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Abstract
The type 1 diabetes community is coalescing around the benefits and advantages of early screening for disease risk. To be 
accepted by healthcare providers, regulatory authorities and payers, screening programmes need to show that the testing 
variables allow accurate risk prediction and that individualised risk-informed monitoring plans are established, as well as 
operational feasibility, cost-effectiveness and acceptance at population level. Artificial intelligence (AI) has the potential 
to contribute to solving these issues, starting with the identification and stratification of at-risk individuals. ASSET (AI for 
Sustainable Prevention of Autoimmunity in the Society; www. asset. healt hcare) is a public/private consortium that was estab-
lished to contribute to research around screening for type 1 diabetes and particularly to how AI can drive the implementation 
of a precision medicine approach to disease prevention. ASSET will additionally focus on issues pertaining to operational 
implementation of screening. The authors of this article, researchers and clinicians active in the field of type 1 diabetes, met 
in an open forum to independently debate key issues around screening for type 1 diabetes and to advise ASSET. The poten-
tial use of AI in the analysis of longitudinal data from observational cohort studies to inform the design of improved, more 
individualised screening programmes was also discussed. A key issue was whether AI would allow the research community 
and industry to capitalise on large publicly available data repositories to design screening programmes that allow the early 
detection of individuals at high risk and enable clinical evaluation of preventive therapies. Overall, AI has the potential to 
revolutionise type 1 diabetes screening, in particular to help identify individuals who are at increased risk of disease and aid in 
the design of appropriate follow-up plans. We hope that this initiative will stimulate further research on this very timely topic.
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ASSET  AI for Sustainable Prevention of Autoimmunity 
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DKA  Diabetic ketoacidosis
HLA  Human leukocyte antigen
ML  Machine learning
TEDDY  The Environmental Determinants of Diabetes in 

the Young

Introduction

Type 1 diabetes is commonly regarded as an autoimmune 
condition that starts long before symptomatic manifesta-
tions [1]. When reduced endogenous insulin production 
and hyperglycaemia reach a critical threshold, individuals 
develop symptoms and are sometimes diagnosed in dramatic 
circumstances when presenting in diabetic ketoacidosis 
(DKA).

Insulin replacement therapy has been available to treat 
type 1 diabetes for 100 years, with the last 30 years wit-
nessing the development of more efficacious insulins, more 
accurate insulin delivering methods and more sophisticated 
ways to monitor blood glucose [2]. While insulin is a life-
saving treatment, it is not a cure. Therefore, every child or 
adult that is diagnosed with type 1 diabetes has to come to Extended author information available on the last page of the article
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terms with a complicated and potentially dangerous treat-
ment regimen and faces the negative long-term medical, 
social and economic consequences of the disease [3–5]. 
Even though remarkable improvements in disease manage-
ment and survival have been observed during the past cen-
tury, mortality rate in type 1 diabetes is still two to eight 
times higher than in populations without diabetes. This is 
reflected in a loss of life expectancy at age 20 of approxi-
mately 12 years [6].

The holy grail of type 1 diabetes clinical research is to 
find treatments that prevent or delay the clinical onset of 
disease [7]. Similar to the success of antiretroviral drugs 
for the treatment of HIV infection, disease-slowing treat-
ments need to be developed for individuals with presymp-
tomatic type 1 diabetes. A number of large observational 
cohort studies have followed thousands of children from 
birth. A wealth of information on genetics (e.g. human 
leukocyte antigen [HLA] genes) and biomarkers (e.g. dia-
betes-related autoantibodies) in type 1 diabetes, as well as 
on the natural history of type 1 diabetes progression, has 
been obtained to identify risk factors for the pathogenesis 
leading up to the clinical disease [8–12]. Presymptomatic 
screening has been advocated for genetic and serological 
risk variables.

