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ABSTRACT 

The modern world surrounds us with a vast sea of chemicals of which a large 

majority remains uncharted in terms of their potential hazard for human health and 

the environment. At the same time, the rapid introduction of new chemicals 

necessitates a delicate balance between innovation and safety, presenting one of the 

key challenges of the 21st century.  

Chemical safety assessment has been long focused on resource-intensive and 

ethically challenged animal experiments. Furthermore, the traditional approach 

focuses on phenotypic endpoints, providing limited insight into toxicity mechanisms 

which impedes the development of chemicals that are safe and sustainable by design 

(SSbD). Despite major efforts to advance in vitro and in silico alternatives for chemical 
safety assessment, the first generation of these non-animal approaches present 

similar challenges as their in vivo counterparts. This has resulted in major initiatives 
to shift the focus towards mechanistic toxicology, enabling a deeper understanding 

of chemical hazards. This mechanistic approach is fuelled by the introduction of 

adverse outcome pathways (AOPs) and toxicogenomics, offering unprecedented 

insights into the molecular underpinnings of chemical-induced toxicity. While the 

value of this mechanistic venture is broadly recognised, toxicogenomics-based 

evidence is not systematically integrated into chemical safety assessment.  

Hence, the foundational premise of this dissertation lies in the recognition of the 

multifaceted challenges that surround the utilisation of toxicogenomics data in 

chemical safety assessment. These challenges were characterised through three 

critical aspects of toxicogenomics data: its intrinsic characteristics, functional 

properties, and translational potential. The intrinsic characteristics, defined as the 

FAIRness (Findability, Accessibility, Interoperability and Reusability) and quality of 

data, were investigated, and addressed through systematic data curation and 

annotation. This enabled a comprehensive review of the current state of 

toxicogenomics data, resulting in a resource with improved FAIRness and a robust 

foundation for subsequent analytical endeavours. Similarly, this effort established a 

systematic link between toxicogenomics-based evidence and the AOP framework, 

empowering the functional properties of both data types.  
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Innovative methodologies and approaches to data analysis form the cornerstone 

of the functional properties of data, aiming at the extraction of meaningful insights 

from complex, high-dimensional toxicogenomics datasets. By harnessing advanced 

computational techniques and the link established between AOPs and 

toxicogenomics, this dissertation further sought to distinguish subtle molecular 

signatures and discern the intricate interplay between chemicals and biological 

systems. This was exemplified by a model of a dynamic dose-dependent mechanism 

of action that revealed crucial mechanisms related known long-term adverse effects 

of multi-walled carbon nanotube exposure in a short-term in vitro exposure.  
Finally, a pivotal facet of this research lies in the translation of toxicogenomics-

derived evidence into biologically meaningful events that are comprehensible to a 

broader audience. Bridging the gap between raw data and actionable insights, this 

dissertation endeavored to provide a tangible link between molecular alterations and 

their potential implications for human health through the translation of 

toxicogenomics-based evidence into mechanistic new approach methodologies 

(NAMs). This dissertation highlighted how the intrinsic characteristics and 

functional properties of toxicogenomics data enable its translational potential, 

resulting in the AOP fingerprint and in vitro biomarkers for the evaluation of 
profibrotic potential of chemicals.  

Ultimately, the results of this research have the potential to propel the field of 

chemical safety assessment forward by elucidating the intrinsic characteristics, 

functional properties, and translational potential of toxicogenomics data. By 

synergistically employing data curation, advanced analytical methodologies, and 

translational approaches, this dissertation endeavours to enhance the applicability of 

toxicogenomics in the broader context of chemical safety evaluation, thus 

contributing to the safeguarding of public health and the environment. 
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TIIVISTELMÄ 

Nykyaikainen maailma ympäröi meitä valtavalla määrällä kemikaaleja, josta suurin 

osa on edelleen arvioimatta niiden mahdollisten terveys- ja ympäristövaikutusten 

osalta. Samalla uusien kemikaalien nopea kehittäminen ja käyttöönotto vaatii 

taidokasta tasapainottelua innovaation ja turvallisuuden välillä, muodostaen yhden 

nykypäivän keskeisistä haasteista. Kemikaalien turvallisuusarviointi on pitkään 

keskittynyt kalliisiin ja työläisiin eläinkokeisiin, joiden eettisyys ja relevanssi usein 

kyseenalaistetaan. Lisäksi perinteinen lähestymistapa kemikaalien 

turvallisuusarviointiin keskittyy havaittaviin fenotyyppimuutoksiin, tarjoten rajallisen 

käsityksen lopputulokseen johtavista mekanismeista ja molekyylitason vasteista. 

Tämä puolestaan rajoittaa kehitystä kohti uusia kemikaaleja, jotka suunnitellaan 

turvallisiksi ja kestäviksi alusta alkaen (safe and sustainable by design, SSbD). Vaikka 

merkittäviä ponnisteluja on tehty niin in vitro - kuin in silico -vaihtoehtojen 
edistämiseksi kemikaalien turvallisuusarvioinnissa, näiden eläinkokeita korvaavien 

menetelmien ensimmäinen sukupolvi kohtaa samankaltaisia haasteita kuin niiden 

eläinperusteiset vastineet. Tämä on johtanut merkittäviin globaaleihin aloitteisiin 

siirtää painopiste kohti mekanistista toksikologiaa, joka mahdollistaa syvällisemmän 

ymmärryksen kemikaalien mahdollisista haitoista. Mekanistinen toksikologia 

perustuu perusteelliseen ymmärrykseen kemiallisten altistusten aiheuttamista 

mekanismeista ja vasteista. Molekyylitasolla näitä mekanismeja tutkitaan 

toksikogenomiikan keinoin ja laaja-alaisemmin mekanismit voidaan kuvata käyttäen 

apuna haittavaikutusreittejä (adverse outcome pathways, AOPs). Vaikka tämän 

mekanistisen lähestymistavan potentiaali tunnustetaan laajasti, toksigenomiikkaan 

perustuvaa näyttöä ei vielä käytetä systemaattisesti osana kemikaalien 

turvallisuusarviointia. 

Tämän väitöskirjan lähtökohta piileekin niissä monitahoisissa haasteissa, jotka 

vaikuttavat toksigenomiikan käyttöön kemiakaalien turvallisuusarvioinnissa. Tässä 

väitöskirjassa näitä haasteita tutkittiin toksikogenomiikkaan ja sen dataan liittyvillä 

kolmella kriittisellä osa-alueella: sen sisäiset ominaisuudet, toiminnalliset 

ominaispiirteet sekä sen translationaalinen potentiaali. Datan sisäisiin ominaisuuksiin 
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määriteltiin kuuluvaksi sen FAIR-luonteisuus (lyhenne sanoista Findability, 

Accessibility, Interoperability ja Reusability), käytettävyys ja laatu. Näitä 

ominaisuuksia tutkittiin ja käsiteltiin systemaattisella datan kuratoinnilla ja 

merkinnällä, mikä mahdollisti myös datan nykytilanteen kattavan tarkastelun. 

Tuloksena syntyi kokoelma, jolla on parannellut FAIR-ominaisuudet, luoden vankan 

pohjan seuraaville analyyttisille pyrkimyksille. Lisäksi tämä pyrkimys loi 

systemaattisen yhteyden toksigenomiikan ja olemassa olevien haittavaikutusreittien 

välille, vahvistaen molempien datatyyppien toiminnallisia ominaisuuksia. 

Innovatiiviset menetelmät ja lähestymistavat datan analysointiin muodostavat 

toiminnallisten ominaisuuksien perustan. Näiden tavoitteena on löytää 

merkityksellisiä oivalluksia monimutkaisesta ja moniulotteisesta datasta, jota 

tuotetaan toksikogenomiikan keinoin. Tässä väitöskirjassa näitä toiminnallisia 

ominaisuuksia tutkittiin hyödyntämällä edistyneitä laskennallisia menetelmiä sekä 

haittavaikutusreittien ja toksikogenomisen datan välille luotua yhteyttä pyrkimyksenä 

luonnehtimaan ja mallintamaan kemikaalien ja biologisten järjestelmien 

monimutkaisia vuorovaikutuksia. Esimerkkinä tästä syntyi dynaamisen 

vaikutusmekanismin malli, jonka avulla voitiin luonnehtia lyhyen in vitro -altistuksen 
avulla niitä mekanismeja, jotka johtavat keuhkofibroosiin pitkällä aikavälillä 

moniseinäisille hiilinanoputkille altistuttaessa. 

Viimeinen osa-alue keskittyi toksigenomiikasta johdetun näytön kääntämiseen 

biologisesti merkityksellisiksi tapahtumiksi, jotka ovat ymmärrettäviä laajemmalle 

yleisölle. Toksikogenomiikan datan translationaalinen potentiaali piilee keinoissa 

kuroa umpeen kuilu raakadatan ja käytännön oivallusten välillä. Tässä väitöskirjassa 

pyrittiin luomaan tämä konkreettinen linkki molekulaaristen vasteiden ja niiden 

mahdollisten terveysvaikutusten välille kääntämällä toksikogenomiikan keinoin saatu 

näyttö mekanistisiksi uuden sukupolven menetelmiksi (new approach 

methodologies, NAMs). Tuloksissa korostui datan sisäisten ja toiminnallisten 

ominaisuuksien merkitys translationaaliselle potentiaalille.  

Kokonaisuutena tämä väitöskirjatutkimus pyrkii edistämään kemikaalien 

turvallisuusarvioinnin alaa tutkimalla toksigenomisen datan sisäisiä ominaisuuksia, 

toiminnallisia ominaispiirteitä sekä translationaalista potentiaalia. Hyödyntämällä 

datan kuratointia, edistyneitä analyyttisiä menetelmiä ja uusia lähestymistapoja, tämä 

väitöskirja pyrkii parantamaan toksigenomiikan soveltamista kemikaalien 

turvallisuusarviointiin laaja-alaisesti, edistäen matkaa kohti terveellisempää ja 

turvallisempaa tulevaisuutta. 



ix 

CONTENTS 

1 Introduction ......................................................................................................................... 21 

2 Literature Review ................................................................................................................ 23 
2.1 Brief history of toxicology ..................................................................................... 23 
2.2 Current topics in chemical safety assessment .................................................... 24 

2.2.1 Phenotype-based assessment .............................................................. 25 
2.2.2 Safety assessment of engineered nanomaterials .............................. 28 

2.3 Paradigm shift in chemical safety assessment .................................................... 29 
2.3.1 New Approach Methodologies .......................................................... 30 
2.3.2 Integrated Approaches to Testing and Assessment ....................... 31 
2.3.3 Mechanistic toxicology ........................................................................ 31 
2.3.4 Adverse Outcome Pathways .............................................................. 32 

2.4 Toxicogenomics ...................................................................................................... 34 
2.4.1 Transcriptomics in toxicogenomics .................................................. 35 
2.4.2 Epigenomics in toxicogenomics ........................................................ 37 
2.4.3 Toxicogenomics in chemical safety assessment .............................. 38 

2.5 FAIR data, high quality data ................................................................................. 42 
2.5.1 “Reuse” as the fourth R ...................................................................... 44 

3 Aims of the study ................................................................................................................ 46 

4 Materials and methods ....................................................................................................... 48 
4.1 Cell work .................................................................................................................. 48 

4.1.1 Cell culture methods ............................................................................ 48 
4.1.2 Chemical exposures and sample preparation ................................... 48 
4.1.3 Cell viability ........................................................................................... 49 

4.2 DNA microarray experiments .............................................................................. 49 
4.2.1 Gene expression microarrays ............................................................. 50 
4.2.2 DNA methylation microarrays ........................................................... 50 

4.3 Curation of public transcriptomics data .............................................................. 50 
4.3.1 Data identification and retrieval ......................................................... 51 
4.3.2 Curation of metadata ........................................................................... 51 
4.3.3 Curation of ENM physicochemical properties ............................... 51 
4.3.4 Manual quality assessment .................................................................. 52 

4.4 Preprocessing, analysis, and modelling of omics data ....................................... 52 
4.4.1 Preprocessing of microarray data ...................................................... 53 
4.4.2 Preprocessing and analysis of RNA-Seq data .................................. 55 



x 

4.4.3 Modelling of the dynamic dose-dependent MOA .......................... 56 
4.4.4 Functional characterisation of omics data ........................................ 56 

4.5 AOP data curation .................................................................................................. 57 
4.5.1 Key event to gene set annotations .................................................... 57 
4.5.2 Biological context annotations ........................................................... 59 

4.6 Validation of the AOP-gene set curation ........................................................... 60 
4.7 AOP fingerprint ...................................................................................................... 61 
4.8 AOP-derived biomarkers ...................................................................................... 62 

4.8.1 Gene prioritisation ............................................................................... 63 
4.8.2 Biomarker validation with RT-qPCR ................................................ 66 

5 Summary of results ............................................................................................................. 68 
5.1 Intrinsic characteristics of data ............................................................................. 68 

5.1.1 Overview of the toxicogenomics data collection ............................ 69 
5.1.2 Data quality and FAIRness as intrinsic characteristics ................... 70 
5.1.3 Overview of the AOP annotation ..................................................... 71 

5.2 Functional properties of data ................................................................................ 74 
5.2.1 dMOA highlights a distinct set of molecular alterations ............... 74 
5.2.2 Gene expression and promoter methylation show distinct 

kinetics of adaptation .......................................................................... 76 
5.2.3 Rigorous annotation improves the functional properties 

of AOPs ................................................................................................. 79 
5.3 Translational properties of data ........................................................................... 82 

5.3.1 The AOP fingerprint shows high concordance between in 
vitro and in vivo exposures .................................................................... 82 

5.3.2 AOP-derived mechanistic in vitro biomarkers for 
pulmonary fibrosis ............................................................................... 84 

6 Discussion ............................................................................................................................ 87 
6.1 Intrinsic characteristics of toxicogenomics data ................................................ 87 

6.1.1 FAIRness is not an indication of data quality .................................. 88 
6.1.2 Robust annotation supports the application of AOP-

based data in chemical safety assessment ......................................... 91 
6.2 Functional properties of toxicogenomics data ................................................... 93 

6.2.1 Multi-omics dMOA informs on the profibrotic potential 
of MWCNT exposure in vitro ............................................................. 94 

6.2.2 Functional properties of AOPs are improved through 
data annotation ..................................................................................... 97 

6.3 Translational potential of toxicogenomics data ............................................... 100 
6.3.1 The AOP fingerprint supports the mechanistic 

interpretation of toxicogenomics-based evidence ........................ 100 
6.3.2 The AOP framework provides mechanistic context for 

transcriptional biomarkers ................................................................ 102 



xi 

7 Conclusions ........................................................................................................................ 106 

List of Figures 

Figure 1. Schematic presentation of an adverse outcome pathway (AOP). 
Green denotes a molecular initiating event (MIE) while the orange 
boxes represent key events (KE) in the pathway progressing towards 
an adverse outcome (AO) at distinct levels of biological orgaisation. 
Black arrows correspond to key event relationships (KER). ........................... 33 

Figure 2. Toxicogenomics data characteristics and properties investigated in 
this dissertation to support the application of toxicogenomics data 
in chemical safety assessment. .............................................................................. 47 

Figure 3. Omics data preprocessing pipelines applied throughout the thesis 
work. The rows indicate distinct technologies and platform 
manufacturers (boxes outlined with a solid line) for which optimal 
methods were selected as indicated in the boxes on the same row. 
The order of the columns follows the steps applied in the pipeline. 
Boxes outline with dashed lines indicate the final output obtained 
from step connected to the box by a thick arrow. Figure modified 
and updated from Study I. ................................................................................... 53 

Figure 4. Pipeline applied for the annotation of KEs. The figure was originally 
published in the supplementary material of Study V. ...................................... 58 

Figure 5. Gene prioritisation pipeline. White boxes with a green outline 
denote different types of data used to rank the genes initially. Green 
boxes indicate a ranked list of genes, while black arrows mark the 
actions performed on the list. ............................................................................... 64 

Figure 6. Data characteristics of the curated toxicogenomics data collection. 
A. Pie chart indicating the number of datasets in each category
defined by the experimental design. B. Stacked bar plot representing
the number of datasets for each organism divided into in vitro and in
vivo experiments. C. Stacked bar plot representing different core
materials of the ENMs available in the collection with in vitro and in
vivo experiments separated. D. Stacked bar plot indicating the
number of experiments by biological system with cells and tissues
from the same system grouped under a general category. In vivo and
in vitro exposures separated. Figure originally published in Study I. .............. 70 



xii 

Figure 7. Overview of the AOP annotations. A. Stacked bar plots depicting 
the proportion of annotation types divided by the level of the KEs. 
The height of the bar reflects the number of KEs in each group. 
Dark brown (no annotation) stack corresponds to the number of 
KEs with no associated gene sets, while the different annotation 
types are represented proportionally to their use in each level. 
Abbreviations as follows: HPO = Human Phenotype Ontology, WP 
= WikiPathways, GO_BP = Gene Ontology Biological Process, 
GO_CC = Gene Ontology Cellular Component, GO_MF = Gene 
Ontology Molecular Function. B. Density plot describing the 
number of KEs associated with each gene. The dashed line indicates 
the median of the distribution. C. Bar plots representing the number 
of different tissues/organs (turquoise) and cell types (dark green) 
mapped to each system-level annotation (D). D. Total number of 
KEs by system level annotation. The system “other” includes KEs 
assigned a cell type applicable for a range of tissues and/or systems, 
and those for which no system could be defined. Figure originally 
published in Study IV. .......................................................................................... 73 

Figure 8. Comparison of the differential expression and promoter methylation 
with the set of dynamic dose-dependent genes and promoters. A-B. 
Bar plots displaying the number of differentially expressed genes (A) 
or differentially methylated promoters (B) between cells treated with 
Mitsui-7 and control cells. Upwards bars (red) indicate the number 
of upregulated genes or hypermethylated promoters at each time 
point and dose, while downwards (green) bars correspond to the 
number of downregulated genes or hypomethylated promoters. C-
D. Venn diagrams describing the overlap between the sets of 
differentially expressed genes and dynamic dose-dependent genes 
(C) or the sets of differentially methylated promoters and dynamic
dose-dependent promoters. Figure adapted from Study III. ......................... 75 

Figure 9. Integration of the dMOA over expression and methylation. A. Venn 
diagram depicting the overlap between DDD genes in transcription 
and methylation. B. Tile plot indicating the intersections of genes 
between each activation group in expression and methylation. Figure 
adapted from Study III. ....................................................................................... 76 

Figure 10. Comparison between the dMOA over gene expression and 
promoter methylation at the level of enriched pathways. A. Venn 
diagram depicting the overlap between the enriched pathways in the 
dMOA of transcription and promoter methylation. B. Enriched 
pathways shared by the transcription and promoter methylation. 
Figure originally published in Study III. ............................................................ 78 

Figure 11. Selected pathways and genes relevant to the pathogenesis of 
MWCNT-induced pulmonary fibrosis. The heatmap represents the 



xiii 

associations between selected genes of the dMOA characterised in 
the experiment and signalling pathways/biological functions. Dark 
ble squares indicate the gene to be part of the dMOA in expression, 
orange in promoter methylation and turquoise in both. Figure 
originally published in Study III. ........................................................................ 79 

Figure 12. AOP annotations improve the functional properties of 
toxicogenomics data and AOPs. A. Bar chart indicating the 
proportion of chemicals showing relevant AOPs among the top 
enriched titles in the enrichment analysis against the AOP-associated 
gene sets. Number in brackets indicates the number of chemicals in 
the category. B. Heatmap representing the similarity of the PF KEs 
based on the Jaccard Index based similarity of their associated gene 
sets. Light grey represents low similarity scores, while increasing 
similarity is expressed with the colour changing through green to 
blue. C. Network presentation of the PF AOPs using their original 
KEs. Different colours represent the KEs of distinct AOPs and 
grey nodes denote KEs shared by multiple AOPs. Orange nodes 
correspond to AOs. D. Network presentation of the PF AOPs after 
grouping of the KEs. Figure adapted from Study V. ....................................... 81 

Figure 13. AOP fingerprint of Mitsui-7 exposure in vitro and in vivo. The size of 
the dot corresponds the proportion of the significantly enriched 
KEs in each AOP (rows) and the colour represents the FDR-
adjusted p-value in a negative logarithmic scale. The AOPs are 
sorted by the p-value in vivo. Figure originally published in Study V. ............ 83 

Figure 14. Dot plot depicting the results of the RT-qPCR validation of the 
biomarker candidates. Tested genes are visible on the x-axis with the 
number in the brackets corresponding to the final rank of the gene. 
Grey dots represent the genes whose expression was detected but 
not significantly altered between the exposed and control cells. 
Green dots reflect the genes that were significantly altered but not 
considered dose-dependent while the brown dots correspond to the 
final biomarker candidates that were both significantly altered and 
dose-dependent. ...................................................................................................... 86 

List of Tables 

Table 1. Biomarker characteristics defined to guide the prioritisation of genes 
as potential in vitro biomarkers. Table from Study V. ....................................... 63 

Table 2. Candidate biomarker genes and their information for RT-qPCR 
assay. ......................................................................................................................... 67 



xiv 

Table 3. Number of unique terms (gene sets) and genes used from each data 
source together with the total number of human-relevant terms and 
genes present in each resource. The numbers in brackets express the 
unique instances of the terms. The number of genes correspond to 
unique Ensembl gene identifiers. ......................................................................... 72 

Table 4. Characteristics for optimal biomarkers based on the Bradford Hill 
criteria. The original nine criteria have been modified and 
supplemented with additional considerations. Table has been 
originally published in Study V. ........................................................................... 85 



xv 

ABBREVIATIONS 

3R Replacement, reduction, and refinement 

AIC Akaike Information Criterion 

AO Adverse outcome 

AOP Adverse outcome pathway 

BMD Benchmark dose 

BMDL Lower bound of the benchmark dose 

BMDU Upper bound of the benchmark dose 

BMR Benchmark response 

cDNA Complementary DNA 

CTD Comparative toxicogenomics database 

DE Differential expression 

DEG Differentially expressed gene 

dMOA Dynamic dose-dependent mechanism of action 

GEO Gene expression omnibus 

GLP Good Laboratory Practice 

ECHA European Chemicals Agency 

ENA European Nucleotide Archive 

ENM Engineered nanomaterial 

EPA U.S. Environmental Protection Agency 

FAIR Findability, Accessibility, Interoperability and Reusability 

FC Fold change 

FDR False discovery rate 

IATA Integrated approaches for testing and assessment 

IDF Inverse document frequency 

KE Key event 

LOAEL Lowest observed adverse effect level 

logFC Fold change expressed in the log2 scale 

MIAME Minimum information about a microarray experiment 

MIE Molecular initiating event 

MINSEQE Minimum information about a sequencing experiment 



xvi 

MOA Mechanism of Action 

MWCNT Multi-walled carbon nanotube 

NAM New Approach Methodology 

NCBI National Center for Biotechnology Information 

NGS Next generation sequencing 

NLP Natural language processing 

NOAEL No observed adverse effect level 

NTP National Toxicology Program 

OECD Organisation for Economic Co-operation and Development 

PMI Phorbol 12-myristate 13-acetate 

POD Point of departure 

PPI Protein-protein interaction 

qAOP Quantitative adverse outcome pathway 

QSAR Quantitative structure activity relationship 

RAHC Reasonably anticipated human carcinogen 

REACH Registration, Evaluation, Authorisation and Restriction of 

Chemicals 

RQN RNA quality number 

RT-qPCR Reverse transcription quantitative polymerase chain reaction 

SSbD Safe and sustainable by design 

TEM Transmission electron microscope 

TF Transcription factor 



xvii 

ORIGINAL PUBLICATIONS 

This dissertation is based on the following publications: 

I Saarimäki L. A., Federico A., Lynch I., Papadiamantis A. G., Tsoumanis A., 
Melagraki G., Afantitis A., Serra A. & Greco D. Manually curated transcriptomics 
data collection for toxicogenomic assessment of engineered nanomaterials. Sci. 
Data 8, 49 (2021). 

II Saarimäki L. A., Melagraki G., Afantitis A., Lynch I. & Greco D. Prospects and 
challenges for FAIR toxicogenomics data. Nat. Nanotechnol. 17, 17–18 (2022). 

III  Saarimäki L. A.*, Kinaret P. A. S.*, Scala G., del Giudice G., Federico A., Serra 
A. & Greco D. Toxicogenomics analysis of dynamic dose-response in
macrophages highlights molecular alterations relevant for multi-walled carbon
nanotube-induced lung fibrosis. NanoImpact 100274 (2020).

IV  Saarimäki, L. A., Fratello, M., Pavel, A., Korpilähde, S., Leppänen, J., Serra, A. 
& Greco, D. A curated gene and biological system annotation of adverse outcome 
pathways related to human health. Sci. Data 10, 409 (2023). 

V Saarimäki, L. A., Morikka, J., Pavel, A., Korpilähde, S., del Giudice, G., Federico, 
A., Fratello, M., Serra, A. & Greco, D. Toxicogenomics Data for Chemical Safety 
Assessment and Development of New Approach Methodologies: An Adverse 
Outcome Pathway-Based Approach. Adv Sci (Weinh) 10, e2203984 (2023). 

*Equal contributions

The corresponding Roman numerals are used to refer to each study in the text. 



xviii 

AUTHOR’S CONTRIBUTION 

I L.A. Saarimäki collected, preprocessed, and analysed the microarray data,
produced the figures, and wrote the manuscript.

II L.A. Saarimäki performed the investigation and wrote the manuscript.

III  L.A. Saarimäki performed the RNA quality assessment and the gene expression 
microarray experiment, as well as preprocessed and analysed the gene expression 
and the DNA methylation data. L.A. Saarimäki conducted the investigation and 
data interpretation, produced the figures, and wrote the manuscript. 

IV  L.A. Saarimäki participated in the design of the study and manually curated the 
data together with two students whose curation tasks she supervised. L.A. 
Saarimäki conducted the analysis and investigation, produced the figures, and 
wrote the manuscript. 

V L.A. Saarimäki participated in the design of the study and participated in the data
curation and the supervision of the curation task. L.A. Saarimäki conducted all the
computational analyses and the interpretation of the results, produced the figures
in the main text, and wrote the manuscript.



xix 





 

21 

1 INTRODUCTION 

Chemicals pervade all aspects of human lives. We are exposed to thousands of 

chemicals through food, everyday products, medicines, and the environment 

throughout a lifetime. However, only a fraction of these chemicals has been 

thoroughly characterised for their potential hazards on human health and the 

environment (European Environment Agency, 2019). At the same time, novel 
substances are constantly needed to overcome modern challenges of humankind, 

which makes balancing sustainable innovation with safety one of the key challenges 

of the 21st century. 

Traditionally, chemical safety has been assessed through animal experiments that 

focus on exposure properties and observable, phenotypic changes induced by 

chemical exposures. These assays, however, are time-consuming, costly, unethical, 

and often not easily translated to human health (Landi et al., 2021; Price et al., 2022; 
Van Norman, 2019). Similarly, the evaluation of exposure-induced apical endpoints 
provides no mechanistic insight that would improve the predictive capabilities of 

models and could support the development of chemicals that are safe and sustainable 

by design (SSbD). These themes have emerged as a focal point of authorities and 

regulatory bodies during the past decades, giving rise to numerous initiatives to 

modernise the process of chemical safety assessment. This has also initiated a shift 

from the traditional assessment of predefined endpoints towards mechanistic 

toxicology.  

Mechanistic toxicology supports the evaluation of chemical exposures through 

the application of the adverse outcome pathway (AOP) framework and 

toxicogenomics. While AOPs depict mechanisms of chemical exposures as causal 

chains of interlinked key events (KEs) at various levels of biological organisation, 

toxicogenomics focuses on elucidating the mechanism of action (MOA) of chemical 

exposures using omics technologies, such as transcriptomics and methylomics. 

Investigation of these molecular mechanisms enables a comprehensive 

characterisation of the effects of chemical exposures while also supporting the 

development of predictive approaches to chemical safety assessment. Similarly, 

understanding the MOA of these exposures provides valuable input for the 

development of chemicals, (nano)materials, and drugs that are SSbD.  
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Although omics technologies have been widely applied and accepted across the 

life sciences, their implementation in chemical safety assessment has been hampered 

by the lack of standardisation and uncertainties in the analysis and interpretation of 

such data (Pain et al., 2020). This has resulted in concerns regarding reproducibility 
and challenges in the translation of the complex signatures into meaningful insight 

and concrete assays to support chemical safety assessment.  

In this dissertation, the challenges standing in the way of systematically 

incorporating toxicogenomics-based evidence into chemical safety assessment are 

investigated by focusing on three aspects of toxicogenomics data: its intrinsic 

characteristics, functional properties, and translational potential. 

Intrinsic characteristics of data reflect its availability, quality, and FAIRness 

(findability, accessibility, interoperability, and reusability) (Wilkinson et al., 2016). 
These characteristics arise from experimental design and technical execution as well 

as data (pre)processing and reporting. Together, these form the foundation of any 

model and application of toxicogenomics data. Although data is recognised as one 

of the most valuable assets in the modern world, it quickly turns meaningless unless 

its functional properties, i.e., how the data is used, are addressed. This, on the other 

hand, calls for robust analytical approaches and advanced models that turn bare data 

into meaningful, functional information. Finally, the full potential of toxicogenomics 

data is unleashed when it becomes translational, turning data into human-readable 

format and robust assays for chemical safety assessment that no longer require 

advanced expertise on computational modelling. Assessing the translational potential 

of data reintroduces it into the laboratory where new data can be generated in a more 

targeted manner in the form of data-driven new approach methodologies (NAMs) 

ready to tackle specific questions relevant for chemical safety assessment.  
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2 LITERATURE REVIEW 

2.1 Brief history of toxicology 

 

The study of toxic substances and their effects on living organisms has evolved over 

the centuries, driven by a growing understanding of chemical interactions and their 

potential health effects. The origins of toxicology can be found in ancient 

civilisations, where early observations on the poisonous properties of certain plants, 

animals, and minerals were made (Watson and Wexler, 2009). Toxicology as a 
distinct scientific discipline, however, began to emerge during the Renaissance 

period. Notably, Paracelsus, a Swiss physician and alchemist in the 16th century, is 

often regarded as the father of modern toxicology (Langman and Kapur, 2006). He 
formally introduced the concept of the dose-response relationship, laying the 

grounds for understanding the fundamental principle that the toxicity of a substance 

is dependent on its dosage. 

Around the same time, occupational hazards associated with mining practices 

were recognised (Gochfeld, 2005). The rise of occupational diseases and widespread 
environmental pollution sparked concerns about the adverse effects of industrial 

chemicals on human health. This led to the establishment of the first toxicological 

testing methods and the recognition of occupational and environmental health 

hazards. In the following centuries, toxicology underwent further development and 

refinement. The introduction of experimental animal models enabled the systematic 

investigation of the toxic effects of chemicals and the development of standardised 

testing protocols.  

The mid-to-late 20th century witnessed a shift towards a more regulatory-

oriented approach in toxicology. Governments and regulatory agencies recognised 

the need for systematic evaluation of chemical safety pre-emptively, leading to the 

establishment of toxicological testing guidelines and protocols (Choudhuri et al., 
2018). Animal testing became a central paradigm in safety assessment aimed at 

determining the potential risks of chemicals to human health and the environment. 

However, the ethical concerns and limitations associated with animal testing 
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prompted the exploration of alternative methods towards the end of the 20th 

century.  

Today, the development of in vitro systems, in silico models, and high-throughput 
screening techniques provide alternative avenues for toxicity testing, with the 

potential to reduce reliance on animal models. These developments have marked a 

significant turning point in toxicology, fostering the emergence of new NAMs that 

prioritise human relevance, efficiency, and ethical considerations – the standpoint of 

modern chemical safety assessment. 

2.2 Current topics in chemical safety assessment 

The human pursuit for innovation and constant aim to improve the quality of life 

has resulted in the discovery and synthesis of the vast number of chemical substances 

available today. The composition of these substances ranges from simple chemical 

elements and compounds to alloys and advanced materials, such as engineered 

nanomaterials (ENMs). Chemical substances continue to be created at an 

accelerating pace to meet the needs of various industries, including agriculture, 

pharmaceuticals, electronics, and materials science (Tickner et al., 2021). However, 
this rapid influx of novel substances has outpaced the capacity of current practices 

in chemical safety assessment. As a consequence, a substantial portion of chemicals 

available in the market remains inadequately characterised for their potential risks to 

human health and the environment. Out of the estimated 100,000 chemicals 

currently traded in Europe, only approximately 500 have been extensively 

characterised (European Environment Agency, 2019). This means that they have 
been evaluated for most known hazards, are regularly quantitatively monitored in 

most media, and have defined exposure limit values. While additional 30,000 

chemicals are characterised for some hazards and may be affected by specific limit 

values, the remaining 70,000 chemicals are poorly characterised for their potential 

hazards (European Environment Agency, 2019). 
Understanding the challenges in the present framework forces a critical look into 

the current practices of chemical safety assessment, the process that aims to identify 

potential hazards, exposure scenarios, and the likelihood of adverse effects from 

exposure. Chemical safety assessment employs various areas of research and testing, 

ranging from academia to industries and regulators. Research on chemical safety 

forms the foundation of the process and gives rise to the methods applied in the 

regulatory setting. As the methods become robust enough, reaching a strong level of 
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consensus, standardisation and validation, they can be adopted into the legislation 

by the regulators (Bas et al., 2021). Hence, the methods and processes in place today 
have often been developed decades ago, while new methods are being slowly 

introduced and adopted. This holds true with the REACH (registration, evaluation, 

authorisation, and restriction of chemicals) legislation that overlooks chemical safety 

in the European Union. While the intricacies of regulatory chemical safety 

assessment are beyond this dissertation that focuses on chemical safety research, the 

considerations made here can also serve as a stepping stone towards broader 

regulatory acceptance of omics-based evidence. 

The current framework mainly operates under the premise of phenotype-based 

assessment, which focuses on measuring and evaluating phenotypic effects, or apical 

endpoints, of chemical exposures (Gwinn et al., 2017). Despite major developments 
in alternative approaches, these assays are still largely based on animal 

experimentation. The evaluation of apical endpoints of toxicity using animal models 

has resulted in a slow and high-cost evaluation of individual chemicals one endpoint 

at a time. At the same time, animal experimentation has been under scrutiny for 

decades. The 3R principles summarising the replacement, reduction, and refinement 

of animal use in research were introduced back in 1959 (Russell and Burch, 1959). 
Today, animal experimentation is not only recognised as an expensive, laborious, 

and time-consuming activity, but animal-based evidence is not always applicable or 

easily translated to human health (Landi et al., 2021; Price et al., 2022; Van Norman, 
2019). These challenges and limitations have sparked major investments from the 

regulators, academia, and industry towards the development of alternatives to 

traditional animal experimentation and beyond the phenotype-based chemical safety 

assessment.  

2.2.1 Phenotype-based assessment 
 

The roots of phenotype-based chemical safety assessment lie in the recognition of 

observable traits or characteristics as valuable indicators of organism’s response to 

chemical exposure. One of the most notable milestones affecting hazard assessment 

for human health is the discovery linking genotoxicity and carcinogenesis, 

consolidated by Ames et al. in 1973, resulting in one of the key test methods still in 

use (Ames et al., 1973; DeMarini, 2019). This idea of using phenotypic changes as 
proxies of chemical toxicity pervaded the field of chemical safety assessment, leading 

to myriad methods and assays in use today. 
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In animal-based assessment, the hazard associated with chemical exposures is 

evaluated by exposing the animals to the chemical via the most relevant routes of 
exposure. For instance, in the case of evaluating the hazard associated with inhalation 

of particulate material, the animals are exposed to the material through inhalation 

(or other applicable means) and histopathological changes are evaluated (Fraser et 
al., 2021; Mercer et al., 2013; Porter et al., 2013). Similar principles are applied for 
various other types of endpoints, including hepatotoxicity, neurotoxicity, endocrine 

disruption and reproductive toxicity, for example (Pan et al., 2019; Patisaul et al., 
2018; Vorhees et al., 2018). 
Over the years, the core concept of phenotype-based assessment has translated 

into in vitro assays established to answer the global attempts to implement the 3R 
principles in chemical safety assessment. Instead of measuring specific endpoints in 

an animal model, these assays focus on similar proxies on cell or tissue models in 
vitro. At their simplest, these assays include cytotoxicity, cell viability and genotoxicity 
(Moore et al., 2010). Although in vitro cytotoxicity is a widely applied method in 
chemical safety assessment, it should not be used as a general measurement of the 

health hazard of a compound. Instead, it can inform on the biocompatibility of 

chemicals and materials, and it can serve as a tool to screen for appropriate dose 

ranges for more specific, targeted assays (Li et al., 2015; Ukelis et al., 2008). More 
advanced alternative models that have also been introduced into regulatory chemical 

safety assessment include tissue models for skin irritation, skin corrosion, and 

phototoxicity (Stucki et al., 2022). 
The hazard posed by chemical exposure is quantified by modelling the endpoints 

as a function of the exposure properties, such as the physicochemical properties of 

the chemical, the dose, and the duration of the exposure. These can be further used 

to define critical values and limits for exposures, including the no-observed-adverse-

effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL) 

(Haber et al., 2018). The challenge, however, is that the endpoint needs to be 
observed to enable this type of characterisation, necessitating long and laborious 

experiments for the evaluation of chronic and repeated exposures, for example. 

Furthermore, focusing merely on the exposure properties and apical endpoints 

provides little insight into the mechanisms through which chemicals exert their 

effects, providing a “black-box” assessment of individual apical endpoints with 

limited mechanistic insight or predictive value.  

The chemocentric view where chemical toxicity is defined as a function of 

chemical properties holds true for the non-testing strategies applied in chemical 

safety assessment. The characterisation of physicochemical properties enables the 
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comparison of the chemical with those already in the market, hence facilitating the 

identification of existing information based on the likeness of the substances. Non-

testing strategies, such as chemical grouping, read-across, and quantitative structure-

activity relationships, or QSAR for short, use this information to infer or predict 

potential hazards associated with new or less characterised chemicals (Raunio, 2011).  
Read-across is a technique used in chemical safety assessment to predict the 

potential toxicity of a chemical substance by comparing its properties with those of 

a similar substance with known toxicity profile (Schultz et al., 2015). The process 
involves the identification of chemicals that are structurally similar to the target 

chemical and already have relevant data on their toxicity. This data is then used to 

assess the potential hazards of the target chemical. QSAR, on the other hand, is a 

computational technique used to predict the potential toxicity of a chemical 

substance based on its structural and physicochemical properties. QSAR models are 

developed using mathematical algorithms and statistical methods that analyse the 

relationship between chemical properties and toxicological outcomes (Peter et al., 
2019).  

The use of these computational approaches, however, requires robust data on the 

known toxicological effects of the compounds. Similarly, careful consideration of 

the applicability domain of each model is warranted (Klingspohn et al., 2017). This, 
on the other hand, is primarily restricted by the availability of training data, and such 

large chemical spaces are rarely available. Hence, substances with little structural 

similarity to well-characterised chemicals require the generation of new data on their 

toxicological effects, bringing us back to the assays used to characterise these effects.  

These phenotype-based in vitro assays and in silico approaches define the first 
generation of alternative assays. While these methods solve some of the challenges 

associated with animal use, traditional in vitro assays remain a simplified model 
concerned with individual endpoints. Similarly, in silico methods, such as read-across 
and QSAR, rely on robust data from related chemicals, typically assuming the effects 

are a mere function of the physicochemical properties while omitting the importance 

of the interaction between the biological system and the exposure. Furthermore, the 

battery of current alternative methods entails similar challenges as their animal-based 

counterparts, lacking mechanistic insight that could support early hazard 

identification and input for the development of the next generation of chemicals that 

are SSbD. These challenges have resulted in a situation where only a fraction of 

potential adverse effects is characterised pre-emptively, and many of the detrimental 

outcomes are uncovered even decades after the initial exposure through 
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epidemiological investigation (Braun et al., 2016; Dodson and Hammar, 2005; 
Maffini et al., 2021). 

2.2.2 Safety assessment of engineered nanomaterials 

ENMs are chemicals with exceptional properties that set them apart from the more 

traditional chemical substances, such as small molecules. ENMs are manufactured 

substances comprising minuscule particles at the nanoscale. That is, one or more 

dimensions of the individual particles measure between 1 and 100 nm. These 

chemicals, often grouped under the category of advanced materials, have been 

gaining popularity across various disciplines. Their unique nanoscale properties have 

sparked myriad applications that now range from bio-medical uses as drug carriers 

and vaccine components to food additives and ingredients in cosmetics, paints, and 

coatings (Albalawi et al., 2021; Santos et al., 2015). These advances placed 

nanotechnology as one of the key enabling technologies in the EU (Páez-Avilés et 
al., 2018). The rapid growth of the industry is reflected in a surge in nanoenabled 
products, with the number of such consumer products in the European market 

having more than quadrupled in the last decade 

(https://nanodb.dk/en/analysis/consumer-products/#chartHashsection, last visited 
in October 2023). At the same time, the increased applications have sparked concerns 
related to the potential adverse outcomes associated with ENMs. 

Indeed, the same properties that make ENMs attractive for a range of 

applications also make them unpredictable in terms of hazard for human health and 

the environment. The high surface to volume ratio increases their reactivity, which 

on one hand, enables flexible modification of the surface properties, but on the 

other, it increases their fickle interactions with biological systems (L. Xu et al., 2018). 
This property together with other implications of the nano-scale size further sets 

them apart from their bulk counterparts. Similarly, the high reactivity translates to 

high chance of environmental transformations, such as agglomeration, aggregation, 

dissolution, redox reactions, and interactions with biomacromolecules (Johnston et 
al., 2020; Lowry et al., 2012). Hence, ENMs under real-life conditions are rarely 
comparable to their as-produced-state. Moreover, they are inherently diverse even 

upon production. This means that the particle size and shape are measured as a range 

instead of an absolute value, making the final product a mixture of particles of a 

certain size and shape (Modena et al., 2019). With minor alterations in particle sizes 
affecting their biological effects, the safety assessment of ENMs under the traditional 

https://nanodb.dk/en/analysis/consumer-products/#chartHashsection
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toxicology framework has proven complicated (Johnston et al., 2020; Roduner, 
2006). Moreover, various ENMs are known to interfere with some of the assays 

regularly used in chemical safety assessment (Ong et al., 2014). 
The recognition of the challenges introduced by the safety assessment of ENMs 

have placed the nanosafety community at the forefront of the change in current 

practices of chemical safety assessment. This has been reflected in the financial 

investments directed towards nanosafety in the EU, giving rise to various projects 

and initiatives aimed at advancing the safety assessment of ENMs as well as the safe 

and sustainable design of new, functional ENMs (Afantitis et al., 2020; Furxhi et al., 
2023; Mech et al., 2022). Consequently, ENMs are also selected as a relevant topic 
in this dissertation.  

2.3 Paradigm shift in chemical safety assessment 

The last two decades have witnessed a global paradigm shift in chemical safety 

assessment fuelled by technological advances. Efforts such as the U.S. National 

Toxicology Program (NTP) Tox21 vision have advocated for a transition from in 
vivo animal testing to in vitro and in silico methods for chemical safety evaluation. The 
vision was further consolidated by a landmark report on the topic by the U.S. 

National Academy of Sciences highlighting the need for refining traditional 

toxicology assays and developing rapid, mechanistic predictive screening methods to 

inform decision-making for public health (Krewski et al., 2010). The strategy 
envisioned increased efficiency in safety assessment through in vitro toxicity pathway 
assays using high-throughput screening methods with quantitative parameters. 

The aims to reduce reliance on animal experimentation are shared by various 

initiatives across the globe. Like in the Tox21 vision, the demand for a more 

profound understanding of toxicity mechanisms has also been recognised in Europe. 

The new paradigm embraces a more holistic and integrative framework that 

considers the complex interactions between chemicals, exposure scenarios, and 

biological systems. This has resulted in major investments towards these efforts. 

Large-scale research initiatives funded by the European Commission, such as 

SEURAT-1, EU-ToxRisk, and PARC have advocated for the development and 

utilisation of NAMs and Integrated Approaches to Testing and Assessment (IATA), 

often with a highly mechanistic outlook (Gocht et al., 2015; Krebs et al., 2020; 
Marx-Stoelting et al., 2023). Profound understanding of the interactions between 
chemicals and biological systems is not only crucial for the development of more 
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informative and translatable models with better predictive capabilities, but also for 

the implementation of the SSbD concept.  

2.3.1 New Approach Methodologies 
 

NAMs are technologies or methods that focus on the characterisation of chemical 

hazard and risk without using whole animal models, especially mammalian species 

(European Chemicals Agency, 2016). They include both existing and novel in vitro 
assays, as well as in silico and in chemico models and their potential combinations. 
Despite their name, NAMs are not necessarily newly developed methods per se, but 

the novelty lies in the application, with NAMs being intended for the replacement 

of conventional testing strategies to improve the predictability, reliability, and 

relevance of scientific data to chemical safety assessment (Stucki et al., 2022).  
Although still an emerging concept, major investments towards the development, 

implementation, and acceptance of NAMs has resulted in a rapid surge of scientific 

reports describing or discussing NAMs. In the last five years, the number of 

publications mentioning NAMs has steadily grown from less than 10 reports in 2018 

to 128 published articles in 2022, according to a Scopus search with the term “New 

approach methodology” (https://www.scopus.com/). The suggested approaches 

range from predictive biomarkers to complex high-throughput assays screening large 

panels of chemicals simultaneously (Fragki et al., 2023; Harrill et al., 2021; 
Thienpont et al., 2023). 
NAMs are increasingly mechanistic and performed in a high-throughput manner. 

