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ABSTRACT

Petteri Nuotiomaa: Visually attended sound source semantic segmentation
Bachelor’s Thesis
Tampere University
Information technology
March 2024

Sound Source Separation from single input audio mixture is a problem that has had many
different proposed solutions. Many of the modern solutions involve using machine learning and
especially deep learning to achieve good separation results. The goal of this thesis is to develop
a solution to the sound source semantic segmentation problem, evaluate the performance of the
proposed method, and compare it with similar solutions

The thesis goes over the theory behind the problem and explores some of the previous so-
lutions used for this problem. During the background research, it became clear that there aren’t
many solutions trying to solve the exact problem of sound source semantic segmentation. This
is why the thesis examines solutions for different problems, that have some relation to the sound
source semantic segmentation.

This thesis proposes a new solution for sound source semantic segmentation. The solution is
based on some of the groundbreaking research done in the sound source separation field. The
proposed deep learning system has two networks, one for audio and one for visual information.
The audio network is a U-Net type network and the visual network is based on the ResNet model of
networks. The addition of visual information to the final separation is done by weighing the audio
instrument masks with the probabilities of predicted instruments. The network uses common
hyperparameters that are used in different works in the field. The loss function is slightly different
than any of the previous works as it uses probabilities instead of hard labels for ground truth
values.

The results from the proposed system indicate that the system can separate simple audio
sources from an audio mixture. The solution didn’t achieve wanted results in all test cases and spe-
cially for duet audios the method had problems separating the instruments. The system showed
some promise in the multimodality approach, but the better results for the multimodality approach
could be accounted for by the different initial randomization of the network. The proposed solution
achieved results that are better than the baseline and the most simple approaches to the same
problem but failed to meet the standard separating quality that can be expected from a modern
deep learning approach.

Keywords: machine learning, deep learning, sound source separation, multimodality, sound source
semantic segmentation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Petteri Nuotiomaa: Visuaalisen tiedon avulla avitettu eri äänien semanttinen erottelu
Kandidaatin tutkielma
Tampereen yliopisto
Tietotekniikka
March 2024

Eri äänilähteiden automaattinen erottelu yhdestä ääniraidasta on ongelma, jonka ratkaisemi-
seen on käytetty monia eri menetelmiä. Monet uusimmista menetelmistä käyttävät koneoppia,
varsinkin syväoppimista, saavuttaakseen äänilähteiden laadukkaan erottelun. Työn tavoitteena on
kehittää menetelmä äänilähteiden semanttiseen erotteluun yhdestä ääniraidasta ja evaluoida, mi-
ten menetelmän saavuttamat tulokset vertautuvat muihin äänenerottelumenetelmiin.

Työssä käydään läpi relevantti teoria äänen erottelusta ja esitellään mitä lähestymistapoja on
aikaisemmin käytetty ongelman ratkaisemiseksi. Työn taustatutkimuksen aikana huomattiin, että
tutkimuskohteena äänilähteiden semanttinen erottelu on harvinainen. Tämän takia teoriaosiossa
käydään läpi myös kirjallisuutta, joka ei ratkaise äänilähteiden semanttista erottelua.

Työ esittää äänilähteiden semanttiseen erotteluun uuden menetelmän, joka pohjautuu vanhoi-
hin äänilähteiden erottelu ratkaisuihin. Työn ehdotettu syväoppimisverkko on yhdistelmä kahdesta
syväoppimisverkosta. Toinen verkoista käsittelee äänidataa U-Net-syväoppimisverkossa ja toinen
taas käsittelee visuaalista informaatiota ResNet-syväoppimisverkon avulla. Visuaalisen informaa-
tion ja äänidatan yhdistäminen on tehty lisäämällä ResNet-syväoppimisverkon antamat soitinto-
dennäköisyydet painoarvoiksi U-Net-syväoppimisverkon tuottamien yksittäisten soittimien mas-
keille. Työssä ehdotetun syväoppisverkon hyperparametrit ovat pääosin samoja kuin aikaisem-
missa äänilähteiden erotteluun käytetyissä verkoissa. Tappiofunktio kuitenkin eroaa aikaisemmis-
ta menetelmistä käyttämällä todennäköisyyksiä totuusarvona kategorioiden sijaan.