Early screening allows individuals at risk and their fami-
lies to prepare for a diagnosis of type 1 diabetes, although 
advanced knowledge of disease risk may increase the psy-
chological burden if there is no preventive treatment or 
possibility of enrolling in a clinical trial [13]. Screening 
has also reduced the occurrence of DKA and the risk and 
duration of hospitalisation at diagnosis and may provide 
positive long-term effects on the course of the disease [14, 
15]. The experience in Finland suggests that participation 
in prospective follow-up studies reduces the frequency of 
DKA in children at diagnosis of type 1 diabetes, but that 
genetic screening alone does not decrease DKA risk [16]. 
This highlights the need for predictive biomarkers and 
sequential follow-up of autoantibody-positive individuals. 
The ultimate goal is to prevent clinically overt type 1 dia-
betes (stage 3) by providing effective and safe treatments 
for individuals at high risk for the disease but still with suf-
ficient beta cell function. These could be pharmacological 
interventions targeting the immune system, to replenish 
lost beta cells, or advanced therapies using stem cells and 
gene editing [13, 17, 18].

While advances in screening and prevention have been 
acknowledged, improvements are needed in the areas of risk 
prediction, operationality of screening programmes, health-
economic evaluation and interactions with societal stake-
holders for practical implementation.

Using artificial intelligence to drive 
a precision medicine approach to type 1 
diabetes

A fundamental aspect of precision medicine entails the rec-
ognition of identifiable subpopulations with variations in 
disease susceptibility, prognosis and treatment response. 
Artificial intelligence (AI) holds the promise of being a 
key driver of precision medicine [19] by harnessing feature 
information contained in available clinical datasets (see Text 
box 1). Through advanced algorithms, AI can uncover per-
sonalised disease trajectories and treatment responses. This 
is mostly achieved using machine learning (ML), a subset 
of AI that enables computers to learn from training datasets. 
Such strategies hold the potential to provide clinicians with 
interventions—whether they involve disease modification 
or prevention—tailored to the specific traits of individu-
als. Prediction algorithms using AI approaches for cancer 
[20, 21], CVD [22] and autoimmunity [23–25] have shown 
promising results. AI has also been applied in type 1 diabe-
tes, for instance in optimising insulin pump settings [26], in 
potentially identifying predictive biomarkers [27] and for the 
detection of complications [28].

Text box 1: Summary 
Could artificial intelligence (AI) add value to the
screening procedure for type 1 diabetes to improve
prediction and indicate individualised strategies for
intervention, that is, drive a precision medicine ap-
proach?

Researchers in the field are positive about the po-
tential of adding AI to the toolbox for the prediction
of individual risk factors for type 1 diabetes. Using
an AI algorithm with access to existing research
data may identify key factors that influence the risk
for disease and highlight opportunities for interven-
tion.

AI has the potential to revolutionise type 1 diabetes
screening if it proves to be effective in aiding both
the prediction of type 1 diabetes in at-risk individu-
als and the design of individualised preventive in-
terventions.

Precision prevention in type 1 diabetes is based on 
the ability to determine the individual risk of clinical 
disease onset, by using aggregated data such as genetic 
susceptibility, family history, environmental exposures 
and behavioural factors, as well as the ability to tailor 
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personalised prevention approaches derived from such 
data. Seropositivity of islet autoantibodies, defined HLA 
haplotypes and genetic risk scores are currently the best 
available biomarkers for type 1 diabetes and are used to 
inform risk for disease development [29–31] and for the 
selection of individuals for clinical trials [32]. Applying 
precision medicine approaches that match treatments with 
the likely responder population is one way to account 
for disease heterogeneity and optimise the risk–benefit 
balance for the individual and society [33]. Screening 
for autoantibodies is often combined with genetic pre-
screening in cohort studies using a layered approach, with 
participants first undergoing genetic screening, and those 
with a higher genetic risk score proceeding to autoan-
tibody testing and close follow-up. For instance, in the 
TEDDY (The Environmental Determinants of Diabetes in 
the Young) study, HLA screening at birth was an inclu-
sion criterion [8].

AI modelling applied to disease detection has ample 
ability to provide an earlier diagnosis for individuals at 
risk [34] and to distinguish fast from slow progressors. In 
addition to screening for autoantibodies and HLA risk fac-
tors, analysis by AI may uncover new predictive biomark-
ers from variables that are already measured in clinical 
practice and data that are readily available in electronic 
medical records. Recent work has used ML of available 
clinical data for the early detection of individuals at high 
risk for pancreatic cancer [35]. These types of studies 
allow features that are predictive of disease risk to be 
identified and, in the long term, allow the design of more 
efficient screening strategies that take risk stratification 
into account.

