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ABSTRACT

The personal devices market is witnessing a rapid evolution due to the develop-
ment of small form-factor electronics, followed by the increasing number of vari-
ous value-added and entertainment applications. Personal mobile devices, also called
wearables, include devices such as smartphones, smartwatches, smart glasses, smart
jewelry, smart clothes, and augmented or virtual reality headsets, to name a few.
These wearable devices have launched a new trend in the Internet of Things (IoT)
era, namely the Internet of Wearable Things (IoWT). Wearables are small IoWT
devices capable of sensing, storing, processing, and exchanging data to assist users by
improving their everyday life tasks through various applications.

With the increasing consumer interest in wearables, there is a consistent de-
mand for the development of new computationally intensive and latency-critical ap-
plications such as interactive online gaming, virtual/augmented reality, ultra-high-
definition video streaming, autonomous driving, image processing, and machine
learning, among others. Historically, wearable and handheld devices were not de-
signed to execute computationally intensive operations, primarily due to constraints
such as limited battery capacity and heat radiation. Consequently, the need for devel-
oping highly energy-efficient solutions has become imperative to meet the demands
of the latest power-intensive wearable sensors and applications, aiming to meet user
expectations. Thus, energy efficiency within wearables has emerged as a dynamic
field of research.

This thesis employs a systematic literature review approach to conduct a compre-
hensive survey of energy-efficient solutions proposed for diverse IoWT applications.
The existing research published from 2010 to 2020 is scrutinized, and a taxonomy of
the available solutions is presented based on the targeted application area. Moreover,
a thorough qualitative and comparative analysis of existing studies within each cat-
egory is provided highlighting the merits, demerits, main performance parameters,
and major contributions of each solution. Furthermore, we provided different statis-
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tical analysis providing insights into the publication trends in this field of research,
commonly used tools to evaluate proposed solutions, and frequently employed com-
munication technologies in wearables. Additionally, a detailed discussion is provided
outlining the predominant approaches found in the literature for enhancing energy
efficiency in wearables while also emphasizing the challenges involved.

While wearables have the potential to completely revolutionize everyday life of
individuals, they have also brought a plethora of new challenges for the research
and industrial community to address. These challenges include increasing demand
for enhanced computational power, improved communication capabilities, enhanced
security and privacy features, reduced form factor, minimal weight, and better user
comfort. Many of these challenges stem from the limited battery power and insuffi-
cient computation resources available on wearable devices.

In such a context, task offloading is a technique that allows wearables to leverage
the resources available on nearby edge devices to not only conserve the wearable’s
limited resources but also improve its computational capacity to enhance the overall
user experience. Therefore, this thesis presents a numerical analysis of task offloading
for wearables in a two-tier edge architecture, considering different task offloading
scenarios from the wearable to a device located at the network edge. Such a device
could be a smartphone paired with the wearable or an edge server co-located with the
cellular base station. A comprehensive performance evaluation conducted under a
wide variety of realistic settings in terms of task demands, processing capabilities, and
data rate, is provided unveiling the circumstances in which offloading is convenient
and when it is not, in terms of meaningful metrics.

Subsequently, this thesis proposes a framework for Reinforcement Learning (RL)-
based task offloading in the IoWT. The task offloading process is formulated con-
sidering the tradeoff between energy consumption and task accomplishment time.
Moreover, we model the task offloading problem as a Markov Decision Process
(MDP) and utilize a model-free Q-learning technique of RL to enable the wearable
device to make optimal task offloading decisions without prior knowledge. Further-
more, we evaluate the performance of the proposed framework through extensive
simulations for various applications and system configurations conducted in the ns-3
network simulator. We also show how varying the main system parameters of the Q-
learning algorithm affects the overall performance. Finally, as part of the conclusion,
we also highlight some potential future research directions.
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SOMMARIO

Il mercato dei dispositivi personali sta assistendo a una rapida evoluzione dovuta
allo sviluppo di componenti elettronici di piccole dimensioni, seguita dal numero
crescente di varie applicazioni a valore aggiunto e di intrattenimento. I dispositivi
mobili personali, chiamati anche dispositivi indossabili, includono dispositivi come
smartphone, smartwatch, occhiali intelligenti, gioielli intelligenti, vestiti intelligenti
e visori per realtà aumentata o virtuale, solo per citarne alcuni. Questi dispositivi in-
dossabili hanno lanciato una nuova tendenza nell’era IoT, ovvero IoWT. I dispositivi
indossabili sono piccoli dispositivi in grado di rilevare, archiviare, elaborare e scam-
biare dati per assistere gli utenti migliorando le loro attività quotidiane attraverso
varie applicazioni.

Con il crescente interesse dei consumatori per i dispositivi indossabili, esiste una
domanda costante per lo sviluppo di nuove applicazioni ad alta intensità di calcolo
e critiche in termini di latenza, come giochi online interattivi, realtà virtuale/au-
mentata, streaming video ad altissima definizione, guida autonoma, elaborazione di
immagini, e apprendimento automatico, tra gli altri. Storicamente, i dispositivi in-
dossabili e portatili non sono stati progettati per eseguire operazioni ad alta intensità
di calcolo, principalmente a causa di vincoli quali la capacità limitata della batteria e
il surriscaldamento. Di conseguenza, la necessità di sviluppare soluzioni ad alta effi-
cienza energetica è diventata indispensabile per soddisfare le richieste dei più recenti
sensori e applicazioni indossabili energivori, con l’obiettivo di soddisfare le aspetta-
tive degli utenti. Pertanto, l’efficienza energetica nei dispositivi indossabili è emersa
come un ambito di ricerca in evoluzione.

Questa tesi utilizza un approccio di revisione sistematica della letteratura per
condurre un’indagine completa di soluzioni efficienti dal punto di vista energetico
proposte per diverse applicazioni IoWT. Viene esaminata attentamente la ricerca es-
istente pubblicata dal 2010 al 2020 e viene presentata una tassonomia delle soluzioni
disponibili in base all’area di applicazione di interesse. Inoltre, viene fornita un’analisi
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qualitativa e comparativa approfondita degli studi esistenti all’interno di ciascuna
categoria evidenziando i meriti, i demeriti, i principali parametri di prestazione e i
principali contributi di ciascuna soluzione. Inoltre, sono state fornite diverse analisi
statistiche che forniscono approfondimenti sulle tendenze di pubblicazione in questo
campo di ricerca, sugli strumenti comunemente utilizzati per valutare le soluzioni
proposte e sulle tecnologie di comunicazione frequentemente utilizzate nei dispositivi
indossabili. Inoltre, viene fornita una discussione dettagliata che delinea i principali
approcci presenti in letteratura per migliorare l’efficienza energetica nei dispositivi
indossabili, sottolineando al tempo stesso le sfide associate.

Se da un lato i dispositivi indossabili hanno il potenziale per rivoluzionare com-
pletamente la vita quotidiana degli individui, dall’altro comportano anche una serie
di nuove sfide da affrontare per la ricerca e la comunità industriale. Queste sfide
includono la crescente domanda di maggiore potenza di calcolo, migliori capacità di
comunicazione, funzionalità avanzate di sicurezza e privacy, dimensioni ridotte, peso
minimo e migliore comfort per l’utente. Molte di queste sfide derivano dalla potenza
limitata della batteria e dalle risorse di calcolo insufficienti disponibili sui dispositivi
indossabili.

In un tale contesto, l’offloading dei task computazionali è una tecnica che con-
sente ai dispositivi indossabili di sfruttare le risorse disponibili sui dispositivi vicini
alla periferia della rete, non solo per conservare le risorse limitate del dispositivo in-
dossabile, ma anche per aumentarne la capacità computazionale al fine di migliorare
l’esperienza complessiva dell’utente. Pertanto, questa tesi presenta un’analisi numer-
ica dell’offloading dei task per i dispositivi indossabili in un’architettura edge a due
livelli, considerando diversi scenari in cui i task vengono delegati dal dispositivo in-
dossabile a un dispositivo situato all’edge della rete. Un dispositivo di questo tipo
potrebbe essere uno smartphone abbinato al dispositivo indossabile o un server per-
iferico co-locato con la stazione base cellulare. Viene fornita una valutazione com-
pleta delle prestazioni, in termini di metriche significative e condotta in un’ampia
varietà di contesti realistici in termini di richieste di task, capacità di elaborazione
e velocità di trasmissione dei dati, individuando le circostanze in cui l’offloading è
conveniente e quando non lo è.

Successivamente, questa tesi propone un framework per l’offloading di task basato
su RL in IoWT. Il processo di offloading dei task è formulato considerando il com-
promesso tra il consumo energetico e il tempo di esecuzione del task. Inoltre, si
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modella il problema del task offloading come unMDP e utilizziamo una tecnica di Q-
learning priva di modelli di RL per consentire al dispositivo indossabile di prendere
decisioni ottimali senza conoscenze preliminari. Inoltre, si valutano le prestazioni
del framework proposto attraverso simulazioni approfondite per varie applicazioni
e configurazioni di sistema condotte nel simulatore di rete ns-3. Si mostra anche come
la variazione dei principali parametri di sistema dell’algoritmo Q-learning influisce
sulle prestazioni complessive. Infine, per concludere vengono evidenziate anche al-
cune potenziali direzioni di ricerca future.

xiii



xiv



CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Systematic Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Research Methodology . . . . . . . . . . . . . . . . . . 11

2.2 Classification of Existing Applications and Related Technologies . 12
2.2.1 Healthcare Applications . . . . . . . . . . . . . . . . . 16
2.2.2 Activity Recognition Applications . . . . . . . . . . . . 19
2.2.3 Smart Environment Applications. . . . . . . . . . . . . 22
2.2.4 General Solutions for Wearable Applications . . . . . . 24
2.2.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . 26

2.3 Strategies to Improve Energy Efficiency of Wearables . . . . . . . 31
2.3.1 Task Offloading . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Duty Cycling . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Energy Aware Routing . . . . . . . . . . . . . . . . . . 34
2.3.4 Low-power Hardware Design . . . . . . . . . . . . . . 34
2.3.5 Low-power Communications . . . . . . . . . . . . . . . 35
2.3.6 Adaptive Transmission Power Control . . . . . . . . . . 35
2.3.7 Compressive Sensing . . . . . . . . . . . . . . . . . . . 36
2.3.8 Data Compression . . . . . . . . . . . . . . . . . . . . 37
2.3.9 Approximate Computing . . . . . . . . . . . . . . . . . 37
2.3.10 Security Primitives-related Aspects . . . . . . . . . . . . 38

xv



2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Task Offloading for Wearables in a Two-Tier Edge Architecture . . . . . 41
3.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Reference Architecture and Main Assumptions . . . . . 43
3.2.2 Mathematical Formulations . . . . . . . . . . . . . . . . 45

3.3 Numerical Results and Discussion . . . . . . . . . . . . . . . . . 51
3.3.1 Local Task Execution on the Wearable . . . . . . . . . . 52
3.3.2 Local Task Execution vs Offloading to the Edge . . . . . 53
3.3.3 Impact of Task Processing Requirements . . . . . . . . . 57

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Reinforcement Learning-based Task Offloading for Wearables. . . . . . . 61
4.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Heuristics-based Solutions . . . . . . . . . . . . . . . . 64
4.2.2 RL-based Solutions . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Our Contributions . . . . . . . . . . . . . . . . . . . . 68

4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 System Architecture . . . . . . . . . . . . . . . . . . . 69
4.3.2 Task Attributes . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Main Assumptions . . . . . . . . . . . . . . . . . . . . 70
4.3.4 Local Computing . . . . . . . . . . . . . . . . . . . . . 72
4.3.5 Task offloading to the smartphone . . . . . . . . . . . . 72

4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Components of a Q-learning-based Solution . . . . . . . 74
4.4.2 Q-learning Problem Formulation. . . . . . . . . . . . . 76

4.5 Proposed Q-learning-based Framework . . . . . . . . . . . . . . . 77
4.5.1 Q-learning Algorithm for Task Offloading. . . . . . . . 78

4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.1 Simulation Environment . . . . . . . . . . . . . . . . . 80
4.6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . 83

xvi



4.6.3 Results and Discussion . . . . . . . . . . . . . . . . . . 84
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Main Research Findings . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Challenges and Future Research Directions. . . . . . . . . . . . . 97

5.2.1 Parallel Task Execution and Split Computing . . . . . . 97
5.2.2 Approximate Computing . . . . . . . . . . . . . . . . . 98
5.2.3 Direct Internet Connectivity . . . . . . . . . . . . . . . 98
5.2.4 Personalized Wearable Clouds . . . . . . . . . . . . . . 99
5.2.5 Security and Privacy . . . . . . . . . . . . . . . . . . . 99
5.2.6 Energy Harvesting . . . . . . . . . . . . . . . . . . . . 100
5.2.7 Proximity Detection . . . . . . . . . . . . . . . . . . . 100
5.2.8 Comfort and ease-of-use. . . . . . . . . . . . . . . . . . 101

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xvii



List of Figures

1.1 Forthcoming wearable integration scenario. . . . . . . . . . . . . . . . 1

2.1 Main steps involved in the executed systematic literature review process 12

2.2 Year-wise distribution of number of articles analyzed: Red Lines cor-
respond to mean and mean +/- standard deviation. . . . . . . . . . . . 13

2.3 Main application domains of wearables with high energy efficiency im-
pact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Percentage of works targeting each application area in the analysed lit-
erature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Percentage of the evaluation methods used in the analysed literature . . 30

2.6 Percentage of the network simulators used in the analysed literature . . 30

2.7 Percentage of the communication technologies used in the analysed lit-
erature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Distribution of the energy-efficiency analysis elaboration in the ana-
lyzed papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Reference architecture and scenarios of interest: (1) – Local execution
on wearable; (2) – Offloading to the smartphone; (3) – Offloading to
the edge server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Task accomplishment time for local task execution on the wearable
with varying CPU frequencies and input data sizes . . . . . . . . . . . 52

3.3 Energy consumption for local task execution on the wearable with
varying CPU frequencies and input data sizes . . . . . . . . . . . . . . 53

3.4 Task accomplishment time with varying input data sizes for: (1) local
task execution at the wearable, (2) task offloading to the smartphone,
(3) task offloading to the edge server (d = 100, 300, 600m) . . . . . . . 54

3.5 Task accomplishment time for two different input data sizes (D=0.42MB
and D=2MB) when varying distance between the smartphone and edge
server for: (1) local task execution at the wearable, (2) task offloading
to the smartphone, (3) task offloading to the edge server . . . . . . . . 55

xviii



3.6 Task accomplishment time breakdown for an input data size of 2MB
for: (1) local task execution at the wearable, (2) task offloading to the
smartphone, (3a) task offloading to the edge server (d=100m), (3b) task
offloading to the edge server (d=300m), (3c) task offloading to the edge
server (d=600m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Energy consumption breakdown for an input data size of 2MB for: (1)
local task execution at the wearable, (2) task offloading to the smart-
phone, (3a) task offloading to the edge server (d=100m), (3b) task of-
floading to the edge server (d=300m), (3c) task offloading to the edge
server (d=600m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Task accomplishment time for an input data size of 2MB with varying
task computational intensity for: (1) local task execution at the wear-
able, (2) task offloading to the smartphone, (3) task offloading to the
edge server (d = 100, 300, 600m) . . . . . . . . . . . . . . . . . . . . . 58

3.9 Energy consumption per device for an input data size of 2MB with
varying task computational intensity for: (1) local task execution at
the wearable, (2) task offloading to the smartphone, (3) task offloading
to the edge server (d=300m) . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 The Internet of Wearable Things concept . . . . . . . . . . . . . . . . 61
4.2 System architecture and the Q-learning-based task offloading process . . 69
4.3 Average task accomplishment time for different applications for the

three task execution scenarios (βE = βT = 0.5). . . . . . . . . . . . . . . 80
4.4 Average energy consumption for different applications for the three

task execution scenarios (βE = βT = 0.5). . . . . . . . . . . . . . . . . . 81
4.5 Average energy consumption breakdown for different applications for

Local execution vs Offloading scenarios (βE = βT = 0.5). . . . . . . . . . 82
4.6 Average task accomplishment time per task using Q-learning for dif-

ferent applications when varying values of βE and βT . . . . . . . . . . . 83
4.7 Average energy consumption per task using Q-learning for different

applications when varying values of βE and βT . . . . . . . . . . . . . . 84
4.8 Percentage of tasks offloaded by the wearable device using Q-learning

for different applications when varying values of βE and βT .. . . . . . . 86
4.9 Average total cost per task using Q-learning for different applications

when varying values of βE and βT . . . . . . . . . . . . . . . . . . . . . 87

xix



4.10 Task accomplishment time distribution for different applications using
Q-learning (βE = βT = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Energy consumption distribution for different applications using Q-
learning (βE = βT = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.12 Task offloading distribution for different applications using Q-learning
(βE = βT = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xx



List of Tables

2.1 Summary of recent studies in healthcare domain. . . . . . . . . . . . . 16
2.2 Main parameters considered by recent studies in healthcare domain . . 20
2.3 Summary of recent studies in activity recognition domain. . . . . . . . 21
2.4 Main parameters considered by recent studies in activity recognition

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary of recent studies providing solutions for Smart Environ-

ments domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Main parameters considered by recent studies in Smart Environments

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Summary of recent studies providing general solutions using wearables . 25
2.8 Main parameters considered by recent studies providing general solu-

tions for wearable applications . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Examples of wearable devices per application area . . . . . . . . . . . . 27

3.1 List of main notations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Main system parameters . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 List of main notations . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Main system parameters . . . . . . . . . . . . . . . . . . . . . . . . . 79

xxi



xxii



ABBREVIATIONS

3D Three Dimensional

AI Artificial Intelligence

AR Augmented Reality

BAN Body Area Network

BLE Bluetooth Low Energy

CNN Convolutional Neural Network

DRL Deep Reinforcement Learning

EH Energy Harvesting

ECG Electrocardiography

EEG Electroencephalography

EMG Electromyography

HVAC Heating, Ventilation, and Air Conditioning

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IoV Internet of Vehicles

IoWT Internet of Wearable Things

KM Kuhn-Munkras algorithm

KPI Key Performance Indicator

LTE Long-Term Evolution

M2M Machine-to-Machine

MAC Medium Access Control

MANET Mobile Ad Hoc Network

xxiii



MCC Mobile Cloud Computing

MCSS Multicombined Computing Sorting Segmentation

MDP Markov Decision Process

MEC Mobile Edge Computing

MEMS Miniature Micro-Electro-Mechanical

MR Mixed Reality

ML Machine Learning

NB-IoT Narrowband IoT

QoE Quality-of-Experience

QoS Quality-of-Service

RFID Radio-Frequency Identification

RL Reinforcement Learning

RMSE Root Mean Square Error

SLR Systematic Literature Review

SNR Signal to Noise Ratio

SoC System on Chip

STLF State Loss Function

SYLF System Loss Function

TAP Task Assignment Problem

TDMA Time-Division Multiple Access

UAV Unmanned Aerial Vehicle

V2V Vehicle-to-Vehicle

VR Virtual Reality

WBAN Wireless Body Area Network

WBSN Wearable Body Sensor Network

Wi-Fi Wireless Fidelity

WIoT Wearable Internet of Things

XR Extended Reality

xxiv



1 INTRODUCTION

This chapter serves as an introduction to the topic, outlining the motivation behind
this research. It presents the main research questions we aimed to address through
this thesis followed by the contributions it makes. Finally, it provides an overview
of the thesis structure.

1.1 Motivation

General Wearable Ecosystem

First responders Mass consumerFamily and pets

Figure 1.1 Forthcoming wearable integration scenario [1].

The emergence of compact, affordable, and battery-powered computing compo-
nents, such as microprocessors and microcontrollers, has paved the way for designing
a diverse range of small-scale devices that can connect both with each other and to
the Internet. These small form-factor devices serve as the foundation for the IoT
concept [2]. This technological evolution has enabled millions of objects to estab-
lish seamless real-time communication with the Internet, enhancing accessibility and
control. More recently, a new paradigm known as the IoWT has emerged, focusing
on smart devices that are worn or carried near the body [3].
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The IoWT, also known as the Wearable Internet of Things (WIoT) [4], involves
a fusion of diverse smart wearable devices, as illustrated in figure 1.1. These include
smartwatches, wristbands, smart shoes, smart jewelry, smart glasses, adhesive skin
patches, and more. These wearables come equipped with an array of sensors, com-
putational units, and communication modules, enabling them to continuously sense,
process, and exchange various types of data [5].

Another closely related research domain is Wearable Body Sensor Networks
(WBSNs) [6] also commonly known as,Wireless BodyAreaNetworks (WBANs) [7].
These fields primarily focus on applications related to human health, which shares
some common ground with the IoWT. However, there exists a slight dissimilarity
between WBSNs/WBANs and IoWT in terms of the number of sensors or devices
involved. WBSNs or WBANs typically aim to incorporate a larger number of wear-
able sensor nodes, often up to 50 nodes, forming a network that collaboratively
works toward a common goal. For instance, multiple wearable sensor nodes collab-
oratively monitoring an individual’s overall health. Whereas, IoWT devices are typ-
ically standalone units that are presently being used for a wide range of applications,
including health monitoring, human activity recognition, tracking and localization,
as well as various gaming and entertainment gadgets [8], [9]. Furthermore, wearables
enhance user convenience and efficiency in everyday tasks by providing visual and
auditory alerts, such as incoming calls and messages, delivering weather updates, and
displaying essential real-time information [10] to name a few. These capabilities have
the potential to revolutionize everyday human activities, contributing to an overall
improvement in quality of life [11], [12].

Currently, there is a significant surge in consumer fascination with wearable de-
vices with exponential growth anticipated for upcoming years. A recent analysis of
market trends indicates that the wearable technology sector is forecasted to reach
more than 150 billion EUR by 2028 [13]–[15].