Työssä esitetyn menetelmän tulokset osoittavat, että menetelmä pystyy erottelemaan musikaa-
lisia äänilähteitä toisistaan yksinkertaisissa tilanteissa. Menetelmä ei kuitenkaan toimi kaikissa ti-
lanteissa tavoitellulla tavalla. Erityisesti duettoääniraitojen erottelussa menetelmä harvoin onnistuu
saavuttamaan laadukkaan erottelun. Näyttöä sille, että visuaalinen informaatio olisi auttanut ääni-
lähteiden erottelussa, saatiin vain rajallinen määrä. Menetelmää käyttämällä saavutettiin kuitenkin
tulokset, jotka ohittavat erottelukyvyssään yksinkertaisimmat äänenerotteluratkaisut. Modernit sy-
väverkkoratkaisut kuitenkin saavuttavat parempia tuloksia kuin työssä kehitetty verkko.

Avainsanat: koneoppi, syväoppi, äänilähteiden erottelu, multimodaalisuus, äänilähteiden semant-
tinen segmentointi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

Separating sound sources is a task that has its uses in a multitude of different fields. One

of the best-known sound source separation problems is the cocktail party problem, where

the objective is to separate different speakers in an audio recorded at a cocktail party. For

this study, the goal is not to separate speakers, instead the goal is to separate musical

instruments from a video with multiple different musical instruments present. The neural

network (NN) structure proposed in this study is designed to achieve this objective.

Over the years there have been multiple different types of solutions for this problem rang-

ing from strictly algorithmic approaches [3] to deep neural network (DNN) approaches [2],

that rely on training the network with real data. Lately, there has been a lot of develop-

ment in approaches that use not only the audio but also the visual cues given in a video.

These approaches have been used for speech separation [4], music separation [2], and

environmental sound source localization [1].

In this study, we propose a new approach for sound source separation. The proposed

method generates a semantic mask, which can be used with the original audio to isolate

distinct audio sources. For the training, evaluation, and testing of the network, the solo

performance videos from the MUSIC-21 [5] dataset are used.

The thesis is structured as follows: Chapter 2 presents the background information about

the sound source separation task and a brief introduction to some popular methods.

Chapter 3 defines the network structure studied in this paper and chapter 4 presents the

experiment and evaluation result of the defined network. The final chapter summarizes

the results and draws conclusions.
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2. BACKGROUND AND RELATED WORKS

Machine learning (ML) is a rapidly growing field of research that affects many different

branches of technology. While the breadth of ML subfields is extensive, this chapter

only focuses on background information and relevant papers closely tied to the specific

problem addressed in this thesis.

2.1 Background

Humans possess an ability to analyze and interpret the sounds around us, even when

there are multiple different audio sources present [6]. This capacity to separate the in-

tended sound in a mixture of auditory inputs is a fundamental aspect of Auditory Scene

Analysis (ASA), a field studying human audio perception, first conceptualized by Bergman

in his influential work [7]. Subsequently, the approach of Computational Auditory Scene

Analysis (CASA) emerged, aiming to replicate human-like perceptual abilities through

computation. As said by D. Wang et al. in the book [8], CASA can be defined as "the

field of computational study that aims to achieve human performance in ASA by using

one or two microphone recordings of the acoustic scene". This thesis focuses not on

developing a comprehensive CASA system, but rather on developing a semi-supervised

sound source separation system that solves the separation problem by training on artifi-

cial sound mixtures.

The goal of sound source separation is to obtain clear separated audio, which can then

be utilized in applications such as robust automatic speech speaker recognition, hear-

ing prostheses, and auditory scene reconstruction [8]. As mentioned in the introduction

chapter, the need to separate certain instruments from musical sound sources is a good

example of a sound source separation problem. For musical instruments, one possible

application of sound source separation is that when an instrument is separated from a

sound mixture, you can then use or analyze that instrument’s audio independently.

Many of the sound source separation methods use the principle that periodic signals, such

as music, can be represented as a combination of pure sine wave frequencies [1][2][5].

A process that is similar to what the human auditory system does in the cochlea [8].

The method on how to deconstruct a signal to its sine wave components is called a

Fourier transform. This process moves the signal to the frequency domain. To obtain
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a time-frequency (T-F) representation of the signal, we can apply the Fourier transform

to consecutive frames. In the T-F domain, we can then filter the signal, so that only the

target signal remains. After the filtering, we can use the inverse Fourier transform to get

back to the time domain with not wanted frequencies removed from the signal. Figure 2.1

provides an example of instrument spectrograms, which are a type of T-F representation.