Although there is a wealth of data available from obser-
vational studies on type 1 diabetes that have gathered 
invaluable clinical information over the last few decades, 
such datasets would still be considered ‘small data’ from 
an AI applicability perspective. One of the challenges of 
applying AI modelling to type 1 diabetes risk prediction 
is precisely developing strategies that do not require mas-
sive amounts of data. This approach is in line with the 
AI field pivoting away from the common perception that 
it is almost synonymous with ‘big data’ [36] to a focus 
on small data to deliver valuable biological insights. This 
could be achieved using synthetic data [37], artificially 
generated data that imitate the characteristics and patterns 
of real-world data without containing actual information 
from individual observations. Such data are produced 
using algorithms to simulate the statistical properties, dis-
tributions and relationships present in ‘authentic’ clinical 

datasets. Synthetic data can be used for various purposes, 
including testing and validating algorithms, training ML 
models and conducting analyses, while safeguarding the 
privacy and confidentiality of sensitive information pre-
sent in the original data. This could be particularly helpful 
in tackling issues of data sharing and in balancing skewed 
datasets. Many cohort studies are skewed towards non-
diagnosed individuals.

AI could also help to establish a second important vari-
able of a screening programme: an individualised follow-up 
programme. In an ideal world, an individual seen by a gen-
eral practitioner or paediatrician would benefit from type 1 
diabetes risk prediction and a follow-up schedule, for exam-
ple on a 0.5, 1, 5 and 10 year timescale, based on already 
available clinical data.

In addition to risk prediction, AI has the potential to 
guide pharmaceutical companies and clinical researchers 
with advanced effect and response prediction, to target 
and deliver preventive therapeutics to the individuals most 
likely to benefit from them [38, 39]. Such an approach also 
has the potential to help redesign clinical trials to approach 
population selection more efficiently.

The ASSET consortium

The ASSET consortium (AI for Sustainable Prevention 
of Autoimmunity in the Society; www. asset. healt hcare), 
partially funded by the Swedish Innovation Agency (VIN-
NOVA), was established in 2021 to contribute to the type 
1 diabetes research landscape. ASSET is a consortium of 
academic, healthcare and industry partners whose aim is to 
contribute a personalised prediction and prevention strat-
egy for autoimmune diseases (see Text box 2). ASSET will 
investigate how AI can be applied to data in existing cohort 
studies to identify (1) individuals at risk for type 1 diabe-
tes and (2) individuals who would benefit from precision 
secondary prevention or early intervention with therapeutic 
approaches. ASSET will also function as a testbed for the 
clinical development of prevention therapeutics, studying 
the articulation between screening programmes and clinical 
trials. Additionally, ASSET aims to analyse the organisa-
tional, economic, ethical and legal prerequisites and con-
sequences of applying precision prevention within type 1 
diabetes in the Swedish healthcare system. The aim is to 
proactively address obstacles that may hinder the transition 
of precision prevention from smaller screening initiatives to 
regular healthcare practice.

http://www.asset.healthcare
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While there are other ongoing initiatives in the field that 
are tackling one or several of these issues, ASSET aims to 
approach the issues in an integrated manner, and preferably 
in cooperation with other ongoing programmes, but with a 
focus in the Nordic countries. This article describes the goals 
of ASSET and summarises the discussion points expressed 
by experts in the field who assembled at an ASSET work-
shop in 2022.

Approach to ML/AI within ASSET

The initial focus of ASSET is on applying ML/AI to the 
analysis of clinical datasets to discern patterns of disease 
progression and develop algorithms for individualised risk 
prediction. Within ASSET, the MainlyAI platform (https:// 
mainly. ai) is used for collaboration, managing data sources 
and designing and performing the ML/AI studies. An over-
view of the MainlyAI platform is shown in Fig. 1.

