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Abstract

The advent of high-throughput sequencing technologies has revolutionized the field of geno-

mic sciences by cutting down the cost and time associated with standard sequencing meth-

ods. This advancement has not only provided the research community with an abundance

of data but has also presented the challenge of analyzing it. The paramount challenge in

analyzing the copious amount of data is in using the optimal resources in terms of available

tools. To address this research gap, we propose “Kuura—An automated workflow for ana-

lyzing WES and WGS data”, which is optimized for both whole exome and whole genome

sequencing data. This workflow is based on the nextflow pipeline scripting language and

uses docker to manage and deploy the workflow. The workflow consists of four analysis

stages—quality control, mapping to reference genome & quality score recalibration, variant

calling & variant recalibration and variant consensus & annotation. An important feature of

the DNA-seq workflow is that it uses the combination of multiple variant callers (GATK Hap-

lotypecaller, DeepVariant, VarScan2, Freebayes and Strelka2), generating a list of high-

confidence variants in a consensus call file. The workflow is flexible as it integrates the frag-

mented tools and can be easily extended by adding or updating tools or amending the

parameters list. The use of a single parameters file enhances reproducibility of the results.

The ease of deployment and usage of the workflow further increases computational repro-

ducibility providing researchers with a standardized tool for the variant calling step in differ-

ent projects. The source code, instructions for installation and use of the tool are publicly

available at our github repository https://github.com/dhanaprakashj/kuura_pipeline.

Introduction

Next generation sequencing technologies are fast becoming an important avenue for new dis-

coveries in human genome research. They enable, for example, rapid identification of novel/

rare variants amongst various populations, which in turn can help understanding the genetics

behind particular diseases. The process of identifying variants from DNA-seq data is a multi-
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step process involving numerous bioinformatics tools. The simplest way to run the analysis

would be to select the right tools for each stage of the analysis and run them in a sequential

manner; however, the major drawback of this approach is that this is 1. not portable, 2. not

scalable, 3. not standardized in terms of software versions and 4. there are no checkpoints,

thereby eliminating the reproducibility aspect of the analysis.

Multiple pipelines such as SeqMule [1], DNAp [2], Sarek [3], SpeedSeq [4], GESALL [5]

and many more have been developed over the years to address the above-mentioned computa-

tional bottlenecks. However, they are either too rigid or too complex in their approach, leaving

the user with little to no room for customizing the pipeline to their needs. Multiple frame-

works such as nextflow [6], snakemake [7], cwltools, Pegasus [8], galaxy [9], and chipster [10],

to name only a few, have been developed to enable users to create their own pipelines consist-

ing of multiple processes. One pipeline that has been developed using the nextflow scripting

language is Sarek. While this pipeline is easier to install and deploy than other frameworks

with comparable functionality its comprehensive feature set makes it too complex for most

intended users, limiting their ability to understand and modify the workflow.

We have developed the Kuura pipeline using nextflow framework to provide an end-to-end

analysis pipeline from fastq files to an annotated consensus file. The pipeline makes use of

recent state-of-the-art tools to increase both confidence and reproducibility of the generated

results. The pipeline uses a combination of multiple variant callers—GATK Haplotypecaller
[11], DeepVariant [12], VarScan2 [13], Freebayes [14] and Strelka2 [15]—and presents users

with a consensus output which is then annotated. The pipeline uses docker [16] to manage and

deploy the run environment.

Results

We developed an automated analysis pipeline for sequencing data based on the need to rou-

tinely analyse large WGS and WES data sets produced at our in-house laboratory. To arrive at

a versatilely applicable, standardized workflow the pipeline has been extensively tested and val-

idated with publicly available gold standard datasets from the Genome in a Bottle Consortium

(GIAB) hosted by the National Institute of Standards and Technology.

Validation

The pipeline was validated against the gold standard WES datasets obtained from GIAB (see

section Data Availability), outlined in Table 1, using the Haplotype comparison tool hap.py
[17]. The results of the analysis are provided in Table 2.

Discussion

We have developed Kuura, a sequence analysis workflow that uses nextflow& docker for per-

forming reproducible end-to-end variant calling with minimal setup. Since nextflow and

docker support POSIX compatible systems, Kuura can be easily deployed on all major operat-

ing systems such as Linux, MacOS and Windows. It supports cluster computing by means of

Nextflow’s integration with workload managers such as slurm, OAR, Sun Grid Engine (SGE)

Table 1. Information on the gold standard datasets used for validating the pipeline.