This direction supports the efforts of deeper understanding of the mechanisms 

through which chemical exposures induce their effects. The mechanistic frame for 

testing and assessment is often provided by the AOP framework, resulting in NAMs 

that target the monitoring of specific KEs, further enabling the link between 

evidence derived through non-animal approaches to systemic, often long-term 

adverse outcomes. Indeed, the assessment of long-term effects and adverse 

outcomes of chronic exposures remains one of the largest challenges to overcome 

without the use of animal experimentation. Although there is still substantial work 

to be done in this domain, NAMs hold great promise for advancing science while 

reducing the use of animals in research. 
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2.3.2 Integrated Approaches to Testing and Assessment 

While NAMs refer to the individual tests and methods to generate data and assess 

specific aspects of chemical exposures, the battery of different methods and forms 

of evidence can be integrated into a framework referred to as IATA. As the name 

suggests, IATA integrate various lines of evidence to gain a comprehensive 

understanding of the hazard and risk that chemical exposures may pose (Sakuratani 
et al., 2018). They can incorporate evidence derived through traditional approaches 
as well as through NAMs. In the context of IATA, the use of computational methods 

can extend to data interpretation and integration (Afantitis et al., 2020). Regardless 
of the methods used in IATA, their design and application involve expert judgement, 

and they should be developed to address specific scenarios of toxicological 

importance. 

Like NAMs, IATA are increasingly intertwined with the AOP framework. AOPs 

often introduce the backbone for the development of IATA, suggesting the types of 

evidence and methods needed for comprehensive assessment (Tollefsen et al., 
2014). Indeed, the power of IATA lays in their capability to leverage existing data 

and integrate it with newly generated evidence. Combined with AOPs, IATA and 

NAMs have the potential to bridge the gap between scientific research and regulatory 

decision-making, leading to better public health outcomes and more sustainable 

products. 

2.3.3 Mechanistic toxicology 

The phenotype-based approach to toxicology has been highly focused on modelling 

chemical hazards as a function of their physicochemical properties with little regard 

to biological mechanisms. This is not only true in the case of animal experiments, 

but also the first generation of alternative approaches, such as in vitro assays and 
computational models, including QSAR and read-across. However, rapid 

developments in biomedical fields combined with technological advances have 

enabled a deep dive into the molecular mechanisms behind drugs, chemicals, and 

disease pathology (Manzoni et al., 2018). This information has further leaked into 
toxicology, giving rise to the distinct branch of mechanistic toxicology, which now 

focuses on understanding the underlying biological mechanisms by which chemicals 

or other substances cause adverse effects in living organisms. The long overlooked 

mechanistic side of chemical exposures is now emerging as an important factor to 

modernise chemical safety assessment. Mechanistic data on chemical exposures can 
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support the development of predictive models and hazard identification early in the 

research and development process, as well as improve interspecies extrapolation, 

promoting the development of non-animal approaches (Liu et al., 2019). Similarly, 
profound understanding of chemical-biological interactions and mechanisms is 

central for adopting the concepts of SSbD (Nymark et al., 2020). 
Although mechanistic toxicology is often described as a field focused on 

molecular mechanisms of toxicity, mechanistic studies can address the processes 

disrupted by chemical exposures at any level of biological organisation, be it 

molecular, cellular, or even population level. These mechanisms can be further 

organised into AOPs, as presented in the Section 2.3.4 dedicated to this crucial 

concept. Similarly, another fundamental concept falling under the umbrella of 

mechanistic toxicology is the star of this dissertation, toxicogenomics, which is 

discussed in the Section 2.4.  

2.3.4 Adverse Outcome Pathways 

The concept of AOPs presents one of the cornerstones of modern toxicology. AOPs 

emerged as mechanistic models of ecotoxicological relevance, but soon expanded to 

human health assessment, and more recently, also to model disease progression and 

pathogenesis (Ankley et al., 2010; Carusi et al., 2018; Clerbaux et al., 2022b; 
Wittwehr et al., 2021). AOPs provide a framework to organise mechanistic 
knowledge into causal sequences of events in a multi-scale fashion. That is, the KEs 

identified in a process leading to an adverse outcome (AO) are described at various 

levels of biological organisation and linked together by key event relationships 

(KERs). The sequence is initiated by a special KE, the molecular initiating event 

(MIE). A schematic representation of an AOP is depicted in Figure 1. 
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Figure 1.  Schematic presentation of an adverse outcome pathway (AOP). Green denotes a 

molecular initiating event (MIE) while the orange boxes represent key events (KE) in the 
pathway progressing towards an adverse outcome (AO) at distinct levels of biological 
organisation. Black arrows correspond to key event relationships (KER). 

 

The AOP framework is overlooked by the Organisation for Economic Co-operation 

and Development (OECD), and AOP-data is primarily hosted in the OECD AOP 

Knowledge Base (https://aopkb.oecd.org/, last visited in November 2023) and its 
related AOP-Wiki database (https://aopwiki.org/, last visited in November 2023). 
These resources provide guidance for the development of AOPs and communicate 

with third party tools to support the use and development of AOPs. Despite the 

major involvement of regulatory organisations, the development of AOPs is largely 

driven by individual scientists under the guidelines provided by the OECD. AOPs 

undergo various stages of development until reaching a point of review and 

endorsement by the OECD (Svingen et al., 2021).  
Some of the main characteristics of AOPs include their inherent modularity and 

stressor-agnostic nature. The processes are not limited to an individual exposure but 

rather could be used to support the safety assessment of any exposure able to induce 

the MIE and KEs. AOPs now serve as a fundamental component of the 

toxicological knowledge framework that supports mechanistic chemical safety 

assessment. AOPs play a crucial role in bridging the gap between mechanistic assays 

and the manifestation of AOs, aligning with the 3R principles by guiding the use and 

development of NAMs and IATA. In practice, they offer the mechanistic reasoning 

for chemical safety assessment; what to test and where (Bajard et al., 2023; Patlewicz 
et al., 2015). This way, individual steps of the AOP can be assessed using NAMs, 
while the integration of various NAMs with existing information can form IATA. 

Indeed, one of the most prominent examples of IATA has been reported in the 

context of skin sensitisation. The IATA is built on an established AOP reporting the 

mechanistic steps leading to chemical induced skin sensitisation (OECD, 2017).  

https://aopkb.oecd.org/
https://aopwiki.org/
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While this is the framework already employed in the current chemical safety 

paradigm, AOPs hold the promise to take things even further. AOPs offer the 

potential to predict multiple AOs with reduced testing by leveraging their network 

properties (Knapen et al., 2018; Villeneuve et al., 2018). Their modular nature and 
links between the KEs enable the generation of AOP networks. These networks can 

be further filtered and refined through careful annotation of KEs that facilitate the 

generation of subnetworks or the identification of previously unrecognised links 

(Ravichandran et al., 2022). As the framework matures, AOP networks present 
exciting opportunities for advanced analytical approaches and models. 

The AOP framework is a living organism that keeps evolving. Recent examples 

have proven the flexibility of the system to expand beyond pathways of toxicological 

relevance and to accommodate various types of data, including factors that modulate 

the KEs, further influencing the course of events along the AOP (Clerbaux et al., 
2022a; Nymark et al., 2021). Despite the enormous potential of the framework for 
numerous applications and various stakeholders, success does not come without 

challenges. The development of new, robust AOPs is a laborious undertaking that is 

often not considered rewarding for those partaking the task (Carusi et al., 2018). 
Similarly, AOP-informed NAMs and IATA are developed on a case-to-case basis, 

as distinct KEs are assessed by individual assays and approaches. In their current 

format, AOPs provide qualitative associations with little insight to quantitative 

aspects of exposure. This has been addressed by efforts of developing quantitative 

AOPs (qAOPs) that introduce quantitative descriptors for the KERs. Although 

several models have been implemented, their development is challenging and case-

dependent due to the complexity of the models (Jeong and Choi, 2022; Jin et al., 
2022; Sinitsyn et al., 2022; Spinu et al., 2020). Regardless, these efforts pave the way 
for future steps of AOP-based toxicity prediction. 

2.4 Toxicogenomics 

Toxicogenomics emerged as a subdiscipline of toxicology upon the introduction of 

omics technologies into the field. The term marrying the age-old discipline with 

modern technology was first mentioned in 1999 in a scientific publication that 

discussed the introduction of DNA microarrays into the evaluation of toxicity 

(Nuwaysir et al., 1999). This technological advance allowed the monitoring of the 
expression levels of thousands of genes simultaneously, unveiling the molecular 

mechanisms of chemical exposures at the level of gene expression. The value of such 
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molecular insight could be appreciated due to the lessons learnt in molecular 

epidemiology. Molecular epidemiology has shown how the profiling of molecular 

districts in large populations can help build an understanding of the consequences 

of chemical exposures (Everson and Marsit, 2018; Hoyles et al., 2018; Sun and Hu, 
2016; Zeilinger et al., 2013). However, while this a posteriori mechanistic evaluation 
of chemical exposure is powerful in addressing risk related questions, is not useful 

when analysing new chemicals or chemicals that are produced in small quantities. To 

this end, the scientific community has defined premises in the context of hazard 

assessment that can predict and evaluate consequences of an exposure pre-

emptively. In toxicogenomics, omics-based evidence is expected to allow the 

detection of potential toxicities that may not be observable by conventional 

approaches, thereby facilitating more accurate and predictive decision-making based 

on mechanisms of toxicity (Liu et al., 2019). While transcriptomics remains one of 
the main technologies used in toxicogenomics, the field has expanded to cover the 

investigation of molecular responses also via other types of omics approaches, 

including proteomics, lipidomics, and epigenomics, further giving rise to distinct 

branches, such as toxicoepigenomics (Le Goff et al., 2022; Martins et al., 2019). 
Given the central role of toxicogenomics in this dissertation, this section will 

introduce the main technologies applied in toxicogenomics, followed by the current 

status and future perspectives of the application of toxicogenomics in chemical 

safety assessment. 

2.4.1 Transcriptomics in toxicogenomics 

Transcriptomics refers to the study of the transcriptome, the complete set of 

transcripts expressed in a biological system. It enables the investigation of the 

response of a biological system to chemical and physical agents on a global scale. 

Current technologies for genome-wide investigation of gene expression, i.e., the 

transcriptome, include microarrays and RNA sequencing (RNA-seq). While the 

popularity of RNA-seq is on the rise due to its rapid developments and the 

decreasing costs, the two decades of using microarrays has slowed down the 

transition.  
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Transcriptomic technologies 

Microarrays are a widely applied omics technology, where tiny spots, probes, are 

embedded on the surface of a chip structure. These probes allow the hybridisation 

of the complementary sample material that has been labelled with a fluorescent dye. 

For the assessment of gene expression, the probes are made of DNA and can cover 

the whole transcriptome of an organism. The RNA extracted from the biological 

material is reverse transcribed into complementary DNA (cDNA), labelled with a 

fluorescent dye, and hybridised onto the microarray. Signal intensities are then 

measured with a laser scanner, and the images are processed to obtain the raw 

intensities that can be further preprocessed and used for a gene expression analysis. 

DNA microarrays have been widely applied in toxicogenomics to investigate the 

responses of various biological systems to diverse exposures (Igarashi et al., 2015; 
Kinaret et al., 2021; Saarimäki et al., 2021). As a mature technology, microarrays 
have the advantage of well-established pipelines and tools for data preprocessing and 

analysis (Federico et al., 2020). On the other hand, microarrays are limited to the 
detection of known transcripts due to the probe design. This may also present 

challenges in highly repetitive genomes given the chance for cross hybridisation 

(Reilly et al., 2006). Similarly, the technology is prone to batch effects, which need 
to be recognised and mitigated through careful experimental design and planning to 

successfully execute the experiments for robust data.  

Although DNA microarrays have been the technology of choice for 

toxicogenomic evaluation, the popularity of sequencing approaches is quickly rising 

and overtaking microarrays in various fields. The rapid developments in next 

generation sequencing (NGS) technologies have made it more widely available and 

attainable. Unlike microarrays, RNA-seq enables de novo transcript characterisation 
and offers a larger dynamic range by omitting the possibility of probe saturation, an 

issue specific to microarrays (Rao et al., 2018). Similarly, RNA-seq can often provide 
a more thorough look into the mechanistic aspects of the exposures given its ability 

to capture long non-coding RNAs often not included in standard microarray 

platforms (Rao et al., 2018). 
At the same time, the long history of microarrays in toxicogenomics means that 

many of the analytical approaches have been tailored to this type of data (Federico 
et al., 2020). Regardless of the technology, appropriate data analysis needs to be 
employed to avoid or mitigate biases in the data. Data generated by RNA-seq is 

generally more complex and larger in terms of content and size of the generated files, 

setting demands for the required computational power. Additionally, many of the 
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reference data sets available for toxicogenomics have been generated with 

microarrays instead of RNA-seq. Hence, the integration of data derived by the means 

of different technologies can be challenging (Castillo et al., 2017; van der Kloet et 
al., 2020). Although the generation of large-scale reference data sets with this 
technology is still limited by time and costs, more targeted approaches have been 

established for the screening of chemical exposures in high-throughput manner. For 

instance, the US Environmental Protection Agency (EPA) has recently initiated 

systematic screening of various environmentally relevant chemicals using a high-

throughput targeted sequencing approach with a panel of approximately 2000 

predefined genes as part of the Tox21 initiative (House et al., 2017). These 
specialised data sets can then be used to define transcriptional points of departure 

(PODs) for the mechanisms covered by the selected genes. 

2.4.2 Epigenomics in toxicogenomics 

The focus of toxicogenomics has traditionally been on more transient molecular 

layers, such as transcriptomics and proteomics, that provide a snapshot of the 

response at the sampling time. However, the epigenome is emerging as a 

complementary layer of investigation to thoroughly characterise the molecular 

events taking place upon exposure (Svoboda et al., 2022). Epigenomics provides the 
means of explaining the regulatory mechanisms behind gene expression, shedding 

light also on the potential long-term adverse outcomes of chemical exposures 

through sustained molecular changes (Ideta-Otsuka et al., 2017).  
Understanding the basic concepts of epigenetics is essential to appreciate the role 

epigenomics can play in chemical safety assessment. Epigenomics itself refers to the 

study of the epigenome, the complex machinery that controls gene expression. These 

epigenetic markers are often heritable and modifiable and have the power to 

influence a phenotype without a change in the actual genotype. Epigenetic 

modifications include DNA methylation and the changes of the chromatin structure, 

both at the level of chromatin folding as well as through specific covalent 

modifications of the histones, i.e., histone modification (Handy et al., 2011). 
Similarly, regulatory RNAs, such as microRNAs and long non-coding RNAs are 

considered as part of the epigenetic machinery (Holoch and Moazed, 2015). These 
epigenetic mechanisms are crucial players in developmental processes and their 

important role in pathogenesis of various diseases is being uncovered (Skinner, 2011; 
Zoghbi and Beaudet, 2016).  
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Epigenetic mechanisms have been investigated as the mediator of the effects of 

various external factors, including diet, stress, toxins, and pollutants. This has been 

primed by observations of shared epigenetic alterations between patients with the 

same disease or phenotype (Baccarelli and Bollati, 2009). Moreover, these 
observations have resulted in the idea, that the epigenome could serve as a historical 

footprint of the environmental exposures encountered by an individual. Together, 

these exposures comprise the exposome that alters the trajectory of health and 

disease of an individual  (Colwell et al., 2023; Wild, 2005). Indeed, epigenetic 
alterations can affect the health outcomes of individuals across life stages and 

possibly even across multiple generations (Barouki et al., 2018; Van Cauwenbergh et 
al., 2020). This way, the role of epigenetic modifications in chemical safety 
assessment is multiscale. The existing epigenetic state can influence the vulnerability 

of an individual to new environmental exposures or the epigenetic alterations 

induced by chemical exposures may directly contribute to the mechanisms of adverse 

outcomes (Hou et al., 2012). At the same time, deciphering which epigenetic 
changes are mechanistic mediators of environmental exposures remains one of the 

main challenges in toxicoepigenomics (Svoboda et al., 2022). Untangling these 
interactions requires robust mechanistic understanding at various levels of biological 

organisation, connecting evidence obtained through molecular epidemiology with 

adequate experimental insight (Bakulski and Fallin, 2014). While examples such as 
the epigenetic mechanisms of non-genotoxic carcinogens have been investigated as 

a solution towards better chemical hazard assessment (Desaulniers et al., 2021; 
Tryndyak, 2017), the potential of epigenomics for chemical safety assessment 
reaches beyond such specific examples. The potential to employ epigenetic 

alterations as indicators of long-term hazard without the use of animal models and 

chronic exposures presents exciting possibilities for the future of chemical safety 

assessment. Similarly, with the right analytical approach, evaluating the effects 

chemical exposures may prompt on the epigenome could hold the keys towards 

models with broader applicability domains due to the highly conserved nature of 

these molecular markers (del Giudice et al., 2023). 

2.4.3 Toxicogenomics in chemical safety assessment 

Despite the major advances in omics technologies and the analysis and modelling of 

omics data, toxicogenomics has not been systematically integrated into chemical 

safety assessment. The challenges standing in the way of full incorporation of 



 

39 

toxicogenomics-based evidence into the framework has been mainly accounted for 

the lack of standardisation, concerns of reproducibility, and difficulty of interpreting 

this complex output (Buesen et al., 2017; Pain et al., 2020). Regardless, 

toxicogenomics has been extensively employed in the academic setting under the 

premise that all phenotypic changes are underpinned by molecular changes 

observable through omics technologies. This has resulted in large collections of data 

enabling various downstream applications. For instance, a large-scale 

toxicogenomics database Open TG-GATEs has screened up to 170 chemical 

compounds in various experimental set ups, while the Comparative Toxicogenomics 

Database (CTD) has collected over 50 million toxicogenomic relationships from 

published literature (Davis et al., 2023; Igarashi et al., 2015). These valuable 
resources have sparked a number of attempts to develop predictive models and other 

in silico approaches to make the most of these data and support development of 
NAMs and other novel approaches to chemical safety (Aguayo-Orozco et al., 2020; 
Heusinkveld et al., 2018). Although harmonised large-scale data sets, such as Open 
TG-GATEs, enable the development of complex models of chemical-biological 

interactions, the generation of these types of unified data sets is limited by the lack 

of resources. Hence, the majority of the toxicogenomic data available is derived from 

independent experiments with varying experimental set ups and platforms 

challenging their integration. 

At its simplest, toxicogenomics characterises the mechanism of action (MOA) of 

a chemical exposure. The MOA is typically defined as the compendium of molecular 

alterations observed upon exposure (Kinaret et al., 2017b). Hence, in the case of 
transcriptomics, the MOA typically refers to the list of differentially expressed genes 

(DEGs) between the exposed group and the control group. The DEGs can be 

further characterised functionally through pathway enrichment analysis or other 

forms of functional characterisation. These approaches have been the foundation of 

toxicogenomic studies, uncovering the molecular mechanisms of various chemical 

exposures both in vivo and in vitro (Kinaret et al., 2021; Labib et al., 2016; Scala et al., 
2018; Schyman et al., 2019). The comparison of these signatures in analogous in vitro 
and in vivo set ups has further sparked efforts to better extrapolate the results 
observed in vitro to real-life exposure scenarios. Indeed, despite the often reduced 
complexity of an in vitro model, the mechanistic insight introduced by omics has been 
shown to support in vitro to in vivo extrapolation (Kinaret et al., 2017b; Liu et al., 
2017). Furthermore, the identification of conserved molecular targets and pathways 

enables the extrapolation of the effects across species. This is not only relevant when 

extrapolating the results from an animal-based assay to human health, but it is in line 
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with the emerging One Health approach that extends the consideration to other 

species, bringing human health risk assessment and environmental toxicology closer 

together (del Giudice et al., 2023; Saarimäki et al., 2023a). 
The mechanistic information derived through toxicogenomics can also support 

the development of AOPs (Brockmeier et al., 2017). Omics-derived evidence has 
been used to decipher MIEs and to characterise the pathways altered upon exposure 

(Chen et al., 2020; Doktorova et al., 2020; Gomes et al., 2019; Jin et al., 2021; Labib 
et al., 2016). These molecular signatures can be further supplemented with additional 
data and existing literature to develop robust AOPs. However, the translation of the 

molecular signatures captured by omics technologies into biologically tangible KEs 

remains a challenging task that needs to be handled on a case-by-case basis with 

appropriate experimental evidence. 

Similarly, omics data has been explored to derive PODs for genes and biological 

pathways of interest (Johnson et al., 2022). This approach aligns with the core 
concept of dose-response familiar in traditional toxicology: the majority of the 

effects induced by chemical exposures are thought to be dose-dependent. While this 

is not true for all chemical types, as non-monotonic dose-response relationships have 

been readily characterised for endocrine disruptors (Hill et al., 2018), the concept 
forms the basis for the determination of safe exposure limits, such as the bench-

mark dose (BMD), NOAEL and LOEAL. BMD modelling is considered the state 

of art method for defining PODs in chemical safety assessment (Haber et al., 2018). 
This refers to the identification of the dose, at which a significant departure from 

the steady state can be observed. BMD modelling does this by fitting a mathematical 

model to experimental data, and the dose corresponding to a pre-defined response 

(benchmark response, BMR) is identified. The calculation hence takes into account 

the full dose-response curve, avoiding the challenges associated with 

NOAEL/LOAEL that rely on the exact tested doses (Haber et al., 2018). This 
approach has been widely applied to evaluate various toxicological endpoints 

(Đukić-Ćosić et al., 2022; Farmahin et al., 2019; Vukelić et al., 2023).  
In transcriptomics, the genes altered in a monotonic dose-dependent manner are 

often appreciated as the core mechanism, i.e., the genes directly affected by the 

exposure, while those showing non-monotonic behaviour are suggested to be 

affected also by changes in the microenvironment and complex regulatory loops. 

Hence, BMD modelling has been used to not only identify PODs but also decipher 

the dose-dependent proportion of the MOA in relation to chemical exposures 

(Hautanen et al., 2023). This has been facilitated by several tools implemented for 
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BMD modelling and identification of PODs from omics data (Phillips et al., 2019; 
Serra et al., 2020b, 2020a; Yang et al., 2007). 
Several studies have focused on the comparison of PODs derived through omics 

and those assessed by the means of phenotypic toxicology (e.g., Li et al., 2023; 
Thomas et al., 2013). Although these transcriptional PODs are highly dependent on 
the exposure scenario and selected model system, studies have shown high levels of 

concordance between gene- and pathway-based PODs and those causing adverse 

outcomes in long-term studies on whole animal models (Bianchi et al., 2021; 
Johnson et al., 2020). This opens exciting possibilities for chemical safety assessment 
as the confidence towards toxicogenomic evidence increases. 

Among the many applications of toxicogenomics is the identification of 

biomarkers of toxicity. In this context, biomarkers are typically (panels of) genes with 

characteristic expression patterns upon chemical exposures. Hence, these 

biomarkers can serve as a cost-effective solution to predict the hazard potential of 

exposures. Although perhaps more prominent in the field of medicine and disease 

biology, transcriptional biomarkers have been suggested for chemical safety as well. 

For instance, Fortino et al. identified a set of genes to accurately predict ENM hazard 

potential both in vivo and in vitro with the help of multi-layer data (Fortino et al., 
2022). Similarly, Samrani et al. suggested candidate biomarkers for developmental 

toxicology (Samrani et al., 2023). Given the loose definition of a biomarker in the 
field, the approaches used to identify these potential biomarkers are highly varied. 

Hence, suggested biomarkers should be carefully validated to evaluate their 

performance in the intended task. In fact, the first omics-based test method was 

recently validated and accepted into the battery of OECD approved test methods 

(OECD, 2023). This test utilises a panel of 196 genes, measuring the expression of 
these genes to discriminate between skin sensitisers and non-sensitisers (Johansson 
et al., 2019). 
Although many of the examples presented above are focused on transcriptomics, 

they can be often generalised to other layers of investigation, such as proteomics and 

metabolomics. Similarly, while the investigation of single omics layers provides 

meaningful insight to the mechanistic aspects of chemical exposures, their 

comprehensive characterisation often requires the application of multi-omics, an 

approach integrating multiple omics technologies. Multi-omics have been applied to 

a range of biological problems, including the assessment of disease mechanisms and 

chemical toxicity (Chen et al., 2016; Lake et al., 2018; Lloyd-Price et al., 2019; 
Quirós et al., 2017; Yachida et al., 2019). Combining multiple omics layers can 
inform on the interplay of these components, allowing the thorough evaluation of 
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biological mechanisms leading to AOs of chemical exposures. Various combinations 

of different omics layers have been used to assess questions of toxicological interest. 

For instance, transcriptomics has been combined with proteomics to capture the 

regulatory role of RNA together with the changes translated into proteins (Canzler 
et al., 2020). Similarly, combining either proteomics or transcriptomics with 
metabolomics allows the characterisation of the molecular phenotype while also 

gaining more thorough input on the molecular pathways affected by the exposure 

(R. Wang et al., 2023; Yen et al., 2023; Yu et al., 2023). From the realms of 

toxicoepigenomics, DNA methylation has been commonly addressed together with 

transcriptomics. Changes in DNA methylation have been used to explain the 

regulatory mechanisms behind transcription and to inform on potential long-term 

effects of chemical exposures (Szyf, 2011; van Breda et al., 2018).  
The high information content of omics data enables complex modelling using 

advanced computational strategies. The analysis and modelling of omics data has 

been facilitated by efforts of developing tools and pipelines for conducting these 

analyses in a standardised and reproducible manner (Marwah et al., 2019; Scala et al., 
2019; Serra et al., 2022, 2020b). Although these tools can bring omics data analysis 
to the fingertips of those with little experience with data analysis, the design, 

execution, and data interpretation still requires high-level expertise, complicating the 

large-scale adoption of omics-based evidence in chemical safety assessment. While 

certain community-accepted standards and best practices are in use, there are no 

universal rules or standards when it comes to omics data generation, preprocessing, 

and analysis. Different analyses are often combined in an arbitrary manner and the 

high content data can result in different interpretations depending on the selected 

test system, analysis and person doing the interpretation. Hence, there is an urgent 

need for robust standards and guidelines for toxicogenomics to ensure reproducible 

pipelines and robust results. Moreover, these challenges highlight the need to 

translate these experiments into assays that provide easy-to-interpret data relevant 

for chemical safety assessment. 

2.5 FAIR data, high quality data 

As the approaches across sciences turn increasingly data-rich, the role of exploiting 

existing data becomes more and more important. This places emphasis on the 

aspects of FAIR data. FAIRness is a measure of compliance with the FAIR guiding 

principles for scientific data management and stewardship (Wilkinson et al., 2016). 
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These principles were first defined in 2016 to support the Findability, Accessibility, 
Interoperability, and Reusability of data in a world of increasing data volume and 
complexity. Each of the letters comprising the name can be addressed with certain 

core considerations detailed in the original publication (Wilkinson et al., 2016).  
Briefly, findability is supported by the data being registered or indexed in a 

searchable resource and marked with a unique, persistent identifier. Similarly, the 

data should be accompanied with sufficient metadata. Accessibility, on the other 

hand, is enabled by the use of trusted repositories and formats that are both machine 

and human readable. Interoperability refers to the potential of the data to be 

integrated and combined with other data sources. This, in turn, is supported by 

common data structures, and the use of recognised formal terminology and data 

annotation. Each of these aspects are prerequisites for reusability, which is further 

supported with clear licensing and data provenance as well as the adherence to 

community standards, both in data reporting and the experimental design, if 

applicable.  

These generic principles apply to most digital assets, but they can, and should be, 

supplemented with field-specific recommendations and guidelines. Indeed, the 

publication of the FAIR principles has been followed by the introduction of various 

workflows and tools for the evaluation of data FAIRness and FAIRification, as well 

as discipline specific accommodations of the guiding principles (Cronin et al., 2023; 
Gaignard et al., 2023; Jacobsen et al., 2020; Nijsse et al., 2022; van Rijn et al., 2022; 
Welter et al., 2023). These include adaptations of a set of principles for research 
software and nanosafety data, for example (Barker et al., 2022; Jeliazkova et al., 
2021; Papadiamantis et al., 2020). 
The aspects of FAIR for omics data are paralleled by specific minimum 

information guidelines. Namely, these include the Minimum Information About a 

Microarray Experiment (MIAME) (Brazma et al., 2001) and Minimum Information 
About a Next-generation Sequencing Experiment (MINSEQE) guidelines 

(https://www.fged.org/projects/minseqe/, last visited in November 2023). Databases 
intended for sharing omics data, such as the Gene Expression Omnibus hosted by 

the National Center for Biotechnology Information (GEO, 

https://www.ncbi.nlm.nih.gov/geo/, last visited in November 2023), encourage 
compliance with these guidelines. Both MIAME and MINSEQE were established 

before the FAIR guiding principles, but they largely overlap in suggestions. 

However, MIAME and MINSEQE provide more specific guidance on the required 

metadata and the preferred data formats for omics data. For example, the importance 

of describing experimental factors and data processing protocols is underlined. 

https://www.fged.org/projects/minseqe/
https://www.ncbi.nlm.nih.gov/geo/
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Similarly, the minimum reporting guidelines emphasise reproducibility and 

interpretability in addition to the aspects more familiar in FAIR. 

The FAIR principles together with other reporting guidelines are pivotal for 

scientific research and innovation. They enable data to be shared, reused, and 

combined across different disciplines and sectors. Similarly, increased accessibility 

and interoperability can also improve the quality and efficiency of research and 

accelerate scientific discovery. At the same time, it is worth noting that data can 

strictly adhere to the principles, but still be subpar for its intended application or 

reuse. FAIRness does not ensure high quality, and the lack of clearly defined 

community standards and guidelines hampers the consensus on the notions such as 

“sufficient metadata”, as defined in the FAIR guiding principles (Wilkinson et al., 
2016). Considerations of the experimental design affecting the data quality and 

(re)usability through batch effects, for example, are often ignored, and the 

justification of decisions taken during the experiments and data processing and 

analysis are not always transparently described. 

2.5.1 “Reuse” as the fourth R 

FAIR data is not only a key to building better models, but it is also essential for the 

implementation of the 3Rs in biomedical research, including the field of toxicology. 

As two of the Rs stand for reduction and replacement, reuse of data is crucial for 

their implementation. This, in turn, highlights the need for FAIR data.  

The reuse of data can directly reduce the number of new experiments performed, 

including those employing animals. When previously generated data has been 

adequately reported and shared, the need for generating the same data again 

decreases (given that the existing data is fit for purpose and of adequate quality). This 

fosters more sustainable research, decreasing the resources at all stages of the 

process. Sustainable research and responsible use of resources fuel the ideas of green 

chemistry and circular economy, further supported by the lessons learnt from 

existing data (Ncube et al., 2023; Weber et al., 2021). Similarly, the myriad sources 
of data generated using animals can serve as a reference for the development of novel 

alternatives. Given the poor availability of human data for toxicity testing, existing 

data from test methods relying on animals is often required for the evaluation of 

alternative methods (Griesinger et al., 2016).  
At the same time, one of the major challenges in the development of NAMs, 

especially computational methods, is the lack of adequate data sources (Wu et al., 
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2023). Although plenty of toxicologically relevant and interesting data are produced 

daily, these data are often scattered across databases in various formats. Considering 

the high demands of data for various analyses and computational models, data 

curation is often required to obtain such large datasets (Daniel et al., 2022). In this 
context, data curation refers to the collection of data from various sources. The data 

can then be harmonised and organised into a format that allows interoperability, and 

hence, proper reuse of the data. This effort can be facilitated by ensuring the data is 

FAIR to begin with. It is worth noting, however, that although the data can be 

curated and harmonised for increased interoperability, the suitability of each 

individual dataset needs to be evaluated on a case-to-case basis. 

Curated data enables various downstream applications, such as meta-analyses that 

have the potential to unveil novel insights inconspicuous in the individual datasets 

(del Giudice et al., 2023). Similarly, the discovery of new information can be 
facilitated by data structures that support data integration and reuse. For instance, 

knowledge graphs store information in a graph database and represent the 

relationship between distinct entities, such as genes, chemicals, and endpoints (Pavel 
et al., 2022a). These entities are depicted as nodes of the network, while the 
relationships are indicated via edges. Further definitions are provided by labels. With 
robust ontology and well-curated data, knowledge graphs can be used as powerful 

tools for data analysis and knowledge discovery. For instance, Zhang et al. used 

knowledge graph embedding to predict adverse drug reactions while Pavel & del 

Giudice et al. uncovered molecular processes associated with COVID-19 through a 

knowledge graph infrastructure (Pavel et al., 2021; Zhang et al., 2021). 
Given the high information content of omics data, the potential for reuse is 

enormous. Although defined by the experimental design and its implementation, 

omics data can be reused and re-analysed for novel insights that might not have been 

obvious in the original analysis.  
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3 AIMS OF THE STUDY 

In modern toxicology, chemical safety assessment cannot rely only on the 

measurement of apical endpoints of toxicity. Instead, mechanistic models of the 

interactions between chemicals and biological systems are pivotal for the study of 

chemical hazard as well as for the safe and sustainable design of chemicals, including 

nanomaterials. Toxicogenomics has emerged as a powerful approach for deciphering 

these interactions. However, toxicogenomics-based evidence is not yet systematically 

incorporated into chemical safety assessment. 

In this dissertation, I aim to investigate how toxicogenomics can bridge the gap 

between scientific evidence and chemical safety assessment through the 

implementation of mechanistic models of chemical-biological interactions. The work 

was divided in specific aims: 

 

1. Investigating intrinsic characteristics of toxicogenomics data. 
(Studies I, II, IV) Intrinsic characteristics of data form the basis for the 
use of the data. I aim to investigate the intrinsic characteristics of 

toxicogenomics data that affect its use in chemical safety assessment. 

Furthermore, I will implement systematic strategies to evaluate and address 

these characteristics. 

2. Investigating functional properties of toxicogenomic data. (Studies 
III, IV, V) The complex signatures derived from omics experiments need 
to be analysed and modelled for relevant biological insight. Hence, I aim to 

define novel analytical approaches for toxicogenomics for the generation 

of robust and informative models of chemical-biological interactions. 

3. Investigating the translational potential of toxicogenomics data 
(Study V) Finally, to fully adopt toxicogenomics into chemical safety 
assessment, toxicogenomics data needs to be translated into robust assays 

and tangible biological insight that no longer require advanced expertise on 

computational modelling. Hence, I aim to define systematic approaches to 

translate molecular and cellular responses into multiscale models and 

toxicogenomics-based NAMs. 
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These aims and themes are further depicted in Figure 2.  

 

 
 

Figure 2.  Toxicogenomics data characteristics and properties investigated in this dissertation to 
support the application of toxicogenomics data in chemical safety assessment.  
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4 MATERIALS AND METHODS 

4.1 Cell work 

4.1.1 Cell culture methods 

Differentiated THP-1 cells were used as a model of human macrophages in Study 
III and Study V. Monocytic THP-1 cells (DSMZ ACC 16) were cultured in cell 
culture flasks at 37°C using RPMI 1640 media (Gibco, Thermo Fisher Scientific, 

USA) with 10% inactivated FBS (Gibco), 2 mM ultraglutamine (Gibco), and 

supplemented with 1% penicillin-streptomycin (Gibco) (complete RPMI media). In 

Study III, cells were plated into six-well plates (1.0 × 10^6 cells/well) and 
differentiated for 48 h with 50 nM PMA (phorbol 12-myristate 13-acetate, Merck 

KGaA, Darmstadt, Germany). Fresh, complete RPMI media with PMA was replaced 

after 24 h and after a total of 48 h, fresh complete media without PMA was added. 

In Study V, cells were seeded in 96-well plates at a density of 1.0 × 10^5 cells/ml 
and differentiated for 48 h with 25 nM PMA (Merck KGaA). Cells were then left to 

rest for 24 hours in fresh media without PMA prior to bleomycin exposures. 

4.1.2 Chemical exposures and sample preparation 

Multi-walled carbon nanotubes (MWCNTs) (Study III): A stock solution of 
MWCNTs at the concentration of 1 mg/ml was freshly prepared in a sterile glass 

tube using plain RPMI 1640 media (Gibco). The stock solution was vortexed for 1 

minute and sonicated 3 x 15 minutes in a bath sonicator (37 kHz, Elmasonic S30 

(H), Ilabequipment, USA) at room temperature. The solutions were then diluted into 

the final subtoxic exposure concentrations (5, 10, and 20 μg of MWCNTs/mL) using 

complete RPMI media, vortexed and sonicated (additional 15 minutes) again prior 

to the exposures. Cells grown in complete RPMI were exposed to each of the 

concentrations for 24, 48, and 72 hours. Control cells were exposed to RPMI media 

that had been sonicated and vortexed without the MWCNTs to account for any 
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changes in the media these treatments may induce. All exposures were performed in 

six replicates to allow the pooling of two samples to obtain the final triplicates used 

for the RNA/DNA extraction.  

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Germany) 

according to the manufacturer’s instructions. DNA was isolated from the cell lysates 

with the Maxwell® RSC instrument and the Maxwell® RSC Cultured Cells DNA 

Kit (Promega Corporation, USA) following the instructions of the manufacturer. 

The quality of the RNA was evaluated with Fragment Analyzer (Agilent 

Technologies, USA) and samples with RNA quality number (RQN) > 9.5 were used 

for the microarray experiment. Similarly, the DNA integrity was verified by gel 

electrophoresis in 1% precasted E-gel (Invitrogen, Thermo Fisher Scientific, USA) 

and further quantified with PicoGreen (Quant-iT Broad-Range dsDNA Assay Kit, 

Invitrogen). 

Bleomycin (Study V): Differentiated THP-1 cells were exposed to varying 
concentrations (2.5, 5, 10, 100 µg/ml) of bleomycin ready-made solution (Sigma-

Aldrich, USA) for 6, 24 and 72 hours. The media was then removed, cells washed 

and lysed, and the lysates from three wells were pooled. Total RNA was extracted 

with the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions and 

the samples were treated with DNase using the TURBO DNA-freeTM Kit (Thermo 

Fisher Scientific) as per instructed by the provider. 

4.1.3 Cell viability 

Bleomycin (Study V): Cell viability was assessed using the WST-1 method after 
exposure to 0, 2.5, 5 and 10 µg/ml of bleomycin for 6, 24 or 72 hours. Exposures to 

0-100 mg/ml of Triclosan (Sigma-Aldrich) were used as the positive control. 10 µl 

of cell proliferation reagent WST-1 (Roche) was added to each well and the cells 

were incubated with it for 3 hours in 37°C and 5% CO2. Absorbance was measured 

at 450 nm using the Spark microplate reader (Tecan). 

4.2 DNA microarray experiments 

Gene expression and DNA methylation microarrays were used to study the changes 

in the transcriptome and methylome of THP-1 macrophages upon MWCNT 

exposures in Study III. The resulting data have been submitted to NCBI GEO 
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database (https://www.ncbi.nlm.nih.gov/geo/, last visited in November 2023) under 
the series accession number GSE146710. 

4.2.1 Gene expression microarrays 

For gene expression, 100 ng of total RNA for each sample was amplified with the 

T7 RNA polymerase amplification method (Low Input Quick Amp Labeling Kit, 

Agilent Technologies) and labelled with Cy3 or Cy5 fluorescent labels according to 

the manufacturer’s protocol (Agilent Technologies). The labelled cRNA samples 

were purified using the RNeasy Mini Kit (Qiagen), and the quantity and specific 

activity of the labelled cRNA was assessed using NanoDrop (ND-2000, Thermo 

Fisher Scientific). Two samples (300 ng each) labelled with either Cy3 or Cy5 were 

pooled with each other, fragmented, and hybridised on the Agilent SurePrint G3 

Human Gene Expression 8 × 60 microarrays (Agilent Technologies). After 

hybridisation for 17 hours, the slides were washed according to the instructions of 

the manufacturer and scanned with Agilent microarray scanner model G2505C 

(Agilent Technologies). The data were then extracted with the Agilent Feature 

Extraction software (V12.0.2.2).  

4.2.2 DNA methylation microarrays 

Genome-wide DNA methylation was assessed using the Infinium HD methylation 

assay (Illumina, USA) following the manufacturer’s protocol. 500 ng of DNA from 

each sample was bisulfite converted using the EZ-96 Methylation Kit (Zymo 

Research, USA) according to the standard protocol of the manufacturer. The DNA 

samples were then amplified, fragmented, and hybridised to the Infinium 

MethylationEPIC BeadChips (Illumina). Lastly, the microarrays were scanned with 

the iScan scanner (Illumina). 

4.3 Curation of public transcriptomics data 

A comprehensive collection of publicly available transcriptomics data from ENM 

exposures was manually curated in Study I. 

https://www.ncbi.nlm.nih.gov/geo/
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4.3.1 Data identification and retrieval 
 

A search for relevant data sets was performed on NCBI GEO 

(https://www.ncbi.nlm.nih.gov/geo/, last visited November 2023) and ArrayExpress 
(https://www.ebi.ac.uk/biostudies/arrayexpress, last visited in November 2023) 
databases with terms “engineered nanomaterial”, “nanomaterial”, “nanoparticle” 

and “nanotube”. The search was limited to gene expression data by microarray or 

RNA sequencing, and the organisms specified as homo sapiens, mus musculus, and rattus 
norvegius. The entries were assessed for the suitability of the experimental set up, 
selecting those with ENMs as the treatment of interest.  

Raw data for microarray-based entries were downloaded from the GEO series 

entry page, while raw sequencing data in .fastq format were retrieved from the 

European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/browser/home, 

last visited November 2023). Supporting information (metadata) were obtained from 
the sample records of GEO using the getGEO function from the R package 

GEOquery (Davis and Meltzer, 2007). For data available only on ArrayExpress, the 
metadata were downloaded manually. 

4.3.2 Curation of metadata 

The downloaded metadata tables were manually curated and unified in R (version 

3.5.2). Each table was assigned the following columns in the order as presented: 

GSE (a unique identifier for each data set as defined in GEO), GSM (unique sample 
identifiers), treatment (exposure; ENM or control), group (experimental group; 
combination of a unique exposure, dose, and time point), organism, biological system, 
dose, dose unit, time point, time point unit, slide, array, dye, platform and filenames. Each of 
these columns were included in the metadata table regardless of the technology to 

improve interoperability and reusability. When the variable in the column was not 

applicable for the specific data set, the column was left unassigned (NA). Lastly, for 

entries that contained human primary cells, an additional column donor was included. 

4.3.3 Curation of ENM physicochemical properties 

Publications associated with the transcriptomics data sets were identified to manually 

extract physicochemical characteristics of the ENMs. However, due to the lack of 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/ena/browser/home
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characterisation and reporting standards, the available information and source of 

information was highly variable. The publications were used as primary source of 

information, while additional characteristics were retrieved from the reported 

supplier information or previous publications using the same material. 

The collected characteristics included (where available) the following: ENM 

name, type, functionalisation and capping/coating, batch/lot information, particle 

shape, nominal particle size and surface area as determined by transmission electron 

microscopy (TEM), hydrodynamic size and zeta potential in water and/or in 

exposure media as well as the potential presence of endotoxin contamination. All 

information was collected and homogenised into a distinct data table. Missing values 

were denoted as NA. 

4.3.4 Manual quality assessment 

The collected data were evaluated for the quality and suitability of the experimental 

design during and after the initial metadata processing. To reach a unified, FAIR 

collection of transcriptomics data, a set of data characteristics and quality 

requirements were defined. These characteristics included 1) availability of raw, non-

normalised data, 2) availability of appropriate metadata, 3) minimum of three 

independent replicates per experimental group, 4) appropriate experimental design 

(e.g., unmanageable batch effects arising from the lack of dye swapping in two-color 

microarray experiments would lead to the exclusion of the data set), 5) the platform 

commercially available and well-represented among the collection (i.e., Agilent, 

Affymetrix, and Illumina microarrays or Illumina RNA-Seq platforms). Additional 

quality assessment was performed independently for each data set during the data 

preprocessing as described in section 4.4.1. 

4.4 Preprocessing, analysis, and modelling of omics data 

Preprocessing and analysis of both the public (Study I) as well as in-house produced 
omics data (Study III) was performed following standard pipelines with state-of-
the-art algorithms as defined in (Marwah et al., 2019) and (Serra et al., 2022). 
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4.4.1 Preprocessing of microarray data 

Microarray data were preprocessed each data set at a time by using the R Shiny 

application eUTOPIA (Marwah et al., 2019) (Study I and Study III) or a custom 
script following the same pipeline (Study I). The general preprocessing approach 
for different platforms is presented in Figure 3.  

 

Figure 3.  Omics data preprocessing pipelines applied throughout the thesis work. The rows indicate 
distinct technologies and platform manufacturers (boxes outlined with a solid line) for 
which optimal methods were selected as indicated in the boxes on the same row. The 
order of the columns follows the steps applied in the pipeline. Boxes outline with dashed 
lines indicate the final output obtained from step connected to the box by a thick arrow. 
Figure modified and updated from Study I. 