The MainlyAI ML/AI tool platform has several char-
acteristics that make it suitable for ASSET, including the 
following:

• Support for safe and privacy-preserving sharing: users 
of the tool can configure how building blocks of ML/AI 
projects are shared with other user groups. This means 

that knowledge can be shared and time can be saved 
when working with ML/AI projects, as already existing 
building blocks can easily be reused from collaborative 
team members, from trusted partners or from resources 
shared publicly on the platform. In particular, sharing of 
data sources and ML/AI models has proved valuable for 
ASSET.

• Ease of distributed collaboration: the MainlyAI platform 
includes a so-called platform-as-a-service in which users 
log in and use the tool within their web browser. This 
means that users can work on the same project from dif-
ferent geographical locations, which in turn makes it pos-
sible to invite experts from around the world to take part 
and contribute to project development.

• Distributed ML/AI learning approaches: techniques such 
as split learning or federative learning can be used in the 
MainlyAI platform. One advantage of such techniques is 
that partners can collaborate to speed up or improve the 
learning of a model without sharing datasets.

• Support for the full lifecycle of ML/AI projects: the tool 
provides support for ML/AI projects from configuration 
of data sources to deployment of trained models.

• Further tailoring and tool features for ASSET: as the 
MainlyAI platform is the property of one of the ASSET 
partners and under development, the tool can and will 
be furthered tailored towards the needs of the ASSET 

Several factors need to come together to implement a screening strategy at a national level as well as to 
bring preventive therapeutics to the target population. Population-wide screening initiatives are also instru-
mental for clinical research and for the implementation of pharmacological interventions once both effect and 
safety are proven and regulators approve

Key aspects in developing preventive thera-
peutics for type 1 diabetes

ASSET workplan

Biomarkers that indicate progression to clinical on-
set

Apply ML/AI techniques to the analysis of available 
clinical data to inform the design of screening:

� Features to be used in screening (availa-
ble in routine clinical practice)

� Improved individualised risk prediction to
determine periodicity of screening and
longitudinal follow-up

Adapt screening programmes based on individual-
ised risk prediction

Availability of safe pharmacological interventions 
with strong preclinical/clinical data as well as bio-
logical plausibility based on mechanism of action

Testbed for clinical evaluation of preventive thera-
peutics

Strategy to identify individuals at high risk for devel-
oping the disease through population-wide screen-
ing

Evaluation of how screening programmes can be 
articulated with clinical trials
Proactive analysis of regulatory, health-economic, 
social, psychological, ethical and organisational
barriers to implementation of population screening 
for type 1 diabetes

Text box 2: Focus of the ASSET project

https://mainly.ai
https://mainly.ai
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projects, including support for various data formats, the 
models and other building blocks added to the library of 
the tool and support for suitable data and visualisation of 
results.

The initial focus of ASSET is on setting up the ML pipe-
line (model training, testing and presentation of output) to 
enable the performance of several type 1 diabetes predic-
tion studies to validate the set-up and gain insights from 
the datasets. The data source used to date is the TEDDY 
study, in which 8640 high-risk individuals have been fol-
lowed from birth to age 15 years, or to a diagnosis of type 1 
diabetes [40]. Current analyses are organised into two stud-
ies focusing on temporal predictive approaches. In one, we 
are using a multi-task temporal model to predict the risk of 
being diagnosed with type 1 diabetes in different time inter-
vals. In the other, we are assessing the risk of developing 
type 1 diabetes and the incidence age. This will be achieved 
by developing two survival analysis models using Cox pro-
portional hazards and random survival forests. Such studies 
represent only a first step in developing an AI model for 
disease prediction. Prospectively, the model(s) would need 
to be tested on ‘unseen’ clinical data to simulate real-world 
usage. The models’ predictions should then be compared 
with actual clinical outcomes to determine their’ accuracy, 
sensitivity and specificity. Collaborative efforts are needed 
to develop and refine AI algorithms for type 1 diabetes risk 
prediction and to ensure that they are based on high-quality 
data, as well as minimising biases, to correctly inform the 
design of population-wide screening programmes.