Figure 2.1. Four examples of a spectrograms for different instruments. [9]

In musical signals, each instrument produces a unique combination of different frequen-

cies and these different characteristic frequencies can be used to separate different in-

struments from each other. These characteristics can be seen in Figure 2.1, as each in-

strument has a different structure in the spectrogram. What makes musical sound source

separation even more feasible, is the sparsity of musical signals in the T-F domain. At

most T-F points, the sources have very little energy [9], as seen in the figure 2.1. An-

other contributing factor to musical sound source separation is the presence of repeating

structures in musical signals [9]. For instance, a drummer may adhere to a 4/4 time beat,

where the bass drum is struck on every beat. These repeating structures are evident

in Figure 2.1, particularly for the drums, where stronger energy concentrations occur at

regular intervals.".

In sound mixtures, sound sources have different temporal properties, including variations

in onset and offset times, which helps in separating different sources from each other [10].

However, in musical contexts, these temporal properties often correlate [10], for example,

when orchestral instruments commence playing simultaneously upon the conductor’s cue.

There are many challenges involved in separating musical sound sources which makes it
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a non-trivial problem. As mentioned earlier one problem is the correlation of sources,

which makes separation harder for methods that depend on independent component

analysis [10]. Additionally, B. Pardo et al.[10] mention that unrealistic mixing scenarios

are common in modern music. Instruments may be recorded as single tracks and then

combined with different equalization, panning, and reverberation to form the final track.

Another notable challenge, as highlighted by D. Wang et al. in the book [8], arises from the

polyphonic nature of musical signals, compared to monophonic signals usually present in

cases like noise removal or some speech processing applications. The last challenge, as

noted by Bryan Pardo et al.[10], is the evaluation of musical signals. Unlike some applica-

tions where evaluation metrics are standardized, such as speech intelligibility, assessing

music often requires more subjective and artistic considerations.

2.2 Related works

The network proposed in this study uses both visual and sound cues to form a semantic

mask for sound source separation. While studies addressing this specific problem are

limited, we can represent the problem as a collection of subproblems and then examine

the relevant literature associated with each subproblem.

2.2.1 Sound source separation

Historically, sound source separation required a human to manually manipulate sound

mixture frequencies to isolate a specific source. This process can be laborious and time-

consuming. To automate it, one of the pioneering computational methods employed was

non-negative matrix factorization (NMF), developed in the 1990s by D. Lee and Seung

[11]. Although NMF was not originally devised for sound source separation, its subse-

quent utilization by Virtanen [12] demonstrated its effectiveness in isolating sound sources

within audio signals. The results obtained through this approach serve as a baseline for

evaluating the quality of sound source separation in the later chapters.

Most notable modern methods use machine learning, especially deep learning, to achieve

sound separation [1][2][5][13]. A common approach is to perform the Short Time Fourier

Transform (STFT) on the original audio signal to represent the audio in the T-F domain

[1][2][5]. After the STFT, there are two different components of the signal: the amplitude

of the signal and the phase of the signal. Phase information can be excluded as input

[2], and only amplitude information is considered when generating a spectrogram. This

spectrogram represents the presence of each frequency over time frames and is used

as an input to the network. An alternative approach involves utilizing the time domain

waveform signal directly as the input to the network [14][13].

Many modern methods first encode the audio signal to a smaller feature space and then



5

try to decode those features back to a binary mask [1][2][5]. The mask can then be used

to form the output spectrogram by multiplying the input spectrogram with the mask cre-

ated by the network and combining the result with the phase information. Binary masks

are predicted, consistent with the observation by D. Wang et al. in the book [8]: "...differ-

ent lines of computational consideration have converged on the use of binary masks...".

Predicting binary masks allows for a more simplified representation, as it only involves

determining the presence or absence of specific frequencies at each T-F bin, rather than

trying to directly predict full spectrogram details. Numerous modern methods employ the

spectrogram approach [1][2][5], but some methods use the time domain waveform signal

as an input for the system [14][13]. The differences in spectrogram approach network

architectures manifest in the distinct methods by which the analysis and synthesis stages

encode and decode signals. Some approaches also add additional information by analyz-

ing the audio signal in different ways, as example, Tzinis et al.[15] used an independent

audio source classifier to derive more information about the sources present in the sig-

nals and then combined the information from the encoder and the classifier before the

decoder stage.

2.2.2 Visual-audio correspondence

For human beings, it’s natural to associate movement or appearance with a sound source.