Nonetheless, the transition in emphasis from traditional smartphones to intelli-
gent wearables has introduced an array of research challenges that need to be tackled
by the scientific, research, and industrial sectors. In addition to the expanding and
diverse application domains, there is also a surge in the need for enhanced wearable
performance. Presently, wearables encounter various limitations including limited
battery lifetime, computational and communication capability, security and privacy
features, physical design, weight, and user comfort, among other factors [16], [17].
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The demand for highly energy-efficient solutions has surged in parallel with the
advancements in wearable technology and the growing user interest in wearables
for a diverse range of value-added and entertainment applications. Furthermore,
the frequent need to recharge personal devices and electronic gadgets has become
increasingly burdensome and inconvenient for users. As a result, energy efficiency
in wearables has emerged as the prime focus in research. Although, there has been a
significant advancement in designing efficient batteries to extend device battery life;
there is also a concurrent increase in the demand for enhanced processing power and
the complexity of applications. Hence, the primary challenge originates from the
constrained computational capabilities and limited battery life of these devices [16],
[18], which limit their utility. Therefore, the development of highly energy-efficient
solutions has become crucial to meet the requirements of the latest power-intensive
wearable sensors and applications, catering to the evolving user demands.

Over the years, numerous techniques have been proposed in the literature geared
towards enhancing the computational capabilities as well as improving energy effi-
ciency of wearable devices [1]. Mobile Edge Computing (MEC) has recently emerged
as a promising solution that enables mobile devices with limited resources to use
task offloading to leverage the high energy, computation, and storage capabilities
of nearby devices such as more powerful smartphones as well as standalone edge
servers or those co-located with Wi-Fi Access Points (APs) / Cellular network Base
Stations (BSs) [19], [20]. Task offloading is the process of transferring input data for
a task, initially created on the wearable device, to a nearby computing entity with
enhanced resources for processing. Subsequently, the processed result is returned to
the wearable device where the task originated [21]. Task offloading not only im-
proves the energy efficiency of resource constrained devices such as a wearables but
also brings additional advantages such as enhanced storage and computational capa-
bilities beyond energy conservation. However, the benefits achieved are not usually
obvious and necessitate a case-by-case analysis to determine when, what, and where
to offload. Different applications may have varying computation/communication
requirements. For instance, there can be scenarios where the energy spent by the
wearable in transferring data to the task executor node might exceed the energy
used for local computation, rendering task offloading inefficient. Similarly, certain
conditions can lead to an increase in the overall task accomplishment time when of-
floading tasks. For instance, it can occur when transferring large input data across
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dynamic/low-capacity wireless connections [22]. Therefore, it is essential to accu-
rately estimate the benefits of task offloading in terms of energy consumption and
its alignment with the latency requirements of diverse applications.

Additionally, the integration of Artificial Intelligence (AI) into Edge Computing
has recently emerged as an active research area [23]. Particularly, Machine Learning
(ML) approaches like RL can provide promising self-learning solutions. Unlike the
conventional supervised and unsupervised ML techniques, in RL the agent does not
need to be trained with extensive training data samples to predict the output of new
inputs. Rather, leveraging Q-learning, a RL-based technique, can enable embedding
intelligence into IoWT devices, such as wearables, to allow them to iteratively learn
from their own experiences through trial and error, to make optimal task offloading
decisions in varying situations based on a predefined reward function without prior
knowledge [24].

1.2 Research Questions

Overall, the goal of this thesis is to advance the state of knowledge in energy effi-
ciency optimization for the IoWT technology by investigating the current research
landscape. Moreover, it includes identifying the fundamental challenges inherent
to the wearable technology development. Furthermore, it involves exploring the
potential benefits and limitations of efficient computation techniques such as task
offloading, and leveraging Q-learning, to enhance the overall performance.

In this context, we set forth the following research questions to be addressed in
this thesis:

Q1. What is the current state of research focused on energy efficiency in the IoWT
technology, including year-wise publication trends, main application areas,
performance parameters, evaluation tools, prevalent wireless communication
technologies, and strategies for enhancing energy efficiency?

Q2. What are the potential benefits and limitations of task offloading for wear-
ables in multi-tier edge architectures in terms of task accomplishment time
and energy consumption, considering realistic settings regarding computing
task requirements, device capabilities, and inter-device distance?

Q3. How can Q-learning, a RL-based technique, be effectively utilized to optimize
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task offloading for wearables in an edge computing framework to enhance their
overall performance, network resource utilization, and end-user experience?

1.3 Contributions

The detailed contributions this thesis provides are organized in 3 chapters, each cor-
responding to a research question from the list presented in section 1.2. Chapter 1
(C1), focuses on the energy efficiency aspect of wearable devices in the IoWT. Chap-
ter 2 (C2), quantifies the benefits of task offloading for wearables in an edge-assisted
architecture. Chapter 3 (C3), explores the potential application of ML to optimize
the task offloading process on wearable devices.

C1. A Systematic Literature Review (SLR) on Energy Efficiency in the IoWT
The main contributions (detailed in chapter 2) are summarized as follows:

• A taxonomy of the IoWT solutions focused on energy efficiency is presented,
classifying them into four categories: healthcare, activity recognition, smart
environments, and general solutions, based on the targeted application area.

• A qualitative and comparative analysis of prior research solutions is provided,
highlighting their merits, demerits, key performance metrics, and major con-
tributions.

• A statistical analysis of the available solutions is provided interms of year-by-
year publications, application areas, evaluation mechanisms, simulation plat-
forms, and communication technologies.

• A summarizing discussion is presented regarding the main approaches adopted
in the literature for enhancing energy efficiency in wearables, highlighting the
benefits and associated challenges.

C2. Task Offloading for Wearables in a Two-Tier Edge Architecture
The main contributions (detailed in chapter 3) are summarized as follows:

• A two-tier edge architecture for task offloading from wearables to the edge is
presented that includes both a smartphone and an edge server as potential task
executors.

• An in-depth analysis of task execution performance on wearable devices is
provided, identifying the boundaries and constraints that come into play.
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• A detailed discussion is provided on the conditions under which task offload-
ing to the edge can improve performance and to what extent. We investigate
two important metrics, i.e., task accomplishment time and energy consump-
tion due to the computational and communication processes of mobile devices
involved in the task offloading procedure. A mathematical formulation is pro-
posed for these metrics to present an analysis that provides a comprehensive
and adaptable analytical playground, including a wide array of practical sce-
narios that factor in computing task requirements, device capabilities, and the
spatial separation between the entities involved.

C3. Reinforcement Learning-based Task Offloading for Wearables
The main contributions (detailed in chapter 4) are summarized as follows:

• An edge computing framework is proposed involving a wearable device paired
to the user’s smartphone (acting as an edge node for the wearable) to enhance
the overall user experience by optimizing task accomplishment time and en-
ergy consumption of the battery-powered devices involved.

• A mathematical formulation is provided for deriving the desired performance
metrics, i.e., task accomplishment time and energy consumption for local com-
putation and offloading scenarios.

• The task offloading procedure is formulated as a MDP and a model-free Q-
learning-based algorithm for task offloading is proposed that adapts to the
variations in network dynamics to make the best possible use of computation
resources in the system.

• The performance analysis of the proposed algorithm is provided in terms of
different parameters including average task accomplishment time, average en-
ergy consumption, percentage of tasks offloaded, and total cost. The analysis
is based on extensive simulations performed in the ns-3 Network Simulator
that utilizes realistic communication models. The simulations are carried out
for multiple applications under a wide variety of realistic settings while also
showing how varying main system parameters of the Q-learning algorithm
affects overall performance.
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1.4 Thesis Outline

This thesis is organized into 5 chapters. A brief description regarding the content of
each chapter is as follows:

• Chapter 1 provides an introduction to the topic, the motivation behind this
research, main research questions to be addressed, and the thesis outline.

• Chapter 2 addresses research question (Q1) by presenting a SLR of state-of-
the-art solutions aiming to improve the energy efficiency of wearable devices
in the IoWT.

• Chapter 3 addresses research question (Q2) by presenting a numerical analysis
of the benefits task offloading can bring to wearables in terms of task accom-
plishment time and energy consumption in a two-tier edge architecture.

• Chapter 4 addresses research question (Q3) by providing details of the pro-
posed RL-based framework enabling wearables tomake intelligent task offload-
ing decisions.

• Chapter 5 draws the major conclusions while also highlighting avenues for
future research.

Bibliography is included at the end of this thesis.
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2 SYSTEMATIC LITERATURE REVIEW

This chapter focuses on the SLR of state-of-the-art solutions aiming to improve the
energy efficiency of wearable devices in the IoWT.

In section 2.1, we provide a brief background on the concept of energy efficiency
for wearables and the significance of this work. We then provide details on the con-
tributions made through this work followed by the research methodology adopted.

Section 2.2 provides a classification of the existing works as well as presents a
performance, statistical, and qualitative analysis. Moreover, for each classification
category, we present a consolidated summary to give the merits and demerits of each
work as well as define the main performance parameters considered.

Section 2.3 presents the main strategies available in the literature to enhance en-
ergy efficiency of wearable devices while also highlighting their benefits and limita-
tions.

Finally, section 2.4 concludes this chapter by providing a summary of the findings
based on this SLR.

2.1 Background

Wearables are still facing numerous challenges. However, the main constraint con-
tinues to be the limited battery lifespan of these devices, as highlighted in various
research studies [18], [25], [26]. Consequently, the development of energy-efficient
solutions for these devices becomes critically important to extend the battery lifetime
of wearable devices while simultaneously achieving the desired performance of their
applications.
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Following the increasing interest of the consumer market towards wearable tech-
nology, there have been substantial contributions from the scientific and research
community. Continuous attempts are being made to design highly efficient solu-
tions aiming to tackle the related challenges and exploit the full potential of wearable
technology. Consequently, several surveys have been carried out in the field provid-
ing insights on wearable computing evolution as one of the potential solutions to
solve the energy efficiency challenge inherent to wearables.

For example, Seneviratne et al. [8] presented a survey and categorization of var-
ious commercially available wearable devices based on their functionality and ease
of wear. It presents limited strategies, such as battery advancements, efficient sens-
ing, and Energy Harvesting (EH). Similarly, Tifenn et al. [27] provided a survey of
energy-efficient techniques for wearable sensor networks. However, the emphasis
is confined to health-related human context recognition applications. Additionally,
Williamson et al. [25] presented the energy challenges for wearable sensing focusing
on the Miniature Micro-Electro-Mechanical (MEMS)-based inertial measurement
units. Further, Sun et al. [28] provided a survey of the enabling communication
technologies that can facilitate wearable devices for contemporary and prospective
applications.

Moreover, some surveys concentrate on the use of wearables for a specific ap-
plication such as health monitoring [29], activity recognition [30], [31], assisted
living [32], mobile crowdsensing [33], smart garments [34], and indoor position-
ing [35].

Among the aforementioned studies, none of them are explicitly focusing on the
energy efficiency aspect, rather briefly mention the challenge. Furthermore, a sta-
tistical analysis of recent advancements in the domain of energy efficiency within
the context of IoWT was missing. Therefore, we provide a comprehensive review
of the state-of-the-art energy efficiency solutions for wearables employing the SLR
methodology to bridge this gap in IoWT technology.

2.1.1 Contributions

The main contributions we provide in this chapter are briefly reiterated as follows:

• We presents a taxonomy of the IoWT solutions based on the targeted applica-
tion area.
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• We presents a detailed qualitative and comparative analysis of existing solu-
tions.

• We presents an insightful statistical analysis of the available solutions.

• We present a summarizing discussion regarding the main energy efficiency
techniques available in the literature.

2.1.2 Research Methodology

In this chapter, we follow the PRISMA guidelines, proposed in [36] as our research
methodology to carry out this SLR.

The first step was to determine the appropriate keywords and associated syn-
onyms to create a search expression. After a brief research of the literature, the
following search expression was formed:

(“energy efficien*” OR “energy conserv*” OR “low power”)
AND (wearable*)
AND (edge OR cloud OR fog OR approximate OR IoT OR “Internet of
Things” OR performance)

A search was conducted with the identified keywords for the 2010 – 2020 period
in the two most widely accepted research databases in Information and Communi-
cation Technology (ICT) domain, namely Scopus [37] and Web of Science [38]. We
collected a set of 2370 potentially relevant publications (as of July 2020), excluding
grey literature, pre-prints, and duplicates. We then scrutinized the titles, keywords,
and abstracts of the publications to identify articles that described at least topics re-
lated to energy efficiency/consumption in the IoWT field. The following exclusion
criteria were formulated to refine the search results during the paper titles and ab-
stracts’ initial screening:

C1. Not related to wearable networks/computing;

C2. Pure survey and review articles;

C3. Works with no technical content;

C4. Full text not available.
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The complete selection process is given in figure 2.1. After applying the refine-
ment procedures, we reduced the articles number to 50 potentially relevant papers.
After studying the selected literature references and citations, we increased the num-
ber to 151works to be included in this systematic review focused on energy efficiency
in the IoWT.

2
5

31

4

Databases search
2010-2020, keywords
Scopus, Web of Science1

Process results
Scopus and WoS
Total: 23702Revise the list of sources

Extend and update publications
Total: 1515

Refine and Analyze
Read and analyze selected
papers: 504

Screening
Title and abstract
Follow the exclusion criteria3

Figure 2.1 Main steps involved in the executed systematic literature review process [1].

2.2 Classification of Existing Applications and Related Technologies

An analysis of the selected papers is presented in this section, including a classi-
fication, statistical analysis, and qualitative analysis. The year-wise distribution is
provided in figure 2.2. An increasing trend in the number of publications can be
observed in the IoWT domain while some studies from 2019 and 2020 may still be
not indexed or under review.

The selected papers were categorized into four main divisions, namely, healthcare,
activity recognition, smart environments, and general solutions, based on the tar-
geted application area. A variety of applications benefit from IoWT energy-efficient
technologies in each category, as depicted in figure 2.3.
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Figure 2.2 Year-wise distribution of number of articles analyzed: Red Lines correspond to mean and
mean +/- standard deviation [1].
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Figure 2.3 Main application domains of wearables with high energy efficiency impact [1].

Figure 2.4 shows a statistical analysis of various application areas in wearable tech-
nology. A significant portion of research articles falls within the realm of theHealth-
care category, constituting approximately 48% of the total. Because numerous wear-
able devices have historically emerged in the healthcare sector [39] designed for con-
tinuous patient monitoring. In this context, wearables have been predominantly
employed for tracking essential human physiological indicators. This prevailing pat-
tern can be attributed to the initial development of wearables for specific medical
applications, including continuous Electrocardiography (ECG) monitoring of heart
activity, auditory aids for individuals with hearing impairments, and robotic limbs
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Figure 2.4 Percentage of works targeting each application area in the analysed literature [1].

for the medically paralyzed patients, etc.
Clearly, wearables have progressively extended their utility beyond the health-

care sector. For instance, research centered on human activity recognition has made
a substantial contribution, accounting for up to 20% of the total. Activity recogni-
tion is primarily used to observe and record physical movements of individuals. For
example, wearables have seen an increasing adoption in delivering diverse services
based on user activities, such as suggesting points of interest, offering fitness guid-
ance via step counting, and monitoring user’s sports activities [40], [41]. Similarly,
wearables have also facilitated location-based services [42], applications involving ges-
ture recognition [43], and the monitoring of industrial laborers [44]. Therefore, all
research works utilizing wearables to track user activities are categorized under the
umbrella of Activity Recognition.

Numerous research studies have presented general IoT-based solutions, employ-
ing wearables that can be utilized across various domains. These solutions account
for approximately 22% of the total. Likewise, wearables have also been integrated
into other application domains, including Smart Environments, representing a share
of around 10%.

Furthermore, wearables have discovered practical applications within the domain
of Smart Environments. For instance, the incorporation of wearables has been pro-
posed in the context of smart buildings, aiming to oversee and curtail electricity
consumption by autonomously deactivating unnecessary electrical devices through
real-time monitoring of occupants and environmental conditions [45], [46]. Simi-
larly, certain studies employ wearables to evaluate and optimize users’ thermal com-
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fort levels within smart environments by continuous temperature monitoring and
automated management of heating/cooling systems [47]. Additionally, wearables
have the potential to empower individuals with disabilities, enhancing their ability
to independently carry out daily activities [48]. Hence, all research works utilizing
wearables for applications within the concept of smart environment are organized
under this category.

Lastly, a subset of studies either do not explicitly specify the targeted application
domain or are adaptable to multiple areas of application. Such studies are catego-
rized under the label of General Solutions. In these cases, the researchers generally
elaborate on the technology, enablers, or methodologies, without emphasis on any
singular application domain.

The following subsections present a discussion on characteristics along with quali-
tative and performance analysis of the papers falling under each category. We provide
an overview of the identified solutions by presenting the aim, merits, demerits, and
major findings for each application area in tables 2.1, 2.3, 2.5, and 2.7. A com-
parative assessment of solutions is provided in terms of the main performance pa-
rameters for each application area including traditional common Key Performance
Indicators (KPIs) parameters, e.g., latency, energy consumption, and throughput, as
well as specific ones in Tables 2.2, 2.4, 2.6, and 2.8.

It is important to highlight that certain application areas use performance pa-
rameters tailored to their specific contexts. For instance, in the healthcare domain,
emphasis is on Signal Reconstruction Quality, which gauges the precision of signal
reconstruction at the gateway node based on sensor-recorded observations. Another
pertinent parameter is Network Lifetime, which denotes the operational duration of
a network until one of its nodes depletes its energy. Moreover, Accuracy measures
the capability of a wearable device to predict the occurance of a specific disease. Fur-
thermore, Signal to Noise Ratio (SNR) quantifies the relative strength of the desired
signal in relation to the noise level. Additionally, Compression Ratio serves as a met-
ric showcasing the extent to which a dataset is compressed. Lastly, Reliability is given
as the probability of encountering failure within the system.

Furthermore, in activity recognition applications, the Sensitivity metric indicates
a wearable device’s capability to promptly detect user activities. In the context of
smart environments, the parameter of Video Quality is employed for crowdsensing
applications. Lastly, within the domain of general solutions, both Execution Time
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and Transmission Time are considered, serving as indicators of the speed at which a
wearable device conducts computations and transmits data to a gateway node.

The following subsections present a comprehensive overview of the applications
along with the related performance metrics.

2.2.1 Healthcare Applications

Table 2.1 Summary of recent studies in healthcare domain [1].