Gene expression microarrays 

Briefly, raw data files were uploaded together with the associated metadata. Data 

quality was evaluated with platform specific approaches as listed in Figure 3. Probe 

filtering was applied to remove probes with low signal intensities. For Agilent 

microarrays, a quantile-based approach was used while for Illumina microarrays the 

probe filtering was based on the detection p-values included in the data downloaded 
from GEO. The data were normalised using quantile normalisation (Agilent, 

Illumina) or RMA normalisation (Bolstad et al., 2003) (Affymetrix). The presence of 
batch effects in the data was evaluated through principal component analysis and 

data visualisation. If batch effects were suspected but no variable(s) reported in the 
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metadata seemed associated with the batch, surrogate variable analysis was 

performed with sva (Leek et al., 2012). Identified batches independent from 
biological variables and variables of interest were adjusted with the ComBat method 

as implemented in the R package sva (Leek et al., 2012). Probes were then annotated 
to Ensembl gene or transcript identifiers using the appropriate annotation files or R 

packages for each platform. For Illumina BeadChips, the organism specific 

annotation packages (illuminaHumanv3.db, illuminaHumanv4.db, 

illuminaRatv1.db or illuminaMousev2.db) were used. For Affymetrix arrays, the 

latest available annotation files for each platform were retrieved from Brainarray 

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF

_download.asp, last visited in November 2023), while for Agilent, the latest available 
annotation file for each design was downloaded from the Agilent eArray  

(https://earray.chem.agilent.com/earray/, last visited in November 2023). Multiple 
probes mapped to the same identifier were summarised by their median values.  

Finally, differential expression (DE) analysis was performed using the limma 

approach (Ritchie et al., 2015) forming contrast pairs between each experimental 
group (e.g., combination of an independent exposure, time point and dose) and the 

respective control group. Corrected batches and possible donor information were 

included as covariates in the analysis. Genes with an absolute log2 fold change 

(logFC) > 0.58 and a Benjamini & Hochberg adjusted p-value < 0.05 were 
considered significantly differentially expressed.  

Given the Agilent annotation files only provided Ensembl transcript identifiers 

as an option, the data was homogenised after completion of the preprocessing and 

DE analysis by mapping the transcripts to Ensembl gene identifiers. If multiple 

transcripts were mapped to the same gene, the one with the highest absolute score, 

as calculated by -log(p-value) x log2(fold change) for each exposure vs. control pairwise 
comparison, was selected. 

DNA methylation microarrays 

The preprocessing of the DNA methylation data (Study III) was performed with 
the eUTOPIA application (Marwah et al., 2019). Raw data and metadata were 
uploaded, and the data were filtered based on the detection p-values, removing 
probes with a detection p-value > 0.01 in any sample. Probes for CpGs located on 
the sex chromosomes, those containing single nucleotide polymorphisms or 

belonging to a set of known cross-hybridising probes were further filtered out (Chen 
et al., 2013). The data were then normalised using the SWAN method from the R 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
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Bioconductor package minfi (Maksimovic et al., 2012). Technical variation (batch 
effect) associated with the chip was adjusted by ComBat method as implemented in 

the R package sva (Leek et al., 2012).  
Finally, a gene promoter region was defined as 200 bp upstream from the 

transcription start site of each gene, and the M-values for CpG probes in the 

promoter region were summarised by their median value for each gene. These values 

were then transformed into Beta-values using the function m2beta from the R 

package lumi (Du et al., 2008) and differential methylation analysis was performed 
with the limma approach as for the transcriptomics data (Ritchie et al., 2015). Gene 
promoters with an absolute logFC > 0.26 (corresponding to an absolute fold change 

of 1.2 as compared to the controls) and p < 0.01 were considered significantly 
differentially methylated. 

4.4.2 Preprocessing and analysis of RNA-Seq data 

The preprocessing of the RNA-seq data followed a pipeline parallel to the one 

applied for the microarrays. The steps and methods are summarised in Figure 3.  

First, the quality of the data was evaluated using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, last visited in 
November 2023) and the reads were aligned against the appropriate genome 
assemblies using the HISAT2 algorithm (Kim et al., 2015). The assemblies used were 
GRCm38 for mouse data and GRCh38 for human data, respectively. Sequencing file 

conversions (e.g., SAM files into BAM files) and sorting and extracting uniquely 

mapped reads were performed using SAMtools (version 1.8-27-g0896262) (Li et al., 
2009). Read counts were then computed using the R package Rsubread (Liao et al., 
2019) and the human GENCODE annotation (version 35) was applied for human 

data, while GENCODE version M25 was used for mouse samples. Both annotations 

were retrieved from the GENCODE project (https://www.gencodegenes.org, last 
visited in November 2023). 
Genes with low expression levels were then filtered out from each data set by 

applying the proportion test as implemented in the R package NOISeq (Tarazona et 
al., 2015). The data were then normalised using the R package DESeq2 (Love et al., 
2014) and the median of ratios method implemented in it. Batch effects were 

evaluated as in the case of the microarrays, but no significant batches were observed 

in any of the data sets. Finally, DE analysis was performed with the DESeq2 package 

following the framework described for the microarray analysis. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.gencodegenes.org/
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4.4.3 Modelling of the dynamic dose-dependent MOA 

The dynamic dose-dependent mechanism of action (dMOA) for the MWCNT 

exposure in THP-1 macrophages was characterised in Study III. The dMOA was 
defined separately for the transcriptome and the methylome following the 

TinderMIX framework (Serra et al., 2020a). First, sample-wise fold changes were 
calculated between the exposed samples and their corresponding control samples. 

These values were then log2 transformed for modelling purposes. In the case of 

transcriptomics data, two-way ANOVA was first used to identify genes whose fold 

changes were significantly associated with dose, time, or their interaction (p < 0.01). 
These genes were considered “responsive” and selected for further modelling, while 

for the methylomics data, all genes were considered.  

The fold changes were then used to fit polynomial models (linear, second and 

third order). The best fitting model was chosen based on the lowest Akaike 

Information Criterion (AIC) value. Genes with FDR-corrected fitting p-value > 0.05 
were filtered out as non-significant.  

The dose and time ranges were then distributed to 50 equal bins to produce an 

activity map for each gene, and a predicted log2 fold change was calculated for each 

bin based on the optimal selected model for each gene. The resulting activity map 

hence represents the gene modification (change in transcription and methylation, 

respectively) as a plane in the space of time and dose with interpolated values for the 

bins not experimentally evaluated in the study.  

The activation maps were then used to identify an area where the 

expression/methylation status reached the activity threshold (fold change > |1.1|) 

and was monotonically increasing or decreasing with respect to the dose. This area 

was denoted as the responsive area. If a responsive area could be recognised from 

the activation map, the gene was considered part of the dMOA. Finally, the genes 

were assigned a label (early, middle, or late) by dividing the time axis into three equal 

sections and evaluating the earliest point at which the gene surpasses the activity 

threshold with the lowest possible dose. 

4.4.4 Functional characterisation of omics data 

Study III: Functional characterisation against Reactome pathways (Gillespie et al., 
2022) was performed using the R Shiny application FunMappOne (Scala et al., 
2019). Lists of genes together with the direction of modification of each gene were 
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uploaded as input to the tool. The background was defined to include all known 

genes. Pathways were deemed significantly enriched with an adjusted p-value < 0.01 
(adjustment with g:SCS method (Reimand et al., 2007)). 

4.5 AOP data curation 

The AOP framework formed the basis for Studies IV and V. Annotations already 
available in the AOP-Wiki repository (https://aopwiki.org, last visited in November 
2023) were expanded and amended to enable systematic integration of 
toxicogenomics data and the AOP framework and to support future applications of 

AOPs. The work was facilitated by large knowledge graph, the unified knowledge 

space (UKS), previously implemented in the research group (Pavel et al., 2021). First 
round of KE-gene set annotations was performed with data retrieved in November 

2020 and October 2021 (Study V). The annotations were further updated with data 
retrieved in August 2022 and supplemented with the annotation of appropriate 

biological systems in Study IV.   

4.5.1 Key event to gene set annotations 

The KEs of AOPs considered relevant for human health risk assessment were 

annotated to curated gene sets, namely, gene sets expressed as gene ontology (GO) 

biological processes (BP), molecular functions (MF), and cellular components (CC), 

KEGG pathways and phenotypes, REACTOME pathways, WikiPathways, and 

Human Phenotype Ontology (HPO) terms. The annotation was performed through 

a multi-step process comprising techniques of natural language processing (NPL) 

and manual curation. The pipeline is summarised in Figure 4. 

  

https://aopwiki.org/
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Figure 4.  Pipeline applied for the annotation of KEs. The figure was originally published in the 
supplementary material of Study V. 

First, NLP was used to prioritise appropriate matches based on semantic similarity. 

To this end, both the KE descriptions (i.e., names) and the names of the gene set 

terms in the selected databases were processed and tokenised. The processing 

included conversion of raw text to lower case only, removal of punctuations and the 

replacement of multi-word concepts with the same concept expressed in a single 

word. For instance, the concept “positive regulation” was replaced with the single 

word “upregulated”. The text was then split into tokens so that each token 

represented an individual word that could be further processed one by one. Tokens 

corresponding to common stop words, such as prepositions and articles, were 

dropped. Different declinations of the same concept were converted to their root 

terms, which meant conversion of plural expressions into singular and the processing 

of terms such as “increased” and “increasing” into “increase”, for instance. Similarly, 

different expressions and writing styles were standardised by converting symbols 

into written text.  

After the processing steps, each KE description and gene set name was 

represented by a set of tokens, for example, process “Increased PPAR-alpha 

activation” would be represented by a set of tokens {upregulate, ppar-alpha}. At this 

stage, the frequency of individual tokens was considered as the informative value of 

rare terms was higher than those more commonly used. Hence, the tokens were 

weighted by their inverse document frequency (IDF), making the weight of the token 

inversely proportional to the number of gene sets and KEs containing said token. 

Finally, a weighted Jaccard Index was used to match the KEs and the gene sets by 

considering the IDF of the tokens in the calculation. Finally, the matches were sorted 

by the weights in a descending order, prioritising the best matches. 
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Next, the matches were manually evaluated and refined. The evaluation included 

considerations of the biological accuracy and context of the match, as well as the 

refinement of the annotated gene sets to achieve a final set of genes that would most 

accurately represent each KE. The NLP-based matches were limited to the top five 

terms, and those deemed inaccurate were removed. The inclusion of up to five gene 

sets allowed the refinement of the gene set by enabling the inclusion of multiple gene 

sets, while also keeping the task manageable in terms of the number of annotations.  

Manual search across the selected databases, namely WikiPathways (Martens et 
al., 2021), HPO (Köhler et al., 2021), KEGG (Kanehisa and Goto, 2000), Reactome 
(Gillespie et al., 2022), and GO (Ashburner et al., 2000), was used to fill the gaps and 
replace or supplement the NLP-based annotations. KEs describing the alteration of 

an individual gene were annotated primarily to the main function of the gene (i.e., a 

pathway driven by the gene) or directly to the individual gene when no distinct 

pathway could be identified. 

Finally, the KEs could be represented by the union of the sets of genes annotated 

to each KE. Similarly, complete AOPs could be represented by the union of all the 

gene sets associated to the KEs of the AOP. The genes associated with the annotated 

terms were retrieved through the UKS knowledge graph (Pavel et al., 2021).	

4.5.2 Biological context annotations 

The AOP-Wiki repository supports the use of AOP data through various 

annotations that can be provided by the AOP developers. Among these, level of 

biological organisation (molecular, cell, tissue, organ, individual, population) is 

defined and the KEs can be associated with a biological system that indicates the so-

called location of the KE. The provided biological systems, however, are often 

limited to the context of the AOP in which the KE was first introduced, limiting the 

reuse of KEs, and resulting in unnecessary redundance hampering future 

applications. Furthermore, these annotations are not homogenised and do not have 

a full coverage over the KEs. Hence, the existing biological system annotations were 

manually evaluated and curated to fill the gaps, refine the annotations, and reach a 

higher coverage and extended applicability of the KEs. Moreover, a hierarchical 

system that extended to a system-level annotation (i.e., immune system, endocrine 

system, etc.) was implemented.  

The existing annotations and KE descriptions (names) were used as the primary 

source of information for the task. If the description strictly defined a tissue or cell 



 

60 

type (e.g., “Increase, Cytotoxicity (epithelial cells)”), only the defined biological 

system was included. In case the existing annotation was limited to a specific 

biological system, but the process described by the KE was applicable also to other 

cells, tissues, organs, etc., the annotation was supplemented or replaced with the 

other possible options. The decisions were based on a literature search to evaluate 

the possible applicable biological systems. The level of detail in the annotations was 

based on the KE level; KEs defined at the tissue/organ level were assigned 

annotations at system and organ/tissue level, while those defined at the molecular 

level would also receive cell-level annotations, for example.  

For KEs of molecular level events, such as changes in gene or protein expression, 

the Human Protein Atlas (Uhlén et al., 2015) was used to define the relevant cell 
types and tissues. In case the process was valid for most or all cell types, "eukaryotic 

cell" was used as the cell annotation, while the system and tissue/organ annotations 

were left unassigned to indicate the applicability of a range of tissues and organs. In 

cases where the KE was specified for a distinct cell type or organ/tissue but would 

be biologically plausible in other cells, tissues, and systems as well, "eukaryotic cell" 

was introduced as a secondary annotation. This secondary annotation was 

established to differentiate between any cells of a specific system, organ, or tissue 

and a generic eukaryotic cell. Finally, the systems, organs, tissues, cell types, and cell 

components were collected and unified into a dictionary that is provided as part of 

the data collection. 

4.6 Validation of the AOP-gene set curation 

The potential of the annotation framework in identifying relevant adverse outcomes 

from chemical associated gene signatures was evaluated. First, a panel of reference 

chemicals for hepatotoxicity, carcinogenicity, thyroid hormone disruption, and sex 

hormone receptor agonism were selected. Hepatotoxic reference chemicals were 

identified from the European Centre for the Validation of Alternative Methods 

(ECVAM) reference chemical library (Sund and Deceuninck, 2021), more 
specifically, from an Excel file listing hepatotoxic chemicals based on EPA Virtual 

Liver project. The reference chemicals for the remaining endpoints were derived 

from the NTP Interagency Center for the Evaluation of Alternative Toxicological 

Methods (NICEATM) website hosting panels of reference chemicals for various 

purposes (https://ntp.niehs.nih.gov/whatwestudy/niceatm/resources-for-test-

method-developers/refchem/index.html, last visited November 2023). Thyroid 

https://ntp.niehs.nih.gov/whatwestudy/niceatm/resources-for-test-method-developers/refchem/index.html
https://ntp.niehs.nih.gov/whatwestudy/niceatm/resources-for-test-method-developers/refchem/index.html
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disrupting chemicals were selected from chemicals defined as “ACTIVE” for thyroid 

activity on a listing based on (Wegner et al., 2016). Similarly, sex hormone disrupters 
defined as androgen receptor and estrogen receptor agonists were selected from a 

list of in vitro reference chemical provided on the website. These lists were based on 
previous publications by in (Kleinstreuer et al., 2017) and (Browne et al., 2015), 
respectively. Lastly, carcinogenic compounds were identified from the 14th report on 

Carcinogens (RoC classifications), which is available from the NICEATM and lists 

chemicals that are either known carcinogens or reasonably anticipated to be human 

carcinogens (RAHC).	
The reference chemicals derived from each resource were then matched to the 

chemicals with reported gene signatures on the comparative toxicogenomics 

database (CTD) (Davis et al., 2023). This was done based on the provided names 
and CAS identifiers, retaining only those reference chemicals with a counterpart 

available on the CTD. The sets of genes associated with each chemical were then 

obtained via the UKS, and only chemicals with an associated gene set of 50-1,000 

genes were considered for the analysis. This criterion was set to minimise the false 

discovery rate and avoid spurious matches in the enrichment analysis.  

An enrichment analysis was performed to evaluate the enrichment of relevant 

AOPs for each endpoint. Relevance was based on the context of the AOP, i.e., AOPs 

describing carcinogenicity were considered relevant for the carcinogenic chemicals, 

etc. To obtain the AOP associated gene sets, the gene sets annotated to each KE of 

the AOP were combined. The enrichment analysis was based on the Fisher’s exact 

test as implemented in the function enrich from R package bc3net (de Matos Simoes 
and Emmert-Streib, 2012). AOPs with a false discovery rate (FDR) adjusted p-value 
< 0.01 were considered significantly enriched and the results were ranked from the 

most significant p-value to the least. Lastly, the presence of relevant AOPs among 
the top 5 enriched AOPs was evaluated. 

4.7 AOP fingerprint 

The transcriptomics data from MWCNT (Mitsui-7) exposures, both in vivo and in 
vitro, were selected from the data collection published in Study I. The original 
datasets can be found under GEO accession number GSE29042 (in vivo) and 
ArrayExpress entry EMTAB6396 (in vitro) and the preprocessed data is available in 
Zenodo as part of the data collection published in Study I 
(https://doi.org/10.5281/zenodo.6425445). The in vivo dataset comprised multiple 
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doses and time points, while the in vitro dataset was implemented with a single dose 
and time point exposure on four different cell lines representing different cell types 

of the lung. For each distinct comparison (i.e., combination of each dose and time 

point vs. control in vivo and separate cell lines in vitro), the DEGs were obtained from 
Zenodo and filtered by an absolute FC > 1.5 and FRD adjusted p-value < 0.05. 
These DEGs were pooled together to generate the distinct MOA of the exposure in 
vivo and in vitro, respectively.  
To create the AOP fingerprint for the MWCNT exposures, enrichment analysis 

was carried out separately against the AOP-associated gene lists and the KE-

associated gene lists (KEs mapped to the same gene sets were grouped to avoid 

multiple testing against the same set of genes), using the Fisher’s exact test as 

implemented in the function enrich from R package bc3net (de Matos Simoes and 
Emmert-Streib, 2012). An AOP was considered significantly enriched if the AOP 
itself and at least 33% (or a minimum of 2 KEs when the length of the AOP was 

less than six) of its KEs were enriched with an FDR-corrected p-value < 0.05. 

4.8 AOP-derived biomarkers 

KE-gene set annotations implemented as described in the section 4.5.1. were used 

as a resource to identify AOP-derived biomarkers for pulmonary fibrosis (PF). First, 

a panel of characteristics for optimal biomarkers was defined based on the Bradford-

Hill criteria of causality used in epidemiology (Hill, 1965). These characteristics are 
summarised in Table 1. The criteria were then applied to implement a gene 

prioritisation framework to obtain a list of potential transcriptional in vitro 
biomarkers. 

  



 

63 

 

 

Table 1.  Biomarker characteristics defined to guide the prioritisation of genes as potential in 
vitro biomarkers. Table from Study V. 

Bradford Hill Biomarker characteristic Method/Assessment 

Consistency 
(reproducibility) Reproducibility Selection considers evidence from previous 

profibrotic exposures 

Strength (effect size) Amplitude Significant alteration of the expression as 
compared to control 

Experiment Measurable Transcriptional biomarkers measurable by qPCR; 
selected genes need to be expressed in the model 

Biological gradient (dose-
response relationship) Dose-responsive Benchmark-dose modelling to evaluate dose-

response 

Coherence In vitro to in vivo 
extrapolation Experimental evidence from in vitro and in vivo1) 

Analogy Predictive (of the outcome 
of interest) 

Selection based on the KEs preceding the AO of 
interest 

Specificity Specificity Gene ranking based on the specificity score 

Plausibility (Biological) plausibility The AOP framework provides a plausible context; 
supporting evidence; selection of the organism 

Temporality Temporality Transcriptional alteration follows the exposure; 
selection of the model organism2) 

– GLP-method RT-qPCR 

– Influence Centrality measures from human protein-protein 
interaction and gene regulatory networks 

1)The biomarkers selected here are targeted for the development of non-animal assays for toxicological 
assessment. Hence the coherence to in vivo set ups is not evaluated experimentally. However, in vivo 
data was used for the selection of the markers to provide context of the systemic response. 
2)Temporality in the Bradford Hill criteria refers to a clear distinction of the exposure happening prior 
to the outcome. Here, temporality was considered by observing transcriptional changes post exposure 
as well as in the selection of the model organism. Macrophages have a crucial role in the initiation of 
the profibrotic response preceding the outcome, fibrosis. 

4.8.1 Gene prioritisation 

The prioritisation of the PF associated genes was based on a multi-step process 

considering a selection of criteria defined for transcriptional biomarkers as presented 

in Table 1. The full protocol for prioritisation is summarised in Figure 5. 
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Figure 5.  Gene prioritisation pipeline. White boxes with a green outline denote different types of data 
used to rank the genes initially. Green boxes indicate a ranked list of genes, while black 
arrows mark the actions performed on the list. 

First, the genes associated with any AOP related to PF were ranked by influence and 
specificity. For the influence-based rank, various network centrality measures were 
calculated from the protein-protein interaction (PPI) and transcription factor (TF)-

gene interaction data in the UKS as previously defined in Pavel et al. (2021). Briefly, 

all edges describing human PPI were extracted from the UKS to construct a gene-

gene network. As there were multiple data sources with different levels of coverage 

and sometimes differing information on the PPI, a local threshold was applied on 

the edges instead of a global one (Pavel et al., 2022b). This mitigates the inherent 
bias introduced by data availability and popularity of certain gene (products) in 

research. To this end, the mean number of sources supporting the connecting edges 

of each node were estimated. The mean number of sources was then used as the 

minimum number of required sources, and only the edges fulfilling this criterion 

were included. This action was applied to each node of the type “GENE” as long as 

the gene was flagged as protein coding in Ensembl (Martin et al., 2023). 
The so formed gene-gene network of human genes consisted of 20,260 nodes 

and 806,250 edges with a network density of 0.0039. The regulatory network (TF-

gene), on the other hand, was based on a lower number of data sources and hence 

each data source was retained and scored equally. These edges were then used to 

generate a directed gene-gene network which comprised 18,754 nodes, 363,649 

edges and a density of 0.001. These two networks were then used to calculate the 

degree, betweenness, eigenvector, and closeness centrality measures for each node 

with NetworkX (Hagberg et al., 2008). The measures were then used to rank the PF-
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related genes in the context of each individual KE by ranking them from the most 

to the least central according to each measure. The ranks from different measures 

were then combined by the Borda method using the function Borda from the R 
package TopKLists (Schimek et al., 2015). 
Next, the genes were ranked by a specificity score by KEs and AOPs. The score 

for KEs was defined as the occurrence of the gene in the KEs belonging to any of 

the six PF AOPs divided by the occurrence of the gene in any other KE. Similarly, 

the AOP specificity was defined as a score calculated by dividing the occurrence of 

the gene in PF AOPs divided by their occurrence in any other AOPs. These scores 

were then used to rank the genes from more specific to least specific, i.e., prioritising 

the genes that occurred in PF associated KEs and AOPs more as compared to the 

rest of the AOPs/KEs. These ranks were combined into a single specificity rank for 

each KE by the Borda approach as described above. A consensus rank for each KE 

was then established by combining the influence-based rank with the specificity 

ranks using another round of the Borda method. Although these KE-specific ranks 

could inform the selection of KE-specific biomarkers, a final round of Borda was 

established to obtain a single ranked list of genes associated to PF by combining the 

ranks of individual KEs. This way, genes ranking high in multiple PF KEs could be 

prioritised over those more specific to individual KEs.  

The final rank based on specificity and influence (centrality) was complemented 

with experimental evidence which guided the manual selection of the candidate 

genes from the rank. The experimental evidence included differential expression data 

from both in vivo and in vitro experiments with a known profibrotic exposure (Mitsui-
7). The in vivo data were selected from the data collection in Study I (GEO series 
GSE29042, originally published in (Dymacek and Guo, 2011)), while the in vitro data 
from Study III was used as its in vitro counterpart (see Section 4.1.2 for details). 
Particularly, the data were selected so that the experimental set up comprised 

multiple time points and doses to enable dose-response modelling. The DEGs were 

retrieved from Studies I and III. Genes responding to the exposure in a dose-
dependent manner at any given time point were identified by the means of 

benchmark dose (BMD) modelling using the R shiny application BMDx (Serra et al., 
2020b). Briefly, linear, second order polynomial, hill, power, and exponential models 

were fitted for each gene in both data sets, and the optimal model for each gene was 

selected based on the lowest AIC. The lack-of-fit p-values were used to filter the 
genes by removing those with an optimal model having a lack-of-fit p-value < 0.1. 
BMD values and their lower and upper bounds (BMDL and BMDU, respectively) 

were then estimated assuming constant variance and by using a benchmark response 
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factor of 1.349, which is considered to correspond to a minimum of 10% difference 

as compared to the control samples (Thomas et al., 2007). The remaining genes were 
filtered by removing those with BMD or BMDU values higher than the highest 

exposure dose (i.e., 20 mg/ml in vitro and 80 µg in vivo, respectively). The genes 

remaining after the applied filters were considered dose-dependent and used for the 

manual evaluation of the gene rank. Genes from the in vivo data set were converted 
to their human orthologs with Ensembl (Martin et al., 2023). 
Finally, the feasibility of observing changes in the gene expression in the selected 

model the gene in the selected macrophage model was considered, as the ranked list 

was not cell/tissue specific but included all genes relevant for LF under the 

annotated AOP framework. For example, genes coding for collagen proteins were 

ranked high but are likely not deregulated in macrophages. Moreover, the coverage 

over the KEs was included in the collection, which resulted in the selection of genes 

that might not rank high in the final combined rank but were specific to an individual 

KE and ranked high in the context of that event. These considerations were 

summarised in the following list of priority for the manual gene selection over the 

ranked list: 1) genes deregulated in vivo and in vitro, with most emphasis on dose-
dependency; 2) genes deregulated in vitro, with most emphasis on dose-dependency; 
and 3) genes not significantly differentially expressed but dose-dependently altered. 

The final selection of candidate biomarkers was supplemented with additional genes 

that had a lower rank but were specific to KEs that would have otherwise not been 

covered by the selection.  

4.8.2 Biomarker validation with RT-qPCR 

Reverse transcription quantitative PCR (RT-qPCR) was used to assess the expression 

of selected candidate biomarkers in Study V. RNA samples from the THP-1 
macrophages exposed to varying concentrations of bleomycin for 6, 24 or 72 hours 

were used for the analysis (see Section 4.1.2 for exposure details).  

Using 100 ng of RNA, cDNA was synthetised with the High-capacity cDNA 

Reverse Transcription Kit (Thermo Fisher Scientific) following the manufacturer’s 

instructions. CFX96 Touch Real-Time PCR Detection System (BioRad) was used to 

determine the expression levels of the candidate genes. The reactions were prepared 

with 10 µl of iO Multiplex Powermix (Bio-Rad, #1725849), 5 µl of the prepared 

cDNA diluted 5-fold, and 2.5 µl of nuclease-free water (ThermoFisher, #AM9930). 
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PrimePCR Probe Assays (BioRad) were added (1 µl assay + 1.5 µl nuclease-free water 

for single assay or 0.5 µl of each assay in a multiplex reaction) according to Table 2. 

 

Table 2.  Candidate biomarker genes and their information for RT-qPCR assay. 
Gene PrimePCR UniqueAssayID Type Reaction 
ACTB qHsaCEP0036280 Reference 1 
SMAD7 qHsaCEP0050142 Candidate gene 2 
MMP9 qHsaCIP0028098 Candidate gene 2 
GDF15 qHsaCEP0051579 Candidate gene 2 
CTSK qHsaCIP0030907 Candidate gene 2 
PLOD2 qHsaCEP0052848 Candidate gene 2 
CXCL2 qHsaCEP0058163 Candidate gene 3 
LTBP4 qHsaCEP0024931 Candidate gene 3 
TGFB3 qHsaCEP0058244 Candidate gene 3 
RCN3 qHsaCEP0057804 Candidate gene 3 
MMP7 qHsaCEP0052037 Candidate gene 3 
SPP1 qHsaCEP0058179 Candidate gene 4 
FN1 qHsaCEP0050873 Candidate gene 4 
LTBP3 qHsaCEP0053782 Candidate gene 4 
RSAD2 qHsaCIP0031596 Candidate gene 4 
CCL7 qHsaCEP0058033 Candidate gene 4 
IL8 qHsaCEP0053894 Candidate gene 5 
MMP19 qHsaCEP0051244 Candidate gene 5 
TWIST1 qHsaCEP0051221 Candidate gene 5 
PLK3 qHsaCIP0027687 Candidate gene 5 
CXCL10 qHsaCEP0053880 Candidate gene 5 
LOX qHsaCEP0050731 Candidate gene 6 
PTX3 qHsaCEP0033071 Candidate gene 6 
TGFBI qHsaCEP0058394 Candidate gene 6 
CCL2 qHsaCIP0028103 Candidate gene 6 
TGFB1 qHsaCIP0030973 Candidate gene 6 

RT-qPCR data were analysed by calculating fold change (FC) values using the 

comparative CT(2−(ddCt)) method (Livak and Schmittgen, 2001). Log2 transformed 
FC values were used for outlier detection by removing samples with log2(FC) above 

the 75th or below the 25th percentiles of the distribution. Finally, the statistical 

significance of the observed expression patterns was evaluated using ANOVA and 

tukey HSD posthoc test and the dose-dependency of the candidate biomarkers was 

evaluated with BMD modelling following the same steps as with microarray data in 

Section 4.8.1.  
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5 SUMMARY OF RESULTS 

The aim of this thesis was to investigate how toxicogenomics can support chemical 

safety assessment through the generation of more informative models of biological-

chemical interactions. Toxicogenomics has the potential to transform chemical 

safety assessment from an observational science to an integrative field. The shift in 

focus from apical endpoints towards profound characterisation of mechanisms of 

toxicity forms the basis of modern chemical safety assessment, providing tools for 

predictive toxicology and the design of new chemicals that are not only functional 

but also SSbD. 

The investigation was focused on three pillars of toxicogenomics: the data 

(Studies I, II and IV), the models (Studies III and V), and the assays based on 
those models (Study V).  

5.1 Intrinsic characteristics of data 

Intrinsic characteristics of data form the basis of any subsequent use of the data. 

They arise from the combination of the experimental design and technical execution 

as well as data reporting and its presentation. Hence, the intrinsic characteristics of 

data reflect its FAIRness, as well as its availability, quality, and overall usability. 

In this dissertation, the intrinsic characteristics of data were investigated through 

a systematic curation of publicly available transcriptomics data from ENM exposures 

in relevant in vitro and in vivo models (Study I), as well as through the curation and 
annotation of AOP-related data (Study IV). These efforts not only resulted in a 
FAIRified collection of transcriptomics data ready to reuse, but also a robust 

framework to curate and evaluate toxicogenomic data and annotate AOPs. 

Moreover, this provided an approach for the systematic integration of 

toxicogenomics data into the AOP framework. 
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5.1.1 Overview of the toxicogenomics data collection 

In Study I, the data collection was curated using a multi-step approach where the 
initial data search resulted in the identification of 124 potential data entries. Out of 

these, 84 entries passed the manual quality assessment evaluating the suitability of 

the data for the collection. These 84 entries were further divided into 101 specific 

data sets, as those entries comprising multiple biological systems were divided into 

individual data sets during the preprocessing. The final collection represents various 

experimental set ups that were categorised into four classes suitable for different 

modelling approaches: 

 

• Class I – Multiple doses, multiple time points 
• Class II – Multiple doses, one time point 
• Class III – One dose, multiple time points 
• Class IV – One dose, one time point 
 

The division of the data into the defined classes is visualised in Figure 6A. The data 

was further characterised by the experiment type (in vivo vs. in vitro) and organism, 
biological system as well as the core material/material type used in the exposure. The 

characteristics of the final data collection are summarised in Figure 6. 
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Figure 6.  Data characteristics of the curated toxicogenomics data collection. A. Pie chart indicating 

the number of datasets in each category defined by the experimental design. B. Stacked 
bar plot representing the number of datasets for each organism divided into in vitro and in 
vivo experiments. C. Stacked bar plot representing different core materials of the ENMs 
available in the collection with in vitro and in vivo experiments separated. D. Stacked bar 
plot indicating the number of experiments by biological system with cells and tissues from 
the same system grouped under a general category. In vivo and in vitro exposures 
separated. Figure originally published in Study I. 

5.1.2 Data quality and FAIRness as intrinsic characteristics 

Considering the aim of curating a unified collection of FAIR data for toxicogenomic 

evaluation and modelling of ENM exposures, the data identified in the first step of 

Study I went through rigorous quality assessment and investigation as described in 
Section 4.3.4. This offered a deep dive into the published material enabling the 

investigation of data properties that may have contributed to the challenges of 

reproducibility recognised in relation to toxicogenomics. 

The data curation revealed systematic gaps in the quality of published 

transcriptomics data on ENM exposures. The manual quality assessment performed 

on the initial data entries resulted in the discarding of 40 entries. A total of 26 entries 

were discarded due to the lack of replicates (consistently less than three independent 
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replicates per group), while five entries were left out of the collection due to a 

platform that was outside the scope of the collection (only commercial platforms 

produced by Affymetrix, Illumina or Agilent were included). Four entries using a 

microarray design with a two-colour set up were discarded due to them being 

generated without dye swapping, i.e., the control samples and the treated samples 

were consistently labelled with distinct dyes. This type of experimental set up does 

not allow the distinction of technical variation arising from the dye used from 

labelling from that resulting from the treatment of interest, preventing any 

meaningful analysis of the data. Two entries found had no raw data available, while 

two lacked metadata to allow proper preprocessing. Lastly, one entry lacked control 

samples completely. 

5.1.3 Overview of the AOP annotation 
 

AOPs provide the scaffold for mechanistic toxicology, depicting KEs of a toxicity 

pathway as a causally linked sequence of events. It was anticipated that rigorous 

curation of molecular events associated to KEs and AOPs would support the 

usability of the AOP framework for novel applications while also providing the 

much-needed link between toxicogenomics and relevant biological events at various 

levels of biological organisation. To this end, the KEs of all human relevant AOPs 

were associated with established gene sets (terms), such as pathways, gene ontology 

terms and human phenotype ontology terms.  

Originally 231 AOPs comprising 997 unique KEs were deemed human-relevant 

and included in the annotation effort. Together, these formed 1,636 AOP-KE pairs 

as the same KEs can be associated with multiple AOPs. As a result of the annotation, 

969 unique KEs were associated with at least one term. The number of terms 

assigned to the KEs ranged from 0 to 5 with a median of 3.  

Different term sources were represented in distinct proportions among the 

annotations (Table 3), with GO biological processes being the most prevalent type 

with 1,532 instances. GO molecular function terms were present in 273 instances 

while Human Phenotype Ontology terms were assigned 263 times. These were 

followed by Reactome pathways (195), WikiPathways (167), KEGG pathways (154), 

individual genes (89), and GO cellular components (83). These numbers in relation 

to the total number of KEs expressed at the level of biological organisation are 

visualised in Figure 7A. 
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Table 3.  Number of unique terms (gene sets) and genes used from each data source together 
with the total number of human-relevant terms and genes present in each resource. The numbers 
in brackets express the unique instances of the terms. The number of genes correspond to 
unique Ensembl gene identifiers.  

Data source Terms included Total terms Genes included Total genes 
GO biological process 1,532 (746) 12,380 8,817 20,411 
GO molecular function 273 (158) 4,434 5,252 20,878 
HPO 263 (171) 9,946 4,233 5,209 
Reactome 195 (108) 2,496 6,894 12,355 
WikiPathways 167 (69) 701 3,108 8,808 
KEGG 154 (61) 334 4,097 9,454 
GO cellular component 83 (49) 1,754 8,434 21,809 

After annotation, the KEs can be presented as the union of all the genes linked to 

the gene sets assigned to it. This way, the inclusion of up to five individual terms for 

each KE enabled the final KE associated gene set to be tailored for specificity. 

Similarly, this facilitated the implementation of the hierarchical structures present in 

the original databases, such as GO. For instance, KE 1457 titled “Induction, 

Epithelial Mesenchymal Transition” was assigned the following terms according to 

the hierarchy present in GO: GO:0001837 - Epithelial to mesenchymal transition, 

GO:0010717 - Regulation of epithelial to mesenchymal transition, and GO:0010718 

- Positive regulation of epithelial to mesenchymal transition, resulting in a robust set 

of genes for each KE. 

The number of genes associated with the KEs hence ranged from 1 to 6,047 with 

a median of 82. Similarly, when AOPs are presented as a union of all the genes 

associated with their KEs, the number of genes by AOP ranged from 15 to 6,381 

with a median of 804. In total, the genes associated with the KEs cover 16,825 genes. 

Some of these genes are specific to individual KE, while others are more generic and 

associated with up to 234 KEs (Figure 7B).  

While the KE-gene set annotations link toxicogenomics into the AOP 

framework, the usability of AOPs can be supported by various other types of 

annotations. Here, the focus was on consolidating the biological context annotations 

already established in the AOP-Wiki. The manual evaluation and assessment of these 

resulted in the introduction of a hierarchy that supports the use of these annotations 

as well as the consolidation and gap filling of the existing ones. The hierarchical 

structure was established by adding a system-level annotation (e.g., respiratory 

system, digestive system, etc.) and organising the tissue/organ and cell level 
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annotations under these systems. In total, the biological system annotations cover 

18 biological systems or equivalent terms, 86 specific organs and tissues, and 70 cell 

types. The total number of KEs by biological system as well as the number of distinct 

cell types and tissues/organs under each biological system are summarised in Figure 

7C-D. 

 

Figure 7.  Overview of the AOP annotations. A. Stacked bar plots depicting the proportion of 
annotation types divided by the level of the KEs. The height of the bar reflects the number 
of KEs in each group. Dark brown (no annotation) stack corresponds to the number of KEs 
with no associated gene sets, while the different annotation types are represented 
proportionally to their use in each level. Abbreviations as follows: HPO = Human 
Phenotype Ontology, WP = WikiPathways, GO_BP = Gene Ontology Biological Process, 
GO_CC = Gene Ontology Cellular Component, GO_MF = Gene Ontology Molecular 
Function. B. Density plot describing the number of KEs associated with each gene. The 
dashed line indicates the median of the distribution. C. Bar plots representing the number 
of different tissues/organs (turquoise) and cell types (dark green) mapped to each system-
level annotation (D). D. Total number of KEs by system level annotation. The system 
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“other” includes KEs assigned a cell type applicable for a range of tissues and/or systems, 
and those for which no system could be defined. Figure originally published in Study IV. 

 

5.2 Functional properties of data 

Functional properties of data refer to the way the data can be used and what type of 

information can be derived from the use of the data. In the context of 

toxicogenomics, functional properties are hence defined as the models enabled by 

the data and the information generated through that model. Although models of the 

MOA have been implemented, the typical focus on transcriptomic responses at 

individual time points and doses provides little insight to the dynamics of the 

response, only providing a snapshot of the response. Similarly, in vitro experiments 
characterising the MOA are often focused on acute effects and struggle to inform 

on mechanisms of long-term adaptation. 

In Study III, the functional properties of toxicogenomics data were investigated 
by implementing a model of biological-chemical interactions that could support the 

deduction of mechanisms of long-term effects in a relatively short-term in vitro 
exposure. In Study V, on the other hand, the functional properties were assessed 
through the evaluation of the AOP-based analysis of toxicogenomics data, 

expanding the horizons of toxicogenomics data analysis and interpretation. 

 

5.2.1 dMOA highlights a distinct set of molecular alterations 

In Study III, a dynamic dose-dependent mechanism of action (dMOA) of a 
MWCNT exposure in THP-1 macrophages was defined as the set of genes whose 

expression (transcription) or promoter methylation (DNA methylation) was altered 

in a dose-dependent manner during the 72 hours of exposure. This approach enabled 

a detailed investigation of the dynamics of the molecular alteration while also 

providing a complementary look into the dose-dependent alterations, aligned with 

core concepts of dose-dependency in toxicology. 

First, the dMOA was compared with the more traditional approach for defining 

the MOA at the level of the transcriptome and methylome as the sets of differentially 

expressed genes (DEGs) and differentially methylated gene promoters (DMPs), 
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respectively. To this end, DEGs and DMPs were defined independently for each 

dose and time point combination. The number of DEGs showed a dose-dependent 

trend at all time points, while a similar trend can only be appreciated at 24 hours for 

the number of DMPs (Figure 8A-B).  

The DEGs and DMPs were then compared with the number of dynamic dose-

dependent genes and gene promoters by gathering the DEGs and DMPs at 

independent timepoints and doses together and evaluating the overlap between the 

sets of genes. This analysis showed that the distinct approaches highlight divergent 

sets of genes across both molecular layers (Figure 8C-D). Specifically, 58% of the 

DEGs were also dose-dependently altered, while only 23% of the DMPs were dose-

dependent. In both molecular layers, the investigation of the dMOA highlighted a 

larger number of molecular changes as compared to the traditional approach based 

on differential expression/methylation. Overall, the effects of the exposure on the 

transcriptome were found to be more impactful as measured by the number of 

altered genes/gene promoters.  

 

 
 
Figure 8.  Comparison of the differential expression and promoter methylation with the set of 

dynamic dose-dependent genes and promoters. A-B. Bar plots displaying the number of 
differentially expressed genes (A) or differentially methylated promoters (B) between cells 
treated with Mitsui-7 and control cells. Upwards bars (red) indicate the number of 
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upregulated genes or hypermethylated promoters at each time point and dose, while 
downwards (green) bars correspond to the number of downregulated genes or 
hypomethylated promoters. C-D. Venn diagrams describing the overlap between the sets 
of differentially expressed genes and dynamic dose-dependent genes (C) or the sets of 
differentially methylated promoters and dynamic dose-dependent promoters. Figure 
adapted from Study III. 

5.2.2 Gene expression and promoter methylation show distinct kinetics of 
adaptation  

In Study III, changes in DNA methylation were investigated to further explain the 
regulatory mechanisms behind macrophage responses to MWCNT exposures and 

to retrieve relevant information on the potential long-term effects resulting from 

such exposures. This investigation was based on the premise that DNA methylation 

at the gene promoter is an important regulator of gene expression, with methylation 

also being a more stable form of molecular alterations over transcription (Scala et 
al., 2018). Hence, investigating the interplay of the two molecular layers is important.  
In total, the dMOA between transcription and promoter methylation shared 220 

genes out of the total of 6428 in expression and 414 in DNA methylation (Figure 

9A). The genes were further categorised into early, middle, or late responders based 

on the kinetics of the molecular changes. The largest overlap between the molecular 

alterations was observed between early genes in transcription and late responders in 

promoter methylation (Figure 9B). 

 

 
Figure 9.  Integration of the dMOA over expression and methylation. A. Venn diagram depicting the 

overlap between DDD genes in transcription and methylation. B. Tile plot indicating the 
intersections of genes between each activation group in expression and methylation. 
Figure adapted from Study III. 
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The distinct kinetics of the two molecular layers were also observed at the level of 

enriched pathways. 63 enriched pathways were shared between the transcriptome 

and promoter methylation (Figure 10). The kinetics at the level of the pathways 

followed the trend observed for individual genes as nearly all the shared pathways 

were enriched by the early transcriptional responders and late methylation 

responders. While the enrichment analysis of the transcriptomic dMOA often 

showed sustained enrichment of the same pathways across the early, middle, and late 

responders with 63% of the pathways enriched by early responders also being 

enriched by middle and/or late responders, the enrichment was restricted to the late 

responders in methylation apart from individual terms for early (metabolism of vitamins 
and cofactors) and middle (immune system), respectively. 
A further analysis of the enriched pathways suggested the shared pathways to be 

largely related to cell homeostasis and activation including terms such as cytokine 
signalling, innate immune response, inflammation, and response to stress. Additionally, these 
shared pathways included several terms organised under categories cell cycle, 

metabolism of proteins, gene expression (transcription), and signal transduction 
(Figure 10). Although these categories were also represented among the pathways 

enriched uniquely for the transcriptome, the transcriptomic effects also included 

pathways suggesting acute effects such as apoptosis and DNA damage response (data 
reported in the Supplementary material of Study III). 
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Figure 10.  Comparison between the dMOA over gene expression and promoter methylation at the 

level of enriched pathways. A. Venn diagram depicting the overlap between the enriched 
pathways in the dMOA of transcription and promoter methylation. B. Enriched pathways 
shared by the transcription and promoter methylation. Figure originally published in Study 
III. 
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Finally, the results were evaluated in the context of pulmonary fibrosis (PF), one of 

the best characterised pathologies associated with MWCNT exposures. This 

investigation focused on assessing the genes and biological functions/pathways 

known to play a role in the pathogenesis of MWCNT-induced PF. The 

transcriptional dMOA revealed an overlap of 55/138 genes when compared to a 

previously established set of genes associated with the pathogenesis of PF in an in 
vivo model (Nikota et al., 2017). Some of the genes and relevant signalling pathways 
found altered in the dMOA are summarised in Figure 11. 

 

 

 
 

Figure 11.  Selected pathways and genes relevant to the pathogenesis of MWCNT-induced 
pulmonary fibrosis. The heatmap represents the associations between selected genes of 
the dMOA characterised in the experiment and signalling pathways/biological functions. 
Dark blue squares indicate the gene to be part of the dMOA in expression, orange in 
promoter methylation and turquoise in both. Figure originally published in Study III.  