For example, when a person sees someone playing a guitar, the person expects to hear a

sound that resembles previously heard guitar sounds. In addition, the motion information

of the guitar player’s hands can indicate what type of sound can be heard, as the sound

depends on the motion of the hand. To use these observations within ML networks, some

solutions take the approach of using an image classification network and take either the

prediction output or the output of one of the last layers and feed that information to the

sound network [1][2]. To get the motion information, one approach is to calculate the

trajectory of areas of interest or individual pixels, in multiple consecutive frames, to es-

timate the motion of an object i.e. hand or a mouth. Zhao et al.[2] utilized appearance

information for sound source localization, while Zhu & Rahtu [1] and Zhao et al.[5] incor-

porated both appearance and motion information to enhance the system’s sound source

separation and localization capabilities.

2.2.3 Semantic segmentation

The final goal of the suggested system is to form a semantic mask that separates each

of the instruments present in the signal. Semantic segmentation forms a mask that holds

information about an image associated with the mask. Usually, each pixel value has a

corresponding value in the mask, which represents the class information of that pixel.

In figure 2.2, there is an example of a semantic mask and a picture associated with
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it. Semantic segmentation is a task usually formed for pictures, but in this case, the

segmentation is done to the spectrogram of the input audio. While not as common as

image segmentation, this type of segmentation has been done before. Sudo et al.[16]

used a pre-trained event detection convolutional neural network (CNN) in addition to a

mask U-Net structure to achieve a semantic mask for the environmental sound source.

Kong et al.[17] also used a CNN with weakly labeled data to achieve a segmentation mask

for sound events. Both of the mentioned segmentation methods use mostly monophonic

signals, with Sudo et al.[16] using a maximum of 0.5 seconds of overlap between sound

sources and Kong et al.[17] not having any overlap between predicted events, but adding

background noise to the mixture.

Figure 2.2. An example of a picture and the associated semantic mask. Different colors
represent different classes. [18]
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3. METHODOLOGY

The goal of the study was to find an ML method capable of separating sound sources

by forming a mask that can then be multiplied with the original audio spectrogram to get

each separate sound source from an audio mixture. The final architecture of the study

uses a similar approach to the approach used by Zhao et al.[2], which showed promising

results in separating one musical instrument from a mixture of many instruments. There

are changes done to the architecture specified in the paper, as the problem at hand is

slightly different from that in the paper. The most important change was made to the way

the visual features were incorporated into the architecture and how many binary masks

were formed by the decoder structure.

This chapter initially outlines the entire system pipeline before elaborating on the func-

tionality of each component.

3.1 Overview

The proposed system has two different pipelines, one for training and evaluation and one

for separating sound sources from duet videos. Duet videos are not used in training, be-

cause it would require a lot of processing to define ground truth values for the instrument

audio tracks and that is not the goal of this study. An illustration of the full final pipeline

can be found in figure 3.1.

3.1.1 Training and Evaluation Pipeline

The training pipeline first takes two different videos from different instruments and extracts

a 6-second audio clip, sampled at 11025 Hz, from a random part of each video. Then it

combines the two audio clips to form the input audio mixture. The audio mixture is trans-

formed into the time-frequency domain using an STFT with a frame size of 1024 and a

hop size of 256. Only the magnitude information is fed into the system. Phase information

is used in the reconstruction of the audio, but not by the trained part of the network. To es-

tablish the ground truth probabilities, the STFT of each instrument is computed, followed

by the application of a softmax activation along the instrument axis with instruments that

are not present having a magnitude spectrogram of zeros.
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Figure 3.1. Illustration of the full pipeline.

The image input is a frame from the middle of the six-second audio clip, for both instru-

ments. Both of these frames are passed through the ResNet-18 network individually and

the prediction results are then combined by taking a maximum value from each frame

prediction output. This is done to achieve a similar output during the training as the final

product pipeline which has two instruments present in one frame.

In the feed-forward stage, the audio mixture magnitude information is first warped to

match the input size of the network and then passed to the system along with the frame

prediction information. The frame information is combined with the audio information after

the audio network outputs the probabilities mask for each instrument. The system output

is a tensor that defines a mask for all of the possible instruments in the dataset. The

loss value is then calculated from the output tensor and the ground truth using the loss

defined later in this chapter. Following the loss calculation, the system employs backward

propagation to determine the gradient and then updates the weights using the defined

optimizer.