Ref. Aim of study & Major findings Merits Demerits

[49]
2020

Real time compressive sensing-based re-
covery of the ECG signals at the IoT
gateway using multicore processors

Improved latency, privacy
and energy efficiency; in-
dependent on cloud infras-
tructures

Only suitable for sparse
signals

[50]
2019

An IoT architecture relaying on open
standards (oneM2M and openEHR)
and allowing for the interoperability be-
tween different devices and software to
track physiological parameters of pa-
tients in emergency wards

Interoperability, low la-
tency, low cost, enhanced
battery lifetime, efficient
ESP8266 Wi-Fi nodes

No real-time validation,
high latency with deep
sleep states

[51]
2019

An energy-efficient data-criticality
aware routing protocol for WBANs

Enhanced network life-
time, emergency data de-
livery

No mobility support, sin-
gle point of failure

[52]
2019

A wearable cardiovascular healthcare
system with cross-layer optimization
comprising an efficient sensing patch
with embedded signal denoising, data
compression, and data transmission ca-
pabilities

Miniaturized footprint,
low power consump-
tion, embedded signal
processing capability

Low accuracy on the mo-
bile device side

[53]
2018

A wearable ring sensor for monitoring
autonomic nervous system activities

Small size, ease of use, low
cost, mobile application

No comparison with
other devices

[54]
2018

AMDP-based transmission strategy for
multi-hop intra-BAN communication

Adaptive transmission
power optimization

Limited performance
comparisons

[55]
2018

An efficient next-hop node selection
framework based on multi-parameter
path cost function WBAN

Energy-efficient, low
packet loss, high through-
put and extended network
lifetime

Control messages over-
head, human body move-
ment not considered
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Ref. Aim of study & Major findings Merits Demerits

[56]
2018

A wrist-worn ECG sensor measuring
heart rate variability in out-of-the-clinic
settings with Three Dimensional (3D)
printed elements for personalization,
capable of integrating with the Azure
IoT system

Low power, low weight,
personalized features

Low accuracy

[57]
2018

A wearable ring sensor with an iOS ap-
plication for remotely monitoring pa-
rameters of patients, e.g., electrodermal
activity, heart rate, locomotion, tem-
perature

Compact and miniatur-
ized design, low cost,
recording various bio-
signals from user’s finger,
high accuracy

High motion artifacts

[58]
2018

An IoT-based smart wearable armband
for stroke rehabilitation system deploy-
ing ML algorithms to strengthen the
motion patterns

Mobility support, small
size, real-time feedback of
muscle activities, person-
alization with 3D printed
robotic hand

Tested on a single sub-
ject, limited gesture recog-
nition supported

[59]
2018

A mobile real-time health monitoring
architecture based on a heterogeneous
multicore platform for ECG signal pro-
cessing

Enhanced battery life, low
latency, low power device
design

Sub-optimal performance
for clinical-grade signals
due to frequent transmis-
sions

[60]
2017

A dictionary-based lossy signal com-
pression technique for enhancing en-
ergy efficiency of wearables

Energy-efficient, high
compression efficiency

High computation cost

[61]
2017

A low-power wearable device for con-
tinuous respiratory rate monitoring us-
ing a three-axis accelerometer from the
sternum with an integrated motion ar-
tifact rejection algorithm

Efficient motion artifact
rejection to remove noisy
data

Limited mobility, not
easy-to-use, limited bat-
tery life, no real-world
testing

[62]
2017

A data-driven compressive sensing
framework that can learn signal charac-
teristics and personalized features from
physiological signals

Low computational com-
plexity, improved com-
pression ratio

No real-time validation
provided

[63]
2017

A compressed sensing-based multi-
channel EEG monitoring system
with efficient signal compression and
recovery

No prior knowledge
of the signal sparsity
required, improved re-
construction quality,
robust

No real-time validation
provided

[64]
2016

A 6LoWPAN-enabled WBAN plat-
form with 6 different biomedical sen-
sors optimized tomeet theQoS require-
ments for healthcare applications

High throughput, low
power, scalability, inter-
operability, low latency

Vulnerability to obstacles,
high packet collisions

[65]
2015

An IEEE 802.15.4 based QoS design
for WBAN MAC layer with beacon
mode deploying tree topology support-
ing high-priority data transmissions

Energy-efficient, incorpo-
rating data priority feature
for critical data

Starvation problem faced
by low priority nodes not
considered
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Ref. Aim of study & Major findings Merits Demerits

[66]
2016

A multihop WBAN configuration ap-
proach by creating a virtual cluster to
allocate slots for simultaneous transmis-
sions by using a multi-channel TDMA
approach for wearable M2M systems

Enhanced throughput,
low power consump-
tion, low latency, better
scalability

Initial setup time increases
exponentially with num-
ber of nodes

[67]
2017

A configurable bio-signal acquisition
wearable device for real-time monitor-
ing on an IoT based web interface with
a balanced trade-off between energy ef-
ficiency and data transmission rate

High data rate, low energy
consumption, compact de-
sign

Bulky, not easy-to-use

[68]
2015

A web-based motion detection system
for healthcare

Real-time bidirectional
communication

High resource consump-
tion, false alarms, lack of
analysis

[69]
2018

A patient monitoring systems deploy-
ing relay-based task offloading decision
model with the efficient recipient selec-
tion function

Low path loss, high com-
putation capacity, locally
processed packets

No experimental valida-
tion

[70]
2016

A wearable armband with a mobile
application for unobstructed measure-
ment of the ECG signal

Multiple activities sup-
port (sitting, hand
movement, jogging, and
running)

No validation on multiple
subjects, high error rate

[71]
2016

A 3DRay Launching deterministic sim-
ulation tool for feasibility and perfor-
mance optimization of the WBAN-
based e-Health systems within complex
indoor scenarios

Low processing time, high
accuracy, optimal estima-
tion of number and posi-
tion of transmitters

Patient mobility not con-
sidered

[72]
2015

A Cyber-Physical System for remote
monitoring of old age home residents in
real-world scenarios

Secure, scalable, low
power, low cost, easy
deployment

High latency, increased
energy consumption due
to the MAC retry at-
tempts

In recent times, the emergence of IoWT technology along with advancements in
wireless communication has significantly transformed the medical field [73]. Addi-
tionally, the process of sensor miniaturization has facilitated the creation of numer-
ous intelligent healthcare devices that seamlessly integrate ease-of-use and portability
while adding the ability to connect to the Internet to access cloud services. These
include wearable devices designed for continuous patient monitoring within hospital
settings [50], as well as compact gadgets engineered to continuously detect and moni-
tor diverse health indicators of individuals throughout their daily routines [56]. The
healthcare application domain of wearables covers an array of solutions, including
systems for monitoring heart and respiratory rates [61], stroke rehabilitation sys-
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tems [58], and the observation of heart, muscle, and brain activities through signals
such as ECG, Electromyography (EMG), and Electroencephalography (EEG) [74].
Various wearable devices have been developed to consistently sense and measure a
spectrum of physiological parameters in both humans and animals, including heart
rate, blood pressure, body temperature, and stress hormones among others [57].

The concept of IoWT facilitates the realization of remote patient monitoring
systems, wherein patients utilize one or more wearable devices for ongoing health
surveillance. These devices consistently track the patient’s well-being and store the
collected data within online databases, allowing the patient’s healthcare provider to
evaluate the information. Additionally, automated assistance mechanisms are being
explored for emergency scenarios. For instance, in a critical situation, a call could be
automatically initiated to the caregiver or medical staff for prompt intervention [75].

Analysis of table 2.2 reveals that performance monitoring by most of studies fo-
cus on energy consumption, followed in order by accuracy, latency, and throughput.
Notably, reliability appears to be the least explored within the domain of wearable
healthcare applications. Additionally, given the continuous monitoring of diverse
physiological parameters in most healthcare wearables, there is a tendency for these
devices to deplete their energy resources due to the extensive sensing process, leading
to redundant data generation and prolonged data processing times. Consequently, ap-
proaches such as compressive sensing and data compression emerge as highly effective
strategies for conserving energy in healthcare applications [76]. A more comprehen-
sive discussion of these strategies is presented in section 2.3.

2.2.2 Activity Recognition Applications

In recent years, the utilization of wearables has progressively extended into activity
recognition applications [77]–[79]. This expansion has been facilitated by the minia-
turization of electronic components, which has enabled the integration of multiple
sensors within a single wearable device, including accelerometers, gyroscopes, magne-
tometers, heart-rate sensors, and more. Such sensors are capable of detecting diverse
human activities [80]. Numerous applications heavily rely on the continuous mon-
itoring and documentation of human activities, spanning domains such as assessing
fitness levels through sports activities, identifying frequently visited locations, detect-
ing falls, monitoring sleep patterns and fatigue, recognizing gestures and emotions,
managing household tasks, and beyond [81]–[83]. Similarly, wearables have also
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Table 2.2 Main parameters considered by recent studies in healthcare domain [1].

Ref. Energy
Con-
sump-
tion

Signal
recon-
struc-
tion

quality

Latency Network
Life-
time

Throughput Accuracy SNR Compre-
ssion
ratio

Reliability

[49] ✔ ✔

[50] ✔ ✔ ✔

[51] ✔ ✔ ✔

[52] ✔ ✔ ✔ ✔

[53] ✔ ✔

[54] ✔ ✔

[55] ✔ ✔ ✔

[56] ✔

[57] ✔

[58] ✔

[59] ✔ ✔

[60] ✔ ✔ ✔

[61] ✔

[62] ✔ ✔

[63] ✔

[64] ✔ ✔ ✔

[65] ✔ ✔

[66] ✔ ✔ ✔

[67] ✔ ✔

[68] ✔ ✔

[69] ✔ ✔ ✔ ✔

[70] ✔

[71] ✔

[72] ✔
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found utility in tracking occupational activities and enhancing worker performance
within various work environments [84].

Likewise, wearables find practical application in habitat monitoring [85]. For
instance, observing the behaviors and activities of animals within their natural envi-
ronment, ensuring the well-being of pets, and studying the flight patterns of birds,
among others [86], [87].

Table 2.3 Summary of recent studies in activity recognition domain [1].

Ref. Aim of study & Major findings Merits Demerits

[88]
2019

A framework to co-optimize the operation
of sensors and classifiers by dynamically
controlling the sampling rate and power-
ing down accelerometer sensors for low-
intensity user activities

High accuracy, low power
consumption

Not suitable for high-
intensity user activities

[89]
2019

An embedded deep CNNmultimodal time-
series signal classification scheme

Low power, scalable Complex implementation

[90]
2018

An IoT-based solution for apportioning of
the total energy consumption of a household
to individual occupants

Accurate, scalable,
privacy-preserving

No energy apportioning
for heating, ventilation,
and air conditioning

[91]
2017

A context-aware framework to offload tasks
from wearables to the gateway and cloud

Low latency for interac-
tive user tasks, low energy
consumption for tasks un-
related to user interaction

Not tested with a battery-
operated smartphone
(only with an external
power supply)

[92]
2017

An adaptive compressed sensing framework
for coarse-grained activity recognition to
find an optimal trade-off between compres-
sion ratio of each activity type and the over-
all performance of the activity recognition
system through feedback

High accuracy, low
power, autonomous feed-
back system, adaptive
activity-specific com-
pressed sensing

Additional processing cost
for on-node feedback gen-
eration

[93]
2017

A lightweight and low-profile wearable
monitoring system for long-term activity
monitoring and recognition using two ac-
celerometers instead of a gyroscope as a low
power alternative

Low power, high indoor
efficiency, accessible to
use (wrist-worn)

Dummy data used for pro-
cessing

[94]
2016

A generalized activity recognition algorithm
for implementation in wearables facilitating
activity-based communication for the con-
nected industrial worker

Computationally in-
expensive, memory-
efficient, user-independent

Transition between states
is not detected efficiently

[95]
2018

A prototype for emotion recognition sys-
tem based on low power SoC inside a tiny
wearable device using ad hoc simplification

Low complexity, low
computational resources

Low accuracy

[96]
2019

A communication network edge mainte-
nance system based on smart wearable tech-
nology. It uses a MCSS algorithm for task
division and KM for accessing a MEC server

Reduced transmission de-
lay and energy consump-
tion, efficiency of on-site
maintenance work

Technological aspects of
the used wearable device
not provided

[97]
2016

A gesture recognition systems for industrial
workers with a ML model using a wrist-
worn wearable device

Reduced computa-
tional complexity, user-
independent

No analysis for the scarce
resources availability on
the wearable device
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Table 2.4 Main parameters considered by recent studies in activity recognition domain [1].

Ref. Energy Consumption Accuracy Latency Battery Lifetime Sensitivity

[88] ✔ ✔

[89] ✔ ✔

[90] ✔

[91] ✔ ✔

[92] ✔ ✔

[93] ✔ ✔

[94] ✔

[95] ✔ ✔

[96] ✔ ✔ ✔

[97] ✔

According to the data presented in table 2.4, the most frequently investigated
performance parameters within the activity recognition domain include energy con-
sumption and accuracy. In contrast, metrics such as latency, battery lifetime, and
sensitivity received comparatively less frequent attention.

The majority of wearables designed for activity recognition depend on continu-
ous sensing of physical movements utilizing different sensors, generating raw data.
These recorded inputs go through complex processing and analysis, involving feature
extraction and classification, to precisely identify relevant activities. This demanding
task is often accomplished through advanced ML techniques, that require powerful
computing resources [98], [99]. Given that wearables are usually small standalone
devices with inherent computational limitations, the adoption of various strategies
becomes important for energy preservation within the domain of activity recog-
nition. Approaches such as task offloading, energy-efficient hardware design, data
compression, and approximate computing emerge as highly effective in this regard.

2.2.3 Smart Environment Applications

Recently, wearables have been extensively used in many IoT applications, particu-
larly in the domain of smart environments that facilitate user-centric automation.
These smart environments include a diverse scope, ranging from smart cities and
buildings to homes and transportation systems, all geared toward advancing urban
development and enhancing overall quality of life [105]. For instance, wearables can
play a pivotal role in optimizing heat and electricity management within smart build-
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Table 2.5 Summary of recent studies providing solutions for Smart Environments domain [1].

Ref. Aim of study & Major findings Merits Demerits

[100]
2017

A SoC wearable integrating brain signals to
control the HVAC system and other home
devices (lights, fan) through the voluntary
eye blinks

Low power, low complex-
ity, low error rate

Bulky, not easy-to-use in
everyday life, limited ap-
pliances to control

[101]
2014

A low-power resource-preserving MAC
protocol for resource-constrained wearables

Reliable, scalable, low
power

No analysis provided for
the latency

[102]
2016

An optimization algorithm for cloud-
based video crowdsensing using resource-
constrained wearables and mobile devices

Higher perceived video
quality, energy efficient
storage, reduced delivery
delay, and higher average
throughput

Not suitable for appli-
cations requiring high
video quality

[103]
2016

A wearable, light-EH-assisted sensing, pro-
cessing and decision-taking RFID tag for in-
tegration with a smart garment

High read range, en-
hanced functionality,
flexible interfacing, di-
verse low-power sensors

High cost and power
consumption of the
RFID tag

[104]
2018

A framework for monitoring thermal con-
ditions in a building through the use of wear-
able solutions, parametric models, and the
ML techniques through analyzing specific
psychophysical conditions

Detection of internal envi-
ronmental variables close
to users, biometric param-
eters

Limited factors to assess
the thermal comfort

Table 2.6 Main parameters considered by recent studies in Smart Environments domain [1].

Ref. Energy Consumption Accuracy Latency Throughput Video quality

[100] ✔

[101] ✔ ✔

[102] ✔ ✔ ✔

[103] ✔ ✔

[104] ✔

23



ings, thereby contributing to an enhanced user experience while promoting resource
conservation [106].

Moreover, an actively pursued research field involving wearables is mobile crowd-
sensing, where users collaboratively generate substantial volumes of data by collec-
tively sensing and sharing information of mutual interest within smart city con-
texts [107].

Similarly, wearables can also be utilizedf for controlling household devices within
smart homes. For instance, wearables can be used to authorize individual access to
shared appliances such as refrigerators, washing machines, or shared living spaces
like hostels and student residences. Furthermore, this technology can facilitate the
monitoring of appliance usage patterns, ensuring fair distribution of electricity con-
sumption among residents.

Table 2.6 shows that, alongside latency, throughput, and video quality, the pa-
rameters most frequently analyzed include energy consumption and accuracy.

2.2.4 General Solutions for Wearable Applications

Wearables are finding application in many novel contexts beyond their traditional
use cases. Therefore, there exists a prevailing trend to introduce versatile solutions
that can be tailored to address specific applications across various domains.

For instance, Nakhkash et al. [108] conducted a study that presented energy
consumption profiles for diverse IoT applications operating on resource-constrained
wearables. They advocated the effectiveness of software approximations in optimiz-
ing energy usage and performance gains.

Similarly, Golkarifard et al. [109] proposed a code/task offloading strategy ap-
plicable to wearables, which leverages the computing capabilities of both cloud and
nearby devices. They proposed a versatile task scheduler capable of dynamically
categorizing tasks for either local or remote processing.

Zheng et al. [111] outlined software engineering support aimed at empowering
application developers to harness shared resources among mobile devices. This ap-
proach optimizes overall performance by enabling seamless resource sharing, thus
enhancing programmer productivity while reducing energy consumption and execu-
tion time.

Furthermore, certain studies advocate for the integration of low-power hardware
in future wearable development. These studies provide overall energy consumption
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Table 2.7 Summary of recent studies providing general solutions using wearables [1].

Ref. Aim of study & Major findings Merits Demerits

[108]
2019

Leveraging error resiliency of the IoT ap-
plications to trade accuracy for performance
and energy gains through software approxi-
mations at different phases of sensing, com-
putation, and transmission

Analytical modeling and
characterization of vari-
ous IoT applications, real-
time hardware evaluation

Can not be generalized for
any IoT application

[109]
2018

A unified code offloading system for wear-
able computing to leverage computation re-
sources of nearby and cloud systems with a
reference implementation on Google Glass

Programmer-friendly
framework, lightweight
offloading, run time task
scheduler for the deci-
sions, energy-efficient, fast
execution, error recovery
support

Not suitable for crowded
and large environments
such as shopping malls re-
sulting in high failure rate
even with lots of nearby
devices

[22]
2019

A comparison of performance and energy
consumption of various platform boards
emulating wearables to investigate a best of-
floading approach for improved QoS for the
IoT applications. It proves that offloading
computationally intense tasks to a powerful
node improves QoS but not always valid for
data-intensive tasks

Multithreading, classifica-
tion of tasks for improved
QoS

Communication overhead
in terms of power con-
sumption not considered

[110]
2019

An Android-based application for wearables
whose tasks can be partitioned between a
wearable, MCC, and Fog computing

Enhanced battery lifetime,
access to high computing
and storage resources of
fog and cloud servers

Additional overhead in
terms of communication
due to the task offloading

[111]
2018

A software engineering support for appli-
cation developers to leverage the shared re-
sources between heterogeneous mobile de-
vices

Seamless, reliable, and
efficient resource sharing
among devices

Significant communica-
tion overhead for large
packets

[112]
2017

Using wake up radios with the BLE
transceivers to minimize the energy con-
sumption due to continuous listening

Low energy consumption Extra hardware cost, no
hardware implementation
to verify results

[113]
2017

An adaptive channel connection interval for
the BLE devices to improve connectivity
and energy consumption

Low energy consumption,
improved connectivity

The channel link quality
assessment overhead, pro-
prietary BLE controllers
do not allow such imple-
mentations

[114]
2016

A content agnostic privacy and encryption
protocol eliminating the need for asymmet-
ric encryption for wearables

Energy-efficient Limited threat models

[115]
2016

A power aware multi-hop dynamic source
routing mechanism for MANET designed
for the BLE-based sensor networks

Enhanced lifetime, high
throughput

High latency

[116]
2015

A simple and reliable bidirectional commu-
nication protocol for communication be-
tween the transmitter module (nRF24) and
the BLE devices by using advertisement
frames

Improved reliability Increased latency, addi-
tional communications
overhead, decreased
throughput

[117]
2019

A practical deep learning-based framework
for improving the performance of wearables

Improved end-to-end
latency, robust to the
privacy breach, energy-
efficient

Memory overheads not
considered, the handheld
device limited processing
capacity can reduce the
performance
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Table 2.8 Main parameters considered by recent studies providing general solutions for wearable ap-
plications [1].

Ref. Energy
Consump-

tion

Latency Network
Lifetime

Throughput Execution
time

Transmission
time

Accuracy

[108] ✔

[109] ✔ ✔

[22] ✔ ✔

[110] ✔ ✔

[111] ✔ ✔

[112] ✔ ✔

[113] ✔ ✔

[114] ✔ ✔

[115] ✔ ✔

[116] ✔

[117] ✔ ✔ ✔ ✔

profiles and the resultant energy savings achieved through the utilization of such
hardware [112], [116].

Moreover, an increasing trend has been observed involving the proposition of
generic ML techniques tailored for wearables targeting diverse applications. For in-
stance, Xu et al. [117] introduced a universal deep learning framework specifically de-
signed for wearables. Their approach aims to enhance both performance and energy
efficiency. Xu et al. emphasize that the vast data collection potential of wearables,
including user activity, healthcare, fitness tracking, and more, opens up a multitude
of application areas suitable for deep learning methodologies.

Within these specific application domains, performance monitoring mainly in-
volves energy consumption analysis, followed by latency, throughput, and execution
time as summarized in table 2.8. On the other hand, parameters including network
lifetime, transmission time, and accuracy are less frequently analyzed.

2.2.5 Statistical Analysis

This subsection presents the discussion on the statistical data obtained through the
SLR.

Figure 2.5 provides a statistical breakdown of the evaluation methods used in the
literature to compare the performance of proposed solutions against other state-of-
the-art techniques. The methods primarily include performance analysis via simu-
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lations, real-time experiments on prototypes, or a combination of both simulation
results and validation through real-time prototype experimentation.

Based on the collected statistics, it has been observed that 58% of the studies con-
duct experiments exclusively on real prototypes. Simulation-based analysis without
real-time validation constitute about 23% of the total. Whereas, 19% of the stud-
ies offer performance evaluations that contain both simulation-based analysis and
subsequent validation through real-time experiments conducted on prototypes.

Table 2.9 lists various wearable devices used in the prototype-oriented papers
from an energy efficiency perspective.

It is notable that a substantial number of the works focus on creating research-
based prototypes that emulate wearable devices rather than utilizing commercially
available wearable devices for experimentation with the intent of improving device
efficiency.

Drawing insights from the literature, we present a classification of the energy
consumption profile (categorized as low, medium, high) of various wearables.

Majority of devices employed within healthcare and activity recognition domains
exhibit a low-to-medium energy consumption profile. This is attributed to their lim-
ited data rates and the integration of low-power hardware, to achieve extended oper-
ational lifetime. Conversely, a subset of solutions within the smart environment and
general-application categories showcase medium-to-high energy consumption pro-
files. This behavior is primarily attributed to the application demands for high data
rates and complex processing demands.

HC – Healthcare AR – Activity Recognition SE – Smart Environments GA – General

Applications

L – Low M – Medium H – High

Table 2.9 Examples of wearable devices per application area [1].