5.2.3 Rigorous annotation improves the functional properties of AOPs 
 

Functional properties of data were also investigated in Study V, where the systematic 
AOP-gene set annotations established in Study IV were evaluated in practice. In 
particular, the functional properties of the AOP-related annotation were investigated 

by assessing the potential to identify relevant adverse outcomes for a set of chemicals 

with known toxicity profiles using their associated molecular signatures. This 

approach showed that enrichment analysis against AOP-associated gene sets was 

able to highlight relevant adverse outcomes for all sex hormone receptor agonists 

(SHR) used in the study (Figure 12A). Similarly, the majority of the gene signatures 

associated with the carcinogens (50 out of 54) and known liver toxicants (seven out 

of eight) were able to highlight relevant AOPs for these chemicals. On the other 

hand, the approach did not work equally well for known thyroid disrupters, with 

thyroid-relevant adverse outcomes ranking at the top of the list for only three out of 

the seven chemicals included in the analysis (Figure 12A). 
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Furthermore, the annotations established in Study IV were used to investigate 
ways to group KEs. Such grouping could refine network applications of AOPs by 

addressing redundant nodes that may hamper the connectivity of the network, 

masking potential connections between currently disconnected KEs.  

Initial grouping of all the KEs based on their gene set similarity revealed several 

reasons for KEs to group together. These reasons included 1) true duplication of the 

KEs; 2) the same event in characterised in distinct biological systems; 3) subsequent 

or connected KEs mapped to the same terms due to insufficient specificity; and 4) 

opposite regulation of the same biological event (e.g., increased vs. decreased 

signalling), where the last case is also due to the lack of specificity in the available 

gene sets. Given the large number of KEs and groups resulting from this practice, 

the topic was further investigated by focusing only on the AOPs related to PF, AO 

of high relevance in nanotoxicology (Bonner, 2010). 
The collection included six PF related AOPs (Aop:173, Aop:206, Aop:241, 

Aop319, Aop347, Aop:382) with a total of 30 KEs mapped to them (Figure 12B). 
When modelling these AOPs as a network using the KEs as nodes and the KERs as 

edges, four distinct KEs were shared by different AOPs. Similarly, there were two 

independent nodes denoting the AOs (i.e., PF) (Figure 12C). However, the 

assessment of the KE similarity revealed six instances of potential duplication 

(Figure 12B). These groups were used to merge the redundant nodes to obtain the 

refined PF network as shown in Figure 12D. As a result of the merging, only a single 

node denoting the AO remained while seven of the KEs are now shared between 

two or more AOPs. Similarly, one of the AOPs (Aop:206) completely merged into 
the other AOPs. 
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Figure 12.  AOP annotations improve the functional properties of toxicogenomics data and AOPs. A. 

Bar chart indicating the proportion of chemicals showing relevant AOPs among the top 
enriched titles in the enrichment analysis against the AOP-associated gene sets. Number 
in brackets indicates the number of chemicals in the category. B. Heatmap representing 
the similarity of the PF KEs based on the Jaccard Index based similarity of their 
associated gene sets. Light grey represents low similarity scores, while increasing 
similarity is expressed with the colour changing through green to blue. C. Network 
presentation of the PF AOPs using their original KEs. Different colours represent the KEs 
of distinct AOPs and grey nodes denote KEs shared by multiple AOPs. Orange nodes 
correspond to AOs. D. Network presentation of the PF AOPs after grouping of the KEs. 
Figure adapted from Study V. 
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5.3 Translational properties of data 

The final aim of this thesis was the investigation of translation properties of 

toxicogenomics data to define systematic strategies to translate toxicogenomic 

analyses into tangible information and specific NAMs for chemical safety 

assessment. The goal of this approach was to improve the interpretability of complex 

omics outputs even without advanced knowledge of toxicogenomics and 

computational biology while also answering to specific questions of toxicological 

importance. 

Translatability of toxicogenomic data is enabled by the combination of the 

intrinsic and functional properties. Data that is intrinsically sound and appropriately 

annotated as well as presented in an adequate format is a prerequisite for functional 

data. The functional properties, on the other hand, further feed the translatability. 

This hypothesis was addressed in Study V where the intrinsic (AOP annotation) and 
functional (AOP-based analysis of toxicogenomic data) were used to define the 

concept of an AOP fingerprint as well as a systematic approach of selecting AOP-

informed transcriptional biomarkers. 

5.3.1 The AOP fingerprint shows high concordance between in vitro and in 
vivo exposures 

The interpretation of the complex signatures captured by omics technologies 

remains one of the main challenges in toxicogenomics. Although methods such as 

functional enrichment using well established pathways and gene ontology terms 

serves as a common way to interpret transcriptomics data, these results require 

further interpretation to put them into the context of toxicologically relevant 

responses. This challenge was partly addressed through the AOP-based analysis of 

toxicogenomic data described in the Section 5.2.3. However, the concept was 

developed further into an approach referred to as the AOP fingerprint.  

The AOP fingerprint was benchmarked using transcriptomic data from in vitro 
and in vivo exposures with a hazardous MWCNT, the Mitsui-7, known to induce PF 
upon pulmonary exposure (Porter et al., 2010). The in vitro signature comprised data 
from four distinct cell lines representative of the human lungs while the in vivo data 
was derived from mice lungs exposed to the same nanomaterial. The fingerprint was 

generated independently for both data sets.  
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As a result, 12 AOPs were found enriched in vitro, while 32 were enriched in vivo, 
with 10 AOPs being shared between the two sets. When ranking the results by the 

adjusted p-value from the most significant to the least, the top enriched AOP in both 
instances was the Aop:173 titled “Substance interaction with lung resident cell 
membrane components leading to lung fibrosis”. Similarly, the AOP at the second 

position (Aop:171 – Chronic cytotoxicity of the serous membrane leading to 
pleural/peritoneal mesotheliomas in the rat) was shared by the two experiments. The 

remaining AOPs shared by the two sets included several AOPs describing to 

cancerous processes, PF, and respiratory distress.  

AOPs unique to the in vitro data set (two AOPs) reflected specific processes, 
namely, disturbance of oxidative phosphorylation and IL-1 receptor related 

processes (Figure 13). The AOPs observed only in vivo, on the other hand, captured 
additional AOPs related to PF and various types of cancer as well as AOPs related 

to immune activation and gastric ulcer formation, for example.  

 
 

Figure 13.  AOP fingerprint of Mitsui-7 exposure in vitro and in vivo. The size of the dot corresponds 
the proportion of the significantly enriched KEs in each AOP (rows) and the colour 
represents the FDR-adjusted p-value in a negative logarithmic scale. The AOPs are sorted 
by the p-value in vivo. Figure originally published in Study V. 
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5.3.2 AOP-derived mechanistic in vitro biomarkers for pulmonary fibrosis 

Biomarkers have emerged as a tool to monitor and predict toxicological effects of 

exposures. In the context of mechanistic toxicology, these effects can be KEs or 

other (molecular) events of interest. Although omics technologies have been used to 

identify molecular biomarkers for various pathological states and toxicological 

processes, they are often selected with little mechanistic context. The identification 

of biomarkers was addressed in Study V by defining characteristics for optimal 
transcriptional biomarkers based on the Bradford-Hill criteria for causation and 

applying them to identify a panel of biomarkers for PF. 

The Bradford-Hill criteria were adapted to fit the purpose by considering the 

technology and methods available and suitable for chemical safety assessment. The 

original characteristics from (Hill, 1965) as well as their counterparts defined in 
Study V are listed in Table 4 together with a method of assessment and 
consideration for each characteristic. Some of the characteristics remained true to 

the original, some were adjusted, while two new characteristics were introduced: the 

method of assessment needed to be GLP-compliant (i.e., RT-qPCR for assessing 

changes in gene expression) and influence, which refers to the idea used in network 

science, where nodes that are more central are thought to be more influential as well. 
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Table 4.  Characteristics for optimal biomarkers based on the Bradford Hill criteria. The original 
nine criteria have been modified and supplemented with additional considerations. Table has 
been originally published in Study V. 

Bradford Hill Biomarker characteristic Method/Assessment 
Consistency 
(reproducibility) 

Reproducibility Selection considers evidence from previous 
profibrotic exposures 

Strength (effect size) Amplitude Significant alteration of the expression as 
compared to control 

Experiment Measurable Transcriptional biomarkers measurable by 
qPCR; selected genes need to be expressed 
in the model 

Biological gradient (dose-
response relationship) 

Dose-responsive Benchmark-dose modelling to evaluate 
dose-response 

Coherence In vitro to in vivo extrapolation Experimental evidence from in vitro and in 
vivo1) 

Analogy Predictive (of the outcome of 
interest) 

Selection based on the KEs preceding the 
AO of interest 

Specificity Specificity Gene ranking based on the specificity score 

Plausibility (Biological) plausibility The AOP framework provides a plausible 
context; supporting evidence; selection of 
the organism 

Temporality Temporality Transcriptional alteration follows the 
exposure; selection of the model organism2) 

– GLP-method RT-qPCR 

– Influence Centrality measures from human protein-
protein interaction and gene regulatory 
networks 

1)The biomarkers selected here are targeted for the development of non-animal assays for toxicological 
assessment. Hence the coherence to in vivo set ups is not evaluated experimentally. However, in vivo 
data was used for the selection of the markers to provide context of the systemic response. 
2)Temporality in the Bradford Hill criteria refers to a clear distinction of the exposure happening prior 
to the outcome. Here, we considered temporality by observing transcriptional changes post exposure 
as well as in the selection of the model organism. Macrophages have a crucial role in the initiation of 
the profibrotic response preceding the outcome, fibrosis. 
 

The characteristics were considered in the prioritisation and selection procedure. 

The final selection comprised 25 genes out of the initial 2,075 genes associated with 

the KEs of all the PF AOPs (see Section 5.2.3.). These genes were validated by RT-

qPCR, by evaluating the changes in their gene expression changes in an in vitro 
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macrophage model (PMA-differentiated THP-1 cell line) exposed to bleomycin, a 

profibrotic chemical.  

The expression of 22 of the 25 genes was detected in the assay at one or more of 

the time points (6, 24 and 72 h) evaluated, while six genes were significantly 

deregulated (Figure 14). Finally, a monotonic dose response was one of the desired 

characteristics for the biomarkers, and this was fulfilled by five genes at one or more 

time points. These five included CXCL2 and CCL7 at 24 hours, IL8 (CXCL8) at 24 

and 72 hours and MMP19 at 72 hours (Figure 14). Each of these genes was 

upregulated as compared to the controls (data available in the Supporting 

Information of Study V). 
 

 
Figure 14.  Dot plot depicting the results of the RT-qPCR validation of the biomarker candidates. 

Tested genes are visible on the x-axis with the number in the brackets corresponding to 
the final rank of the gene. Grey dots represent the genes whose expression was detected 
but not significantly altered between the exposed and control cells. Green dots reflect the 
genes that were significantly altered but not considered dose-dependent while the brown 
dots correspond to the final biomarker candidates that were both significantly altered and 
dose-dependent. 
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6 DISCUSSION 

The overall aim of this thesis was to investigate the possibility to increase and 

ameliorate the application of toxicogenomics in chemical safety assessment. In 

accordance with the global movement towards alternatives to animal 

experimentation and more thorough, mechanistic assessment of chemical exposures, 

toxicogenomics holds the roadmap to transforming chemical safety assessment from 

an observational exercise to an integrated, descriptive field. The molecular 

mechanisms uncovered by toxicogenomics support early hazard identification, 

predictivity of models, and provide invaluable input for the implementation of the 

SSbD framework (Gomes et al., 2022; Liu et al., 2019). 
However, full adoption of toxicogenomics into chemical safety assessment has 

been hampered by the lack of standardisation resulting in concerns of robustness 

and reproducibility, as well as the challenges in interpreting the complex output of 

omics technologies (Pain et al., 2020). While clear standards and guidelines regarding 
the generation, handling, and analysis of toxicogenomics data are still missing, efforts 

to support the robustness and reproducible analysis of toxicogenomic data have 

been the focus of numerous previous studies (Marwah, 2019; Serra et al., 2022) (add 
others!). These efforts have generally addressed individual aspects of 

toxicogenomics, focusing on experimental details, development of analytical 

pipelines or tools to analyse and support the interpretation of the resulting signatures 

(Di Lieto et al., 2023; Marwah et al., 2019; Scala et al., 2019). 
In this dissertation, three distinct aspects of toxicogenomics data were 

investigated: its intrinsic characteristics, functional properties, and translational 

potential. Each of these constituents were investigated with the goal to support the 

systematic integration of toxicogenomics into chemical safety assessment through 

improved robustness, reproducibility, and ease of interpretation.  

6.1 Intrinsic characteristics of toxicogenomics data 

Intrinsic characteristics of data were defined as the FAIRness and overall availability, 

quality, and useability of the data. These characteristics arise from the details of the 
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experimental design combined with the decisions taken during data generation and 

analysis as well as the reporting of each of these steps and the resulting outcomes. 

However, considerations regarding data FAIRness are often limited to the metadata 

at the expense of data quality and its implications on the other aspects considered 

here as the intrinsic characteristics of data. These intrinsic characteristics are not 

unique to the metadata or the raw output of the experiments but extend over the 

analyses performed on these data and models built based on them. These aspects 

were the focus of Studies I, II and IV, of which I and IV were centred around data 
curation, providing a thorough look into the landscape of data in the field.  

6.1.1 FAIRness is not an indication of data quality 

Study I reported the curation of publicly available transcriptomic datasets from 
ENM exposures performed in vivo or in vitro, limiting the search to human, mouse, 
and rat data. Nanosafety data provided an interesting focal point for the study given 

the lack of unified data collections or reference data sets specific for ENMs 

(Grafström et al., 2022). Although several nanomaterial-specific databases have 
been established, they have mostly focused on storing physicochemical 

characteristics and exposure details, lacking harmonised, ready-to-use omics data 

(Jeliazkova et al., 2015; Krug, 2022; Yan et al., 2020). Such datasets are particularly 
important in the field of toxicogenomics, where the integration of multiple datasets 

is often needed to increase statistical power and broaden the applicability domain of 

the resulting models.  

The curated collection of toxicogenomics datasets from Study I is the largest 
unified assembly of transcriptomics data measured upon ENM exposure to date. 

Although the integration of the data is still limited by the diverse experimental 

designs used in the individual studies, test systems, and gaps in material 

characteristics, the collection has enabled meaningful analysis, with a recent meta-

analysis resulting in major discoveries concerning the first epigenetic-based One 

Health model of ENM response (del Giudice et al., 2023). 
Although the curation and harmonisation of the data improved the FAIRness 

and usability of the existing datasets, the process also revealed several areas of 

concern. The quality assessment applied on the data resulted in the exclusion of one 

third of the originally identified datasets, with problems related to the experimental 

design being the most prominent reason (Study I). This implies that numerous 
toxicogenomics datasets featured in peer-reviewed publications exhibit significant 
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design flaws that could compromise the credibility of any findings derived from 

them.  

The lack of replicates was the principal reason of failed quality assessment. 

Although the number of replicates used in an experiment depends on various 

aspects, such as the level of biological heterogeneity and anticipated amplitude of 

differences measured between experimental groups, three (biological) replicates are 

generally considered the absolute minimum to allow any calculation of statistical 

significance. As many as 26 datasets identified during the curation failed this 

minimum requirement. This problem is not unique to nanosafety, toxicogenomics, 

or any specific field employing omics technologies, but instead, it is part of a larger 

problem in modern science. Not having enough replicates hampers the robustness 

of the observation hindering reproducibility in science, a topic that has been heavily 

discussed in the recent years (Fanelli, 2018; Peng, 2015). In toxicogenomics, the cost 
of omics profiling is often accounted as the limiting factor, forcing compromises on 

the experimental design. However, proper experimental design could increase the 

validity and robustness of the data while also supporting data reuse, eventually 

decreasing the use of resources by reducing the need for new experiments.  

While the number of replicates is often compromised due to the costs associated 

with omics technologies, several other experimental design flaws could be solved 

with little or no financial investments. In microarray experiments, the microarray 

slides and the dyes used to label samples often serve as a major source of batch 

effects (Kinaret et al., 2020b). Indeed, the lack of dye swapping was identified as the 
second most common design flaw among the identified datasets (Study I). This 
means that the experiment was implemented so that RNA extracted from distinct 

experimental groups were labelled with different dyes (lack of dye swapping, e.g., 

control samples with one and treated samples with another). This type of 

implementation prevents the identification of true biological differences between the 

sample groups as it is impossible to distinguish between the technical variation 

arising from the dyes and that accounted for the treatment of interest. Although this 

problem is unique to microarrays with a dual dye design, other systematic and often 

inevitable sources of batch effects work in a similar manner, necessitating careful 

consideration of the technical aspects of omics experiments to ensure the lack of 

correlation between technical and biological variables. This means that the potential 

sources of batch effects need to be identified early in the experimental design to pre-

emptively control them through sample randomisation, for example. Sample 

randomisation can be assisted by dedicated computational solutions that evaluate 

correlations between technical and biological variables (e.g., Sinke et al., 2021). 



 

90 

Avoiding these correlations enables the mitigation of remaining biases during data 

processing using batch effect correction algorithms, such as the ComBat algorithm 
(Leek et al., 2012).  
Recognising the importance of experimental design and batch effects is crucial 

for the generation of robust and intrinsically sound data. However, when it comes 

to data reuse, the details of the experimental design need to be justified and reported, 

an aspect that was found systematically lacking during the data curation (Study I, 
II). Although the source databases reinforce minimum reporting standards for omics 
experiments intended to support data FAIRness, several aspects of the data 

remained unreported. These technical details included potential sample handling 

dates, batches, operators, and slide numbers, to name a few. Hence, despite defining 

a set of minimum requirements for the data in Study I, systematic evaluation of 
biases in the data was often prevented by the lack of reporting on technical variables. 

Although algorithms, such as the sva algorithm, intended for surrogate variable 
analysis, can identify hidden sources of variation in high content data, they are not 

able to rescue a dataset where the source of bias is confounded with biological 

variables (Leek et al., 2012). Therefore, the validity, reproducibility, and reuse 
potential of published data can be diminished by the lack of transparency in reporting 

even when adhering to community-accepted minimum standards.  

These observations suggest the need to update the data reporting standards. The 

importance of metadata cannot be emphasised enough. Instead of limiting the 

minimum requirements to primary variables, such as exposure doses and time points, 

complete documentation should be advocated. This documentation extends to 

experimental protocols and analytical details. These specifications would guide the 

reuse of the data while also determining its overall usability – whether the data is 

appropriate for the intended reuse purpose. To this end, distinction between 

technical FAIRness, such as that defined by the original FAIR data principles, and 

scientific FAIRness have been suggested (Papadiamantis et al., 2020; Saarimäki et 
al., 2022). While the original FAIR data principles serve as the guidelines on how to 
share data, scientific FAIRness can be reached through the definition of standard 

operating procedures (SOPs), complete metadata and clear data management 

practices (Papadiamantis et al., 2020).  
Although these notions are important for all types of data, SOPs aimed at 

generating robust, high-quality data are crucial for increasing confidence towards 

toxicogenomics, where clear standards are still lacking. Study I highlights this 
shortcoming not only as the number of datasets deemed unfit for the collection, but 

also through the systematic lack of metadata and reporting. Finally, Studies I and II 
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underscored the importance of rigorously assessing data even if they adhere to all 

the FAIR principles. Acknowledging and addressing the aspects discussed here can 

serve as the stepping stone towards toxicogenomics data whose intrinsic properties 

enable robust and reproducible models, further increasing confidence towards 

toxicogenomics-based evidence in chemical safety assessment. 

6.1.2 Robust annotation supports the application of AOP-based data in 
chemical safety assessment 

Annotation is an important aspect of the intrinsic characteristics of data. Annotation 

is often used to categorise and label data for improved machine readability and 

machine learning applications, but it can also support the overall use, integration, 

and interoperability of data. Although the discussion on the FAIRness of AOPs falls 

beyond the scope of this dissertation (the topic is thoroughly discussed in recent 

publications such as (Mortensen et al., 2022; Wittwehr et al., 2023), the annotation 
effort described in Study IV also supports the FAIRness of AOPs. More 
importantly, however, it established the much-needed link between toxicogenomics 

and AOPs. The annotations enable contextualisation of toxicogenomics data and 

support its interpretation. Similarly, the gene-KE links unleash various analytical 

approaches that are further discussed in the following paragraphs.  

AOP-Wiki supports various types of annotations, including the annotation of 

relevant gene ontology terms to KEs. Such annotations, however, are largely missing 

in the current database (https://aopwiki.org, last visited in November 2023). 
Furthermore, those present in the AOP-Wiki are typically rather generic, allowing 

categorisation of KEs but not intended to represent the biological events as 

corresponding gene sets. Previous attempts to annotate KEs to relevant pathways 

or gene ontology terms have been either focused on specific examples or remained 

at the level of theoretical associations limited to individual databases and not 

resulting in representative gene sets (Martens et al., 2022, 2018; Nymark et al., 
2018).  

In Study IV, the KEs of all AOPs relevant to human health were considered. 
This selection was based on the taxonomic applicability defined for most of the 

AOPs, selecting those applicable to humans or the most commonly used model 

species, such as rodents or primates. The annotation itself was based on an integrated 

approach combining NLP to prioritise relevant matches and manual curation to 

ensure appropriate context for them. Although the human-based assessment allows 
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for thorough quality checks and appropriate contextualisation of the associations, 

such manual processes are prone to potential interpretation errors and differences 

in views of priority and suitability of the matches. Expanding the annotations to 

various pathway and ontology databases provided flexibility and improved the 

probability of finding appropriate and accurate matches to the KEs. Similarly, 

including up to five annotations for each KE resulted in improved specificity and 

contextualisation when a single gene set would not result in a comprehensive match. 

This approach, however, relies on the robustness of the original gene sets.  

Gene and protein annotation bias is a recognised challenge in biomedical 

research, likely affecting all the databases used in Study IV (Haynes et al., 2018). 
This refers to the fact that not all genes are equally-well characterised, and generally 

those already well annotated continue to be more readily researched (Haynes et al., 
2018; Schnoes et al., 2013). It is also worth noting that the source databases (GO, 
KEGG, REACTOME, WikiPathways and HPO) have different strategies to curate 

gene annotations. To this end, similar terms in different databases may be associated 

with distinct sets of genes. Moreover, the KE-gene associations may change as the 

knowledge on the gene functions increase and the original gene sets are updated. 

Similarly, AOPs themselves are evolving and many of them are still under 

development. This is an important notion to consider when using the annotations, 

highlighting the need to refer to the original database and other resources along the 

way.  

The KE-associated gene sets established through the curation are intended to 

provide a comprehensive link between the AOP framework and omics data in the 

light of current knowledge, supporting the analysis and interpretation of 

toxicogenomics data as well as the development of new AOPs. Thus far, the role of 

omics data in the application of AOPs in chemical safety assessment has been limited 

to the identification of potential MIEs and to provide supporting evidence for the 

pathways of toxicity (Brockmeier et al., 2017; Guan et al., 2022; Jin et al., 2022; 
Labib et al., 2016; Perkins et al., 2022). Hence, the systematic integration of these 
complementary concepts has been limited by the lack of connections between the 

molecules (e.g., genes and proteins) and KEs/AOPs. The methodological link 

established in Study IV paves the way for prioritisation strategies through the 
inference of potential adverse outcomes from individual exposures without the need 

to screen a panel of potential KEs with independent assays. Leveraging the network 

properties of AOPs, potential AOs can then be extrapolated from the data, and the 

testing of these outcomes can be prioritised (Knapen et al., 2018; Villeneuve et al., 
2018). Although the annotations may enable the evaluation of multiple KEs from a 
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single omics experiment, the gene sets are not intended to replace the individual 

assays targeted for measuring specific KEs. This would require further refinement 

and validation of the gene sets to understand the gene expression patterns 

corresponding to the KEs as well as improved quantitative understanding. 

One way to refine these initial gene sets and biological events captured by the 

KEs is through the biological context annotations also curated in Study IV. 
Although these annotations were already established in the AOP-Wiki with a fairly 

high coverage (data not shown), the existing annotations were refined, gap filled, and 

expanded to improve the accuracy and applicability domain of the KEs. For instance, 

the generalisability of certain KEs was improved by introducing a broader 

annotation that considers also biological plausibility. It has been previously noted 

that these types of annotations can serve as a guide for model development by 

defining in which biological compartments the AOP operates (Wittwehr et al., 
2017). Hence, amending these annotations could enhance the accuracy of AOP-

driven models and result in improved reuse of KEs. Here, the reuse of KEs refers 

to using the same KE in a newly developed AOP instead of establishing new KEs 

describing the same biological events. However, if the KE itself describes a process 

that could take place in various cell types or tissues, but the annotation is restricted 

to a specific biological compartment, the AOP developers are likely to create a new 

KE. This, in turn, results in disconnected nodes in the AOP network. On the other 

hand, including all possible biological systems for a KE allows their use as attributes 

for the AOP network, further enabling the filtering of the network based on these 

attributes if only a specific biological context is of interest. This way, refining the 

nodes (KEs) and removing redundant or duplicated KEs can lead to the discovery 

of hidden links between KEs as well as overall improved usability of the AOP 

network. This of course necessitates robust KERs that connect independent KEs in 

all possible cases. Together, these specifications define the intrinsic characteristics of 

AOP-related data, while their functional implications are further discussed in the 

Section 6.2.2. 

6.2 Functional properties of toxicogenomics data 

While the intrinsic characteristics of data build the foundation for subsequent 

analyses and models, the functional properties of data reflect how the data can be 

used and what type of information can be extracted from the use of the data. In one 

sense, the functional properties can be defined as the models and analyses built on 
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top of the foundation formed by the intrinsic characteristics. More importantly, these 

properties define the information that can be provided by the models.  

The functional properties of toxicogenomics data are primed by the experimental 

set up. A dataset with multi-dose, multi-time point set up provides more modelling 

options than data with a single dose and time-point set up. Similarly, leveraging 

multi-omics data enables a more thorough characterisation of the molecular effects 

induces by chemical exposures. These data need to be further analysed and 

interpreted for meaningful biological insight. Hence, to build robust and informative 

models of chemical-biological interactions, the functional properties of 

toxicogenomics data were investigated in Studies III and V. 

6.2.1 Multi-omics dMOA informs on the profibrotic potential of MWCNT 
exposure in vitro 

One of the main challenges in the migration towards alternatives to animal 

experimentation is the prediction and assessment of long-term effects of chemical 

exposures. Although in vitro assays can sometimes be extended to long periods of 
time, they do not necessarily accurately reflect the events taking place in vivo 
(Alehashem et al., 2022; Donato et al., 2022). Mechanistic approaches can provide 
the tools to capture early events and enable models that have improved predictive 

value (Fortino et al., 2022). However, transcriptomics alone tends to offer a 
snapshot of the molecular mechanisms at the time of sampling, while the dynamics 

of the response are more difficult to model. To this end, Study III explored a novel 
way of analysing toxicogenomics data by combining transcriptomics and 

methylomics to obtain a multi-omics dMOA. This dMOA over the transcriptome 

and methylome could give insight into the kinetics of the molecular events while also 

explaining the regulatory mechanism of this response. Furthermore, the inclusion of 

DNA methylation could provide insight into the potential mechanisms of long-term 

adaptation, resulting in more informative in vitro models. 
The time and dose integrated approach implemented in Serra et al. (2020) 

provides an alternative to more commonly employed BMD modelling (Serra et al., 
2020b; Yang et al., 2007). While BMD modelling informs on the dose-responsive 
genes and enables the identification of PODs or other values relevant for chemical 

safety assessment, it gives little insight into the kinetics of the response due to the 

challenges in integrating results derived from independent time points. Nonetheless, 

dose-responsiveness is often thought as one of the indicators of causality and hence 
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used to distinguish between the core mechanism of the exposure from the complex 

omics output (Shimonovich et al., 2021). The TinderMIX approach retains this idea 
of the dose-responsiveness but solves the challenge of integrating multi-time-point 

data by simultaneously modelling the effects of the dose and time (Serra et al., 
2020a). This further enables the identification of the time and dose combination that 

activates the monotonic change in the expression or methylation of the gene. 

In Study III, the conventional analysis of differential expression and methylation 
upon Mitsui-7 MWCNT exposure suggested a prominent transcriptomic response, 

but DNA methylation was altered to a lesser extent. Similar observations have been 

made previously both in vitro (Öner et al., 2017; Scala et al., 2018; Sierra et al., 2017) 
and in vivo (Scala et al., 2021). This trend remained true when analysing the dMOA. 
While the dMOA highlighted an additional set of genes not deemed differentially 

expressed or methylated, it also underlined the stronger impact on transcription over 

methylation. Indeed, although DNA methylation is a dynamic process that can be 

affected by environmental exposures, the changes observed are generally small (Eze 
et al., 2020; Honkova et al., 2022; Messingschlager et al., 2023). Majority of 

evidence on the effects of environmental exposures comes from molecular 

epidemiology, where genome-wide changes in DNA methylation statuses have been 

analysed (Hannon et al., 2021; Hoang et al., 2021; C.-J. Xu et al., 2018). In these 
cases, causality is difficult to evaluate, and the focus is often on the changes in the 

overall methylation content instead of specific, individual regions. Here, on the other 

hand, the focus was on DNA methylation as a regulator of gene expression. Hence, 

changes in DNA methylation were investigated at specific regulatory regions, namely 

gene promoters, where it is thought to regulate gene expression through 

transcription factor (TF) binding. Although the classical model of TF binding on 

hypomethylated regions is not universal (Zhu et al., 2018), the role of DNA 
methylation changes in gene expression is generally well described. To this end, the 

overlap between the dMOA in transcription and promoter methylation was 

evaluated, showing that more than half of the genes whose promoter methylation 

was altered in a dynamic dose-dependent manner also had such changes in their 

expression. The kinetics of the responses across both molecular layers were further 

assessed by assigning the activation labels for the genes based on their PODs. 

Majority of these genes were those whose expression was altered early, but promoter 

methylation was affected late. This suggests a mechanism, where the change in gene 

expression is either sustained or supressed through DNA methylation as the 

exposure continues. Epigenetic changes in general are not among the first 

responders to acute exposures, but rather associated with repeated or long-term 
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exposures. This has been previously shown in the case of MWCNT exposures in vivo, 
where significant alterations in the DNA methylation levels in the lungs of mice 

exposed to MWCNTs were observed 7 days after the exposure, but not after 
24 hours (Brown et al., 2016). 
The distinct kinetics of the responses in the different molecular layers were also 

observed at the level of functional enrichment. Nearly all terms found enriched in 

the methylome were also significantly enriched in the transcriptome. In most cases, 

the term was enriched by the early genes in transcription (and either sustained or 

diminished by the middle and late genes) but only enriched by the late genes in 

methylation. While this is partly explained by the smaller set of genes in the early and 

middle groups as compared to the late group, it also supports the idea that DNA 

methylation plays a role in the regulation of core biological functions in sustained 

chemical exposures. This way, the system is adapting to the exposure by either 

altering its phenotype or priming its machinery to respond to a repeated exposure.  

This phenomenon could also be observed in some key genes and pathways 

associated with MWCNT-induced PF. PF is one of the best characterised 

pathologies associated with MWCNT exposures (Labib et al., 2016; Nikota et al., 
2017; Snyder-Talkington et al., 2016). While the development of PF is a complex 
process orchestrated by a collection of different cell types in the tissue, the role of 

macrophages in the initiation of the cascade has been described (Dong and Ma, 
2018). They contribute to the production of reactive oxygen species (ROS) and 

initiate the inflammatory response driving fibrosis, provoking the profibrotic 

microenvironment in the tissue (Ogawa et al., 2021). Signalling pathways associated 
with NF-kB, TGF-beta and AKT/mTOR have been associated with fibrosis and 

were found affected in the analysis (He and Dai, 2015). The signature observed in 
the results is also suggestive of mixed status M1 (pro-inflammatory) and M2 

(regulatory/healing) macrophage activation. This has been previously described in 

response to rigid MWCNTs both in vivo and in vitro and associated with MWCNT-
induced fibrosis in vivo (Dong and Ma, 2018; Kinaret et al., 2020a; Meng et al., 
2015). Here the dynamic dose-dependent alteration of genes encoding for 

proinflammatory factors such as IL-1β, CXCL-8, and TNF are suggestive of M1 

activation, whereas the upregulation of profibrotic mediators CTGF, PDGFA, 

TGF-β2, and VEGF-A combined with the anti-inflammatory IL-10 suggest the 

activation of M2-macrophages. Moreover, a comparison of the affected genes with 

a previously established list of genes associated with MWCNT-induced PF in vivo 
resulted in an overlap of 55 genes (out of 138) (Nikota et al., 2017). Although the 
changes in promoter methylation did not affect all these genes, key factors, such as 
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CXCL-8 and MMP-7, were affected in both molecular layers. The early upregulation 

of the transcription was combined with late hypomethylation, suggesting persistent 

expression changes in these genes and similar patterns were observed in important 

biological processes involved in the pathogenesis of fibrosis, including cellular stress, 

calcium homeostasis and protein metabolism (Ryan 2014). 

These observations provide insight into the molecular response of macrophages 

to MWCNT exposure, also highlighting the role of DNA methylation in changes 

associated with profibrotic potential of the exposure. Although the dysregulation of 

these biological processes has been previously characterised via conventional 
identification of DEGs (Kinaret et al., 2017b; Labib et al., 2016; Scala et al., 2018), 
the dynamic dose-dependent effect across both expression and methylation provides 

evidence towards more sustained regulation of these functions. Together, the 

identification of robust signals suggestive of the profibrotic potential of the exposure 

with evidence on sustained regulation of gene expression results support the use of 

in vitro systems in combination toxicogenomics to inform on potential long-term 
effects of chemical exposures from relatively short-term experiments. It further 

promotes the development of faster, cheaper, and more ethical testing strategies for 

chemical safety assessment while producing functional data and models. Finally, the 

exploring the epigenetic landscapes behind responses to chemical exposures could 

inform on mechanisms that may occur across multiple species, supporting the 

development of One Health models that no longer focus on individual exposures 

on specific biological systems (del Giudice et al., 2023; Saarimäki et al., 2023b). 

6.2.2 Functional properties of AOPs are improved through data annotation 

The interpretation of toxicogenomics-derived signatures can be facilitated by 

rigorously annotated AOPs. This was characterised in practice in Study V by 
evaluating whether the KE/AOP associated gene sets could capture relevant adverse 

outcomes from molecular signatures associated with chemicals of known toxicity 

profiles. These chemicals included hepatotoxic and carcinogenic agents, thyroid 

disrupters and known sex hormone receptor agonists (estrogen receptor, ER, and 

androgen receptor, AR). Sets of genes associated with these chemicals were retrieved 

from the CTD. It is worth noting that the CTD comprises chemical-gene 

associations from various sources and experimental set ups. Hence, these signatures 

do not necessarily reflect the MOA of a specific chemical in an optimal experimental 
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set up. Regardless, these gene sets can provide a general overview of the potential 

biological processes affected by these chemicals (Davis et al., 2019).  
The results suggest that the enrichment approach successfully highlights relevant 

AOPs for each group of chemicals with SHR agonists performing best and thyroid 

disrupters the worst. These observations can be affected by multiple factors, 

including the number of chemicals in the final group, the number of relevant AOPs 

included in the dataset, and robustness of the gene associations in the CTD and in 

the curated data collection. Similarly, these factors can be affected by gene 

annotation bias (Haynes et al., 2018). Cancer-related processes have been widely 
researched and genes related to cancerous processes are often well annotated. 

Furthermore, although the chemicals are classified into one of these reference 

groups, other potential endpoints are not excluded. For instance, this was observed 

in the case of carcinogenic chemicals N-nitrosodiethanolamine and N-

nitrosomorpholine. Neither of the gene signatures associated with these chemicals 

highlighted cancerous processes among the top enriched pathways. However, both 

pointed towards hepatotoxicity, with non-alcoholic steatohepatitis reported as a 

potential adverse outcome. Indeed, the AOP enrichment captured this effect in both 

cases (Study V). Similarly, some of the AOPs can be overlapping among the 
classification applied here. For example, Aop:200 (ER activation leading to breast 
cancer) can be classified as both SHR related AOP and carcinogenesis related. 

Although this analysis supported the interpretation of gene signatures associated 

with chemical exposures, the signatures used here were not exposure specific and 

focused on the complete AOP, giving little insight into individual KEs. Hence, the 

concept was further developed into the AOP fingerprint, which is further discussed 

in Section 6.3.1. 

While the enrichment analysis against AOP-associated gene sets can guide the 

interpretation of omics data, further enabling grouping and read-across approaches 

using mechanistic evidence, the KE annotations can also help the refinement of the 

AOPs themselves. This, in turn, improves the functional properties of AOPs and 

supports their use in combination with toxicogenomics.  

One of the challenges observed in the AOP-Wiki was related to the duplication 

of KEs. Although creating a new KE can be valid in many instances, unnecessary 

redundancy can lead to challenges in the application of AOP-based knowledge. This 

is particularly true when modelling AOPs as a network and using such representation 

to identify hidden links or to perform read-across analysis (Arnesdotter et al., 2021; 
Clerbaux et al., 2022b; Knapen et al., 2018; Ravichandran et al., 2022). The 
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refinement of AOPs and the AOP network was assessed in Studies IV and V by 
evaluating the similarity of KEs based on the sets of genes annotated to them. 
The analysis revealed that KEs cluster together due to multiple reasons (see 

Section 5.2.3) and the approach for defining the final groups depends on the 

intended application. For instance, considering all KEs mapped to the same set of 

genes as one is statistically justifiable for an enrichment analysis to avoid multiple 

testing against the same gene set, while retaining the granularity of the KEs is crucial 

for an AOP network. At the same time, removing truly duplicated nodes can be 

highly beneficial for network application (Study V).  
The potential of this type of refinement was assessed by focusing on a subgraph 

formed by AOPs related to PF. The six AOPs available in the AOP-Wiki at the time 

of data retrieval characterise the multiple pathways leading to PF. Although the 

network was fully connected to begin with, the removal of the redundant nodes 

revealed new connections, reducing the number of nodes from 30 to 23. This further 

revealed the potential redundancy of an independent AOP as it was fully merged 

into the other AOPs upon refinement. The number of shared nodes increased from 

three to seven. Hence, refinement the AOP network simplifies the graph 

presentation while also enhancing the robustness of the KE relationships, depicted 

by the connections between the nodes. On a larger scale, this could lead to new paths 

across the network, linking disconnected parts to those more thoroughly linked, a 

finding whose significance can be postulated in the context of the whole AOP 

network (Villeneuve et al., 2018). Similarly, as duplicated KEs are removed, the true 
influence of each node can be evaluated more robustly through network analytics. 

This example highlights the effect of KE redundancy and the potential of data-

driven grouping of KEs. As the AOP-Wiki keeps growing, the significance of data-

driven approaches increases. Although manual assessment is feasible at the level of 

individual AOPs and events of interest, doing it AOP-Wiki wide is a massive 

undertaking. Hence, encouraging AOP developers to consider the potential of 

reusing KEs and carefully annotating the data would support future applications of 

AOPs.  

Further refinement of the AOP network could be achieved through the biological 

system and taxonomic annotations. The biological systems (Study IV) and 
taxonomical annotations could be used to refine the network by only depicting the 

KEs of a specific organ system or reveal KEs shared by various organisms to find 

points of convergence or diverge. This has also been pointed out by Wittwehr et al. 

(2017) who note that “independent models may be needed to translate well-

conserved effects of chemical perturbation on thyroid hormone concentrations to 
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divergent AOs across species” (Wittwehr et al., 2017). Increasing the understanding 
of the similarities and differences between AOPs in various species not only supports 

the development of more appropriate models for the assessment of human health 

risks and environmental risks, but also serves as a step towards holistic 

understanding of chemical hazard and the One Health perspective (Saarimäki et al., 
2023b). 

6.3 Translational potential of toxicogenomics data 

Finally, the translational potential of toxicogenomics data is influenced by both the 

intrinsic characteristics and functional properties of the data and further supported 

by robust ways to translate the information into human-readable format and 

concrete assays that inform chemical safety assessment. Understanding the 

translational potential of toxicogenomics data supports the integration of 

toxicogenomics-based evidence into chemical safety assessment by improving the 

interpretability of the complex outputs while also resulting in approaches that enable 

more targeted data generation through the implementation of mechanistic NAMs. 

6.3.1 The AOP fingerprint supports the mechanistic interpretation of 
toxicogenomics-based evidence 

The interpretation of toxicogenomics data remains a major challenge. While various 

approaches to functional enrichment have facilitated the translation of the complex 

signatures into tangible biological pathways, their application to chemical safety 

assessment is not straightforward. Alteration of specific molecular pathways or 

biological processes informs on the subcellular mechanisms, but these need to be 

further placed in the context of toxicologically relevant pathways eventually leading 

to adverse outcomes. This laborious process requires extensive knowledge and 

manual literature searches but can often lead to various interpretations. Similarly, the 

increasing adoption of in vitro models necessitates the extrapolation of these results 
into in vivo relevant scenarios. The AOP framework can support this endeavour 
through the specific KEs that can be monitored via NAMs (Van der Stel et al., 
2021). This way, the causality expressed by the AOP contextualises the evidence 

derived through alternatives to animal experimentation, improving the robustness of 

such evidence.  
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In this work, the KE-gene set annotations established in Study IV were 
developed into the AOP fingerprint. The fingerprint was benchmarked using in vitro 
and in vivo data from a comparable exposure, allowing the comparison of the 
signatures. Both data sets highlighted the Aop:173 titled “Substance interaction with 
the lung resident cell membrane components leading to lung fibrosis” as the most 

significant AOP. While the multi-dose, multi-time point in vivo data used here 
showed histological evidence of this in the original publication after one week 

(Porter et al., 2010), the in vitro data presents a much more simplified experimental 
set up with the distinct cell types exposed to a single sublethal dose for 48 h. 

Regardless of the simplicity of the experiment, the data captures the profibrotic 

potential of the exposure in the form of multiple fibrosis related AOPs. 

The second most significant AOP (Aop:171) shared by the two sets delineates the 
development of pleural/peritoneal mesotheliomas due to prolonged cytotoxicity in 

rats. Aop:171, much like the other AOPs included in this study, is in the process of 
refinement and currently lacks data on potential stressors. However, mesothelioma 

is a recognised AO associated with asbestos and evidence of MWCNT-induced 

mesothelioma has emerged (Mossman et al., 1990; Numano et al., 2019; Suzui et al., 
2016). 

Many of the other shared AOPs are also related to various cancerous processes. 

This suggests that the transcriptomic signatures both in vivo and in vitro capture 
biological processes suggestive of the carcinogenic potential of Mitsui-7. Indeed, 

Mitsui-7 classified as a potential carcinogen by the IARC (Grosse et al., 2014), and 
its carcinogenic potential is suggested to be related to the inflammatory reactions 

induced by pulmonary exposure (Rahman et al., 2017a). The inflammatory processes 
are also captured by the AOPs in the AOP fingerprint albeit more specifically in the 

in vitro data. Such specific signals might be easily masked in the in vivo system, where 
a large array of cell types is affected and screened simultaneously. The in vitro data 
further highlighted effects such as cytotoxicity, frustrated phagocytosis, and 

oxidative stress, all of which have been reported as consequences of this type of 

exposure and contribute to the pathogenic nature of Mitsui-7 (Kinaret et al., 2017a; 
Rahman et al., 2017a; Rydman et al., 2015). On the contrary, the in vivo fingerprint 
captured various AOPs suggestive of effects outside the respiratory system. 

Although the effects of pulmonary exposure to MWCNT are not necessarily limited 

to the immediate exposure site, these results could also reflect different effects of 

similar transcriptomic signatures in diverse biological systems. For instance, the 

AOPs related to gastric ulcer formation could suggest similar mechanisms of 

surfactant disturbance in distinct exposure sites. 
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The results of the fingerprint are likely affected by the differences between the 

two data sets. Firstly, the number of DEGs was notably different between the two 

data sets (863 in vitro and 3540 in vivo, respectively). Similarly, the experimental set 
ups were not comparable with each other. Nonetheless, the example here suggests 

that even a simple exposure set up in vitro can accurately capture AOs associated with 
long-term exposures in vivo. Furthermore, the convergence of the fingerprints 
supports the use of published data in the development of NAMs. Based on the 

histopathological evaluations associated with the in vivo data, the transcriptomics 
should capture the full PF AOP. Indeed, all KEs except the MIE in the Aop:173 
were enriched. The in vitro data, on the other hand, highlighted the same AOP as the 
most significant despite only enriching only a half of its KEs. Moreover, the high 

coverage over the relevant KEs provides evidence of the accuracy of the KE-gene 

set annotations, supporting the use of toxicogenomic evidence for the development 

of AOPs and for the evaluation of potential AOs of chemical exposures. Altogether, 

the AOP fingerprint shows that the analysis of toxicogenomic data against robustly 

annotated AOP framework supports a high degree of in vitro to in vivo extrapolation 
and further encouraging the inclusion of toxicogenomics-based evidence for 

chemical safety assessment. 