The execution of the project may be affected by the 
curbed availability of clinical data as well as issues around 
the sharing of clinical data, such as limitations of ethics 
permits, anonymisation and other administrative obstacles.

Screening for type 1 diabetes in practice

Currently, screening for type 1 diabetes using a panel of 
islet autoantibodies is available in Sweden only through 
inclusion in screening studies (e.g. birth cohorts); it is not 
part of healthcare or standard of care for individuals prior to 
clinical onset. Nationwide screening initiatives, preferably 
integrated into the healthcare system with careful evalua-
tion of medical, economic and psychological consequences, 
should be evaluated for implementation as ‘add ons’ to exist-
ing screening for other diseases in order to optimise costs 
and healthcare resources.

Several cohort studies screening individuals at risk for 
type 1 diabetes, such as TrialNet and INNODIA, have tar-
geted relatives of those with type 1 diabetes [41]. However, 
a large caveat is that ∼90% of those who develop type 1 
diabetes do not have a family history [42, 43] and are there-
fore missed in this narrow screening approach. To reach as 
many of those 90% as possible, general population screening 
for type 1 diabetes risk is unavoidable. Certain HLA hap-
lotypes confer a high genetic risk for type 1 diabetes, and 
HLA screening is potentially a crucial initial step in identify-
ing individuals who will develop autoantibodies and have a 
high risk of progressing to clinical type 1 diabetes [44–46]. 

Patient 

data

Patient 

reports

Documents

Cloud and infrastructure

MainlyAI platformData examples Output examples

Sensor 

data

Statistics Laboratory 

results

Predicting who will develop 

type 1 diabetes and when 

Design a follow-up plan based on risk 

prediction

Optimise healthcare resources

AI Store

MainlyAI Designer

MainlyAI Explorer

Fig. 1  MainlyAI platform. A project can include a diversity of data 
types (from laboratory test results to electronic medical records, 
patient-reported outcomes and data from wearables). Data are pulled 
into the platform and then the project is designed as a flow graph 
in the MainlyAI designer before outputting results or integration 
into other systems. The figure showcases an example from ASSET; 

the MainlyAI Designer shows a data stream containing the TEDDY 
data and the MainlyAI Explorer shows an overview of model perfor-
mance. The developed models allow the generation of outputs such as 
the prediction of type 1 diabetes. All the nodes that are developed in 
the project are accessible and stored in the AI Store for ease of shar-
ing and reuse
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Genetic testing to select high-risk individuals for autoanti-
body screening may be more cost-effective than population-
wide autoantibody screening. The drawback of using genetic 
prescreening is that one would miss future patients carrying 
only a weak or limited genetic risk for type 1 diabetes. This 
subgroup of future patients may actually increase, as the 
proportion of people with high-risk HLA genotypes may 
decrease over time among those with newly diagnosed type 1 
diabetes because of increasing environmental pressure [47].

Any screening strategy needs to consider a follow-up 
programme specifying a path for high-risk individuals and 
their families within the healthcare system. A refinement of 
the optimal screening strategy in terms of the variables to 
be tested, time points for testing and follow-up strategy is 
needed to inform the integration of type 1 diabetes screen-
ing into standard practice. In the long term, this is an aspect 
where AI may play a role through the analysis of available 
clinical data from cohort studies. ML/AI algorithms have the 
potential to integrate a multitude of variables, establishing 
individual risk scores to aid in stratifying populations and 
directing more intensive monitoring efforts towards those 
with elevated risk profiles. We envisage the application of 
AI-driven tools for optimising screening programmes as a 
natural evolutionary path once such programmes are estab-
lished at the healthcare level. The approach would be analo-
gous to ongoing integration of AI-based clinical support 
systems for breast cancer detection in ongoing screening 
programmes [48].