SAMPLE ID NIST ID Pedigree Project

NA12878 HG001 CEPH/UTAH HapMap

NA24385 HG002 Ashkenazi Jewish Personal Genome Project

NA24631 HG005 Han Chinese ancestry

https://doi.org/10.1371/journal.pone.0296785.t001
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availability: The publicly available datasets used in

the evaluation are listed in Table 1 and were

downloaded from the EBI FTP server: HG001:

Exome sequencing of Homo sapiens: HG001 with

Illumina NovaSeq 6000 IDT capture -

SRR14724473 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/

SRR147/073/SRR14724473/SRR14724473_1.

fastq.gz ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR147/

073/SRR14724473/SRR14724473_2.fastq.gz

HG002: Exome sequencing of Homo sapiens:

HG002 with Illumina NovaSeq 6000 IDT capture -

SRR14724472 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/

SRR147/072/SRR14724472/SRR14724472_1.

fastq.gz ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR147/

072/SRR14724472/SRR14724472_2.fastq.gz

HG005: Exome sequencing of Homo sapiens:

HG005 with Illumina NovaSeq 6000 IDT capture -

SRR14724469 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/

SRR147/069/SRR14724469/SRR14724469_1.

fastq.gz ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR147/

069/SRR14724469/SRR14724469_2.fastq.gz The

IDT capture bed file used for coverage analysis and

hap.py validation was obtained from: https://

storage.googleapis.com/deepvariant/exome-case-

study-testdata/idt_capture_novogene.grch38.bed.
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amongst others, help in parallelising the analysis steps, which enables the users to scale up

their workflows with minimal configuration changes. Since the entire analysis environment is

dockerized and available from dockerhub it is highly portable and, at the same time, ensures

reproducible results. For experienced users, it is possible to upgrade any component or the

entire workflow. We recommend re-validating the pipeline after every change to any tool or

other source code component to ensure the consistency of the results. The steps for a minimal

validation run are described in the documentation.

In its current state, the pipeline requires a bed file for calculating and visualizing WES cov-

erage information that is usually included with the sequencing data. Themosdepth tool [18]

used for calculating coverage performs also without a bed file and does accept region limits via

other tool parameters but for simplicity reasons Kuura demands the bed file when specifying

WES data as input. If no bed file is available to the user one solution is to set the input flag to

WGS which will take more computing time but arrive at the same output. Alternatively, users

can create a bed file based on the input data as described in the FAQ section of the github

repository.

The validation of the pipeline has been done using GIAB gold standard datasets listed in

Table 1 using the Haplotype Comparison Tools (hap.py) to calculate the recall and precision

values as follows:

Recall = TP/(TP+FN)

Precision = TP/(TP+FP)

where true positives (TP), false negatives (FN) and false positives (FP) are determined

based on the input truth set. The implementation of the validation follows the procedure pub-

lished by the DeepVariant authors (https://github.com/google/deepvariant/blob/r1.5/docs/

deepvariant-training-case-study.md).

The results of analysis of the three datasets are provided in Table 2. The most obvious differ-

ence between the tools is their varying number of called variants. This behaviour was expected

as all tools come with different inherent variant calling algorithm, default settings and filters.

For example, VarScan2 has identified the smallest number of variants a behaviour which has

previously been reported in various studies comparing the performance of different variant

callers (e.g., [19–21]). At the same time, VarScan2 shows high precision (the highest number

of true positives among all positions identified as variants) and recall (the total correctly identi-

fied positive among all identifiable variants in the sample), also corresponding to the earlier

findings. Strelka2, on the other hand, shows the lowest performance of all callers employed in

Kuura, with moderate precision values and low recall values. This reduced performance is

likely a result of the relatively low number of mutations and only moderately high sequencing

depth (~50X on average) based on a study comparing variant caller performance while system-

atically varying sequencing depth and mutation frequency [22].

Table 2. Validation results using each variant caller. The table shows the number of variants identified by each variant caller, their precision and recall values. *The

table contains only SNP information.