6.3.2 The AOP framework provides mechanistic context for transcriptional 
biomarkers 

In Study V, the Bradford Hill criteria for causality were modified into characteristics 
of optimal biomarkers. While the definition of a biomarker is broad and diverse, it 

can be generalised into a measurable indicator of a biological state or processes 

(Strimbu and Tavel, 2010). Typically, this means that the biomarker needs to 
influence or predict the incidence of an outcome or disease (Ipcs, 2001). Biomarkers 
can hence be clinical signs such as blood pressure measurements or molecular 

effects, like changes in gene expression. Although biomarkers can be categorised in 

various ways, including those defined as diagnostic, prognostic, and predictive, the 

most relevant categorisation for this dissertation is it distinction between descriptive 

or mechanistic (Califf, 2018). Descriptive biomarkers are a by-product of the disease 
state while mechanistic biomarkers inform on the pathogenesis of the disease 

(Robinson et al., 2013). Mechanistic biomarkers can monitor the pathogenesis or 
biological process before a disease state is achieved, resulting in actionable 

biomarkers. This also means that the biomarkers can be used to inform on potential 
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risks or effects pre-emptively or early in the process (Antoine et al., 2013). The need 
for mechanistic, actionable biomarkers has been recognised across various fields, 

including diagnostics, drug development and pharmacology, as well as toxicology 

(Carr et al., 2017; Davis et al., 2020; Fortino et al., 2022; Narayan et al., 2020). 
In the case of the AOP-derived biomarkers sought after in Study V, biomarkers 

are genes that could inform on the mechanistic cascade of events leading PF and 

hence providing insight into the profibrotic potential of chemicals. The criteria were 

originally conceived to evaluate hypothesised causal relationships in epidemiology 

and have since been applied in the study of various exposures and disease outcomes 

(Breckenridge et al., 2016; Elcombe et al., 2014; Fedak et al., 2015; Mente et al., 
2009; Tischer et al., 2011). While the nine characteristics are not intended as a 
checklist for causality, they serve as flexible guidelines to support epidemiologic 

investigations. Although the molecular mechanisms behind disease and exposure 

associated outcomes were largely uncovered in Hill’s years, the characteristics have 

the potential to go past the “black box” investigation typical for classical 

epidemiology and toxicology, allowing data integration and mechanistic reasoning 

(Fedak et al., 2015). 
In this work, the criteria were placed in the context of mechanistic toxicology. 

The nine characteristics were modified and supplemented with additional two: GLP-

approved method and so-called influence. The former was set in place to enable the 

screening of the suggested biomarkers using robust and reproducible methods 

already employed in chemical safety assessment. In the case of transcriptional 

biomarkers, this method is hence RT-qPCR. Influence, on the other hand, was based 

on the social life of genes: some genes (or gene products) are more influential than 

others. They may serve as master regulators or as the link between important 

biological processes, for example. To this end, network analytics over gene or protein 

networks can be applied. The influence of a node (here gene/gene product) can be 

assessed through centrality measures often based on the degree, betweenness and 

closeness, among other metrics (Zhao et al., 2022). This idea is widely accepted and 
so-called hub genes are often suggested as potential biomarkers (Li et al., 2017; Zhao 
et al., 2022; Zhou et al., 2019). Here, influence, as defined by this concept, was used 
as one of the prioritisation metrics while it was supplemented by considerations of 

context, specificity, and experimental evidence.  

Considering the aim of identifying mechanistic biomarkers that could inform on 

the chain of events leading to an AO of interest (PF), the AOP annotations from 

Study IV served as the context. This way, the genes associated with PF AOPs were 
used as the starting point and ranked according to the protocol and evaluated 
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experimentally. The full set of considerations is detailed in Table 4 (crf. Methods) and 
the initial ranking was based on the influence and specificity to enable flexible 

consideration of experimental data depending on its availability. Here, experimental 

evidence was used to support manual selection over the initial rank. The final 

selection of candidate biomarkers covered various rank positions to ensure the 

coverage over multiple PF KEs as well as the biological feasibility (i.e., selecting 

candidate genes that are likely to be expressed in macrophages).  

The final set of genes that fulfilled the desired characteristics, including 

magnitude (significant alteration) and dose-dependent effect (BMD modelling), 

comprised CXCL2 and CCL7 at 24 h, IL8 (CXCL8) at 24 and 72 h, and MMP19 and 

TGFBI at 72 h. All but TGFBI were among the top 10% of the original rank, 

suggesting that the initial rank could support the selection of genes even in the 

absence of experimental data. The rank itself is influenced by the robustness of the 

data, both at the level of the AOP annotations and the PPI/regulatory network data 

used to evaluate the influence.  

Many of these suggested biomarkers are known as chemokines that mediate 

immune responses. IL8 and CXCL2 are best characterised as neutrophil attractants, 

while CCL7 targets a wide variety of leukocytes (Cheng et al., 2014; De Filippo et 
al., 2013; Hammond et al., 1995). This indicates that the activation of the 
macrophages was captured at the level of gene expression. Prolonged inflammation 

together with persistent M2 macrophage activation has been linked to the 

pathogenesis of PF (Braga et al., 2015). Such polarisation has been previously 
associated with bleomycin. The anti-inflammatory M2 macrophage phenotype is 

thought to drive the development of PF through their ability to promote 

myofibroblast differentiation (Hou et al., 2018; H. Wang et al., 2023). Although 
important in the development of PF, inflammatory markers alone do not necessarily 

inform on the profibrotic potential of the exposure. However, the additional effect 

observed in the expression of MMP19 and TGFBI increase the specificity of this 

panel as PF biomarkers. MMP19 has been previously characterised as a key regulator 

of PF in both mice and humans, although previous efforts have mainly investigated 

it in the context of epithelial and endothelial cells (Yu et al., 2012; Zhao et al., 2023). 
It belongs to the family of metalloproteinases involved in the remodelling of the 

extracellular matrix (ECM). Similarly, the protein encoded by TGFBI is involved in 

the ECM. It has been shown to bind type I collagen leading to thicker fibres and 

further promoting M2-type macrophage polarisation (Bachy et al., 2022). The 
upregulation of TGFBI and SMAD7 (albeit not deemed dose-dependent and hence 

not part of the final panel) also indicate the activation of TGF-beta signalling. TGF-
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beta is considered as one of the main markers of PF. However, neither of the TGFB 

genes (TGFB1 and TGFB3) tested in our experimental set up revealed significant 

changes in their expression. Indeed, TGF-beta presents a more attractive candidate 

for protein-based biomarker assessment, as it is activated from its inactive form post-

translationally, meaning its activation may not be reflected in the transcription of the 

gene encoding the protein (Annes et al., 2003). 
The activation patterns of these genes capture the cascade of events recognised 

in the development of PF. The inflammatory signal observed especially at 24 hours 

of exposure is followed by the activation of genes involved in ECM remodelling and 

signals associated with myofibroblast differentiation at 72 hours contributing to the 

development of the profibrotic microenvironment and responses of the other cells 

of the tissue (Braga et al., 2015). Although macrophages alone cannot capture all 
KEs of the PF AOP, the suggested biomarkers here represent the key steps in 

macrophage involvement in PF, supported by the context provided by the AOPs. 

While biomarkers are often identified based on a phenotype that has already been 

reached, the mechanistic reasoning offered by the AOP framework supports the 

identification of early events and biomarkers that would support predictive 

evaluation. This example highlights how the improved intrinsic and functional data 

characteristics enable the translational potential of both toxicogenomics and AOP 

data, resulting in mechanistic NAMs that could support chemical safety assessment. 
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7 CONCLUSIONS 

Toxicogenomics has emerged as a powerful approach to uncover the molecular 

mechanisms behind the effects of chemical exposures. Although the potential of this 

mechanistic insight is widely recognised and has resulted in vast amounts of 

published data, toxicogenomics-based evidence struggles to be fully adopted into 

chemical safety assessment (Liu et al., 2019; Pain et al., 2020). The investigation in 
this dissertation highlighted the potential of data curation in understanding the 

current state and progress in the field, enabling a breakdown of the data and the 

potential challenges in its intrinsic characteristics that hinder the application of 

omics-based evidence in chemical safety assessment. Acknowledging and tackling 

the challenges recognised in each step of data generation and its reporting form the 

foundation of progress. This can be achieved through systematic approaches to data 

curation, FAIRification and the implementation of SOPs that support the generation 

of robust data whose intrinsic characteristics have been considered in the early steps 

of the experimental design. Once the generated data is robust, high quality and fit 

for purpose, its reporting forms the second step towards intrinsically sound data. 

This not only improves reproducibility in the field but also supports data reuse and 

other aspects of FAIR data, serving as a step towards more sustainable research. 

Finally, the intrinsic characteristics of data should not be limited to raw outputs of 

experiments but need to extend over the models built based on this evidence, 

underlining the importance of complete reporting throughout experiments and 

analyses. 

The efforts undertaken in the context of this dissertation further highlight the 

value of data curation. This laborious task can serve as a means for a systematic 

review of both the intrinsic and functional characteristics of data and the current 

state of the field, resulting in better resources that enable novel discoveries (del 

Giudice et al., 2023). In a field like toxicogenomics, where the generation of unified 
large-scale reference datasets is limited by resources, these efforts are crucial and 

should be recognised as a valuable contribution. The review through curation 

underscores the heterogeneity in the produced resources, revealing the lack of 

standardisation in the field. This further emphasises the pressing need for robust 

standards for data generation and reporting. 
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Although the intrinsic characteristics of data can be improved through rigorous 

curation (Studies I, II and IV), these aspects should be considered prior to data 
generation. The limitations set in place by the initial experimental design or data 

entry have far-reaching consequences. This mirrors the idea of retrospective vs. pre-

emptive characterisation between epidemiology and toxicology. While the insight 

provided by retrospective investigation is priceless, we cannot solely rely on 

retrospective evidence. Instead, we need to learn from the evidence in front of us 

and implement strategies to work pre-emptively and establish links between the vast 

resources available. Hence, the challenges uncovered in this dissertation should serve 

as a foundation towards the next generation of data that is intrinsically robust and 

whose functional properties enable meaningful discoveries. 

These considerations are highly relevant also for the intrinsic characteristics of 

AOPs. The AOP framework rapidly gained importance in chemical safety 

assessment, establishing itself as one of the cornerstones of modern toxicology. 

AOPs serve as a natural anchor of various types of mechanistic evidence to chemical 

safety assessment, now also to toxicogenomics-based evidence. While the AOP-gene 

associations established in the context of this dissertation rely on the robustness of 

the data used and the semantic associations between concepts, the examples 

highlighted in the context of the functional properties and translational potential of 

data support the validity of these associations. The scientific community has 

recognised the potential of integrating these complementary frameworks (Labib et 
al., 2016; Nymark et al., 2018; Perkins et al., 2022). Study IV has now made this 
resource publicly available, hopefully inspiring various future endeavours. 

The implications of the intrinsic characteristics of toxicogenomics data extend to 

its functional properties and translational potential (Studies III and V). 
Toxicogenomic investigation has primarily focused on the characterisation of 

transcriptomic alterations and the depiction of the MOA of chemical exposures 

(Kinaret et al., 2021; Poulsen et al., 2015; Rahman et al., 2017b). However, the 

generation of more informative models that thoroughly disentangle the interactions 

between chemicals and biological systems calls for experimental set ups and 

analytical approaches that improve the functional properties of data. Implementing 

models that explain the mechanisms beyond the gene expression could reveal 

molecular layers that expand the applicability domain of the model or enhance the 

biological insight provided by the model, supporting the use of non-animal 

approaches (del Giudice et al., 2023; Saarimäki et al., 2023b). The integration of the 
time and dose effect with insights into DNA methylation unveiled some of the 

mechanisms contributing to the profibrotic nature of the MWCNT exposure (Study 
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III), suggesting the value of such methods when developing in vitro models for 
evaluating potential long-term effects of various exposures. While an experiment 

should be designed to answer a specific research question, the limits and possibilities 

set by the design to the future reuse of the data should be acknowledged to support 

the efforts towards more sustainable research. The information content provided by 

the added complexity further necessitates analytical approaches that benefit from 

such experimental set ups. 

Studies IV and V showed how the systematic link established through 
annotation improved the functional properties of both toxicogenomics data and 

AOPs, as well as the translational potential of toxicogenomics data. One of the most 

prominent challenges in the application of toxicogenomics data for chemical safety 

assessment is the interpretation of its complex output. The AOP framework serves 

to contextualise this evidence into toxicologically relevant events. Although the 

associations implemented at this stage are qualitative at best, the investigations in 

Study V shows the potential of this association. The AOP fingerprint summarises 
the omics-based signature into tangible pathways that can be further explored 

through the enriched KEs, expediting future quantitative approaches. Likewise, the 

mechanistic context granted by the AOPs for the identification of potential 

biomarkers for the evaluation of chemical hazard expands the avenues for the 

development of mechanistic NAMs. The framework can be further developed 

towards comprehensive panels of sentinel molecular entities that empower targeted 

data generation with reduced costs and higher throughput. With toxicogenomics 

anchored into the AOP framework, the future holds the promise of a more 

comprehensive and mechanistic understanding of chemical hazards, paving the way 

for the development NAMs that prioritise the safety of both humans and the 

environment, ushering in a new era of chemical safety assessment. 
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Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity 
mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the 
mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts 
of transcriptomics data from ENM exposures have already been accumulated, a unified, easily 
accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt 
to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection 
of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo 
including the physicochemical characteristics of the ENMs used in each study.

Background & Summary
Engineered nanomaterials (ENMs) are an emerging class of chemicals with great technological and societal 
impact. Their unique physicochemical properties have already inspired multitudes of applications, ranging from 
medicine to industry and consumer products. While these unique properties make ENMs attractive for endless 
applications, they can also be responsible for potentially harmful effects on human health and the environment. 
ENMs can be synthesized in various sizes, shapes and chemistries with the smallest differences in the composition 
leading to novel properties and effects that need to be considered. Rigorous risk assessment is needed to ensure 
the safety of ENMs. Toxicogenomics (TGx) has emerged as a complementary approach to traditional toxicol-
ogy with the potential to facilitate faster and cheaper hazard assessment of ENMs1,2. The large-scale profiling of 
exposure-induced molecular alterations sets the stage for mechanistic toxicology and expedites the development 
of predictive models. Furthermore, the application of TGx data to nanosafety can provide novel possibilities of 
grouping and classifying ENMs based on the similarity of molecular alterations in biological systems and further-
more can help to derive biomarkers to identify nano-specific signatures.

Transcriptomics technologies are the frontline of TGx. Vast amounts of transcriptomics data for multiple 
ENMs have already been generated offering a valuable resource for future studies and applications. However, the 
data are scattered across public repositories, and their FAIRness is currently hampered by their heterogeneous 
nature and lack of standardization in the preprocessing and analysis. The FAIR principles for scientific data were 
defined in 2016 and have since been the guide for more Findable, Accessible, Interoperable, and Reusable data3. 
The FAIRness of ENM-relevant databases, including ArrayExpress, the Gene Expression Omnibus (GEO), eNa-
noMapper and NanoCommons have recently been evaluated, and while the six datasets extracted from these met 
the majority of the criteria defined by the FAIR maturity indicators, areas identified for improvement included the 
use of standard schema for metadata and the presence of specific attributes in registries of repositories that would 
increase the FAIRness of datasets4. In order to unleash the full potential of already existing transcriptomics data 
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on ENM exposures, which are lacking the metadata related to the exposure conditions and ENM characteristics, 
we created a unified collection of 101 manually curated and preprocessed data sets, covering a range of ENMs, 
organisms, and exposure setups, using the approach represented in Fig. 1.

The overarching aim of this study was to manually curate a comprehensive collection of transcriptomics data in 
the field of nanosafety, thereby increasing the degree of FAIRness of the original data sets. In particular, our collec-
tion is characterized by a higher degree of FAIRness as compared to the individual original data sets composing it.

Methods
Data set identification and collection. The first step in compiling the collection was to identify relevant 
data sets across public repositories. The search was limited to human, mouse, and rat data. We queried the Gene 
Expression Omnibus (GEO) and ArrayExpress databases with the following search terms: “engineered nanoma-
terial”, “nanomaterial” and “nanoparticle”. The initial collection yielded 124 unique entries, which went through 
manual assessment. Raw, non-normalized data for each microarray-based entry was downloaded from the series 
entry page, while for RNA-Seq data sets raw sequencing data in .fastq format were retrieved from the European 
Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/browser/home).

Metadata curation. Next, supporting information (metadata) for each entry in the initial collection was 
downloaded and manually curated on R (version 3.5.2). Metadata gives context to the data by mapping each sam-
ple to biological variables, such as dose and time point, as well as technical variables crucial for the preprocessing 
of the data.

Metadata were obtained from the sample records of GEO entries by using the function getGEO from the R 
package GEOquery5. For data sets available only on ArrayExpress, the sample information for each entry was 
downloaded. These data were then manually curated to produce a homogenized file for each data set consisting 
of the following variables: GSE (a unique identifier for each data set), GSM (sample id), treatment (exposure; i.e. 
ENM or control), group (experimental group; combination of a unique exposure, dose, and time point), organ-
ism, biological system, dose, dose unit, time point, time point unit, slide, array, dye and platform. Although some 
of these variables are not relevant for RNA-Seq data, all the columns were included for all the data to ensure con-
venient data usability. The nomenclature was unified to an extent that could be reached based on the information 
provided in the original metadata. Each sample was then mapped to its corresponding raw data file (column 
filenames) or annotated later to the fastq-files based on the sample names (GSM). If one or more predefined tech-
nical variables were missing, the column was left empty (NA). However, if biological variables were missing or 
ambiguous, the data set was discarded. Lastly, for entries containing human primary cells, the donor was further 
included in the metadata as an additional column donor.

ENM physicochemical characteristics curation. The majority of the datasets were associated with a 
published article describing the study and including some details of the materials used and their physico-chemical 
characteristics. In some cases, the information provided was the nominal size information from the ENM man-
ufacturer, while others provided more detailed characterization of the ENM in the exposure medium. Newer 
studies tended to provide more detailed characterization information than older ones, as the community knowl-
edge regarding minimum characterization needs and properties influencing ENM toxicity increased6,7. Several of 
the studies utilized ENMs already used in previous studies and referred to the characterization provided in those 
earlier studies, in which case the information was manually extracted from the earlier papers. The curated infor-
mation for the ENMs includes information on the supplier (including batch and lot information where available), 
the purity / impurities, the nominal size and surface area, as well as characterization data such as the core particle 
size (shape) as determined by Transmission Electron Microscopy (TEM) size, the hydrodynamic size and zeta 
potential (surface charge) in water and/or the exposure medium determined by Dynamic Light Scattering (DLS), 
information on the presence of endotoxin contamination (where provided) and a link to the commercial provid-
ers material specification sheet where relevant. As many of the studies utilized several different ENMs, or several 
variants (e.g. sizes, capping agents, polymeric coatings etc.) each individual ENM within each study is described 
in a separate row of the ENM characteristics datasheet.

Manual quality assessment. The quality of transcriptomics data is highly dependent on the experimental 
design2. Low number of replicates results in weak statistics, while transcriptomics technologies themselves are 
often prone to technical bias. In order to ensure the quality and usability of each individual data set, evaluation 
was carried out based on the availability of raw data and supporting information as well as technical aspects of the 
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Fig. 1 The workflow applied to compile the data collection. Solid-lined boxes represent the steps applied while 
the output is marked with a dashed line.
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experimental setup. The experiment was considered inappropriate for the collection if the experimental groups 
consisted of less than three biological replicates or if the experimental design introduced an unmanageable batch 
effect. Such batch effects were commonly introduced by consistently labeling different experimental groups with 
separate dyes in a two-color microarray experiment (i.e. lack of dye swapping). Furthermore, data sets represent-
ing non-commercial/custom or marginally represented platforms, for instance microarrays specific for miRNA or 
lncRNA, were excluded. As a result, only commercial gene expression microarrays from Agilent, Affymetrix, and 
Illumina were included alongside Illumina RNA-Seq platforms. The manual quality assessment of the collection 
is further described in the section Technical Validation.

Data preprocessing. Preprocessing of transcriptomics data must be performed prior to any further analy-
sis. The current standard preprocessing pipeline for microarray data includes steps for sample quality checking, 
probe filtering, data normalization, batch effect assessment and correction as well as probe annotation8. Similarly, 
the state-of-the-art preprocessing of RNA-Seq data includes quality control, read alignment, read count extrac-
tion, filtering low counts, normalization, and batch effect assessment8. Here, each data set was preprocessed and 
analyzed individually. Data sets consisting of several cell lines or tissues were further separated by the biological 
system to better focus on the transcriptional differences between the exposures.

Preprocessing was performed in the R programming language (R version 3.5.2) following standard pre-
processing pipelines suitable for each platform. For Agilent and Affymetrix microarrays, the preprocessing was 
implemented in the software eUTOPIA9. For Illumina BeadChips, a similar approach was applied following the 
suggested workflow of the R Bioconductor package lumi10. The preprocessing workflow applied to each platform 
is summarized in Fig. 2.

Quality check. Omics data are prone to technical errors that can arise from sample handling as well as the 
intrinsic characteristics of the platforms8. For this, an important step prior to any manipulation of the data is the 
quality check (QC) that allows the assessment of the gene expression distributions across samples revealing out-
liers and poor-quality samples. We applied a platform specific QC on each data set to evaluate the quality of the 
samples as well as the prevalence of outliers in the data.

For Agilent microarrays, the R package arrayQualityMetrics11 was used, while the QC for Affymetrix was 
performed using the R packages affyQCreport12 and yaqcaffy13. Outliers were further assessed based on the visual 
representation in the form of density plots, bar plots, dendrograms, and multi-dimensional scaling (MDS) plots, 
which were also the primary method of outlier detection for Illumina arrays. Outliers were removed from subse-
quent preprocessing and analysis.

Quality checking of the RNA sequencing data was performed using FastQC v0.11.7 (https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/).

Read alignment. RNA sequencing reads of mouse samples were aligned against the mouse reference 
genome assembly GRCm38, while sequencing reads of human samples were aligned against the human refer-
ence genome assembly GRCh38. The alignment was performed using the HISAT2 algorithm14,15 employing the 
genome indexes built for usage with HISAT2 (retrieved from https://ccb.jhu.edu/software/hisat2/manual.shtml). 

Fig. 2 Preprocessing workflow applied to Agilent, Affymetrix, and Illumina microarrays and Illumina RNA-
sequencing. Boxes with a blue background represent preprocessing steps and methods applied for each platform 
while boxes outlined with a dashed line represent the output obtained for each data set. The lack of a white box 
indicates that the step was not applied for the platform.
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Sequencing file format conversions, such as.sam to.bam, sorting and extraction of uniquely mapped reads were 
performed using SAMtools (version 1.8-27-g0896262)16.

Read counts extraction. Raw read counts for the RNA-Seq data were computed using the R package 
Rsubread (v2.2.3)17. The human Gencode version 35 annotation was applied for read counts extraction of human 
samples, while for mouse samples the mouse Gencode version M25 was employed. Both of the annotations were 
downloaded from https://www.gencodegenes.org.

Low counts filtering. In order to filter out the transcripts with low expression levels in the samples of each 
RNA-Seq dataset, the proportion test was used as implemented in the Bioconductor NOISeq package (v2.31.0)18.

probe filtering. For microarray experiments, probe filtering is commonly applied to remove probes showing 
low variance in the intensity range similar to the background8. These low-intensity probes were removed prior to 
data normalization. For Agilent microarrays, filtering was based on estimating the robustness of the probe signal 
intensities against the background (negative control probes) and applying a quantile-based method for eliminat-
ing probes with low signals. Individual thresholds based on the data and the number of experimental groups and 
replicates were determined for Agilent. For Illumina gene expression microarrays, probe filtering was performed 
after normalization based on the detection p-values10 provided in the raw data. Only probes with a detection 
p-value < 0.01 in at least one sample were considered for further analysis.

Normalization. Normalization of transcriptomics data is crucial for robust comparisons of gene expres-
sion. Here, the normalization of the expression signal distribution in the samples was performed on the log2 
transformed signal intensities using the quantile normalization from the R package limma19 for Agilent, and the 
function justRMA from the package affy20 for Affymetrix microarrays, respectively. For Illumina microarrays, 
quantile normalization was performed with the function lumiN from the lumi R package10, while for Illumina 
RNA-Seq data, normalization was performed using the Bioconductor DESeq. 2 package21. In detail, the filtered 
raw counts underwent normalization by median of ratios method implemented in the package (for details see 
DESeq. 2 documentation).

Batch effect assessment and correction. Microarray experiments are susceptible to technical variation 
arising from the experimental setup, sample preparation, and the equipment, for example. This type of variation 
can lead to decreased quality and incorrect results. Thus, reducing the variation associated with technical var-
iables (batch effect), while maintaining biological variation, improves the robustness of the results. Here, batch 
effects were evaluated by inspecting the results of principal component analysis, hierarchical clustering and 
multi-dimensional scaling9. Technical variation arising from unknown batches were evaluated with the function 
sva from the R package sva22. If variation associated to known technical variables or any of the surrogate variables 
was observed, its correlation with biological variables of interest was assessed via a confounding plot23. Batches 
that were not confounded with any of the variables of interest were corrected using the ComBat24 function from 
the R package sva22.

probe annotation. Lastly, it is meaningful to map the probes to genes. For Agilent, the latest version of 
the annotation file for the specific microarray design was downloaded from the Agilent eArray website (https://
earray.chem.agilent.com/earray/, 2020), and the probes were mapped to the Ensembl transcript IDs25. For 
Affymetrix gene expression arrays, the latest available alternative CDF files with Ensembl gene ID mappings 
were downloaded from Brainarray (http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
CDF_download.asp, 2020), while for Illumina BeadChips, the platform specific R annotation packages (illumi-
naHumanv3.db26, illuminaHumanv4.db27, illuminaRatv1.db28 or illuminaMousev2.db29) were used.

Multiple probes mapped onto the same gene ID were summarized by their median values. Agilent probes that 
were initially annotated to Ensembl transcripts were further mapped to the corresponding Ensembl gene IDs. If 
multiple transcripts were mapped to the same gene, the one with the highest absolute score, as calculated by the 
-log(p-value) x log2(fold change) for each exposure vs. control pairwise comparison, was selected.

Differential expression analysis. Transcriptomics analysis aims at identifying gene expression differences 
between biological conditions. Here, we performed a differential expression analysis on each microarray data set 
using the R package limma19. Comparisons were made between each specific experimental group consisting of 
a single exposure, dose, and time point and its corresponding control samples. Batch corrected variables were 
included as covariates of the linear model. In case the biological material was obtained from human donors, the 
donor was included as a covariate for the analysis. For RNA-Seq based data sets similar comparisons were made 
using the Bioconductor DESeq. 2 package21.

As a result of the differential expression analysis, we provide full lists of genes with their specific fold changes 
and statistics as well as the results filtered to only contain significantly differentially expressed genes with the 
threshold of |logFC| > 0.58 and Benjamini & Hochberg adjusted p-value < 0.05. Due to the implementation of 
DESeq. 2 independent filtering (for details see DESeq. 2 documentation), we also computed the adjusted p-values 
for RNA-Seq data externally from DESeq. 2 to obtain the full list of adjusted p-values with no missing values. 
These values are included in the unfiltered result files of the differential expression analysis under the column 
“adj.P.Val.no.ind.filt”.

FAIRness optimization. To further assist accessibility, interoperability and reusability, the data sets have 
been curated, imported and made publicly available from the NanoPharos database (https://db.nanopharos.eu/), 
which has been developed under the Horizon 2020 (H2020) NanoSolveIT30 (https://www.nanosolveit.eu) and 
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NanoCommons projects (https://nanocommons.eu/). The NanoPharos database has been primarily developed to 
include computationally derived data based on simulations for ENMs at different levels of accuracy. The database 
was then further extended to include ENM characterization data and biological effects. With the inclusion of 
omics data, the NanoPharos database is now covering, in a ready for modelling format, the full spectrum of data 
needed to initiate a computational workflow for in silico exploitation of the data. The data set was checked for 
inconsistencies in the data structure and harmonized where needed. The ENM physico-chemical characteriza-
tion data have been enriched, where applicable, with molecular (e.g. atomic/ionic radii, electronegativity, energy 
band gap) and structural (e.g. crystallographic space group, unit cell dimensions and angles). Each ENM has been 
linked to the respective transcriptomics data set to facilitate querying and user study. The datasets can be queried 
and grouped, among others, based on the ENM core material, ENM batch, exposure time and dose, biological 
information, experiment type, analysis platform etc. (Supplementary File 1).

The NanoPharos database has been designed under the FAIR data principles3 to offer users with high-quality, 
ready-for-modelling data sets, while allowing further development, adaptation and expansion. The FAIR data 
principles are meant to help database managers to improve data accessibility and reusability from the wider 
community in a way resembling Library Science31. To achieve this, data digitization in the NanoPharos database 
is being optimized to be machine readable to allow the seamless data comparison, transformation and, where pos-
sible, combination, providing the user with bigger and more complete data sets. On top of that, the NanoPharos 
database goes beyond the technical character of the FAIR data principles and is implementing the scientific FAIR 
data principles (SFAIR) as defined recently by Papadiamantis et al.31, providing users with the necessary scientific 
context and background information for them to be able to reuse the data with the highest possible confidence. 
Furthermore, NanoPharos is readily accessible via Representational State Transfer (REST) application program-
ming interface (API) and is able to interact with external databases (e.g. NanoSolveIT Cloud) and modelling tools 
through API programmatic access. The available datasets can be accessed through: https://db.nanopharos.eu/
Queries.

Data Records
The data collection32 generated here is freely available on Zenodo at https://doi.org/10.5281/zenodo.4146981. The 
collection comprises 85 preprocessed microarray-based data sets totaling 506 unique ENM vs. control compar-
isons and 16 RNA-Seq based data sets representing 23 ENM vs. control comparisons. Additionally, 24 compari-
sons of non-nanoparticle compounds used as positive/negative controls in the original experiments are included 
for the microarray data sets and 7 additional compounds are included for the RNA-Seq data. All of the data sets 
and their descriptions are available in Online-only Table 1, while the physico-chemical characteristics of the 
tested ENMs are available in Online-only Table 2, respectively.

In order to facilitate the selection of data suitable for different applications and modelling approaches, we 
classified the data into four categories based on the experimental design as follows:

I – Multiple doses, multiple time points.
II – Multiple doses, one time point.
III – One dose, multiple time points.
IV – One dose, one time point.

The proportion of each data class in the collection is visualized in Fig. 3a. Each class contains data obtained 
both in vivo and in vitro with at least two organisms represented (Fig. 3b). The collection covers a range of ENM 
compositions, as well as variants in size, shape, surface capping/coating etc. within a specific composition, in 
multiple biological systems in these organisms (Fig. 3c,d).

Files available for each data set. Each data set contains a homogenized metadata file, normalized and 
batch corrected expression matrices as well as complete and filtered results of the differential expression analysis 
(Table 1).

technical Validation
The quality of transcriptomics data is a product of careful design of the experiment, technical execution as well 
as reporting of the data. The results of each downstream analysis substantially rely on the quality of the data. For 
this, we ensured that the collection contains high-quality data sets and defined a selection of criteria for data sets 
to be included:

•	 Three or more biological replicates are included for statistical robustness
•	 Microarray platform is a commercial gene expression microarray produced by Agilent, Affymetrix or 

Illumina
•	 The labelling of 2-color microarrays has been done considering dye swapping
•	 Non-normalized raw data is available
•	 Supporting information reports all variables required for preprocessing
•	 Untreated control samples are included

Each entry was evaluated based on the criteria, and either removed from the collection or selected for fur-
ther preprocessing and analysis. The number of entries discarded for each of the listed reasons is represented in 
Table 2. Out of the 124 original entries 84 passed the quality assessment and were further divided into a total of 
101 data sets (85 microarray and 16 RNA-Seq) based on the biological systems as specified in Data preprocessing.
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Usage Notes
Here we provide the biggest homogenized collection of transcriptomics data sets in the field of nanosafety sup-
plemented with metadata and ENM physico-chemical characteristics. The collection offers a valuable source 
for multiple analysis and modeling approaches33. For instance, the mechanism of action of each ENM can be 
characterized by investigating the provided lists of differentially expressed genes, and may be linked to specific 
physico-chemical characteristics such as size, surface capping or coating which can guide redesign of ENMs that 

Fig. 3 The data collection comprises of various experimental setups and exposures of multiple ENM 
compositions. (a) The total of 101 data sets were divided into four classes based on the experimental setup. 
The pie chart represents the distribution of data sets by class. (b) Bars representing the proportion of data sets 
in each organism divided by the four classes. In vivo and in vitro exposures are separated. (c) Horizontal bars 
represent the number of data sets with the specific ENM core material or material type. Grey bars represent in 
vivo exposures and pink bars in vitro exposures, respectively. (d) Bars represent the biological system used in 
the experiment. In vitro exposures are represented by pink bars and in vivo exposures by grey bars.

Output file File extension Description

Metadata txt
Sample information containing the following columns: GSE, GSM, treatment, group, organism, 
biological_system, dose, dose_unit, time_point, time_point_unit, slide, array, dye, platform, 
filenames, (and donor).

Normalized expression 
matrix txt

Ensembl IDs as row names, sample IDs (GSM) as column names. Values are log2-transformed 
and normalized signal intensities resulting from the preprocessing for microarrays, and 
normalized read counts for RNA-Seq data, respectively.

Corrected expression 
matrix txt

Ensembl IDs as row names, sample IDs (GSM) as column names. Values are log2-transformed, 
normalized, and batch corrected signal intensities for microarrays. Only included for microarray-
based entries for which applicable.

Unfiltered differential 
expression results xlsx

Excel file containing a sheet for each comparison (experimental group vs. control group) in the 
data set entry. Each sheet is named “group-control” and contains the following columns: LogFC, 
AveExpr, t-statistic, P.value, adj.P.Val, B-statistic, score and ID, as specified in the output of the 
limma R package16 for microarrays. Columns available for RNA-Seq are ID, baseMean, logFC, 
lfcSE, stat, P.Value, adj.P.Val and adj.P.Val.no.ind.filt. Results contain all the genes in the platform 
after filtering and annotation.

Filtered differential 
expression results xlsx

Excel file containing a sheet for each comparison with significantly differentially expressed genes 
with |logFC| > 0.58 and adj.P.Val < 0.05. Each sheet is named “group-control” and contains the 
following columns: LogFC, AveExpr, t-statistic, P.value, adj.P.Val, B-statistic, score and ID, as 
specified in the output of the limma R package16 for microarrays. Columns available for RNA-Seq 
are ID, baseMean, logFC, lfcSE, stat, P.Value and adj.P.Val. Only included for entries for which 
significantly altered genes were found.

Table 1. Files provided for each entry in the collection.
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are safer and may support grouping into sets of nanoforms in accordance with REACH regulation (https://echa.
europa.eu/documents/10162/13655/how_to_register_nano_en.pdf/f8c046ec-f60b-4349-492b-e915fd9e3ca0), for 
example. Moreover, pathway enrichment analysis can be performed to annotate these genes onto biological func-
tions34. ENMs can be further compared and grouped based on the similarities between their molecular alteration 
profiles.

Due to the homogenized preprocessing and manual curation of the metadata, this collection is a relevant 
resource for identification of toxicity biomarkers. This can be addressed by using multiple feature selection 
approaches35,36 or more advanced data modelling techniques37–39. Biomarkers could also be detected by means 
of gene co-expression network analysis, under the assumption that central network genes play a key role in the 
adaptation to the exposure40,41.

The availability of data for multiple organisms or tissues can contribute to the development of more accurate 
adverse outcome pathways by linking ENM-specific molecular initiating events with cascades of relevant biolog-
ical processes leading to an adverse outcome42,43. In addition, our data collection can be easily integrated with 
other transcriptomics data in the context of a read-across analysis to identify similarities in the molecular altera-
tions induced by the ENMs with other phenotypic entities such as chemicals, drugs, and diseases44. Moreover, the 
data sets that we denoted as class I and II, where exposure at multiple doses are available, can be further analyzed 
to identify dose-dependent molecular alterations45–48.

Our manually curated transcriptomics data collection with supporting ENM descriptions will have a high 
impact on the nanosafety community and can aid the development of new methodologies for nanomaterial safety 
assessment2,8,30,33,43.

code availability
Preprocessing of the data was performed on R version 3.5.2. The preprocessing of Agilent and Affymetrix 
expression data was performed using eUTOPIA9, an R shiny software freely available on https://github.com/
Greco-Lab/eUTOPIA. Custom scripts used for preprocessing of Illumina BeadChip and RNA sequencing data 
are available on GitHub on https://github.com/grecolab/Public_Nano.
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The article by Jeliazkova at al.1 recently published in this journal 
addresses the pivotal topic of data sharing and reuse in nanosafety. 
Current research in the field is highly multidisciplinary, as described 
also in the recent call for reporting standards for bio–nano experi-
mental studies2. Hence, the application of the general FAIR (find-
able, accessible, interoperable and reusable) principles3, although 
valid, might fall short when considering field-specific needs and 
requirements. This is especially true for toxicogenomics, in which 
additional challenges are posed by the articulated data analytics as 
well as the need to integrate multiple datasets to increase the sta-
tistical power and domain of applicability of the resulting predic-
tive models. These limitations substantially affect the possibility of 
including toxicogenomics-based evidence in safe-by-design proto-
cols as well as in regulatory hazard and risk decisions.

In our recent effort to curate publicly available transcriptomics 
data from exposures with engineered nanomaterials4, we initially 
identified 124 datasets. However, although nearly all these datasets 
were published in peer-reviewed articles, the data quality assess-
ment resulted in the exclusion of 35 datasets due to problems in 
their overall usability, rather than reusability. These problems were 
primarily related to the experimental design, which suggests that 
several toxicogenomics datasets published in peer-reviewed articles 
present substantial design flaws that jeopardize the validity of any 
results extrapolated from them and stresses the need to critically 
evaluate even data that have been FAIRified. In other words, rein-
forcing rigorous reporting of data does not automatically ensure 
quality, which should be addressed in the early phases of the experi-
mental design. In fact, our curation also raised another concern: 
even datasets deposited in established databases could still be made 
(more) FAIR5 as, despite the availability of mature standards for 
minimum reporting of omics experiments (for example, MIAME6 
and MINSEQE (http://fged.org/projects/minseqe/)) to aid data 
FAIRness, several aspects remain undocumented in toxicogenom-
ics studies. According to community-accepted minimum reporting 
standards and the FAIR principles, the primary experimental vari-
ables are to be described (for example, exposure doses and times). 
However, when it comes to the preprocessing and analysis of toxi-
cogenomics data, these minimum standards often result in poor (re)
usability due to the lack of batch-effect description (that is, potential 
systematic effects caused by reagents, microarrays and so on)7–9 and 
incomplete characterization of the experimental design and execu-
tion7. This, in turn, prevents optimal data preprocessing and analy-
sis, but could be easily overcome through additional criteria and 
quality checks built into the study design and reported as part of the 
required metadata.

Moreover, the reliance on minimum standards over complete 
documentation is not just a concern for the reuse of raw omics data. 
Similar challenges exist regarding the analysis and modelling per-
formed on these data, which include the identification of predic-
tive biomarkers, the development of adverse outcome pathways or 
the performance of the meta-analysis. Although the complexity of 
toxicogenomics data requires the use of articulated multistep ana-
lytical pipelines, their high dimensionality dictates the tailoring of 
algorithms and parameters to fit the specific characteristics of each 
experimental design and dataset. This has a profound impact, as 
equally technically valid alternative analytical strategies can lead to 
apparently divergent sets of results. Omics data analysis tradition-
ally results in long lists of molecules that distinguish the experimen-
tal conditions assayed. These are intrinsically difficult to interpret 
unless functional analysis is performed to pinpoint over-represented 
biological functions. As the association of individual molecules 
with biological functions is, per se, an interpretative exercise, it is 
intuitive that alternative analytical strategies, which may result in 
slightly different sets of candidate molecules, may have a consider-
able impact on the interpretation of the final outcome. Indeed, this 
is one of the main reasons why toxicogenomics data still struggles 
to be fully accepted for regulatory purposes. Thus, ensuring the 
FAIRness of the computational protocols, tools and algorithms used 
to analyze toxicogenomics data can provide a sensible way to allevi-
ate this bottleneck. In this regard, we advocate the need to differ-
entiate between technical and scientific FAIRness10. Although the 
former can be addressed by sharing code, scripts and software to 
replicate a specific analysis, the latter focuses on the generation and 
sharing of standard operating procedures in which each analytical 
step is carefully motivated and described (metadata). Both technical 
and scientific FAIRness are equally important, albeit with slightly 
different ‘owners’ responsible for their implementation, and as a 
community we should define specific scientific FAIR principles for 
each of the different subdomains of nanosafety.

Finally, data curation is needed to advance research in many 
fields of modern science, and recognition of this huge effort is 
essential. Acknowledgement of the data generation effort is eas-
ily achieved through the publication of original research articles. 
However, curation of already published data often remains a ster-
ile exercise in which the curated data, with increased FAIRness 
scores, remain fully available only to a small community of sci-
entists. We propose two solutions to be adopted by authors and 
publishers, respectively. The former should consider curation as a 
valuable contribution to the field, and as such should publish the 
curated dataset and the associated curation protocols in one of 
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the myriad of data-focused journals. Publishers can contribute by 
requiring the bulk of the curated data that underpins meta-analyses 
and chemo- and nanoinformatics models to be accessible via 
well-established data repositories (such as Zenodo), via specific 
open curation databases (for example, the NanoPharos Database 
(https://db.nanopharos.eu/Queries/Datasets.zul)) and/or via other 
database platforms. Reuse of curated data will be facilitated by 
ensuring that the data are exported in formats that are suitable for 
modelling or further analysis.

With these considerations in mind, we believe that it is mean-
ingful to address the overall usability of published data in addi-
tion to the aspects of FAIR, and that the usability can be improved 
through many of the actions already suggested by the nanosafety 
community1,2,5,7–11. The challenges discussed in this comment are 
not unique to nanosafety but pervade the toxicogenomics field as 
a whole. However, notable efforts, such as that by Jeliazkova et al.1, 
place the nanosafety community at the forefront of advancing 
the entire area of chemical safety assessment. Indeed, the nano-
safety community is driving the updating of regulatory testing on 
a wide scale. Supplementing the broad technical FAIR principles 
with subdomain-specific considerations, as represented here by 
the toxicogenomics field, will considerably increase the transpar-
ency of results and predictions based on the reuse of such data. 
Furthermore, it will pave the way towards regulatory acceptance 
of toxicogenomics-based evidence in the safety assessment of  
engineered nanomaterials and other chemicals alike.
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A B S T R A C T   

Toxicogenomics approaches are increasingly used to gain mechanistic insight into the toxicity of engineered 
nanomaterials (ENMs). These emerging technologies have been shown to aid the translation of in vitro experi-
mentation into relevant information on real-life exposures. Furthermore, integrating multiple layers of molecular 
alteration can provide a broader understanding of the toxicological insult. While there is growing evidence of the 
immunotoxic effects of several ENMs, the mechanisms are less characterized, and the dynamics of the molecular 
adaptation of the immune cells are still largely unknown. 

Here, we hypothesized that a multi-omics investigation of dynamic dose-dependent (DDD) molecular alter-
ations could be used to retrieve relevant information concerning possible long-term consequences of the expo-
sure. To this end, we applied this approach on a model of human macrophages to investigate the effects of rigid 
multi-walled carbon nanotubes (rCNTs). THP-1 macrophages were exposed to increasing concentrations of 
rCNTs and the genome-wide transcription and gene promoter methylation were assessed at three consecutive 
time points. The results suggest dynamic molecular adaptation with a rapid response in the gene expression and 
contribution of DNA methylation in the long-term adaptation. Moreover, our analytical approach is able to 
highlight patterns of molecular alteration in vitro that are relevant for the pathogenesis of pulmonary fibrosis, a 
known long-term effect of rCNTs exposure in vivo.   

1. Introduction 

The immunotoxic potential of multi-walled carbon nanotubes 
(MWCNTs) on the respiratory system has already been reported with the 
support of toxicogenomics evidence (Halappanavar et al., 2019; Labib 
et al., 2016; Kinaret et al., 2017a, 2017b; Poulsen et al., 2017; Rydman 
et al., 2014). Furthermore, we have recently demonstrated that 
analyzing the transcriptome from in vitro as well as in vivo exposures can 
successfully inform on relevant patterns of molecular adaptation, 
possible toxic outcomes, and inflammatory responses (Kinaret et al., 
2017a). While the use of toxicogenomics in the assessment of adverse 
effects of chemical exposures is gaining acceptance, chemical risk 

assessment still largely relies on expensive and laborious animal ex-
periments. In vitro models are increasingly used in compliance with the 
3R principles (Replacement, Reduction and Refinement) of animal 
experimentation (Russell and Burch, 1959). Although long-term effects 
have been investigated in vitro [e.g. (Comfort et al., 2014; He et al., 2016; 
Holmgren et al., 2014; Luanpitpong et al., 2014; Wang et al., 2011)], 
they typically require weeks to months of continuous exposure, hardly 
cutting back on the time and effort. While recent developments in tox-
icogenomics can support more advanced interpretation of toxic mech-
anisms also from in vitro models, we are still lacking robust methods for 
the interpretation of potential long-term effects from short-term assays. 

Alterations in DNA methylation have been suggested as a mechanism 
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of more persistent molecular changes upon engineered nanomaterials 
(ENMs) exposures (Brown et al., 2016; Öner et al., 2017; Scala et al., 
2018a; Stapleton et al., 2018; Sierra et al., 2017). More recently, multi- 
omics approaches have been used to explain the complex patterns of 
molecular adaptation to ENMs in multiple cell types (Scala et al., 
2018a). Hence, we hypothesize that relevant information on possible 
long-term effects of MWCNT can be obtained in a short in vitro exposure 
set-up, by combining the analysis of dynamic gene expression changes 
with epigenetic alterations that are more stable by nature. 