App.
Area

Ref. Purpose Wearability Wearable devices /
Research prototypes

Energy
Profile

HC [53] Autonomic nervous system ac-
tivities

Finger
worn

A ring sensor L

HC [58] Stroke rehabilitation Upper arm Armband L–M
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App.
Area

Ref. Purpose Wearability Wearable devices /
Research prototypes

Energy
Profile

HC [56] Heart rate variability monitor-
ing

Wrist worn Custom made wrist wearable
ECG sensor

L

HC [52] Cardiovascular healthcare sys-
tem

Chest worn Customized SoC based ECG
sensing patch

L

HC [61] Respiratory rate monitoring Abdomen A custom made wearable de-
vice with 3-axis accelerome-
ter

L–M

HC [67] A configurable bio-signal acqui-
sition device

NA A custom made multi chan-
nel device capable of acquir-
ing ECG, EMG, and EEG
signals

L–M

HC [60] A lossy signal compression
technique for biosignals on
wearables

Chest and
wrist worn

Zephyr BioHarness 3 wear-
able device

L

HC [64] A multi sensor 6LoWPAN-
enabled WBAN platform

NA Multiple Zolertia sensor
motes connected to a main
Cubox device

L

HC [68] A web-based motion detection
system using wearables

Carried in
pocket

Zolertia Z1 motes emulating
wearables

M–H

AR [97] Gesture recognition system for
industrial workers

Wrist worn A custom-built wearable de-
vice containing accelerome-
ter and gyroscope sensors

L–M

AR [92] Activity recognition Torso A 3D motion tracker L

AR [88] Low intensity activity recogni-
tion

Knee worn A custom prototype using
an accelerometer as a motion
sensor and stretch sensor

L

AR [95] An emotion recognition system Not speci-
fied

A custom built wearable
prototype including Photo-
PlethysmoGraphy (PPG),
Galvanic Skin Response
(GSR), and Skin tempera-
ture (SK) sensors

L

AR [94] Activity recognition for indus-
trial workers using wearables

Sacrum
worn

A custom-built wearable de-
vice using Bosch’s BMI 160
containing accelerometer
and gyroscope sensors

L

AR [93] A wearable system for long-
term activity monitoring and
recognition

Wrist worn An nRF51822 System
on Chip (SoC) with two
ADXL362 accelerometers

L
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App.
Area

Ref. Purpose Wearability Wearable devices /
Research prototypes

Energy
Profile

SE [103] A wearable RFID tag for smart
garments enabling seamless in-
teraction of wearer with other
smart devices

Any on-
body
garment

A custom made circular
patch antenna with inte-
grated sensing, processing,
and transceiver hardware

L

SE [102] Cloud-based video crowdsens-
ing using wearables

Head
mounted

Raspberry Pi with a camera
module to emulate a wear-
able device

M–H

SE [100] Using EEG signals to control
the HVAC system and other
home appliances

Forehead
mounted

Custom SoC based wearable
EEG sensor

L–M

SE [104] Monitoring thermal conditions
in buildings through wearables

Wrist worn Empatica E4 wristband L–M

GA [108] Approximating IoT applica-
tions for wearables

NA Raspberry Pi Zero emulating
a wearable

L

GA [109] Code offloading system for a
wearable application to extract
text information from the am-
bient environment

Face worn Google glass M–H

GA [117] Task offloading for wearables Wrist worn Smart watch L–M

GA [116] A two-way communication
protocol for wearables

NA An nRF24 SoC emulating a
wearable device paired with
an iPhone 5s

L

GA [115] Multihop routing algorithm for
BLE enabled wearables

NA Broadcom combo chipset
BCM434X for BLE enabled
sensors emulating wearables

L

GA [113] Efficient connection mainte-
nance technique for dynamic
wireless channels

NA A custom built prototype us-
ing Raspberry Pi

L

Moreover, given that a substantial portion of the scientific community depends
on studies conducted through simulations, it is imperative for researchers to be aware
of the recent trends regarding the selection of simulators within the field. To address
this objective, we collected data on various types of network simulators used in the
literature along with their corresponding utilization percentages.

The statistical findings are presented in figure 2.6. Notably, MATLAB [118]
emerges as the dominant choice, accounting for approximately 50%. Several alter-
native network simulators also found usage, specifically Network Simulator 2 [119],
OPNET [120], OMNeT++ [121], and Castalia [122]. Interestingly, all these listed
simulators enjoyed equal popularity share of around 5%within the scientific commu-
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58%

23%

19%

Prototype
Simulation
Both

Figure 2.5 Percentage of the evaluation methods used in the analysed literature [1].

nity. A noteworthy observation was made regarding the utilization of custom-built
simulators, namely C++ and Java-based, constituting a 10% share. Lastly, approx-
imately 20% of the studies did not mention their choice of simulation tool. The
notable lack of uniformity in the choice of simulator emphasizes the potential need
for a dedicated simulation tool tailored specifically for the IoWT domain. Such a
tool could be purpose-built, widely acknowledged within the community, and in-
strumental in enhancing result reproducibility.

50%
5%

5%

5%

5%

10%20% MATLAB
NS2
OPNET
OMNeT++
Castalia
Custom
Unspecified

Figure 2.6 Percentage of the network simulators used in the analysed literature [1].

While the selection of communication technology is influenced by the specific
demands and limitations of each application domain, it’s important to emphasize
that the prevailing communication technologies predominantly operate on a short-
range.

The gathered data pertaining to wireless technology utilization across various
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studies is illustrated in figure 2.7. Notably, Bluetooth (including Bluetooth Low
Energy (BLE)) emerges as the predominant short-range communication technology
within the domain, constituting approximately 46% of the share. Zigbee also finds
significant application with a 15% share, followed by Wi-Fi at 9%.

Moreover, several studies suggest a combination of these communication tech-
nologies termed as hybrid techniques, accounting for a 9% contribution. The IEEE
802.15.6 standard, commonly known as WBANs, is observed to hold a share of 6%.
Lastly, solutions that do not specify the communication technology constitute 15%
of the total.

46%

6%

9%

9%

15%15%
Bluetooth
IEEE 802.15.6
IEEE 802.11
Hybrid
ZigBee
Others

Figure 2.7 Percentage of the communication technologies used in the analysed literature [1].

Finally, the studies were examined based on energy-efficiency focus perspective,
as depicted in figure 2.8. From this analysis, it can be concluded that a notable ma-
jority of studies address the issue of energy efficiency rather theoretically lacking
quantifiable metrics that could be readily converted into energy-related ones. Inter-
estingly, a substantial portion of researchers (29%) have undertaken practical steps,
including prototyping and measurements, to validate the efficacy of their proposed
energy-efficient strategies.

2.3 Strategies to Improve Energy Efficiency of Wearables

In this section, we provide an extensive discussion on the primary methods utilized
in the literature to enhance energy efficiency in wearable devices and related com-
munication networks based on our review.
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Figure 2.8 Distribution of the energy-efficiency analysis elaboration in the analyzed papers [1].

2.3.1 Task Offloading

Numerous demanding applications require significant computational resources, in-
cluding tasks such as deep learning methods for face, text, and activity recognition,
image and video processing, Augmented Reality (AR)/ Virtual Reality (VR)/Mixed
Reality (MR) applications, etc. Such tasks can significantly reduce the battery life
of wearable devices. As a result, a prevalent approach in the literature to enhance
energy efficiency in wearables involves computational task offloading. This involves
transferring resource-intensive tasks to remote execution locations, such as cloud
servers, to mitigate processing demands and energy consumption on the mobile de-
vice. This strategy has been extensively utilized in the literature [91], [123], [124].
Traditionally, task offloading relied on leveraging cloud services to handle compu-
tationally intensive tasks. However, it introduces notable transmission delays that
may occasionally fail to meet the stringent latency requirements of many modern
IoT applications [125], [126].

Moreover, an additional challenge encountered in task offloading to the cloud,
was the absence of a reliable and consistent Internet connection [109]. Modern
handheld devices, such as smartphones, now boast more robust chipsets featuring
multicore processors, which present a promising alternative. Consequently, the uti-
lization of edge computing [19] and fog computing [127] techniques to leverage the
resources of mobile and gateway devices, has demonstrated substantial advantages for
wearable devices facing limitations in resources both in terms of energy consumption
and performance [128]–[130].
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Additionally, more advanced wearable devices come equipped with multiple com-
munication options including low-power short-range communication technologies,
such as BLE, as well asWi-Fi and/or cellular connectivity options. Thus, eliminating
the reliance on Internet connectivity to access cloud services. However, a drawback
of using low-power communication technologies is low datarate that results in in-
creased latency [131]. Hence, task offloading over BLE could be a feasible option for
lightweight tasks only. Whereas, utilizing Wi-Fi can enable a wearable device to cre-
ate an ad hoc Wi-Fi link with nearby devices, for example, a smartphone, to leverage
high computation and energy resources with high data rates even in the absence of
Internet connectivity.

Another complexity arises from the need to efficiently partition tasks into seg-
ments that can be executed both locally and remotely, operating independently on
nearby devices [22]. Hence, there are multiple considerations and challenges that
need to be carefully analyzed to enhance the overall performance of a wearable de-
vice through task offloading.

2.3.2 Duty Cycling

Wearable devices typically incorporate a computational unit with storage, a commu-
nication unit, and various sensors integrated into their design [4]. These components
collectively contribute significantly to the overall energy consumption of the wear-
able device, especially if they remain active at all times. However, there are certain
applications where these components are not utilized with high frequency. Examples
include scenarios such as long-term environmental monitoring [132], smart agricul-
ture and livestock monitoring [133], and extended healthcare applications [134],
[135], among others.

Therefore, duty cycling is an alternative strategy to conserve energy that involves
turning off specific hardware modules or transitioning them into a sleep mode when
they are not actively being used.

Efficiently determining the duration and timing of sleep cycles is crucial for achiev-
ing this optimization. Otherwise, it could have detrimental effects on various aspects
of the wearable device’s performance, including execution speed, responsiveness, and
latency. Some recent studies suggest leveraging AI-driven methods like RL to design
intelligent MediumAccess Control (MAC) protocols tailored for IoT devices. These
protocols aim to predict wakeup schedules effectively and enable adaptive manage-
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ment of sleep cycles to conserve energy [136].

2.3.3 Energy Aware Routing

Wearable devices frequently connect with other wearables or mobile devices in their
vicinity to establish communication with a remote instance, which could be either
an edge/fog node or a cloud-based infrastructure [137]. This connectivity is partic-
ularly relevant in healthcare scenarios, where multiple wearable devices collaborate
to monitor a patient’s overall health condition. They achieve this by transmitting
data to a common data collection point, which subsequently forwards the data to
a remote medical facility for in-depth processing and analysis [138]. Therefore,
energy-efficient routing protocols are employed to extend the operational lifespan
of wearable devices. This strategy helps conserve the energy of network nodes that
might otherwise be excessively engaged in relaying data, leading to premature battery
depletion [139].

While energy-aware routing appears to be a promising strategy, there are certain
associated overheads linked to the determination of optimal routing paths [140].
Nodes must possess knowledge about the remaining energy levels of their neigh-
boring nodes, which necessitates the exchange of periodic control messages to share
available resources. Therefore, a careful balancing of trade-offs becomes critical dur-
ing the design of an energy-aware routing approach.

2.3.4 Low-power Hardware Design

As electronic equipment design progresses, several components supporting low-power
computing, communication, and sensing have been developed to enhance the battery
life of future wearables [141], [142]. This evolution has given rise to the concept of
low-power hardware design. Furthermore, various prototypes have been created
using low-power and miniaturized Application-Specific Integrated Circuit (ASIC)
hardware design architectures [143]–[145].

In many wireless devices, the communication subunit is commonly identified as
the most energy-consuming element [146]. Despite the implementation of duty cy-
cling techniques, a notable amount of energy is still consumed in monitoring the
wireless channel for incoming messages and minimizing the risk of collisions with
concurrent transmissions [147]. Furthermore, in highly dynamic and crowded sce-
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narios wearable devices are required to continually sense nearby devices for potential
data exchanges. Hence, the radio remains in a listening state for extended periods.
This situation leaves limited room for effective duty cycling [148].

To address these challenges, certain studies advocate for the integration of sup-
plementary hardware units with near-zero power consumption, known as wakeup
radios [149]. These devices primarily serve the purpose of monitoring wireless ac-
tivity, triggering the main radio unit to activate only when necessary. These wakeup
radios demonstrate notable energy efficiency. However, the trade-off lies in the ad-
ditional cost and space requirements associated with integrating these wakeup radios
alongside the primary communication units on wearable devices.

2.3.5 Low-power Communications

Majority of available wearable devices utilize short-range wireless communication
technologies, including BLE [150], Zigbee [151], and Wi-Fi [152], among others.

However, the selection of a communication technology depends significantly on
the specific application’s requirements. For instance, when the intended application
demands high data rates, Wi-Fi becomes a suitable choice. Conversely, employing
communication protocols with high data rates and power consumption can prove
inefficient for many IoWT applications [153].

In general, low-power short-range communication technologies significantly min-
imize power consumption associated with data transmission. Notably, technologies
like BLE and Zigbee have demonstrated enhanced energy efficiency [131], [154],
[155]. Furthermore, the emergence of low-power, long-range non-cellular technolo-
gies such as LoRa [156], Sigfox [157], and IEEE 802.11ah [158] present promis-
ing options for low-power wearable devices. However, the prevalence of cellular
technologies, including Long-Term Evolution (LTE) for LTE-M and Narrowband
IoT (NB-IoT), remains limited in the context of wearables due to existing industrial
gaps, as discussed in [159].

2.3.6 Adaptive Transmission Power Control

Among wearable device tasks, data transmission is often considered as the most
energy-intensive operation, with sending a single bit potentially demanding around
1,000 times more energy than a single computation [160]. Wearables incorporate on-
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board transceiver units that are commonly configured to execute data transmission
using a fixed high transmission power. This configuration ensures coverage within
a defined area [161]. However, there exist scenarios where achieving effective data
communication to a nearby node can be accomplished using comparatively lower
transmission power. This can be achieved by dynamically adjusting the transmission
power based on the surrounding environmental conditions, employing strategies for
adaptive transmission power control.

For applications involving frequent data transmissions, particularly those with
high transmission intensity, this issue becomes even more severe. Therefore, con-
sistent fixed high power data transmissions can prove to be highly inefficient. In
contrast, an adaptive transmission power control mechanism can significantly en-
hance energy efficiency [162]–[164]. However, to estimate the required transmis-
sion power accurately, the transmitting node needs information about the relative
distance to the receiver. In cases where nodes are not stationary, achieving this may
necessitate the exchange of periodic control messages among nodes.

Recent studies have also proposed the application of lightweight ML-based in-
telligent transmission power control schemes. In these schemes, nodes iteratively
learn about their remaining energy levels and dynamically adjust their transmission
powers. This ensures not only minimal energy consumption but also upholds a
designated minimum packet error rate [165].

2.3.7 Compressive Sensing

Compressive sensing stands as a signal acquisition and reconstruction technique that
leverages the sparsity of signals to achieve notable efficiencies in energy consumption,
bandwidth utilization, and overall performance gains [166], [167]. This method fa-
cilitates an optimal reconstruction of the original signal using significantly fewer sam-
ples compared to what would be required according to the Nyquist criteria. Multiple
studies have highlighted the advantages of applying compressive sensing in optimiz-
ing power consumption [167]–[169]. Many wearable applications, including those
in healthcare, rely on sparse signals. Therefore, sticking to fixed sensing intervals
as dictated by the Nyquist criteria may not yield optimal efficiency. However, it is
important to note that compressive sensing is only suitable for sparse signals.

Conversely, numerous other applications still necessitate higher sampling rates
to effectively reconstruct the desired signal at the destination. In such cases, some
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studies advocate for the use of adaptive compressed sensing, particularly in situations
where the nature of the generated signal remains uncertain. For instance, various
activity recognition applications might end up wasting energy through fixed peri-
odic sampling during periods of inactivity. In such scenarios, adaptive compressed
sensing demonstrates its effectiveness by dynamically varying sampling rates to pre-
serve energy as needed [62]. However, the challenge remains in determining the
ideal sampling rate in dynamic conditions. Moreover, secure compressive sensing
finds application in wireless communications as a cryptosystem, with the measure-
ment matrix serving as a key to secure data exchange between communicating enti-
ties [170]. Furthermore, its relevance has also extended to the domain of cognitive
radio communication [171].

2.3.8 Data Compression

Generating and processing data is a fundamental task for any wearable device [172].
However, applications such as healthcare and activity recognition heavily rely on
data sensing, involving continuous data generation, resulting in substantial data vol-
umes that might be correlated, redundant, or inefficient in specific contexts. Thus, ef-
ficient data compression can significantly enhance the overall device performance [173].
Efficient management of generated data along with the elimination of redundant and
unnecessary data elements, significantly reduces data size and processing duration
while at same time extending the device’s battery life [174].

Hence, data compression techniques have been widely used across various stud-
ies to reduce the dataset requiring processing and transmission, thereby enhancing
energy efficiency in both computation and communication phases [175]–[177]. The
majority of proposed data compression algorithms strive to optimize the compres-
sion ratio. This ratio reflects the extent to which redundant data is eliminated while
maintaining a certain value of Root Mean Square Error (RMSE) and SNR, both of
which hold significance within numerous IoWT applications [60].

2.3.9 Approximate Computing

Approximate computing is an approach where calculations prioritize rapid deliv-
ery of “good enough” results rather than absolute precision. It has emerged as an
effective method to enhance performance and energy efficiency in devices with lim-
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ited resources such as wearables [178]. Given that numerous applications within the
IoWT domain rely on data that is often redundant and inherently noisy, the concept
of approximate computing allows for trading off accuracy in favor of energy and
performance improvements [179]. In various applications such as ML, signal pro-
cessing, image processing, and big data analytics, achieving results that are sufficiently
accurate rather than perfectly precise, can often fulfill the intended purpose [180].

However, the primary challenges associated with adopting approximate comput-
ing include determining the threshold for the necessary minimum accuracy specific
to each application, identifying tasks suitable for approximation within the execu-
tion flow, and monitoring the outcomes of the application [181]. Therefore, careful
fine-tuning of approximation techniques becomes essential to achieve optimal per-
formance enhancements including execution speed, latency, and energy efficiency.

2.3.10 Security Primitives-related Aspects

The majority of current wearable devices depend on conventional information secu-
rity measures that were not originally designed for the energy efficiency requirements
of resource-limited devices. Currently, developers and researchers are dedicating ef-
forts to explore information security solutions tailored for wearable technology par-
ticularly crucial for medical and industrial applications.

Comparing the execution time of various cryptographic primitives such as sym-
metric and asymmetric cryptography, block ciphers, elliptic-curve cryptography,
and standard hashing functions, authors in [182] advocate the necessity to design
lightweight cryptographic primitives that balance energy consumption and security.

Additionally, the migration of blockchain systems toward wearable devices has
been foreseen as an essential progression in the evolution of distributed systems [183],
[184]. However, the researchers emphasize the necessity to develop and implement
novel consensus mechanisms for wearables to mitigate the adverse impact of crypto-
graphic primitives execution on battery lifetime.

Given that wearables often come as commercially available devices lacking open-
source operating systems with a few exceptions [185], the creation and incorporation
of innovative energy-efficient security measures are still at an early stage. Whereas, a
significant portion of smaller developers tend to overlook considerations related to
security and privacy to enhance energy efficiency.
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2.4 Summary

To summarize, this chapter presents a SLR of state-of-the-art solutions aiming to
improve energy efficiency within the IoWT domain. We proposed a taxonomy
of IoWT solutions, considering their energy efficiency perspective and categoriz-
ing them based on their targeted application areas. These categories include health-
care, activity recognition, smart environments, and general solutions. Notably, a
significant portion of existing solutions primarily focused on healthcare-related ap-
plications since wearables were historically developed for specific medical purposes.
Nevertheless, in recent times, with advancements in the field, wearables have found
applications in diverse domains beyond healthcare. Moreover, we presented a sta-
tistical analysis of the available solutions over the years, examining their publication
trends. This analysis revealed a continuous increase in wearable-related research,
suggesting a growing interest in the field that is anticipated to persist in the coming
years.

Furthermore, we provided a comprehensive discussion presenting qualitative and
comparative analysis of existing studies within each category, providing insights into
their merits, demerits, main performance parameters, and major contributions. Ad-
ditionally, we presented a statistical analysis, to find out the commonly utilized tools
for evaluating the performance of proposed solutions. This analysis revealed a general
trend among researchers to develop prototypes to validate the efficiency of their pro-
posed solutions. Nonetheless, some studies only presented simulation-based results,
with MATLAB emerging as the most commonly used simulator, among others. In
contrast, a portion of the studies presented a combination of simulation-based find-
ings alongside real-time experiments conducted on prototypes. Similarly, another
statistical analysis was provided to highlight the most frequently utilized communi-
cation technologies in wearables. This analysis showed that BLE was the most com-
monly used, primarily owing to its low power consumption characteristics, besides
others. Finally, to facilitate new researchers in the field, we presented a summarized
discussion highlighting the principal techniques found in the literature for enhancing
energy efficiency in wearables, emphasizing the challenges/trade-offs associated with
these approaches.
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3 TASK OFFLOADING FOR WEARABLES IN A

TWO-TIER EDGE ARCHITECTURE

Small form-factor electronics, including devices such as smartwatches, smart glasses,
wrist bands, AR/VR/Extended Reality (XR) headsets, etc., are becoming increas-
ingly popular these days with an increasing range of applications contributing to this
trend [186]. With the technological advancements, wearables are becoming more
capable in terms of communication as well as sensing by incorporating several dif-
ferent sensors thus opening avenues for many new applications. Some of these ap-
plications involve computation-hungry use-cases such as image or video processing
and compression, among others. Historically, wearable and handheld devices were
not optimized for executing such demanding tasks due to factors like limited battery
capacity and heat generation.

Offloading these computation-intensive tasks to a more powerful and energy-
efficient nearby device can significantly enhance the overall user experience as well
as conserve the wearable’s limited resources.

This chapter examines various scenarios for offloading tasks from wearables to an
edge device. The rest of the chapter is organized as follows:

Section 3.1 provides the motivation behind this work including the main contri-
butions.

Section 3.2 presents the system model including reference architecture, main as-
sumptions, and mathematical formulation for the desired performance metrics.

Section 3.3 provides the numerical results and performance evaluation of the pro-
posed model.

Section 3.4 concludes the work with our major findings.
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3.1 Motivation

Task offloading refers to the process of communicating input data (for a task origi-
nally generated at the wearable device) for processing to a nearby computing entity
with more resources before returning the result to the originating device [21].

In addition to dedicated edge servers, modern smartphones come equipped with
advanced chipsets housing multicore processors. This design enables these smart-
phones to effectively function as edge devices, offering users the capability to access
a multitude of computation-heavy applications on wearables. Hence, through of-
floading tasks to the smartphone, wearables can efficiently execute compute-intensive
applications such as image processing, employing ML algorithms for face, text, and
activity recognition, as well as supporting augmented reality applications without
quickly depleting the battery otherwise [123], [124]. Several task offloading solutions
for wearables and other mobile devices have been proposed in the literature [91],
[109], [117], [124], [187], [188].