Variant Caller Sample

NA12878 NA24385 NA24631

Count Precision Recall Count Precision Recall Count Precision Recall

GATK Haplotypecaller 160713 0.996402 0.958233 155973 0.995281 0.954474 150884 0.995416 0.951765

DeepVariant 261796 0.998768 0.989619 252227 0.999005 0.98792 247151 0.999355 0.987613

Freebayes 353434 0.94479 0.988765 342915 0.937996 0.986976 339658 0.948099 0.987294

Strelka2 333574 0.916016 0.210014 317965 0.907925 0.214567 307473 0.908015 0.229228

VarScan2 95416 0.982484 0.972359 94501 0.977653 0.970882 92490 0.983325 0.972397

https://doi.org/10.1371/journal.pone.0296785.t002
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By generating a consensus call set, Kuura, by default, produces a high-confidence variant

list giving users consistent results to be used, e.g., in a standard detection variant workflow.

The low-confidence set is kept, i.e., the output of the individual callers is available if needed.

Compared to other DNA-seq pipelines, Kuura is not feature intensive and it is not meant to

be. It was designed to be an end-to-end data analysis pipeline with a user-friendly implementa-

tion generating comprehensive yet reliable, ready-to-use output for downstream analysis.

Methods

The Kuura pipeline was constructed exclusively for the purpose of analyzing whole genome

sequencing data and whole exome sequencing data. The pipeline has been categorized into

four stages based on their functionalities; an illustration showing the stages is provided in Fig 1

and a description of each stage is explained below.

1. Stage 1:

Quality control

NGS data cannot be used directly as they might contain sequencing bias in individual base

composition, low quality reads, contamination from adapter sequences and overrepresented

sequences. The raw fastq files are preprocessed in order to have their quality assessed and to

check/remove any of the abovementioned anomalies from the data. Quality control has been

implemented in the pipeline using the tools–FASTQC [23], fastp [24] and cutadapt [25].

FASTQC tool checks the fastq files and provides a multitude of information about the

sequences including, but not limited to, per sequence GC content, overrepresented sequences,

or adapter content. After FASTQC analysis, the reads are trimmed using cutadapt if the adap-

tor sequences are defined in the configuration file, else using fastp. After quality trimming,

FASTQC is executed on all pre-processed fastq files for validation purposes.

2. Stage 2:

Genome alignment and quality score recalibration

Following quality control, the preprocessed reads are aligned to the reference genome which is

GRCh38 in the current version of the pipeline. The reads are aligned using the BWA-MEM

software and the unsorted SAM (Sequence Alignment Map) output files generated by BWA

are coordinate-sorted using SAMtools and compressed to Binary Alignment Map (BAM) files.

In the next step duplicate reads are tagged usingMarkDuplicates. After duplicate removal,

SAMtools is used again to sort the BAM files based on their coordinates and index them. In the

final step of stage 2, the base quality scores of the sorted and indexed reads are adjusted by the

GATK Base Quality Score Recalibration (BQSR) tool, a machine learning algorithm detecting

systematic scoring errors introduced by the sequencer.

3. Stage 3:

Variant calling & variant recalibration

After adjusting the base quality scores, the next step in the analysis process is identifying vari-

ants in the sample. The pipeline incorporates 5 different variant callers—DeepVariant, GATK
Haplotypecaller, Freebayes, Strelka2 and VarScan2. After variant calling, scores of the variants

identified by GATKHaplotypecaller are recalibrated for SNPs and INDELs to filter out remain-

ing artifacts from the dataset.

PLOS ONE Kuura—An automated workflow for analyzing WES and WGS data

PLOS ONE | https://doi.org/10.1371/journal.pone.0296785 January 18, 2024 4 / 10

https://doi.org/10.1371/journal.pone.0296785


Fig 1. Summary of the steps executed by the Kuura pipeline.

https://doi.org/10.1371/journal.pone.0296785.g001
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4. Stage 4:

Variant consensus & annotation

All five variant callers are applied to each sample and a ‘high confidence’ set is produced inter-

secting the results of all callers. Remaining variants, identified by only one method, are then

treated as an additional ‘low confidence’ variant set. This approach prioritizes precision over

recall in order to reduce the possibility of false positive variant calls. After identifying variants,

it is important to functionally characterize and integrate predictive information about them.