The airways are one of the most prominent routes of exposure to 
ENMs, making resident lung cell types a valid model for assessing the 
toxicity of ENMs in vitro (Kinaret et al., 2017a; Scala et al., 2018a; 
Stoccoro et al., 2017; Søs Poulsen et al., 2013). Resident macrophages, 
together with neutrophils, represent the first line of defense against 
pathogens and foreign bodies introduced into the airways (Farrera and 
Fadeel, 2015). These phagocytic cells attempt to internalize the foreign 
intruders initiating defense mechanisms that can lead to inflammation 
and, further, damage the tissue when unresolved. Many ENMs are, 
however, rather biodurable, making their enzymatic degradation a 
difficult task for phagocytes (Liu et al., 2010; Vlasova et al., 2016). 
Furthermore, many rigid fiber-like particles are difficult to engulf due to 
their high aspect-ratio, often leading to impaired ingestion and frus-
trated phagocytosis that further aggravates inflammation and contrib-
utes to the adverse consequences of ENMs exposures (Boyles et al., 
2015a; Murphy et al., 2012; Rydman et al., 2014). Moreover, recent 
evidence suggests that ENMs can impact macrophage polarization, thus 
affecting the long-term outcome of the exposure (Dong and Ma, 2018; 
Meng et al., 2015; Kinaret et al., 2020). Although the role of macro-
phages in reactions induced by carbon nanotubes (CNTs) is recognized, 
the dynamic patterns of molecular adaptation of macrophages to 
MWCNTs are yet to be discovered (Kinaret et al., 2017b; Rydman et al., 
2014). 

To date, dose-dependent molecular responses have been investigated 
by focusing on individual time points of exposure (Bourdon et al., 2013; 
Labib et al., 2016). This approach, however, makes the interpretation of 
the kinetics of molecular adaptation difficult. To overcome this limita-
tion, we applied a novel computational approach that allows the 
modelling of dynamic dose-dependent (DDD) alterations in two distinct 
molecular layers, the transcriptome and the DNA methylome (Serra 
et al., 2020). We applied this analytical strategy in order to model a 
robust dynamic mechanism of action of MWCNTs on a human macro-
phage cell model. We exposed macrophage-like cells derived from the 
human monocytic THP-1 cell line to three different doses (5, 10 and 
20 μg/mL) of long and rigid multi-walled carbon nanotubes (rCNTs) for 
three consecutive time points: 24, 48, and 72 h. We then investigated the 
DDD molecular alterations at the level of the transcriptome and gene 
promoter methylation. In this way, we were able to underline key mo-
lecular changes already described in lung fibrosis in vivo. Our approach 
supports the use of toxicogenomics in building more comprehensive 
predictions about the long-term effects of ENMs exposure, such as 
fibrosis, by using an in vitro exposure setup. 

2. Material and methods 

2.1. Nanomaterial 

The multi-walled carbon nanotubes used in this study have been 
previously characterized in Rydman et al. and Kinaret et al. (Kinaret 

et al., 2017b; Rydman et al., 2015). The properties of the nanomaterial 
are summarized in Table 1. 

2.2. Cell culture and exposures 

THP-1 cells (DSMZ ACC 16) were cultured at 37 ◦C in cell culture 
flasks in RPMI 1640 media (Gibco, Thermo Fisher Scientific, USA) with 
10% FBS (Gibco), 2 mM ultraglutamine (Gibco), and 1% penicillin- 
streptomycin (Gibco) supplementation (complete RPMI media). Cells 
were plated into six-well plates (1.0 × 10^6 cells/well) and differenti-
ated for 48 h with 50 nM PMA (phorbol 12-myristate 13-acetate, Merck 
KGaA, Darmstadt, Germany). Fresh, complete RPMI media with PMA 
was replaced after 24 h and after a total of 48 h, fresh complete media 
without PMA was added. The control group was treated in a similar 
manner, with complete media and PMA, without the rCNTs. 

Dispersion of the rCNTs was based on publications by Bihari et al. 
(Bihari et al., 2008) and Gallud et al. (Gallud et al., 2020), and suc-
cessfully used in several previous publications by us and others (Boyles 
et al., 2015b; Chortarea et al., 2019; Kinaret et al., 2017a; Kinaret et al., 
2020; Scala et al., 2018a). A stock solution of 1 mg/mL of rCNTs was 
freshly prepared prior to exposure in a sterile glass tube with plain RPMI 
1640 media, vortexed for 1 min and sonicated in a bath sonicator 
(37 kHz, Elmasonic S30 (H), Ilabequipment, USA) for 3 × 15 min at 
room temperature. The stock solution was then diluted with complete 
RPMI media to obtain final exposure concentrations of 5, 10, and 20 μg 
of rCNT/mL (corresponding to mass per area exposure concentrations of 
1.04, 2.08 and 4.16 μg/cm2 as a total volume of 2 ml of exposure media 
was used). The dose range was selected to reflect low-dose exposures 
that are high enough to induce a response without showing significant 
cytotoxicity (Scala et al., 2018a). The dilutions were vortexed and 
sonicated prior to exposures for additional 15 mins. Cells (passage 
number P8) were exposed to rCNTs in complete RPMI for 24, 48 or 72 h. 
Cells treated in a similar manner, sonicated and RPMI media vortexed in 
the same way but without rCNTs exposure were used as a reference 
group. A total of 6 replicates of each treatment and dose pair were 
performed. After exposures, two replicates were pooled into one sample 
to produce a total of 3 independent replicates for each exposure group. 
These triplicates were then used for the following transcriptomics and 
DNA methylation experiments. 

2.3. RNA/DNA extraction 

Following each exposure period, the cells were harvested, and lysed, 
and total RNA was isolated using RNeasy Mini kit (Qiagen, Germany) 
following the instructions of the manufacturer. Total RNA samples were 
quantified with NanoDrop (ND-1000, Thermo Fisher Scientific) and the 
quality of the RNA was further verified using FragmentAnalyzer (Agilent 
Technologies, USA). RNA samples with RNA quality number (RQN) 
higher than 9.5 were used for the analysis. 

DNA was extracted from the cell lysates using Maxwell® RSC 
Cultured Cells DNA Kit and the Maxwell® RSC instrument according to 
manufacturer’s instructions (Promega Corporation, USA). Integrity of 
the DNA was verified by gel electrophoresis on 1% precasted E-gel 
(Invitrogen, Thermo Fisher Scientific) and quantified using PicoGreen 
(Quant-iT Broad-Range dsDNA Assay Kit, Invitrogen). 

Table 1 
Characteristics of the multi-walled carbon nanotubes used in the experiment.  

Description Product code Provider Aspect 
ratio 

Average length 
[nm] 

Average diameter 
[nm] 

Average surface area [m2/ 
g] 

Rigid multi-walled carbon 
nanotube 

XNRI-7 
mitsui 

Mitsui & Co., Ltd. 
(Japan) 

260 13,000 50 22  
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2.4. DNA microarrays 

Total RNA samples (100 ng) were labeled and amplified using the T7 
RNA polymerase amplification method (Low Input Quick Amp Labeling 
Kit, Agilent Technologies) following the instructions of the manufac-
turer (Agilent Technologies). cRNA samples labeled with either Cy3 or 
Cy5 fluorescent labels (Agilent Technologies) were purified with RNeasy 
Mini Kit (Qiagen). The quantity and specific activity of the samples were 
verified using NanoDrop (ND-2000, Thermo Fisher Scientific). Finally, 
300 ng of cRNA labeled with Cy3 were combined with a corresponding 
amount of cRNA labeled with Cy5, fragmented, and hybridized onto the 
Agilent SurePrint G3 Human GE 8 × 60 microarrays. After washing, the 
slides were scanned with Agilent microarray scanner model G2505C 
(Agilent Technologies). Data were extracted using the Agilent Feature 
Extraction software (V12.0.2.2). Microarray data have been submitted 
to NCBI Gene Expression Omnibus (GEO) database under the series 
accession number GSE146710. 

2.5. Genome-wide DNA methylation 

Genome-wide DNA methylation analysis was performed using the 
Infinium HD methylation assay (Illumina, USA) according to manufac-
turer’s protocol. First, DNA samples (500 ng) were bisulfite converted 
using the EZ-96 Methylation Kit (Zymo Research, USA) following the 
instructions of the manufacturer. Next, DNA was amplified, fragmented, 
and hybridized to the Infinium MethylationEPIC BeadChips, and finally, 
scanned with the iScan scanner (Illumina). 

2.6. Transcriptomics 

Transcriptomics data were preprocessed using the R Shiny applica-
tion eUTOPIA (Marwah et al., 2019). Raw data were imported, and low- 
quality probes were filtered out using a quantile-based approach. 
Particularly, probes with a value higher than 75% quantile of negative 
probes in at least 85% of the samples were selected for further steps. The 
log2 transformed intensity values were then normalized between arrays 
using quantile normalization. Technical variation resulting from the 
dye, slide, and the position on the slide were eliminated by batch 
correction with the ComBat method from the R package sva (Leek et al., 
2012). Finally, multiple probes mapped to the same gene symbol were 
summarized by their median values. 

Differential expression between each exposure group (one dose at 
one time point) and their corresponding control group was estimated by 
linear models followed by empirical Bayes pairwise comparison as 
implemented in the R package limma (Ritchie et al., 2015). Corrected 
batches were included as covariates in the analysis. Genes with a fold 
change >|1.5| and Benjamini & Hochberg adjusted p < 0.05 were 
considered significantly differentially expressed. 

2.7. CpG methylation 

Methylation data were preprocessed using eUTOPIA following the 
workflow of the application (Marwah et al., 2019). Raw methylation 
files were uploaded together with the phenotype file. CpG probes were 
filtered by removing probes with a detection p-value >0.01 in any 
sample. Further filtering was applied to remove probes for CpGs located 
on the sex chromosomes, those containing single nucleotide poly-
morphisms or belonging to a set of known cross-hybridizing probes 
(Chen et al., 2013). Data were normalized using the Subset-quantile 
Within Array Normalization (SWAN) method (Maksimovic et al., 
2012). Batch correction was performed with the Combat method from 
the R package sva to remove technical variation associated to the chip 
(Leek et al., 2012). Finally, a gene promoter region was defined as 
200 bp upstream from the transcription start site of each gene, and the 
M-values for CpG probes in the promoter region were summarized by 
their median value for each gene. M-values were transformed into Beta- 

values using the function m2beta from the R package lumi (Du et al., 
2008). 

Differential methylation analysis was performed with the limma 
approach as described above for transcriptomics (Ritchie et al., 2015). 
The gene promoter was considered significantly differentially methyl-
ated with a fold change >|1.2| and p < 0.01. 

2.8. Dose- and time modelling 

Each molecular layer was analyzed separately with parallel ap-
proaches following the workflow of TinderMIX (Serra et al., 2020). In 
brief, sample-wise fold changes were calculated between each exposed 
sample and each of its corresponding control samples. Fold-changes 
were log2 transformed and used for the modelling. For transcriptomics 
data, two-way ANOVA was applied to identify the genes whose fold 
change showed variance significantly (p < 0.01) associated to dose, 
time, or the interaction of dose and time. These genes were considered 
“responsive” and selected for further modelling in both molecular 
layers. First, a selection of polynomial models (linear, second and third 
order) were fitted to the known points. The optimal model for each gene 
was selected based on the lowest Akaike Information Criterion (AIC) 
value, and the genes with a non-significant p-value (FDR corrected 
p > 0.05) for the fitting were filtered out. Afterwards, the dose and time 
ranges were divided into 50 equally distributed bins, and the optimal 
model of each gene was used to predict their corresponding log2 fold 
changes. In such a way, each gene is represented by a 50 by 50 activation 
map in the space of time and dose, that is able to interpolate the doses 
and time points not included in the experiment. From each activation 
map, an area with monotonically increasing or decreasing (with respect 
to the dose) fold change greater than the activity threshold (fold 
change>|1.1|) was recognized by means of its gradient matrix and 
determined as “responsive area”. If such an area could be identified, the 
gene was considered to be altered in dynamic dose-responsive manner. 
Finally, the activation map was divided into three equal sections on the 
time axis and each section was assigned a label: “early”, “middle”, and 
“late”, respectively, according to the implementation of the TinderMIX 
software (Serra et al., 2020). With this approach, each gene was assigned 
one of these labels based on the time of activation of the gene, i.e. the 
section in which the activity threshold was surpassed at the earliest time 
point and the lowest possible dose. 

2.9. Functional enrichment 

Pathway enrichments were performed using an R-shiny graphical 
tool FunMappOne (Scala et al., 2019). Lists of official gene symbols were 
offered as an input with the direction of the alteration (fold-change 
increasing or decreasing with dose) as a modification of the genes. 
Reactome annotations were used for pathway enrichment, and all 
known genes were used as the statistical domain scope of the analysis. 
Pathways were considered significantly enriched with a p-value <0.01 
adjusted with the g:SCS method (Reimand et al., 2007). 

3. Results and discussion 

Given the important role of macrophages in the systemic responses to 
ENMs exposure, we decided to focus on a macrophage in vitro model. We 
aimed at disentangling the kinetics of the molecular adaptation by using 
a multi-omics approach in combination with multiple time points and 
rCNTs doses showing low toxicity (Scala et al., 2018a). 

3.1. Transcriptional changes follow a dose-dependent trend 

Differential expression is often used to statistically evaluate the 
quantitative transcriptomic changes between experimental groups. 
Exposing macrophages to increasing concentrations of rCNTs for three 
consecutive time points resulted in a total of 5495 differentially 
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expressed genes (DEGs) (Table S1). A clear dose-dependent increase in 
the number of DEGs can be visually observed at each time point, sug-
gesting a more impactful exposure as the dose increases (Fig. 1A). On the 
contrary, the number of differentially methylated promoters (DMPs) 
only showed a visually increasing dose-dependent trend at 24 h and a 
dose-dependently decreasing number of hypomethylated promoters was 
observed at 48 h (Fig. 1B). Total of 307 gene promoter regions showed 
significant differential methylation as compared to unexposed controls. 
The subtle impact on DNA methylation observed in the present study is 
in line with previous reports suggesting limited changes of the methyl-
ation levels in fewer loci upon exposure to MWCNTs (Öner et al., 2017; 
Scala et al., 2018a; Sierra et al., 2017). However, we observed a 
convincing pattern of DNA methylation adaptation at the highest dose 
and the longest exposure time with a higher prevalence of hypomethy-
lated promoters (Fig. 1B). While the gene expression is regulated by 
dynamic mechanisms, such as transcription factor binding, regulation of 
the enzymatic machineries controlling DNA methylation is slower and 
also involves cell replication -dependent events (Edwards et al., 2017). 
For this reason, we cannot exclude that some of the regulatory mecha-
nisms of DNA methylation are not active in a differentiated cell type/cell 
culture, where cell cycle is largely halted. This might be progressively 
evident as the exposure time proceeds through the 72 h. 

3.2. Dynamic dose-dependent analysis highlights an additional set of 
adaptive genes 

The conventional analysis of differential expression/methylation by 
comparing treated to non-treated samples follows the observations of 
several previous studies indicating a prominent transcriptomic response 
but a marginal impact on the DNA methylation (Kinaret et al., 2017a; 
Öner et al., 2017; Scala et al., 2018a; Sierra et al., 2017). We suspected 
that part of the molecular effects are directly induced by the chemical 
agents and substances and thus, show dose-dependent behavior. Hence, 
we focused on finding the genes whose behavior is monotonically 
altered with an increasing dose. Benchmark dose (BMD) modelling has 
been proposed to identify such genes (Yang et al., 2007). Although BMD 
modelling succeeds in highlighting monotonically altered genes, it gives 
little insight into the kinetics of the molecular alteration. Here, we 
investigated the DDD behavior of the genes upon rCNTs exposure by 
simultaneously modelling the effects of the dose and time. With this 
integrated approach, we obtained a total of 6428 genes with DDD 
alteration in gene expression and 414 genes with DDD changes in the 
promoter methylation. The genes with DDD behavior were labeled 
“early”, “middle”, or “late” based on their point of departure (POD) in 
each distinct molecular layer (Table 2, Table S2). Interestingly, the ki-
netics of the molecular alterations showed distinct patterns in each 

molecular layer, as the majority of the changes in gene expression were 
initiated early, while alterations in the promoter methylation were 
mostly observed at late exposure time (Table 2). Given the more stable, 
regulatory nature of DNA methylation, later activation is expected. Ev-
idence of later changes in DNA methylation has also been shown in vivo, 
as significant changes in DNA methylation levels in the lungs of mice 
exposed to MWCNTs were observed 7 days after the exposure, but not at 
24 h (Brown et al., 2016). 

By comparing the differentially expressed genes and differentially 
methylated promoters with the respective set of DDD genes, we found an 
intersection of 3212 (58%) genes for expression (Fig. 2A), and an 
intersection of 70 (23%) promoters for methylation (Fig. 2B), respec-
tively. As we suspected, these results suggest that the mechanism of 
action of rCNTs is only partially dose-dependent, with 58% of DEGs 
showing dose-dependent behavior, while molecular adaptation as a 
whole is achieved, not surprisingly, by complex circuits of non- 
monotonic molecular regulation. Furthermore, our approach identified 
a large proportion of molecular alterations not captured by the tradi-
tional differential expression/methylation analysis (Fig. 2A-B). Our in-
tegrated dose- and time- modelling approach allows us to retrieve also 
genes whose magnitude of alteration could not be sufficiently evident in 
each exposed vs control pairwise comparison. Furthermore, the inves-
tigation of the POD is especially useful in the regulatory setting for 
example in defining toxicological reference doses (Labib et al., 2016; 
Webster et al., 2015). 

3.3. A proportion of dynamic dose-dependent genes are coupled with 
dose-dependent alteration also in the gene promoter methylation 

The assessment of alterations in DNA methylation can be useful for 
predicting long-term effects of short-term exposures (Canzler et al., 
2020). In order to understand the relationship between transcriptional 
and epigenetic adaptation, we investigated the two molecular layers in 
relation to each other. In total, the two layers shared 220 DDD genes 
(3.4% of all the DDD transcriptionally altered genes) (Fig. 3A, Table S3). 
These results are in line with our previous findings suggesting that only a 
proportion of genes acquire “more stable” molecular alteration in the 
form of DNA methylation (Scala et al., 2018a). When considering the 

Fig. 1. Number of genes altered in respect to rCNTs exposure. Timepoints 24, 48 and 72 h of exposure with 5, 10 and 20 μg/mL exposure concentrations (Dose). (A) 
Differentially expressed genes with bars representing number of up- (red) and down- (green) regulated genes for expression (FC > |1.5|, FDR-corrected p-value 
<0.05) (B) and hyper- (red) and hypomethylated (green) promoters for differential methylation (FC > |1.2|, p-value <0.01), respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Number of dynamic dose-dependent molecular alterations obtained for gene 
expression and gene promoter regions, specified by their time of activation.  

Activation time/Molecular layer Early Middle Late Total 

Expression 3912 1092 1424 6428 
Methylation 131 44 239 414  
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kinetics of these molecular alterations, we found the largest overlap (79 
genes) between genes whose expression alteration was initiated early 
while methylation perturbation was triggered late, suggesting the role of 
DNA methylation in sustaining or repressing these expression patterns 
long-term (Fig. 3B). 

The 220 common genes indicate several important macrophage 
functions to be affected by epigenetic regulation in response to rCNTs. 
Among the set of common genes, in fact, we identified multiple che-
mokine encoding genes that have a pivotal role in macrophage induced 
inflammation (Table S3). For instance, CXCL8, CXCL10, and CCL20 
were upregulated, while their promoters were hypomethylated, sug-
gesting a sustained long-term induction of these genes. We also observed 
altered behavior of several genes indicating calcium homeostasis, as the 
transcription of the calcium channel genes CACFD1, CACNA2D1, CAC-
NA2D4, CACNG2 was repressed, while their promoters were generally 
hypermethylated. Downregulation of genes encoding for calcium 
channels could indicate an increased level of cytosolic calcium, which in 
turn triggers multiple signaling pathways in activated macrophages, 
including IL-1β secretion and the activation of NLRP3 inflammasome 
(Feske et al., 2015; Rada et al., 2014; Zumerle et al., 2019). Indeed, 
nano-sized particles have been shown to modulate intracellular calcium 
concentration, and exposure to long and rigid MWCNTs has been pre-
viously associated with NLRP3 inflammasome activation (Brown et al., 
2004; Li et al., 2017; Palomäki et al., 2011). Both of these events are 
reported to be dependent on reactive oxygen species (ROS) production, 
which is also known to be acutely induced in our experimental setup 
(Scala et al., 2018a). Taken together, these results suggest the role of 
methylation in sustaining selected patterns of transcriptional adaptation 
of macrophages to rCNTs exposure. 

3.4. DDD alterations in transcription and methylation are related to cell 
activation and homeostasis 

To better understand the functionality of the DDD genes in each 
molecular layer, we investigated the enriched pathways in each group. 
Our analysis highlighted a total of 493 significantly enriched Reactome 
pathways for gene expression and 68 pathways for promoter methyl-
ation. Out of these, 63 pathways (13%) were shared between the two 
molecular layers (Fig. 4A). All the common enriched pathways were 
activated early in the transcriptome with a great proportion (68%) of 
them sustaining the enrichment along the time (Fig. 4B). Pathways such 
as “immune system”, “disease”, “signal transduction”, “metabolism” and 
“cell cycle” represent many of the functions already highlighted by 
earlier toxicogenomic studies both in vitro and in vivo (Kinaret et al., 
2017a, 2017b; Öner et al., 2017; Poulsen et al., 2017; Scala et al., 
2018a). 

We found several key pathways of the immune functions to be 
prominently represented, including well known responses of macro-
phages to MWCNTs exposure, such as innate immune response, inflam-
mation, cytokine signaling, and antigen processing and presentation (Fig. 4B) 
(Kinaret et al., 2017a, 2017b; Poulsen et al., 2017; Scala et al., 2018a). 
Previous studies have also reported epigenetic regulation of these pro-
cesses in response to MWCNTs (Öner et al., 2017; Scala et al., 2018a). 
Interestingly, in methylation, immune system was the only pathway 
already enriched at “middle” and sustaining it at “late”, suggesting a 
more pronounced role of promoter methylation in the regulation of 
immune-related genes. The combination of alterations in transcription 
and promoter methylation suggests long-term regulation of the genes of 
these pathways. While the enrichment of immune related functions is 
not surprising considering the nature of the exposure, it indicates that 
our analytical approach is able to highlight short- and possible long-term 
patterns relevant for the exposure. In addition, several compartments of 
the cell metabolism were found to be altered, including response to stress 

Fig. 2. Venn diagrams representing the overlap of genes obtained through the modelling of dynamic dose-dependent (DDD) alterations and standard analysis of 
differentially expressed genes (DEGs) (A) or differentially methylated promoters (DMPs) (B). 

Fig. 3. Intersections between gene expression and promoter methylation at the level of all DDD genes (A) and the overlapping DDD genes and promoter regions 
grouped by activation time (B). 
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Fig. 4. (A) Venn diagram representing the intersection of all enriched Reactome pathways for genes with DDD expression and promoter regions with DDD 
methylation. (B) Heatmap representing the enrichment patterns of the 63 Reactome pathways common to gene expression and promoter methylation. 
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as well as protein and RNA metabolic processes (Fig. 4B). Alteration of 
general metabolic pathways could indicate cellular stress, while func-
tions related to protein metabolism may support well known macro-
phage functions, such as antigen processing and presentation. The role 
of epigenetic alteration in protein metabolic processes observed in this 
study, have been also reported previously (Öner et al., 2017; Scala et al., 
2018b). 

The most represented common functions in this study were related to 
signaling pathways. We have previously observed a pronounced positive 
association between the alteration of intracellular signaling pathways 
and the nanoparticle aspect ratio (Scala et al., 2018a). Similar patterns 
of alterations have been reported at the level of the transcriptome in vivo 
as well as DNA methylation in vitro (Kinaret et al., 2017a, 2017b; Öner 
et al., 2017; Scala et al., 2018a). Here, our results highlight the activa-
tion of MAPK signaling pathways, as also previously reported (Kinaret 
et al., 2017a; Öner et al., 2017; Scala et al., 2018a). MAPK signaling has 
an important role in regulating innate immune responses as well as cell 
survival (Arthur and Ley, 2013; Cargnello and Roux, 2011). Interest-
ingly, functions related to epigenetic regulation of gene expression were 
also retrieved among the pathways commonly represented in both data 
layers analyzed in this study, supporting the role of DNA methylation 
and its regulation in the adaptation of macrophages to rCNTs exposure. 

3.5. Pathways underlying short-term adaptation are not coupled with 
promoter methylation changes 

When looking at the alterations seen only at the level of the tran-
scriptome, we observed that 79% of the pathways were initiated early 
and not sustained through time, indicating a rapid short-term macro-
phage response through transcriptomic alterations (Table S4). As in the 
common pathways between expression and methylation, immune 
functions, signaling pathways, and metabolic functions were highly 
represented in the DDD genes in the transcriptomics layer (Table S4). 
This suggests that epigenetic regulation of these functions is limited to a 
small number of genes needed for long-term adaptation. Furthermore, 
pathways observed only in the transcriptome include acute effects such 
as apoptosis and DNA damage response indicating a stress response that 
requires rapid engagement. Even at the sub-toxic concentrations used in 
the present study, rCNTs exposure is known to exert cellular stress, also 
observed here by the induction of apoptotic pathways, downregulation 
of cellular metabolism, and activation of DNA repair pathways (Kinaret 
et al., 2017a; Scala et al., 2018a; Srivastava et al., 2011). 

Furthermore, we identified nuclear factor kappa B (NF-κB) signaling 
in the center of the macrophage transcriptomic response to rCNTs. NF- 
κB transcription factors rapidly regulate a wide array of genes involved 
in immune functions and inflammation, and NF-κB signaling can be 
activated by various stimuli (Liu et al., 2017). The canonical NF-κB 
signaling pathway activation is associated to several proinflammatory 
cytokines and pattern recognition receptors (PRRs), such as Toll-like 
receptors (TLRs). Instead, the non-canonical pathway is generally acti-
vated through tumor necrosis factor (TNF) receptor superfamily mem-
bers (Liu et al., 2017; Sun, 2017). Mukherjee et al. recently suggested 
NF-κB signaling as a central regulator of transcriptional responses to 
single-walled carbon nanotubes (SWCNTs) via a direct interaction with 
TLRs (Mukherjee et al., 2018). Of note, while TLR pathways are 
consistently found to be enriched in response to MWCNTs exposure, 
including this study (Table S4), direct physical interaction is reported in 
literature only between SWCNTs and TLRs (Mozolewska et al., 2015; 
Mukherjee et al., 2018). Considering the bigger diameter of MWCNTs 
particles (up to 50 times larger than SWCNTs), the interaction between 
different sized and shaped CNTs and TLRs might differ. In contrast to the 
canonical NF-κB signaling induced by SWCNTs, our study highlights 
early activation of TNFR2 non-canonical NF-kB pathway (Table S4), 
suggesting distinct modes of NF-κB signaling activation between 
different types of CNTs. Furthermore, our analysis showed an early in-
duction of key genes of the non-canonical NF-κB signaling, including 

both subunits of the p52/RelB complex alongside several possible 
initiating molecules (e.g. CD40 and TNF), as well as the central signaling 
component of the non-canonical NF-κB pathway, MAP3K14 (Table S2) 
(Sun, 2017). 

3.6. Macrophage molecular adaptation to rCNTs comprises alterations 
recapitulating mechanisms leading to lung fibrosis 

Pulmonary fibrosis is one of the best characterized pathologies 
associated to CNTs exposures (Dong et al., 2015; Labib et al., 2016; 
Nikota et al., 2017; Sun et al., 2015). Although the development of 
pulmonary fibrosis is a complex process orchestrated by various cell 
types in the lung tissue, macrophages have a pivotal role in the initiation 
of the steps towards its development. While the complete set of 
MWCNTs-induced pathological alterations leading to fibrosis in the lung 
is still to be clarified, the early contribution of acute inflammation and 
ROS production has been already elucidated (Dong et al., 2015; Labib 
et al., 2016; Li et al., 2017). The increase of ROS production affects 
various cell types, and the inflammation promoting response in mac-
rophages, specifically through NF-κB signaling, guides the biological 
system towards a fibrogenic response (He et al., 2011). Indeed, our re-
sults also highlight NF-κB activation (cfr. Paragraph 3.5 and Table S4). 
This type of signaling from macrophages is essential for the development 
of fibrosis, as the molecules secreted by macrophages regulate the 
function of other cell types, namely fibroblasts, in the tissue. In addition 
to NF-κB signaling, other signaling pathways are also relevant. For 
instance, TGF-b signaling, AKT/mTOR signaling, and WNT signaling, 
whose role in fibrosis has been extensively reviewed elsewhere (He and 
Dai, 2015), play a key role in the pathogenesis of fibrosis. All of these 
signaling pathways were found significantly enriched in our results 
(Table S4), and some of the key genes involved in these signaling 
pathways are represented in Fig. 5. Furthermore, recent evidence sug-
gests that CNTs induce alternative macrophage activation both in vivo 
and in vitro (Dong and Ma, 2018; Meng et al., 2015; Kinaret et al., 2020). 
Mixed status of pro-inflammatory, M1-type and healing/regulatory M2- 
type macrophage activation has been associated to CNTs-induced 
fibrosis in vivo (Dong and Ma, 2018). Our observation on the induc-
tion of genes encoding for proinflammatory factors, such as IL-1β, CXCL- 
8, and TNF, suggest M1 activation, whereas the upregulation of profi-
brogenic mediators such as PDGFA, TGF-β2, VEGF-A, and CTGF together 
with anti-inflammatory IL-10, suggest the activation of M2- 
macrophages (Fig. 5, Table S2). The imbalanced combination of pro-
longed inflammation and persistent activation of M2-macrophages 
suggest pathogenesis of fibrosis (Dong and Ma, 2018; Braga et al., 
2015). Interestingly, a further comparison of the DDD genes with 
known, rCNT-induced genes associated to lung fibrosis in an in vivo 
murine model, resulted in 55 common genes (out of 138) (Nikota et al., 
2017). Altogether, these results suggest that our in vitro model of 
macrophage exposure is able to highlight relevant patterns of molecular 
alterations associated to the development of pulmonary fibrosis. 

The involvement of DNA methylation in the progression of pulmo-
nary fibrosis caused by MWCNTs has also been postulated (Brown et al., 
2016). Indeed, we observed an early transcriptional induction and late 
promoter hypomethylation of the pulmonary fibrosis marker MMP-7 as 
well as the already mentioned CXCL-8, a chemokine associated with 
chronic inflammatory diseases and fibrosis in the lung (Rosas et al., 
2008; Russo et al., 2014). These molecular changes suggest persistent 
expression of these genes through reduced gene promoter methylation. 
Our results also highlight DDD genes and gene promoters involved in 
events known to contribute to the development of fibrosis, such as 
cellular response to stress, alteration of calcium homeostasis, and pro-
tein metabolism in both molecular layers (Fig. 4, Table S4) (Ryan et al., 
2014). Moreover, pathways found enriched only in the methylome were 
related to fibroblast growth factor receptor (FGFR) signaling (Table S4), 
further suggesting the role of DNA methylation in the macrophage 
response leading towards fibrosis (Inoue et al., 2002). 
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We have previously shown the potential of in vitro strategies coupled 
with advanced computational methods in informing on relevant out-
comes of in vivo exposures (Kinaret et al., 2017a). In this study, we 
further utilized advanced toxicogenomics data modelling to investigate 
the complex mechanisms of adaptation in response to rCNTs exposure. 
We used PMA-differentiated THP-1 cells and a combination of multiple 
doses and time points. With this relatively simple model, we were able to 
highlight the activation of several well-known fibrosis-related genes and 
specific activation patterns suggesting potential long-term effects pre-
viously described in vivo. However, macrophages are a diverse group of 
cells, and differences between phenotypes and polarization status 
cannot be neglected (Kinaret et al., 2020). Regulatory bodies and the 
scientific community are currently putting significant effort to replace 
animal experiments with as short as possible in vitro testing with pre-
dictive power. This study brings valuable insights into obtaining evi-
dence of potential long-term consequences from simple in vitro models 
when combined with robust and innovative computational strategies 
(Kinaret et al., 2017a). While our findings concerning the transcriptomic 
alterations are in line with multiple reports of CNTs effects on the gene 
expression, there is less data currently available concerning their ability 
to alter the DNA methylation. Moreover, the effects of ENMs exposures 
on other epigenetic mechanisms, including histone modifications, 
chromosome remodeling, and non-coding RNAs, are even less charac-
terized (Gedda et al., 2019; Yu et al., 2020). Exploring the outcomes of 
ENMs exposures on these mechanisms can deepen the understanding of 
their toxicity. The approach used in the present study offers a valuable 
steppingstone for future integrated studies investigating other molecular 
alterations and the effects of different exposures. 

While modelling the long-term effects from short-term in vitro ex-
posures is not a simple task, our multi-omics approach to dynamic dose- 
dependent alterations is able to highlight macrophage responses both at 
the level of the transcriptome and methylome, and is able to suggest 
potential long-term effects already after a 72-h in vitro exposure set-up. 
These findings support the use of combined in vitro model systems and 
toxicogenomics approaches, simultaneously promoting the develop-
ment of faster, cheaper, and more ethical testing strategies for ENMs. 

4. Conclusions 

Here, we report alteration of multiple genes and pathways with a key 
role in macrophage activation in response to rCNTs exposure. Our 
findings show distinct kinetics of adaptation in the transcriptome and 
promoter methylation. While macrophages respond at 24 h of exposure 
by mainly altering gene expression, as the exposure continues through 
72 h, epigenetic mechanisms also have a role in macrophage adaptation. 
Our results convincingly suggest that our toxicogenomic approach of in 
vitro models informs on relevant pathogenic events observed in vivo. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.impact.2020.100274. 
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adverse outcome pathways (aOPs) are emerging as a central framework in modern toxicology and 
other fields in biomedicine. They serve as an extension of pathway-based concepts by depicting 
biological mechanisms as causally linked sequences of key events (KEs) from a molecular initiating event 
(MIE) to an adverse outcome. AOps guide the use and development of new approach methodologies 
(NAMs) aimed at reducing animal experimentation. While AOps model the systemic mechanisms at 
various levels of biological organisation, toxicogenomics provides the means to study the molecular 
mechanisms of chemical exposures. systematic integration of these two concepts would improve the 
application of AOp-based knowledge while also supporting the interpretation of complex omics data. 
Hence, we established this link through rigorous curation of molecular annotations for the KEs of 
human relevant AOps. We further expanded and consolidated the annotations of the biological context 
of KEs. These curated annotations pave the way to embed AOps in molecular data interpretation, 
facilitating the emergence of new knowledge in biomedicine.

Background & Summary
Adverse outcome pathways (AOPs) are multi-scale models of biological mechanisms connecting molecular 
interactions between chemical exposures and biological systems (molecular initiating event, MIE) with adverse 
outcomes (AO) through key events (KE)1. KEs are measurable events described at increasing levels of biological 
complexity and connected through key event relationships (KER) that provide context and justification for the 
connection between the KEs. The AOP framework is central in modern toxicology, where efforts of shifting 
towards mechanistic models and alternatives to animal experimentation are taking place. AOPs can guide the 
development of new approach methodologies (NAMs) which include in vitro tests, targeted assays, and prioriti-
sation strategies, and aim to fill the gaps in decision making in chemical risk assessment while also reducing the 
use of animal experimentation2. Similarly, AOPs can be applied to depict mechanisms of disease progression and 
other biological events3,4. AOPs not only provide a convenient framework to represent and interpret biology, but 
they also help to identify knowledge gaps and support the implementation of novel applications in biomedical 
research.

While AOPs model the cascade of events from a MIE to an AO at the level of tissues, organs, individuals 
or even populations, molecular mechanisms of chemical exposures can be investigated through toxicogenom-
ics5–7. Toxicogenomics provides a complementary approach to the traditional observation of phenotypic effects 
of chemical exposures by focusing on the mechanism of action (MOA) of chemicals using omics technolo-
gies. This further enables an array of data-driven and computational approaches, including chemical grouping, 
read-across, and predictive models, and helps to explain why and how an exposure induces its effects8. This way, 
toxicogenomics can also inform the development of novel AOPs and support the application of AOP-based 
knowledge in the development of NAMs9–14. While to date the link between patterns of molecular alteration and 
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AOPs has been investigated at the level of individual or selected AOPs13–16, a systematic framework to integrate 
these two concepts is missing. The primary challenge to this is the lack of thorough and robust annotation that 
would link biological events to meaningful sets of molecules (genes/proteins/etc.) whose alteration could be 
monitored through omics technologies. Establishing this link would enable straightforward interpretation of the 
complex patterns of molecular alteration in a mechanistic way.

AOP-related information is primarily stored in the AOP-Wiki repository (aopwiki.org). Varying levels of 
annotations (ontologies, taxonomic and life stage applicability, etc.) and metadata are provided to support the 
use of AOPs. The existing annotations, however, are only suitable to provide general context and associations 
between concepts, instead of allowing the modelling of the KEs through specific sets of genes. Furthermore, 
there are inconsistencies in the level of specificity and coverage of the annotations. Previous efforts of annotating 
KEs through computational approaches have been shown to be successful but they remained at the level of the-
oretical associations without the intention of modelling the KE-gene relationships17,18.

Here, we present a comprehensive annotation of KEs relevant for human health to sets of genes. We inte-
grated techniques of natural language processing (NLP) and manual curation to obtain robust and accurate 
associations. An initial version of this effort was used in a recent study to build AOP-based NAMs, including 
experimentally validated in vitro biomarkers for pulmonary fibrosis19. Furthermore, here we expanded the cura-
tion to fill gaps in the biological system annotations provided in the AOP-Wiki for the KEs. This helps to refine 
the AOPs and supports the reuse of existing KEs in new AOPs, which guides the identification of new links by 
enhancing the AOP network14,19–23. It can further improve applications combining AOPs with physiologically 
based pharmacokinetic (PBPK) modelling through the addition of relevant cell types, tissues, and organs. The 
overall strategy of the study is presented in Fig. 1.

Methods
Data structure and integration. The previously established knowledge graph, the Unified Knowledge 
Space (UKS)19,24–26 was used as the foundation of the study. The knowledge graph is managed in Neo4j v. 4 
(https://neo4j.com/), and the full list of data sources relevant for the present study is listed in Table 1 together 
with their data retrieval dates, versions, and references.

Pathways, gene ontology terms (GO), and phenotypes (together referred to as the gene sets) were intro-
duced into the UKS as individual nodes with each term corresponding to a single node. Genes associated 

Fig. 1 Study overview. Data from the AOP-Wiki was embedded into a previously established knowledge 
graph, the Unified Knowledge Space (UKS)24–26. KEs of human relevant AOPs were annotated to pathways, 
gene ontology terms, phenotypes, and/or individual genes through natural language processing techniques 
and manual curation. Furthermore, the existing biological system (organ, tissue, cell type) annotations were 
amended. The knowledge graph structure was then used to associate genes mapped to the annotated terms to 
the KEs, allowing KEs to be modelled using sets of genes.

Data type Resource Link
Retrieval 
date Version/Release

Pathways

KEGG34 https://www.genome.jp/kegg/pathway.html 10/14/2021 Release 100

WikiPathways33 https://www.wikipathways.org/ 10/14/2021 Version 20211010

Reactome35 https://reactome.org/ 10/9/2021 Version 78

Phenotypes
Human Phenotype 
Ontology37 https://hpo.jax.org/app/ 10/14/2021 Release 2021-10-10

KEGG disease34 https://www.genome.jp/kegg/disease/ 10/14/2021 Release 100

Gene ontologies Gene Ontology36,40 http://geneontology.org/ 10/7/2021 Release 2021-09-01

Genes, gene 
products Ensembl41 https://www.ensembl.org/index.html 10/31/2019 Release 98

AOPs Aop-Wiki https://aopwiki.org/aops.json 10/26/2022 Release 2.5

KEs, KE level, 
biological system Aop-Wiki https://aopwiki.org/events.json 10/26/2022 Release 2.5

KERs Aop-Wiki https://aopwiki.org/downloads/aop_ke_ker.tsv 10/26/2022 Release 2.5

Table 1. Data types and sources.
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with pathways and phenotypes were linked to them based on the data from each corresponding database, and 
the connections between gene ontologies (biological process, molecular function, cellular component) and 
genes were obtained from GO and Panther (Table 1). All genes were expressed in Ensembl gene identifiers for 
improved interoperability. AOP-related data were downloaded from the AOP-Wiki through the available API or 
through separate download files (Table 1) originally in November 2020 and updated in August 2022. AOPs were 
introduced into the UKS as individual nodes with connections to their associated KEs. Given the same KE can 
exist under multiple AOPs with distinct KERs, “Specific Key Event” (KE in the context of a specific AOP) nodes 
were added as descendant nodes of KEs. Labels such as “Molecular Initiating Event” and “Adverse Outcome” 
were assigned to the Specific Key Event nodes where applicable.

Annotation of key events to gene sets. KEs of AOPs relevant for human health risk assessment were 
annotated to gene sets through a multi-step procedure that combines NLP techniques with manual curation. The 
outline of the process is summarised in Fig. 2. An AOP was deemed relevant for human health if the reported tax-
onomic applicability included one or more of the following: Vertebrata, Mammalia, Catarrhini, Rodentia, Homo 
sapiens, Rattus Norvegicus, Mus musculus. The rodent species were included due to their important role as a 
model organism in human health risk assessment. AOPs with missing information of taxonomic applicability 
were manually evaluated based on the metadata provided in the corresponding AOP page and included if the 
pathway was biologically plausible for the selected organisms.

Initial matching and match prioritisation between KEs and pathways, phenotypes, and/or GO terms was 
performed using NLP techniques. The pipeline was established in Python version 3.7 using the packages nltk27 
version 3.6.7 and pandas28,29 version 1.3.5. The KE descriptions and gene set names as expressed in the MSigDB30 
(collections H, C2 and C5) were converted to lower case and punctuations were removed. Further text process-
ing included the replacement of concepts consisting of multiple words with one-word concepts using a custom 
dictionary m. For instance, word pair “positive regulation” was replaced by “upregulation”. The preprocessed text 
was then split into tokens to be processed individually using the word_tokenize function. Tokens corresponding 
to common words that could lead to spurious matches (e.g., articles and prepositions), were detected and dis-
carded using the list stop words provided by nltk. Finally, different declinations of the same concepts were 
mapped to the root terms using the WordNetLemmatizer available in nltk that makes use of WordNet’s morpho-
logical modifications. This included the conversion of plurals into singular forms, different verb tenses into the 
basic form, as well as the standardisation of different spelling formats (e.g., “pparα” and “pparalpha” map both 
to “ppar-alpha”). As a result, each KE description and gene set name was presented as a set of tokens, e.g. 
{“upregulation”, “ppar-alpha”}. Considering that the tokens appear in the KE descriptions and gene set names in 
varying frequencies, the informative value of each token is not equal. Rare tokens were considered more inform-
ative than the common tokens, hence, each token was weighted by its inverse document frequency (IDF)31, 
idf(t) = log(N/d), where N is the total number of gene sets considered and d is the number of gene sets that 
contain the token t. This means, that the weight of the token is inversely proportional to the number of gene set 
names and descriptions containing the token. These weights were then applied in the calculation of the weighted 
Jaccard Index (JIW)32 between the sets of tokens x and y of each KE and gene set and used for the matching, 

= ∑

∑
JI x y( , )w

x y

x y

min( , )

max( , )
i i i

i i i
. Hence, rare tokens shared by KE descriptions and gene set names leads to a higher 

matching score than common tokens, making the results more specific. The matches were organised based on 
the JIW in descending order, and the top five matches were retained. Including up to five annotations for each 
KE allowed improved specificity and contextualisation when a single gene set would not result in a comprehen-
sive match while also keeping the number of annotations manageable.

The prioritised matches were then manually evaluated and consolidated. This included the individual evalu-
ation of all the matches for their accuracy and correct context, removal of irrelevant matches, and the refinement 
and gap filling. If the computationally prioritised matches were not biologically relevant or in the correct context, 
relevant gene sets were manually searched and added from the selected databases (WikiPathways33, KEGG34, 
Reactome35, GO36, Human Phenotype Ontology (HPO)37). At this stage, NLP-based matches derived from any 

Fig. 2 Annotation strategy applied to link gene sets to KEs. Input to the pipeline is marked as text without an 
outline, process is outlined with a rectangular box, and output is marked by a circular outline. Orange outline 
indicates steps included in the natural language processing step, while blue outline marks manual curation.
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other database than the ones listed here were discarded due to limited representation. Given the goal of linking 
toxicogenomics data to the KEs/AOPs, the gene sets for KEs describing the alteration of an individual gene or 
gene product were linked to the main functions of the molecule (e.g., the activation of a specific gene or protein 
to the signalling pathway it drives instead of the individual gene), as such a signal is more likely to be captured 
from omics data than the specific induction of the gene (product) itself. However, if no distinct signalling path-
ways or key functions could be identified at the level of the gene sets, the KE was linked to the specific gene 
itself. If no biologically relevant matches could be identified, the KE remained unannotated. The hierarchical 
structure of the GO terms was exploited to add specificity to the gene sets by adding the relevant descendants for 
parent terms when applicable. For example, KE 1457 titled “Induction, Epithelial Mesenchymal Transition” was 
assigned the following GO terms: GO:0001837 - Epithelial to mesenchymal transition, GO:0010717 - Regulation 
of epithelial to mesenchymal transition, and GO:0010718 - Positive regulation of epithelial to mesenchymal 
transition.