Task offloading also enhances the storage and computational capabilities of mo-
bile devices as additional benefits beyond energy conservation. However, the ben-
efits achieved are not usually straightforward and require a case-by-case analysis to
determine when, what, and where to offload. Notably, there are situations where the
energy expended by the wearable in transmitting data to the task executor might
exceed the energy used for local computation, making task offloading inefficient.
Moreover, certain conditions could lead to an increase in the overall task accom-
plishment time through offloading, for instance, due to transferring large input data
across low-capacity wireless connections [22]. Therefore, it is critical to accurately
assess the benefits of task offloading in terms of energy consumption and the extent
to which it meets the latency requirements of various applications.

3.1.1 Contributions

The main contributions we provide in this chapter are briefly reiterated as follows:

• We present a two-tier edge architecture for task offloading from wearables to
the edge including a smartphone and an edge server.

• We provide a comprehensive analysis of task execution performance on wear-
able devices, identifying the limits and constraints.
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• We explain the scenarios in which task offloading to the edge can enhance
performance and to what extent, in terms of task accomplishment time and
energy consumption.

3.2 System Model

This section introduces the reference architecture, followed by the main assumptions
and mathematical formulation to derive the desired performance metrics.

3.2.1 Reference Architecture and Main Assumptions

We consider a scenario that includes a wearable gadget like Google Glass [189] that
is paired with the user’s smartphone using a short-range wireless connection which
functions as a gateway to the Internet, as depicted in figure 3.1. The smartphone, in
turn, establishes a link through a base station (BS) that hosts an edge server. Without
loss of generality, we will refer to the glass as the wearable device which needs to
execute a computationally intensive task, such as the processing and streaming of AR
images and videos. The AR glass can be utilized by the user to capture images/videos
while on the move, for various applications like facial recognition and automatic
license plate recognition, among others.

Cellular link
Short-range link

1

2

3

Smartphone

AR wearable device

Edge server

Figure 3.1 Reference architecture and scenarios of interest: (1) – Local execution on wearable; (2) –
Offloading to the smartphone; (3) – Offloading to the edge server [190].
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The computational task is characterized by the input data, D (measured in bits),
and the number of CPU cycles/bit needed to execute the task, denoted as C. An
effective approach to approximate C for any task is to utilize a program profiler that
observes all program parameters [191]. These program profilers make use of infor-
mation, including acquired memory, execution time, thread CPU time, the count
and type of instructions, as well as function calls, to accomplish this estimation [192].

As shown in figure 3.1, executing any computationally intensive task locally
places a significant burden on the wearable device, as indicated in scenario 1 .
Therefore, our objective is to examine whether offloading such a task from the wear-
able device to nearby devices such as the smartphone 2 or the edge server 3 could
effectively preserve the wearable’s energy while meeting the application’s latency de-
mands. To this end, we evaluate the performance in terms of energy consumption
and task accomplishment time across three distinct scenarios. The wearable device
can choose to locally execute the task, which leads to extended task accomplish-
ment time due to its limited computational capacity, thereby degrading the overall
user experience. Alternatively, the wearable device can offload the task to either the
smartphone or the edge server, both of which possess comparatively much greater
computational resources. However, this comes at the cost of additional energy spent
by the wearable device to transfer data to the task executor and subsequently receive
the processed results.

Our study is based on the following main assumptions:

• Unlike conventional wearables, modern wearable devices often come equipped
with a variety of connectivity options including Bluetooth, Bluetooth Low
Energy (BLE), Wi-Fi, millimeter Wave, and/or LTE communication inter-
faces [28]. However, low-power technologies like Bluetooth/BLE are unsuit-
able for task offloading due to their limited data rates. Consequently, task of-
floading becomes impractical due to substantial communication delays [193].
Therefore, in an outdoor setting, we assume that the wearable device estab-
lishes a connection with the user’s smartphone via Wi-Fi, subsequently access-
ing the edge server through a cellular network.

• Each task under consideration is atomic, meaning it cannot be further divided
into smaller subtasks.

• In applications like face recognition, automatic license plate recognition, etc.,
the output data size is considerably smaller than the input data. Therefore, the
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time taken to transfer output data from the task executor (smartphone/edge
server) to the wearable device can be reasonably neglected [124], [194].

3.2.2 Mathematical Formulations

We draw upon a theoretical background to compute the relevant metrics for each of
the three scenarios: 1 performing the task locally on the wearable device, 2 of-
floading the task to the smartphone, and 3 transferring the task to the edge server.
Specifically, we calculate the task accomplishment time and the energy spent during
the entire task execution. A list of main notations used throughout this chapter is
provided in table 3.1.

Local task execution on the wearable

The wearable device operates autonomously, performing all computations locally
without any offloading.

Task Accomplishment Time

The task accomplishment time for executing a task locally on the wearable device
Tw can be estimated as follows [187]:

  T_{w}=\frac {D \times C}{F_{w}}, \label {eq1} 
 


 (3.1)

where Fw denotes the processing power available on the wearable device in terms of
CPU cycles per second.

Energy Consumption

The CPU power consumption is proportional to the product of CPU frequency Fw
and square of supply voltage to the chip, V 2, as given in [195]. Hence, the power
consumption can be expressed as:

  P_{w}= \alpha (V^2 \times F_{w}), \label {powereq}       (3.2)
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Table 3.1 List of main notations

Notation Description

C Computational intensity of a task
CR Coding rate over a WiFi link
d Distance between the smartphone and the BS
D Input data size for a task
DS Number of data subcarriers over a WiFi link
Ed,e Energy consumed at the smartphone for delivering the input data to the edge server
Ee Total energy consumption in offloading a task for execution at the edge server
Eex,e Energy consumed in executing a task on the edge server
Eex,s Energy consumed in executing a task on the smartphone
Er,s Energy consumed by the smartphone in receiving a task from the wearable
Es Total energy consumption in offloading a task for execution at the smartphone

Es,idle Energy consumed by the smartphone in idling while the task gets executed on the edge server
Et,w Energy consumed by the wearable to transmit input data to the smartphone
Ew,idle Energy consumed by the wearable in idling while the task gets executed on the smartphone
fc Carrier frequency on the cellular link
Fe Computational capacity of the edge server
Fs Computational capacity of the smartphone
Fw Computational capacity of the wearable device
Hs,e Channel gain over the cellular link from smartphone to the edge server
M Modulation order over the WiFi link
No Gaussian noise power over the cellular link
PL Path loss over the cellular link
Pr,s Power consumed by the smartphone in receiving data over Wi-Fi
Ps,idle Power consumed by the smartphone during idling while the task gets executed on the edge server
Pt,s Power consumed by the smartphone in transmitting input data to the edge server
Pt,w Power consumed by the wearable in transmitting input data to the smartphone
Pw Power consumed by the CPU on the wearable device

Pw,idle Power consumed by the wearable during idling while the task gets executed on the smartphone
Rs Data rate experienced by the smartphone over cellular link
Rw Data rate experienced by the wearable over a Wi-Fi link
SI Symbol interval time over Wi-Fi
SS Number of spatial streams used for transmission over Wi-Fi
Td,e Time consumed in input data delivery to the edge server
Td,s Time consumed in input data delivery to the smartphone
Te Total time consumed in offloading a task from the wearable to the edge server
Tex,s Time consumed in executing a task on the smartphone
Tex,e Time consumed in executing a task on the edge server
Ts Total time consumed in offloading a task for execution at the smartphone
Tw Time consumed in executing a task on the wearable device
V Supply voltage to the CPU chip
Ws Bandwidth over the cellular link
α Effective switched capacitance for CPU
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where α is the effective switched capacitance of each processor, which is related to
the chip architecture [196]. Moreover, it has been found that the voltage supply
V is approximately linearly proportional to the clock frequency of the CPU [195].
Thus, equation (3.2) can be rewritten as:

  P_{w}= \alpha F_{w}^3.   
 (3.3)

Therefore, for an input data size of D bits and the computational intensity of
the task C cycles/bit, the energy consumption for executing a task locally on the
wearable device, Ew, can be estimated as:

  \label {chap3energyequation} E_{w} = P_{w} \times T_{w} = \alpha F_{w}^2 (D \times C).       
   (3.4)

Task offloading to smartphone

Typically, a wearable device is paired with the user’s smartphone (as illustrated in fig-
ure 3.1, scenario 2 ), which serves as the nearest available device for task offloading,
possessing significantly greater resources than the wearable.

Task Accomplishment Time

The task accomplishment time in offloading a task for execution at the smartphone
Ts can be defined as the sum of the time consumed in input data delivery to the
smartphone over theWi-Fi link, Td,s, and the task execution delay at the smartphone,
Tex,s:

  T_{s}=T_{d,s} + T_{ex,s}.      (3.5)

The data rate for the wearable device, Rw, to offload a task for execution at the
smartphone over Wi-Fi can be estimated as follows [197]:

  R_{w}=\frac {DS * M * CR * SS}{SI}, 
    


 (3.6)

whereDS represents the number of data subcarriers that transmit modulated data,M
represents the modulation order in terms of the number of bits each data subcarrier
can represent, CR represents the coding rate, SS defines the number of spatial streams
used, and SI is the symbol interval time. An upper bound of 54Mbps can be achieved
for a Wi-Fi (802.11g) link based on the values of the above parameters as mentioned
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in table 3.2.
Hence, the transmission time, Td,s, for offloading a task from the wearable device

to the smartphone over the Wi-Fi interface would be:

  T_{d,s} = \frac {D}{R_{w}}. 



 (3.7)

Similar to equation (4.1), the computation delay for executing a task at the smart-
phone Tex,s is given as:

  T_{ex,s}=\frac {D \times C}{F_{s}}. 
 


 (3.8)

Energy consumption

The overall energy consumption in offloading a task for execution at the smartphone,
Es can be expressed as:

  E_{s}= E_{t,w} + E_{r,s} + E_{ex,s} + E_{w,idle},          (3.9)

where Et,w is the energy consumed by the wearable to transmit input data to the
smartphone as:

  E_{t,w} = \frac {P_{t,w} \times D}{R_{w}}. 



 (3.10)

The energy consumed by the smartphone to receive input data from the wearable
is calculated as:

  E_{r,s} = \frac {P_{r,s} \times D}{R_{w}}, 



 (3.11)

where Pr,s is the instantaneous power spent during reception over Wi-Fi as per the
measured values in [198].

The energy consumed in executing the task on the smartphone is given as:

  E_{ex,s} = \alpha F_{s}^2 (D \times C).   
    (3.12)

Finally, the energy spent at the wearable device during idling, while the task gets
executed at the smartphone, can be estimated as:

  E_{w,idle} = P_{w,idle} \times T_{ex,s},      (3.13)
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where Pw,idle is the power spent by the wearable in idle state.

Task offloading to the edge server

Tasks demanding substantial computation that would consume extensive local re-
sources can be shifted from the wearable device to the edge server, as depicted in
figure 3.1, scenario 3 . When offloading the task to the edge server, the smart-
phone functions as an intermediary node, receiving input data from the wearable
device and transmitting it to the edge server and vice versa for communicating the
results back.

Task Accomplishment Time

The total time consumed in offloading the task from wearable to the edge server can
be defined as:

  T_{e}=T_{d,s} + T_{d,e} + T_{ex,e},        (3.14)

where Td,e is the time taken in offloading the task from the smartphone to the edge
server over the cellular network, and Tex,e is the time consumed in executing the
task at the edge server. Without loss of generality, we refer to the LTE technology
for the cellular network. For the uplink transmission from the smartphone to the
edge server, the intracell interference is well mitigated in the LTE network [199].
Therefore, the data rate experienced by the smartphone can be given as [187]:

  R_{s}=W_{s}\;\log _{2}\left (1+{ P_{t,s}H_{s,e}\over N_{o}} \right ),    



  (3.15)

whereWs gives the user bandwidth, and Pt,s denotes the transmission power of the
smartphone, Hs,e denotes the channel gain from the smartphone to the BS, including
path loss and fading, and No is the Gaussian noise power in the channel. Channel
gain Hs,e is the reciprocal of path loss. As per the 3GPP standardization [200], for a
general non-line-of-sight (NLOS) case, the path loss (in dB) can be estimated as:

  PL_{NLOS}(d)=36.7\log _{10}(d) + 26\log _{10}(f_{c}) + 22.7, \label {pl}          (3.16)
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where d is the distance between the smartphone and the BS (in meters) and fc is the
carrier frequency (in GHz)1.

Hence, Td,e can be given as:

  T_{d,e} = \frac {D}{R_{s}}, 


 (3.17)

and, similarly to equation (4.1), the computation delay for executing the task at the
edge Te can be estimated as:

  T_{ex,e}=\frac {D \times C}{F_{e}}, 
 


 (3.18)

where Fe is the computational capacity of the edge server.

Energy consumption

The overall energy consumption in offloading a task for execution at the edge server
can be expressed as:

  E_{e}= E_{t,w} + E_{r,s} + E_{d,e} + E_{ex,e} + E_{w,idle} + E_{s,idle},              (3.19)

where Ed,e is the corresponding energy consumption at the smartphone for delivering
the input data to the edge server over cellular network and can be expressed as:

  E_{d,e} = \frac {P_{t,s} \times D}{R_{s}}. 



 (3.20)

The smartphone energy consumed while idling, i.e., when the task is executed at
the edge server, is calculated as:

  E_{s,idle} = P_{s,idle} \times T_{ex,e}.      (3.21)

The energy consumed at the wearable device (the task is offloaded from the smart-
phone to the edge server and executed at the edge server) is calculated as:

  E_{w,idle} = P_{w,idle} \times (T_{d,e} + T_{ex,e}).        (3.22)

1The estimation in equation (3.16) is applicable for the carrier frequency range of 2–6GHz for
different antenna heights with the maximum modeling distance range of 2,000 m between the mobile
station and the base station, which suits our considered scenario [200].
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Table 3.2 Main system parameters [190].

Parameter Numerical Value [Ref.]

C 103 cycles/bit [201], [202]
CR 3/4 [197]
d 100, 300, 600 m [187]
D 0.2-2 MB [123]
DS 48 [197]
fc 2.1GHz [203]
Fe 20GHz [187]
Fs 2.2GHz [204]
Fw 1GHz [189]
M 6 [197]
No −113dBm [202]
Pr,s 0.94W [198]
Ps,idle 30mW [205]–[207]
Pt,s 0.2W [187]
Pt,w 1.28W [198]
Pw,idle 22mW [208]
SI 4µs [197]
SS 1 [197]
Ws 1MHz [187]
α 10−28 [196]

Finally, the energy consumed in executing the task on the edge server is:

  E_{ex,e} = \alpha F_{e}^2 (D \times C).   
    (3.23)

However, due to its co-location with the base station and lack of significant en-
ergy constraints, in contrast to the other battery-powered devices within our system
model, namely, the wearable and the smartphone, the energy consumption associ-
ated with receiving input data from the smartphone and subsequently processing it
on the edge server is considered negligible.

3.3 Numerical Results and Discussion

In this section, we present different sets of numerical results achieved through MAT-
LAB simulations derived under settings summarized in table 3.2, unless separately
stated.
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3.3.1 Local Task Execution on the Wearable

Task accomplishment time graph for local execution on the wearable device when
no offloading is employed is shown in figure 3.2. The graph presents the effect
of varying input data sizes and different computational capabilities of the wearable
device, represented by CPU frequencies ranging from 0.5GHz to 1.2GHz. It is
observed clearly that higher CPU frequencies result in shorter task accomplishment
times. Hence, wearable devices characterized by lower computational capacities are
expected to benefit more through task offloading.

Figure 3.3 depicts the associated energy consumption on the wearable device
through local computation. Devices featuring higher CPU frequencies can achieve
lower task accomplishment times. However, it comes at the cost of high energy
consumption. Since energy consumption on any device is directly proportional to
the square of its CPU frequency, as follows from equation (3.4).
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Figure 3.2 Task accomplishment time for local task execution on the wearable with varying CPU fre-
quencies and input data sizes [190].
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Figure 3.3 Energy consumption for local task execution on the wearable with varying CPU frequencies
and input data sizes [190].

3.3.2 Local Task Execution vs Offloading to the Edge

In the subsequent set of results, we show the total time spent during task execution
when varying input data sizes. This analysis includes three different scenarios: local
execution of the task on the wearable device, offloading to the smartphone (facili-
tated by a 54Mbps Wi-Fi connection), and offloading to an edge server co-located
alongside a base station (BS) at varying distances (100m, 300m, and 600m) from the
smartphone (via an LTE connection). The rationale behind considering different
distance settings originates from the fact that users carrying both the wearable device
and the paired smartphone might be situated in varying locations within the LTE
cell. As a result, they could encounter different radio link performances, making
these distance settings suitable for evaluation.

As anticipated, figure 3.4 illustrates that as the input data size increases, the task
execution time also increases across all scenarios. Local task execution on the wear-
able device shows the least favorable performance due to its comparatively limited
computational resources in contrast to the other scenarios. In contrast, offload-
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Figure 3.4 Task accomplishment time with varying input data sizes for: (1) local task execution at
the wearable, (2) task offloading to the smartphone, (3) task offloading to the edge server
(d = 100, 300, 600m) [190].

ing to the edge server when the user is positioned far from the base station (BS)
demonstrates the second-worst performance. This can be attributed to the significant
degradation in link quality as the smartphone moves away from the BS causing sig-
nificantly reduced data rates, ultimately resulting in prolonged task execution time.
The best performance is observed when offloading to the edge server while the user is
situated closer to the LTE BS due to the high data rates achieved in communication
as well as the abundant computational resources accessible at the edge server. Of-
floading to the smartphone produces intermediate performance when compared to
the other scenarios. Nonetheless, it is important to consider that variable data rates
over Wi-Fi (e.g. 54Mbps in our case) can certainly impact the task accomplishment
time. Therefore, offloading time-critical tasks could prove advantageous for fulfilling
specific latency requirements while conserving energy on the wearable device.

Figure 3.5 shows the task accomplishment time while varying the distance, d,
between the smartphone and the edge server. In this graph, curves for two different
input data sizes are depicted, i.e., D = 0.42MB and D = 2MB, corresponding to
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Figure 3.5 Task accomplishment time for two different input data sizes (D=0.42MB and D=2MB) when
varying distance between the smartphone and edge server for: (1) local task execution at
the wearable, (2) task offloading to the smartphone, (3) task offloading to the edge server
[190].

small and large input data, respectively. When offloading tasks to the edge server,
the associated cost becomes notably higher as the user moves away from the edge
server, particularly for scenarios involving large input data. This increased cost is
due to the exchange of large volume of data across both the wireless short-range and
long-range links. Additionally, the graph highlights the possibility to achieve task
accomplishment times below 1s for smaller input data sizes, particularly when tasks
are offloaded to closely situated edge servers.

Furthermore, the breakdown of the overall task accomplishment time for each
operational phase can be observed in figure 3.6, encompassing all three task exe-
cution scenarios. The transmission time for the smartphone is relatively higher in
comparison to the wearable device, attributed to the reduced data rate over a shared
cellular network, which becomes more pronounced as the user’s distance from the
base station increases. Finally, the edge computation time is significantly smaller in
comparison to other devices within the system model due to the powerful computa-
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Figure 3.6 Task accomplishment time breakdown for an input data size of 2MB for: (1) local task
execution at the wearable, (2) task offloading to the smartphone, (3a) task offloading to
the edge server (d=100m), (3b) task offloading to the edge server (d=300m), (3c) task
offloading to the edge server (d=600m) [190].

tional resources available at the edge server.
Similarly, figure 3.7 shows the breakdown of energy consumption for all three

task execution scenarios. When considering local execution on the wearable device,
the total energy consumption stems solely from the computational processes on the
wearable device itself. For the scenario involving task offloading to the smartphone,
the collective energy consumption comprises several components. This includes the
energy required for the wearable to transmit input data to the smartphone, the en-
ergy consumed by the smartphone during the reception of data and task execution,
as well as the energy drawn while the wearable remains in an idle state during task
execution at the smartphone. Notably, for task offloading to the smartphone, the
computational energy consumption is significantly higher than the communication
part. Lastly, in the scenario of task offloading to the edge server, the energy con-
sumption comprises multiple segments. This includes energy used by the wearable
for transmitting input data to the smartphone, the energy spent by the smartphone
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Figure 3.7 Energy consumption breakdown for an input data size of 2MB for: (1) local task execution
at the wearable, (2) task offloading to the smartphone, (3a) task offloading to the edge
server (d=100m), (3b) task offloading to the edge server (d=300m), (3c) task offloading to
the edge server (d=600m) [190].

for receiving data from the wearable via the short-range link, and energy utilized for
transmitting data further to the edge server over the long-range link. In this context,
the wearable incurs idle energy consumption until it receives the task output from
the smartphone. Comparatively, the energy consumed by the smartphone in idle
state while the task is executed on the edge server is much smaller.

3.3.3 Impact of Task Processing Requirements

In addition to input data size, the nature of a task also significantly influences both
the overall task accomplishment time and energy consumption.

This effect is shown in figure 3.8, which demonstrates the impact of varying
computational intensity on the total task accomplishment time across the three task
execution scenarios.

In the case of local execution on the wearable, it can be observed that task exe-
cution time experiences a notable increase as computational intensity grows. This
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Figure 3.8 Task accomplishment time for an input data size of 2MB with varying task computational
intensity for: (1) local task execution at the wearable, (2) task offloading to the smartphone,
(3) task offloading to the edge server (d = 100, 300, 600m) [190].

effect is due to the intensified processing demands that push the capabilities of the
resource-constrained wearable device.

Moreover, a consistent advantageous trend can be seen for the wearable device in
offloading tasks to the smartphone as the computational intensity escalates. How-
ever, the effectiveness of offloading to the edge server becomes more prominent as
computational intensity increases, depending on the user’s proximity to the base sta-
tion (BS). Interestingly, even when a user is positioned far from the BS, offloading
to the edge server outperforms offloading to the smartphone for tasks character-
ized by significant computational intensity, particularly those demanding 1600 CPU
cycles/bit or more. This variation is due to the edge server’s superior processing
capabilities, enabling significantly faster execution times compared to the extended
transmission duration over a low-throughput long-range link.