The evaluation pipeline mirrors the training pipeline until the loss calculation stage. How-

ever, instead of updating weights, the calculated loss is used to assess the system’s

performance. To achieve the output audios, the most likely instrument is predicted for

all points in the spectrogram using the output instrument probabilities. The result is then

thresholded so that if none of the instruments are predicted with high enough confidence,

a background class is predicted for that part of the spectrogram. From this result, we can

then form the binary mask for each instrument so that if the instrument was the most likely,



9

that point in the spectrogram is 1, and if not then it a 0. This mask is then multiplied with

the input mixture magnitude information and combined with the input phase information.

Then by taking the Inverse Short Time Fourier Transformation (ISTFT) from the spectro-

gram, we can reconstruct the audio to time domain and evaluate the separation result by

comparing the output audios with the original instrument audios. The testing pipeline is

the same as the evaluation pipeline, but it uses testing data instead of evaluation data.

3.1.2 Final Product Pipeline

The final product pipeline is similar to training and evaluation, but the main difference is

that the audio input to the system is a duet clip containing two audio sources rather than

an audio mixture artificially created by combining two different videos. The Duet clip is

the same length as the audio mixture used for the training and evaluation. The input for

the video network is a frame taken from the middle of the duet. The desired output of the

system is two audio tracks which each contain audio parts from only one instrument of the

duet. All presented metrics in the later chapters are calculated using the evaluation/test

pipeline because duet videos don’t have ground truth values available.

3.2 Audio separating

The audio-separating network is based on the U-Net structure proposed by Ronneberger

et al.[19]. The original U-Net structure is modified to be better suited for the problem

at hand. U-net structure is based on the approach of first analyzing the input in the

encoder stage and then synthesizing an output in the decoder stage. What sets U-Net

apart from other autoencoder networks is its way of utilizing skip connections to merge

encoder features with decoder features during the decoding stage. Figure 3.2 shows the

full network architecture and it is split up by the dashed line to the encoder and decoder

stages.

Figure 3.2. Full audio separation network. Image predictions are represented by the
green colored block. The dashed line separates the encoder and decoder stages.
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3.2.1 Encoder

In Figure 3.2 encoder architecture is represented on the left side of the architecture.

The arrows leaving each feature map are the skip connections that are connected to

the feature maps of the decoder part. Each one of the six green arrows represents one

layer. There is also one more layer from the input to the first feature map not present in

the figure. In total there are seven layers and each layer, except the first and last layer,

consists of three independent components:

1. Convolutional layer

2. Batch normalization layer

3. Rectified Linear Unit activation layer (ReLu)

Convolution layers are the main building blocks for CNNs, which is a category of networks

that the proposed U-Net falls under. The convolutional layer convolves multiple filters with

the input using different filter kernels. Each kernel responds to different structures in the

input and from the kernel-filtered outputs, the network can derive information about the

input. Adding multiple consecutive convolutional layers has been proven to make the

network learn more complex patterns [20]. The filtering kernels are learned through the

training process using a backpropagation algorithm, which aims to minimize the output

loss. Further details on the optimization method used will be discussed later in this chap-

ter.

The used convolutional layer has a filter size of 4x4, stride of 2, and padding of 1. This

means that every input for a convolutional layer is first padded with zeros so that the width

and length increase with 2 (e.g., a 128x128 input becomes 130x130). After the padding,

each input is convolved with several filters of size 4x4. How much the filter kernel moves

after a singular convolution operation is defined with the stride parameter. The number of

filters increases with the depth of the network so that the first convolutional layer has 64

filters and the maximum amount of filters is 512.

After the convolutional layer, there is a batch normalization layer, which is a popular com-

ponent used to fasten the training procedure by normalizing the intermediate outputs of

convolution blocks. It was first introduced by Ioffe & Szegedy in paper [21] and it is still

widely used in many different DNN structures. The idea behind batch normalization is to

normalize the outputs of a layer before the activation function. Normalization is not done

with the mean and variances of the whole training dataset, rather it’s done with the mean

and variance of each mini-batch using per-dimension variances. The batch normalization

layer also learns scale and shift components which are used to move and shift the nor-

malized outputs for better results. During training a moving average and moving variance

are calculated from all mini-batches and these are then used in the inference stages to

normalize the outputs.
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The final component of each layer is the ReLu activation, which is a common activation

used in modern deep-learning architectures. It is defined as follows:

f(x) = max(0, x)

ReLu is often used in deep learning architectures because of the two advantages it has

over the Sigmoid activation function. The first advantage is the smaller likelihood of van-

ishing gradient as the gradient of a ReLu function is either 1 or 0, while in Sigmoid func-

tions the gradient is between 0 and 0.25. When using gradients smaller than 1 in a large

neural network, the multiplication of these gradients can result in extremely small gradi-

ents. This occurs as each successive multiplication further reduces the overall gradient,

which can lead to ineffective learning. The other advantage is better computational effi-

ciency, as the function only chooses the max between zero and the already known x.