Barriers to screening

In addition to socioeconomic considerations and issues 
related to public acceptance, one of the reasons often 
invoked for not introducing a population-wide screening 
programme for type 1 diabetes has been the current lack of 
a preventive disease-modifying treatment. The WHO rec-
ommendations based on Wilson and Jungner’s principles 
of screening state that it is unethical to screen for disease 
risk without an effective treatment [49]. The paradox is that 
the lack of implementation of mass screening to find at-risk 
individuals severely hampers the ability to develop and test 
preventive therapies. One key benefit of a nationwide screen-
ing programme would be the possibility to test pharmaco-
logical interventions and accelerate type 1 diabetes research. 
Such screening programmes would also be instrumental in 
the practical application of preventive therapeutics, once 
available. There is certainly precedent for the approval of 
first-in-line therapy for a disease driving implementation of 
screening programmes. For example, spinal muscular atro-
phy was added to newborn screening in the USA in 2018 
after a US Food and Drug Administration (FDA)-approved 
therapy became available [50]. On 17 November 2022, the 

FDA approved teplizumab to delay the onset of stage 3 type 
1 diabetes in adults and children aged 8 years and older with 
stage 2 type 1 diabetes [51]. This approval could be the deci-
sive push towards the implementation of screening. More 
drugs are in the pipeline and societies have to be prepared to 
handle this breakthrough in the therapeutical arsenal.

The question of the cost-effectiveness of screening for 
type 1 diabetes is paramount for successful implementation 
in clinical practice. In addition to the costs of the actual 
screening process, including the costs of laboratory analy-
sis and necessary follow-up, including management of the 
psychological burden for individuals and families, the costs 
of preventive therapies also need to be considered. Several 
studies have already provided cost assessments based on 
strategies followed in screening cohort studies, such as the 
Autoimmunity Screening for Kids (ASK) programme in 
Colorado, USA, and the Fr1da study in Bavaria, Germany 
[52, 53].

Targeted and efficient monitoring needs to be developed 
through continuous data analysis and AI-identified trends 
and risk patterns. By focusing monitoring efforts on high-
risk individuals and efficiently allocating resources, an 
AI-driven programme could optimise the workflow while 
minimising costs, ultimately leading to a more sustainable 
and cost-effective approach to disease prevention and early 
intervention. Risk stratification and personalised monitor-
ing programmes may be implemented by using so-called 
clinical decision support systems (CDSS). Application of 
CDSS has the potential to reduce healthcare expenditure 
[54], for instance by decreasing unnecessary blood testing 
through an optimised monitoring schedule. The potential 
application of CDSS to type1 diabetes screening needs to 
be carefully evaluated.

Conclusion

Effective screening of type 1 diabetes risk in the general 
population would be beneficial for affected individuals and 
their families, academic researchers and pharma developing 
preventive therapeutics. Type 1 diabetes is a heterogeneous 
disease with distinctively progressive hallmarks that makes 
it amenable to a risk-based screening approach. Finding 
individuals at risk for the disease allows them to be moni-
tored, to be involved in clinical trials of preventive therapeu-
tics and, in the worst case, to be prepared for a diagnosis, 
avoiding an acute clinical presentation. Once treatments are 
available, screening will allow healthcare providers to select 
individuals who would benefit from a specific intervention. 
The design of screening programmes, including variables 
to screen for, how often to screen and how long to screen 
for, are questions that can be addressed using AI (Fig. 2). 
The application of AI to develop screening programmes, 
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from identifying biomarkers that predict disease trajectory 
to identifying the appropriate timing of monitoring and 
determining cost-effectiveness, is still in its infancy. Cur-
rent examples of AI application in diabetes include screen-
ing for diabetes complications and predicting hospitalisation 
for DKA [55, 56]. The potential benefits of AI should be 
weighed against the drawbacks, such as issues around data 
sharing, ethics and possible biases, before any AI-driven 
clinical support tools are introduced in population screening 
programmes.

The ASSET initiative is taking a broad approach, focus-
ing on AI to help inform screening programmes, testing 
preventive therapeutics in a clinical setting, and evaluating 
the ‘implementability’ of such practices in healthcare sys-
tems. ASSET provides the means to link experts in clinical 
type 1 diabetes research with industry, ethics boards and 
public healthcare to jointly capitalise on publicly available 
databases for designing screening programmes, identifying 
individuals at risk and assisting with the use of precision 
medicine in personalised clinical prevention trials.
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