Finally, figure 3.9 depicts the corresponding fluctuations in overall energy con-
sumption for both the wearable device and the smartphone across various compu-
tational intensities (C = 500, 1000, 2000 CPU cycles/bit) within the context of the
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Figure 3.9 Energy consumption per device for an input data size of 2MB with varying task compu-
tational intensity for: (1) local task execution at the wearable, (2) task offloading to the
smartphone, (3) task offloading to the edge server (d=300m) [190].

three offloading scenarios.
As expected, there is a direct correlation between increasing computational in-

tensity and intensified energy consumption at the devices where the task is executed.
Additionally, it is noteworthy to observe that when offloading tasks to the smart-
phone, the energy spent is significantly higher compared to the energy consumed
by the wearable device during local execution of the task. Nonetheless, this is not
very concerning, since the smartphones generally have bigger batteries as compared
to wearables. Importantly, when the task is offloaded to the edge server, energy
consumption values become significantly lower and nearly comparable between the
wearable device and the smartphone. This highlights the efficiency of offloading to
the edge server, where energy consumption is substantially lowered, especially in
comparison to the offloading to the smartphone scenario.
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3.4 Summary

In this chapter, we presented a numerical analysis of task offloading for wearables
in a two-tier edge architecture that comprises of a smartphone and an edge server as
task executors. Our analysis primarily focused on the task accomplishment time and
energy consumption parameters.

With the current settings, our results generally demonstrate an advantage in of-
floading tasks to the edge server over both local execution and offloading to the smart-
phone; offering benefits such as preserving the wearable’s limited energy resources
and achieving lower latency in task execution. However, in specific scenarios where
the smartphone is situated at the edge of a cell experiencing harsh signal propaga-
tion conditions, it is usually better to execute the tasks at the smartphone unless the
smartphone is critically low on battery or the task is exceptionally computationally
intensive. Furthermore, for light-weight tasks that do not require heavy computa-
tion, local execution on the wearable is a preferable approach due to the fact that, in
such cases, the time contributed by the wireless transfer of input data can dominate
the overall task accomplishment time.
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4 REINFORCEMENT LEARNING-BASED TASK

OFFLOADING FOR WEARABLES

Figure 4.1 The Internet of Wearable Things concept

In the field of computing, task offloading usually refers to the procedure of assign-
ing tasks to some other device in the network that provides computation, storage,
and data management services [209]. In the past, Cloud Computing has been ex-
tensively used for delivering these services to resource-limited end-user devices. The
foundation of cloud infrastructure is usually composed of massive data centers, back-
bone IP networks, and cellular core networks [210]. Hence, it allowed end users to
leverage the extensive computational and storage resources offered by the Cloud.

During the past decades, there has been a remarkable expansion in numerous
internet-based companies leveraging cloud services such as Amazon, Dropbox, Face-
book, and Youtube, among others. However, the main limitation of cloud com-
puting lies in the considerable time delays faced when accessing the cloud infras-
tructure via the internet. The latencies supported by cloud computing have proven
to be sufficient for many delay-tolerant applications such as social networking, e-
commerce, and distance learning. However, cloud computing is unable to guarantee
an acceptable level of Quality-of-Service (QoS) for numerous emerging applications
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that demand ultra low latencies such as interactive online gaming, virtual reality,
ultra-high-definition video streaming, automated driving, to name a few [211]–[213].
Additional downsides include the substantial costs and space requirements associated
with deploying cloud servers as well as the complicated design and maintenance de-
mands. Moreover, with the proliferation of IoT devices, a multitude of new devices
are connecting to the internet, consistently generating substantial data volumes that
could potentially congest the core internet infrastructure [214].

More recently, the concept of MEC has emerged as a response to the challenges
inherent in offloading tasks to distant cloud servers with the primary goal of bringing
cloud services closer to the network edge [20]. Thanks to advancements in processor
design, robust edge devices can be deployed at network edges, equipped with sub-
stantial processing capabilities and extensive storage capacities. These edge devices
essentially function as compact data centers, featuring moderate resources. They are
usually co-located with Wi-Fi access points, gateways, and LTE base stations, which
are typically set up by telecom operators and internet service providers in close prox-
imity to end-users (ranging from tens to hundreds of meters). Additionally, modern
smartphones now come equipped with powerful chipsets featuring multicore pro-
cessors that can easily handle significantly heavier applications. Since most of the
consumer wearable devices commercially available today, pair with the user’s smart-
phone to operate and/or access the Internet. Hence, the smartphone can act both as
a gateway node for the wearable device as well as a mobile edge device. Moreover, in-
tegrating cutting-edge wireless communication technologies, MEC has the capability
to support latencies at levels around tens of milliseconds [215]. Therefore, it has be-
come feasible to execute computationally intensive and latency-critical applications
even on low-end devices.

The rest of the chapter is organized as follows:
Section 4.1 provides the motivation behind this work and its significance while

also highlighting the main contributions.
Section 4.2 provides the background related to RL-based task offloading citing

some state-of-the-art solutions.
In Section 4.3, we present the system model, including the description of refer-

ence architecture, main assumptions, and mathematical formulations for local and
offloading scenarios.

Section 4.4 presents the Q-learning based task offloading problem formulation.
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The details of the proposed task offloading algorithm is presented in section 4.5.
Section 4.6 presents the discussion on the performance evaluation of the proposed

algorithm.

4.1 Motivation

Delegating tasks to nearby edge devices with enhanced computational capabilities
appears as a suitable strategy for resource-constrained devices such as wearables [8].
However, this approach introduces several complexities. Firstly, wearable devices
may encounter diverse tasks (with varying attributes including input data size, com-
putational intensity, and desired latency) originating from different applications. As
a result, the decision-making process extends beyond the determination of whether
to offload or not; it is further complicated by the critical choice of identifying the
most suitable task executor node when offloading tasks, e.g., the nearby smartphone
or a more powerful edge server. Secondly, the dynamic wireless channel conditions
can lead to unexpected degradation in radio link performance due to factors like
fading and interference. Consequently, an edge device may not always perform as
expected. Hence, devising an optimal offloading policy for an IoT device like a wear-
able, presents a formidable challenge.

Within this context, the integration of AI into Edge Computing has emerged
as a promising solution. Particularly, ML techniques like RL have enabled IoWT
devices, such as wearables, to intelligently carry out task offloading by interacting
with their environment and employing a trial-and-error approach based on their past
experiences, eventually arriving at a nearly optimal task offloading policy [24]. This
study analyzes the advantages associated with task offloading for wearables within a
dynamic environment. We conceptualize the task offloading problem as a MDP and
leverage a model-free Q-learning technique of RL, to allow the wearable device to
make optimal task offloading decisions without any prior knowledge.

4.1.1 Contributions

The main contributions we provide in this chapter are briefly reiterated as follows:

• We propose a framework involving a wearable device paired with the user’s
smartphone, which functions as an edge node for the wearable.
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• We provide mathematical formulation for deriving the desired performance
metrics, namely, task accomplishment time and energy consumption, in both
local computation and offloading scenarios.

• We formulate the task offloading procedure as anMDP and introduce a model-
free Q-learning-based algorithm for task offloading.

• We evaluate the performance of the proposed framework in terms of different
parameters based on extensive simulations performed in the ns-3 Network
Simulator.

4.2 Background

To present a background of the topic, this section presents a discussion on the state-
of-the-art in the field of task offloading for wearables and other resource constrained
IoT devices.

Identifying the best allocation of tasks to devices is commonly known as the Task
Assignment Problem (TAP) in the literature [216]. This class of combinatorial op-
timization involves making choices about the most suitable location for computing
each task in order to minimize factors such as latency and energy consumption.

Addressing this optimization entails the development of efficient solutions ap-
proximating optimal results [217]. In the following subsections, we provide an
overview of relevant solutions available in the literature, including heuristic-based
and RL-based methods to address the TAP in edge computing domain. Moreover,
in the final subsection, we discuss how this work aligns with the existing landscape
of task offloading solutions.

4.2.1 Heuristics-based Solutions

To find optimal solutions for the TAP, several works have suggested heuristic-based
strategies. These heuristics concentrate on identifying sub-optimal but practically fea-
sible solutions. For instance, a Heuristic Offloading Decision Algorithm (HODA)
is presented in [187] for joint optimization of resource utilization and the offloading
decision in proximate clouds. The authors argue that with the increase in number of
users, task completion time and system utility degrades as compared to local execu-
tion resulting in a lower Quality-of-Experience (QoE). Therefore, HODA ensures
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that offloading bottlenecks are not created and prioritizes tasks from mobile users
with better utility to enhance per-user performance metrics. However, the downside
is that it can only support fewer offloaded users. Similarly, Yang, et al., [91] propose
a Context-Aware Task Offloading (CATO) mechanism designed to optimize the al-
location of resources for tasks that are offloaded onto smart devices. CATO aims
to establish a balance between energy consumption on smart devices and the overall
user experience by prioritizing tasks based on contextual information. Consequently,
CATOmanages to decrease latency for time-critical tasks, while simultaneously con-
serving energy for other tasks. However, the proposed mechanism is not suitable
for traditional solutions that do not include context information.

Moreover, a task offloading application named, Dandelion, has been introduced
in [109]. This application enables the offloading of tasks to mobile devices like smart-
phones, CloudLets, and the Cloud. Tasks are divided into different priority levels
and assigned to computing resources using a two-stage task scheduler. The frame-
work effectively achieves task speed up on the mobile device running the Dandelion
application and energy efficiency on the device where tasks are offloaded. How-
ever, it is important to note that consistently running an application on a resource-
constrained device introduces processing and energy consumption overheads, along
with a notable increase in heat generation.

4.2.2 RL-based Solutions

More recently, RL has emerged as an innovative approach that offers an optimal
or nearly optimal strategy for task offloading. In contrast to the widely recognized
supervised and unsupervised ML methods, RL does not rely on pre-existing data sets
for offline training. Instead, RL algorithms iteratively learn, making use of instant
and past rewards derived from the actions taken within various states. Next, we
present some of the most relevant Q-learning based task offloading solutions in the
literature.

QLOF [218], is a Q-learning-based computation offloading and resource opti-
mization solution involving mobile device computing, MEC, and Mobile Cloud
Computing (MCC). QLOF provides a computation offloading policy that pre-
determines the computational place for each task from a global perspective. The
method also includes an offline optimization mechanism for transmission power and
edge cloud computation frequency, to enhance the overall QoE. The performance
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of QLOF is compared against two other benchmark schemes, namely the all-local
scheme and the all-collaborative cloud scheme through MATLAB simulations. The
results illustrate that QLOF effectively minimizes the System Loss Function (SYLF)
across various scenarios. However, the proposed solution only considers sequential
inter dependent tasks originating from a single-chain application.

Authors in [219], propose an Unmanned Aerial Vehicle (UAV)-assisted MEC
system for IoT devices. The concept suggests a mobile UAV delivering computing
services to resource-constrained IoT devices within the system. The paper intro-
duces a Q-learning-based algorithm designed to minimize the overall system delay,
including flying delay, transmission delay, local computing delay, and UAV-based
edge computing delay. The algorithm utilizes a time-based reward function for the
UAV for both successful and unsuccessful events in serving an IoT device. Using
a Python implementation, simulation results reveal that the proposed method ef-
fectively reduces the total system delay compared to several benchmark algorithms.
However, the proposed scheme only aims to minimize total system delay without
considering the energy consumption tradeoff.

Another task offloading and resource allocation solution within the context of
the Internet of Vehicles (IoV) is proposed in [220], with an aim to minimize over-
all system latency and energy usage. The approach employs a Bayesian classifier to
categorize tasks based on their specifications related to latency and energy consump-
tion. This classification process dictates the choice of task offloading mode, either
Vehicle-to-Vehicle (V2V) or MEC offloading. When a task demands higher energy
efficiency, the preference is for V2V offloading; otherwise, the task is offloaded to
the MEC server. A Q-learning algorithm is introduced to achieve optimal resource
allocation, thereby minimizing the total cost for each offloading mode. Simulation
results show that the proposed approach effectively reduces the total system cost.
However, it requires extensive training data samples for different offloading modes
to generate a Bayesian classifier.

Leveraging the Q-learning technique of RL, a task offloading scheme designed
specifically for IoT devices equipped with EH capabilities, is presented in [221].
The main objective of this scheme is to attain an optimal offloading policy without
knowing the MEC model, computation latency, and energy consumption model.
The proposed approach enables IoT devices to make offloading decisions by consid-
ering multiple factors like the current battery level, past radio transmission rate, and
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a projected EH model. The IoT device evaluates each action by calculating a reward
based on a combination of overall latency, energy consumption, task drop loss, and
data sharing gains which updates the Q-function iteratively. Furthermore, to expe-
dite the learning process, a transfer learning technique is used. Additionally, a Deep
Reinforcement Learning (DRL)-based scheme is also used to compress the large state
space, thereby accelerating the learning process. The performance of the proposed
schemes is evaluated through simulations, focusing on metrics such as energy con-
sumption, computation latency, and task drop rates. However, the proposed scheme
requires an offline training to initialize the Q-values based on the offloading expe-
rience in similar environments, i.e., a number of indoor or outdoor networks with
similar MEC deployments given the same EH source.

A binary offloading approach based on Q-learning, is introduced in [222], specif-
ically tailored for an application structured as a sequential series of subtasks. The
authors argue that conventional Q-learning methods have a drawback concerning
the delayed generation of rewards upon completing an action. To address this, the
study proposes an experience replay buffer strategy, which temporarily populates the
Q-value for a given action immediately. Subsequently, a reward rewind match strat-
egy is employed, replacing the entry with the actual Q-value based on the received
reward. To achieve this, the reward function is defined as the negative of the task
completion time. As a result, reduced task completion times yield higher rewards,
and vice versa. Simulation-based results demonstrate the performance improvements
gained from the customized Q-learning algorithm in terms of task completion time.
However, the energy consumption tradeoff is not considered.

A Q-learning-based approach for task offloading in a multi-user MEC system is
introduced in [223] for joint optimization of offloading decisions and resource allo-
cation. The goal is to minimize the energy consumption of all user devices, taking
into account both delay requirements and dynamic resource demands. To achieve
this objective, the authors define a reward function in which the reward value is
inversely linked to the total energy consumption. Moreover, a mixed-integer non-
linear problem is formulated employing a MDP to establish the connection between
offloading and resource allocation policies within the system environment. Numeri-
cal results comparing the performance of their proposed method against other base-
line techniques are presented. However, only energy consumption related analysis is
provided without incorporating other performance parameters particularly the task
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completion time.
In situations where the agent’s states are not finite, the effectiveness of RL so-

lutions reduces, as exploring all possible states to learn action outcomes can be a
lengthy process. Consequently, the algorithm’s convergence time becomes infinite.
To address this issue, researchers have proposed the utilization of Neural Networks
to enhance the efficiency of the agent’s learning phase. Within this context, a frame-
work called DeepWear, is introduced in [117] tailored for wearable devices, aiming
to optimize the offloading of deep learning computations to corresponding handheld
devices. DeepWear maximizes the processing capabilities of nearby handheld devices
through strategies like strategic model partitioning, pipelining support, and context-
aware offloading. Results show that DeepWear is resilient to security breaches and
efficientlty balances the trade-off between end-to-end latency and energy consump-
tion on both wearable and handheld devices. However, neural networks are out of
the scope of this work.

4.2.3 Our Contributions

Hence, a range of task offloading strategies exist, each with its own advantages
and limitations. Notably, AI-driven methods show significant potential. Among
these, RL stands out due to its simplicity and intrinsic ability to learn autonomously
through reward mechanisms. This chapter introduces the utilization of Q-learning
algorithm of RL to enable task offloading from wearable devices to a nearby edge
device, such as a smartphone, in the context of IoWT.

Similarly to other works, e.g., [220], [221], we focus on the optimization of two
conflicting objectives, i.e., minimizing the task accomplishment time andminimizing
the energy consumption. In particular, since we consider the smartphone as an edge
node for the wearable to which a task can be offloaded, the energy consumption is
the sum of the contributions at the wearable and at the smartphone. Moreover, we
propose a more precise energy model as compared to other solutions [91], [109],
[220], [221], [223], which also considers idle energy consumption at the wearable
device, while waiting for the execution of the task offloaded to the smartphone, and
its significance is justified through simulation results.

We develop our proposed framework and carry out its performance evaluation
through extensive network simulations performed in the ns-3 simulator that utilizes
realistic communication models for various networking protocols and standards,
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both at the access layer and at the transport layer. The simulations are carried out
for multiple applications under a wide variety of realistic settings while also showing
how varying the main system parameters of the Q-learning algorithm affects overall
performance.

4.3 System Model

In this section, we outline the system model including system architecture, task at-
tributes, main assumptions, and the mathematical formulation for the desired per-
formance metrics.

Figure 4.2 System architecture and the Q-learning-based task offloading process

4.3.1 System Architecture

We consider a hierarchical architecture that includes a wearable device, such as an
AR headset or smart glasses like Google Glass, worn by a user paired with the user’s
smartphone through an IEEE 802.11ac (Wi-Fi) wireless link as illustrated in fig-
ure 4.2. For the sake of simplification, we will refer to the AR headset or Google
Glass as the wearable device that needs to execute computationally-intensive tasks.
To meet the application’s latency requirements and subsequently enhance the user
experience, these tasks must be executed in a timely manner. The wearable device
has the option to process these tasks either locally or to offload them for execution
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to a nearby edge device such as the smartphone which can offer comparably higher
computational resources for task execution.

4.3.2 Task Attributes

The wearable device generates computation tasks to be executed. Each individual
task, denoted as i, where i ∈ I, can be described by twomain parameters. Specifically,
these include the input data sizeDi (measured in bits) and the computational intensity
of the task, denoted by Ci, representing the number of CPU cycles required per bit
for task processing. To accurately estimate Ci, program profilers are used that utilize
information like the count and type of instructions, function calls, memory usage,
and CPU time allocated to threads [192]. A list of commonly used notations through
out this chapter can be found in table 4.1.

4.3.3 Main Assumptions

We make several assumptions for this work. For example, a MEC server (either co-
located with a Wi-Fi access point or with a cellular network base station) might not
always be available for task offloading, whereas, it is mostly common that a wear-
able device can connect to the user’s smartphone whether in an indoor or outdoor
environment. Therefore, we assume that the wearable device connects to the user’s
smartphone over Wi-Fi. Moreover, we assume that a single task can not be further
divided into subtasks. Also, a single task can only be executed at a single device in
the network. Furthermore, the output data size is considered to be much smaller
than the input data in many applications such as face recognition, automatic license
plate recognition, etc. Therefore, the time for transferring output data from the
smartphone to the wearable can be safely neglected [124], [194].

In the following subsections, we provide a mathematical formulation for the de-
sired performance metrics for both local and offloading scenarios.
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Table 4.1 List of main notations

Notation Description

ai,s Selected action for executing task i in current state (s)
a′i,s Action generating maximum reward in the next state (s + 1)
A Action space
Ci Computational intensity of task i
Di Input data size for task i

Ei,idleWoS Idle energy consumption at the wearable while task i gets offloaded to smartphone
Ei,exS Energy consumption for executing task i on the smartphone
Ei,exW Energy consumption for executing task i on the wearable device
Ei,oS Total energy consumption for offloading task i to the smartphone
Ei,rxS Energy consumed by the smartphone to receive input data for task i from the wearable
Ei,txW Energy consumed by the wearable to transmit input data for task i to the smartphone
FW Computational capacity of the wearable device
FS Computational capacity of the smartphone
i Task index
I Set of all computation tasks in the system
m Device selected to execute a task

Pi,idleW Instantaneous idle power consumption at the wearable
Pi,rxS Reception power of smartphone over Wi-Fi
Pi,txW Wearable transmission power over Wi-Fi
Q(s, ai,s) Q-value for a possible state-action combination
R(s, ai,s) Reward for a possible state-action combination
Ri,W Data rate experienced by the wearable device over Wi-Fi
s State of the system
S State space

Ti,dS Time consumed in input data delivery to the smartphone
Ti,exS Task execution delay at the smartphone
Ti,exW Task accomplishment time for executing task i on the wearable device
Ti,oS Task accomplishment time for offloading task i to the smartphone
α Learning rate
αc Effective switched capacitance constant
βE Energy coefficient in the cost function
βT Time coefficient in the cost function
γ Discount factor
π Q-learning policy
π∗ Optimal Q-learning policy

ψ(s, ai,s) Cost associated with an action ai,s in state s
ψπ (I ,S) System’s long term cost for all the tasks
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4.3.4 Local Computing

The task accomplishment time for executing a task i locally on the wearable device,
Ti,exW , can be estimated as follows [187]:1

  T_{i,exW}=\frac {D_{i} \times C_{i}}{F_{W}}, \label {eq1} 
 


 (4.1)

where FW denotes the processing power available on the wearable device in terms of
CPU cycles per second also referred to as the computational capacity of a device.

Whereas, energy consumption for executing a task locally on the wearable device,
Ei,exW , can be estimated as:

  \label {energyequation} E_{i,exW} = \alpha _{c} F_{W}^2 (D_{i} \times C_{i}),   
    (4.2)

where αc is the effective switched capacitance of each processor, which is related to
the chip architecture [196].

4.3.5 Task offloading to the smartphone

In the following, we provide a mathematical estimation for task accomplishment
time and energy consumption for offloading tasks to the smartphone.