The gene set names were mapped to the gene set identifiers and the results of the curation were integrated 
into the UKS as relationships between the KE nodes and gene set nodes. The level of the annotation (up to five 
annotations were provided to each KE) was included as an attribute of the edge, allowing future filtering based 
on the level. After establishing the links between KEs and gene sets, each KE can be represented as the union of 
all the genes associated to its matched pathways, GO terms and/or phenotypes. For this, human genes associated 
to each term were retrieved through the UKS.

Refinement of the biological system annotations. As part of the annotations in the AOP-Wiki, the 
level (molecular, cell, tissue, organ, individual, population) of the KEs is provided. Similarly, KEs are associated 
with a biological system that expresses the biological “location” of the KE. However, the provided locations may 
be limited to the context of the AOP in which the KE was first described. This can result in the duplication of KEs 
(i.e., the same event is added to the AOP-Wiki as a distinct KE resulting in the loss of the potential connection in 
a complete AOP network). Furthermore, this data is fully missing for some of the KEs. Completion of this infor-
mation could improve network-based approaches to AOP research and the development of new AOPs. Hence, 
the existing biological system annotations were manually evaluated, refined, and extended to include plausible 
biological systems beyond the originally defined ones. Furthermore, gaps in the annotation were addressed and 
the already existing cell, tissue, and organ terms were amended with a system level annotation (e.g., respiratory 
system, endocrine system, etc.) and a cell component annotation, where applicable. For example, if a KE was 
annotated to a cell term “hepatocyte” in the AOP-Wiki, this annotation was supplemented with an organ/tissue 
term annotation “liver” and system terms “digestive system, exocrine system, endocrine system”.

The annotations were assigned based on the primary location or context of the KE, as suggested in the 
AOP-Wiki. However, in cases where an organ or cell term was assigned in the AOP-Wiki, but other organs/
tissues or cells were also determined as applicable, the original terms were replaced or amended with other 
possible organs, tissues, or cell types, with the options separated by “/”. The KE descriptions (names) were used 
as the primary source of annotation, followed by the metadata provided for the KEs in AOP-Wiki. If the bio-
logical system was not clear based on the provided descriptions, a literature search was performed. For KEs at 
the molecular level (e.g., changes in the expression of individual genes/proteins), Human Protein Atlas38 was 
used to determine relevant cell types and tissues. If the process was applicable for most or all cell types, “eukar-
yotic cell” was assigned as cell annotation, and the system and tissue/organ annotations were left unassigned 
to indicate the applicability of a range of tissues and organs. Furthermore, “eukaryotic cell” was introduced as 
a secondary annotation in cases, where the KE was specified for a distinct cell type or organ/tissue but would 
be biologically plausible in other cells, tissues, and systems as well. The secondary annotation was established 
to distinguish between any cells of a specific system, organ or tissue, and a generic eukaryotic cell. Finally, the 
systems, organs, tissues, cell types, and cell components were collected to a unified dictionary provided as part 
of the data collection.

Data Records
Data overview. The annotated data collection covers 231 AOPs with a total of 997 unique KEs that form 1636 
AOP-KE pairs (specific KEs). Of these, 969 unique KEs (1,596 Specific Key Events) were successfully annotated 
to sets of genes. The number of gene sets associated to KEs ranges from 0 to 5 with a median of 3. Majority of the 
gene sets represent GO biological processes (total 1,532 annotations), followed by GO molecular function (273), 
Human Phenotype Ontology (263), Reactome pathways (195), WikiPathways (167), KEGG pathways (154), indi-
vidual genes (89), and GO cellular components (83). The numbers in brackets correspond to total annotations of 
each type. The number of KEs at each level of biological organisation together with the proportions of annotation 
sources by KE level are shown in Fig. 3a. Total number of human-relevant terms present in each data source at 
the time of data retrieval (information available in Table 1) and their associated genes are summarised in Table 2.

Each KE is represented as the union of genes linked to its associated gene sets. For instance, Event:1493 
“Increased Pro-inflammatory mediators” is represented as all the genes associated to its annotations 
“GO:0002532 – Production of molecular mediator involved in inflammatory response” and “GO:0006954 – 
Inflammatory response”. Similarly, each AOP can be represented by the genes linked to its KEs. The number 
of genes in annotated KEs range from 1 to 6,047 with a median of 82, while the number of genes linked to the 
AOPs range between 15 and 6,381, (median of 804). In total, the annotations cover 16,825 genes with varying 
levels of specificity for KEs, i.e., some genes are associated with a large number of distinct KEs, while others are 
specific to individual KEs. This measure of KE specificity is an important factor in applications focused on the 
identification of KE specific biomarkers or reporter genes, for example. The distribution of the number of KEs 
per gene is presented in Fig. 3b.
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The biological system annotations were consolidated for all KEs available in the collection. In total, they 
cover 18 biological systems, 86 specific organs and tissues, and 70 cell types (Fig. 3c,d). Furthermore, 7 distinct 
cell components were defined. The annotations are provided at varying levels of biological complexity following 
the specification provided in the AOP-Wiki and the information in the KE description.

Data files and formats. The data39 is available on Zenodo at https://doi.org/10.5281/zenodo.7980953. The 
provided files as summarised in Table 3.

technical Validation
While the validity of the gene sets as models of KEs cannot be measures objectively at the scale of this study, we 
evaluated the consistency and robustness of the KE-gene set annotations by grouping together KEs with Jaccard 
similarity coefficient (JI) >0.90. In detail, JI was calculated between all pairs of KEs, and transformed into a 
distance matrix used for clustering. The clustering performed using the hclust function from R package stats 
with the complete method, and the optimal number of clusters was defined so that intra cluster JI was >90. As a 
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Fig. 3 Characteristics of the KE annotation. (a) Stacked bar plot representing the proportion of annotation 
types by KE level. Total height of the bar reflects the number of KEs in each level of biological organisation. 
Dark brown (no annotation) stack corresponds to the number of KEs with no associated gene sets, while the 
different annotation types are represented proportionally to their use in each level. HPO = Human Phenotype 
Ontology, WP = WikiPathways, GO_BP = Gene Ontology Biological Process, GO_CC = Gene Ontology 
Cellular Component, GO_MF = Gene Ontology Molecular Function. (b) The density distribution of the 
number of KEs associated with each gene. Median of the distribution is indicated with a dashed brown line and 
the rug below x-axis is used to support the interpretation of the distribution. (c) Number of different tissues/
organs (turquoise) and cell types (dark green) under each system-level annotation. (d) Total number of KEs by 
system level annotation. The system “other” includes KEs assigned a cell type applicable for a range of tissues 
and/or systems, and those for which no system could be defined.
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result, the KEs grouped into 731 clusters ranging in size from one to 19 KEs, with 128 clusters having at least two 
(Figure S1). We evaluated the clusters with six or more KEs (total six clusters). The largest cluster was character-
ised by KEs related to different types of cancer (19 KEs). These KEs were annotated to general pathways in cancer 
due to the lack of exact gene sets specific for the cancer type, while more specific annotations were available for 
KEs such as “Liver Cancer” (Event:1395) and “Breast Cancer” (Event:1193), leaving them outside the cluster. The 
second largest cluster (10 KEs) was formed by all cytotoxicity related KEs, followed by KEs regarding hormone 
release from the hypothalamus or the anterior pituitary gland (8 KEs), and inflammation (8 KEs). Inflammatory 
events are covered by a broad range of KEs ranging from different wordings of increased inflammation to more 
specific inflammatory events, such as “Increased Pro-inflammatory mediators” (Event:1491). The inflammation 
cluster was formed by the more generic processes, while the specialised KEs either formed a smaller cluster or 
stood alone. A fertility cluster (8 KEs) was formed by KEs describing decreased fertility and reduced repro-
ductive success. Finally, cell proliferation formed a cluster of 6 KEs. A full list of the clusters is available in 
Supplementary Table 1 while the JI calculated between each pair of KEs is reported in Supplementary Table 2.

These results reflect the consistency and robustness of the annotations, while also highlighting the differences 
in ontologies and pathway curations for distinct biological processes. For instance, cancers like breast cancer 
and hepatocellular carcinoma are well covered and hence KEs of these processes could be assigned specialised 
gene sets, while liposarcoma and fibrosarcoma could only be matched with more generic pathways in cancer. As 
the curated pathways and gene ontologies evolve in specificity, the biological context annotations can provide a 
meaningful tool for refining the KE associated gene sets.

Usage Notes
The KE-to-gene set annotations presented in this manuscript result from an integrated approach, where compu-
tational prioritisation was performed using techniques of natural language processing, and further consolidated 
by manual curation to ensure appropriate context for the matches. Although this allows the human based assess-
ment of each annotation, it is prone to potential interpretation errors and differences in views of priority and 
suitability of the matches. Here, the goal was to provide a comprehensive link between the AOP framework and 
omics data, hence the gene sets associated to KEs and AOPs should accurately reflect each process. While these 
gene sets do not replace the individual assays targeted for measuring individual KEs, they allow the identifica-
tion of potential KEs and AOPs from complex molecular data, opening doors to various data-driven applications 

Data source
Terms 
included

Total 
terms

Genes 
included

Total 
genes

GO biological 
process 746 12380 8817 20411

GO molecular 
function 158 4434 5252 20878

HPO 171 9946 4233 5209

Reactome 108 2496 6894 12355

WikiPathways 69 701 3108 8808

KEGG 61 334 4097 9454

GO cellular 
component 49 1754 8434 21809

Table 2. Number of unique terms and genes used from each data source together with the total amount of 
human terms and genes present in each source at the time of data retrieval. The number of genes correspond to 
unique Ensembl gene identifiers.

Data type Description File structure File name

KE to gene set 
annotation

KE to gene set annotations. Annotations provided by specific 
KE (AOP-KE pairs).

A spreadsheet file with two sheets, one with annotation provided 
as the gene set names, one with identifiers. Both sheets contain 
columns AOP, KE, Specific_KE, Description (KE name), and 
Match_1 through Match_5.

Gene_set_annotations.xlsx

KE to gene 
annotation

Direct KE to gene associations. KE associated genes are 
expressed as the union of all the genes mapped to the gene sets 
annotated to each KE.

File provided as a tab-separated text file. File contains two 
columns, one for the KEs and one for the genes. Genes expressed 
as Ensembl identifiers.

Genes_to_KEs.txt

Gene set 
identifier to 
name mapping

Mapping between gene set identifiers and the names used for 
matching KE descriptions to gene sets. File may be needed if 
genes are obtained from external sources.

File provided as a tab-separated text file. File contains two 
columns: term_name and exact_source. Name_to_ID_mapping.txt

KE to biological 
system 
annotation

Annotation of KEs to relevant biological systems at the level of 
the system, organ/tissue, cell, and cell component.

A spreadsheet with a column for KE name, id, and level, as well 
as distinct column for each annotation by level, including the 
secondary annotations, and indication of duplication. Equal 
annotations are separated by “/”.

Biological_system_
annotations.xlsx

Dictionary A complete listing of all the systems, tissues/organs, cell types, 
and cell components used in the biological context annotations.

A spreadsheet with five sheets. Complete dictionary covers all 
combinations of system, organ/tissue, and cell type annotations. 
Individual dictionaries provide a complete list of systems, 
organs/tissues, cell types, and cell components.

Dictionary.xlsx

Table 3. Description of files provided as part of the data set.
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to AOP development and use. Similarly, the biological context annotations are intended to support the reuse of 
KEs, and to guide the refinement of the AOP network and the discovery of hidden links between KEs. Although 
they were curated to accurately reflect the relevant biological locations for the KEs, they may not always include 
all possible options or exclude those that are not feasible. In practice, the annotations can be used to filter the 
data and/or the AOP network to only include KEs relevant to a biological system of interest or to merge redun-
dant nodes. This may further result in connections between KEs that were previously not obvious.

These applications were supported by the indication of the gene set similarity as defined by the JI matrix 
provided (Supplementary Table 2). We previously observed several reasons behind identical gene sets between 
distinct KEs (JI = 1)19. Namely, these include 1) truly duplicated KEs; 2) the same event in different biological 
systems; 3) subsequent or related KEs mapped to the same terms due to inadequate specificity; and 4) oppo-
site regulation of the same biological event (e.g., increased vs. decreased signaling), where the last case is also 
due to the lack of specificity in the available gene sets. We believe the consideration of duplicated KEs to be 
case-dependent. Certain applications may benefit from an approximate grouping based on the similarity of the 
associated gene sets (e.g., finding functionally related KEs), while others may rely on more robust and accurate 
refinement (e.g., merging nodes in an AOP network). While the users of these data are encouraged to find an 
approach that suits their application, the most robust set of duplicates based on semantics, gene set similarity, 
and the assigned biological context are identified and reported in Biological_system_annotations.xlsx file.

It is also worth noting that AOPs are under constant development, and individual entries are at different 
phases of completion. Only a handful of the AOPs available in the database are finalised and endorsed (aopwiki.
org). This means that the majority of the AOPs and KEs included in this collection are subject to changes. Hence, 
we suggest the users to refer to the AOP-Wiki (aopwiki.org) for up-to-date information of KE relationships, 
KE-to-AOP mappings, and any further information that may support the use of this data.

All KE-gene annotations are provided as human gene sets. However, the selected taxonomies also include 
other species that are often used as model organisms in human health risk assessment. It is worth noting that 
some of the processes may not be directly applicable to humans. The exact species and the strength of evidence 
for taxonomic applicability for each AOP can be obtained from the AOP-Wiki. Additionally, the genes associ-
ated with the gene sets may differ from those reported in this study depending on the resource used to retrieve 
the genes. This may be due to the selected gene identifiers, updates in the original databases, as well as differ-
ences in the interpretation of hierarchical formats present in the databases (e.g., Gene Ontology). As an example, 
the GO gene sets used in this study are based on the direct annotations between GO terms and genes, while 
other resources may include genes annotated to all descendants of the term as well.

Code availability
Custom code and data used in the NLP-based prioritisation of the gene set annotations is available in the data 
repository39 on Zenodo at https://doi.org/10.5281/zenodo.7980953 (file aop_mapping_nlp.tar.gz).
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Mechanistic toxicology provides a powerful approach to inform on the safety
of chemicals and the development of safe-by-design compounds. Although
toxicogenomics supports mechanistic evaluation of chemical exposures, its
implementation into the regulatory framework is hindered by uncertainties in
the analysis and interpretation of such data. The use of mechanistic evidence
through the adverse outcome pathway (AOP) concept is promoted for the
development of new approach methodologies (NAMs) that can reduce animal
experimentation. However, to unleash the full potential of AOPs and build
confidence into toxicogenomics, robust associations between AOPs and
patterns of molecular alteration need to be established. Systematic curation of
molecular events to AOPs will create the much-needed link between
toxicogenomics and systemic mechanisms depicted by the AOPs. This, in
turn, will introduce novel ways of benefitting from the AOPs, including
predictive models and targeted assays, while also reducing the need for
multiple testing strategies. Hence, a multi-step strategy to annotate AOPs is
developed, and the resulting associations are applied to successfully highlight
relevant adverse outcomes for chemical exposures with strong in vitro and in
vivo convergence, supporting chemical grouping and other data-driven
approaches. Finally, a panel of AOP-derived in vitro biomarkers for pulmonary
fibrosis (PF) is identified and experimentally validated.
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1. Introduction

Mechanistic aspects of chemical exposures
have been long exploited in the context of
academic research, resulting in the emer-
gence of toxicogenomics and systems toxi-
cology as independent fields.[1,2] Although
the mechanistic insight gained through the
technologies employed in academia has
been valued as supporting evidence in the
regulatory setting, its incorporation into
the regulatory framework is to date hin-
dered by concerns related to the robust-
ness and reproducibility of such data and its
analysis.[3] At the same time, the growing
need for faster, cheaper, and more ethical
approaches for chemical safety assessment
have made mechanistic toxicology central
for clarifying aspects important to regula-
tory decision making. Furthermore, uncov-
ering exposure related mechanistic prop-
erties is emerging as a fundamental ap-
proach for the design of new drugs and
chemicals.[4,5] Hence, multiple high-end re-
search initiatives are underway to drive
the shift from traditional animal-based
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assessment of apical toxicity endpoints toward in vitro and in sil-
ico approaches supported by mechanistic evidence.[6–8]

Adverse outcome pathways (AOP) emerged as models to or-
ganize biological mechanisms into causally linked sequences of
multi-scale events to support chemical risk assessment.[9] AOPs
have since expanded beyond the limits of toxicology, showing
their applicability in organizing mechanisms of disease progres-
sion and adverse health outcomes,[10,11] and could even be ap-
plied to assess beneficial effects of therapies. The mechanisms
depicted by AOPs comprise a sequence of events that progress
from the molecular initiating event (MIE) toward an adverse out-
come (AO) through intermediate steps, key events (KEs), with bi-
ological complexity increasing as the AOP progresses. Individual
KEs are connected by key event relationships (KER) that verbally
explain the causal link between the events and provide context
for the pathway.
The AOP concept quickly attracted attention due to its poten-

tial in tackling one of the major challenges in the shift away from
traditional toxicology: deciphering systemic and long-term out-
comes of chemical exposures without the use of animal exper-
iments. While significant efforts still need to be made toward
this goal, AOPs encompass themeans to systematically guide the
integration of in vitro-based evidence into the risk assessment
framework.[12] AOPs provide the grounds for various predictive
approaches, read-across, and the development of targeted assays
and new approach methodologies (NAMs), as also suggested by
regulatory agencies and international organizations, such as the
OECD.[8] Furthermore, the construction of AOPs can help iden-
tify gaps in knowledge and guide resources toward mechanisms
in need of further investigation, or alternatively, reveal connec-
tions that have not been previously characterized.[13]

Concurrently with the development of the AOP framework,
the role of omics data in elucidating biomarkers and mecha-
nisms of action (MOA) of chemical exposures and diseases has
become more prominent.[14–18] Omics data have been used to
support the development of AOPs, especially through the iden-
tification of molecular targets and mechanisms.[19–23] However,
full exploitation of omics-based evidence in the context of AOPs
is hindered by the complication of linkingmolecular data to com-
plex biological events, affecting both the development and the ap-
plication of AOPs. Furthermore, while the value of omics data
in answering questions of regulatory importance is recognized,
the complexity of its interpretation and the lack of standardiza-
tion in analysis and reporting have hampered widespread reg-
ulatory acceptance of omics-based evidence.[24] Bypassing these
challenges could broaden the application of AOPs, support the
interpretation of complex omics data, and further aid in the de-
velopment of the concept toward quantitative models and as-
says. While molecular assays based on arbitrarily selected re-
porter genes have been proposed (e.g., ToxCast assays), there is
an urgent need to develop new data-driven unbiased molecular
assays for reliable and efficient mechanistic safety assessment of
chemicals.
Here we hypothesized that rigorous curation of molecular

events associated with AOPs could facilitate the implementation
of omics-based evidence to 1) guide the interpretation of omics
data readout, 2) support the development of new AOPs, 3) iden-
tify and fill gaps in knowledge, and 4) transfer AOP-based knowl-
edge into robust assays to support chemical safety assessment.

Well-curated gene ontologies, pathways, and biological pro-
cesses are used to interpret omics results and their translation
into biologically relevant information. While some KEs can be
easily crosslinked with such terms and their associated genes, the
annotation of complex KEs taking place at a higher level of biolog-
ical organization (e.g., at the tissue- or organism-level) is a more
demanding task. This requires knowledge regarding ontologies
and the biological events themselves. For instance, generic anno-
tations are helpful for categorizing KEs, but without the intention
of modeling KEs using the associated gene sets, they will likely
not reach the level of granularity required for such a task. This
is currently reflected in the annotations provided in the AOP-
Wiki repository (aopwiki.org). The annotation of KEs to selected
ontologies is included as an option in AOP-Wiki. However, the
coverage of the annotations is currently low and has not been in-
tended for modeling the KEs using the gene sets associated with
their annotations.
Previous efforts to curate external annotation have shown the

potential of the approach.[25,26] However, these have either re-
mained at the level of abstract associations or focused on indi-
vidual examples.[27,28] Hence, systematic, fit-for-purpose, and up-
to-date annotation linking KEs to curated gene sets has not yet
been established. To this end, we applied an integrated strategy
for defining gene-KE-AOP associations through systematic cu-
ration. We show the applicability of our strategy for evaluating
potential AOs of chemical exposures, and for the identification
of AOP-driven biomarkers that can inform the development of
target assays and novel approaches to chemical hazard character-
ization.

2. Results and Discussion

We developed an integrated approach to systematically associate
curated gene sets to the KEs and AOPs. Our approach combines
natural language processing (NLP) techniques with manual cu-
ration to link relevant biological processes and pathways, as well
as their associated genes, to KEs of AOPs relevant for human
health risk assessment. The resulting gene-KE-AOP connections
enable the modeling of KEs and AOPs through gene-level data,
which further introduces novel ways to benefit from the AOP
concept. We applied this approach to generate an AOP finger-
print for a known profibrotic exposure in vivo and in vitro and
finally combined the annotation to a framework for prioritizing
KE- and AOP-associated genes to guide the discovery of biomark-
ers and reporter genes. The complete approach described in the
following sections is summarized in Figure 1.

2.1. The Majority of KEs can be Successfully Annotated to
Curated Gene Sets

At the time of retrieving the data from the AOP-Wiki repository
(November 2020), a total of 289 AOPs and 1131 distinct KEs were
identified. However, after eliminating the AOPs for which tax-
onomic applicability was either not available nor in the scope
of our investigation, 176 AOPs and 856 unique KEs remained,
forming a total of 1245 unique AOP-KE pairs (specific KEs). Al-
though the AOP-Wiki houses selected annotations for some of
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Figure 1. Overall scheme of the study. Established gene sets were annotated to KEs of the AOPs relevant for human health risk assessment. The
resulting gene sets were then used to model the KEs. The validity of the annotation was evaluated using gene signatures of exposures with known
adverse outcomes. Finally, we combined the approach with a gene prioritization framework resulting in the identification of AOP-driven biomarkers for
pulmonary fibrosis.

Figure 2. Descriptive analysis of the KE annotation. A) Bar plot describing the number of annotated terms per KEs. B) Pie chart expressing the proportions
of different annotation types. C) Density distribution of the number of KEs each gene is annotated to.

the KEs, majority of them were considered not to be specific
enough for our purpose (i.e., KEs describing the dysregulation of
a specific gene annotated to terms such as “gene expression”). Ad-
ditionally, as the existing annotations only cover a part of the KEs,
we decided to consistently curate the annotation of all KEs. As a
result, 799 unique KEs mapped to 175 AOPs received a curated
annotation. The KEs were treated as individual instances, hence
the same KE mapped to multiple AOPs was always annotated to

the same term(s). A summary of the number of terms annotated
to the KEs is presented in Figure 2A along with the proportions of
the different term sources (Figure 2B). GO biological processes
(GO_BP) represent most of the mapped annotations, followed by
GO molecular functions (GO_MF) and human phenotype ontol-
ogy (HPO). Since up to five annotations were provided for the
KEs, the final gene sets used from herein comprise the union
of the genes mapped to each annotated term. This structure
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Figure 3. Bar plot representing the proportion of chemicals with relevant
AOPs among the top five enriched AOPs based on the chemical classifi-
cation. Number in brackets after the category name refers to the number
chemicals in each category while the percentage on the bars reflects the
proportion of chemicals in each category highlighting relevant AOPs. SHR
stands for sex hormone receptor agonist.

allowed improved specificity, while also providing the possibility
to further refine the gene sets using the hierarchical order imple-
mented where applicable. The size of the gene sets associated to
each KE range from one to 5990 genes, with a median value of 81
genes. Consequently, when AOPs are modeled by combining the
gene sets associated to their KEs, the gene set sizes range from
15 to 5992 with the median size being 752 genes.
In total, the annotations comprise 15 825 genes. While thema-

jority of genes are annotated to less than 5 KEs (9044 genes), 1434
genes have more than 20 KEs associated to them, and 50 genes
have more than 80 associated KEs (Figure 2C). Although these
numbers can be affected by annotation bias, for example, certain
genes are better researched and annotated than others, they can
also guide the selection of AOP-driven biomarkers when speci-
ficity is of importance.

2.2. AOP Enrichment Highlights Relevant Adverse Outcomes
Associated to Chemicals

We tested the ability of our novel annotations to highlight rele-
vant AOPs by analyzing a set of curated reference chemicals as
defined by EU Reference Laboratory for alternatives to animal
testing (ECVAM) and National Toxicology Program Interagency
Center for the Evaluation of Alternative Toxicological Methods
(NICEATM). We focused on four categories of chemicals defined
by their toxicity properties to include hepatotoxic and carcino-
genic agents as well as thyroid disruptors and sex hormone re-
ceptor (estrogen receptor—ER, and androgen receptor—AR) ag-
onists. For each of the selected chemicals, we retrieved a list of as-
sociated genes from the Comparative Toxicogenomics Database
(CTD),[29] resulting in a final set of 75 chemicals (File S1, Sup-
porting Information).
First, we identified AOPs related to each of the selected cat-

egories (i.e., AOPs related to carcinogenesis, hepatotoxicity, sex
hormones, and thyroid disruption) among all the AOPs. We then
evaluated the prevalence of these relevant AOPs among the five
most significantly enriched AOPs for each chemical. The results
suggest that the enrichment approach successfully highlights
AOPs of relevance for each group of chemicals (Figure 3). All sex
hormone receptor agonists had at least one relevant AOP among
the top five enriched, while the proportions varied from 43% (thy-

roid disrupters) to 93% (carcinogens) in the other categories (Fig-
ure 3).
In the group of carcinogenic chemicals, 93% of the com-

pounds evaluated had cancer-related adverse outcomes among
the top enriched AOPs. In fact, the group of carcinogens had the
highest proportion of relevant AOPs at the top as compared to the
others (median four out of five compared to the median of two
out of five in the other groups). However, it should be noted that
AOPs related to cancer are among the most represented group of
AOPs, and cancer-related genes are generally highly researched
and annotated, which may introduce a level of annotation bias
that should be recognized.
The remaining four carcinogenic chemicals (7%) that showed

no cancer AOPs among the top enriched AOPs were N-
nitrosodiethanolamine, N-nitrosomorpholine, phenacetin,
and tetrachloroethylene. N-nitrosomorpholine and N-
nitrosodiethanolamine are both nitrosamines whose sus-
pected AOs besides carcinogenesis include non-alcoholic
steatohepatitis.[30] Indeed, both compounds contained hepatic
steatosis related AOPs among the top five enriched AOPs
(File S1, Supporting Information). Tetrachloroethylene (per-
chloroethylene, PCE) is a chlorocarbon solvent used in dry-
cleaning and other degreasing applications.[31] AOPs with the
most significant enrichment for PCE were also related to hepatic
adverse outcomes. Although neurotoxicity is one of the most
frequent AOs associated with PCE exposure, hepatotoxicity has
also been reported.[31] Our results documenting liver steatosis
are supported by biopsy-based evidence of liver disease, both
in human and animal models, in settings of high occupational
exposures.[32] Last, phenacetin is a drug that was widely used
as pain medication until it was withdrawn from the market
across the globe due to increasing evidence of carcinogenicity
and renal toxicity.[33] The most enriched AOPs for phenacetin
included immune related AOPs “Immune mediated hepatitis”
(Aop:362) and Aop:277 titled “Inhibition of IL-1 binding to
IL-1 receptor leading to increases susceptibility to infection”.
Although there is no described association between phenacetin
and IL-1 or immuno-toxicity, it is known that they both play a
role in paracetamol-associated liver toxicity, which is the main
metabolite of phenacetin.[33,34]

In the case of the known liver toxicants, hexaconazole was the
only compound not highlighting AOPs associated with liver tox-
icity among the top enriched AOPs. Hexaconazole is a widely
used triazole fungicide. It acts by blocking sterol biosynthe-
sis via inhibition of cytochrome P450.[35] Hexaconazole was
considered as a Group C-Possible Human Carcinogen by the
US EPA due to increased incidence of benign Leydig cell
tumors in rats (https://www3.epa.gov/pesticides/chem_search/
hhbp/R000356.pdf ). Moreover, it was found to affect the repro-
duction of female rats.[35] The top enriched AOPs correctly iden-
tify this signature. Furthermore, the top two pathways “HMG-
CoA reductase inhibition leading to decreased fertility” and
“Modulation of adult Leydig cell function subsequent to de-
creased cholesterol synthesis or transport in the adult Leydig
cell” both suggest a decrease in cholesterol levels by inhibition
of the HMG-CoA reductase. Drugs inhibiting this enzyme, such
as statins, are known to possibly cause liver damage.[36]

Known thyroid toxicants performed poorest in our analysis.
Bifenthrin, malathion, permethrin, and simazine did not capture
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thyroid related AOPs among the top five enriched. All these com-
pounds have been widely used in agriculture as herbicides or pes-
ticides. Agrochemicals represent a significant class of endocrine
disrupting chemicals, albeit through varying mechanisms. It is
now accepted that many of these molecules may mimic the inter-
action of endogenous hormones with nuclear receptors, such as
estrogen, androgen, and thyroid hormone receptors.[37] Indeed,
bifenthrin has already been reported as an endocrine-disrupting
compound by blocking the binding of endogenous hormones.[38]

In our framework, its anti-estrogenic activity emerges as themost
enriched AOP (File S1, Supporting Information). Malathion is
an organophosphate pesticide that is known for its low acute tox-
icity and rapid degradation.[39] In this light, it is not listed as a
primary thyroid disrupting chemical, and its toxicity has been
associated with the inhibition of acetylcholinesterase activity on
nerve impulse.[39] Recent studies, however, demonstrated that
malathion acts as an endocrine disruptor, both in vitro and in
vivo.[40,41] Our results support these findings, highlighting the
Aop:165: “Anti-estrogen activity leading to ovarian adenomas and
granular cell tumors in the mouse” as well as Aop:112: “In-
creased dopaminergic activity leading to endometrial adenocarci-
nomas.” Furthermore, Moore et al. demonstrated that malathion
exposure at higher concentrations induces cytotoxic and geno-
toxic effects in HepG2 through oxidative stress, which can fi-
nally lead to liver cancer.[39] Similarly, our framework highlights
both the “PPARalpha-dependent liver cancer” and “Cyp2E1 acti-
vation leading to liver cancer” AOPs. Simazine is a triazine herbi-
cide whose use has been banned in most European countries for
nearly two decades.[42] Simazine has now been recognized, simi-
larly to the other compounds, as an endocrine disrupter.[42] Inter-
estingly, the enrichment analysis for simazine highlighted AOPs
related to the development of adenomas and carcinomas through
endocrine disrupting activities (e.g., Aop:107 titled “Constitutive
androstane receptor activation leading to hepatocellular adeno-
mas and carcinomas in the mouse and the rat”) as well as direct
disruption of the GnRH pulse (File S1, Supporting Information).
Althoughmultiple in vivo and in silico evidence also indicate per-
methrin as possible endocrine disruptor,[43,44] no endocrine re-
lated pathways are present in the top enriched AOPs. However,
this framework was able to highlight the modulating effect of
permethrin on the lipid metabolism. It has been demonstrated
that in HepG2 cells, permethrin increases lipogenesis and de-
creases beta oxidation, possibly contributing to the development
of NAFLD.[45] Indeed, the “Inhibition of fatty acid beta oxidation
leading to nonalcoholic steatohepatitis (NASH)” AOP is statisti-
cally enriched in our results.
Together, these results highlight relevant AOPs modeled by

our curated gene sets to be enriched by the genes associated to
the compounds, suggesting that our framework is able to support
robust mechanistic and data-driven chemical grouping as well as
the identification of potential AOs using chemical-gene associa-
tions.

2.3. Our Annotation Enables Grouping of KEs Resulting in
Improved Modeling of the AOP Network

In order to fully unleash the potential of mechanistic toxicology,
more informative testing strategies need to be developed that

can monitor specific phases of the exposure-bio interactions and
mechanisms. To this end, we defined accurate sets of genes ca-
pable of modeling specific KEs and AOPs. However, one of the
challenges observed in the AOP-Wiki is the redundant semantics
in the naming of KEs. While creating a new KE can be meaning-
ful inmany cases (e.g., the same biological process taking place in
a distinct organ or a tissue), unnecessary redundancy can lead to
challenges in the application of the AOP-based knowledge. This
is especially true when modeling AOPs as a network and using
such representation to identify hidden connections and to per-
form read-across analysis.[10,46–51]

Hence, we hypothesized that KEs could be grouped based on
the degree of similarity of their associated gene lists. We calcu-
lated the similarity of the KEs based on their annotated gene sets
and grouped together those mapped to identical sets of genes
(Jaccard Index (JI) = 1). This resulted in the identification of 637
groups of varying sizes. These groups were characterized by four
main concepts: 1) truly duplicated KEs due to distinct semantics;
2) same biological event in multiple biological systems; 3) sub-
sequent KEs mapped to the same terms due to inadequate speci-
ficity; and 4) opposite regulation of the same biological event (i.e.,
increased vs decreased signaling).
Here, the grouping based on identical gene sets was selected

due to the nature of the downstream application and statistical
considerations (i.e., to avoid multiple testing against the same
gene set in enrichment analysis). However, a parallel approach
with varying cut-off values for similarity could be implemented
to cluster KEs more roughly and to define specific categories
of events. Similarly, further refinement of the KE clusters could
help to enhance the AOP network by removing redundant nodes
which, in turn, could reveal hidden links.
The potential of the KE grouping was showcased using a sub-

graph formed by considering the AOPs related to pulmonary
fibrosis (PF). PF is a chronic lung disease characterized by
tissue damage and scarring that impairs lung function.[52] A
range of environmental exposures, including certain chemicals,
drugs, radiation, and nanomaterials (most notably carbon nan-
otubes), as well as infectious diseases have been identified as
causative agents for PF.[52–54] Moreover, the COVID-19 pandemic
has raised concerns about increasing rates of PF.[55–57] Under-
standing the disease mechanisms can help in the development
of strategies to treat and prevent the disease, and to control and
modulate the exposures that contribute to its pathogenesis and
progression. Furthermore, it can serve as the foundation for de-
veloping targeted assays for evaluating profibrotic potential of
chemical exposures.
Six AOPs related to PF were available in the AOP-Wiki at the

time of data retrieval (Figure 4A). These distinct AOPs character-
ize multiple pathways leading to the same AO. Together, these
AOPs comprise 30 KEs, which form a connected graph when
modeled as a network (Figure 4C). However, several redundan-
cies were observed among the KEs. For instance, the AO was
expressed either as lung fibrosis (Event:1276) or pulmonary fibro-
sis (Event:1458). Hence, the application of the similarity-based
grouping resulted in 23 distinct KEs (Figure 4B) that were then
used as the basis for merging the KE nodes in the PF network
(Figure 4D).
The PF AOPs formed a connected network, indicating that

each of the individual AOPs shared at least one KE with one or
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Figure 4. A) Table presentation of pulmonary fibrosis (PF) AOPs identified in the current study. B) Heatmap representing the Jaccard index-based
similarity of the PF KEs as per their associated gene sets. Values close to zero (light gray) correspond to a low similarity between distinct KEs, while the
increasing similarity is expressed with the color changing through green to blue. C) Graph presentation of the PF AOPs using their original KEs. Distinct
colors denote the KEs of individual AOPs, gray nodes are KEs shared by multiple AOPs, and orange nodes correspond to the shared AOs. D) Graph
presentation of the PF AOPs after KE grouping. The number of shared (gray) nodes has now increased, and the duplicated AO has been grouped into
one distinct AO (orange).
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Figure 5. AOP fingerprint of Mitsui-7 exposure in vitro and in vivo. Size of the bubble reflects the proportion of significantly enriched KEs in an AOP,
while to color denotes the FDR-adjusted p-value in a negative logarithmic scale (i.e., the higher the number, the smaller the p-value). The AOPs are
organized by the enrichment p-value from the in vivo data.

more of the other AOPs. However, as the duplicated KEs were
merged, the similarities between theAOPs becamemore evident.
This is evidenced by the increasing number of shared KEs in the
graph after merging (the gray nodes in Figure 4D) as compared
to the original graph (Figure 4C). Furthermore, the merging re-
vealed Aop:206 to be fully contained within the other AOPs.
The refinement of the AOPnetwork throughKE grouping sim-

plifies the network while also enhancing the robustness of the
KE relationships, depicted by the connections between the nodes.
This process, in fact, removes redundant nodes, which supports
the application of AOPnetworks in AOP research and risk assess-
ment. Furthermore, as duplicated events are removed, the true
influence of each node can be assessed more robustly through
network analytics.
This example demonstrates the effect of KE redundancy and

the potential of data-driven grouping of the KEs. While man-
ual assessment and grouping would be achievable for a limited
number of AOPs at a time, doing it AOP-Wiki wide would be
a massive undertaking. Here, we show how our curated gene-
KE-AOP connections can help guide the grouping and hence en-
hance network-based approaches in AOP research. Furthermore,
our results suggest that it is often possible to identify genes that
can successfully represent multiple similar key events.

2.4. The AOP Fingerprint of Multi-Walled Carbon Nanotubes
Converges In Vitro and In Vivo

Toxicogenomics has supported the development of mechanistic
toxicology and further enhanced the possibility to obtain relevant

information from in vitro studies, which could reduce the need
for animal experimentation.[58–60] Here, we tested the hypothesis
that toxicogenomic data generated in two independent in vitro
and in vivo exposure models would converge on a robust set of
relevant AOPs. We focused onMitsui-7, a known hazardous long
and rigid multi-walled carbon nanotube (MWCNT). The airways
provide the most prominent route of exposure to this nanomate-
rial, and it is best characterized for its lung-related AOs, includ-
ing PF.[61–64] Hence, we selected data derived from a lung expo-
sure to theMWCNT inmice,[65] and an in vitro dataset with expo-
sures on four cell lines representative of the human airways.[59,66]

These cell lines include differentiated THP-1 cells as a model of
macrophages, A549 representing alveolar basal epithelial cells,
BEAS-2B as bronchial epithelial cells, and MRC9 as a model of
lung fibroblasts. Differentially expressed genes (DEGs) from all
experimental conditions in vivo and each cell line in vitro were
obtained from Saarimäki et al.[67] and merged into a single MOA
in vivo and in vitro, respectively.
We then performed enrichment analysis against both the

AOPs and the KEs separately in order to evaluate the coverage
of distinct KEs. We used the proportion of significantly enriched
KEs to further filter the significant AOPs. This led us to identify
33 significant AOPs from the in vivo data, while 12 resulted sig-
nificant from the in vitro exposure. These results were defined as
the specific AOP fingerprint for the exposures, and it is presented
in Figure 5.
Despite the distinct sizes of the AOP fingerprints, ten of the

12 AOPs enriched in vitro were also included in the in vivo
fingerprint. Moreover, the top enriched AOPs were shared and
ranked similarly between in vivo and in vitro when ranked by the

Adv. Sci. 2022, 2203984 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203984 (7 of 16)



www.advancedsciencenews.com www.advancedscience.com

smallest adjusted p-value. The AOP enriched with the most sig-
nificant p-value in both instances was Aop:173 titled “Substance
interaction with the lung resident cell membrane components
leading to lung fibrosis” (Figure 5). The in vivo data set was able
to capture seven of the eight KEs of the AOP as significantly en-
riched, while three out of the eight KEs were enriched in vitro.
Interestingly, Aop:173 has been specifically developed with ro-
bust evidence from MWCNT exposures, and multiple types of
carbon nanotubes are listed as known stressors for the AOP
(https://aopwiki.org/aops/173). The second AOP (Aop:171), on
the other hand, describes the induction of pleural/peritoneal
mesotheliomas by chronic cytotoxicity in rats. Like most AOPs
used in this study, Aop:171 is still under development and lacks
information on potential stressors. However, mesothelioma is a
well-known AO of asbestos exposure, a fibrous silicate mineral
whose adverse effects have often been used as a warning exam-
ple for MWCNTs.[68] Indeed, similarities in their MOA have been
extensively investigated.[61,69,70]

The in vitro AOPfingerprint captures effects such as frustrated
phagocytosis, oxidative stress, cytotoxicity, and immune activa-
tion, which have all been reported as consequences of this type
of exposure and contribute to the pathogenic nature of Mitsui-
7.[61,62,64,71] Similarly, the profibrotic effects are highlighted with
the multiple PF AOPs enriched. These effects are also observed
in the in vivo AOP fingerprint. However, the in vivo fingerprint
further highlights various AOPs outside the respiratory system,
which is less apparent in vitro. While AOs beyond the immediate
exposure site are feasible,many of these could likely be accounted
for by the different effects of similar transcriptomic signatures in
different biological systems (e.g., multiple AOPs related to gastric
ulcer formation could reflect similar mechanisms of surfactant
disturbance in two distinct exposure sites). On the other hand,
the AOPs unique to the in vitro fingerprint, Aop:277 and Aop:263
(Figure 5), reflect the specific effects of the Mitsui-7 exposure on
the immune system. Such specific signals can be easily masked
in the in vivo system, where a large array of cell types is affected
by the exposure.
It is worth noting that the exposures selected for the analysis

had diverse set ups and a notable difference in the size of the com-
bined MOA (863 DEGs in vitro versus 3540 in vivo). While data
from multiple cell lines were selected to capture effects besides
immune cell activation in vitro, we were not able to match the
dose and time course set up present in the in vivo dataset. How-
ever, we wanted to include this long-term exposure to evaluate
whether it would result in broader coverage over the KEs of AOPs.
Furthermore, histopathological evaluation from the same in vivo
exposure set up has shown fibrosis in the lung from the day 7
onward,[72] suggesting that a whole PF AOP could be covered
with this data. Indeed, all but the MIE (Event:1495) of Aop:173
were enriched in vivo. The high proportion of enriched KEs in
the in vivo data supports the modeling of KEs with relevant gene
sets and the use of toxicogenomic evidence for the development
of AOPs, as well as the evaluation of potential AOs of chemi-
cal exposures. Likewise, we show that the analysis of toxicoge-
nomic data against robustly annotated AOP framework supports
a high degree of in vitro to in vivo extrapolation and further sup-
ports the inclusion of toxicogenomics-based evidence for regu-
latory purposes. The concept of the AOP fingerprint can be eas-
ily adapted to evaluate other chemical exposures and AOs. With

nearly 16 000 genes mapped to the KEs in our curation, they are
expected to cover most of the human genome. Hence, the AOP
fingerprint provides a robust framework for meaningful inter-
pretations also for chemicals and phenotypes that may be less
characterized.

2.5. KE-Associated Gene Sets Guide the Selection of Biomarkers

We showed that our KE-linked gene sets provide a robust way of
evaluating potential outcomes of chemical exposures from tran-
scriptomics data. This observation alone can help to guide chemi-
cal testing and grouping.However, to support the development of
target assays and integrated approaches, specific reporter genes
and markers need to be identified.
Selection of transcriptional biomarkers and reporter genes

only based on differential expression from experimental data
gives little context or reference to the AO of interest. Even if a
certain exposure is known to induce a specific endpoint, there
is no indication whether the measured deregulation could be as-
sociated with the phenotype of interest. On the other hand, pri-
oritizing the features in the context of the KEs or whole AOPs
could shed light on the importance and specificity of the feature
regarding the phenotype. This, in turn, can guide the selection of
potential biomarkers even in the absence of experimental data.
Hence, we implemented a universal and customizable frame-
work for the prioritization of the KE-associated genes to drive
the identification of AOP-informed biomarkers and used it to
identify AOP-driven biomarkers for PF. The shortlisted marker
genes were then screened by RT-qPCR in an in vitro model of
human macrophages exposed to bleomycin, a well-known profi-
brotic chemical.[73]

First, we defined characteristics for optimal biomarkers based
on the BradfordHill criteria, originally defined to evaluate causal-
ity in epidemiological research,[74] but later adopted to other re-
search fields as well.[75] Our newly defined characteristics, their
Bradford Hill counterparts, and short descriptions of the consid-
eration of each step in the selection process are summarized in
Table 1.
The prioritization and selection of the candidate biomarkers

considered three main aspects: 1) the social life of genes, that is,
some genes (gene products) are more influential than others; 2)
specificity regarding the endpoint of interest; and 3) experimen-
tal evidence suggesting the genes respond to a relevant exposure.
The ranking of the genes was based on the first two consider-
ations, while the experimental evidence was included to guide
the selection of candidate genes for RT-qPCR validation from the
ranked list. This enabled a flexible selection process that would
be applicable even in the absence of experimental data. At this
stage, we also considered the biological feasibility of the target
genes given the selected macrophage model as well as a broad
coverage over the PF KEs.
As a result, we obtained a list of 25 candidates out of the orig-

inal 2075 genes related to PF (Table 2). Although we focused on
the genes in the top 10%, we further included genes ranking
lower to obtain a broader coverage over the PF KEs. Genes that
are specific to individual KEs might rank low when the individ-
ual lists are combined. Hence, we considered the expression pat-
terns from the experimental data as well as the specificity scores
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Table 1. We defined characteristics for optimal biomarkers based on the Bradford Hill criteria. The characteristics were then implemented into the
prioritization and selection protocol, and further to the evaluation of the prioritized genes.