The input for the encoder is the spectrogram of the audio that needs to be separated. The

input is warped to the size 256x256 needed by the network architecture. In the first layer,

there is no batch normalization so the input is first convolved and then a ReLu activation

is applied. In the last layer, there is no batch normalization for the convolution output.

3.2.2 Decoder

In Figure 3.2 decoder architecture is represented on the right side of the architecture. The

arrows coming to each feature map represent the skip connection information coming

from the encoder part of the network. Each one of the eight green arrows represents one

layer. The green box is the predictions for each class calculated by the image network. In

total there are eight layers and the first six layers consist of four independent components:

1. Upsample layer

2. Convolutional layer

3. Batch normalization layer

4. ReLu layer

Convolutional, batch normalization, and ReLu layers work the same way as in the encoder

stages so they are not gone through again. For the convolutional layer, the parameters in

the decoder stages are as follows: filter size 3x3, stride 1, and padding 1.

The upsample component is the only component that is not present in the encoder stage.

The upsample layer doubles the width and height of the input feature map using bilin-

ear upsampling (e.g., a 4x4x512 input becomes 8x8x512). Bilinear upsampling uses all

neighboring values with linear interpolation to calculate new values. An example is pre-

sented in the figure 3.3 below.
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Figure 3.3. Example of bilinear upsampling.

The second to last layer doesn’t use batch normalization and after the last convolution, a

sigmoid activation is used to get the probabilities for each instrument mask. The architec-

ture’s final layer multiplies the instrument audio probabilities with the output of the visual

feature extraction. This multiplication of different modality features is only done during

evaluation and testing as the audio and frame networks are trained independently.

3.3 Visual feature extraction

The visual feature extraction is done by using a ResNet structure which was first proposed

by He et al.[22]. The specific ResNet used in this study is a version of the ResNet-18

architecture. The ResNet-18 architecture is designed with 18 layers of operations and

some of the operations have a residual connection to the output of an earlier operation.

Residual connection is visualized in the figure 3.4. The ResNet-18 structure used in this

study is modified so that the output layer outputs the probability for each one of the 21

possible instruments.

Figure 3.4. Example of a singular ResNet block [22]. The arrows indicate input direction
and the arrow skipping the two layers is the residual connection.
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3.4 Other Details

3.4.1 Optimiser

The optimization method used in this study was mini-batch gradient descent. It calculates

the gradients that are used for updating the weights, for a small batch from the training

set, rather than the whole training set at once. Mini-batch gradient descent was chosen

because it achieved faster computation than batch gradient descent and less fluctuation

of the loss than stochastic gradient descent.

3.4.2 Loss function

The final pipeline uses cross-entropy loss as the loss function. The specific cross-entropy

loss used in this study uses probabilities instead of hard labels as the ground truth. The

decision to use probabilities was made because the spectrogram of the mixture contained

a significant presence of nearly inaudible frequencies that made the system learn non-

relevant patterns when hard labels were used as the ground truth. In figure 3.5 we can

see the results between both of the methods. The probabilities are computed through

a softmax operation applied to the magnitude spectrograms of all instruments along the

instrument axis. In instances where there is no audio for a particular instrument, its rep-

resentation is a spectrogram composed entirely of zeros. The probabilistic loss function

is defined in the equation 3.1.

l(x, y) = L = {l1, ..., lN} , ln = −
21∑︂
c=1

log
exp(xn,c)∑︁C
i=1 exp(xn,i)

yn,c (3.1)

In equation 3.1 N is the batch size, x is the input and y is the target value given as a

probability of appearing in the audio mixture. The loss is then reduced to a single number

within the batch by taking the mean of the loss values.
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Figure 3.5. Two spectrogram semantic masks with the left one being the prediction with
a network trained with hard labels and the right one being the prediction for a network
trained with probabilities.