The total time consumed in offloading a task for execution at the smartphone,
Ti,oS , can be defined as the sum of the time consumed in input data delivery to the
smartphone over the Wi-Fi link, Ti,ds, and the task execution delay at the smart-
phone, Ti,exS :

  T_{i,oS}=T_{i,dS} + T_{i,exS}.       (4.3)

The transmission time, Ti,dS , for offloading a task from the wearable device to
the smartphone over the Wi-Fi interface can be estimated as:

  T_{i,dS} = \frac {D_{i}}{R_{i,W}}. 



 (4.4)

where Ri,W is the data rate experienced by the wearable device, to offload task i for
execution at the smartphone over Wi-Fi.

1Equations 4.1–4.10 are similar to the mathematical formulations presented in 3.2.2. However,
they are reproduced here to make the chapter self-explanatory.
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Similar to equation (4.1), the computation delay for executing a task at the smart-
phone Ti,exS is given as:

  T_{i,exS}=\frac {D_{i} \times C_{i}}{F_{S}}. 
 


 (4.5)

The overall energy consumption in offloading a task for execution at the smart-
phone, Ei,oS can be expressed as:

  E_{i,oS}= E_{i,txW} + E_{i,rxS} + E_{i,exS} + E_{i,idleWoS},           (4.6)

where Ei,txW is the energy consumed by the wearable to transmit input data to the
smartphone as:

  E_{i,txW} = \frac {P_{i,txW} \times D_{i}}{R_{i,W}}. 



 (4.7)

The energy consumed by the smartphone to receive input data from the wearable
is calculated as:

  E_{i,rxS} = \frac {P_{i,rxS} \times D_{i}}{R_{i,W}}, 



 (4.8)

where Pi,rxS is the instantaneous power spent during reception over Wi-Fi.
The energy consumed in executing the task on the smartphone is given as:

  E_{i,exS} = \alpha _{c} F_{S}^2 (D_{i} \times C_{i}).   
    (4.9)

Finally, the energy spent at the wearable device during idling, while the task gets
executed at the smartphone, can be estimated as:

  E_{i,idleWoS} = P_{i,idleW} \times T_{i,exS}.       (4.10)

where Pi,idleW is the power spent by the wearable in idle state while task i gets exe-
cuted on the smartphone. To the best of our knowledge, most of the existing works
do not consider this power consumption while measuring the total energy consump-
tion on the wearable device. However, it is essential to factor in the idle energy
consumption since it is a non-negligible entity and may impact the overall energy
consumption significantly, particularly for computationally intensive applications.
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4.4 Problem Formulation

In this section, we formulate the process of task offloading in the IoWT as a RL
problem [224]. The primary objective is to reduce the overall system cost which is
composed of energy and time costs associated with the execution of each task.

MDP serves as a mathematical framework to model decision-making scenarios
where an agent interacts with the environment over a sequence of discrete time steps
to make informed decisions, while generating an instant reward [225]. Within our
considered scenario, task offloading is a sequential decision process in which the
wearable device is required to decide the computation side for each task in sequence.
Moreover, the state of the system changes as we transition from one time slot to the
next. A time slot, in this context, denotes the interval in which a task is computed.
Hence, the entire offloading process can be effectively modeled as an MDP.

In this context, Q-learning has emerged as the most widely utilized value iteration
technique for offering nearly optimal solutions for extensive MDPs through trial and
error without requiring a complete model of the environment [225]. This makes it
applicable to real-world scenarios where system dynamics are complex or unknown.
Moreover, the iterative approach and use of Q-values allow it to adaptively update
its strategy over time, making it effective for finding optimal policies in dynamic
environments.

4.4.1 Components of a Q-learning-based Solution

The key components of a Q-learning-based solution (as also illustrated in figure 4.2)
are as follows:

Agent

In RL, the device typically responsible for decision-making, is commonly referred to
as the agent. In our system, the wearable device generates tasks and must efficiently
execute them for the end user. Hence, the wearable device serves as the agent, utiliz-
ing Q-learning to iteratively interact with the environment and establish an optimal
task offloading policy.
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State Space

The system’s state is characterized as s = (i,m), where i represents the ith task in the
set of all tasks I and m indicates the device assigned to execute task i. Consequently,
the state space is a set of states corresponding to all the tasks within the system,
denoted as S = {s = (i,m)}.

Action Space

The wearable device has the option to decide between executing a task locally or of-
floading it to the edge device, i.e., the smartphone. Therefore, for each task i, within
a given state s, the choice regarding its execution is represented by the variable ai,s.
Where ai,s = 0, represents a local computation action on the wearable device, while
ai,s = 1, indicates an offloading decision. Consequently, the action space contains the
complete set of actions for all tasks within the system and is denoted as A.

Cost Function

As previouslymentioned, the wearable device has the option to perform a task locally
(ai,s = 0) or to offload it for processing on the smartphone (ai,s = 1). In either case,
a specific cost is associated with each action. This cost typically reflects a trade-off
between execution time and energy consumption, a concept that has been widely
explored in the literature [226]–[228]. Therefore, we express the immediate cost
incurred when taking action ai,s for task i in state s as a combination of energy cost
and time cost. Local computation cost is given as:

  \psi (s,a) = \beta _{E} \left ( \frac {E_{i,exW}}{\sum \limits _{i \in \mathcal {I},s \in \mathcal {S}} {E_{i,ex,W}}} \right ) + \beta _{T} \left ( \frac {T_{i,exW}}{\sum \limits _{i \in \mathcal {I},s \in \mathcal {S}} {T_{i,ex,W}}} \right )~if~a_{i,s}=0, \label {costfunc1}   



























    (4.11)

whereas, the cost associated with an offloaded task is given as:

  \psi (s,a) = \beta _{E} \left ( \frac {E_{i,oS}}{\sum \limits _{i \in \mathcal {I},s \in \mathcal {S}} {E_{i,ex,W}}} \right ) + \\ \beta _{T} \left ( \frac {T_{i,oS}}{\sum \limits _{i \in \mathcal {I},s \in \mathcal {S}} {T_{i,ex,W}}} \right )~if~a_{i,s}=1, \label {costfunc2}   



























    (4.12)
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where βE and βT represent energy and time coefficients, respectively. It is important
to note that these coefficients adhere to the constraint βE + βT = 1. Both the energy
and time expended during the execution of the current task are normalized with
respect to the total energy and time required if all tasks were performed locally on
the wearable device.

Consequently, the system’s long-term cost ψπ (I ,S), can be defined as the sum
of immediate costs for all tasks, as follows:

  {\psi _{\pi } }\left ( \mathcal {I,S} \right ) = \sum \limits _{i \in \mathcal {I},s \in \mathcal {S}} {\psi (s,{a_{i,s}})} \label {longtermcostequation}    


  (4.13)

Policy

The policy, denoted as π, is a mapping function that associates each state with a
corresponding action within the system. The agent consistently aims to optimize
the policy π in order to minimize the long-term cost. Therefore, the optimal policy,
denoted as π∗, is the one that minimizes the overall system cost, as expressed by the
following equation:

  {\pi ^ \star } = argmi{n_\pi }~~~{\psi _{\pi }}\left ( \mathcal {I,S} \right )       (4.14)

4.4.2 Q-learning Problem Formulation

Managing available resources in MEC networks becomes extremely crucial, partic-
ularly when dealing with battery-powered mobile devices. The primary objective
is to find a task offloading strategy that reduces the overall energy consumption on
battery-powered mobile devices, including both the wearable and the smartphone,
while simultaneously reducing the execution time for all tasks. Consequently, the
objective function can be defined as the minimization of system’s long-term cost
(defined in equation 4.13), expressed as follows:

  Minimize~~{\psi _{\pi }}\left ( \mathcal {I,S} \right ),      (4.15)

Subject to:

  \label {const4} {a_{i,s}} \in \left \{ {0, 1} \right \},\forall i \in \mathcal {I},\forall s \in \mathcal {S}.            (4.16)
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The constraint outlined in equation (4.16) guarantees that each task can only be
allocated to a single available CPUwithin the system. In other words, each task must
be either executing locally on the wearable device (ai,s = 0) or offloaded for execution
on the smartphone (ai,s = 1). Therefore, the variable ai,s, is an integer variable that
must satisfy the constraint specified in equation (4.16).

4.5 Proposed Q-learning-based Framework

In this section, we present the details of the proposed task offloading framework,
which utilizes the Q-learning algorithm of RL to address the above optimization
problem.

Q-learning is a kind of iterative RL technique, where the agent learns which ac-
tions to take in various circumstances. It is especially well-suited for dealing with
large MDPs to arrive at a nearly optimal solution. We employ the model-free Q-
learning approach, which doesn’t necessitate knowledge of state transition proba-
bilities in advance. In Q-learning-based strategies, while following a policy denoted
as π, the agent’s objective is to learn the Q-function, denoted as Q(s, ai,s), for each
possible state-action combination. Consequently, a policy wherein the agent chooses
the action with the lowest Q-value for each state, is referred to as an optimal policy.

Every time the system transits from one state to the next, there’s an update to the
Q-function. Consequently, a distinct Q-value is generated and stored for each state-
action pair. The transition to the next state (s + 1) occurs when the wearable device
effectively executes a task, either locally or through offloading to the edge device
in state s. Based on this offloading experience, the wearable device updates the Q-
function associated with the state-action pair (s, ai,s) using the well-known Bellman’s
equation [229] as described below:

  Q\left ({{s}},{a_{i,s}}\right ) = \left (1 - \alpha \right ) Q\left ({{s}},{a_{i,s}}\right ) + \alpha \left (R\left ({{s}},{a_{i,s}}\right ) + \gamma \mathop {\max }\limits _{{a}^{\prime }_{i,s} \in {A}} Q\left ({{s}},{a}^{\prime }_{i,s}\right )\right ),             


    (4.17)

where s represents the current state, while ai,s denotes the action taken in that state.
The state s + 1 corresponds to the subsequent state following the execution of action
ai,s in state s. The parameter a′i,s represents the action that generates the maximum
reward achievable in state s+1. The learning rate, denoted as α, satisfies the inequality
0 ≤ α ≤ 1. It serves as a parameter that gauges the influence of both past and present
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Algorithm 1: Q-learning based task offloading algorithm
Input: State space S, Action space A, Learning rate α, Discount factor γ, and

the Exploration probability ε

Output: Q-values for each state-action pair

1 Initialize Q(s, ai,s), R(s, ai,s)
2 for each task do
3 Select an action ai,s via ε-greedy policy
4 Perform the selected action ai,s by executing the task locally or

offloading the input data to the selected edge device
5 Evaluate the energy consumption and latency upon task completion
6 Evaluate the reward R
7 Update Q-table using the Q-function
8 end
9 Updated Q-table with near-optimal Q-values for every state-action pair

learning results. A smaller value emphasizes prior learning, while a larger value places
more emphasis on current learning outcomes. The discount factor, represented as γ,
also satisfies the inequality 0 ≤ γ ≤ 1. This factor characterizes the impact of future
rewards on the current state. A smaller γ value directs the system’s focus toward
short-term rewards, while a larger γ value emphasizes long-term rewards.

4.5.1 Q-learning Algorithm for Task Offloading

Pseudo Algorithm 1 presents the procedural steps of our proposed methodology.
This algorithm requires several inputs, including the state space denoted as S, the
action space represented as A, the learning rate labeled as α, the discount factor de-
noted as γ, and the exploration probability denoted as ε. The exploration probability
guides the exploration of new states. The desired output is to get an optimal task
offloading that identifies the best action that produces the highest Q-value for each
state within the state space.

Hereafter, we detail the specifics of each step within the algorithm. In our pro-
posed algorithm, when the system visits a new state s, it takes an action ai,s. Subse-
quently, the Q-function gets updated, resulting in a new Q-value for that particular
state-action pairing, denoted as Q(s, ai,s). Initially, Q-values for all state-action pairs
can be initialized to zero, given that the system lacks prior learning experiences,
meaning that no states have been explored yet. However, as the system transits
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Table 4.2 Main system parameters

Parameter Numerical Value [Ref.]

Ci (IoT Sensors) 30 CPU-cycles/bit [230]
Ci (4-queens Puzzle) 87.8 CPU-cycles/bit [231]
Ci (5-queens Puzzle) 263 CPU-cycles/bit [231]
Ci (Face Recognition) 297.62 CPU-cycles/bit [232]
Channel width 80 MHz [233]
Communication band 5 GHz [233]
Communication mode TCP [233]
Di (IoT Sensors) 0.2 MB [230]
Di (4-queens Puzzle) 0.2 MB [231]
Di (5-queens Puzzle) 0.2 MB [231]
Di (Face Recognition) 0.42 MB [232]
FW 1 GHz [189], [234]
FS 2.2 GHz [234]
Number of averaged simulations 10 per configuration
Pi,idleW 2.563 mW [235]
Pi,txW 255.2 mW [235]
Pi,rxS 210 mW [235]
Propagation loss model Log distance [233]
Wi-Fi standard IEEE 802.11ac [233]
αc 10−28 [196]

through various states during the learning phase, the number of unexplored states
reduces, and decision-making becomes increasingly refined. Within each state s, a
particular action ai,s is selected, and the system advances to the next state, denoted
as s + 1. During this transition, the immediate cost, denoted as ψ(s, ai,s), is stored as
feedback regarding the executed action. If this feedback is favorable, signifying that
the task takes less time in execution and consumes a small amount of energy w.r.t
the total sum of time and energy consumption in case of local execution, a higher Q-
value is generated for that specific action. Conversely, the chosen action is penalized
by decreasing its associated Q-value. This same reward/punishment policy applies
to each state, and this iterative process repeats over a large number of iterations. At
the end of learning phase, during which the system is expected to have explored all
possible actions for all the states, the Q-table records the optimal action ai,s for each
state s. Consequently, an optimal task offloading policy is determined.
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Figure 4.3 Average task accomplishment time for different applications for the three task execution
scenarios (βE = βT = 0.5).

4.6 Performance Evaluation

In this section, we present the details regarding the simulation setup, considered per-
formance parameters, andmethods to evaluate our proposed task offloading solution.
Subsequently, we present the comparative performance results of the proposed ap-
proach and discuss its effectiveness.

4.6.1 Simulation Environment

Our simulation experiments are performed in the ns-3 Network Simulator, that is
a discrete-event network simulator built in C++ [233]. This open-source software
offers realistic models for various networking protocols and standards while enjoying
broad usage within the research community.

We deploy two nodes to represent a wearable device and a smartphone. We utilize
the ns-3 Wi-Fi module to simulate the Wi-Fi connection between the wearable device
and the smartphone, following the IEEE 802.11ac standard parameters with adhoc

80



IoT Sensors 4-queens 5-queens Face Recog.

Different applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

en
er

gy
co

ns
um

pt
io

n
(J

)

Local
Q-learning
Offloading

Figure 4.4 Average energy consumption for different applications for the three task execution scenar-
ios (βE = βT = 0.5).

Wi-Fi MAC configuration. In addition, we maintain default settings for the physical
layer, including a constant propagation delay and the log distance propagation loss
models. Furthermore, we utilize the standard 5GHz band with an 80MHz channel
width for the 802.11ac connection [236].

We present a comparison between our proposed Q-learning-based task offloading
approach and two benchmark strategies, that are commonly used for performance
evaluation [218]. These strategies, referred to as the all-local scheme and the all-
collaborative cloud scheme in [218], have been renamed as the Local and Offloading
schemes, respectively, to establish relevance with our proposed architecture. The
operational details of these benchmark schemes are briefly outlined below:

• Local: In this strategy, all tasks that originate from the wearable device are
executed locally without offloading.

• Offloading: In this approach, all tasks originating from the wearable device are
offloaded and executed on the smartphone.
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Figure 4.5 Average energy consumption breakdown for different applications for Local execution vs
Offloading scenarios (βE = βT = 0.5).

We make the assumption that tasks originating from the wearable device can per-
tain to various applications, each characterized by distinct input data sizes and com-
putational intensities. Consequently, we assess the performance of our proposed
approach across multiple applications, specifically the IoT Sensors application, m-
queens puzzle applications (with m values of 4 and 5), and a Face recognition appli-
cation. The application m-queens is basically a generalization of the classic n-queens
puzzle application, where ‘m’ stands for multiple. Table 4.2 provides details about
the input data sizes and the corresponding computational intensities for each of these
applications. In case of offloading, we use the Transmission Control Protocol (TCP)
protocol for transferring task input data between devices, utilizing a bulk-send appli-
cation within ns-3 to maximize the utilization of the transmission links. The main
simulation parameters are summarized in table 4.2. Additionally, the computational
overhead forQ-learning algorithms is relatively low [237]. Moreover, the energy and
time overhead can vary significantly based on the hardware, software, and specific
implementation details. Therefore, we have choosen to abstract away these factors
to make the results more generalizable and applicable across different environments.
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Figure 4.6 Average task accomplishment time per task using Q-learning for different applications
when varying values of βE and βT .

4.6.2 Performance Metrics

The two main performance parameters include:

• Task accomplishment time: defined as the time since task generation at the wear-
able device to completion including both computation and communication
time (in case of offloading).

• Energy consumption: modeled as the overall energy consumption of the system
in execution of a task including both energy consumed at the wearable device
as well as the smartphone (in case of offloading). It involves energy spent in
task computation and communication including energy spent by the wearable
during idling while the tasks get executed at the smartphone.

83



0 0.2 0.4 0.6 0.8 1

Energy coefficient in the cost function
E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

en
er

gy
co

ns
um

pt
io

n
(J

)
IoT Sensors
4-queens
5-queens
Face Recog.

1 0.8 0.6 0.4 0.2 0
Time coefficient in the cost function

T

IoT Sensors
4-queens
5-queens
Face Recog.

Figure 4.7 Average energy consumption per task using Q-learning for different applications when
varying values of βE and βT .

4.6.3 Results and Discussion

Effect of Application Size on the overall performance

Figure 4.3 presents the average task accomplishment time per task across various ap-
plications under three different task execution scenarios: local execution, Q-learning,
and offloading. To maintain a balance between time savings and energy conservation,
we have kept the values of the time and energy coefficients, denoted as βT and βE,
equal. The applications are arranged in ascending order based on their task input
data size and computational intensity, with the IoT Sensors application being the
lightest and the Face Recognition application being the heaviest among them.

For lighter applications, it is evident that task offloading does not yield a signifi-
cant improvement in task accomplishment time compared to local execution. This
is because the communication overhead, involved in transferring task data for exe-
cution on the smartphone, outweighs the computational gains. For instance, for the
IoT Sensors application, Q-learning takes approximately 9% whereas, Offloading

84



takes 110% more time as compared to the local execution. Consequently, for such
lightweight tasks, the overall time savings are better achieved through local execution
on the wearable device.

However, as we move to heavier applications, task offloading becomes a more vi-
able option, as the limited computational capabilities of the wearable device substan-
tially contribute to the overall task accomplishment time. Offloading these heavier
tasks results in a considerable reduction in total time consumption. Notably, for the
4-queens application, all three schemes perform nearly identically. However, as we
move beyond the 4-queens scenario and deal with heavier applications, offloading
starts to offer significant time savings compared to local execution. For instance, for
the Face Recognition application, Q-learning reduces the task accomplishment time
by approximately 4.6% whereas Offloading reduces the task accomplishment time
by 38%. Q-learning performs somewhere in between local execution and offloading
since it runs some tasks locally as well in contrast to offloading where each task gets
offloaded.

Nevertheless, opting for offloading every task turns out to be significantly more
costly in terms of energy consumption because it involves energy consumed both in
computation and communication. As a result, when examining figure 4.4, it becomes
apparent that offloading consistently results in notably higher energy consumption
compared to the other task execution scenarios for nearly all applications. For in-
stance, for the IoT Sensors application, Q-learning offers approximately 84.85%
more energy savings as compared to the Offloading approach. However, for the
Face Recognition application Q-learning can achieve approximately 83.52% more
energy savings as compared to Offloading.

Figure 4.5 presents a comparative breakdown of average energy consumption
per task on both the wearable device and the smartphone for local versus offloading
scenarios. In the case of local execution, the sole contributor to the overall energy
consumption is the energy spent in computation of the task on the wearable device.
Whereas, in the case of offloading, the total energy consumption on the wearable
device includes energy consumed in transmitting input data to the smartphone and
the energy consumed during idling while the task gets executed on the smartphone.
In the case of offloading, the overall energy consumption on the smartphone includes
energy spent in receiving the task from the wearable and executing it. For instance,
for the Face Recognition application, it is observed that in the case of offloading, the
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Figure 4.8 Percentage of tasks offloaded by the wearable device using Q-learning for different appli-
cations when varying values of βE and βT .

energy consumed by the wearable device during idling while the task gets executed on
the smartphone is 11.35% of the overall energy consumption on the wearable device.
Hence, it is worth noting that the energy consumed by the wearable device during
idling while the task gets executed on the smartphone, is a non-negligible entity
which gets even more pronounced as the computational intensity of the application
increases.

Effect of Varying System Parameters

This subsection discusses the effect of varying system parameters namely βE and βT ,
the energy and time coefficients in the cost function given in equations 4.11 and 4.12.

Since there exists an inherent trade-off between task accomplishment time and
energy consumption, it is important to fine-tune these parameters based on specific
requirements. However, in this analysis, we aim to showcase the impact of varying
these parameters on the overall system performance. In this set of graphs, we display
both coefficients since their combined sum always equals one.
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Figure 4.9 Average total cost per task using Q-learning for different applications when varying values
of βE and βT .

Figure 4.6 illustrates the impact of varying the energy and time coefficients on
the average task accomplishment time for each application using Q-learning. As the
βE value increases, it is noticeable that the average task accomplishment time also
increases across all applications, reflecting a higher emphasis on energy conservation
over time savings. This effect is particularly pronounced for heavier applications,
primarily because heavier applications tend to offload a larger proportion of tasks.
For instance, for the Face Recognition application, the average task accomplishment
time increases by 31.55% if we compare the performance for βE = 0 vs βE = 1.