Functional annotation has been implemented in the pipeline using the Variant Effect Predictor

(VEP) [26]. The annotation is applied only to the ‘high confidence’ consensus file.

5. Summary

All output, including QC, log files and compatible textual output of the individual processing

tools, is summarized in a single report usingMultiQC [27] and saved to a user-defined

directory.

Fig 2. Overall architecture of the Kuura pipeline. The source codes for the pipeline are version controlled using git and maintained in github, the run

environment is stored as a docker image. Upon initiating the analysis pipeline, nextflow deploys the docker container on top of HPC cluster and runs the

analysis within the docker container and upon completion of the process the output is directly written to the specified storage volume.

https://doi.org/10.1371/journal.pone.0296785.g002

PLOS ONE Kuura—An automated workflow for analyzing WES and WGS data

PLOS ONE | https://doi.org/10.1371/journal.pone.0296785 January 18, 2024 6 / 10

https://doi.org/10.1371/journal.pone.0296785.g002
https://doi.org/10.1371/journal.pone.0296785


Portability and reproducibility

The pipeline has been constructed to run seamlessly from start to end, it starts with fastq files

and produces annotated vcf files that users can directly use for downstream analysis. The over-

all architecture of the pipeline is illustrated in Fig 2 and the instructions for installation and

testing are briefed below.

Kuura uses nextflow, a framework for creating scalable bioinformatics pipelines, to enable

reproducibility and flexible computational resource management. Git and github are used for

version control & collaboration while docker is used to preserve and implement the run envi-

ronment. The list of tools used in each stage are provided in Table 3.

Setting up and running Kuura pipeline

1. Install and configure nextflow & docker.

2. Clone the source codes from the github repository.

3. After downloading the github repository, the docker image required for running the pipe-

line needs to be built. Change into the docker directory and run the command ‘docker build
-t dna-seq-pipeline:0.1.‘

4. Configure the required variables for running the pipeline. In the configuration folder there

is a file called ‘default.config‘where variables such as input data directory, output directory,

source data for various processes, data descriptors, etc., need to be completed.

Table 3. Summary of the tools and their respective docker containers used in each stage.

Stage Tools used Docker container used

Quality control FASTQC utuprcagenetics/dnapipe:0.1

cutadapt/fastp*
FASTQC

Genome alignment and quality score recalibration BWA-MEM

GATK MarkDuplicates broadinstitute/GATK
SAMtools utuprcagenetics/dnapipe:0.1

GATK BaseRecalibrator broadinstitute/GATK
GATK ApplyBQSR

Mosdepth quay.io/biocontainers/mosdepth:0.2.4—he527e40_0

bedtools utuprcagenetics/dnapipe:0.1

Variant calling & variant recalibration GATK Haplotypecaller broadinstitute/GATK
GATK VariantRecalibrator

GATK ApplyVQSR
DeepVariant google/DeepVariant:1.4.0

Strelka2 utuprcagenetics/dnapipe:0.1

Freebayes
VarScan2

Variant consensus & annotation BCFtools
VEP ensemblorg/ensembl-VEP

Summary MultiQC utuprcagenetics/dnapipe:0.1

*Cutadapt is used for adaptor trimming if the adaptor sequence is provided, else fastp is used.

https://doi.org/10.1371/journal.pone.0296785.t003
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5. The pipeline is ready to be run and can be started by running nextflow with the ‘-with-dock-
er‘option. Nextflow will run the pipeline in a docker container using the specified docker
image. The command will look like; “nextflow run bin/Nextflow/dna-seq-pipeline.nf -w
<workspace directory> -profile default”

6. A screenshot of the successfully executed workflow is attached in Fig 3. It shows informa-

tion on the data used, computational parameters used, steps successfully completed, date

and time taken to complete the workflow.

Supporting information

S1 File. Detailed installation and usage instructions.

(DOCX)

S1 Table. Complete validation results. In the revision process, the pipeline was validated on

gold standard data sets HG003, HG004, HG006 and HG007, data sets generated with the same

sequencing protocol in the same study as data sets HG001, HG002 and HG005. The table

shows the number of variants identified by each variant caller, their precision and recall values.

*The table contains only SNP information.

(XLSX)

Fig 3. Screenshot showing a successfully executed pipeline and the information presented while the pipeline is running.

https://doi.org/10.1371/journal.pone.0296785.g003
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