3.4.3 Training, Evaluation and Test Data

Training, Evaluation, and Test data consist of solo instrument performances downloaded

from YouTube. The dataset is the extended version of the MUSIC dataset used by Zhao

et al.[2]. The expanded dataset includes videos featuring 21 distinct instruments, rang-

ing from a minimum of 23 videos for the saxophone to a maximum of 85 videos for the

acoustic guitar. Instrument distribution is shown in figure 3.6. The dataset is divided

into training, evaluation, and test datasets with the training dataset containing 80% of the

videos and evaluation and test each containing 10% of the videos.

Figure 3.6. Instrument breakdown of the whole dataset.
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4. RESULTS

To measure the quality of audio separation, 3 different aspects of the output were mea-

sured: Audio quality, classification accuracy, and semantic mask separation. Each aspect

is measured using standard metrics commonly used in sound source separation literature

and they are explained in their respective subsection.

4.1 Audio quality

One of the study’s objectives was to obtain clean audio tracks for individual instruments.

As part of this goal, one evaluated aspect of the output is the audio quality of the result-

ing tracks. To quantify the audio quality of separated audio tracks, three commonly used

metrics are measured from the output: Signal to Distortion Ratio (SDR), Signal to Inter-

ference Ratio (SIR), and Signal to Artifact Ratio (SAR). Each of these metrics measures

different aspects of the output audio. The following equation is a simplification of what

components the output audio is made of:

s = starget + einterf + enoise + eartif

To get perfect output audio we would minimize the errors caused by the different errors

(e). SAR measures the amount of unwanted artifacts (eartif ) in the signal, SIR measures

how much leakage (einterf ) there is in the signal from other sound sources and SDR mea-

sures how good the sound source sounds by comparing the target sound with the errors

(eartif , einterf , enoise). For each metric, a higher number indicates a better performance.

From table 4.1, we can see that the implementation outperforms the baseline and NMF

on every measured audio quality metric, except the SAR for the baseline. The baseline

is calculated by using the mixture signal as the system output, which is why there are no

artifacts detected in the signal. NMF results are the ones reported by Zhao et al.[5]. On

the other hand, both of the DNN approaches, Sound of Pixels (SoP) [2] and Appearance

and Motion network (AMnet) [1], outperform this study’s network. An important note is

that SoP reports values for the MUSIC dataset containing only 11 instruments compared

to the 21 instruments used in both this study and the AMnet study.

The audio-only and combined network results shown in table 4.1 indicate that the sys-
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tem did achieve better results when using the multimodality approach. The difference in

sound quality is minor, which means that the quality difference may be caused by different

random initializations or by the random selection of 6-second clips used while training.

Table 4.1. Sound quality metrics for the separated output audios

Audio Quality Metrics

Metric SDR SIR SAR

Baseline 0.653 0.575 71.406

Study Audio Only 4.741 13.580 8.372

Study Combined 5.146 13.361 9.679

NMF 2.78 6.70 9.21

SoP 7.52 13.01 11.53

AMnet 11.08 18.00 13.22

4.2 Classification

To automate the separation of instruments, it is important to see if there are any false

positives in the output semantic masks. To assess false positives, a confusion matrix is

constructed based on the semantic mask, utilizing the top 3 predicted classes. Addition-

ally, to evaluate the frame network, both accuracy and a confusion matrix are computed

from the frame network’s output.

Figure 4.1 is the confusion matrix for the combined network. The confusion matrix is

created by taking the top three most predicted instruments in the output semantic mask

and checking if the top three contain the ground truth labels. Typically, the most frequently

predicted label corresponds to the background label. The background label is associated

with confusion only when there are no erroneous predictions or ground truth labels within

the top 3. Otherwise, confusions are attributed to incorrectly predicted labels.

Analyzing the combined confusion matrix reveals that, in the majority of instances the

correct instruments ranked within the top 3 predicted instruments. The matrix also reveals

that the system sometimes misclassified similar instruments for each other. For example,

the acoustic guitar was often mistaken for the banjo, congas, and ukulele. This confusion

is notable because the banjo and ukulele, like the guitar, fall under the string instrument

category, sharing similar traits in both appearance and sound.
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Figure 4.1. Confusion matrix for the combined network

Figure 4.2 is the confusion matrices calculated for the frame network and audio network

separately. Examining the confusion matrices reveals comparable overall performances,

yet distinct misclassifications between them. This is anticipated, as certain instruments

might share visual similarities while possessing entirely different sound characteristics,

and vice versa. The frame network achieved an average accuracy of 0.813.