Similarly, in figure 4.7, we can observe the influence of changing the energy and
time coefficients on the average energy consumption for each application using Q-
learning. As the βE value increases, the average energy consumption decreases for all
applications, indicating a greater priority placed on energy conservation over time
savings. This effect is more pronounced for heavier applications. For instance, com-
paring the performance for a Face Recognition application, the average energy con-
sumption per task drops by approximately 68.26% moving from βE = 0 to βE = 1.

Figure 4.8 illustrates the percentage of tasks offloaded by the wearable device us-
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Figure 4.10 Task accomplishment time distribution for different applications using Q-learning (βE =
βT = 0.5).

ing Q-learning across various applications while varying the values of βE and βT . It
is evident that with a smaller βE value (and consequently a higher βT value), each ap-
plication tends to offload a higher percentage of tasks. This behavior is particularly
noticeable for heavier applications, as Q-learning strives to make near-optimal deci-
sions. For lighter applications, where offloading does not yield substantial benefits in
terms of both time and energy (as discussed in the previous subsection), the system
tends to offload a lower percentage of tasks. However, as the size and complexity of
the applications increase, the algorithm naturally tends to make more decisions in
favor of offloading tasks, capitalizing on the abundant computational resources avail-
able at the edge. For instance, for βE = 0, the wearable device offloads approximately
20% of tasks from the IoT Sensors application, in contrast to the Face Recognition
application where the offloaded tasks reach around 70%. Conversely, when we in-
crease the βE value (and consequently reduce βT ), signifying a higher emphasis on
energy conservation over time savings, each application attempts to offload a smaller
percentage of tasks. Hence, it prioritizes local execution to conserve energy as ob-
served from the graph for βE = 1, the percentage of offloaded tasks remain under
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Figure 4.11 Energy consumption distribution for different applications using Q-learning (βE = βT =
0.5).

10% for all the applications.
Figure 4.9 depicts the influence of adjusting the energy and time coefficients on

the average total cost, as defined in the cost function equations (4.11 and 4.12), for
each application using Q-learning. When βE is set to zero, it is evident that all ap-
plications tend to favor offloading a large number of tasks. However, this approach
is not particularly beneficial for smaller applications. Consequently, the IoT Sen-
sors application exhibits the highest cost compared to the other applications. For
instance, for βE = 0, the average total cost per task for the IoT Sensors applications is
approximately 69.27% higher than the Face Recognition application. Moreover, as
the βE value increases, the overall cost rises for all applications, encompassing both
computation and communication costs. Nevertheless, a consistent trend emerges,
with offloading proving more advantageous when dealing with heavier applications
that cannot be efficiently executed only using the computational resources available
on the wearable device.
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Figure 4.12 Task offloading distribution for different applications using Q-learning (βE = βT = 0.5).

Distribution graphs for different applications using Q-learning

Figures 4.10 and 4.11 depict the distribution of task accomplishment times and en-
ergy consumption across different applications when utilizing Q-learning with equal
weightage for both time and energy savings. Among these applications, the IoT
Sensors application, being the lightest in terms of computational demands, exhibits
an average task accomplishment time of approximately 52.5ms, accompanied by an
average energy consumption of around 9.5mJ. In contrast, the Face Recognition
application, the most resource-intensive of all, demonstrates an average task accom-
plishment time of 953ms while consuming an average of roughly 164mJ of energy.

Figure 4.12 provides insight into the distribution of task offloading for various
applications when employing Q-learning with equal weightage assigned to time and
energy savings within the cost function. Notably, lighter applications such as the
IoT Sensors application and the 4-queens application offload fewer tasks 24 and 25,
respectively out of a total of 300 tasks generated at the wearable device to generate
these statistics. However, as the computational demands of the application increase,
even with equal weightage given to time and energy savings, the number of offloaded
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tasks rises.

4.7 Summary

This chapter introduces task offloading as an affective strategy for augmenting the
capabilities of resource-limited IoWT devices, namely wearables, within edge com-
puting networks. While various approaches address the TAP to optimize system
resources, AI-based methods have emerged as the most promising solutions.

To summarize, we advocate the utilization of RL, a ML technique, to optimize
the task offloading process. Within our proposed framework, a wearable device em-
ploys the Q-learning technique of RL to offload tasks to the paired smartphone,
which acts as a deep edge node with comparatively greater computational and bat-
tery resources. In the Q-learning approach, the wearable device, also called the agent,
learns iteratively by interacting with the environment to make intelligent task of-
floading decisions for each generated task.

We conducted a comprehensive analysis of various configurations to assess the
impact of Q-learning on overall task accomplishment time and energy consump-
tion across the involved devices. Our proposed framework was implemented in the
ns-3 network simulator, enabling performance evaluation through simulation exper-
iments across a range of applications. Additionally, we observed the effect of varying
system parameters on the overall performance.

The results highlight a tradeoff between time savings and energy consumption.
Notably, for lighter applications such as the IoT Sensors application, local com-
putation outperforms both Q-learning and Offloading approaches in terms of task
accomplishment time. This is due to the additional overhead introduced by the
communication phase in both Q-learning and Offloading approaches. However,
for a comparatively heavy application such as the Face Recognition application, Q-
learning can bring approximately 26.45% savings in task accomplishment time in-
stead of the local execution approach (setting βE = 0, for maximum speedup). In
comparison, approximately 85.4% energy savings are achievable as compared to the
offloading approach (setting βE = 1, for maximum energy savings) for the same ap-
plication. Moreover, we demonstrate the impact of varying weight parameters for
time and energy costs in the Q-learning algorithm on overall performance, includ-
ing average task accomplishment time, average energy consumption, percentage of
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tasks offloaded, and total cost. These results offer valuable insights into fine-tuning
of parameters for optimal performance. Finally, distribution graphs illustrating per-
formance parameters such as task accomplishment time, energy consumption, and
tasks offloaded are presented for different applications. Analyzing these distribution
graphs, it is worth noting that leveraging Q-learning to offload tasks to a nearby edge
device, such as a smartphone, allows achieving a task accomplishment time of 0.953s
for a heavier application like Face Recognition at the expense of merely 164mJ of
energy.
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5 CONCLUSION

This chapter concludes the thesis by providing a summary of the main research
findings. Subsequently, we highlight potential avenues for future research along with
the major challenges associated.

5.1 Main Research Findings

Wearable technology is rapidly gaining popularity among consumers, finding utility
in a diverse range of value-added and entertainment applications. These applica-
tions include health monitoring, fitness tracking, human activity recognition, VR,
AR, gaming, and more. As the adoption of wearables continues to grow, signifi-
cant technological advancements have been made to enhance the overall efficiency of
these devices, ultimately improving the user experience. However, despite these ad-
vancements, the wearable industry faces several challenges that restrict its continued
evolution.

In this thesis, we highlighted that many of those challenges stem from two pri-
mary limitations: i) the constrained battery life of wearable devices, and ii) the in-
sufficient computational capacity to accommodate the requirements of increasingly
sophisticated modern applications. In this context, we formulated a set of research
questions (reproduced below) to address in this thesis.

Q1. What is the current state of research focused on energy efficiency in the IoWT tech-
nology, including year-wise publication trends, main application areas, perfor-
mance parameters, evaluation tools, prevalent wireless communication technolo-
gies, and strategies for enhancing energy efficiency?

To address research question Q1, we conducted a comprehensive SLR of state-
of-the-art solutions focused on enhancing energy efficiency within the IoWT
domain, as detailed in chapter 2. We proposed a taxonomy for categoriz-
ing IoWT solutions based on their targeted application areas from an energy
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efficiency perspective, classifying them into healthcare, activity recognition,
smart environments, and general solutions. Given the historical development
of wearables for specific medical purposes, the review revealed that a substan-
tial portion of the existing solutions focused on healthcare applications. How-
ever, recent advancements have expanded the use of wearables into a multitude
of other domains beyond healthcare. Additionally, we presented a statistical
analysis of these solutions over the years, analyzing the publication trends.
This analysis revealed a continuous growth in research related to wearables,
signaling an increasing interest in this field. Moreover, a thorough qualitative
and comparative analysis of existing studies within each category is provided
highlighting the merits, demerits, main performance parameters, and major
contributions of each solution. Additionally, we performed a statistical anal-
ysis to identify the prevalent tools used for assessing the performance of pro-
posed solutions. This analysis revealed a general trend among researchers to
develop prototypes for validating the effectiveness of their proposed solutions.
However, some studies presented simulations-based results, with MATLAB
emerging as the most frequently used simulator. Similarly, we presented an-
other statistical analysis to highlight the most commonly used communication
technologies in wearables. This analysis demonstrated that BLE was the dom-
inant choice, primarily due to its low power consumption characteristics. Fi-
nally, a detailed discussion is provided outlining the main strategies found in
the literature for enhancing energy efficiency in wearables while also empha-
sizing the challenges involved.

Q2. What are the potential benefits and limitations of task offloading for wearables
in multi-tier edge architectures in terms of task accomplishment time and energy
consumption, considering realistic settings regarding computing task requirements,
device capabilities, and inter-device distance?

To address research question Q2, chapter 3 investigates the benefits and limita-
tions of task offloading for wearables. A two-tier edge architecture is proposed
that comprises a smartphone and an edge server as task executor nodes. Based
on the proposedmathematical formulation, a detailed numerical analysis is pre-
sented focusing on the task accomplishment time and energy consumption pa-
rameters. We evaluated the performance for a wide range of different settings.
These settings include varying input data sizes as well as the required com-
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putational intensities for tasks to observe the effect on overall performance.
Additionally, we also analyzed the performance by varying device capabilities
in terms of CPU computational capacity. Moreover, considering the mobility
of a user, we analyzed the overall performance by varying spatial separation
between the smartphone and edge server. Furthermore, since task offloading
involves both computation and communication phases at the devices involved,
therefore, we provide a breakdown of overall time and energy consumption
for different task execution scenarios to illustrate the individual contribution
of each phase.

Based on the considered settings, we observed that offloading tasks to the edge
server generally proved to be better as compared to both local execution and
offloading to the smartphone. However, when the smartphone is situated at
the cell border, experiencing challenging signal propagation conditions, exe-
cuting tasks on the smartphone becomes advantageous over offloading to the
edge unless the smartphone’s battery is running low or the task is exception-
ally computationally intensive. Finally, opting for local task execution on the
wearable is beneficial when dealing with tasks that are not computationally
intensive. This is due to the fact that the delay incurred during the transfer of
input data over wireless links can potentially surpass the total time required to
execute the task.

Q3. How canQ-learning, a RL-based technique, be effectively utilized to optimize task
offloading for wearables in an edge computing framework to enhance their overall
performance, network resource utilization, and end-user experience?

To address research question Q3, chapter 4 presents a background on several
task offloading strategies available in the literature aimed at addressing the TAP
to optimize system resources. Among the available strategies, AI-based tech-
niques were found to be the most promising solutions. Specifically, the model-
free Q-learning technique of RL, is found to be the most suitable and affective
for wearables due to its inherent simplicity. We propose an edge comput-
ing framework where the wearable device utilizes the model-free Q-learning
approach of RL to make intelligent task offloading decisions leveraging the re-
sources available on the smartphone that serves as a deep edge server. In this
approach, the wearable device (a.k.a. the agent), learns iteratively by interact-
ing with the environment to make intelligent task offloading decisions for each
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generated task without prior knowledge. The effectiveness of the proposed
framework is evaluated through extensive simulation experiments conducted
in the ns-3 network simulator. A comprehensive analysis of various configura-
tions to assess the impact of Q-learning on overall task accomplishment time
and energy consumption is presented across the involved devices. We consider
several different applications namely the IoT sensors application, m-queens
puzzle applications (with m=4 and m=5), and a face recognition application,
with different task input data sizes and task computational intensities while
also highlighting how varying the main system parameters of the Q-learning
algorithm affects overall performance.

The results demonstrate a tradeoff between time savings and energy consump-
tion. Notably, for more demanding applications such as Face Recognition,
Q-learning can bring approximately 26.45% savings in task accomplishment
time compared to local execution (with βE set to 0, for maximum speedup).
Moreover, approximately 85.4% energy savings can be achieved compared to
the offloading approach (with βE set to 1, for maximum energy savings) for
the same application. We also illustrate the impact of varying weight param-
eters for time and energy costs in the Q-learning algorithm on overall per-
formance, including average task accomplishment time, average energy con-
sumption, percentage of tasks offloaded, and total cost. These results provide
valuable insights into the fine-tuning of parameters for optimal performance.
Lastly, distribution graphs depicting performance parameters such as task ac-
complishment time, energy consumption, and tasks offloaded are presented for
different applications. It is worth noting that leveraging Q-learning to offload
tasks to a nearby edge device, such as a smartphone, enables achieving a task
accomplishment time of 0.953s for a heavier application like Face Recognition
at the expense of merely 164mJ of energy.

To summarize, we performed an extensive SLR focussed on the energy efficiency
aspect of wearables. We identified two major challenges associated with wearable
development, namely the limited battery power and insufficient computation power
available on the contemporary wearable devices available in the market. We gath-
ered diverse statistical data from the literature, providing insights into the research
aimed at improving the overall energy efficiency of the wearables. We also high-
lighted several strategies available in the literature to improve the energy efficiency
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of wearables. Subsequently, we focussed on the task offloading strategy to address
the aforementioned main challenges. We performed a detailed numerical analysis to
quantify the benefits task offloading can bring to improve the overall performance
of the wearables while also highlighting the limitations. Moreover, we explored the
potential application of ML techniques to automate the task offloading process on
wearable devices. Furthermore, we presented an edge computing framework utiliz-
ing the model free Q-learning technique of RL to improve the task offloading process
and assessed its performance through extensive simulations.

5.2 Challenges and Future Research Directions

While it is true that numerous solutions addressing various aspects within the IoWT
domain already exist, we foresee that this field has yet to reach its full potential.
We anticipate that opportunities for further enhancement and research still exist.
Therefore, we have highlighted avenues for further research within this domain,
with the aim of inspiring researchers to develop more capable IoWT-based systems
to meet the upcoming user demands.

5.2.1 Parallel Task Execution and Split Computing

To further enhance the benefits of task offloading in the context of IoWT, exploring
parallel task execution for multitasking support, can be another meaningful research
direction. In order to efficiently manage multiple applications, it becomes crucial
for the wearable device to promptly decide the execution location of each generated
task. These decisions should consider both the specific application requirements and
the availability of resources to optimize overall performance. Furthermore, another
closely related potential strategy involves breaking down individual tasks into sub-
tasks, each of which can be executed at distinct network entities. Such split comput-
ing strategies to execute tasks partially at the edge server and the smartphone/wear-
able can certainly lower overall task execution time while also optimizing the energy
consumption. However, managing inter-task dependencies and resource utilization
requires careful consideration in the implementation. Additionally, the division of
tasks into subtasks should ensure that each atomic subtask can function indepen-
dently, thereby enhancing the overall user experience.
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5.2.2 Approximate Computing

With the advancements in processor design, it is anticipated that future wearable
devices will be equipped with more powerful processors with substantial storage
resources. However, the energy consumption also increases significantly with the
increase in computation capacity. Hence, it is crucial to manage these resources effi-
ciently to conserve energy. Moreover, the growing demand for high computing re-
sources across various wearable applications necessitates the development of efficient
computing techniques. Therefore, utilizing approximate computing in conjunction
with task offloading is an innovative approach that can significantly impact the effi-
ciency and performance of computational tasks, particularly in resource-constrained
environments like those found in wearable devices within the context IoWT. These
approaches involve trading output accuracy for gains in computing time and energy
by relying on nearly accurate results. However, it necessitates a thoughtful analysis
of task characteristics and precision requirements to achieve the right balance be-
tween computational accuracy and performance gains (for a detailed discussion on
approximate computing and the tradeoffs, refer to section 2.3.9).

5.2.3 Direct Internet Connectivity

From the communications perspective, a significant number of current wearable de-
vices establish their Internet connection via a gateway node, often a smartphone,
due to the absence of direct long-range connectivity capabilities. However, such an
arrangement can lead to considerable performance limitations, particularly for high-
end wearables that demand high data rates. Examples include applications in fields
like AR/VR/MR or XR applications. Consequently, there is a growing expectation
that devices with direct Internet connectivity, equipped with IEEE 802.11 and/or
cellular modules, will receive more attention in the immediate future. Moreover, the
advent of long-range non-cellular connectivity solutions such as NB-IoT, LoRa, Sig-
fox, among others, is anticipated to enter the wearable industry, thereby paving the
way for a multitude of novel IoWT applications. However, direct Internet connec-
tivity has the potential to introduce new challenges regarding the energy efficiency of
wearable devices and monetary costs. Direct communication with an access point (as
in Wi-Fi) or a base station (in the case of cellular/non-cellular connectivity) would
involve transmitting data over comparatively longer distances with high transmission
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powers. Moreover, offloading tasks using cellular/non-cellular connectivity options
can also increase the data costs. Therefore, another interesting future research di-
rection can be to develop user-centric RL-based task offloading algorithms that take
into account user preferences and goals when making offloading decisions along with
adaptive transmission power control mechanisms.

5.2.4 Personalized Wearable Clouds

Generally, the majority of available wearables currently operate as standalone de-
vices, performing their designated tasks individually without any substantial col-
laboration with other wearables. Nevertheless, as consumer interest in integrating
wearables into their everyday activities grows, it is anticipated that individuals will
incorporate multiple wearables into their daily routines in the near future. Conse-
quently, a network of wearables could be established, wherein personal wearables
could capitalize on the sensing, computing, and transmission capabilities of nearby
wearables. This collaborative approach could enable the efficient execution of de-
sired tasks by forming personalized wearable clouds through collaboration. Hence
necessitating the need for developing multi-agent distributed Q-learning techniques
that can efficiently operate in environments with multiple interconnected devices.

5.2.5 Security and Privacy

It is crucial to highlight that security and privacy have emerged as paramount con-
cerns, particularly within the context of medical applications. Wearable devices fre-
quently carry sensitive and private user data, which could potentially be exploited
to identify and trace individuals. For instance, various wearables implement specific
biometric-based locking mechanisms, such as fingerprinting and facial recognition
techniques. Notably, the biometric data associated with users constitutes the most
sensitive information, as compared to passwords which can be changed; in contrast,
biometric or behavioral traits often remain constant throughout an individual’s life-
time. It has been observed that many commercially available wearables lack compre-
hensive security features, often due to concerns about performance degradation. This
is because many data encryption and security methods available are computationally
demanding for wearable devices. Consequently, the development of security and pri-
vacy techniques that are lightweight and efficient, tailored specifically for wearables,
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has emerged as a significant research domain. Moreover, within the context of task
offloading for wearables, developing RL-based algorithms that consider security risks
and privacy concerns when making offloading decisions can be a potential research
direction. This becomes particularly important in scenarios involving sensitive data
such as healthcare and services dealing with confidential information.

5.2.6 Energy Harvesting

With the evolution of processing units and the rise of high-performance wearables
reliant on intensive computations, are contributing to the concern that current bat-
tery power resources might prove inadequate for prolonged device operation. Con-
sequently, it is anticipated that EH will become a crucial component of future high-
powered wearables. Many researchers are actively exploring ideas to enable this
feature. These include microkinetic EH systems that leverage frequencies found in
human motion to extract energy, wearable power through solar EH, the develop-
ment of self-powering smart fabrics, and even wireless power transfer for implantable
devices. However, integrating EH techniques into the IoWT still faces several chal-
lenges. Firstly, the EH efficiencies of current state-of-the-art harvesters are insuf-
ficient to independently power wearable devices in the IoWT. Secondly, ambient
energy availability is not consistent. Thirdly, the compact design goals of wear-
able devices pose an additional hurdle, as EH necessitates the integration of various
hardware components like ambient energy harvesters and supplementary batteries.
Consequently, extensive research is necessary to enable future IoWT devices to re-
liably generate power from ambient sources. Hence, extending the battery life of
wearables.

5.2.7 Proximity Detection

In the context of wearables, proximity detection refers to the capabilities of wearable
devices to sense and measure the distance or proximity to other objects/devices in
their vicinity. Proximity detection is a promising area of research with the poten-
tial to revolutionize various fields, such as social interaction and health monitoring,
where wearable devices equipped with proximity sensors can help individuals main-
tain safe distances from others, especially in situations like crowded public spaces or
during contagious disease outbreaks. Similarly, they can significantly benefit indi-
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viduals with disabilities, such as the visually impaired. Additionally, wearables can
aid in environmental research by measuring the proximity to various environmen-
tal factors like pollution sources or radiation. Moreover, they can also be used to
enhance workplace safety as well as to locate and place workers efficiently. Further-
more, proximity detection can transform retail and marketing strategies by enabling
businesses to engage with customers based on their proximity to products or store
areas, offering targeted promotions or product information. Hence, the potential
applications of proximity detection using wearable devices are vast, and ongoing
research and development in this area have the potential to bring about transforma-
tive changes in how we interact with our environment, technology, and each other.
However, gadgets of this nature need to possess sufficient resources to efficiently
carry out the desired task as well as to effectively support the user throughout the
entire day. Therefore, the utilization of low-power technologies in the design of up-
coming proximity detection wearables becomes a critical consideration and an active
research area.

5.2.8 Comfort and ease-of-use

The comfort and user-friendliness of wearables are of paramount importance. Con-
sidering the close proximity of these devices to the human body and skin, their design
must carefully account for these factors. Specifically, the risk of overheating or short
circuits should be carefully addressed when designing future wearables. Some high-
end wearables presently available generate substantial heat, potentially preventing
widespread consumer acceptance. Hence, these factors stand as crucial elements to
be considered during the development of upcoming wearable technologies.
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