v in self.signal_dict.items():
 r = (np.random.rand(1001)*10).astype("int").tolist()
 md = matlab.uint8(r)

62

 self.eng.workspace['md'] = md
 populate_str = "busin.{0} = timeseries(md,time);".format(v[0])
 self.eng.eval(populate_str,nargout=0)

 def resample_input(self, input, resample_factor):
 """ Resample input so that GAs output matches expected sample

count"""
 return input.repeat(resample_factor,axis=0)

 def populate_bus(self, data, sample_time, step):
 """ Populate bus with GAs output """
 time_str = "sampleTime = {}; numSteps = {};time = sam-

pleTime*(0:numSteps*100-1); time = time';".format(step, sample_time)
 data = self.resample_input(data, 100)
 self.eng.eval(time_str,nargout=0)
 self.eng.eval("clear busin;",nargout=0)

 populate_str = ""
 for k,v in self.signal_dict.items():
 r = data[:,k-1].astype("int").tolist()
 if v[1] == 'uint16':
 md = matlab.uint16(r)
 elif v[1] == "int16":
 md = matlab.int16(r)
 else:
 md = matlab.uint8(r)

 self.eng.workspace['md'] = md
 populate_str = "busin.{0} = timeseries(md,time);".format(v[0])
 self.eng.eval(populate_str,nargout=0)

 def get_MCDC(self):
 """ Retrieve MCDC coverage from the simulated model"""
 input_str = "mdl = '{}';\n".format(self.modelName)
 self.eng.evalc(input_str)
 input_str = "testObj = cvtest(mdl);\n testObj.settings.mcdc = 1;\n

blk_handle = get_param(mdl, 'Handle');\n"
 self.eng.evalc(input_str)
 input_str = "data = cvsim(testObj);\n cov = mcdcinfo(data, blk_han-

dle);\n"
 self.eng.evalc(input_str)
 input_str_top = "cov(1) / cov(2)\n"
 try:
 top_score = self.eng.eval(input_str_top)
 except:
 top_score = 0

 return top_score

 def get_decision(self):
 """ Retrieve decision coverage from the simulated model"""
 input_str = "mdl = '{}';\n".format(self.modelName)
 self.eng.evalc(input_str)
 input_str = "testObj = cvtest(mdl);\n testObj.settings.mcdc = 1;\n

blk_handle = get_param(mdl, 'Handle');\n"
 self.eng.evalc(input_str)
 input_str = "data = cvsim(testObj);\n dec = decisioninfo(data,

blk_handle);\n"
 self.eng.evalc(input_str)

63

 input_str = "dec(1) / dec(2)\n"
 return self.eng.eval(input_str)

 def get_condition(self):
 """ Retrieve condition coverage from simulated model"""
 input_str = "mdl = '{}';\n".format(self.modelName)
 self.eng.evalc(input_str)
 input_str = "testObj = cvtest(mdl);\n testObj.settings.mcdc = 1;\n

blk_handle = get_param(mdl, 'Handle');\n"
 self.eng.evalc(input_str)
 input_str = "data = cvsim(testObj);\n dec = conditioninfo(data,

blk_handle);\n"
 self.eng.evalc(input_str)
 input_str = "dec(1) / dec(2)\n"
 return self.eng.eval(input_str)

 def simulate(self):
 """ Call simulate on model """
 self.eng.set_param(self.modelName,'SimulationCommand','start',nar-

gout=0)

 def disconnect(self):
 """ Dissconect from matlab instance to remove reconnection errors"""
 self.eng.set_param(self.modelName,'SimulationCommand','stop',nar-

gout=0)
 self.eng.quit()

64

APPENDIX D: EXAMPLE CODE FOR CREATING A
TEST CASE

import numpy as np
import matplotlib.pyplot as plt
from utility_functions import Penalty, Formatter
from genetic_algorithm import GA
from SimulinkPlant import SimulinkPlant
from scipy import signal, spatial

test_suite_size = 5

======= Init live visualizer ======
def display_live_img(arr):
 %matplotlib inline
 ax.clear()
 ax.imshow(arr)
 display(fig)
 clear_output(wait=True)
 plt.pause(0.1)

#====== Define signal datatypes ==========
sig_dict = {1:["Signal1", 'uint8'],
 2:["Signal2", 'uint8'],
 3:["Signal3",'uint8'],
 4:["Signal4", 'uint8'],
 5:["Signal5", 'uint8'],
 6:["Signal6", 'uint8'],
 7:["Signal7",'uint8'],
 8:["Signal8",'uint8'],
 9:["Signal9",'uint8'],
 10:["Signal10",'uint8']}

#====== Connect to MATLAB instance ==========
plant = SimulinkPlant(sig_dict, "ExampleModel", "ExampleBus")
plant.connectToMatlab()
plant.createBus()

======= Define signal axis limits ======--
axis_limits = {}
for k,v in plant.signal_dict.items():
 if k == 1:
 axis_limits[k-1] = [80,80]
 elif v[0] == "Signal1":
 axis_limits[k-1] = [0,4]
 else:
 axis_limits[k-1] = [0,1]

==== Initialize penalty, formatter and genetic algorithm ========
penalty = Penalty()
formatter = Formatter(axis_limits)
save_name = "Example_1"
ga_size = (10,10)
ga_init_type = np.zeros
ga = GA(plant,
 coverage_type="MCDC",
 time_step=0.02,

65

 sample_time=ga_size[0],
 mutation_percent = 0.04,
 inclusive_mating = True,
 crossover_type = 2,
 mating_population_size = 15)

===== Train one test case to completion
def train_one_case():
 pop_size = 15
 initial_pop = []
 for i in range(pop_size):
 scores, _ = ga.get_init_scores(initial_pop, formatter, plant, dis-

play_live_img)

 current_pop = []

 max_plateau = 50
 plateau_count = 0
 prev_best_score = 0

 generations = 500

 # Do crossover
 for gen in range(generations):
 current_pop, scores = ga.train_generation(current_pop, scores, for-

matter, plant, display_live_img)

 if gen % 1 == 0:

 if np.isclose(max(scores), prev_best_score):
 plateau_count = plateau_count + 1
 else:
 plateau_count = 0
 if plateau_count >= max_plateau or max(scores) == 1:
 break

 prev_best_score = max(scores)
 disp_arr = formatter.quantize_data(current_pop[0])
 disp_arr = disp_arr / np.clip(disp_arr.max(axis=0), 0.0001,

None)
 display_live_img(disp_arr)
 return current_pop[0]

===== Use the GA multiple times to get the test suite =======
final_cases = []
score_graphs = []
for x in range(test_suite_size):
 ret = formatter.quantize_data(train_one_case())
 ret = ga.reduce_noise(plant, ret)
 final_cases.append(ret)
 ga.existing_cases.append(ret)
 score_graphs.append(ga.score_graph)
 ga.score_graph = []

66

APPENDIX E: SIMPLIFIED AND UNSIMPLIFIED
TEST CASE COMPARISON