Figure 4.2. Frame network and audio network confusion matrices. In the randomly se-
lected test set, there were no flute samples.
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4.3 Mask metrics

One way to measure the system’s ability to separate audio is to measure how well the

predicted mask of an instrument overlaps with the ground truth mask of the same instru-

ment. For this purpose two similar, but slightly different metrics were used: Intersection

over Union (IoU) and Dice Coefficient, the latter also serving as the F1 score for binary

mask predictions. IoU is calculated as follows:

IoU =
TP

(TP + FP + FN)
(4.1)

which is similar to the dice coefficient calculation:

Dice =
2TP

(2TP + FP + FN)
(4.2)

As mentioned earlier, while IoU and the Dice Coefficient are similar metrics, IoU tends to

penalize over- and under-segmentation more than the Dice Coefficient.

In table 4.2 we can see the average IoU and Dice scores for different thresholds of ground

truth mask. The threshold is for the probability calculated for the ground truth, which is ex-

plained in section 3.3.2. The Dice and IoU results indicate an overlap between the predic-

tion and ground truth, but the scores fall below typical IoU standards for image semantic

segmentation. In the realm of audio semantic segmentation, there is a lack of prior works

measuring IoU, making comparisons with previous studies unfeasible. Overall, the masks

were consistently under-predicted, particularly in capturing complex high-frequency infor-

mation.

Table 4.2. Table containing chosen mask metrics for comparing ground truth values with
the output

Mask Metrics

Threshold 0.05 0.10 0.15 0.20

Dice 0.132 0.205 0.198 0.180

IoU 0.086 0.146 0.138 0.121

4.4 Overall results

Figure 4.3 displays visualizations of the results from the test data, and figure 4.4 displays

visualizations for the duet data. The figures show the audio and frame inputs of the

system and the final predicted masks. In figure 4.3 there is also the ground truth mask

associated with each of the inputs.
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From the 4.3 figure we can see that in many cases the system can distinguish different

instruments from each other. While the audio quality in these cases may not match the

quality of the ground truth audio, it still captures the characteristic sounds associated with

the instruments. In specific instances, such as in the rightmost collection, the system

encounters challenges in predicting the correct instruments, resulting in nearly silent or

entirely silent output. Many of these cases can be accounted for by how the mixture is

formed: Some of the audio clips had higher overall amplitude levels, than others, which

made the system more likely to predict that instrument. Usually, in such instances, the au-

dio track for the other instrument contains the audio corresponding to the failed prediction.

Figure 4.3. Collection of overall results from the evaluation pipeline.

For the final duet pipeline, where the input is duet audio, the majority of separated outputs

were unsuccessful. Typically, the system predicts both instruments on one track and

nothing on the other. The same behavior was present with the mixture clips. However,

in the case of duet audios, where the overall amplitude level of the instruments is similar,

this suggests that factors other than amplitude level differences may contribute to this

behavior. Another type of failure occurs when there are no predictions for either audio

track. In Figure 4.4 are some of the better results. In these results, one track may initially
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exhibit both instruments after applying the threshold operation. However, after assigning

individual pixels in the mask to the instrument with the highest probability, the resulting

sound quality improved.

Figure 4.4. Collection of overall results from the final duet pipeline.
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5. CONCLUSIONS

The goal of this study was to create a solution for a modified cocktail party problem where

the object is to separate musical instruments. The chosen solution was to use two dif-

ferent DNNs and combine the results from each one using a simple weighing. The code

used to produce the results is available at Github1.

From the results shown in Chapter 4, we can say that the system was not able to achieve

results good enough to classify the study as a success. Many of the artificial sound

mixture cases were separated well, but there were also some failure cases. For the duet

audios, there were even more significant issues, with only a handful of the duet audios

being effectively separated.

The study showed some promise in the multimodality approach for sound source separa-

tion as the results of the multimodality approach had audio quality that was slightly better

than the pure audio approach. There is also a possibility that the differences in the results

are attributed to the distinct random initialization and the random selection of clips from

the training samples.

Some potential improvements for the system involve refining the process of combining

audio features with the frame features. In this study, the combination was performed af-

ter training both networks independently; a more sophisticated approach could involve

merging audio and frame features and then training the entire system. Additionally, ex-

ploring alternative methods for combining, beyond simply weighing the audio output with

the frame output, could be considered.

1https://github.com/Notsk1/SoundSeparationImplementation
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