Bradford Hill Our characteristic Method/Assessment

Consistency (reproducibility) Reproducibility Selection considers evidence from previous profibrotic exposures

Strength (effect size) Amplitude Significant alteration of the expression as compared to control

Experiment Measurable Transcriptional biomarkers measurable by qPCR; selected genes need to
be expressed in the model

Biological gradient (dose-response
relationship)

Dose-responsive Benchmark dose modeling to evaluate dose-response

Coherence In vitro to in vivo extrapolation Experimental evidence from in vitro and in vivoa)

Analogy Predictive (of the outcome of
interest)

Selection based on the KEs preceding the AO of interest

Specificity Specificity Gene ranking based on the specificity score

Plausibility (Biological) plausibility The AOP framework provides a plausible context; supporting evidence;
selection of the organism

Temporality Temporality Transcriptional alteration follows the exposure; selection of the model
organismb)

– GLP-method RT-qPCR

– Influence Centrality measures from human protein-protein interaction and gene
regulatory networks

a)
The biomarkers selected here are targeted for the development of non-animal assays for toxicological assessment. Hence the coherence to in vivo set ups is not evaluated

experimentally. However, in vivo data was used for the selection of the markers to provide context of the systemic response
b)
Temporality in the Bradford Hill criteria refers

to a clear distinction of the exposure happening prior to the outcome. Here, we considered temporality by observing transcriptional changes post exposure as well as in the
selection of the model organism. Macrophages have a crucial role in the initiation of the profibrotic response preceding the outcome, fibrosis.

and ranks in the individual KEs. This also allowed us to evaluate
whether genes ranked higher would perform better than others.
We could detect the expression of 22 of the candidate genes

at one or more of the evaluated time points, and six of the de-
tected genes showed significant alteration as compared to the
unexposed control samples (Table 2). Finally, five of these genes
were altered in a dose-dependent manner: CXCL2 and CCL7 at
24 h, IL8 (CXCL8) at 24 and 72 h, and MMP19 and TGFBI at
72 h. All but TGFBI of these genes were among the top 10% in
the global PF rank (Table 2). Although we were not able to fit a
dose-dependent model on the highest ranked gene, SMAD7, a
suggestive trend could be appreciated in its expression pattern
(Figure S4, Supporting Information, panel 18/6H). The expres-
sion of each of these genes was upregulated as compared to the
controls (Figure S4, Supporting Information).
The central role of TGF-beta signaling is well-established in

PF,[76] but neither of the TGFB genes tested (TGFB1 and TGFB3)
showed significant change in expression in our setup. Indeed,
TGF-beta is activated through a complex cascade of events, where
the inactive form of the protein is activated by other effectors
post-translationally,[77] making members of the TGF-beta family
a more attractive target for protein-based biomarker assessment
over gene expression. At the same time, we did observe upregu-
lation of SMAD7 and TGFBI which are both activated by TGF-
beta,[78,79] suggesting the induction of TGF-beta signaling. The
protein encoded by TGFBI is involved in the extracellular ma-
trix (ECM), and it has been shown to bind type I collagen, re-
sulting in thicker fibers and further affecting macrophage po-
larization toward the M2 type.[80] Indeed, bleomycin has been
suggested to polarize macrophages toward M2 (often referred to
as the anti-inflammatory type), which have been shown to drive

the development of PF through their ability to promote myofi-
broblast differentiation.[81,82] Many of our suggested biomark-
ers are chemokines that mediate immune responses. IL8 and
CXCL2 are best characterized as neutrophil attractants, while
CCL7 targets a wide variety of leukocytes.[83–85] Indeed, prolonged
inflammation, combined with persistent M2 macrophage activa-
tion, supports pathogenesis of fibrosis,[86] and a mixed status of
M1/M2 macrophage activation has been previously associated
with carbon nanotube-induced PF in vivo.[87] Similarly, multi-
walled carbon nanotubes have been shown to induce the po-
larization of macrophages toward such mixed status of M1/M2
polarization.[88,89] MMP19 is a member of the matrix metallopro-
teinase family involved in ECM remodeling.[90] MMPs have been
extensively characterized in the context of PF,[91,92] and MMP19
specifically has been suggested as a key regulator of PF in mice
and humans.[93]

Althoughmacrophages alone cannot capture all the KEs of PF,
our model is able to highlight the key steps of macrophage in-
volvement in PF. The temporality of the expression of our sug-
gested biomarkers is supportive of the events leading to the de-
velopment of fibrosis, where the initial inflammation is followed
by type M2macrophage activation that together contribute to the
development of a profibrotic microenvironment and responses
in other cells in the tissue.[86]

NAMs are urgently needed to reduce animal testing while pro-
viding robust evidence to support chemical safety assessment.
Although alternative methods have been successfully developed
to capture acute effects, modeling long-term outcomes of the
exposures, such as fibrosis, in vitro is still a challenge. Here,
we propose a panel of five genes CXCL2, CCL7, IL8, MMP19,
and TGFBI as AOP-derived robust biomarkers of PF to be
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Table 2. Genes selected for qPCR validation. Green = yes, white = no.

Gene (rank) Time
point

Detected (Amplification) Deregulated (ANOVA) Dose-dependent

SMAD7 (1)

6 h

24 h

72 h

CXCL2 (3)

6 h

24 h

72 h

SPP1 (18)

6 h

24 h

72 h

CCL2 (19)

6 h

24 h

72 h

TGFB1 (23)

6 h

24 h

72 h

IL8 (33)

6 h

24 h

72 h

LOX (48)

6 h

24 h

72 h

PLOD2 (74)

6 h

24 h

72 h

MMP7 (80)

6 h

24 h

72 h

CXCL10 (91)

6 h

24 h

72 h

CCL7 (93)

6 h

24 h

72 h

MMP9 (105)

6 h

24 h

72 h

LTBP4 (112)

6 h

24 h

72 h

FN1 (116)

6 h

24 h

72 h

GDF15 (153)

6 h

24 h

72 h

MMP19 (179)

6 h

24 h

72 h

(Continued)
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Table 2. (Continued).

Gene (rank) Time
point

Detected (Amplification) Deregulated (ANOVA) Dose-dependent

PTX3 (220)

6 h

24 h

72 h

TGFB3 (297)

6 h

24 h

72 h

LTBP3 (335)

6 h

24 h

72 h

TWIST1 (609)

6 h

24 h

72 h

TGFBI (727)

6 h

24 h

72 h

CTSK (759)

6 h

24 h

72 h

RCN3 (1592)

6 h

24 h

72 h

RSAD2 (1596)

6 h

24 h

72 h

PLK3 (2027)

6 h

24 h

72 h

successfully measured in a model of human macrophages in
vitro after short exposure time.

3. Conclusion

Mechanistic toxicology encompasses the means for faster,
cheaper, and more ethical chemical safety assessment. However,
to unleash the full potential of mechanistic evidence also in the
regulatory framework, robust approaches to build confidence to-
ward toxicogenomics are urgently needed. Here, we presented an
integrated approach that links toxicogenomics with the concept
of AOPs and proved its applicability to chemical grouping and
development of data-driven NAMs. We introduced the AOP fin-
gerprint, a concept for evaluating potential systemic outcomes of
chemical exposures through unbiased interpretation of toxicoge-
nomics data. Our analysis points to a consistent AOP fingerprint
of MWCNTs extrapolated from both in vitro and in vivo experi-
ments. Finally, we identified and experimentally validated a panel
of robust AOP-derived in vitro biomarkers for PF.
Our results suggest that combining the regulatory-supported

AOP framework with toxicogenomics through a rigorous map-
ping of the MOA of chemicals into KEs/AOPs can facilitate the

inclusion of omics derived evidence in regulatory evaluations.
The outcome of our analysis in the form of the AOP fingerprint
provides a clear and easily understandable way to summarize
complex omics data while providing robust statistical evaluation
that can support regulatory decisions. Moreover, the possibility
to use the framework suggested in this manuscript as the foun-
dation for developing data-drivenmolecular assays further opens
new possibilities for faster regulatory acceptance of novel alterna-
tive methods and NAMs.

4. Experimental Section
Definition of Knowledge Graph-Based Data Structure: A knowledge

graph-based data structure was established by expanding the previ-
ously introduced framework, the Unified Knowledge Space (UKS) by the
authors.[94,95] A detailed description and a full list of integrated data
sources are provided in the Supporting Information. The so formed data
structure was utilized throughout the study as described in the following
sections.

Annotation of Key Events: A multi-step strategy comprising NLP and
manual curation was applied to annotate KEs to established gene sets
through pathways, phenotypes, and gene ontologies. The annotation strat-
egy is summarized in Figure S2, Supporting Information.
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Computational prioritization of KE annotations: To match the descrip-
tions of key events and gene sets an NLP pipeline (Figure S2, Supporting
Information) was developed. The pipeline performed several operations to
extract the informative terms from both the descriptions of a key event and
a gene set that were scored to assess the degree of matching between the
two entities. In detail, first, the raw text was converted to lower case and all
punctuation symbols were removed. Second, concepts that span multiple
words in the text description were replaced by a single word expressing the
same concept to strengthen the matching quality (e.g., the concept “pos-
itive regulation” was replaced with the single word “upregulated”). Third,
the text was split into tokens which were further processed one by one.
Fourth, each token corresponding to a stop word in the English language
was dropped. Stop words refer to the most common words in a language
that do not bring additional meaning (e.g., for the English language com-
mon stop words include “in”, “the”, “of”, “from”). Fifth, different declina-
tions of the same concept were mapped to their root term (e.g., plurals
were converted to singulars, the terms “increased” and “increasing” were
both mapped to “increase”). This same procedure was also used to stan-
dardize several styles to write the same symbol (e.g., “ppar𝛼” and “ppar-
alpha” map both to “ppar-alpha”). After these preprocessing steps, each
gene set and key event was represented by a set of token words, for exam-
ple, {upregulate, ppar-alpha}. However, the frequency of each token word
across the descriptions of genes and key events was not the same, and
hence, the informative value of rare terms was higher than the informative
value of more common tokens. This was taken into account by weighting
each token by its inverse document frequency (IDF), that is, the weight
was inversely proportional to the number of gene sets and key events that
contain that token. Finally, a weighted version of the Jaccard Index (JIW)
was employed to match gene sets and the key events, using the IDF as
weights (i.e., each token that was shared between a gene and a key event
did not account for 1 as in the standard JI, but it contributed its IDF weight
to the matching score) and the matching gene sets for each key event was
sorted in descending order.

Manual curation and refinement of annotations: Next, the results of the
computational prioritization were manually evaluated for correct context
and accuracy. Manual curation was used for gap filling and refinement of
the annotations. In detail, the top five matches retained from the NLP-
based approach were evaluated, and inaccurate or spurious matches were
discarded. In case no matches from the computational prioritization were
deemed suitable, a manual search related to the name of the KE was
performed on relevant databases (WikiPathways,[96] HPO,[97] KEGG,[98]

Reactome,[99] and GO [100]). For molecular level KEs, where the alteration
of an individual gene was described, either the main functions of the gene
were selected, or the gene was directly annotated to the ensemble iden-
tifier of the said gene. More generic annotations (i.e., annotation of a KE
describing the alteration of a gene to a functional term tightly related to
that gene) were prioritized to increase the size of the relevant gene sets.

The matches for KEs expressing the increase/activation or de-
crease/repression of a biological progress were further organized based
on the hierarchy of the terms by prioritizing the most generic but suitable
term followed by increasing specificity when multiple annotations of var-
ious specificities were available. For instance, Ke:1457 called “induction,
epithelial mesenchymal transition” was annotated to the following terms:
1) epithelial to mesenchymal transition (GO:0 001837); 2) regulation of
epithelial to mesenchymal transition (GO:00 10717); and 3) positive regu-
lation of epithelial to mesenchymal transition (GO:00 10718). The curated
KE-gene set links were added to the UKS so that for each key event en-
tity its top five matches were added, while the matching level was stored
as an edge attribute. This allowed to either combine multiple mappings
for a key event or to filter for specific mapping levels. Since the KE-gene
set mappings were always the same for the same KE, these relationships
were added to the Key Event entities and not to the Specific Key Event enti-
ties, which reduced complexity of the knowledge graph as well as reduced
needed storage space. The information, however, could still be retrieved
from the UKS via its connecting paths.

Gene set retrieval: The genes corresponding to the matched terms were
retrieved by matching the term names to their exact identifiers and query-
ing the UKS for human genes associated with the terms. For pheno-

types (HPO and KEGG disease), only genes with a link in the original
database were included by filtering by the source for the connection. In
cases where no human genes were linked to the annotated GO term, the
mouse and rat genes associated and converted them to human orthologs
using Ensembl,[101] which were then used as the corresponding gene sets.
When no genes of human, mouse, or rat were associated with the origi-
nal term, the annotation match was discarded and considered unsuccess-
ful. Once gene sets to all original terms were defined, the gene sets were
merged to obtain the final set of genes corresponding to each KE in this
study.

Enrichment Analysis of Reference Chemical-Associated Gene Sets: To
evaluate the ability of this framework to highlight relevant adverse out-
comes from chemical associated gene signatures, lists of reference chem-
icals were retrieved from the ECVAM reference chemical library[102] and
the NICEATM website (https://ntp.niehs.nih.gov/whatwestudy/niceatm/
resources-for-test-method-developers/refchem/index.html). From the re-
sources provided by ECVAM, a hepatotoxic chemical list that had
clear distinctions between positive and negative compounds was se-
lected. This list was based on the work from EPA’s Virtual Liver
project (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId
=166616&Lab=NCCT), and was provided as a downloadable Excel-file
(./CHELIST/CheLIST__EPA_VLIVER.xlsx) by ECVAM. FromNICEATM, the
list of chemicals with characterized thyroid activity (specified as “ACTIVE”
in the listing produced based on a previous publication by Wegner et al.)
was selected.[103] AR and ER agonists were selected from the lists of in
vitro reference chemicals provided on the website. These listings had been
previously published in Kleinstreuer et al.[104] and Browne et al.,[105] re-
spectively. Finally, carcinogenic compounds were identified from the list
containing chemicals that were either known carcinogens or reasonably
anticipated to be human carcinogens (RAHC) based on the 14th report on
Carcinogens (RoC classifications) provided by NICEATM. The chemicals
from each of the reference lists were then matched to the list of chemi-
cals obtained from the CTD[29] through name-based matching or by the
provided CAS identifiers, resulting in the final lists of reference chemicals
for each endpoint used in this study. Chemical-gene links originating from
the CTD were retrieved from the UKS and only chemicals with 50–1000
associated genes were included in the enrichment analysis. This filter was
applied to minimize the false discovery rate and spurious matches in the
enrichment analysis.

Enrichment analysis was performed using the Fisher’s exact test as
implemented in the function enrich from R package bc3net[106] for each
chemical associated gene set against the list of AOP-related genes (i.e., the
union of all the genes associated to all the KEs of the AOP). Enrichment p-
values were adjusted using the false discovery rate (FDR) correction. AOP
was considered significantly enriched with FDR-corrected p-value < 0.01.

KE Clustering and Construction of the Pulmonary Fibrosis Network: Sim-
ilarities between the gene sets associated to each KE were evaluated by
calculating the JI between all pairs of KEs (size of the intersection divided
by the size of the union of the gene sets). The resulting similarity ma-
trix was then transformed into a distance matrix and used to group the
KEs using hierarchical clustering as implemented in the function hclust
in R package stats, specifying the agglomeration method as “complete.”
The number of clusters was defined so that only KEs with the same gene
sets associated to them (JI = 1) were assigned to the same group. The
grouping obtained in this manner was used to perform the enrichment
against KEs to avoid multiple testing against the same gene set as well
as to enhance the network presentation of the PF AOP network. The un-
weighted PF AOP network was generated using gephi[107] by importing a
graphml file generated with the function graph_from_edgelist from R pack-
age igraph.[108] KE groups from the clustering were added as attributes
to the nodes and used to merge redundant nodes in gephi. Similarly,
AOPs each KE is associated to were added as attributes and used to color
the nodes.

Characterization of the AOP Fingerprints: Transcriptomics data: In vivo
and in vitro transcriptomics data fromMWCNT (Mitsui-7) exposures were
selected from a previously published collection by Saarimäki et al.[67] The
original data sets are available under GEO accession number GSE29042
(in vivo) and ArrayExpress entry EMTAB6396 (in vitro), while the
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preprocessed data is available on Zenodo (https://doi.org/10.5281/
zenodo.6425445). The in vivo data set comprised multiple doses and time
points, while the in vitro data contained a single dose and time point ex-
posure on four distinct cell lines representative different cell types of the
lung. In each case, DEGs (filtered by an absolute fold change > 1.5 and
Benjamini and Hochberg adjusted p-value < 0.05) obtained from Zenodo
(https://doi.org/10.5281/zenodo.6425445) for each distinct comparison
(i.e., combination of each dose and time point versus control in vivo and
separate cell lines in vitro) were pooled together to obtain a distinct MOA
of the exposure in vivo and in vitro, respectively.

AOP fingerprints: To produce the AOP fingerprint for the MWCNT expo-
sures, enrichment analysis was performed using the Fisher’s exact test as
implemented in the function enrich from R package bc3net[106] separately
against the AOP-associated gene lists and the KE-associated gene lists
(KEs linked to the same set of genes were grouped to avoid multiple tests
against the same set). An AOPwas considered significantly enriched when
the AOP itself and at least 33% (or minimum of 2 KEs when the length of
the AOP was less than six) of its KEs were enriched with an FDR-corrected
p-value < 0.05.

Selection and Testing of AOP-Driven Biomarkers: Gene prioritization: All
human protein-protein interaction (PPI) edges were extracted from the
UKS and used to create a robust gene–gene network. PPI/gene (product)
interaction information could vary across data sources as well as the cov-
ered genes may differ. In addition, there was an innate bias in the data,
wheremore data sources were available for “more investigated” genes and
gene products. Because of this, it was decided not to apply a global thresh-
old on how many sources need to support an edge,[109] but instead, a lo-
cal threshold was applied. This ensured that also less investigated genes
and gene products will be retained in the final robust gene–gene network,
but their edges were less penalized by the number of supporting edges,
than highly covered gene (product) nodes. For each node, the mean num-
ber of sources supporting all its connecting edges was estimated and only
edgeswith at least the “mean number of sources” for a nodewere retained,
which needed to be true for at least one of the nodes making up an edge.
This was only done for GENE nodes, which were flagged as protein cod-
ing in Ensembl. The final robust human gene–gene network, consisted of
20 260 nodes, 806 250 edges, a network density of 0.0039. Due to the sig-
nificant lower number of available sources for transcription factor—gene
(product) data, all available sources were kept and scored equally. These
edges were used to create a directed gene–gene network, consisting of
18 754 nodes, 363 649 edges and a network density of 0.001. On the so cre-
ated gene–gene networks, for each node its degree, betweenness, eigen-
vector, and closeness centrality were estimated with NetworkX.[110] These
measures were then used to rank the genes linked to the KEs in the context
of individual KEs. The gene list for each KE was ranked based on each of
the centrality measures (degree, betweenness, closeness, and eigenvector
centrality) individually frommost central to the least. The ranked lists were
combined using the Borda method as implemented in the function Borda
in R package TopKLists.[111]

Biomarker selection: The gene centrality-based ranking was then sup-
plemented by a specificity ranking for the KEs of AOPs related to PF. A
specificity score for the genes in the context of the KEs by dividing the oc-
currence of the gene in the KEs of PF AOPs by their occurrence in the KEs
of other AOPs were calculated. A similar score was calculated at the level
of AOPs (occurrence in PF AOPs/occurrence in other AOPs), as universal
PF biomarkers were the target of the identification (i.e., prioritizing those
that would be present in as many of the six PF AOPs as possible) while
also being as specific as possible to PF. These ranks were again combined
by the function Borda from R package TopKLists,[111] and a final round of
the Borda method was applied to combine the lists of genes from each KE
into one PF rank. The final rank was complemented with experimental ev-
idence. It was assessed whether the genes were differentially expressed in
the Mitsui-7 exposures in vivo and in vitro. It was also evaluated whether
they were dose-dependently altered in the in vivo data as well as in an addi-
tional in vitro data set onMitsui-7 exposure of a THP-1macrophagemodel
(originally published in Saarimäki et al.[58] and the preprocessed data
available as GSE146708 in the previously published collection[67] available
in https://doi.org/10.5281/zenodo.6425445). The dose-response model-

ing of the in vivo (GSE29042) and in vitro (GSE146708) datasets was per-
formed by following the strategy implemented in the BMDx tool.[112] Par-
ticularly, for each gene present in the dataset, multiple models were fit-
ted including linear, second order polynomial, hill, power, and exponen-
tial model. For each gene, the optimal model was selected as the one
with the lowest Akaike Information Criterion (AIC). Genes with an opti-
mal model with lack-of-fit p-values lower than 0.1 were removed from the
analysis. The effective doses (BMD, BMDL, and BMDU) were estimated
under the assumption of constant variance and by using a BMRF factor
of 1.349 (corresponding to a minimum of 10% of difference with respect
to the controls). Genes were further filtered based on the predicted doses.
Genes with BMD or BMDU values extrapolated higher than the highest
exposure dose were filtered. Moreover, genes whose ratio between the
predicted doses was higher than the suggested values (BMD/BMDL> 20,
BMDU/BMD> 20, and BMDU/BMDL> 40) were removed from the anal-
ysis. Genes passing the filters were considered to be dose-dependently
altered. At this stage, the measurability and feasibility of the gene in the
selected macrophagemodel was also considered. For instance, numerous
collagen-encoding genes were ranked high, but would not be a meaning-
ful target in a macrophage model. Moreover, a high coverage of PF KEs
and the selection of genes with high specificity scores were emphasized.
With these considerations, a subset of the genes with the following prior-
ity was selected: 1) genes that were deregulated both in vivo and in vitro,
with most emphasis on dose-dependency; 2) genes that were deregulated
in vitro, with most emphasis on dose-dependency; and 3) genes that were
not significantly differentially expressed but were dose-dependent. Finally,
after this initial selection driven by the rank and experimental evidence,
additional candidate biomarkers that had a lower rank but were specific
to KEs that would otherwise not have been covered by the selected candi-
dates were included.

Cell culture: THP-1 cells (DSMZ no.: ACC 16) were grown in RPMI
1640 (Gibco, #21 875) + 10% inactivated FBS (Gibco, #10 270). Cells
were cultivated in 75 cm2 culture flasks at 37 °C with a humidified at-
mosphere of 5% CO2. For all experiments, cells were seeded at a density
of 1 × 105 cells mL−1 in 96 well plates and differentiated for 48 h with
25 nM PMA (phorbol-12-myristate-13-acetate, Sigma-Aldrich, #P1585).
Cells were then left to rest for 24 h in fresh media containing no PMA
prior to bleomycin exposures.

Cell viability assay: THP-1 cells were exposed to 0–10 μg mL−1

of bleomycin ready-made solution (Sigma-Aldrich, #B7216) and 0–
100 mg mL−1 of Triclosan (Sigma-Aldrich, #72 779), for 6, 24 and 72 h.
A WST-1 assay was then used to measure cell viability. Briefly, 10 μL of cell
proliferation reagent WST-1 (Roche, #11 644 807 001) was added to each
well. Cells were left to incubate withWST-1 for 3 h in a 37 °C, 5% CO2 incu-
bator. Absorbance at 450 nm was then measured with a Spark microplate
reader (Tecan). Results of the cell viability assay are available in File S2 and
Figure S3, Supporting Information.

RT-qPCR: For each time point of 6, 24 and 72 h, THP-1 cells were
exposed to 0, 2.5, 5, 10 and 100 μg mL−1 of bleomycin ready-made
solution (Sigma-Aldrich, #B7216). Media was removed and cells were
washed briefly with 50 μL of PBS. 100 μL of lysis buffer from the QI-
AGEN RNeasy mini kit (Qiagen, #74 104) was added to each well to
lyse the cells. Three wells (300 μL) were pooled to create one sample,
and there were five samples for each concentration at each time point.
Total RNA was then extracted from these samples using the QIAGEN
RNeasy mini kit (Qiagen, #74 104). DNase treatment was performed
using TURBO DNA-free Kit (ThermoFisher, #AM1907) according to
the manufacturer’s protocol. cDNA was synthesized from 100 ng of
RNA, using the high-capacity cDNA reverse transcription kit (Thermo
Fisher Scientific, #4 368 813), according to manufacturer’s instructions.
Expression levels of target genes were determined by qRT-PCR using
CFX96 Touch Real-Time PCR Detection System (BioRad) with 10 μL of
iQ Multiplex Powermix (Bio-Rad, #1 725 849), 5 μL of cDNA diluted
fivefold, 2.5 μL of nuclease-free (NF) water (not DEPC-Treated, Ther-
moFisher, #AM9930) in a 20 μL reaction, together with 2.5 μL of single
(1 μL assay + 1.5 μL NF water) or multiplexed (0.5 μL of each assay)
PrimePCR Probe Assays (Bio-Rad) as followed with single or multiplex
reactions grouped in parentheses and formatted asGene/UniqueAssayID:
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(ACTB/qHsaCEP0036280), (SMAD7/qHsaCEP0050142, MMP9/qHsaCI-
P0028098, GDF15/qHsaCEP0051579, CTSK/qHsaCIP0030907, PLOD2/
qHsaCEP0052848), (CXCL2/qHsaCEP0058163, LTBP4/qHsaCEP00249-
31, TGFB3/qHsaCEP0058244, RCN3/qHsaCEP0057804, MMP7/qHsa-
CEP0052037), (SPP1/qHsaCEP0058179, FN1/qHsaCEP0050873, LTBP3/
qHsaCEP0053782, RSAD2/qHsaCIP0031596, CCL7/qHsaCEP0058033),
(IL8/qHsaCEP0053894, MMP19/qHsaCEP0051244, TWIST1/qHsaCEP-
0051221, PLK3/qHsaCIP0027687, CXCL10/qHsaCEP0053880), (LOX/
qHsaCEP0050731, PTX3/qHsaCEP0033071, TGFBI/qHsaCEP0058394,
CCL2/qHsaCIP0028103, TGFB1/qHsaCIP0030973).

Fold change (FC) values from RT-qPCR data were calculated using
the comparative CT(2−(ddCt)) method.[113] The FC values were log2 trans-
formed (log2(FC)). For each gene and for each concentration, an outlier
detection was performed by removing all the samples with log2(FC) values
above or below the 75th and 25th percentiles of the distribution. Ct values,
dCt values, FC values and log2(FC) values are available in File S2, Support-
ing Information, along with ANOVA tables and tukey HSD posthoc test
results. The log2FC expression of the genes as compared to the untreated
controls are plotted in Figure S4, Supporting Information.

Dose-dependent modeling: A dose-response analysis of the log2(FC) val-
ues derived from the PCR experiments was performed. For each gene,
multiple models were fitted, including linear, hill, power, polynomial, expo-
nential, log-logistic, Weibull, and Michaelis–Mentel models. The optimal
model was selected as the one with the lowest AIC. The BMD estimation
was performed under the assumption of constant variance. The BMR was
identified by means of the standard deviation approach with a BMRF of
1.349. Only genes with lack-of-fit p-value >0.10 and with estimated BMD,
BMDL and BMDU values were considered relevant.
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the author.
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L. Villeneuve, A. P. Worth, Comput. Toxicol. 2022, 21, 100206.

[48] T. Zhang, S. Wang, L. Li, A.n Zhu, Q.i Wang, Sci. Total Environ. 2022,
824, 153932.

[49] E. Arnesdotter, N. Spinu, J. Firman, D. Ebbrell, M. T. D. Cronin, T.
Vanhaecke, M. Vinken, Toxicology 2021, 459, 152856.

[50] D. Knapen,M.M. Angrish, M. C. Fortin, I. Katsiadaki, M. Leonard, L.
Margiotta-Casaluci, S. Munn, J. M. O’brien, N. Pollesch, L. C. Smith,
X. Zhang, D. L. Villeneuve, Environ. Toxicol. Chem. 2018, 37, 1723.

[51] D. L. Villeneuve, M. M. Angrish, M. C. Fortin, I. Katsiadaki, M.
Leonard, L. Margiotta-Casaluci, S. Munn, J. M. O’brien, N. L.
Pollesch, L. C. Smith, X. Zhang, D. Knapen, Environ. Toxicol. Chem.
2018, 37, 1734.

[52] V. J. Thannickal, G. B. Toews, E. S. White, J. P. Lynch Iii, F. J. Martinez,
Annu. Rev. Med. 2004, 55, 395.

[53] J. C. Bonner, Toxicol. Pathol. 2007, 35, 148.
[54] T. Wynn, J. Pathol. 2008, 214, 199.
[55] C. F. Mcgroder, D. Zhang, M. A. Choudhury, M. M. Salvatore, B. M.

D’souza, E. A. Hoffman, Y. Wei, M. R. Baldwin, C. K. Garcia, Thorax
2021, 76, 1242.

[56] P. A. S. Kinaret, G. Del Giudice, D. Greco, Nano Today 2020, 35,
100945.

[57] B. J. Hama Amin, F. H. Kakamad, G. S. Ahmed, S. F. Ahmed, B. A.
Abdulla, S. H. Mohammed, T. M. Mikael, R. Q. Salih, R. K. Ali, A. M.
Salh, D. A. Hussein, Ann. Med. Surg. 2022, 77, 103590.

[58] L. A. Saarimäki, P. A. S. Kinaret, G. Scala, G. Del Giudice, A. Federico,
A. Serra, D. Greco, NanoImpact 2020, 20, 100274.

[59] G. Scala, P. Kinaret, V. Marwah, J. Sund, V. Fortino, D. Greco,
NanoImpact 2018, 11, 99.

[60] P. Kinaret, V. Marwah, V. Fortino, M. Ilves, H. Wolff, L. Ruokolainen,
P. Auvinen, K. Savolainen, H. Alenius, D. Greco, ACSNano 2017, 11,
3786.

[61] E. M. Rydman, M. Ilves, E. Vanhala, M. Vippola, M. Lehto, P. A.
S. Kinaret, L. Pylkkänen, M. Happo, M.-R. Hirvonen, D. Greco, K.
Savolainen, H. Wolff, H. Alenius, Toxicol. Sci. 2015, 147, 140.

[62] P. Kinaret, M. Ilves, V. Fortino, E. Rydman, P. Karisola, A. LÃ¤Hde, J.
Koivisto, J. Jokiniemi, H. Wolff, K. Savolainen, D. Greco, H. Alenius,
ACS Nano 2017, 11, 291.

[63] S. S. Poulsen, N. R. Jacobsen, S. Labib, D. Wu, M. Husain, A.
Williams, J. P. BøGelund, O. Andersen, C. KøBler, K. Mølhave, Z.
O. Kyjovska, A. T. Saber, H. Wallin, C. L. Yauk, U. Vogel, S. Halap-
panavar, PLoS One 2013, 8, e80452.

[64] L. Rahman, N. R. Jacobsen, S. A. Aziz, D.Wu, A.Williams, C. L. Yauk,
P. White, H. Wallin, U. Vogel, S. Halappanavar, Mutat. Res., Genet.
Toxicol. Environ. Mutagen. 2017, 823, 28.

[65] N. L. Guo, Y.-W. Wan, J. Denvir, D. W. Porter, M. Pacurari, M. G.
Wolfarth, V. Castranova, Y. Qian, J. Toxicol. Environ. Health, Part A
2012, 75, 1129.

[66] G. Scala, V. Marwah, P. Kinaret, J. Sund, V. Fortino, D. Greco, Data
Brief 2018, 19, 1046.

[67] L. A. Saarimäki, A. Federico, I. Lynch, A. G. Papadiamantis, A.
Tsoumanis, G. Melagraki, A. Afantitis, A. Serra, D. Greco, Sci. Data
2021, 8, 49.

[68] M. Barbarino, A. Giordano, Cancers (Basel) 2021, 13, 1318.

Adv. Sci. 2022, 2203984 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203984 (15 of 16)



www.advancedsciencenews.com www.advancedscience.com

[69] S. Rittinghausen, A. Hackbarth, O. Creutzenberg, H. Ernst, U. Hein-
rich, A. Leonhardt, D. Schaudien, Part. Fibre Toxicol. 2014, 11, 59.

[70] S. S. Gupta, K. P. Singh, S. Gupta, M. Dusinska, Q. Rahman, Nano-
materials (Basel) 2022, 12, 1708.

[71] M. S. P. Boyles, L. Young, D. M. Brown, L. Maccalman, H. Cowie,
A. Moisala, F. Smail, P. J. W. Smith, L. Proudfoot, A. H. Windle, V.
Stone, Toxicol. In Vitro 2015, 29, 1513.

[72] D.W. Porter, A. F. Hubbs, R. R.Mercer, N.Wu,M. G.Wolfarth, K. Sri-
ram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, Toxicology
2010, 269, 136.

[73] G. Izbicki, M. J. Segel, T. G. Christensen, M. W. Conner, R. Breuer,
Int. J. Exp. Pathol. 2002, 83, 111.

[74] A. B. Hill, Proc. R. Soc. Med. 1965, 58, 295.
[75] K. M. Fedak, A. Bernal, Z. A. Capshaw, S. Gross, Emerg. Themes Epi-

demiol. 2015, 12, 14.
[76] X. Yue, B. Shan, J. A. Lasky, Curr. Enzyme Inhib. 2010, 6, 67.
[77] J. P. Annes, J. S. Munger, D. B. Rifkin, J. Cell Sci. 2003, 116, 217.
[78] P. Nummela, J. Lammi, J. Soikkeli, O. Saksela, P. Laakkonen, E.

Hölttä, Am. J. Pathol. 2012, 180, 1663.
[79] X. Yan, Z. Liu, Y. Chen, Acta Biochim. Biophys. Sin. 2009, 41, 263.
[80] S. Bachy, Z. Wu, P. Gamradt, K. Thierry, P. Milani, J. Chlasta, A. Hen-

nino, iScience 2022, 25, 103758.
[81] J. Hou, J. Shi, L. Chen, Z. Lv, X. Chen, H. Cao, Z. Xiang, X. Han, Cell

Commun. Signaling 2018, 16, 89.
[82] H. Wang, Y. Gao, L. Wang, Y. Yu, J. Zhang, C. Liu, Y. Song, H. Xu, J.

Wang, H. Lou, T. Dong, J. Adv. Res. 2022, https://doi.org/10.1016/j.
jare.2022.04.012.

[83] M. E. Hammond, G. R. Lapointe, P. H. Feucht, S. Hilt, C. A. Gallegos,
C. A. Gordon, M. A. Giedlin, G. Mullenbach, P. Tekamp-Olson, J.
Immunol. 1995, 155, 1428.

[84] K. De Filippo, A. Dudeck, M. Hasenberg, E. Nye, N. Van Rooijen, K.
Hartmann, M. Gunzer, A. Roers, N. Hogg, Blood 2013, 121, 4930.

[85] J. W. Cheng, Z. Sadeghi, A. D. Levine, M. S. Penn, H. A. Von Recum,
A. I. Caplan, A. Hijaz, Cytokine 2014, 69, 277.

[86] T. T. Braga, J. S. H. Agudelo, N. O. S. Camara, Front. Immunol. 2015,
6, 602.

[87] J. Dong, Q. Ma, Nanotoxicology 2018, 12, 153.
[88] P. A. S. Kinaret, G. Scala, A. Federico, J. Sund, D. Greco, Small 2020,

16, 1907609.
[89] J. Meng, X. Li, C. Wang, H. Guo, J. Liu, H. Xu, ACS Appl. Mater.

Interfaces 2015, 7, 3180.
[90] S. Loffek, O. Schilling, C.-W. Franzke, Eur. Respir. J. 2011, 38, 191.
[91] A. Pardo, S. Cabrera, M. Maldonado, M. Selman, Respir. Res. 2016,

17, 23.
[92] V. J. Craig, L. Zhang, J. S. Hagood, C. A. Owen, Am. J. Respir. Cell

Mol. Biol. 2015, 53, 585.
[93] G. Yu, E. Kovkarova-Naumovski, P. Jara, A. Parwani, D. Kass, V. Ruiz,

C. Lopez-OtãN, I. O. Rosas, K. F. Gibson, S. Cabrera, R. RamãRez,
S. A. Yousem, T. J. Richards, L. J. Chensny, M. Selman, N. Kaminski,
A. Pardo, Am. J. Respir. Crit. Care Med. 2012, 186, 752.

[94] A. Federico,M. Fratello, G. Scala, L.Möbus, A. Pavel, G. Del Giudice,
M. Ceccarelli, V. Costa, A. Ciccodicola, V. Fortino, A. Serra, D. Greco,
Cancers (Basel) 2022, 14, 2043.

[95] A. Pavel, G. Del Giudice, A. Federico, A. Di Lieto, P. A. S. Kinaret, A.
Serra, D. Greco, Brief Bioinf. 2021, 22, 1430.

[96] M. Martens, A. Ammar, A. Riutta, A. Waagmeester, D. N. Slenter,
K. Hanspers, R. A. Â Miller, D. Digles, E. N. Lopes, F. Ehrhart, L. J.
Dupuis, L. A. Winckers, S. L. Coort, E. L. Willighagen, C. T. Evelo, A.
R. Pico, M. Kutmon, Nucleic Acids Res. 2021, 49, D613.

[97] S. Köhler, M. Gargano, N. Matentzoglu, L. C. Carmody, D. Lewis-
Smith, N. A. Vasilevsky, D. Danis, G. Balagura, G. Baynam, A. M.
Brower, T. J. Callahan, C. G. Chute, J. L. Est, P. D. Galer, S. Ganesan,
M. Griese, M. Haimel, J. Pazmandi, M. Hanauer, N. L. Harris, M.
J. Hartnett, M. Hastreiter, F. Hauck, Y. He, T. Jeske, H. Kearney, G.
Kindle, C. Klein, K. Knoflach, R. Krause, et al.,Nucleic Acids Res. 2021,
49, D1207.

[98] M. Kanehisa, Nucleic Acids Res. 2000, 28, 27.
[99] M. Gillespie, B. Jassal, R. Stephan, M. Milacic, K. Rothfels, A. Senff-

Ribeiro, J. Griss, C. Sevilla, L. Matthews, C. Gong, C. Deng, T. Varu-
sai, E. Ragueneau, Y. Haider, B. May, V. Shamovsky, J. Weiser, T.
Brunson, N. Sanati, L. Beckman, X. Shao, A. Fabregat, K. Sidiropou-
los, J. Murillo, G. Viteri, J. Cook, S. Shorser, G. Bader, E. Demir, C.
Sander, et al., Nucleic Acids Res. 2022, 50, D687.

[100] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Har-
ris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J.
E. Richardson, M. Ringwald, G. M. Rubin, G. Sherlock, Nat. Genet.
2000, 25, 25.

[101] F. Cunningham, J. E. Allen, J. Allen, J. Alvarez-Jarreta, M.â R. Amode,
I. M. Armean, O. Austine-Orimoloye, A. G. Azov, I. Barnes, R. Ben-
nett, A. Berry, J. Bhai, A. Bignell, K. Billis, S. Boddu, L. Brooks,
M. Charkhchi, C. Cummins, L. Daâ Rinâ Fioretto, C. Davidson, K.
Dodiya, S. Donaldson, B. Elâ Houdaigui, T. Elâ Naboulsi, R. Fatima,
C. G. Giron, T. Genez, J. G. Martinez, C. Guijarro-Clarke, A. Gymer,
et al., Nucleic Acids Res. 2022, 50, D988.

[102] J. Sund, P. Deceuninck, EURL ECVAM Library of Reference Chem-
icals. European Commission, Joint Research Centre (JRC), Brus-
sels, Belgium 2021, http://data.europa.eu/89h/92614229-d020-
4d96-941c-c9604e525c9e

[103] S. Wegner, P. Browne, D. Dix, Reprod. Toxicol. 2016, 65, 402.
[104] N. C. Kleinstreuer, P. Ceger, E. D. Watt, M. Martin, K. Houck, P.

Browne, R. S. Thomas, W.M. Casey, D. J. Dix, D. Allen, S. Sakamuru,
M. Xia, R. Huang, R. Judson, Chem. Res. Toxicol. 2017, 30, 946.

[105] P. Browne, R. S. Judson, W. M. Casey, N. C. Kleinstreuer, R. S.
Thomas, Environ. Sci. Technol. 2015, 49, 8804.

[106] R. De Matos Simoes, F. Emmert-Streib, PLoS One 2012, 7,
e33624.

[107] M. Bastian, S. Heymann, M. Jacomy, Proc. Int. AAAI Conf. on Web
Soc. Media 2009, 3, 361.

[108] G. Csárdi, T. Nepusz, InterJournal, Complex Syst. 2006, 1695, 1.
[109] A. Pavel, A. Serra, L. Cattelani, A. Federico, D. Greco,Methods Mol.

Biol. 2022, 2401, 161.
[110] A. A. Hagberg, D. A. Schult, P. J. Swart, in Proc. of the 7th Python in

Science Conf, (Eds: G. Varoquaux, T. Vaught, J. Millman), SciPy 2008,
Pasadena, CA 2008, pp. 11–15.

[111] M. G. Schimek, E. Budinskã¡, K. G. Kugler, V. Å Vendovã¡, J. Ding, S.
Lin, Stat. Appl. Genet. Mol. Biol. 2015, 14, 311.

[112] A. Serra, L. A. Saarimã¤Ki, M. Fratello, V. S. Marwah, D. Greco, Bioin-
formatics 2020, 36, 2932.

[113] K. J. Livak, T. D. Schmittgen,Methods 2001, 25, 402.

Adv. Sci. 2022, 2203984 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203984 (16 of 16)





Tampere University Dissertations 999

999/2024
LAU

R
A

 A
LIISA

 SA
A

R
IM

Ä
K

I    Toxicogenom
ics D

ata for C
hem

ical Safety Assessm
ent

Toxicogenomics Data 
for Chemical Safety 

Assessment
From Intrinsic Characteristics to Functional Potential

LAURA ALIISA SAARIMÄKI


	Tyhjä sivu
	Tyhjä sivu
	Välisivut.pdf
	Coverpage_I
	Coverpage_II
	Coverpage_III
	Coverpage_IV
	Coverpage_V

	Study_I.pdf
	Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials
	Background & Summary
	Methods
	Data set identification and collection. 
	Metadata curation. 
	ENM physicochemical characteristics curation. 
	Manual quality assessment. 
	Data preprocessing. 
	Quality check. 
	Read alignment. 
	Read counts extraction. 
	Low counts filtering. 
	Probe filtering. 
	Normalization. 
	Batch effect assessment and correction. 
	Probe annotation. 
	Differential expression analysis. 
	FAIRness optimization. 

	Data Records
	Files available for each data set. 

	Technical Validation
	Usage Notes
	Acknowledgements
	Fig. 1 The workflow applied to compile the data collection.
	Fig. 2 Preprocessing workflow applied to Agilent, Affymetrix, and Illumina microarrays and Illumina RNA-sequencing.
	Fig. 3 The data collection comprises of various experimental setups and exposures of multiple ENM compositions.
	Table 1 Files provided for each entry in the collection.
	Table 2 Reasons for discarding data during the manual quality assessment.


	Study_II.pdf
	Prospects and challenges for FAIR toxicogenomics data
	Online content


	Tyhjä sivu
	Study_III.pdf
	Toxicogenomics analysis of dynamic dose-response in macrophages highlights molecular alterations relevant for multi-walled  ...
	1 Introduction
	2 Material and methods
	2.1 Nanomaterial
	2.2 Cell culture and exposures
	2.3 RNA/DNA extraction
	2.4 DNA microarrays
	2.5 Genome-wide DNA methylation
	2.6 Transcriptomics
	2.7 CpG methylation
	2.8 Dose- and time modelling
	2.9 Functional enrichment

	3 Results and discussion
	3.1 Transcriptional changes follow a dose-dependent trend
	3.2 Dynamic dose-dependent analysis highlights an additional set of adaptive genes
	3.3 A proportion of dynamic dose-dependent genes are coupled with dose-dependent alteration also in the gene promoter methy ...
	3.4 DDD alterations in transcription and methylation are related to cell activation and homeostasis
	3.5 Pathways underlying short-term adaptation are not coupled with promoter methylation changes
	3.6 Macrophage molecular adaptation to rCNTs comprises alterations recapitulating mechanisms leading to lung fibrosis

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


	Study_IV.pdf
	A curated gene and biological system annotation of adverse outcome pathways related to human health
	Background & Summary
	Methods
	Data structure and integration. 
	Annotation of key events to gene sets. 
	Refinement of the biological system annotations. 

	Data Records
	Data overview. 
	Data files and formats. 

	Technical Validation
	Usage Notes
	Acknowledgements
	Fig. 1 Study overview.
	Fig. 2 Annotation strategy applied to link gene sets to KEs.
	Fig. 3 Characteristics of the KE annotation.
	Table 1 Data types and sources.
	Table 2 Number of unique terms and genes used from each data source together with the total amount of human terms and genes present in each source at the time of data retrieval.
	Table 3 Description of files provided as part of the data set.


	TUNI_Saarimäki_Laura_arkistokannet.pdf
	Tyhjä sivu
	Tyhjä sivu




